]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/btrfs/transaction.c
Btrfs: Integrate metadata reservation with start_transaction
[net-next-2.6.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30
31 #define BTRFS_ROOT_TRANS_TAG 0
32
33 static noinline void put_transaction(struct btrfs_transaction *transaction)
34 {
35         WARN_ON(transaction->use_count == 0);
36         transaction->use_count--;
37         if (transaction->use_count == 0) {
38                 list_del_init(&transaction->list);
39                 memset(transaction, 0, sizeof(*transaction));
40                 kmem_cache_free(btrfs_transaction_cachep, transaction);
41         }
42 }
43
44 static noinline void switch_commit_root(struct btrfs_root *root)
45 {
46         free_extent_buffer(root->commit_root);
47         root->commit_root = btrfs_root_node(root);
48 }
49
50 /*
51  * either allocate a new transaction or hop into the existing one
52  */
53 static noinline int join_transaction(struct btrfs_root *root)
54 {
55         struct btrfs_transaction *cur_trans;
56         cur_trans = root->fs_info->running_transaction;
57         if (!cur_trans) {
58                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59                                              GFP_NOFS);
60                 BUG_ON(!cur_trans);
61                 root->fs_info->generation++;
62                 cur_trans->num_writers = 1;
63                 cur_trans->num_joined = 0;
64                 cur_trans->transid = root->fs_info->generation;
65                 init_waitqueue_head(&cur_trans->writer_wait);
66                 init_waitqueue_head(&cur_trans->commit_wait);
67                 cur_trans->in_commit = 0;
68                 cur_trans->blocked = 0;
69                 cur_trans->use_count = 1;
70                 cur_trans->commit_done = 0;
71                 cur_trans->start_time = get_seconds();
72
73                 cur_trans->delayed_refs.root = RB_ROOT;
74                 cur_trans->delayed_refs.num_entries = 0;
75                 cur_trans->delayed_refs.num_heads_ready = 0;
76                 cur_trans->delayed_refs.num_heads = 0;
77                 cur_trans->delayed_refs.flushing = 0;
78                 cur_trans->delayed_refs.run_delayed_start = 0;
79                 spin_lock_init(&cur_trans->delayed_refs.lock);
80
81                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
82                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
83                 extent_io_tree_init(&cur_trans->dirty_pages,
84                                      root->fs_info->btree_inode->i_mapping,
85                                      GFP_NOFS);
86                 spin_lock(&root->fs_info->new_trans_lock);
87                 root->fs_info->running_transaction = cur_trans;
88                 spin_unlock(&root->fs_info->new_trans_lock);
89         } else {
90                 cur_trans->num_writers++;
91                 cur_trans->num_joined++;
92         }
93
94         return 0;
95 }
96
97 /*
98  * this does all the record keeping required to make sure that a reference
99  * counted root is properly recorded in a given transaction.  This is required
100  * to make sure the old root from before we joined the transaction is deleted
101  * when the transaction commits
102  */
103 static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104                                          struct btrfs_root *root)
105 {
106         if (root->ref_cows && root->last_trans < trans->transid) {
107                 WARN_ON(root == root->fs_info->extent_root);
108                 WARN_ON(root->commit_root != root->node);
109
110                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111                            (unsigned long)root->root_key.objectid,
112                            BTRFS_ROOT_TRANS_TAG);
113                 root->last_trans = trans->transid;
114                 btrfs_init_reloc_root(trans, root);
115         }
116         return 0;
117 }
118
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120                                struct btrfs_root *root)
121 {
122         if (!root->ref_cows)
123                 return 0;
124
125         mutex_lock(&root->fs_info->trans_mutex);
126         if (root->last_trans == trans->transid) {
127                 mutex_unlock(&root->fs_info->trans_mutex);
128                 return 0;
129         }
130
131         record_root_in_trans(trans, root);
132         mutex_unlock(&root->fs_info->trans_mutex);
133         return 0;
134 }
135
136 /* wait for commit against the current transaction to become unblocked
137  * when this is done, it is safe to start a new transaction, but the current
138  * transaction might not be fully on disk.
139  */
140 static void wait_current_trans(struct btrfs_root *root)
141 {
142         struct btrfs_transaction *cur_trans;
143
144         cur_trans = root->fs_info->running_transaction;
145         if (cur_trans && cur_trans->blocked) {
146                 DEFINE_WAIT(wait);
147                 cur_trans->use_count++;
148                 while (1) {
149                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150                                         TASK_UNINTERRUPTIBLE);
151                         if (!cur_trans->blocked)
152                                 break;
153                         mutex_unlock(&root->fs_info->trans_mutex);
154                         schedule();
155                         mutex_lock(&root->fs_info->trans_mutex);
156                 }
157                 finish_wait(&root->fs_info->transaction_wait, &wait);
158                 put_transaction(cur_trans);
159         }
160 }
161
162 enum btrfs_trans_type {
163         TRANS_START,
164         TRANS_JOIN,
165         TRANS_USERSPACE,
166 };
167
168 static int may_wait_transaction(struct btrfs_root *root, int type)
169 {
170         if (!root->fs_info->log_root_recovering &&
171             ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
172              type == TRANS_USERSPACE))
173                 return 1;
174         return 0;
175 }
176
177 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
178                                                     u64 num_items, int type)
179 {
180         struct btrfs_trans_handle *h;
181         struct btrfs_transaction *cur_trans;
182         int retries = 0;
183         int ret;
184 again:
185         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
186         if (!h)
187                 return ERR_PTR(-ENOMEM);
188
189         mutex_lock(&root->fs_info->trans_mutex);
190         if (may_wait_transaction(root, type))
191                 wait_current_trans(root);
192
193         ret = join_transaction(root);
194         BUG_ON(ret);
195
196         cur_trans = root->fs_info->running_transaction;
197         cur_trans->use_count++;
198         mutex_unlock(&root->fs_info->trans_mutex);
199
200         h->transid = cur_trans->transid;
201         h->transaction = cur_trans;
202         h->blocks_used = 0;
203         h->block_group = 0;
204         h->bytes_reserved = 0;
205         h->delayed_ref_updates = 0;
206         h->block_rsv = NULL;
207
208         smp_mb();
209         if (cur_trans->blocked && may_wait_transaction(root, type)) {
210                 btrfs_commit_transaction(h, root);
211                 goto again;
212         }
213
214         if (num_items > 0) {
215                 ret = btrfs_trans_reserve_metadata(h, root, num_items,
216                                                    &retries);
217                 if (ret == -EAGAIN) {
218                         btrfs_commit_transaction(h, root);
219                         goto again;
220                 }
221                 if (ret < 0) {
222                         btrfs_end_transaction(h, root);
223                         return ERR_PTR(ret);
224                 }
225         }
226
227         mutex_lock(&root->fs_info->trans_mutex);
228         record_root_in_trans(h, root);
229         mutex_unlock(&root->fs_info->trans_mutex);
230
231         if (!current->journal_info && type != TRANS_USERSPACE)
232                 current->journal_info = h;
233         return h;
234 }
235
236 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
237                                                    int num_items)
238 {
239         return start_transaction(root, num_items, TRANS_START);
240 }
241 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
242                                                    int num_blocks)
243 {
244         return start_transaction(root, 0, TRANS_JOIN);
245 }
246
247 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
248                                                          int num_blocks)
249 {
250         return start_transaction(r, 0, TRANS_USERSPACE);
251 }
252
253 /* wait for a transaction commit to be fully complete */
254 static noinline int wait_for_commit(struct btrfs_root *root,
255                                     struct btrfs_transaction *commit)
256 {
257         DEFINE_WAIT(wait);
258         mutex_lock(&root->fs_info->trans_mutex);
259         while (!commit->commit_done) {
260                 prepare_to_wait(&commit->commit_wait, &wait,
261                                 TASK_UNINTERRUPTIBLE);
262                 if (commit->commit_done)
263                         break;
264                 mutex_unlock(&root->fs_info->trans_mutex);
265                 schedule();
266                 mutex_lock(&root->fs_info->trans_mutex);
267         }
268         mutex_unlock(&root->fs_info->trans_mutex);
269         finish_wait(&commit->commit_wait, &wait);
270         return 0;
271 }
272
273 #if 0
274 /*
275  * rate limit against the drop_snapshot code.  This helps to slow down new
276  * operations if the drop_snapshot code isn't able to keep up.
277  */
278 static void throttle_on_drops(struct btrfs_root *root)
279 {
280         struct btrfs_fs_info *info = root->fs_info;
281         int harder_count = 0;
282
283 harder:
284         if (atomic_read(&info->throttles)) {
285                 DEFINE_WAIT(wait);
286                 int thr;
287                 thr = atomic_read(&info->throttle_gen);
288
289                 do {
290                         prepare_to_wait(&info->transaction_throttle,
291                                         &wait, TASK_UNINTERRUPTIBLE);
292                         if (!atomic_read(&info->throttles)) {
293                                 finish_wait(&info->transaction_throttle, &wait);
294                                 break;
295                         }
296                         schedule();
297                         finish_wait(&info->transaction_throttle, &wait);
298                 } while (thr == atomic_read(&info->throttle_gen));
299                 harder_count++;
300
301                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
302                     harder_count < 2)
303                         goto harder;
304
305                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
306                     harder_count < 10)
307                         goto harder;
308
309                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
310                     harder_count < 20)
311                         goto harder;
312         }
313 }
314 #endif
315
316 void btrfs_throttle(struct btrfs_root *root)
317 {
318         mutex_lock(&root->fs_info->trans_mutex);
319         if (!root->fs_info->open_ioctl_trans)
320                 wait_current_trans(root);
321         mutex_unlock(&root->fs_info->trans_mutex);
322 }
323
324 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
325                           struct btrfs_root *root, int throttle)
326 {
327         struct btrfs_transaction *cur_trans;
328         struct btrfs_fs_info *info = root->fs_info;
329         int count = 0;
330
331         while (count < 4) {
332                 unsigned long cur = trans->delayed_ref_updates;
333                 trans->delayed_ref_updates = 0;
334                 if (cur &&
335                     trans->transaction->delayed_refs.num_heads_ready > 64) {
336                         trans->delayed_ref_updates = 0;
337
338                         /*
339                          * do a full flush if the transaction is trying
340                          * to close
341                          */
342                         if (trans->transaction->delayed_refs.flushing)
343                                 cur = 0;
344                         btrfs_run_delayed_refs(trans, root, cur);
345                 } else {
346                         break;
347                 }
348                 count++;
349         }
350
351         btrfs_trans_release_metadata(trans, root);
352
353         mutex_lock(&info->trans_mutex);
354         cur_trans = info->running_transaction;
355         WARN_ON(cur_trans != trans->transaction);
356         WARN_ON(cur_trans->num_writers < 1);
357         cur_trans->num_writers--;
358
359         if (waitqueue_active(&cur_trans->writer_wait))
360                 wake_up(&cur_trans->writer_wait);
361         put_transaction(cur_trans);
362         mutex_unlock(&info->trans_mutex);
363
364         if (current->journal_info == trans)
365                 current->journal_info = NULL;
366         memset(trans, 0, sizeof(*trans));
367         kmem_cache_free(btrfs_trans_handle_cachep, trans);
368
369         if (throttle)
370                 btrfs_run_delayed_iputs(root);
371
372         return 0;
373 }
374
375 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
376                           struct btrfs_root *root)
377 {
378         return __btrfs_end_transaction(trans, root, 0);
379 }
380
381 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
382                                    struct btrfs_root *root)
383 {
384         return __btrfs_end_transaction(trans, root, 1);
385 }
386
387 /*
388  * when btree blocks are allocated, they have some corresponding bits set for
389  * them in one of two extent_io trees.  This is used to make sure all of
390  * those extents are sent to disk but does not wait on them
391  */
392 int btrfs_write_marked_extents(struct btrfs_root *root,
393                                struct extent_io_tree *dirty_pages, int mark)
394 {
395         int ret;
396         int err = 0;
397         int werr = 0;
398         struct page *page;
399         struct inode *btree_inode = root->fs_info->btree_inode;
400         u64 start = 0;
401         u64 end;
402         unsigned long index;
403
404         while (1) {
405                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
406                                             mark);
407                 if (ret)
408                         break;
409                 while (start <= end) {
410                         cond_resched();
411
412                         index = start >> PAGE_CACHE_SHIFT;
413                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
414                         page = find_get_page(btree_inode->i_mapping, index);
415                         if (!page)
416                                 continue;
417
418                         btree_lock_page_hook(page);
419                         if (!page->mapping) {
420                                 unlock_page(page);
421                                 page_cache_release(page);
422                                 continue;
423                         }
424
425                         if (PageWriteback(page)) {
426                                 if (PageDirty(page))
427                                         wait_on_page_writeback(page);
428                                 else {
429                                         unlock_page(page);
430                                         page_cache_release(page);
431                                         continue;
432                                 }
433                         }
434                         err = write_one_page(page, 0);
435                         if (err)
436                                 werr = err;
437                         page_cache_release(page);
438                 }
439         }
440         if (err)
441                 werr = err;
442         return werr;
443 }
444
445 /*
446  * when btree blocks are allocated, they have some corresponding bits set for
447  * them in one of two extent_io trees.  This is used to make sure all of
448  * those extents are on disk for transaction or log commit.  We wait
449  * on all the pages and clear them from the dirty pages state tree
450  */
451 int btrfs_wait_marked_extents(struct btrfs_root *root,
452                               struct extent_io_tree *dirty_pages, int mark)
453 {
454         int ret;
455         int err = 0;
456         int werr = 0;
457         struct page *page;
458         struct inode *btree_inode = root->fs_info->btree_inode;
459         u64 start = 0;
460         u64 end;
461         unsigned long index;
462
463         while (1) {
464                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
465                                             mark);
466                 if (ret)
467                         break;
468
469                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
470                 while (start <= end) {
471                         index = start >> PAGE_CACHE_SHIFT;
472                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
473                         page = find_get_page(btree_inode->i_mapping, index);
474                         if (!page)
475                                 continue;
476                         if (PageDirty(page)) {
477                                 btree_lock_page_hook(page);
478                                 wait_on_page_writeback(page);
479                                 err = write_one_page(page, 0);
480                                 if (err)
481                                         werr = err;
482                         }
483                         wait_on_page_writeback(page);
484                         page_cache_release(page);
485                         cond_resched();
486                 }
487         }
488         if (err)
489                 werr = err;
490         return werr;
491 }
492
493 /*
494  * when btree blocks are allocated, they have some corresponding bits set for
495  * them in one of two extent_io trees.  This is used to make sure all of
496  * those extents are on disk for transaction or log commit
497  */
498 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
499                                 struct extent_io_tree *dirty_pages, int mark)
500 {
501         int ret;
502         int ret2;
503
504         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
505         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
506         return ret || ret2;
507 }
508
509 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
510                                      struct btrfs_root *root)
511 {
512         if (!trans || !trans->transaction) {
513                 struct inode *btree_inode;
514                 btree_inode = root->fs_info->btree_inode;
515                 return filemap_write_and_wait(btree_inode->i_mapping);
516         }
517         return btrfs_write_and_wait_marked_extents(root,
518                                            &trans->transaction->dirty_pages,
519                                            EXTENT_DIRTY);
520 }
521
522 /*
523  * this is used to update the root pointer in the tree of tree roots.
524  *
525  * But, in the case of the extent allocation tree, updating the root
526  * pointer may allocate blocks which may change the root of the extent
527  * allocation tree.
528  *
529  * So, this loops and repeats and makes sure the cowonly root didn't
530  * change while the root pointer was being updated in the metadata.
531  */
532 static int update_cowonly_root(struct btrfs_trans_handle *trans,
533                                struct btrfs_root *root)
534 {
535         int ret;
536         u64 old_root_bytenr;
537         u64 old_root_used;
538         struct btrfs_root *tree_root = root->fs_info->tree_root;
539
540         old_root_used = btrfs_root_used(&root->root_item);
541         btrfs_write_dirty_block_groups(trans, root);
542
543         while (1) {
544                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
545                 if (old_root_bytenr == root->node->start &&
546                     old_root_used == btrfs_root_used(&root->root_item))
547                         break;
548
549                 btrfs_set_root_node(&root->root_item, root->node);
550                 ret = btrfs_update_root(trans, tree_root,
551                                         &root->root_key,
552                                         &root->root_item);
553                 BUG_ON(ret);
554
555                 old_root_used = btrfs_root_used(&root->root_item);
556                 ret = btrfs_write_dirty_block_groups(trans, root);
557                 BUG_ON(ret);
558         }
559
560         if (root != root->fs_info->extent_root)
561                 switch_commit_root(root);
562
563         return 0;
564 }
565
566 /*
567  * update all the cowonly tree roots on disk
568  */
569 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
570                                          struct btrfs_root *root)
571 {
572         struct btrfs_fs_info *fs_info = root->fs_info;
573         struct list_head *next;
574         struct extent_buffer *eb;
575         int ret;
576
577         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
578         BUG_ON(ret);
579
580         eb = btrfs_lock_root_node(fs_info->tree_root);
581         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
582         btrfs_tree_unlock(eb);
583         free_extent_buffer(eb);
584
585         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
586         BUG_ON(ret);
587
588         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
589                 next = fs_info->dirty_cowonly_roots.next;
590                 list_del_init(next);
591                 root = list_entry(next, struct btrfs_root, dirty_list);
592
593                 update_cowonly_root(trans, root);
594         }
595
596         down_write(&fs_info->extent_commit_sem);
597         switch_commit_root(fs_info->extent_root);
598         up_write(&fs_info->extent_commit_sem);
599
600         return 0;
601 }
602
603 /*
604  * dead roots are old snapshots that need to be deleted.  This allocates
605  * a dirty root struct and adds it into the list of dead roots that need to
606  * be deleted
607  */
608 int btrfs_add_dead_root(struct btrfs_root *root)
609 {
610         mutex_lock(&root->fs_info->trans_mutex);
611         list_add(&root->root_list, &root->fs_info->dead_roots);
612         mutex_unlock(&root->fs_info->trans_mutex);
613         return 0;
614 }
615
616 /*
617  * update all the cowonly tree roots on disk
618  */
619 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
620                                     struct btrfs_root *root)
621 {
622         struct btrfs_root *gang[8];
623         struct btrfs_fs_info *fs_info = root->fs_info;
624         int i;
625         int ret;
626         int err = 0;
627
628         while (1) {
629                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
630                                                  (void **)gang, 0,
631                                                  ARRAY_SIZE(gang),
632                                                  BTRFS_ROOT_TRANS_TAG);
633                 if (ret == 0)
634                         break;
635                 for (i = 0; i < ret; i++) {
636                         root = gang[i];
637                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
638                                         (unsigned long)root->root_key.objectid,
639                                         BTRFS_ROOT_TRANS_TAG);
640
641                         btrfs_free_log(trans, root);
642                         btrfs_update_reloc_root(trans, root);
643
644                         if (root->commit_root != root->node) {
645                                 switch_commit_root(root);
646                                 btrfs_set_root_node(&root->root_item,
647                                                     root->node);
648                         }
649
650                         err = btrfs_update_root(trans, fs_info->tree_root,
651                                                 &root->root_key,
652                                                 &root->root_item);
653                         if (err)
654                                 break;
655                 }
656         }
657         return err;
658 }
659
660 /*
661  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
662  * otherwise every leaf in the btree is read and defragged.
663  */
664 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
665 {
666         struct btrfs_fs_info *info = root->fs_info;
667         int ret;
668         struct btrfs_trans_handle *trans;
669         unsigned long nr;
670
671         smp_mb();
672         if (root->defrag_running)
673                 return 0;
674         trans = btrfs_start_transaction(root, 1);
675         while (1) {
676                 root->defrag_running = 1;
677                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
678                 nr = trans->blocks_used;
679                 btrfs_end_transaction(trans, root);
680                 btrfs_btree_balance_dirty(info->tree_root, nr);
681                 cond_resched();
682
683                 trans = btrfs_start_transaction(root, 1);
684                 if (root->fs_info->closing || ret != -EAGAIN)
685                         break;
686         }
687         root->defrag_running = 0;
688         smp_mb();
689         btrfs_end_transaction(trans, root);
690         return 0;
691 }
692
693 #if 0
694 /*
695  * when dropping snapshots, we generate a ton of delayed refs, and it makes
696  * sense not to join the transaction while it is trying to flush the current
697  * queue of delayed refs out.
698  *
699  * This is used by the drop snapshot code only
700  */
701 static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
702 {
703         DEFINE_WAIT(wait);
704
705         mutex_lock(&info->trans_mutex);
706         while (info->running_transaction &&
707                info->running_transaction->delayed_refs.flushing) {
708                 prepare_to_wait(&info->transaction_wait, &wait,
709                                 TASK_UNINTERRUPTIBLE);
710                 mutex_unlock(&info->trans_mutex);
711
712                 schedule();
713
714                 mutex_lock(&info->trans_mutex);
715                 finish_wait(&info->transaction_wait, &wait);
716         }
717         mutex_unlock(&info->trans_mutex);
718         return 0;
719 }
720
721 /*
722  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
723  * all of them
724  */
725 int btrfs_drop_dead_root(struct btrfs_root *root)
726 {
727         struct btrfs_trans_handle *trans;
728         struct btrfs_root *tree_root = root->fs_info->tree_root;
729         unsigned long nr;
730         int ret;
731
732         while (1) {
733                 /*
734                  * we don't want to jump in and create a bunch of
735                  * delayed refs if the transaction is starting to close
736                  */
737                 wait_transaction_pre_flush(tree_root->fs_info);
738                 trans = btrfs_start_transaction(tree_root, 1);
739
740                 /*
741                  * we've joined a transaction, make sure it isn't
742                  * closing right now
743                  */
744                 if (trans->transaction->delayed_refs.flushing) {
745                         btrfs_end_transaction(trans, tree_root);
746                         continue;
747                 }
748
749                 ret = btrfs_drop_snapshot(trans, root);
750                 if (ret != -EAGAIN)
751                         break;
752
753                 ret = btrfs_update_root(trans, tree_root,
754                                         &root->root_key,
755                                         &root->root_item);
756                 if (ret)
757                         break;
758
759                 nr = trans->blocks_used;
760                 ret = btrfs_end_transaction(trans, tree_root);
761                 BUG_ON(ret);
762
763                 btrfs_btree_balance_dirty(tree_root, nr);
764                 cond_resched();
765         }
766         BUG_ON(ret);
767
768         ret = btrfs_del_root(trans, tree_root, &root->root_key);
769         BUG_ON(ret);
770
771         nr = trans->blocks_used;
772         ret = btrfs_end_transaction(trans, tree_root);
773         BUG_ON(ret);
774
775         free_extent_buffer(root->node);
776         free_extent_buffer(root->commit_root);
777         kfree(root);
778
779         btrfs_btree_balance_dirty(tree_root, nr);
780         return ret;
781 }
782 #endif
783
784 /*
785  * new snapshots need to be created at a very specific time in the
786  * transaction commit.  This does the actual creation
787  */
788 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
789                                    struct btrfs_fs_info *fs_info,
790                                    struct btrfs_pending_snapshot *pending)
791 {
792         struct btrfs_key key;
793         struct btrfs_root_item *new_root_item;
794         struct btrfs_root *tree_root = fs_info->tree_root;
795         struct btrfs_root *root = pending->root;
796         struct btrfs_root *parent_root;
797         struct inode *parent_inode;
798         struct dentry *dentry;
799         struct extent_buffer *tmp;
800         struct extent_buffer *old;
801         int ret;
802         u64 index = 0;
803         u64 objectid;
804
805         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
806         if (!new_root_item) {
807                 pending->error = -ENOMEM;
808                 goto fail;
809         }
810
811         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
812         if (ret) {
813                 pending->error = ret;
814                 goto fail;
815         }
816
817         key.objectid = objectid;
818         key.offset = (u64)-1;
819         key.type = BTRFS_ROOT_ITEM_KEY;
820
821         trans->block_rsv = &pending->block_rsv;
822
823         dentry = pending->dentry;
824         parent_inode = dentry->d_parent->d_inode;
825         parent_root = BTRFS_I(parent_inode)->root;
826         record_root_in_trans(trans, parent_root);
827
828         /*
829          * insert the directory item
830          */
831         ret = btrfs_set_inode_index(parent_inode, &index);
832         BUG_ON(ret);
833         ret = btrfs_insert_dir_item(trans, parent_root,
834                                 dentry->d_name.name, dentry->d_name.len,
835                                 parent_inode->i_ino, &key,
836                                 BTRFS_FT_DIR, index);
837         BUG_ON(ret);
838
839         btrfs_i_size_write(parent_inode, parent_inode->i_size +
840                                          dentry->d_name.len * 2);
841         ret = btrfs_update_inode(trans, parent_root, parent_inode);
842         BUG_ON(ret);
843
844         record_root_in_trans(trans, root);
845         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
846         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
847
848         old = btrfs_lock_root_node(root);
849         btrfs_cow_block(trans, root, old, NULL, 0, &old);
850         btrfs_set_lock_blocking(old);
851
852         btrfs_copy_root(trans, root, old, &tmp, objectid);
853         btrfs_tree_unlock(old);
854         free_extent_buffer(old);
855
856         btrfs_set_root_node(new_root_item, tmp);
857         /* record when the snapshot was created in key.offset */
858         key.offset = trans->transid;
859         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
860         btrfs_tree_unlock(tmp);
861         free_extent_buffer(tmp);
862         BUG_ON(ret);
863
864         /*
865          * insert root back/forward references
866          */
867         ret = btrfs_add_root_ref(trans, tree_root, objectid,
868                                  parent_root->root_key.objectid,
869                                  parent_inode->i_ino, index,
870                                  dentry->d_name.name, dentry->d_name.len);
871         BUG_ON(ret);
872
873         key.offset = (u64)-1;
874         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
875         BUG_ON(IS_ERR(pending->snap));
876 fail:
877         kfree(new_root_item);
878         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
879         return 0;
880 }
881
882 /*
883  * create all the snapshots we've scheduled for creation
884  */
885 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
886                                              struct btrfs_fs_info *fs_info)
887 {
888         struct btrfs_pending_snapshot *pending;
889         struct list_head *head = &trans->transaction->pending_snapshots;
890         int ret;
891
892         list_for_each_entry(pending, head, list) {
893                 ret = create_pending_snapshot(trans, fs_info, pending);
894                 BUG_ON(ret);
895         }
896         return 0;
897 }
898
899 static void update_super_roots(struct btrfs_root *root)
900 {
901         struct btrfs_root_item *root_item;
902         struct btrfs_super_block *super;
903
904         super = &root->fs_info->super_copy;
905
906         root_item = &root->fs_info->chunk_root->root_item;
907         super->chunk_root = root_item->bytenr;
908         super->chunk_root_generation = root_item->generation;
909         super->chunk_root_level = root_item->level;
910
911         root_item = &root->fs_info->tree_root->root_item;
912         super->root = root_item->bytenr;
913         super->generation = root_item->generation;
914         super->root_level = root_item->level;
915 }
916
917 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
918 {
919         int ret = 0;
920         spin_lock(&info->new_trans_lock);
921         if (info->running_transaction)
922                 ret = info->running_transaction->in_commit;
923         spin_unlock(&info->new_trans_lock);
924         return ret;
925 }
926
927 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
928                              struct btrfs_root *root)
929 {
930         unsigned long joined = 0;
931         unsigned long timeout = 1;
932         struct btrfs_transaction *cur_trans;
933         struct btrfs_transaction *prev_trans = NULL;
934         DEFINE_WAIT(wait);
935         int ret;
936         int should_grow = 0;
937         unsigned long now = get_seconds();
938         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
939
940         btrfs_run_ordered_operations(root, 0);
941
942         /* make a pass through all the delayed refs we have so far
943          * any runnings procs may add more while we are here
944          */
945         ret = btrfs_run_delayed_refs(trans, root, 0);
946         BUG_ON(ret);
947
948         btrfs_trans_release_metadata(trans, root);
949
950         cur_trans = trans->transaction;
951         /*
952          * set the flushing flag so procs in this transaction have to
953          * start sending their work down.
954          */
955         cur_trans->delayed_refs.flushing = 1;
956
957         ret = btrfs_run_delayed_refs(trans, root, 0);
958         BUG_ON(ret);
959
960         mutex_lock(&root->fs_info->trans_mutex);
961         if (cur_trans->in_commit) {
962                 cur_trans->use_count++;
963                 mutex_unlock(&root->fs_info->trans_mutex);
964                 btrfs_end_transaction(trans, root);
965
966                 ret = wait_for_commit(root, cur_trans);
967                 BUG_ON(ret);
968
969                 mutex_lock(&root->fs_info->trans_mutex);
970                 put_transaction(cur_trans);
971                 mutex_unlock(&root->fs_info->trans_mutex);
972
973                 return 0;
974         }
975
976         trans->transaction->in_commit = 1;
977         trans->transaction->blocked = 1;
978         if (cur_trans->list.prev != &root->fs_info->trans_list) {
979                 prev_trans = list_entry(cur_trans->list.prev,
980                                         struct btrfs_transaction, list);
981                 if (!prev_trans->commit_done) {
982                         prev_trans->use_count++;
983                         mutex_unlock(&root->fs_info->trans_mutex);
984
985                         wait_for_commit(root, prev_trans);
986
987                         mutex_lock(&root->fs_info->trans_mutex);
988                         put_transaction(prev_trans);
989                 }
990         }
991
992         if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
993                 should_grow = 1;
994
995         do {
996                 int snap_pending = 0;
997                 joined = cur_trans->num_joined;
998                 if (!list_empty(&trans->transaction->pending_snapshots))
999                         snap_pending = 1;
1000
1001                 WARN_ON(cur_trans != trans->transaction);
1002                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1003                                 TASK_UNINTERRUPTIBLE);
1004
1005                 if (cur_trans->num_writers > 1)
1006                         timeout = MAX_SCHEDULE_TIMEOUT;
1007                 else if (should_grow)
1008                         timeout = 1;
1009
1010                 mutex_unlock(&root->fs_info->trans_mutex);
1011
1012                 if (flush_on_commit || snap_pending) {
1013                         btrfs_start_delalloc_inodes(root, 1);
1014                         ret = btrfs_wait_ordered_extents(root, 0, 1);
1015                         BUG_ON(ret);
1016                 }
1017
1018                 /*
1019                  * rename don't use btrfs_join_transaction, so, once we
1020                  * set the transaction to blocked above, we aren't going
1021                  * to get any new ordered operations.  We can safely run
1022                  * it here and no for sure that nothing new will be added
1023                  * to the list
1024                  */
1025                 btrfs_run_ordered_operations(root, 1);
1026
1027                 smp_mb();
1028                 if (cur_trans->num_writers > 1 || should_grow)
1029                         schedule_timeout(timeout);
1030
1031                 mutex_lock(&root->fs_info->trans_mutex);
1032                 finish_wait(&cur_trans->writer_wait, &wait);
1033         } while (cur_trans->num_writers > 1 ||
1034                  (should_grow && cur_trans->num_joined != joined));
1035
1036         ret = create_pending_snapshots(trans, root->fs_info);
1037         BUG_ON(ret);
1038
1039         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1040         BUG_ON(ret);
1041
1042         WARN_ON(cur_trans != trans->transaction);
1043
1044         /* btrfs_commit_tree_roots is responsible for getting the
1045          * various roots consistent with each other.  Every pointer
1046          * in the tree of tree roots has to point to the most up to date
1047          * root for every subvolume and other tree.  So, we have to keep
1048          * the tree logging code from jumping in and changing any
1049          * of the trees.
1050          *
1051          * At this point in the commit, there can't be any tree-log
1052          * writers, but a little lower down we drop the trans mutex
1053          * and let new people in.  By holding the tree_log_mutex
1054          * from now until after the super is written, we avoid races
1055          * with the tree-log code.
1056          */
1057         mutex_lock(&root->fs_info->tree_log_mutex);
1058
1059         ret = commit_fs_roots(trans, root);
1060         BUG_ON(ret);
1061
1062         /* commit_fs_roots gets rid of all the tree log roots, it is now
1063          * safe to free the root of tree log roots
1064          */
1065         btrfs_free_log_root_tree(trans, root->fs_info);
1066
1067         ret = commit_cowonly_roots(trans, root);
1068         BUG_ON(ret);
1069
1070         btrfs_prepare_extent_commit(trans, root);
1071
1072         cur_trans = root->fs_info->running_transaction;
1073         spin_lock(&root->fs_info->new_trans_lock);
1074         root->fs_info->running_transaction = NULL;
1075         spin_unlock(&root->fs_info->new_trans_lock);
1076
1077         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1078                             root->fs_info->tree_root->node);
1079         switch_commit_root(root->fs_info->tree_root);
1080
1081         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1082                             root->fs_info->chunk_root->node);
1083         switch_commit_root(root->fs_info->chunk_root);
1084
1085         update_super_roots(root);
1086
1087         if (!root->fs_info->log_root_recovering) {
1088                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1089                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1090         }
1091
1092         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1093                sizeof(root->fs_info->super_copy));
1094
1095         trans->transaction->blocked = 0;
1096
1097         wake_up(&root->fs_info->transaction_wait);
1098
1099         mutex_unlock(&root->fs_info->trans_mutex);
1100         ret = btrfs_write_and_wait_transaction(trans, root);
1101         BUG_ON(ret);
1102         write_ctree_super(trans, root, 0);
1103
1104         /*
1105          * the super is written, we can safely allow the tree-loggers
1106          * to go about their business
1107          */
1108         mutex_unlock(&root->fs_info->tree_log_mutex);
1109
1110         btrfs_finish_extent_commit(trans, root);
1111
1112         mutex_lock(&root->fs_info->trans_mutex);
1113
1114         cur_trans->commit_done = 1;
1115
1116         root->fs_info->last_trans_committed = cur_trans->transid;
1117
1118         wake_up(&cur_trans->commit_wait);
1119
1120         put_transaction(cur_trans);
1121         put_transaction(cur_trans);
1122
1123         mutex_unlock(&root->fs_info->trans_mutex);
1124
1125         if (current->journal_info == trans)
1126                 current->journal_info = NULL;
1127
1128         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1129
1130         if (current != root->fs_info->transaction_kthread)
1131                 btrfs_run_delayed_iputs(root);
1132
1133         return ret;
1134 }
1135
1136 /*
1137  * interface function to delete all the snapshots we have scheduled for deletion
1138  */
1139 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1140 {
1141         LIST_HEAD(list);
1142         struct btrfs_fs_info *fs_info = root->fs_info;
1143
1144         mutex_lock(&fs_info->trans_mutex);
1145         list_splice_init(&fs_info->dead_roots, &list);
1146         mutex_unlock(&fs_info->trans_mutex);
1147
1148         while (!list_empty(&list)) {
1149                 root = list_entry(list.next, struct btrfs_root, root_list);
1150                 list_del(&root->root_list);
1151
1152                 if (btrfs_header_backref_rev(root->node) <
1153                     BTRFS_MIXED_BACKREF_REV)
1154                         btrfs_drop_snapshot(root, 0);
1155                 else
1156                         btrfs_drop_snapshot(root, 1);
1157         }
1158         return 0;
1159 }