]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/buffer.c
a7b8f3c59a4e85946472774b1c1e6fdaf655d2aa
[net-next-2.6.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 static int sync_buffer(void *word)
58 {
59         struct block_device *bd;
60         struct buffer_head *bh
61                 = container_of(word, struct buffer_head, b_state);
62
63         smp_mb();
64         bd = bh->b_bdev;
65         if (bd)
66                 blk_run_address_space(bd->bd_inode->i_mapping);
67         io_schedule();
68         return 0;
69 }
70
71 void __lock_buffer(struct buffer_head *bh)
72 {
73         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74                                                         TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77
78 void unlock_buffer(struct buffer_head *bh)
79 {
80         clear_bit_unlock(BH_Lock, &bh->b_state);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 EXPORT_SYMBOL(unlock_buffer);
85
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95 EXPORT_SYMBOL(__wait_on_buffer);
96
97 static void
98 __clear_page_buffers(struct page *page)
99 {
100         ClearPagePrivate(page);
101         set_page_private(page, 0);
102         page_cache_release(page);
103 }
104
105
106 static int quiet_error(struct buffer_head *bh)
107 {
108         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109                 return 0;
110         return 1;
111 }
112
113
114 static void buffer_io_error(struct buffer_head *bh)
115 {
116         char b[BDEVNAME_SIZE];
117         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118                         bdevname(bh->b_bdev, b),
119                         (unsigned long long)bh->b_blocknr);
120 }
121
122 /*
123  * End-of-IO handler helper function which does not touch the bh after
124  * unlocking it.
125  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126  * a race there is benign: unlock_buffer() only use the bh's address for
127  * hashing after unlocking the buffer, so it doesn't actually touch the bh
128  * itself.
129  */
130 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
131 {
132         if (uptodate) {
133                 set_buffer_uptodate(bh);
134         } else {
135                 /* This happens, due to failed READA attempts. */
136                 clear_buffer_uptodate(bh);
137         }
138         unlock_buffer(bh);
139 }
140
141 /*
142  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
143  * unlock the buffer. This is what ll_rw_block uses too.
144  */
145 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146 {
147         __end_buffer_read_notouch(bh, uptodate);
148         put_bh(bh);
149 }
150 EXPORT_SYMBOL(end_buffer_read_sync);
151
152 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153 {
154         char b[BDEVNAME_SIZE];
155
156         if (uptodate) {
157                 set_buffer_uptodate(bh);
158         } else {
159                 if (!quiet_error(bh)) {
160                         buffer_io_error(bh);
161                         printk(KERN_WARNING "lost page write due to "
162                                         "I/O error on %s\n",
163                                        bdevname(bh->b_bdev, b));
164                 }
165                 set_buffer_write_io_error(bh);
166                 clear_buffer_uptodate(bh);
167         }
168         unlock_buffer(bh);
169         put_bh(bh);
170 }
171 EXPORT_SYMBOL(end_buffer_write_sync);
172
173 /*
174  * Various filesystems appear to want __find_get_block to be non-blocking.
175  * But it's the page lock which protects the buffers.  To get around this,
176  * we get exclusion from try_to_free_buffers with the blockdev mapping's
177  * private_lock.
178  *
179  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180  * may be quite high.  This code could TryLock the page, and if that
181  * succeeds, there is no need to take private_lock. (But if
182  * private_lock is contended then so is mapping->tree_lock).
183  */
184 static struct buffer_head *
185 __find_get_block_slow(struct block_device *bdev, sector_t block)
186 {
187         struct inode *bd_inode = bdev->bd_inode;
188         struct address_space *bd_mapping = bd_inode->i_mapping;
189         struct buffer_head *ret = NULL;
190         pgoff_t index;
191         struct buffer_head *bh;
192         struct buffer_head *head;
193         struct page *page;
194         int all_mapped = 1;
195
196         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197         page = find_get_page(bd_mapping, index);
198         if (!page)
199                 goto out;
200
201         spin_lock(&bd_mapping->private_lock);
202         if (!page_has_buffers(page))
203                 goto out_unlock;
204         head = page_buffers(page);
205         bh = head;
206         do {
207                 if (!buffer_mapped(bh))
208                         all_mapped = 0;
209                 else if (bh->b_blocknr == block) {
210                         ret = bh;
211                         get_bh(bh);
212                         goto out_unlock;
213                 }
214                 bh = bh->b_this_page;
215         } while (bh != head);
216
217         /* we might be here because some of the buffers on this page are
218          * not mapped.  This is due to various races between
219          * file io on the block device and getblk.  It gets dealt with
220          * elsewhere, don't buffer_error if we had some unmapped buffers
221          */
222         if (all_mapped) {
223                 printk("__find_get_block_slow() failed. "
224                         "block=%llu, b_blocknr=%llu\n",
225                         (unsigned long long)block,
226                         (unsigned long long)bh->b_blocknr);
227                 printk("b_state=0x%08lx, b_size=%zu\n",
228                         bh->b_state, bh->b_size);
229                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
230         }
231 out_unlock:
232         spin_unlock(&bd_mapping->private_lock);
233         page_cache_release(page);
234 out:
235         return ret;
236 }
237
238 /* If invalidate_buffers() will trash dirty buffers, it means some kind
239    of fs corruption is going on. Trashing dirty data always imply losing
240    information that was supposed to be just stored on the physical layer
241    by the user.
242
243    Thus invalidate_buffers in general usage is not allwowed to trash
244    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245    be preserved.  These buffers are simply skipped.
246   
247    We also skip buffers which are still in use.  For example this can
248    happen if a userspace program is reading the block device.
249
250    NOTE: In the case where the user removed a removable-media-disk even if
251    there's still dirty data not synced on disk (due a bug in the device driver
252    or due an error of the user), by not destroying the dirty buffers we could
253    generate corruption also on the next media inserted, thus a parameter is
254    necessary to handle this case in the most safe way possible (trying
255    to not corrupt also the new disk inserted with the data belonging to
256    the old now corrupted disk). Also for the ramdisk the natural thing
257    to do in order to release the ramdisk memory is to destroy dirty buffers.
258
259    These are two special cases. Normal usage imply the device driver
260    to issue a sync on the device (without waiting I/O completion) and
261    then an invalidate_buffers call that doesn't trash dirty buffers.
262
263    For handling cache coherency with the blkdev pagecache the 'update' case
264    is been introduced. It is needed to re-read from disk any pinned
265    buffer. NOTE: re-reading from disk is destructive so we can do it only
266    when we assume nobody is changing the buffercache under our I/O and when
267    we think the disk contains more recent information than the buffercache.
268    The update == 1 pass marks the buffers we need to update, the update == 2
269    pass does the actual I/O. */
270 void invalidate_bdev(struct block_device *bdev)
271 {
272         struct address_space *mapping = bdev->bd_inode->i_mapping;
273
274         if (mapping->nrpages == 0)
275                 return;
276
277         invalidate_bh_lrus();
278         lru_add_drain_all();    /* make sure all lru add caches are flushed */
279         invalidate_mapping_pages(mapping, 0, -1);
280 }
281 EXPORT_SYMBOL(invalidate_bdev);
282
283 /*
284  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285  */
286 static void free_more_memory(void)
287 {
288         struct zone *zone;
289         int nid;
290
291         wakeup_flusher_threads(1024);
292         yield();
293
294         for_each_online_node(nid) {
295                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296                                                 gfp_zone(GFP_NOFS), NULL,
297                                                 &zone);
298                 if (zone)
299                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300                                                 GFP_NOFS, NULL);
301         }
302 }
303
304 /*
305  * I/O completion handler for block_read_full_page() - pages
306  * which come unlocked at the end of I/O.
307  */
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 {
310         unsigned long flags;
311         struct buffer_head *first;
312         struct buffer_head *tmp;
313         struct page *page;
314         int page_uptodate = 1;
315
316         BUG_ON(!buffer_async_read(bh));
317
318         page = bh->b_page;
319         if (uptodate) {
320                 set_buffer_uptodate(bh);
321         } else {
322                 clear_buffer_uptodate(bh);
323                 if (!quiet_error(bh))
324                         buffer_io_error(bh);
325                 SetPageError(page);
326         }
327
328         /*
329          * Be _very_ careful from here on. Bad things can happen if
330          * two buffer heads end IO at almost the same time and both
331          * decide that the page is now completely done.
332          */
333         first = page_buffers(page);
334         local_irq_save(flags);
335         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336         clear_buffer_async_read(bh);
337         unlock_buffer(bh);
338         tmp = bh;
339         do {
340                 if (!buffer_uptodate(tmp))
341                         page_uptodate = 0;
342                 if (buffer_async_read(tmp)) {
343                         BUG_ON(!buffer_locked(tmp));
344                         goto still_busy;
345                 }
346                 tmp = tmp->b_this_page;
347         } while (tmp != bh);
348         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349         local_irq_restore(flags);
350
351         /*
352          * If none of the buffers had errors and they are all
353          * uptodate then we can set the page uptodate.
354          */
355         if (page_uptodate && !PageError(page))
356                 SetPageUptodate(page);
357         unlock_page(page);
358         return;
359
360 still_busy:
361         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362         local_irq_restore(flags);
363         return;
364 }
365
366 /*
367  * Completion handler for block_write_full_page() - pages which are unlocked
368  * during I/O, and which have PageWriteback cleared upon I/O completion.
369  */
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 {
372         char b[BDEVNAME_SIZE];
373         unsigned long flags;
374         struct buffer_head *first;
375         struct buffer_head *tmp;
376         struct page *page;
377
378         BUG_ON(!buffer_async_write(bh));
379
380         page = bh->b_page;
381         if (uptodate) {
382                 set_buffer_uptodate(bh);
383         } else {
384                 if (!quiet_error(bh)) {
385                         buffer_io_error(bh);
386                         printk(KERN_WARNING "lost page write due to "
387                                         "I/O error on %s\n",
388                                bdevname(bh->b_bdev, b));
389                 }
390                 set_bit(AS_EIO, &page->mapping->flags);
391                 set_buffer_write_io_error(bh);
392                 clear_buffer_uptodate(bh);
393                 SetPageError(page);
394         }
395
396         first = page_buffers(page);
397         local_irq_save(flags);
398         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399
400         clear_buffer_async_write(bh);
401         unlock_buffer(bh);
402         tmp = bh->b_this_page;
403         while (tmp != bh) {
404                 if (buffer_async_write(tmp)) {
405                         BUG_ON(!buffer_locked(tmp));
406                         goto still_busy;
407                 }
408                 tmp = tmp->b_this_page;
409         }
410         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411         local_irq_restore(flags);
412         end_page_writeback(page);
413         return;
414
415 still_busy:
416         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417         local_irq_restore(flags);
418         return;
419 }
420 EXPORT_SYMBOL(end_buffer_async_write);
421
422 /*
423  * If a page's buffers are under async readin (end_buffer_async_read
424  * completion) then there is a possibility that another thread of
425  * control could lock one of the buffers after it has completed
426  * but while some of the other buffers have not completed.  This
427  * locked buffer would confuse end_buffer_async_read() into not unlocking
428  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
429  * that this buffer is not under async I/O.
430  *
431  * The page comes unlocked when it has no locked buffer_async buffers
432  * left.
433  *
434  * PageLocked prevents anyone starting new async I/O reads any of
435  * the buffers.
436  *
437  * PageWriteback is used to prevent simultaneous writeout of the same
438  * page.
439  *
440  * PageLocked prevents anyone from starting writeback of a page which is
441  * under read I/O (PageWriteback is only ever set against a locked page).
442  */
443 static void mark_buffer_async_read(struct buffer_head *bh)
444 {
445         bh->b_end_io = end_buffer_async_read;
446         set_buffer_async_read(bh);
447 }
448
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450                                           bh_end_io_t *handler)
451 {
452         bh->b_end_io = handler;
453         set_buffer_async_write(bh);
454 }
455
456 void mark_buffer_async_write(struct buffer_head *bh)
457 {
458         mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 }
460 EXPORT_SYMBOL(mark_buffer_async_write);
461
462
463 /*
464  * fs/buffer.c contains helper functions for buffer-backed address space's
465  * fsync functions.  A common requirement for buffer-based filesystems is
466  * that certain data from the backing blockdev needs to be written out for
467  * a successful fsync().  For example, ext2 indirect blocks need to be
468  * written back and waited upon before fsync() returns.
469  *
470  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472  * management of a list of dependent buffers at ->i_mapping->private_list.
473  *
474  * Locking is a little subtle: try_to_free_buffers() will remove buffers
475  * from their controlling inode's queue when they are being freed.  But
476  * try_to_free_buffers() will be operating against the *blockdev* mapping
477  * at the time, not against the S_ISREG file which depends on those buffers.
478  * So the locking for private_list is via the private_lock in the address_space
479  * which backs the buffers.  Which is different from the address_space 
480  * against which the buffers are listed.  So for a particular address_space,
481  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
482  * mapping->private_list will always be protected by the backing blockdev's
483  * ->private_lock.
484  *
485  * Which introduces a requirement: all buffers on an address_space's
486  * ->private_list must be from the same address_space: the blockdev's.
487  *
488  * address_spaces which do not place buffers at ->private_list via these
489  * utility functions are free to use private_lock and private_list for
490  * whatever they want.  The only requirement is that list_empty(private_list)
491  * be true at clear_inode() time.
492  *
493  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
494  * filesystems should do that.  invalidate_inode_buffers() should just go
495  * BUG_ON(!list_empty).
496  *
497  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
498  * take an address_space, not an inode.  And it should be called
499  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500  * queued up.
501  *
502  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503  * list if it is already on a list.  Because if the buffer is on a list,
504  * it *must* already be on the right one.  If not, the filesystem is being
505  * silly.  This will save a ton of locking.  But first we have to ensure
506  * that buffers are taken *off* the old inode's list when they are freed
507  * (presumably in truncate).  That requires careful auditing of all
508  * filesystems (do it inside bforget()).  It could also be done by bringing
509  * b_inode back.
510  */
511
512 /*
513  * The buffer's backing address_space's private_lock must be held
514  */
515 static void __remove_assoc_queue(struct buffer_head *bh)
516 {
517         list_del_init(&bh->b_assoc_buffers);
518         WARN_ON(!bh->b_assoc_map);
519         if (buffer_write_io_error(bh))
520                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
521         bh->b_assoc_map = NULL;
522 }
523
524 int inode_has_buffers(struct inode *inode)
525 {
526         return !list_empty(&inode->i_data.private_list);
527 }
528
529 /*
530  * osync is designed to support O_SYNC io.  It waits synchronously for
531  * all already-submitted IO to complete, but does not queue any new
532  * writes to the disk.
533  *
534  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535  * you dirty the buffers, and then use osync_inode_buffers to wait for
536  * completion.  Any other dirty buffers which are not yet queued for
537  * write will not be flushed to disk by the osync.
538  */
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 {
541         struct buffer_head *bh;
542         struct list_head *p;
543         int err = 0;
544
545         spin_lock(lock);
546 repeat:
547         list_for_each_prev(p, list) {
548                 bh = BH_ENTRY(p);
549                 if (buffer_locked(bh)) {
550                         get_bh(bh);
551                         spin_unlock(lock);
552                         wait_on_buffer(bh);
553                         if (!buffer_uptodate(bh))
554                                 err = -EIO;
555                         brelse(bh);
556                         spin_lock(lock);
557                         goto repeat;
558                 }
559         }
560         spin_unlock(lock);
561         return err;
562 }
563
564 static void do_thaw_one(struct super_block *sb, void *unused)
565 {
566         char b[BDEVNAME_SIZE];
567         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568                 printk(KERN_WARNING "Emergency Thaw on %s\n",
569                        bdevname(sb->s_bdev, b));
570 }
571
572 static void do_thaw_all(struct work_struct *work)
573 {
574         iterate_supers(do_thaw_one, NULL);
575         kfree(work);
576         printk(KERN_WARNING "Emergency Thaw complete\n");
577 }
578
579 /**
580  * emergency_thaw_all -- forcibly thaw every frozen filesystem
581  *
582  * Used for emergency unfreeze of all filesystems via SysRq
583  */
584 void emergency_thaw_all(void)
585 {
586         struct work_struct *work;
587
588         work = kmalloc(sizeof(*work), GFP_ATOMIC);
589         if (work) {
590                 INIT_WORK(work, do_thaw_all);
591                 schedule_work(work);
592         }
593 }
594
595 /**
596  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597  * @mapping: the mapping which wants those buffers written
598  *
599  * Starts I/O against the buffers at mapping->private_list, and waits upon
600  * that I/O.
601  *
602  * Basically, this is a convenience function for fsync().
603  * @mapping is a file or directory which needs those buffers to be written for
604  * a successful fsync().
605  */
606 int sync_mapping_buffers(struct address_space *mapping)
607 {
608         struct address_space *buffer_mapping = mapping->assoc_mapping;
609
610         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611                 return 0;
612
613         return fsync_buffers_list(&buffer_mapping->private_lock,
614                                         &mapping->private_list);
615 }
616 EXPORT_SYMBOL(sync_mapping_buffers);
617
618 /*
619  * Called when we've recently written block `bblock', and it is known that
620  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
621  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
622  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
623  */
624 void write_boundary_block(struct block_device *bdev,
625                         sector_t bblock, unsigned blocksize)
626 {
627         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628         if (bh) {
629                 if (buffer_dirty(bh))
630                         ll_rw_block(WRITE, 1, &bh);
631                 put_bh(bh);
632         }
633 }
634
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636 {
637         struct address_space *mapping = inode->i_mapping;
638         struct address_space *buffer_mapping = bh->b_page->mapping;
639
640         mark_buffer_dirty(bh);
641         if (!mapping->assoc_mapping) {
642                 mapping->assoc_mapping = buffer_mapping;
643         } else {
644                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
645         }
646         if (!bh->b_assoc_map) {
647                 spin_lock(&buffer_mapping->private_lock);
648                 list_move_tail(&bh->b_assoc_buffers,
649                                 &mapping->private_list);
650                 bh->b_assoc_map = mapping;
651                 spin_unlock(&buffer_mapping->private_lock);
652         }
653 }
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
655
656 /*
657  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658  * dirty.
659  *
660  * If warn is true, then emit a warning if the page is not uptodate and has
661  * not been truncated.
662  */
663 static void __set_page_dirty(struct page *page,
664                 struct address_space *mapping, int warn)
665 {
666         spin_lock_irq(&mapping->tree_lock);
667         if (page->mapping) {    /* Race with truncate? */
668                 WARN_ON_ONCE(warn && !PageUptodate(page));
669                 account_page_dirtied(page, mapping);
670                 radix_tree_tag_set(&mapping->page_tree,
671                                 page_index(page), PAGECACHE_TAG_DIRTY);
672         }
673         spin_unlock_irq(&mapping->tree_lock);
674         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
675 }
676
677 /*
678  * Add a page to the dirty page list.
679  *
680  * It is a sad fact of life that this function is called from several places
681  * deeply under spinlocking.  It may not sleep.
682  *
683  * If the page has buffers, the uptodate buffers are set dirty, to preserve
684  * dirty-state coherency between the page and the buffers.  It the page does
685  * not have buffers then when they are later attached they will all be set
686  * dirty.
687  *
688  * The buffers are dirtied before the page is dirtied.  There's a small race
689  * window in which a writepage caller may see the page cleanness but not the
690  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
691  * before the buffers, a concurrent writepage caller could clear the page dirty
692  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693  * page on the dirty page list.
694  *
695  * We use private_lock to lock against try_to_free_buffers while using the
696  * page's buffer list.  Also use this to protect against clean buffers being
697  * added to the page after it was set dirty.
698  *
699  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
700  * address_space though.
701  */
702 int __set_page_dirty_buffers(struct page *page)
703 {
704         int newly_dirty;
705         struct address_space *mapping = page_mapping(page);
706
707         if (unlikely(!mapping))
708                 return !TestSetPageDirty(page);
709
710         spin_lock(&mapping->private_lock);
711         if (page_has_buffers(page)) {
712                 struct buffer_head *head = page_buffers(page);
713                 struct buffer_head *bh = head;
714
715                 do {
716                         set_buffer_dirty(bh);
717                         bh = bh->b_this_page;
718                 } while (bh != head);
719         }
720         newly_dirty = !TestSetPageDirty(page);
721         spin_unlock(&mapping->private_lock);
722
723         if (newly_dirty)
724                 __set_page_dirty(page, mapping, 1);
725         return newly_dirty;
726 }
727 EXPORT_SYMBOL(__set_page_dirty_buffers);
728
729 /*
730  * Write out and wait upon a list of buffers.
731  *
732  * We have conflicting pressures: we want to make sure that all
733  * initially dirty buffers get waited on, but that any subsequently
734  * dirtied buffers don't.  After all, we don't want fsync to last
735  * forever if somebody is actively writing to the file.
736  *
737  * Do this in two main stages: first we copy dirty buffers to a
738  * temporary inode list, queueing the writes as we go.  Then we clean
739  * up, waiting for those writes to complete.
740  * 
741  * During this second stage, any subsequent updates to the file may end
742  * up refiling the buffer on the original inode's dirty list again, so
743  * there is a chance we will end up with a buffer queued for write but
744  * not yet completed on that list.  So, as a final cleanup we go through
745  * the osync code to catch these locked, dirty buffers without requeuing
746  * any newly dirty buffers for write.
747  */
748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
749 {
750         struct buffer_head *bh;
751         struct list_head tmp;
752         struct address_space *mapping, *prev_mapping = NULL;
753         int err = 0, err2;
754
755         INIT_LIST_HEAD(&tmp);
756
757         spin_lock(lock);
758         while (!list_empty(list)) {
759                 bh = BH_ENTRY(list->next);
760                 mapping = bh->b_assoc_map;
761                 __remove_assoc_queue(bh);
762                 /* Avoid race with mark_buffer_dirty_inode() which does
763                  * a lockless check and we rely on seeing the dirty bit */
764                 smp_mb();
765                 if (buffer_dirty(bh) || buffer_locked(bh)) {
766                         list_add(&bh->b_assoc_buffers, &tmp);
767                         bh->b_assoc_map = mapping;
768                         if (buffer_dirty(bh)) {
769                                 get_bh(bh);
770                                 spin_unlock(lock);
771                                 /*
772                                  * Ensure any pending I/O completes so that
773                                  * write_dirty_buffer() actually writes the
774                                  * current contents - it is a noop if I/O is
775                                  * still in flight on potentially older
776                                  * contents.
777                                  */
778                                 write_dirty_buffer(bh, WRITE_SYNC_PLUG);
779
780                                 /*
781                                  * Kick off IO for the previous mapping. Note
782                                  * that we will not run the very last mapping,
783                                  * wait_on_buffer() will do that for us
784                                  * through sync_buffer().
785                                  */
786                                 if (prev_mapping && prev_mapping != mapping)
787                                         blk_run_address_space(prev_mapping);
788                                 prev_mapping = mapping;
789
790                                 brelse(bh);
791                                 spin_lock(lock);
792                         }
793                 }
794         }
795
796         while (!list_empty(&tmp)) {
797                 bh = BH_ENTRY(tmp.prev);
798                 get_bh(bh);
799                 mapping = bh->b_assoc_map;
800                 __remove_assoc_queue(bh);
801                 /* Avoid race with mark_buffer_dirty_inode() which does
802                  * a lockless check and we rely on seeing the dirty bit */
803                 smp_mb();
804                 if (buffer_dirty(bh)) {
805                         list_add(&bh->b_assoc_buffers,
806                                  &mapping->private_list);
807                         bh->b_assoc_map = mapping;
808                 }
809                 spin_unlock(lock);
810                 wait_on_buffer(bh);
811                 if (!buffer_uptodate(bh))
812                         err = -EIO;
813                 brelse(bh);
814                 spin_lock(lock);
815         }
816         
817         spin_unlock(lock);
818         err2 = osync_buffers_list(lock, list);
819         if (err)
820                 return err;
821         else
822                 return err2;
823 }
824
825 /*
826  * Invalidate any and all dirty buffers on a given inode.  We are
827  * probably unmounting the fs, but that doesn't mean we have already
828  * done a sync().  Just drop the buffers from the inode list.
829  *
830  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
831  * assumes that all the buffers are against the blockdev.  Not true
832  * for reiserfs.
833  */
834 void invalidate_inode_buffers(struct inode *inode)
835 {
836         if (inode_has_buffers(inode)) {
837                 struct address_space *mapping = &inode->i_data;
838                 struct list_head *list = &mapping->private_list;
839                 struct address_space *buffer_mapping = mapping->assoc_mapping;
840
841                 spin_lock(&buffer_mapping->private_lock);
842                 while (!list_empty(list))
843                         __remove_assoc_queue(BH_ENTRY(list->next));
844                 spin_unlock(&buffer_mapping->private_lock);
845         }
846 }
847 EXPORT_SYMBOL(invalidate_inode_buffers);
848
849 /*
850  * Remove any clean buffers from the inode's buffer list.  This is called
851  * when we're trying to free the inode itself.  Those buffers can pin it.
852  *
853  * Returns true if all buffers were removed.
854  */
855 int remove_inode_buffers(struct inode *inode)
856 {
857         int ret = 1;
858
859         if (inode_has_buffers(inode)) {
860                 struct address_space *mapping = &inode->i_data;
861                 struct list_head *list = &mapping->private_list;
862                 struct address_space *buffer_mapping = mapping->assoc_mapping;
863
864                 spin_lock(&buffer_mapping->private_lock);
865                 while (!list_empty(list)) {
866                         struct buffer_head *bh = BH_ENTRY(list->next);
867                         if (buffer_dirty(bh)) {
868                                 ret = 0;
869                                 break;
870                         }
871                         __remove_assoc_queue(bh);
872                 }
873                 spin_unlock(&buffer_mapping->private_lock);
874         }
875         return ret;
876 }
877
878 /*
879  * Create the appropriate buffers when given a page for data area and
880  * the size of each buffer.. Use the bh->b_this_page linked list to
881  * follow the buffers created.  Return NULL if unable to create more
882  * buffers.
883  *
884  * The retry flag is used to differentiate async IO (paging, swapping)
885  * which may not fail from ordinary buffer allocations.
886  */
887 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
888                 int retry)
889 {
890         struct buffer_head *bh, *head;
891         long offset;
892
893 try_again:
894         head = NULL;
895         offset = PAGE_SIZE;
896         while ((offset -= size) >= 0) {
897                 bh = alloc_buffer_head(GFP_NOFS);
898                 if (!bh)
899                         goto no_grow;
900
901                 bh->b_bdev = NULL;
902                 bh->b_this_page = head;
903                 bh->b_blocknr = -1;
904                 head = bh;
905
906                 bh->b_state = 0;
907                 atomic_set(&bh->b_count, 0);
908                 bh->b_private = NULL;
909                 bh->b_size = size;
910
911                 /* Link the buffer to its page */
912                 set_bh_page(bh, page, offset);
913
914                 init_buffer(bh, NULL, NULL);
915         }
916         return head;
917 /*
918  * In case anything failed, we just free everything we got.
919  */
920 no_grow:
921         if (head) {
922                 do {
923                         bh = head;
924                         head = head->b_this_page;
925                         free_buffer_head(bh);
926                 } while (head);
927         }
928
929         /*
930          * Return failure for non-async IO requests.  Async IO requests
931          * are not allowed to fail, so we have to wait until buffer heads
932          * become available.  But we don't want tasks sleeping with 
933          * partially complete buffers, so all were released above.
934          */
935         if (!retry)
936                 return NULL;
937
938         /* We're _really_ low on memory. Now we just
939          * wait for old buffer heads to become free due to
940          * finishing IO.  Since this is an async request and
941          * the reserve list is empty, we're sure there are 
942          * async buffer heads in use.
943          */
944         free_more_memory();
945         goto try_again;
946 }
947 EXPORT_SYMBOL_GPL(alloc_page_buffers);
948
949 static inline void
950 link_dev_buffers(struct page *page, struct buffer_head *head)
951 {
952         struct buffer_head *bh, *tail;
953
954         bh = head;
955         do {
956                 tail = bh;
957                 bh = bh->b_this_page;
958         } while (bh);
959         tail->b_this_page = head;
960         attach_page_buffers(page, head);
961 }
962
963 /*
964  * Initialise the state of a blockdev page's buffers.
965  */ 
966 static void
967 init_page_buffers(struct page *page, struct block_device *bdev,
968                         sector_t block, int size)
969 {
970         struct buffer_head *head = page_buffers(page);
971         struct buffer_head *bh = head;
972         int uptodate = PageUptodate(page);
973
974         do {
975                 if (!buffer_mapped(bh)) {
976                         init_buffer(bh, NULL, NULL);
977                         bh->b_bdev = bdev;
978                         bh->b_blocknr = block;
979                         if (uptodate)
980                                 set_buffer_uptodate(bh);
981                         set_buffer_mapped(bh);
982                 }
983                 block++;
984                 bh = bh->b_this_page;
985         } while (bh != head);
986 }
987
988 /*
989  * Create the page-cache page that contains the requested block.
990  *
991  * This is user purely for blockdev mappings.
992  */
993 static struct page *
994 grow_dev_page(struct block_device *bdev, sector_t block,
995                 pgoff_t index, int size)
996 {
997         struct inode *inode = bdev->bd_inode;
998         struct page *page;
999         struct buffer_head *bh;
1000
1001         page = find_or_create_page(inode->i_mapping, index,
1002                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1003         if (!page)
1004                 return NULL;
1005
1006         BUG_ON(!PageLocked(page));
1007
1008         if (page_has_buffers(page)) {
1009                 bh = page_buffers(page);
1010                 if (bh->b_size == size) {
1011                         init_page_buffers(page, bdev, block, size);
1012                         return page;
1013                 }
1014                 if (!try_to_free_buffers(page))
1015                         goto failed;
1016         }
1017
1018         /*
1019          * Allocate some buffers for this page
1020          */
1021         bh = alloc_page_buffers(page, size, 0);
1022         if (!bh)
1023                 goto failed;
1024
1025         /*
1026          * Link the page to the buffers and initialise them.  Take the
1027          * lock to be atomic wrt __find_get_block(), which does not
1028          * run under the page lock.
1029          */
1030         spin_lock(&inode->i_mapping->private_lock);
1031         link_dev_buffers(page, bh);
1032         init_page_buffers(page, bdev, block, size);
1033         spin_unlock(&inode->i_mapping->private_lock);
1034         return page;
1035
1036 failed:
1037         BUG();
1038         unlock_page(page);
1039         page_cache_release(page);
1040         return NULL;
1041 }
1042
1043 /*
1044  * Create buffers for the specified block device block's page.  If
1045  * that page was dirty, the buffers are set dirty also.
1046  */
1047 static int
1048 grow_buffers(struct block_device *bdev, sector_t block, int size)
1049 {
1050         struct page *page;
1051         pgoff_t index;
1052         int sizebits;
1053
1054         sizebits = -1;
1055         do {
1056                 sizebits++;
1057         } while ((size << sizebits) < PAGE_SIZE);
1058
1059         index = block >> sizebits;
1060
1061         /*
1062          * Check for a block which wants to lie outside our maximum possible
1063          * pagecache index.  (this comparison is done using sector_t types).
1064          */
1065         if (unlikely(index != block >> sizebits)) {
1066                 char b[BDEVNAME_SIZE];
1067
1068                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1069                         "device %s\n",
1070                         __func__, (unsigned long long)block,
1071                         bdevname(bdev, b));
1072                 return -EIO;
1073         }
1074         block = index << sizebits;
1075         /* Create a page with the proper size buffers.. */
1076         page = grow_dev_page(bdev, block, index, size);
1077         if (!page)
1078                 return 0;
1079         unlock_page(page);
1080         page_cache_release(page);
1081         return 1;
1082 }
1083
1084 static struct buffer_head *
1085 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1086 {
1087         /* Size must be multiple of hard sectorsize */
1088         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1089                         (size < 512 || size > PAGE_SIZE))) {
1090                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1091                                         size);
1092                 printk(KERN_ERR "logical block size: %d\n",
1093                                         bdev_logical_block_size(bdev));
1094
1095                 dump_stack();
1096                 return NULL;
1097         }
1098
1099         for (;;) {
1100                 struct buffer_head * bh;
1101                 int ret;
1102
1103                 bh = __find_get_block(bdev, block, size);
1104                 if (bh)
1105                         return bh;
1106
1107                 ret = grow_buffers(bdev, block, size);
1108                 if (ret < 0)
1109                         return NULL;
1110                 if (ret == 0)
1111                         free_more_memory();
1112         }
1113 }
1114
1115 /*
1116  * The relationship between dirty buffers and dirty pages:
1117  *
1118  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1119  * the page is tagged dirty in its radix tree.
1120  *
1121  * At all times, the dirtiness of the buffers represents the dirtiness of
1122  * subsections of the page.  If the page has buffers, the page dirty bit is
1123  * merely a hint about the true dirty state.
1124  *
1125  * When a page is set dirty in its entirety, all its buffers are marked dirty
1126  * (if the page has buffers).
1127  *
1128  * When a buffer is marked dirty, its page is dirtied, but the page's other
1129  * buffers are not.
1130  *
1131  * Also.  When blockdev buffers are explicitly read with bread(), they
1132  * individually become uptodate.  But their backing page remains not
1133  * uptodate - even if all of its buffers are uptodate.  A subsequent
1134  * block_read_full_page() against that page will discover all the uptodate
1135  * buffers, will set the page uptodate and will perform no I/O.
1136  */
1137
1138 /**
1139  * mark_buffer_dirty - mark a buffer_head as needing writeout
1140  * @bh: the buffer_head to mark dirty
1141  *
1142  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1143  * backing page dirty, then tag the page as dirty in its address_space's radix
1144  * tree and then attach the address_space's inode to its superblock's dirty
1145  * inode list.
1146  *
1147  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1148  * mapping->tree_lock and the global inode_lock.
1149  */
1150 void mark_buffer_dirty(struct buffer_head *bh)
1151 {
1152         WARN_ON_ONCE(!buffer_uptodate(bh));
1153
1154         /*
1155          * Very *carefully* optimize the it-is-already-dirty case.
1156          *
1157          * Don't let the final "is it dirty" escape to before we
1158          * perhaps modified the buffer.
1159          */
1160         if (buffer_dirty(bh)) {
1161                 smp_mb();
1162                 if (buffer_dirty(bh))
1163                         return;
1164         }
1165
1166         if (!test_set_buffer_dirty(bh)) {
1167                 struct page *page = bh->b_page;
1168                 if (!TestSetPageDirty(page)) {
1169                         struct address_space *mapping = page_mapping(page);
1170                         if (mapping)
1171                                 __set_page_dirty(page, mapping, 0);
1172                 }
1173         }
1174 }
1175 EXPORT_SYMBOL(mark_buffer_dirty);
1176
1177 /*
1178  * Decrement a buffer_head's reference count.  If all buffers against a page
1179  * have zero reference count, are clean and unlocked, and if the page is clean
1180  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1181  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1182  * a page but it ends up not being freed, and buffers may later be reattached).
1183  */
1184 void __brelse(struct buffer_head * buf)
1185 {
1186         if (atomic_read(&buf->b_count)) {
1187                 put_bh(buf);
1188                 return;
1189         }
1190         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1191 }
1192 EXPORT_SYMBOL(__brelse);
1193
1194 /*
1195  * bforget() is like brelse(), except it discards any
1196  * potentially dirty data.
1197  */
1198 void __bforget(struct buffer_head *bh)
1199 {
1200         clear_buffer_dirty(bh);
1201         if (bh->b_assoc_map) {
1202                 struct address_space *buffer_mapping = bh->b_page->mapping;
1203
1204                 spin_lock(&buffer_mapping->private_lock);
1205                 list_del_init(&bh->b_assoc_buffers);
1206                 bh->b_assoc_map = NULL;
1207                 spin_unlock(&buffer_mapping->private_lock);
1208         }
1209         __brelse(bh);
1210 }
1211 EXPORT_SYMBOL(__bforget);
1212
1213 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1214 {
1215         lock_buffer(bh);
1216         if (buffer_uptodate(bh)) {
1217                 unlock_buffer(bh);
1218                 return bh;
1219         } else {
1220                 get_bh(bh);
1221                 bh->b_end_io = end_buffer_read_sync;
1222                 submit_bh(READ, bh);
1223                 wait_on_buffer(bh);
1224                 if (buffer_uptodate(bh))
1225                         return bh;
1226         }
1227         brelse(bh);
1228         return NULL;
1229 }
1230
1231 /*
1232  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1233  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1234  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1235  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1236  * CPU's LRUs at the same time.
1237  *
1238  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1239  * sb_find_get_block().
1240  *
1241  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1242  * a local interrupt disable for that.
1243  */
1244
1245 #define BH_LRU_SIZE     8
1246
1247 struct bh_lru {
1248         struct buffer_head *bhs[BH_LRU_SIZE];
1249 };
1250
1251 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1252
1253 #ifdef CONFIG_SMP
1254 #define bh_lru_lock()   local_irq_disable()
1255 #define bh_lru_unlock() local_irq_enable()
1256 #else
1257 #define bh_lru_lock()   preempt_disable()
1258 #define bh_lru_unlock() preempt_enable()
1259 #endif
1260
1261 static inline void check_irqs_on(void)
1262 {
1263 #ifdef irqs_disabled
1264         BUG_ON(irqs_disabled());
1265 #endif
1266 }
1267
1268 /*
1269  * The LRU management algorithm is dopey-but-simple.  Sorry.
1270  */
1271 static void bh_lru_install(struct buffer_head *bh)
1272 {
1273         struct buffer_head *evictee = NULL;
1274         struct bh_lru *lru;
1275
1276         check_irqs_on();
1277         bh_lru_lock();
1278         lru = &__get_cpu_var(bh_lrus);
1279         if (lru->bhs[0] != bh) {
1280                 struct buffer_head *bhs[BH_LRU_SIZE];
1281                 int in;
1282                 int out = 0;
1283
1284                 get_bh(bh);
1285                 bhs[out++] = bh;
1286                 for (in = 0; in < BH_LRU_SIZE; in++) {
1287                         struct buffer_head *bh2 = lru->bhs[in];
1288
1289                         if (bh2 == bh) {
1290                                 __brelse(bh2);
1291                         } else {
1292                                 if (out >= BH_LRU_SIZE) {
1293                                         BUG_ON(evictee != NULL);
1294                                         evictee = bh2;
1295                                 } else {
1296                                         bhs[out++] = bh2;
1297                                 }
1298                         }
1299                 }
1300                 while (out < BH_LRU_SIZE)
1301                         bhs[out++] = NULL;
1302                 memcpy(lru->bhs, bhs, sizeof(bhs));
1303         }
1304         bh_lru_unlock();
1305
1306         if (evictee)
1307                 __brelse(evictee);
1308 }
1309
1310 /*
1311  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1312  */
1313 static struct buffer_head *
1314 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1315 {
1316         struct buffer_head *ret = NULL;
1317         struct bh_lru *lru;
1318         unsigned int i;
1319
1320         check_irqs_on();
1321         bh_lru_lock();
1322         lru = &__get_cpu_var(bh_lrus);
1323         for (i = 0; i < BH_LRU_SIZE; i++) {
1324                 struct buffer_head *bh = lru->bhs[i];
1325
1326                 if (bh && bh->b_bdev == bdev &&
1327                                 bh->b_blocknr == block && bh->b_size == size) {
1328                         if (i) {
1329                                 while (i) {
1330                                         lru->bhs[i] = lru->bhs[i - 1];
1331                                         i--;
1332                                 }
1333                                 lru->bhs[0] = bh;
1334                         }
1335                         get_bh(bh);
1336                         ret = bh;
1337                         break;
1338                 }
1339         }
1340         bh_lru_unlock();
1341         return ret;
1342 }
1343
1344 /*
1345  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1346  * it in the LRU and mark it as accessed.  If it is not present then return
1347  * NULL
1348  */
1349 struct buffer_head *
1350 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1351 {
1352         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1353
1354         if (bh == NULL) {
1355                 bh = __find_get_block_slow(bdev, block);
1356                 if (bh)
1357                         bh_lru_install(bh);
1358         }
1359         if (bh)
1360                 touch_buffer(bh);
1361         return bh;
1362 }
1363 EXPORT_SYMBOL(__find_get_block);
1364
1365 /*
1366  * __getblk will locate (and, if necessary, create) the buffer_head
1367  * which corresponds to the passed block_device, block and size. The
1368  * returned buffer has its reference count incremented.
1369  *
1370  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1371  * illegal block number, __getblk() will happily return a buffer_head
1372  * which represents the non-existent block.  Very weird.
1373  *
1374  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1375  * attempt is failing.  FIXME, perhaps?
1376  */
1377 struct buffer_head *
1378 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1379 {
1380         struct buffer_head *bh = __find_get_block(bdev, block, size);
1381
1382         might_sleep();
1383         if (bh == NULL)
1384                 bh = __getblk_slow(bdev, block, size);
1385         return bh;
1386 }
1387 EXPORT_SYMBOL(__getblk);
1388
1389 /*
1390  * Do async read-ahead on a buffer..
1391  */
1392 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1393 {
1394         struct buffer_head *bh = __getblk(bdev, block, size);
1395         if (likely(bh)) {
1396                 ll_rw_block(READA, 1, &bh);
1397                 brelse(bh);
1398         }
1399 }
1400 EXPORT_SYMBOL(__breadahead);
1401
1402 /**
1403  *  __bread() - reads a specified block and returns the bh
1404  *  @bdev: the block_device to read from
1405  *  @block: number of block
1406  *  @size: size (in bytes) to read
1407  * 
1408  *  Reads a specified block, and returns buffer head that contains it.
1409  *  It returns NULL if the block was unreadable.
1410  */
1411 struct buffer_head *
1412 __bread(struct block_device *bdev, sector_t block, unsigned size)
1413 {
1414         struct buffer_head *bh = __getblk(bdev, block, size);
1415
1416         if (likely(bh) && !buffer_uptodate(bh))
1417                 bh = __bread_slow(bh);
1418         return bh;
1419 }
1420 EXPORT_SYMBOL(__bread);
1421
1422 /*
1423  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1424  * This doesn't race because it runs in each cpu either in irq
1425  * or with preempt disabled.
1426  */
1427 static void invalidate_bh_lru(void *arg)
1428 {
1429         struct bh_lru *b = &get_cpu_var(bh_lrus);
1430         int i;
1431
1432         for (i = 0; i < BH_LRU_SIZE; i++) {
1433                 brelse(b->bhs[i]);
1434                 b->bhs[i] = NULL;
1435         }
1436         put_cpu_var(bh_lrus);
1437 }
1438         
1439 void invalidate_bh_lrus(void)
1440 {
1441         on_each_cpu(invalidate_bh_lru, NULL, 1);
1442 }
1443 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1444
1445 void set_bh_page(struct buffer_head *bh,
1446                 struct page *page, unsigned long offset)
1447 {
1448         bh->b_page = page;
1449         BUG_ON(offset >= PAGE_SIZE);
1450         if (PageHighMem(page))
1451                 /*
1452                  * This catches illegal uses and preserves the offset:
1453                  */
1454                 bh->b_data = (char *)(0 + offset);
1455         else
1456                 bh->b_data = page_address(page) + offset;
1457 }
1458 EXPORT_SYMBOL(set_bh_page);
1459
1460 /*
1461  * Called when truncating a buffer on a page completely.
1462  */
1463 static void discard_buffer(struct buffer_head * bh)
1464 {
1465         lock_buffer(bh);
1466         clear_buffer_dirty(bh);
1467         bh->b_bdev = NULL;
1468         clear_buffer_mapped(bh);
1469         clear_buffer_req(bh);
1470         clear_buffer_new(bh);
1471         clear_buffer_delay(bh);
1472         clear_buffer_unwritten(bh);
1473         unlock_buffer(bh);
1474 }
1475
1476 /**
1477  * block_invalidatepage - invalidate part of all of a buffer-backed page
1478  *
1479  * @page: the page which is affected
1480  * @offset: the index of the truncation point
1481  *
1482  * block_invalidatepage() is called when all or part of the page has become
1483  * invalidatedby a truncate operation.
1484  *
1485  * block_invalidatepage() does not have to release all buffers, but it must
1486  * ensure that no dirty buffer is left outside @offset and that no I/O
1487  * is underway against any of the blocks which are outside the truncation
1488  * point.  Because the caller is about to free (and possibly reuse) those
1489  * blocks on-disk.
1490  */
1491 void block_invalidatepage(struct page *page, unsigned long offset)
1492 {
1493         struct buffer_head *head, *bh, *next;
1494         unsigned int curr_off = 0;
1495
1496         BUG_ON(!PageLocked(page));
1497         if (!page_has_buffers(page))
1498                 goto out;
1499
1500         head = page_buffers(page);
1501         bh = head;
1502         do {
1503                 unsigned int next_off = curr_off + bh->b_size;
1504                 next = bh->b_this_page;
1505
1506                 /*
1507                  * is this block fully invalidated?
1508                  */
1509                 if (offset <= curr_off)
1510                         discard_buffer(bh);
1511                 curr_off = next_off;
1512                 bh = next;
1513         } while (bh != head);
1514
1515         /*
1516          * We release buffers only if the entire page is being invalidated.
1517          * The get_block cached value has been unconditionally invalidated,
1518          * so real IO is not possible anymore.
1519          */
1520         if (offset == 0)
1521                 try_to_release_page(page, 0);
1522 out:
1523         return;
1524 }
1525 EXPORT_SYMBOL(block_invalidatepage);
1526
1527 /*
1528  * We attach and possibly dirty the buffers atomically wrt
1529  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1530  * is already excluded via the page lock.
1531  */
1532 void create_empty_buffers(struct page *page,
1533                         unsigned long blocksize, unsigned long b_state)
1534 {
1535         struct buffer_head *bh, *head, *tail;
1536
1537         head = alloc_page_buffers(page, blocksize, 1);
1538         bh = head;
1539         do {
1540                 bh->b_state |= b_state;
1541                 tail = bh;
1542                 bh = bh->b_this_page;
1543         } while (bh);
1544         tail->b_this_page = head;
1545
1546         spin_lock(&page->mapping->private_lock);
1547         if (PageUptodate(page) || PageDirty(page)) {
1548                 bh = head;
1549                 do {
1550                         if (PageDirty(page))
1551                                 set_buffer_dirty(bh);
1552                         if (PageUptodate(page))
1553                                 set_buffer_uptodate(bh);
1554                         bh = bh->b_this_page;
1555                 } while (bh != head);
1556         }
1557         attach_page_buffers(page, head);
1558         spin_unlock(&page->mapping->private_lock);
1559 }
1560 EXPORT_SYMBOL(create_empty_buffers);
1561
1562 /*
1563  * We are taking a block for data and we don't want any output from any
1564  * buffer-cache aliases starting from return from that function and
1565  * until the moment when something will explicitly mark the buffer
1566  * dirty (hopefully that will not happen until we will free that block ;-)
1567  * We don't even need to mark it not-uptodate - nobody can expect
1568  * anything from a newly allocated buffer anyway. We used to used
1569  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1570  * don't want to mark the alias unmapped, for example - it would confuse
1571  * anyone who might pick it with bread() afterwards...
1572  *
1573  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1574  * be writeout I/O going on against recently-freed buffers.  We don't
1575  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1576  * only if we really need to.  That happens here.
1577  */
1578 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1579 {
1580         struct buffer_head *old_bh;
1581
1582         might_sleep();
1583
1584         old_bh = __find_get_block_slow(bdev, block);
1585         if (old_bh) {
1586                 clear_buffer_dirty(old_bh);
1587                 wait_on_buffer(old_bh);
1588                 clear_buffer_req(old_bh);
1589                 __brelse(old_bh);
1590         }
1591 }
1592 EXPORT_SYMBOL(unmap_underlying_metadata);
1593
1594 /*
1595  * NOTE! All mapped/uptodate combinations are valid:
1596  *
1597  *      Mapped  Uptodate        Meaning
1598  *
1599  *      No      No              "unknown" - must do get_block()
1600  *      No      Yes             "hole" - zero-filled
1601  *      Yes     No              "allocated" - allocated on disk, not read in
1602  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1603  *
1604  * "Dirty" is valid only with the last case (mapped+uptodate).
1605  */
1606
1607 /*
1608  * While block_write_full_page is writing back the dirty buffers under
1609  * the page lock, whoever dirtied the buffers may decide to clean them
1610  * again at any time.  We handle that by only looking at the buffer
1611  * state inside lock_buffer().
1612  *
1613  * If block_write_full_page() is called for regular writeback
1614  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1615  * locked buffer.   This only can happen if someone has written the buffer
1616  * directly, with submit_bh().  At the address_space level PageWriteback
1617  * prevents this contention from occurring.
1618  *
1619  * If block_write_full_page() is called with wbc->sync_mode ==
1620  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1621  * causes the writes to be flagged as synchronous writes, but the
1622  * block device queue will NOT be unplugged, since usually many pages
1623  * will be pushed to the out before the higher-level caller actually
1624  * waits for the writes to be completed.  The various wait functions,
1625  * such as wait_on_writeback_range() will ultimately call sync_page()
1626  * which will ultimately call blk_run_backing_dev(), which will end up
1627  * unplugging the device queue.
1628  */
1629 static int __block_write_full_page(struct inode *inode, struct page *page,
1630                         get_block_t *get_block, struct writeback_control *wbc,
1631                         bh_end_io_t *handler)
1632 {
1633         int err;
1634         sector_t block;
1635         sector_t last_block;
1636         struct buffer_head *bh, *head;
1637         const unsigned blocksize = 1 << inode->i_blkbits;
1638         int nr_underway = 0;
1639         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1640                         WRITE_SYNC_PLUG : WRITE);
1641
1642         BUG_ON(!PageLocked(page));
1643
1644         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1645
1646         if (!page_has_buffers(page)) {
1647                 create_empty_buffers(page, blocksize,
1648                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1649         }
1650
1651         /*
1652          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1653          * here, and the (potentially unmapped) buffers may become dirty at
1654          * any time.  If a buffer becomes dirty here after we've inspected it
1655          * then we just miss that fact, and the page stays dirty.
1656          *
1657          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1658          * handle that here by just cleaning them.
1659          */
1660
1661         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1662         head = page_buffers(page);
1663         bh = head;
1664
1665         /*
1666          * Get all the dirty buffers mapped to disk addresses and
1667          * handle any aliases from the underlying blockdev's mapping.
1668          */
1669         do {
1670                 if (block > last_block) {
1671                         /*
1672                          * mapped buffers outside i_size will occur, because
1673                          * this page can be outside i_size when there is a
1674                          * truncate in progress.
1675                          */
1676                         /*
1677                          * The buffer was zeroed by block_write_full_page()
1678                          */
1679                         clear_buffer_dirty(bh);
1680                         set_buffer_uptodate(bh);
1681                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1682                            buffer_dirty(bh)) {
1683                         WARN_ON(bh->b_size != blocksize);
1684                         err = get_block(inode, block, bh, 1);
1685                         if (err)
1686                                 goto recover;
1687                         clear_buffer_delay(bh);
1688                         if (buffer_new(bh)) {
1689                                 /* blockdev mappings never come here */
1690                                 clear_buffer_new(bh);
1691                                 unmap_underlying_metadata(bh->b_bdev,
1692                                                         bh->b_blocknr);
1693                         }
1694                 }
1695                 bh = bh->b_this_page;
1696                 block++;
1697         } while (bh != head);
1698
1699         do {
1700                 if (!buffer_mapped(bh))
1701                         continue;
1702                 /*
1703                  * If it's a fully non-blocking write attempt and we cannot
1704                  * lock the buffer then redirty the page.  Note that this can
1705                  * potentially cause a busy-wait loop from writeback threads
1706                  * and kswapd activity, but those code paths have their own
1707                  * higher-level throttling.
1708                  */
1709                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1710                         lock_buffer(bh);
1711                 } else if (!trylock_buffer(bh)) {
1712                         redirty_page_for_writepage(wbc, page);
1713                         continue;
1714                 }
1715                 if (test_clear_buffer_dirty(bh)) {
1716                         mark_buffer_async_write_endio(bh, handler);
1717                 } else {
1718                         unlock_buffer(bh);
1719                 }
1720         } while ((bh = bh->b_this_page) != head);
1721
1722         /*
1723          * The page and its buffers are protected by PageWriteback(), so we can
1724          * drop the bh refcounts early.
1725          */
1726         BUG_ON(PageWriteback(page));
1727         set_page_writeback(page);
1728
1729         do {
1730                 struct buffer_head *next = bh->b_this_page;
1731                 if (buffer_async_write(bh)) {
1732                         submit_bh(write_op, bh);
1733                         nr_underway++;
1734                 }
1735                 bh = next;
1736         } while (bh != head);
1737         unlock_page(page);
1738
1739         err = 0;
1740 done:
1741         if (nr_underway == 0) {
1742                 /*
1743                  * The page was marked dirty, but the buffers were
1744                  * clean.  Someone wrote them back by hand with
1745                  * ll_rw_block/submit_bh.  A rare case.
1746                  */
1747                 end_page_writeback(page);
1748
1749                 /*
1750                  * The page and buffer_heads can be released at any time from
1751                  * here on.
1752                  */
1753         }
1754         return err;
1755
1756 recover:
1757         /*
1758          * ENOSPC, or some other error.  We may already have added some
1759          * blocks to the file, so we need to write these out to avoid
1760          * exposing stale data.
1761          * The page is currently locked and not marked for writeback
1762          */
1763         bh = head;
1764         /* Recovery: lock and submit the mapped buffers */
1765         do {
1766                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1767                     !buffer_delay(bh)) {
1768                         lock_buffer(bh);
1769                         mark_buffer_async_write_endio(bh, handler);
1770                 } else {
1771                         /*
1772                          * The buffer may have been set dirty during
1773                          * attachment to a dirty page.
1774                          */
1775                         clear_buffer_dirty(bh);
1776                 }
1777         } while ((bh = bh->b_this_page) != head);
1778         SetPageError(page);
1779         BUG_ON(PageWriteback(page));
1780         mapping_set_error(page->mapping, err);
1781         set_page_writeback(page);
1782         do {
1783                 struct buffer_head *next = bh->b_this_page;
1784                 if (buffer_async_write(bh)) {
1785                         clear_buffer_dirty(bh);
1786                         submit_bh(write_op, bh);
1787                         nr_underway++;
1788                 }
1789                 bh = next;
1790         } while (bh != head);
1791         unlock_page(page);
1792         goto done;
1793 }
1794
1795 /*
1796  * If a page has any new buffers, zero them out here, and mark them uptodate
1797  * and dirty so they'll be written out (in order to prevent uninitialised
1798  * block data from leaking). And clear the new bit.
1799  */
1800 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1801 {
1802         unsigned int block_start, block_end;
1803         struct buffer_head *head, *bh;
1804
1805         BUG_ON(!PageLocked(page));
1806         if (!page_has_buffers(page))
1807                 return;
1808
1809         bh = head = page_buffers(page);
1810         block_start = 0;
1811         do {
1812                 block_end = block_start + bh->b_size;
1813
1814                 if (buffer_new(bh)) {
1815                         if (block_end > from && block_start < to) {
1816                                 if (!PageUptodate(page)) {
1817                                         unsigned start, size;
1818
1819                                         start = max(from, block_start);
1820                                         size = min(to, block_end) - start;
1821
1822                                         zero_user(page, start, size);
1823                                         set_buffer_uptodate(bh);
1824                                 }
1825
1826                                 clear_buffer_new(bh);
1827                                 mark_buffer_dirty(bh);
1828                         }
1829                 }
1830
1831                 block_start = block_end;
1832                 bh = bh->b_this_page;
1833         } while (bh != head);
1834 }
1835 EXPORT_SYMBOL(page_zero_new_buffers);
1836
1837 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1838                 get_block_t *get_block)
1839 {
1840         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1841         unsigned to = from + len;
1842         struct inode *inode = page->mapping->host;
1843         unsigned block_start, block_end;
1844         sector_t block;
1845         int err = 0;
1846         unsigned blocksize, bbits;
1847         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1848
1849         BUG_ON(!PageLocked(page));
1850         BUG_ON(from > PAGE_CACHE_SIZE);
1851         BUG_ON(to > PAGE_CACHE_SIZE);
1852         BUG_ON(from > to);
1853
1854         blocksize = 1 << inode->i_blkbits;
1855         if (!page_has_buffers(page))
1856                 create_empty_buffers(page, blocksize, 0);
1857         head = page_buffers(page);
1858
1859         bbits = inode->i_blkbits;
1860         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1861
1862         for(bh = head, block_start = 0; bh != head || !block_start;
1863             block++, block_start=block_end, bh = bh->b_this_page) {
1864                 block_end = block_start + blocksize;
1865                 if (block_end <= from || block_start >= to) {
1866                         if (PageUptodate(page)) {
1867                                 if (!buffer_uptodate(bh))
1868                                         set_buffer_uptodate(bh);
1869                         }
1870                         continue;
1871                 }
1872                 if (buffer_new(bh))
1873                         clear_buffer_new(bh);
1874                 if (!buffer_mapped(bh)) {
1875                         WARN_ON(bh->b_size != blocksize);
1876                         err = get_block(inode, block, bh, 1);
1877                         if (err)
1878                                 break;
1879                         if (buffer_new(bh)) {
1880                                 unmap_underlying_metadata(bh->b_bdev,
1881                                                         bh->b_blocknr);
1882                                 if (PageUptodate(page)) {
1883                                         clear_buffer_new(bh);
1884                                         set_buffer_uptodate(bh);
1885                                         mark_buffer_dirty(bh);
1886                                         continue;
1887                                 }
1888                                 if (block_end > to || block_start < from)
1889                                         zero_user_segments(page,
1890                                                 to, block_end,
1891                                                 block_start, from);
1892                                 continue;
1893                         }
1894                 }
1895                 if (PageUptodate(page)) {
1896                         if (!buffer_uptodate(bh))
1897                                 set_buffer_uptodate(bh);
1898                         continue; 
1899                 }
1900                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1901                     !buffer_unwritten(bh) &&
1902                      (block_start < from || block_end > to)) {
1903                         ll_rw_block(READ, 1, &bh);
1904                         *wait_bh++=bh;
1905                 }
1906         }
1907         /*
1908          * If we issued read requests - let them complete.
1909          */
1910         while(wait_bh > wait) {
1911                 wait_on_buffer(*--wait_bh);
1912                 if (!buffer_uptodate(*wait_bh))
1913                         err = -EIO;
1914         }
1915         if (unlikely(err)) {
1916                 page_zero_new_buffers(page, from, to);
1917                 ClearPageUptodate(page);
1918         }
1919         return err;
1920 }
1921 EXPORT_SYMBOL(__block_write_begin);
1922
1923 static int __block_commit_write(struct inode *inode, struct page *page,
1924                 unsigned from, unsigned to)
1925 {
1926         unsigned block_start, block_end;
1927         int partial = 0;
1928         unsigned blocksize;
1929         struct buffer_head *bh, *head;
1930
1931         blocksize = 1 << inode->i_blkbits;
1932
1933         for(bh = head = page_buffers(page), block_start = 0;
1934             bh != head || !block_start;
1935             block_start=block_end, bh = bh->b_this_page) {
1936                 block_end = block_start + blocksize;
1937                 if (block_end <= from || block_start >= to) {
1938                         if (!buffer_uptodate(bh))
1939                                 partial = 1;
1940                 } else {
1941                         set_buffer_uptodate(bh);
1942                         mark_buffer_dirty(bh);
1943                 }
1944                 clear_buffer_new(bh);
1945         }
1946
1947         /*
1948          * If this is a partial write which happened to make all buffers
1949          * uptodate then we can optimize away a bogus readpage() for
1950          * the next read(). Here we 'discover' whether the page went
1951          * uptodate as a result of this (potentially partial) write.
1952          */
1953         if (!partial)
1954                 SetPageUptodate(page);
1955         return 0;
1956 }
1957
1958 /*
1959  * block_write_begin takes care of the basic task of block allocation and
1960  * bringing partial write blocks uptodate first.
1961  *
1962  * The filesystem needs to handle block truncation upon failure.
1963  */
1964 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1965                 unsigned flags, struct page **pagep, get_block_t *get_block)
1966 {
1967         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1968         struct page *page;
1969         int status;
1970
1971         page = grab_cache_page_write_begin(mapping, index, flags);
1972         if (!page)
1973                 return -ENOMEM;
1974
1975         status = __block_write_begin(page, pos, len, get_block);
1976         if (unlikely(status)) {
1977                 unlock_page(page);
1978                 page_cache_release(page);
1979                 page = NULL;
1980         }
1981
1982         *pagep = page;
1983         return status;
1984 }
1985 EXPORT_SYMBOL(block_write_begin);
1986
1987 int block_write_end(struct file *file, struct address_space *mapping,
1988                         loff_t pos, unsigned len, unsigned copied,
1989                         struct page *page, void *fsdata)
1990 {
1991         struct inode *inode = mapping->host;
1992         unsigned start;
1993
1994         start = pos & (PAGE_CACHE_SIZE - 1);
1995
1996         if (unlikely(copied < len)) {
1997                 /*
1998                  * The buffers that were written will now be uptodate, so we
1999                  * don't have to worry about a readpage reading them and
2000                  * overwriting a partial write. However if we have encountered
2001                  * a short write and only partially written into a buffer, it
2002                  * will not be marked uptodate, so a readpage might come in and
2003                  * destroy our partial write.
2004                  *
2005                  * Do the simplest thing, and just treat any short write to a
2006                  * non uptodate page as a zero-length write, and force the
2007                  * caller to redo the whole thing.
2008                  */
2009                 if (!PageUptodate(page))
2010                         copied = 0;
2011
2012                 page_zero_new_buffers(page, start+copied, start+len);
2013         }
2014         flush_dcache_page(page);
2015
2016         /* This could be a short (even 0-length) commit */
2017         __block_commit_write(inode, page, start, start+copied);
2018
2019         return copied;
2020 }
2021 EXPORT_SYMBOL(block_write_end);
2022
2023 int generic_write_end(struct file *file, struct address_space *mapping,
2024                         loff_t pos, unsigned len, unsigned copied,
2025                         struct page *page, void *fsdata)
2026 {
2027         struct inode *inode = mapping->host;
2028         int i_size_changed = 0;
2029
2030         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2031
2032         /*
2033          * No need to use i_size_read() here, the i_size
2034          * cannot change under us because we hold i_mutex.
2035          *
2036          * But it's important to update i_size while still holding page lock:
2037          * page writeout could otherwise come in and zero beyond i_size.
2038          */
2039         if (pos+copied > inode->i_size) {
2040                 i_size_write(inode, pos+copied);
2041                 i_size_changed = 1;
2042         }
2043
2044         unlock_page(page);
2045         page_cache_release(page);
2046
2047         /*
2048          * Don't mark the inode dirty under page lock. First, it unnecessarily
2049          * makes the holding time of page lock longer. Second, it forces lock
2050          * ordering of page lock and transaction start for journaling
2051          * filesystems.
2052          */
2053         if (i_size_changed)
2054                 mark_inode_dirty(inode);
2055
2056         return copied;
2057 }
2058 EXPORT_SYMBOL(generic_write_end);
2059
2060 /*
2061  * block_is_partially_uptodate checks whether buffers within a page are
2062  * uptodate or not.
2063  *
2064  * Returns true if all buffers which correspond to a file portion
2065  * we want to read are uptodate.
2066  */
2067 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2068                                         unsigned long from)
2069 {
2070         struct inode *inode = page->mapping->host;
2071         unsigned block_start, block_end, blocksize;
2072         unsigned to;
2073         struct buffer_head *bh, *head;
2074         int ret = 1;
2075
2076         if (!page_has_buffers(page))
2077                 return 0;
2078
2079         blocksize = 1 << inode->i_blkbits;
2080         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2081         to = from + to;
2082         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2083                 return 0;
2084
2085         head = page_buffers(page);
2086         bh = head;
2087         block_start = 0;
2088         do {
2089                 block_end = block_start + blocksize;
2090                 if (block_end > from && block_start < to) {
2091                         if (!buffer_uptodate(bh)) {
2092                                 ret = 0;
2093                                 break;
2094                         }
2095                         if (block_end >= to)
2096                                 break;
2097                 }
2098                 block_start = block_end;
2099                 bh = bh->b_this_page;
2100         } while (bh != head);
2101
2102         return ret;
2103 }
2104 EXPORT_SYMBOL(block_is_partially_uptodate);
2105
2106 /*
2107  * Generic "read page" function for block devices that have the normal
2108  * get_block functionality. This is most of the block device filesystems.
2109  * Reads the page asynchronously --- the unlock_buffer() and
2110  * set/clear_buffer_uptodate() functions propagate buffer state into the
2111  * page struct once IO has completed.
2112  */
2113 int block_read_full_page(struct page *page, get_block_t *get_block)
2114 {
2115         struct inode *inode = page->mapping->host;
2116         sector_t iblock, lblock;
2117         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2118         unsigned int blocksize;
2119         int nr, i;
2120         int fully_mapped = 1;
2121
2122         BUG_ON(!PageLocked(page));
2123         blocksize = 1 << inode->i_blkbits;
2124         if (!page_has_buffers(page))
2125                 create_empty_buffers(page, blocksize, 0);
2126         head = page_buffers(page);
2127
2128         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2129         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2130         bh = head;
2131         nr = 0;
2132         i = 0;
2133
2134         do {
2135                 if (buffer_uptodate(bh))
2136                         continue;
2137
2138                 if (!buffer_mapped(bh)) {
2139                         int err = 0;
2140
2141                         fully_mapped = 0;
2142                         if (iblock < lblock) {
2143                                 WARN_ON(bh->b_size != blocksize);
2144                                 err = get_block(inode, iblock, bh, 0);
2145                                 if (err)
2146                                         SetPageError(page);
2147                         }
2148                         if (!buffer_mapped(bh)) {
2149                                 zero_user(page, i * blocksize, blocksize);
2150                                 if (!err)
2151                                         set_buffer_uptodate(bh);
2152                                 continue;
2153                         }
2154                         /*
2155                          * get_block() might have updated the buffer
2156                          * synchronously
2157                          */
2158                         if (buffer_uptodate(bh))
2159                                 continue;
2160                 }
2161                 arr[nr++] = bh;
2162         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2163
2164         if (fully_mapped)
2165                 SetPageMappedToDisk(page);
2166
2167         if (!nr) {
2168                 /*
2169                  * All buffers are uptodate - we can set the page uptodate
2170                  * as well. But not if get_block() returned an error.
2171                  */
2172                 if (!PageError(page))
2173                         SetPageUptodate(page);
2174                 unlock_page(page);
2175                 return 0;
2176         }
2177
2178         /* Stage two: lock the buffers */
2179         for (i = 0; i < nr; i++) {
2180                 bh = arr[i];
2181                 lock_buffer(bh);
2182                 mark_buffer_async_read(bh);
2183         }
2184
2185         /*
2186          * Stage 3: start the IO.  Check for uptodateness
2187          * inside the buffer lock in case another process reading
2188          * the underlying blockdev brought it uptodate (the sct fix).
2189          */
2190         for (i = 0; i < nr; i++) {
2191                 bh = arr[i];
2192                 if (buffer_uptodate(bh))
2193                         end_buffer_async_read(bh, 1);
2194                 else
2195                         submit_bh(READ, bh);
2196         }
2197         return 0;
2198 }
2199 EXPORT_SYMBOL(block_read_full_page);
2200
2201 /* utility function for filesystems that need to do work on expanding
2202  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2203  * deal with the hole.  
2204  */
2205 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2206 {
2207         struct address_space *mapping = inode->i_mapping;
2208         struct page *page;
2209         void *fsdata;
2210         int err;
2211
2212         err = inode_newsize_ok(inode, size);
2213         if (err)
2214                 goto out;
2215
2216         err = pagecache_write_begin(NULL, mapping, size, 0,
2217                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2218                                 &page, &fsdata);
2219         if (err)
2220                 goto out;
2221
2222         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2223         BUG_ON(err > 0);
2224
2225 out:
2226         return err;
2227 }
2228 EXPORT_SYMBOL(generic_cont_expand_simple);
2229
2230 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2231                             loff_t pos, loff_t *bytes)
2232 {
2233         struct inode *inode = mapping->host;
2234         unsigned blocksize = 1 << inode->i_blkbits;
2235         struct page *page;
2236         void *fsdata;
2237         pgoff_t index, curidx;
2238         loff_t curpos;
2239         unsigned zerofrom, offset, len;
2240         int err = 0;
2241
2242         index = pos >> PAGE_CACHE_SHIFT;
2243         offset = pos & ~PAGE_CACHE_MASK;
2244
2245         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2246                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2247                 if (zerofrom & (blocksize-1)) {
2248                         *bytes |= (blocksize-1);
2249                         (*bytes)++;
2250                 }
2251                 len = PAGE_CACHE_SIZE - zerofrom;
2252
2253                 err = pagecache_write_begin(file, mapping, curpos, len,
2254                                                 AOP_FLAG_UNINTERRUPTIBLE,
2255                                                 &page, &fsdata);
2256                 if (err)
2257                         goto out;
2258                 zero_user(page, zerofrom, len);
2259                 err = pagecache_write_end(file, mapping, curpos, len, len,
2260                                                 page, fsdata);
2261                 if (err < 0)
2262                         goto out;
2263                 BUG_ON(err != len);
2264                 err = 0;
2265
2266                 balance_dirty_pages_ratelimited(mapping);
2267         }
2268
2269         /* page covers the boundary, find the boundary offset */
2270         if (index == curidx) {
2271                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2272                 /* if we will expand the thing last block will be filled */
2273                 if (offset <= zerofrom) {
2274                         goto out;
2275                 }
2276                 if (zerofrom & (blocksize-1)) {
2277                         *bytes |= (blocksize-1);
2278                         (*bytes)++;
2279                 }
2280                 len = offset - zerofrom;
2281
2282                 err = pagecache_write_begin(file, mapping, curpos, len,
2283                                                 AOP_FLAG_UNINTERRUPTIBLE,
2284                                                 &page, &fsdata);
2285                 if (err)
2286                         goto out;
2287                 zero_user(page, zerofrom, len);
2288                 err = pagecache_write_end(file, mapping, curpos, len, len,
2289                                                 page, fsdata);
2290                 if (err < 0)
2291                         goto out;
2292                 BUG_ON(err != len);
2293                 err = 0;
2294         }
2295 out:
2296         return err;
2297 }
2298
2299 /*
2300  * For moronic filesystems that do not allow holes in file.
2301  * We may have to extend the file.
2302  */
2303 int cont_write_begin(struct file *file, struct address_space *mapping,
2304                         loff_t pos, unsigned len, unsigned flags,
2305                         struct page **pagep, void **fsdata,
2306                         get_block_t *get_block, loff_t *bytes)
2307 {
2308         struct inode *inode = mapping->host;
2309         unsigned blocksize = 1 << inode->i_blkbits;
2310         unsigned zerofrom;
2311         int err;
2312
2313         err = cont_expand_zero(file, mapping, pos, bytes);
2314         if (err)
2315                 return err;
2316
2317         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2318         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2319                 *bytes |= (blocksize-1);
2320                 (*bytes)++;
2321         }
2322
2323         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2324 }
2325 EXPORT_SYMBOL(cont_write_begin);
2326
2327 int block_commit_write(struct page *page, unsigned from, unsigned to)
2328 {
2329         struct inode *inode = page->mapping->host;
2330         __block_commit_write(inode,page,from,to);
2331         return 0;
2332 }
2333 EXPORT_SYMBOL(block_commit_write);
2334
2335 /*
2336  * block_page_mkwrite() is not allowed to change the file size as it gets
2337  * called from a page fault handler when a page is first dirtied. Hence we must
2338  * be careful to check for EOF conditions here. We set the page up correctly
2339  * for a written page which means we get ENOSPC checking when writing into
2340  * holes and correct delalloc and unwritten extent mapping on filesystems that
2341  * support these features.
2342  *
2343  * We are not allowed to take the i_mutex here so we have to play games to
2344  * protect against truncate races as the page could now be beyond EOF.  Because
2345  * truncate writes the inode size before removing pages, once we have the
2346  * page lock we can determine safely if the page is beyond EOF. If it is not
2347  * beyond EOF, then the page is guaranteed safe against truncation until we
2348  * unlock the page.
2349  */
2350 int
2351 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2352                    get_block_t get_block)
2353 {
2354         struct page *page = vmf->page;
2355         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2356         unsigned long end;
2357         loff_t size;
2358         int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2359
2360         lock_page(page);
2361         size = i_size_read(inode);
2362         if ((page->mapping != inode->i_mapping) ||
2363             (page_offset(page) > size)) {
2364                 /* page got truncated out from underneath us */
2365                 unlock_page(page);
2366                 goto out;
2367         }
2368
2369         /* page is wholly or partially inside EOF */
2370         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2371                 end = size & ~PAGE_CACHE_MASK;
2372         else
2373                 end = PAGE_CACHE_SIZE;
2374
2375         ret = __block_write_begin(page, 0, end, get_block);
2376         if (!ret)
2377                 ret = block_commit_write(page, 0, end);
2378
2379         if (unlikely(ret)) {
2380                 unlock_page(page);
2381                 if (ret == -ENOMEM)
2382                         ret = VM_FAULT_OOM;
2383                 else /* -ENOSPC, -EIO, etc */
2384                         ret = VM_FAULT_SIGBUS;
2385         } else
2386                 ret = VM_FAULT_LOCKED;
2387
2388 out:
2389         return ret;
2390 }
2391 EXPORT_SYMBOL(block_page_mkwrite);
2392
2393 /*
2394  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2395  * immediately, while under the page lock.  So it needs a special end_io
2396  * handler which does not touch the bh after unlocking it.
2397  */
2398 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2399 {
2400         __end_buffer_read_notouch(bh, uptodate);
2401 }
2402
2403 /*
2404  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2405  * the page (converting it to circular linked list and taking care of page
2406  * dirty races).
2407  */
2408 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2409 {
2410         struct buffer_head *bh;
2411
2412         BUG_ON(!PageLocked(page));
2413
2414         spin_lock(&page->mapping->private_lock);
2415         bh = head;
2416         do {
2417                 if (PageDirty(page))
2418                         set_buffer_dirty(bh);
2419                 if (!bh->b_this_page)
2420                         bh->b_this_page = head;
2421                 bh = bh->b_this_page;
2422         } while (bh != head);
2423         attach_page_buffers(page, head);
2424         spin_unlock(&page->mapping->private_lock);
2425 }
2426
2427 /*
2428  * On entry, the page is fully not uptodate.
2429  * On exit the page is fully uptodate in the areas outside (from,to)
2430  * The filesystem needs to handle block truncation upon failure.
2431  */
2432 int nobh_write_begin(struct address_space *mapping,
2433                         loff_t pos, unsigned len, unsigned flags,
2434                         struct page **pagep, void **fsdata,
2435                         get_block_t *get_block)
2436 {
2437         struct inode *inode = mapping->host;
2438         const unsigned blkbits = inode->i_blkbits;
2439         const unsigned blocksize = 1 << blkbits;
2440         struct buffer_head *head, *bh;
2441         struct page *page;
2442         pgoff_t index;
2443         unsigned from, to;
2444         unsigned block_in_page;
2445         unsigned block_start, block_end;
2446         sector_t block_in_file;
2447         int nr_reads = 0;
2448         int ret = 0;
2449         int is_mapped_to_disk = 1;
2450
2451         index = pos >> PAGE_CACHE_SHIFT;
2452         from = pos & (PAGE_CACHE_SIZE - 1);
2453         to = from + len;
2454
2455         page = grab_cache_page_write_begin(mapping, index, flags);
2456         if (!page)
2457                 return -ENOMEM;
2458         *pagep = page;
2459         *fsdata = NULL;
2460
2461         if (page_has_buffers(page)) {
2462                 unlock_page(page);
2463                 page_cache_release(page);
2464                 *pagep = NULL;
2465                 return block_write_begin(mapping, pos, len, flags, pagep,
2466                                          get_block);
2467         }
2468
2469         if (PageMappedToDisk(page))
2470                 return 0;
2471
2472         /*
2473          * Allocate buffers so that we can keep track of state, and potentially
2474          * attach them to the page if an error occurs. In the common case of
2475          * no error, they will just be freed again without ever being attached
2476          * to the page (which is all OK, because we're under the page lock).
2477          *
2478          * Be careful: the buffer linked list is a NULL terminated one, rather
2479          * than the circular one we're used to.
2480          */
2481         head = alloc_page_buffers(page, blocksize, 0);
2482         if (!head) {
2483                 ret = -ENOMEM;
2484                 goto out_release;
2485         }
2486
2487         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2488
2489         /*
2490          * We loop across all blocks in the page, whether or not they are
2491          * part of the affected region.  This is so we can discover if the
2492          * page is fully mapped-to-disk.
2493          */
2494         for (block_start = 0, block_in_page = 0, bh = head;
2495                   block_start < PAGE_CACHE_SIZE;
2496                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2497                 int create;
2498
2499                 block_end = block_start + blocksize;
2500                 bh->b_state = 0;
2501                 create = 1;
2502                 if (block_start >= to)
2503                         create = 0;
2504                 ret = get_block(inode, block_in_file + block_in_page,
2505                                         bh, create);
2506                 if (ret)
2507                         goto failed;
2508                 if (!buffer_mapped(bh))
2509                         is_mapped_to_disk = 0;
2510                 if (buffer_new(bh))
2511                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2512                 if (PageUptodate(page)) {
2513                         set_buffer_uptodate(bh);
2514                         continue;
2515                 }
2516                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2517                         zero_user_segments(page, block_start, from,
2518                                                         to, block_end);
2519                         continue;
2520                 }
2521                 if (buffer_uptodate(bh))
2522                         continue;       /* reiserfs does this */
2523                 if (block_start < from || block_end > to) {
2524                         lock_buffer(bh);
2525                         bh->b_end_io = end_buffer_read_nobh;
2526                         submit_bh(READ, bh);
2527                         nr_reads++;
2528                 }
2529         }
2530
2531         if (nr_reads) {
2532                 /*
2533                  * The page is locked, so these buffers are protected from
2534                  * any VM or truncate activity.  Hence we don't need to care
2535                  * for the buffer_head refcounts.
2536                  */
2537                 for (bh = head; bh; bh = bh->b_this_page) {
2538                         wait_on_buffer(bh);
2539                         if (!buffer_uptodate(bh))
2540                                 ret = -EIO;
2541                 }
2542                 if (ret)
2543                         goto failed;
2544         }
2545
2546         if (is_mapped_to_disk)
2547                 SetPageMappedToDisk(page);
2548
2549         *fsdata = head; /* to be released by nobh_write_end */
2550
2551         return 0;
2552
2553 failed:
2554         BUG_ON(!ret);
2555         /*
2556          * Error recovery is a bit difficult. We need to zero out blocks that
2557          * were newly allocated, and dirty them to ensure they get written out.
2558          * Buffers need to be attached to the page at this point, otherwise
2559          * the handling of potential IO errors during writeout would be hard
2560          * (could try doing synchronous writeout, but what if that fails too?)
2561          */
2562         attach_nobh_buffers(page, head);
2563         page_zero_new_buffers(page, from, to);
2564
2565 out_release:
2566         unlock_page(page);
2567         page_cache_release(page);
2568         *pagep = NULL;
2569
2570         return ret;
2571 }
2572 EXPORT_SYMBOL(nobh_write_begin);
2573
2574 int nobh_write_end(struct file *file, struct address_space *mapping,
2575                         loff_t pos, unsigned len, unsigned copied,
2576                         struct page *page, void *fsdata)
2577 {
2578         struct inode *inode = page->mapping->host;
2579         struct buffer_head *head = fsdata;
2580         struct buffer_head *bh;
2581         BUG_ON(fsdata != NULL && page_has_buffers(page));
2582
2583         if (unlikely(copied < len) && head)
2584                 attach_nobh_buffers(page, head);
2585         if (page_has_buffers(page))
2586                 return generic_write_end(file, mapping, pos, len,
2587                                         copied, page, fsdata);
2588
2589         SetPageUptodate(page);
2590         set_page_dirty(page);
2591         if (pos+copied > inode->i_size) {
2592                 i_size_write(inode, pos+copied);
2593                 mark_inode_dirty(inode);
2594         }
2595
2596         unlock_page(page);
2597         page_cache_release(page);
2598
2599         while (head) {
2600                 bh = head;
2601                 head = head->b_this_page;
2602                 free_buffer_head(bh);
2603         }
2604
2605         return copied;
2606 }
2607 EXPORT_SYMBOL(nobh_write_end);
2608
2609 /*
2610  * nobh_writepage() - based on block_full_write_page() except
2611  * that it tries to operate without attaching bufferheads to
2612  * the page.
2613  */
2614 int nobh_writepage(struct page *page, get_block_t *get_block,
2615                         struct writeback_control *wbc)
2616 {
2617         struct inode * const inode = page->mapping->host;
2618         loff_t i_size = i_size_read(inode);
2619         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2620         unsigned offset;
2621         int ret;
2622
2623         /* Is the page fully inside i_size? */
2624         if (page->index < end_index)
2625                 goto out;
2626
2627         /* Is the page fully outside i_size? (truncate in progress) */
2628         offset = i_size & (PAGE_CACHE_SIZE-1);
2629         if (page->index >= end_index+1 || !offset) {
2630                 /*
2631                  * The page may have dirty, unmapped buffers.  For example,
2632                  * they may have been added in ext3_writepage().  Make them
2633                  * freeable here, so the page does not leak.
2634                  */
2635 #if 0
2636                 /* Not really sure about this  - do we need this ? */
2637                 if (page->mapping->a_ops->invalidatepage)
2638                         page->mapping->a_ops->invalidatepage(page, offset);
2639 #endif
2640                 unlock_page(page);
2641                 return 0; /* don't care */
2642         }
2643
2644         /*
2645          * The page straddles i_size.  It must be zeroed out on each and every
2646          * writepage invocation because it may be mmapped.  "A file is mapped
2647          * in multiples of the page size.  For a file that is not a multiple of
2648          * the  page size, the remaining memory is zeroed when mapped, and
2649          * writes to that region are not written out to the file."
2650          */
2651         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2652 out:
2653         ret = mpage_writepage(page, get_block, wbc);
2654         if (ret == -EAGAIN)
2655                 ret = __block_write_full_page(inode, page, get_block, wbc,
2656                                               end_buffer_async_write);
2657         return ret;
2658 }
2659 EXPORT_SYMBOL(nobh_writepage);
2660
2661 int nobh_truncate_page(struct address_space *mapping,
2662                         loff_t from, get_block_t *get_block)
2663 {
2664         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2665         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2666         unsigned blocksize;
2667         sector_t iblock;
2668         unsigned length, pos;
2669         struct inode *inode = mapping->host;
2670         struct page *page;
2671         struct buffer_head map_bh;
2672         int err;
2673
2674         blocksize = 1 << inode->i_blkbits;
2675         length = offset & (blocksize - 1);
2676
2677         /* Block boundary? Nothing to do */
2678         if (!length)
2679                 return 0;
2680
2681         length = blocksize - length;
2682         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2683
2684         page = grab_cache_page(mapping, index);
2685         err = -ENOMEM;
2686         if (!page)
2687                 goto out;
2688
2689         if (page_has_buffers(page)) {
2690 has_buffers:
2691                 unlock_page(page);
2692                 page_cache_release(page);
2693                 return block_truncate_page(mapping, from, get_block);
2694         }
2695
2696         /* Find the buffer that contains "offset" */
2697         pos = blocksize;
2698         while (offset >= pos) {
2699                 iblock++;
2700                 pos += blocksize;
2701         }
2702
2703         map_bh.b_size = blocksize;
2704         map_bh.b_state = 0;
2705         err = get_block(inode, iblock, &map_bh, 0);
2706         if (err)
2707                 goto unlock;
2708         /* unmapped? It's a hole - nothing to do */
2709         if (!buffer_mapped(&map_bh))
2710                 goto unlock;
2711
2712         /* Ok, it's mapped. Make sure it's up-to-date */
2713         if (!PageUptodate(page)) {
2714                 err = mapping->a_ops->readpage(NULL, page);
2715                 if (err) {
2716                         page_cache_release(page);
2717                         goto out;
2718                 }
2719                 lock_page(page);
2720                 if (!PageUptodate(page)) {
2721                         err = -EIO;
2722                         goto unlock;
2723                 }
2724                 if (page_has_buffers(page))
2725                         goto has_buffers;
2726         }
2727         zero_user(page, offset, length);
2728         set_page_dirty(page);
2729         err = 0;
2730
2731 unlock:
2732         unlock_page(page);
2733         page_cache_release(page);
2734 out:
2735         return err;
2736 }
2737 EXPORT_SYMBOL(nobh_truncate_page);
2738
2739 int block_truncate_page(struct address_space *mapping,
2740                         loff_t from, get_block_t *get_block)
2741 {
2742         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2743         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2744         unsigned blocksize;
2745         sector_t iblock;
2746         unsigned length, pos;
2747         struct inode *inode = mapping->host;
2748         struct page *page;
2749         struct buffer_head *bh;
2750         int err;
2751
2752         blocksize = 1 << inode->i_blkbits;
2753         length = offset & (blocksize - 1);
2754
2755         /* Block boundary? Nothing to do */
2756         if (!length)
2757                 return 0;
2758
2759         length = blocksize - length;
2760         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2761         
2762         page = grab_cache_page(mapping, index);
2763         err = -ENOMEM;
2764         if (!page)
2765                 goto out;
2766
2767         if (!page_has_buffers(page))
2768                 create_empty_buffers(page, blocksize, 0);
2769
2770         /* Find the buffer that contains "offset" */
2771         bh = page_buffers(page);
2772         pos = blocksize;
2773         while (offset >= pos) {
2774                 bh = bh->b_this_page;
2775                 iblock++;
2776                 pos += blocksize;
2777         }
2778
2779         err = 0;
2780         if (!buffer_mapped(bh)) {
2781                 WARN_ON(bh->b_size != blocksize);
2782                 err = get_block(inode, iblock, bh, 0);
2783                 if (err)
2784                         goto unlock;
2785                 /* unmapped? It's a hole - nothing to do */
2786                 if (!buffer_mapped(bh))
2787                         goto unlock;
2788         }
2789
2790         /* Ok, it's mapped. Make sure it's up-to-date */
2791         if (PageUptodate(page))
2792                 set_buffer_uptodate(bh);
2793
2794         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2795                 err = -EIO;
2796                 ll_rw_block(READ, 1, &bh);
2797                 wait_on_buffer(bh);
2798                 /* Uhhuh. Read error. Complain and punt. */
2799                 if (!buffer_uptodate(bh))
2800                         goto unlock;
2801         }
2802
2803         zero_user(page, offset, length);
2804         mark_buffer_dirty(bh);
2805         err = 0;
2806
2807 unlock:
2808         unlock_page(page);
2809         page_cache_release(page);
2810 out:
2811         return err;
2812 }
2813 EXPORT_SYMBOL(block_truncate_page);
2814
2815 /*
2816  * The generic ->writepage function for buffer-backed address_spaces
2817  * this form passes in the end_io handler used to finish the IO.
2818  */
2819 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2820                         struct writeback_control *wbc, bh_end_io_t *handler)
2821 {
2822         struct inode * const inode = page->mapping->host;
2823         loff_t i_size = i_size_read(inode);
2824         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2825         unsigned offset;
2826
2827         /* Is the page fully inside i_size? */
2828         if (page->index < end_index)
2829                 return __block_write_full_page(inode, page, get_block, wbc,
2830                                                handler);
2831
2832         /* Is the page fully outside i_size? (truncate in progress) */
2833         offset = i_size & (PAGE_CACHE_SIZE-1);
2834         if (page->index >= end_index+1 || !offset) {
2835                 /*
2836                  * The page may have dirty, unmapped buffers.  For example,
2837                  * they may have been added in ext3_writepage().  Make them
2838                  * freeable here, so the page does not leak.
2839                  */
2840                 do_invalidatepage(page, 0);
2841                 unlock_page(page);
2842                 return 0; /* don't care */
2843         }
2844
2845         /*
2846          * The page straddles i_size.  It must be zeroed out on each and every
2847          * writepage invocation because it may be mmapped.  "A file is mapped
2848          * in multiples of the page size.  For a file that is not a multiple of
2849          * the  page size, the remaining memory is zeroed when mapped, and
2850          * writes to that region are not written out to the file."
2851          */
2852         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2853         return __block_write_full_page(inode, page, get_block, wbc, handler);
2854 }
2855 EXPORT_SYMBOL(block_write_full_page_endio);
2856
2857 /*
2858  * The generic ->writepage function for buffer-backed address_spaces
2859  */
2860 int block_write_full_page(struct page *page, get_block_t *get_block,
2861                         struct writeback_control *wbc)
2862 {
2863         return block_write_full_page_endio(page, get_block, wbc,
2864                                            end_buffer_async_write);
2865 }
2866 EXPORT_SYMBOL(block_write_full_page);
2867
2868 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2869                             get_block_t *get_block)
2870 {
2871         struct buffer_head tmp;
2872         struct inode *inode = mapping->host;
2873         tmp.b_state = 0;
2874         tmp.b_blocknr = 0;
2875         tmp.b_size = 1 << inode->i_blkbits;
2876         get_block(inode, block, &tmp, 0);
2877         return tmp.b_blocknr;
2878 }
2879 EXPORT_SYMBOL(generic_block_bmap);
2880
2881 static void end_bio_bh_io_sync(struct bio *bio, int err)
2882 {
2883         struct buffer_head *bh = bio->bi_private;
2884
2885         if (err == -EOPNOTSUPP) {
2886                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2887         }
2888
2889         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2890                 set_bit(BH_Quiet, &bh->b_state);
2891
2892         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2893         bio_put(bio);
2894 }
2895
2896 int submit_bh(int rw, struct buffer_head * bh)
2897 {
2898         struct bio *bio;
2899         int ret = 0;
2900
2901         BUG_ON(!buffer_locked(bh));
2902         BUG_ON(!buffer_mapped(bh));
2903         BUG_ON(!bh->b_end_io);
2904         BUG_ON(buffer_delay(bh));
2905         BUG_ON(buffer_unwritten(bh));
2906
2907         /*
2908          * Only clear out a write error when rewriting
2909          */
2910         if (test_set_buffer_req(bh) && (rw & WRITE))
2911                 clear_buffer_write_io_error(bh);
2912
2913         /*
2914          * from here on down, it's all bio -- do the initial mapping,
2915          * submit_bio -> generic_make_request may further map this bio around
2916          */
2917         bio = bio_alloc(GFP_NOIO, 1);
2918
2919         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2920         bio->bi_bdev = bh->b_bdev;
2921         bio->bi_io_vec[0].bv_page = bh->b_page;
2922         bio->bi_io_vec[0].bv_len = bh->b_size;
2923         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2924
2925         bio->bi_vcnt = 1;
2926         bio->bi_idx = 0;
2927         bio->bi_size = bh->b_size;
2928
2929         bio->bi_end_io = end_bio_bh_io_sync;
2930         bio->bi_private = bh;
2931
2932         bio_get(bio);
2933         submit_bio(rw, bio);
2934
2935         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2936                 ret = -EOPNOTSUPP;
2937
2938         bio_put(bio);
2939         return ret;
2940 }
2941 EXPORT_SYMBOL(submit_bh);
2942
2943 /**
2944  * ll_rw_block: low-level access to block devices (DEPRECATED)
2945  * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2946  * @nr: number of &struct buffer_heads in the array
2947  * @bhs: array of pointers to &struct buffer_head
2948  *
2949  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2950  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2951  * %READA option is described in the documentation for generic_make_request()
2952  * which ll_rw_block() calls.
2953  *
2954  * This function drops any buffer that it cannot get a lock on (with the
2955  * BH_Lock state bit), any buffer that appears to be clean when doing a write
2956  * request, and any buffer that appears to be up-to-date when doing read
2957  * request.  Further it marks as clean buffers that are processed for
2958  * writing (the buffer cache won't assume that they are actually clean
2959  * until the buffer gets unlocked).
2960  *
2961  * ll_rw_block sets b_end_io to simple completion handler that marks
2962  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2963  * any waiters. 
2964  *
2965  * All of the buffers must be for the same device, and must also be a
2966  * multiple of the current approved size for the device.
2967  */
2968 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2969 {
2970         int i;
2971
2972         for (i = 0; i < nr; i++) {
2973                 struct buffer_head *bh = bhs[i];
2974
2975                 if (!trylock_buffer(bh))
2976                         continue;
2977                 if (rw == WRITE) {
2978                         if (test_clear_buffer_dirty(bh)) {
2979                                 bh->b_end_io = end_buffer_write_sync;
2980                                 get_bh(bh);
2981                                 submit_bh(WRITE, bh);
2982                                 continue;
2983                         }
2984                 } else {
2985                         if (!buffer_uptodate(bh)) {
2986                                 bh->b_end_io = end_buffer_read_sync;
2987                                 get_bh(bh);
2988                                 submit_bh(rw, bh);
2989                                 continue;
2990                         }
2991                 }
2992                 unlock_buffer(bh);
2993         }
2994 }
2995 EXPORT_SYMBOL(ll_rw_block);
2996
2997 void write_dirty_buffer(struct buffer_head *bh, int rw)
2998 {
2999         lock_buffer(bh);
3000         if (!test_clear_buffer_dirty(bh)) {
3001                 unlock_buffer(bh);
3002                 return;
3003         }
3004         bh->b_end_io = end_buffer_write_sync;
3005         get_bh(bh);
3006         submit_bh(rw, bh);
3007 }
3008 EXPORT_SYMBOL(write_dirty_buffer);
3009
3010 /*
3011  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3012  * and then start new I/O and then wait upon it.  The caller must have a ref on
3013  * the buffer_head.
3014  */
3015 int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3016 {
3017         int ret = 0;
3018
3019         WARN_ON(atomic_read(&bh->b_count) < 1);
3020         lock_buffer(bh);
3021         if (test_clear_buffer_dirty(bh)) {
3022                 get_bh(bh);
3023                 bh->b_end_io = end_buffer_write_sync;
3024                 ret = submit_bh(rw, bh);
3025                 wait_on_buffer(bh);
3026                 if (!ret && !buffer_uptodate(bh))
3027                         ret = -EIO;
3028         } else {
3029                 unlock_buffer(bh);
3030         }
3031         return ret;
3032 }
3033 EXPORT_SYMBOL(__sync_dirty_buffer);
3034
3035 int sync_dirty_buffer(struct buffer_head *bh)
3036 {
3037         return __sync_dirty_buffer(bh, WRITE_SYNC);
3038 }
3039 EXPORT_SYMBOL(sync_dirty_buffer);
3040
3041 /*
3042  * try_to_free_buffers() checks if all the buffers on this particular page
3043  * are unused, and releases them if so.
3044  *
3045  * Exclusion against try_to_free_buffers may be obtained by either
3046  * locking the page or by holding its mapping's private_lock.
3047  *
3048  * If the page is dirty but all the buffers are clean then we need to
3049  * be sure to mark the page clean as well.  This is because the page
3050  * may be against a block device, and a later reattachment of buffers
3051  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3052  * filesystem data on the same device.
3053  *
3054  * The same applies to regular filesystem pages: if all the buffers are
3055  * clean then we set the page clean and proceed.  To do that, we require
3056  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3057  * private_lock.
3058  *
3059  * try_to_free_buffers() is non-blocking.
3060  */
3061 static inline int buffer_busy(struct buffer_head *bh)
3062 {
3063         return atomic_read(&bh->b_count) |
3064                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3065 }
3066
3067 static int
3068 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3069 {
3070         struct buffer_head *head = page_buffers(page);
3071         struct buffer_head *bh;
3072
3073         bh = head;
3074         do {
3075                 if (buffer_write_io_error(bh) && page->mapping)
3076                         set_bit(AS_EIO, &page->mapping->flags);
3077                 if (buffer_busy(bh))
3078                         goto failed;
3079                 bh = bh->b_this_page;
3080         } while (bh != head);
3081
3082         do {
3083                 struct buffer_head *next = bh->b_this_page;
3084
3085                 if (bh->b_assoc_map)
3086                         __remove_assoc_queue(bh);
3087                 bh = next;
3088         } while (bh != head);
3089         *buffers_to_free = head;
3090         __clear_page_buffers(page);
3091         return 1;
3092 failed:
3093         return 0;
3094 }
3095
3096 int try_to_free_buffers(struct page *page)
3097 {
3098         struct address_space * const mapping = page->mapping;
3099         struct buffer_head *buffers_to_free = NULL;
3100         int ret = 0;
3101
3102         BUG_ON(!PageLocked(page));
3103         if (PageWriteback(page))
3104                 return 0;
3105
3106         if (mapping == NULL) {          /* can this still happen? */
3107                 ret = drop_buffers(page, &buffers_to_free);
3108                 goto out;
3109         }
3110
3111         spin_lock(&mapping->private_lock);
3112         ret = drop_buffers(page, &buffers_to_free);
3113
3114         /*
3115          * If the filesystem writes its buffers by hand (eg ext3)
3116          * then we can have clean buffers against a dirty page.  We
3117          * clean the page here; otherwise the VM will never notice
3118          * that the filesystem did any IO at all.
3119          *
3120          * Also, during truncate, discard_buffer will have marked all
3121          * the page's buffers clean.  We discover that here and clean
3122          * the page also.
3123          *
3124          * private_lock must be held over this entire operation in order
3125          * to synchronise against __set_page_dirty_buffers and prevent the
3126          * dirty bit from being lost.
3127          */
3128         if (ret)
3129                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3130         spin_unlock(&mapping->private_lock);
3131 out:
3132         if (buffers_to_free) {
3133                 struct buffer_head *bh = buffers_to_free;
3134
3135                 do {
3136                         struct buffer_head *next = bh->b_this_page;
3137                         free_buffer_head(bh);
3138                         bh = next;
3139                 } while (bh != buffers_to_free);
3140         }
3141         return ret;
3142 }
3143 EXPORT_SYMBOL(try_to_free_buffers);
3144
3145 void block_sync_page(struct page *page)
3146 {
3147         struct address_space *mapping;
3148
3149         smp_mb();
3150         mapping = page_mapping(page);
3151         if (mapping)
3152                 blk_run_backing_dev(mapping->backing_dev_info, page);
3153 }
3154 EXPORT_SYMBOL(block_sync_page);
3155
3156 /*
3157  * There are no bdflush tunables left.  But distributions are
3158  * still running obsolete flush daemons, so we terminate them here.
3159  *
3160  * Use of bdflush() is deprecated and will be removed in a future kernel.
3161  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3162  */
3163 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3164 {
3165         static int msg_count;
3166
3167         if (!capable(CAP_SYS_ADMIN))
3168                 return -EPERM;
3169
3170         if (msg_count < 5) {
3171                 msg_count++;
3172                 printk(KERN_INFO
3173                         "warning: process `%s' used the obsolete bdflush"
3174                         " system call\n", current->comm);
3175                 printk(KERN_INFO "Fix your initscripts?\n");
3176         }
3177
3178         if (func == 1)
3179                 do_exit(0);
3180         return 0;
3181 }
3182
3183 /*
3184  * Buffer-head allocation
3185  */
3186 static struct kmem_cache *bh_cachep;
3187
3188 /*
3189  * Once the number of bh's in the machine exceeds this level, we start
3190  * stripping them in writeback.
3191  */
3192 static int max_buffer_heads;
3193
3194 int buffer_heads_over_limit;
3195
3196 struct bh_accounting {
3197         int nr;                 /* Number of live bh's */
3198         int ratelimit;          /* Limit cacheline bouncing */
3199 };
3200
3201 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3202
3203 static void recalc_bh_state(void)
3204 {
3205         int i;
3206         int tot = 0;
3207
3208         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3209                 return;
3210         __get_cpu_var(bh_accounting).ratelimit = 0;
3211         for_each_online_cpu(i)
3212                 tot += per_cpu(bh_accounting, i).nr;
3213         buffer_heads_over_limit = (tot > max_buffer_heads);
3214 }
3215         
3216 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3217 {
3218         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3219         if (ret) {
3220                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3221                 get_cpu_var(bh_accounting).nr++;
3222                 recalc_bh_state();
3223                 put_cpu_var(bh_accounting);
3224         }
3225         return ret;
3226 }
3227 EXPORT_SYMBOL(alloc_buffer_head);
3228
3229 void free_buffer_head(struct buffer_head *bh)
3230 {
3231         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3232         kmem_cache_free(bh_cachep, bh);
3233         get_cpu_var(bh_accounting).nr--;
3234         recalc_bh_state();
3235         put_cpu_var(bh_accounting);
3236 }
3237 EXPORT_SYMBOL(free_buffer_head);
3238
3239 static void buffer_exit_cpu(int cpu)
3240 {
3241         int i;
3242         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3243
3244         for (i = 0; i < BH_LRU_SIZE; i++) {
3245                 brelse(b->bhs[i]);
3246                 b->bhs[i] = NULL;
3247         }
3248         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3249         per_cpu(bh_accounting, cpu).nr = 0;
3250         put_cpu_var(bh_accounting);
3251 }
3252
3253 static int buffer_cpu_notify(struct notifier_block *self,
3254                               unsigned long action, void *hcpu)
3255 {
3256         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3257                 buffer_exit_cpu((unsigned long)hcpu);
3258         return NOTIFY_OK;
3259 }
3260
3261 /**
3262  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3263  * @bh: struct buffer_head
3264  *
3265  * Return true if the buffer is up-to-date and false,
3266  * with the buffer locked, if not.
3267  */
3268 int bh_uptodate_or_lock(struct buffer_head *bh)
3269 {
3270         if (!buffer_uptodate(bh)) {
3271                 lock_buffer(bh);
3272                 if (!buffer_uptodate(bh))
3273                         return 0;
3274                 unlock_buffer(bh);
3275         }
3276         return 1;
3277 }
3278 EXPORT_SYMBOL(bh_uptodate_or_lock);
3279
3280 /**
3281  * bh_submit_read - Submit a locked buffer for reading
3282  * @bh: struct buffer_head
3283  *
3284  * Returns zero on success and -EIO on error.
3285  */
3286 int bh_submit_read(struct buffer_head *bh)
3287 {
3288         BUG_ON(!buffer_locked(bh));
3289
3290         if (buffer_uptodate(bh)) {
3291                 unlock_buffer(bh);
3292                 return 0;
3293         }
3294
3295         get_bh(bh);
3296         bh->b_end_io = end_buffer_read_sync;
3297         submit_bh(READ, bh);
3298         wait_on_buffer(bh);
3299         if (buffer_uptodate(bh))
3300                 return 0;
3301         return -EIO;
3302 }
3303 EXPORT_SYMBOL(bh_submit_read);
3304
3305 void __init buffer_init(void)
3306 {
3307         int nrpages;
3308
3309         bh_cachep = kmem_cache_create("buffer_head",
3310                         sizeof(struct buffer_head), 0,
3311                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3312                                 SLAB_MEM_SPREAD),
3313                                 NULL);
3314
3315         /*
3316          * Limit the bh occupancy to 10% of ZONE_NORMAL
3317          */
3318         nrpages = (nr_free_buffer_pages() * 10) / 100;
3319         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3320         hotcpu_notifier(buffer_cpu_notify, 0);
3321 }