]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/staging/lirc/lirc_sir.c
[media] af9015: Fix max I2C message size when used with tda18271
[net-next-2.6.git] / drivers / staging / lirc / lirc_sir.c
1 /*
2  * LIRC SIR driver, (C) 2000 Milan Pikula <www@fornax.sk>
3  *
4  * lirc_sir - Device driver for use with SIR (serial infra red)
5  * mode of IrDA on many notebooks.
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  *
21  *
22  * 2000/09/16 Frank Przybylski <mail@frankprzybylski.de> :
23  *  added timeout and relaxed pulse detection, removed gap bug
24  *
25  * 2000/12/15 Christoph Bartelmus <lirc@bartelmus.de> :
26  *   added support for Tekram Irmate 210 (sending does not work yet,
27  *   kind of disappointing that nobody was able to implement that
28  *   before),
29  *   major clean-up
30  *
31  * 2001/02/27 Christoph Bartelmus <lirc@bartelmus.de> :
32  *   added support for StrongARM SA1100 embedded microprocessor
33  *   parts cut'n'pasted from sa1100_ir.c (C) 2000 Russell King
34  */
35
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/errno.h>
39 #include <linux/signal.h>
40 #include <linux/fs.h>
41 #include <linux/interrupt.h>
42 #include <linux/ioport.h>
43 #include <linux/kernel.h>
44 #include <linux/serial_reg.h>
45 #include <linux/time.h>
46 #include <linux/string.h>
47 #include <linux/types.h>
48 #include <linux/wait.h>
49 #include <linux/mm.h>
50 #include <linux/delay.h>
51 #include <linux/poll.h>
52 #include <asm/system.h>
53 #include <linux/io.h>
54 #include <asm/irq.h>
55 #include <linux/fcntl.h>
56 #ifdef LIRC_ON_SA1100
57 #include <asm/hardware.h>
58 #ifdef CONFIG_SA1100_COLLIE
59 #include <asm/arch/tc35143.h>
60 #include <asm/ucb1200.h>
61 #endif
62 #endif
63
64 #include <linux/timer.h>
65
66 #include <media/lirc.h>
67 #include <media/lirc_dev.h>
68
69 /* SECTION: Definitions */
70
71 /*** Tekram dongle ***/
72 #ifdef LIRC_SIR_TEKRAM
73 /* stolen from kernel source */
74 /* definitions for Tekram dongle */
75 #define TEKRAM_115200 0x00
76 #define TEKRAM_57600  0x01
77 #define TEKRAM_38400  0x02
78 #define TEKRAM_19200  0x03
79 #define TEKRAM_9600   0x04
80 #define TEKRAM_2400   0x08
81
82 #define TEKRAM_PW 0x10 /* Pulse select bit */
83
84 /* 10bit * 1s/115200bit in milliseconds = 87ms*/
85 #define TIME_CONST (10000000ul/115200ul)
86
87 #endif
88
89 #ifdef LIRC_SIR_ACTISYS_ACT200L
90 static void init_act200(void);
91 #elif defined(LIRC_SIR_ACTISYS_ACT220L)
92 static void init_act220(void);
93 #endif
94
95 /*** SA1100 ***/
96 #ifdef LIRC_ON_SA1100
97 struct sa1100_ser2_registers {
98         /* HSSP control register */
99         unsigned char hscr0;
100         /* UART registers */
101         unsigned char utcr0;
102         unsigned char utcr1;
103         unsigned char utcr2;
104         unsigned char utcr3;
105         unsigned char utcr4;
106         unsigned char utdr;
107         unsigned char utsr0;
108         unsigned char utsr1;
109 } sr;
110
111 static int irq = IRQ_Ser2ICP;
112
113 #define LIRC_ON_SA1100_TRANSMITTER_LATENCY 0
114
115 /* pulse/space ratio of 50/50 */
116 static unsigned long pulse_width = (13-LIRC_ON_SA1100_TRANSMITTER_LATENCY);
117 /* 1000000/freq-pulse_width */
118 static unsigned long space_width = (13-LIRC_ON_SA1100_TRANSMITTER_LATENCY);
119 static unsigned int freq = 38000;      /* modulation frequency */
120 static unsigned int duty_cycle = 50;   /* duty cycle of 50% */
121
122 #endif
123
124 #define RBUF_LEN 1024
125 #define WBUF_LEN 1024
126
127 #define LIRC_DRIVER_NAME "lirc_sir"
128
129 #define PULSE '['
130
131 #ifndef LIRC_SIR_TEKRAM
132 /* 9bit * 1s/115200bit in milli seconds = 78.125ms*/
133 #define TIME_CONST (9000000ul/115200ul)
134 #endif
135
136
137 /* timeout for sequences in jiffies (=5/100s), must be longer than TIME_CONST */
138 #define SIR_TIMEOUT     (HZ*5/100)
139
140 #ifndef LIRC_ON_SA1100
141 #ifndef LIRC_IRQ
142 #define LIRC_IRQ 4
143 #endif
144 #ifndef LIRC_PORT
145 /* for external dongles, default to com1 */
146 #if defined(LIRC_SIR_ACTISYS_ACT200L) || \
147     defined(LIRC_SIR_ACTISYS_ACT220L) || \
148     defined(LIRC_SIR_TEKRAM)
149 #define LIRC_PORT 0x3f8
150 #else
151 /* onboard sir ports are typically com3 */
152 #define LIRC_PORT 0x3e8
153 #endif
154 #endif
155
156 static int io = LIRC_PORT;
157 static int irq = LIRC_IRQ;
158 static int threshold = 3;
159 #endif
160
161 static DEFINE_SPINLOCK(timer_lock);
162 static struct timer_list timerlist;
163 /* time of last signal change detected */
164 static struct timeval last_tv = {0, 0};
165 /* time of last UART data ready interrupt */
166 static struct timeval last_intr_tv = {0, 0};
167 static int last_value;
168
169 static DECLARE_WAIT_QUEUE_HEAD(lirc_read_queue);
170
171 static DEFINE_SPINLOCK(hardware_lock);
172
173 static int rx_buf[RBUF_LEN];
174 static unsigned int rx_tail, rx_head;
175
176 static int debug;
177 #define dprintk(fmt, args...)                                           \
178         do {                                                            \
179                 if (debug)                                              \
180                         printk(KERN_DEBUG LIRC_DRIVER_NAME ": "         \
181                                 fmt, ## args);                          \
182         } while (0)
183
184 /* SECTION: Prototypes */
185
186 /* Communication with user-space */
187 static unsigned int lirc_poll(struct file *file, poll_table *wait);
188 static ssize_t lirc_read(struct file *file, char *buf, size_t count,
189                 loff_t *ppos);
190 static ssize_t lirc_write(struct file *file, const char *buf, size_t n,
191                 loff_t *pos);
192 static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
193 static void add_read_queue(int flag, unsigned long val);
194 static int init_chrdev(void);
195 static void drop_chrdev(void);
196 /* Hardware */
197 static irqreturn_t sir_interrupt(int irq, void *dev_id);
198 static void send_space(unsigned long len);
199 static void send_pulse(unsigned long len);
200 static int init_hardware(void);
201 static void drop_hardware(void);
202 /* Initialisation */
203 static int init_port(void);
204 static void drop_port(void);
205
206 #ifdef LIRC_ON_SA1100
207 static void on(void)
208 {
209         PPSR |= PPC_TXD2;
210 }
211
212 static void off(void)
213 {
214         PPSR &= ~PPC_TXD2;
215 }
216 #else
217 static inline unsigned int sinp(int offset)
218 {
219         return inb(io + offset);
220 }
221
222 static inline void soutp(int offset, int value)
223 {
224         outb(value, io + offset);
225 }
226 #endif
227
228 #ifndef MAX_UDELAY_MS
229 #define MAX_UDELAY_US 5000
230 #else
231 #define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
232 #endif
233
234 static void safe_udelay(unsigned long usecs)
235 {
236         while (usecs > MAX_UDELAY_US) {
237                 udelay(MAX_UDELAY_US);
238                 usecs -= MAX_UDELAY_US;
239         }
240         udelay(usecs);
241 }
242
243 /* SECTION: Communication with user-space */
244
245 static unsigned int lirc_poll(struct file *file, poll_table *wait)
246 {
247         poll_wait(file, &lirc_read_queue, wait);
248         if (rx_head != rx_tail)
249                 return POLLIN | POLLRDNORM;
250         return 0;
251 }
252
253 static ssize_t lirc_read(struct file *file, char *buf, size_t count,
254                 loff_t *ppos)
255 {
256         int n = 0;
257         int retval = 0;
258         DECLARE_WAITQUEUE(wait, current);
259
260         if (count % sizeof(int))
261                 return -EINVAL;
262
263         add_wait_queue(&lirc_read_queue, &wait);
264         set_current_state(TASK_INTERRUPTIBLE);
265         while (n < count) {
266                 if (rx_head != rx_tail) {
267                         if (copy_to_user((void *) buf + n,
268                                         (void *) (rx_buf + rx_head),
269                                         sizeof(int))) {
270                                 retval = -EFAULT;
271                                 break;
272                         }
273                         rx_head = (rx_head + 1) & (RBUF_LEN - 1);
274                         n += sizeof(int);
275                 } else {
276                         if (file->f_flags & O_NONBLOCK) {
277                                 retval = -EAGAIN;
278                                 break;
279                         }
280                         if (signal_pending(current)) {
281                                 retval = -ERESTARTSYS;
282                                 break;
283                         }
284                         schedule();
285                         set_current_state(TASK_INTERRUPTIBLE);
286                 }
287         }
288         remove_wait_queue(&lirc_read_queue, &wait);
289         set_current_state(TASK_RUNNING);
290         return n ? n : retval;
291 }
292 static ssize_t lirc_write(struct file *file, const char *buf, size_t n,
293                                 loff_t *pos)
294 {
295         unsigned long flags;
296         int i, count;
297         int *tx_buf;
298
299         count = n / sizeof(int);
300         if (n % sizeof(int) || count % 2 == 0)
301                 return -EINVAL;
302         tx_buf = memdup_user(buf, n);
303         if (IS_ERR(tx_buf))
304                 return PTR_ERR(tx_buf);
305         i = 0;
306 #ifdef LIRC_ON_SA1100
307         /* disable receiver */
308         Ser2UTCR3 = 0;
309 #endif
310         local_irq_save(flags);
311         while (1) {
312                 if (i >= count)
313                         break;
314                 if (tx_buf[i])
315                         send_pulse(tx_buf[i]);
316                 i++;
317                 if (i >= count)
318                         break;
319                 if (tx_buf[i])
320                         send_space(tx_buf[i]);
321                 i++;
322         }
323         local_irq_restore(flags);
324 #ifdef LIRC_ON_SA1100
325         off();
326         udelay(1000); /* wait 1ms for IR diode to recover */
327         Ser2UTCR3 = 0;
328         /* clear status register to prevent unwanted interrupts */
329         Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
330         /* enable receiver */
331         Ser2UTCR3 = UTCR3_RXE|UTCR3_RIE;
332 #endif
333         return count;
334 }
335
336 static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
337 {
338         int retval = 0;
339         __u32 value = 0;
340 #ifdef LIRC_ON_SA1100
341
342         if (cmd == LIRC_GET_FEATURES)
343                 value = LIRC_CAN_SEND_PULSE |
344                         LIRC_CAN_SET_SEND_DUTY_CYCLE |
345                         LIRC_CAN_SET_SEND_CARRIER |
346                         LIRC_CAN_REC_MODE2;
347         else if (cmd == LIRC_GET_SEND_MODE)
348                 value = LIRC_MODE_PULSE;
349         else if (cmd == LIRC_GET_REC_MODE)
350                 value = LIRC_MODE_MODE2;
351 #else
352         if (cmd == LIRC_GET_FEATURES)
353                 value = LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2;
354         else if (cmd == LIRC_GET_SEND_MODE)
355                 value = LIRC_MODE_PULSE;
356         else if (cmd == LIRC_GET_REC_MODE)
357                 value = LIRC_MODE_MODE2;
358 #endif
359
360         switch (cmd) {
361         case LIRC_GET_FEATURES:
362         case LIRC_GET_SEND_MODE:
363         case LIRC_GET_REC_MODE:
364                 retval = put_user(value, (__u32 *) arg);
365                 break;
366
367         case LIRC_SET_SEND_MODE:
368         case LIRC_SET_REC_MODE:
369                 retval = get_user(value, (__u32 *) arg);
370                 break;
371 #ifdef LIRC_ON_SA1100
372         case LIRC_SET_SEND_DUTY_CYCLE:
373                 retval = get_user(value, (__u32 *) arg);
374                 if (retval)
375                         return retval;
376                 if (value <= 0 || value > 100)
377                         return -EINVAL;
378                 /* (value/100)*(1000000/freq) */
379                 duty_cycle = value;
380                 pulse_width = (unsigned long) duty_cycle*10000/freq;
381                 space_width = (unsigned long) 1000000L/freq-pulse_width;
382                 if (pulse_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
383                         pulse_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
384                 if (space_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
385                         space_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
386                 break;
387         case LIRC_SET_SEND_CARRIER:
388                 retval = get_user(value, (__u32 *) arg);
389                 if (retval)
390                         return retval;
391                 if (value > 500000 || value < 20000)
392                         return -EINVAL;
393                 freq = value;
394                 pulse_width = (unsigned long) duty_cycle*10000/freq;
395                 space_width = (unsigned long) 1000000L/freq-pulse_width;
396                 if (pulse_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
397                         pulse_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
398                 if (space_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
399                         space_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
400                 break;
401 #endif
402         default:
403                 retval = -ENOIOCTLCMD;
404
405         }
406
407         if (retval)
408                 return retval;
409         if (cmd == LIRC_SET_REC_MODE) {
410                 if (value != LIRC_MODE_MODE2)
411                         retval = -ENOSYS;
412         } else if (cmd == LIRC_SET_SEND_MODE) {
413                 if (value != LIRC_MODE_PULSE)
414                         retval = -ENOSYS;
415         }
416
417         return retval;
418 }
419
420 static void add_read_queue(int flag, unsigned long val)
421 {
422         unsigned int new_rx_tail;
423         int newval;
424
425         dprintk("add flag %d with val %lu\n", flag, val);
426
427         newval = val & PULSE_MASK;
428
429         /*
430          * statistically, pulses are ~TIME_CONST/2 too long. we could
431          * maybe make this more exact, but this is good enough
432          */
433         if (flag) {
434                 /* pulse */
435                 if (newval > TIME_CONST/2)
436                         newval -= TIME_CONST/2;
437                 else /* should not ever happen */
438                         newval = 1;
439                 newval |= PULSE_BIT;
440         } else {
441                 newval += TIME_CONST/2;
442         }
443         new_rx_tail = (rx_tail + 1) & (RBUF_LEN - 1);
444         if (new_rx_tail == rx_head) {
445                 dprintk("Buffer overrun.\n");
446                 return;
447         }
448         rx_buf[rx_tail] = newval;
449         rx_tail = new_rx_tail;
450         wake_up_interruptible(&lirc_read_queue);
451 }
452
453 static const struct file_operations lirc_fops = {
454         .owner          = THIS_MODULE,
455         .read           = lirc_read,
456         .write          = lirc_write,
457         .poll           = lirc_poll,
458         .unlocked_ioctl = lirc_ioctl,
459 #ifdef CONFIG_COMPAT
460         .compat_ioctl   = lirc_ioctl,
461 #endif
462         .open           = lirc_dev_fop_open,
463         .release        = lirc_dev_fop_close,
464 };
465
466 static int set_use_inc(void *data)
467 {
468        return 0;
469 }
470
471 static void set_use_dec(void *data)
472 {
473 }
474
475 static struct lirc_driver driver = {
476        .name            = LIRC_DRIVER_NAME,
477        .minor           = -1,
478        .code_length     = 1,
479        .sample_rate     = 0,
480        .data            = NULL,
481        .add_to_buf      = NULL,
482        .set_use_inc     = set_use_inc,
483        .set_use_dec     = set_use_dec,
484        .fops            = &lirc_fops,
485        .dev             = NULL,
486        .owner           = THIS_MODULE,
487 };
488
489
490 static int init_chrdev(void)
491 {
492         driver.minor = lirc_register_driver(&driver);
493         if (driver.minor < 0) {
494                 printk(KERN_ERR LIRC_DRIVER_NAME ": init_chrdev() failed.\n");
495                 return -EIO;
496         }
497         return 0;
498 }
499
500 static void drop_chrdev(void)
501 {
502         lirc_unregister_driver(driver.minor);
503 }
504
505 /* SECTION: Hardware */
506 static long delta(struct timeval *tv1, struct timeval *tv2)
507 {
508         unsigned long deltv;
509
510         deltv = tv2->tv_sec - tv1->tv_sec;
511         if (deltv > 15)
512                 deltv = 0xFFFFFF;
513         else
514                 deltv = deltv*1000000 +
515                         tv2->tv_usec -
516                         tv1->tv_usec;
517         return deltv;
518 }
519
520 static void sir_timeout(unsigned long data)
521 {
522         /*
523          * if last received signal was a pulse, but receiving stopped
524          * within the 9 bit frame, we need to finish this pulse and
525          * simulate a signal change to from pulse to space. Otherwise
526          * upper layers will receive two sequences next time.
527          */
528
529         unsigned long flags;
530         unsigned long pulse_end;
531
532         /* avoid interference with interrupt */
533         spin_lock_irqsave(&timer_lock, flags);
534         if (last_value) {
535 #ifndef LIRC_ON_SA1100
536                 /* clear unread bits in UART and restart */
537                 outb(UART_FCR_CLEAR_RCVR, io + UART_FCR);
538 #endif
539                 /* determine 'virtual' pulse end: */
540                 pulse_end = delta(&last_tv, &last_intr_tv);
541                 dprintk("timeout add %d for %lu usec\n", last_value, pulse_end);
542                 add_read_queue(last_value, pulse_end);
543                 last_value = 0;
544                 last_tv = last_intr_tv;
545         }
546         spin_unlock_irqrestore(&timer_lock, flags);
547 }
548
549 static irqreturn_t sir_interrupt(int irq, void *dev_id)
550 {
551         unsigned char data;
552         struct timeval curr_tv;
553         static unsigned long deltv;
554 #ifdef LIRC_ON_SA1100
555         int status;
556         static int n;
557
558         status = Ser2UTSR0;
559         /*
560          * Deal with any receive errors first.  The bytes in error may be
561          * the only bytes in the receive FIFO, so we do this first.
562          */
563         while (status & UTSR0_EIF) {
564                 int bstat;
565
566                 if (debug) {
567                         dprintk("EIF\n");
568                         bstat = Ser2UTSR1;
569
570                         if (bstat & UTSR1_FRE)
571                                 dprintk("frame error\n");
572                         if (bstat & UTSR1_ROR)
573                                 dprintk("receive fifo overrun\n");
574                         if (bstat & UTSR1_PRE)
575                                 dprintk("parity error\n");
576                 }
577
578                 bstat = Ser2UTDR;
579                 n++;
580                 status = Ser2UTSR0;
581         }
582
583         if (status & (UTSR0_RFS | UTSR0_RID)) {
584                 do_gettimeofday(&curr_tv);
585                 deltv = delta(&last_tv, &curr_tv);
586                 do {
587                         data = Ser2UTDR;
588                         dprintk("%d data: %u\n", n, (unsigned int) data);
589                         n++;
590                 } while (status & UTSR0_RID && /* do not empty fifo in order to
591                                                 * get UTSR0_RID in any case */
592                       Ser2UTSR1 & UTSR1_RNE); /* data ready */
593
594                 if (status&UTSR0_RID) {
595                         add_read_queue(0 , deltv - n * TIME_CONST); /*space*/
596                         add_read_queue(1, n * TIME_CONST); /*pulse*/
597                         n = 0;
598                         last_tv = curr_tv;
599                 }
600         }
601
602         if (status & UTSR0_TFS)
603                 printk(KERN_ERR "transmit fifo not full, shouldn't happen\n");
604
605         /* We must clear certain bits. */
606         status &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
607         if (status)
608                 Ser2UTSR0 = status;
609 #else
610         unsigned long deltintrtv;
611         unsigned long flags;
612         int iir, lsr;
613
614         while ((iir = inb(io + UART_IIR) & UART_IIR_ID)) {
615                 switch (iir&UART_IIR_ID) { /* FIXME toto treba preriedit */
616                 case UART_IIR_MSI:
617                         (void) inb(io + UART_MSR);
618                         break;
619                 case UART_IIR_RLSI:
620                         (void) inb(io + UART_LSR);
621                         break;
622                 case UART_IIR_THRI:
623 #if 0
624                         if (lsr & UART_LSR_THRE) /* FIFO is empty */
625                                 outb(data, io + UART_TX)
626 #endif
627                         break;
628                 case UART_IIR_RDI:
629                         /* avoid interference with timer */
630                         spin_lock_irqsave(&timer_lock, flags);
631                         do {
632                                 del_timer(&timerlist);
633                                 data = inb(io + UART_RX);
634                                 do_gettimeofday(&curr_tv);
635                                 deltv = delta(&last_tv, &curr_tv);
636                                 deltintrtv = delta(&last_intr_tv, &curr_tv);
637                                 dprintk("t %lu, d %d\n", deltintrtv, (int)data);
638                                 /*
639                                  * if nothing came in last X cycles,
640                                  * it was gap
641                                  */
642                                 if (deltintrtv > TIME_CONST * threshold) {
643                                         if (last_value) {
644                                                 dprintk("GAP\n");
645                                                 /* simulate signal change */
646                                                 add_read_queue(last_value,
647                                                                deltv -
648                                                                deltintrtv);
649                                                 last_value = 0;
650                                                 last_tv.tv_sec =
651                                                         last_intr_tv.tv_sec;
652                                                 last_tv.tv_usec =
653                                                         last_intr_tv.tv_usec;
654                                                 deltv = deltintrtv;
655                                         }
656                                 }
657                                 data = 1;
658                                 if (data ^ last_value) {
659                                         /*
660                                          * deltintrtv > 2*TIME_CONST, remember?
661                                          * the other case is timeout
662                                          */
663                                         add_read_queue(last_value,
664                                                        deltv-TIME_CONST);
665                                         last_value = data;
666                                         last_tv = curr_tv;
667                                         if (last_tv.tv_usec >= TIME_CONST) {
668                                                 last_tv.tv_usec -= TIME_CONST;
669                                         } else {
670                                                 last_tv.tv_sec--;
671                                                 last_tv.tv_usec += 1000000 -
672                                                         TIME_CONST;
673                                         }
674                                 }
675                                 last_intr_tv = curr_tv;
676                                 if (data) {
677                                         /*
678                                          * start timer for end of
679                                          * sequence detection
680                                          */
681                                         timerlist.expires = jiffies +
682                                                                 SIR_TIMEOUT;
683                                         add_timer(&timerlist);
684                                 }
685
686                                 lsr = inb(io + UART_LSR);
687                         } while (lsr & UART_LSR_DR); /* data ready */
688                         spin_unlock_irqrestore(&timer_lock, flags);
689                         break;
690                 default:
691                         break;
692                 }
693         }
694 #endif
695         return IRQ_RETVAL(IRQ_HANDLED);
696 }
697
698 #ifdef LIRC_ON_SA1100
699 static void send_pulse(unsigned long length)
700 {
701         unsigned long k, delay;
702         int flag;
703
704         if (length == 0)
705                 return;
706         /*
707          * this won't give us the carrier frequency we really want
708          * due to integer arithmetic, but we can accept this inaccuracy
709          */
710
711         for (k = flag = 0; k < length; k += delay, flag = !flag) {
712                 if (flag) {
713                         off();
714                         delay = space_width;
715                 } else {
716                         on();
717                         delay = pulse_width;
718                 }
719                 safe_udelay(delay);
720         }
721         off();
722 }
723
724 static void send_space(unsigned long length)
725 {
726         if (length == 0)
727                 return;
728         off();
729         safe_udelay(length);
730 }
731 #else
732 static void send_space(unsigned long len)
733 {
734         safe_udelay(len);
735 }
736
737 static void send_pulse(unsigned long len)
738 {
739         long bytes_out = len / TIME_CONST;
740         long time_left;
741
742         time_left = (long)len - (long)bytes_out * (long)TIME_CONST;
743         if (bytes_out == 0) {
744                 bytes_out++;
745                 time_left = 0;
746         }
747         while (bytes_out--) {
748                 outb(PULSE, io + UART_TX);
749                 /* FIXME treba seriozne cakanie z char/serial.c */
750                 while (!(inb(io + UART_LSR) & UART_LSR_THRE))
751                         ;
752         }
753 #if 0
754         if (time_left > 0)
755                 safe_udelay(time_left);
756 #endif
757 }
758 #endif
759
760 #ifdef CONFIG_SA1100_COLLIE
761 static int sa1100_irda_set_power_collie(int state)
762 {
763         if (state) {
764                 /*
765                  *  0 - off
766                  *  1 - short range, lowest power
767                  *  2 - medium range, medium power
768                  *  3 - maximum range, high power
769                  */
770                 ucb1200_set_io_direction(TC35143_GPIO_IR_ON,
771                                          TC35143_IODIR_OUTPUT);
772                 ucb1200_set_io(TC35143_GPIO_IR_ON, TC35143_IODAT_LOW);
773                 udelay(100);
774         } else {
775                 /* OFF */
776                 ucb1200_set_io_direction(TC35143_GPIO_IR_ON,
777                                          TC35143_IODIR_OUTPUT);
778                 ucb1200_set_io(TC35143_GPIO_IR_ON, TC35143_IODAT_HIGH);
779         }
780         return 0;
781 }
782 #endif
783
784 static int init_hardware(void)
785 {
786         unsigned long flags;
787
788         spin_lock_irqsave(&hardware_lock, flags);
789         /* reset UART */
790 #ifdef LIRC_ON_SA1100
791 #ifdef CONFIG_SA1100_BITSY
792         if (machine_is_bitsy()) {
793                 printk(KERN_INFO "Power on IR module\n");
794                 set_bitsy_egpio(EGPIO_BITSY_IR_ON);
795         }
796 #endif
797 #ifdef CONFIG_SA1100_COLLIE
798         sa1100_irda_set_power_collie(3);        /* power on */
799 #endif
800         sr.hscr0 = Ser2HSCR0;
801
802         sr.utcr0 = Ser2UTCR0;
803         sr.utcr1 = Ser2UTCR1;
804         sr.utcr2 = Ser2UTCR2;
805         sr.utcr3 = Ser2UTCR3;
806         sr.utcr4 = Ser2UTCR4;
807
808         sr.utdr = Ser2UTDR;
809         sr.utsr0 = Ser2UTSR0;
810         sr.utsr1 = Ser2UTSR1;
811
812         /* configure GPIO */
813         /* output */
814         PPDR |= PPC_TXD2;
815         PSDR |= PPC_TXD2;
816         /* set output to 0 */
817         off();
818
819         /* Enable HP-SIR modulation, and ensure that the port is disabled. */
820         Ser2UTCR3 = 0;
821         Ser2HSCR0 = sr.hscr0 & (~HSCR0_HSSP);
822
823         /* clear status register to prevent unwanted interrupts */
824         Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
825
826         /* 7N1 */
827         Ser2UTCR0 = UTCR0_1StpBit|UTCR0_7BitData;
828         /* 115200 */
829         Ser2UTCR1 = 0;
830         Ser2UTCR2 = 1;
831         /* use HPSIR, 1.6 usec pulses */
832         Ser2UTCR4 = UTCR4_HPSIR|UTCR4_Z1_6us;
833
834         /* enable receiver, receive fifo interrupt */
835         Ser2UTCR3 = UTCR3_RXE|UTCR3_RIE;
836
837         /* clear status register to prevent unwanted interrupts */
838         Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
839
840 #elif defined(LIRC_SIR_TEKRAM)
841         /* disable FIFO */
842         soutp(UART_FCR,
843               UART_FCR_CLEAR_RCVR|
844               UART_FCR_CLEAR_XMIT|
845               UART_FCR_TRIGGER_1);
846
847         /* Set DLAB 0. */
848         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
849
850         /* First of all, disable all interrupts */
851         soutp(UART_IER, sinp(UART_IER) &
852               (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
853
854         /* Set DLAB 1. */
855         soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
856
857         /* Set divisor to 12 => 9600 Baud */
858         soutp(UART_DLM, 0);
859         soutp(UART_DLL, 12);
860
861         /* Set DLAB 0. */
862         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
863
864         /* power supply */
865         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
866         safe_udelay(50*1000);
867
868         /* -DTR low -> reset PIC */
869         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
870         udelay(1*1000);
871
872         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
873         udelay(100);
874
875
876         /* -RTS low -> send control byte */
877         soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
878         udelay(7);
879         soutp(UART_TX, TEKRAM_115200|TEKRAM_PW);
880
881         /* one byte takes ~1042 usec to transmit at 9600,8N1 */
882         udelay(1500);
883
884         /* back to normal operation */
885         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
886         udelay(50);
887
888         udelay(1500);
889
890         /* read previous control byte */
891         printk(KERN_INFO LIRC_DRIVER_NAME
892                ": 0x%02x\n", sinp(UART_RX));
893
894         /* Set DLAB 1. */
895         soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
896
897         /* Set divisor to 1 => 115200 Baud */
898         soutp(UART_DLM, 0);
899         soutp(UART_DLL, 1);
900
901         /* Set DLAB 0, 8 Bit */
902         soutp(UART_LCR, UART_LCR_WLEN8);
903         /* enable interrupts */
904         soutp(UART_IER, sinp(UART_IER)|UART_IER_RDI);
905 #else
906         outb(0, io + UART_MCR);
907         outb(0, io + UART_IER);
908         /* init UART */
909         /* set DLAB, speed = 115200 */
910         outb(UART_LCR_DLAB | UART_LCR_WLEN7, io + UART_LCR);
911         outb(1, io + UART_DLL); outb(0, io + UART_DLM);
912         /* 7N1+start = 9 bits at 115200 ~ 3 bits at 44000 */
913         outb(UART_LCR_WLEN7, io + UART_LCR);
914         /* FIFO operation */
915         outb(UART_FCR_ENABLE_FIFO, io + UART_FCR);
916         /* interrupts */
917         /* outb(UART_IER_RLSI|UART_IER_RDI|UART_IER_THRI, io + UART_IER); */
918         outb(UART_IER_RDI, io + UART_IER);
919         /* turn on UART */
920         outb(UART_MCR_DTR|UART_MCR_RTS|UART_MCR_OUT2, io + UART_MCR);
921 #ifdef LIRC_SIR_ACTISYS_ACT200L
922         init_act200();
923 #elif defined(LIRC_SIR_ACTISYS_ACT220L)
924         init_act220();
925 #endif
926 #endif
927         spin_unlock_irqrestore(&hardware_lock, flags);
928         return 0;
929 }
930
931 static void drop_hardware(void)
932 {
933         unsigned long flags;
934
935         spin_lock_irqsave(&hardware_lock, flags);
936
937 #ifdef LIRC_ON_SA1100
938         Ser2UTCR3 = 0;
939
940         Ser2UTCR0 = sr.utcr0;
941         Ser2UTCR1 = sr.utcr1;
942         Ser2UTCR2 = sr.utcr2;
943         Ser2UTCR4 = sr.utcr4;
944         Ser2UTCR3 = sr.utcr3;
945
946         Ser2HSCR0 = sr.hscr0;
947 #ifdef CONFIG_SA1100_BITSY
948         if (machine_is_bitsy())
949                 clr_bitsy_egpio(EGPIO_BITSY_IR_ON);
950 #endif
951 #ifdef CONFIG_SA1100_COLLIE
952         sa1100_irda_set_power_collie(0);        /* power off */
953 #endif
954 #else
955         /* turn off interrupts */
956         outb(0, io + UART_IER);
957 #endif
958         spin_unlock_irqrestore(&hardware_lock, flags);
959 }
960
961 /* SECTION: Initialisation */
962
963 static int init_port(void)
964 {
965         int retval;
966
967         /* get I/O port access and IRQ line */
968 #ifndef LIRC_ON_SA1100
969         if (request_region(io, 8, LIRC_DRIVER_NAME) == NULL) {
970                 printk(KERN_ERR LIRC_DRIVER_NAME
971                        ": i/o port 0x%.4x already in use.\n", io);
972                 return -EBUSY;
973         }
974 #endif
975         retval = request_irq(irq, sir_interrupt, IRQF_DISABLED,
976                              LIRC_DRIVER_NAME, NULL);
977         if (retval < 0) {
978 #               ifndef LIRC_ON_SA1100
979                 release_region(io, 8);
980 #               endif
981                 printk(KERN_ERR LIRC_DRIVER_NAME
982                         ": IRQ %d already in use.\n",
983                         irq);
984                 return retval;
985         }
986 #ifndef LIRC_ON_SA1100
987         printk(KERN_INFO LIRC_DRIVER_NAME
988                 ": I/O port 0x%.4x, IRQ %d.\n",
989                 io, irq);
990 #endif
991
992         init_timer(&timerlist);
993         timerlist.function = sir_timeout;
994         timerlist.data = 0xabadcafe;
995
996         return 0;
997 }
998
999 static void drop_port(void)
1000 {
1001         free_irq(irq, NULL);
1002         del_timer_sync(&timerlist);
1003 #ifndef LIRC_ON_SA1100
1004         release_region(io, 8);
1005 #endif
1006 }
1007
1008 #ifdef LIRC_SIR_ACTISYS_ACT200L
1009 /* Crystal/Cirrus CS8130 IR transceiver, used in Actisys Act200L dongle */
1010 /* some code borrowed from Linux IRDA driver */
1011
1012 /* Register 0: Control register #1 */
1013 #define ACT200L_REG0    0x00
1014 #define ACT200L_TXEN    0x01 /* Enable transmitter */
1015 #define ACT200L_RXEN    0x02 /* Enable receiver */
1016 #define ACT200L_ECHO    0x08 /* Echo control chars */
1017
1018 /* Register 1: Control register #2 */
1019 #define ACT200L_REG1    0x10
1020 #define ACT200L_LODB    0x01 /* Load new baud rate count value */
1021 #define ACT200L_WIDE    0x04 /* Expand the maximum allowable pulse */
1022
1023 /* Register 3: Transmit mode register #2 */
1024 #define ACT200L_REG3    0x30
1025 #define ACT200L_B0      0x01 /* DataBits, 0=6, 1=7, 2=8, 3=9(8P)  */
1026 #define ACT200L_B1      0x02 /* DataBits, 0=6, 1=7, 2=8, 3=9(8P)  */
1027 #define ACT200L_CHSY    0x04 /* StartBit Synced 0=bittime, 1=startbit */
1028
1029 /* Register 4: Output Power register */
1030 #define ACT200L_REG4    0x40
1031 #define ACT200L_OP0     0x01 /* Enable LED1C output */
1032 #define ACT200L_OP1     0x02 /* Enable LED2C output */
1033 #define ACT200L_BLKR    0x04
1034
1035 /* Register 5: Receive Mode register */
1036 #define ACT200L_REG5    0x50
1037 #define ACT200L_RWIDL   0x01 /* fixed 1.6us pulse mode */
1038     /*.. other various IRDA bit modes, and TV remote modes..*/
1039
1040 /* Register 6: Receive Sensitivity register #1 */
1041 #define ACT200L_REG6    0x60
1042 #define ACT200L_RS0     0x01 /* receive threshold bit 0 */
1043 #define ACT200L_RS1     0x02 /* receive threshold bit 1 */
1044
1045 /* Register 7: Receive Sensitivity register #2 */
1046 #define ACT200L_REG7    0x70
1047 #define ACT200L_ENPOS   0x04 /* Ignore the falling edge */
1048
1049 /* Register 8,9: Baud Rate Divider register #1,#2 */
1050 #define ACT200L_REG8    0x80
1051 #define ACT200L_REG9    0x90
1052
1053 #define ACT200L_2400    0x5f
1054 #define ACT200L_9600    0x17
1055 #define ACT200L_19200   0x0b
1056 #define ACT200L_38400   0x05
1057 #define ACT200L_57600   0x03
1058 #define ACT200L_115200  0x01
1059
1060 /* Register 13: Control register #3 */
1061 #define ACT200L_REG13   0xd0
1062 #define ACT200L_SHDW    0x01 /* Enable access to shadow registers */
1063
1064 /* Register 15: Status register */
1065 #define ACT200L_REG15   0xf0
1066
1067 /* Register 21: Control register #4 */
1068 #define ACT200L_REG21   0x50
1069 #define ACT200L_EXCK    0x02 /* Disable clock output driver */
1070 #define ACT200L_OSCL    0x04 /* oscillator in low power, medium accuracy mode */
1071
1072 static void init_act200(void)
1073 {
1074         int i;
1075         __u8 control[] = {
1076                 ACT200L_REG15,
1077                 ACT200L_REG13 | ACT200L_SHDW,
1078                 ACT200L_REG21 | ACT200L_EXCK | ACT200L_OSCL,
1079                 ACT200L_REG13,
1080                 ACT200L_REG7  | ACT200L_ENPOS,
1081                 ACT200L_REG6  | ACT200L_RS0  | ACT200L_RS1,
1082                 ACT200L_REG5  | ACT200L_RWIDL,
1083                 ACT200L_REG4  | ACT200L_OP0  | ACT200L_OP1 | ACT200L_BLKR,
1084                 ACT200L_REG3  | ACT200L_B0,
1085                 ACT200L_REG0  | ACT200L_TXEN | ACT200L_RXEN,
1086                 ACT200L_REG8 |  (ACT200L_115200       & 0x0f),
1087                 ACT200L_REG9 | ((ACT200L_115200 >> 4) & 0x0f),
1088                 ACT200L_REG1 | ACT200L_LODB | ACT200L_WIDE
1089         };
1090
1091         /* Set DLAB 1. */
1092         soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN8);
1093
1094         /* Set divisor to 12 => 9600 Baud */
1095         soutp(UART_DLM, 0);
1096         soutp(UART_DLL, 12);
1097
1098         /* Set DLAB 0. */
1099         soutp(UART_LCR, UART_LCR_WLEN8);
1100         /* Set divisor to 12 => 9600 Baud */
1101
1102         /* power supply */
1103         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1104         for (i = 0; i < 50; i++)
1105                 safe_udelay(1000);
1106
1107                 /* Reset the dongle : set RTS low for 25 ms */
1108         soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
1109         for (i = 0; i < 25; i++)
1110                 udelay(1000);
1111
1112         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1113         udelay(100);
1114
1115         /* Clear DTR and set RTS to enter command mode */
1116         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
1117         udelay(7);
1118
1119         /* send out the control register settings for 115K 7N1 SIR operation */
1120         for (i = 0; i < sizeof(control); i++) {
1121                 soutp(UART_TX, control[i]);
1122                 /* one byte takes ~1042 usec to transmit at 9600,8N1 */
1123                 udelay(1500);
1124         }
1125
1126         /* back to normal operation */
1127         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1128         udelay(50);
1129
1130         udelay(1500);
1131         soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
1132
1133         /* Set DLAB 1. */
1134         soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN7);
1135
1136         /* Set divisor to 1 => 115200 Baud */
1137         soutp(UART_DLM, 0);
1138         soutp(UART_DLL, 1);
1139
1140         /* Set DLAB 0. */
1141         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
1142
1143         /* Set DLAB 0, 7 Bit */
1144         soutp(UART_LCR, UART_LCR_WLEN7);
1145
1146         /* enable interrupts */
1147         soutp(UART_IER, sinp(UART_IER)|UART_IER_RDI);
1148 }
1149 #endif
1150
1151 #ifdef LIRC_SIR_ACTISYS_ACT220L
1152 /*
1153  * Derived from linux IrDA driver (net/irda/actisys.c)
1154  * Drop me a mail for any kind of comment: maxx@spaceboyz.net
1155  */
1156
1157 void init_act220(void)
1158 {
1159         int i;
1160
1161         /* DLAB 1 */
1162         soutp(UART_LCR, UART_LCR_DLAB|UART_LCR_WLEN7);
1163
1164         /* 9600 baud */
1165         soutp(UART_DLM, 0);
1166         soutp(UART_DLL, 12);
1167
1168         /* DLAB 0 */
1169         soutp(UART_LCR, UART_LCR_WLEN7);
1170
1171         /* reset the dongle, set DTR low for 10us */
1172         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
1173         udelay(10);
1174
1175         /* back to normal (still 9600) */
1176         soutp(UART_MCR, UART_MCR_DTR|UART_MCR_RTS|UART_MCR_OUT2);
1177
1178         /*
1179          * send RTS pulses until we reach 115200
1180          * i hope this is really the same for act220l/act220l+
1181          */
1182         for (i = 0; i < 3; i++) {
1183                 udelay(10);
1184                 /* set RTS low for 10 us */
1185                 soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
1186                 udelay(10);
1187                 /* set RTS high for 10 us */
1188                 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1189         }
1190
1191         /* back to normal operation */
1192         udelay(1500); /* better safe than sorry ;) */
1193
1194         /* Set DLAB 1. */
1195         soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN7);
1196
1197         /* Set divisor to 1 => 115200 Baud */
1198         soutp(UART_DLM, 0);
1199         soutp(UART_DLL, 1);
1200
1201         /* Set DLAB 0, 7 Bit */
1202         /* The dongle doesn't seem to have any problems with operation at 7N1 */
1203         soutp(UART_LCR, UART_LCR_WLEN7);
1204
1205         /* enable interrupts */
1206         soutp(UART_IER, UART_IER_RDI);
1207 }
1208 #endif
1209
1210 static int init_lirc_sir(void)
1211 {
1212         int retval;
1213
1214         init_waitqueue_head(&lirc_read_queue);
1215         retval = init_port();
1216         if (retval < 0)
1217                 return retval;
1218         init_hardware();
1219         printk(KERN_INFO LIRC_DRIVER_NAME
1220                 ": Installed.\n");
1221         return 0;
1222 }
1223
1224
1225 static int __init lirc_sir_init(void)
1226 {
1227         int retval;
1228
1229         retval = init_chrdev();
1230         if (retval < 0)
1231                 return retval;
1232         retval = init_lirc_sir();
1233         if (retval) {
1234                 drop_chrdev();
1235                 return retval;
1236         }
1237         return 0;
1238 }
1239
1240 static void __exit lirc_sir_exit(void)
1241 {
1242         drop_hardware();
1243         drop_chrdev();
1244         drop_port();
1245         printk(KERN_INFO LIRC_DRIVER_NAME ": Uninstalled.\n");
1246 }
1247
1248 module_init(lirc_sir_init);
1249 module_exit(lirc_sir_exit);
1250
1251 #ifdef LIRC_SIR_TEKRAM
1252 MODULE_DESCRIPTION("Infrared receiver driver for Tekram Irmate 210");
1253 MODULE_AUTHOR("Christoph Bartelmus");
1254 #elif defined(LIRC_ON_SA1100)
1255 MODULE_DESCRIPTION("LIRC driver for StrongARM SA1100 embedded microprocessor");
1256 MODULE_AUTHOR("Christoph Bartelmus");
1257 #elif defined(LIRC_SIR_ACTISYS_ACT200L)
1258 MODULE_DESCRIPTION("LIRC driver for Actisys Act200L");
1259 MODULE_AUTHOR("Karl Bongers");
1260 #elif defined(LIRC_SIR_ACTISYS_ACT220L)
1261 MODULE_DESCRIPTION("LIRC driver for Actisys Act220L(+)");
1262 MODULE_AUTHOR("Jan Roemisch");
1263 #else
1264 MODULE_DESCRIPTION("Infrared receiver driver for SIR type serial ports");
1265 MODULE_AUTHOR("Milan Pikula");
1266 #endif
1267 MODULE_LICENSE("GPL");
1268
1269 #ifdef LIRC_ON_SA1100
1270 module_param(irq, int, S_IRUGO);
1271 MODULE_PARM_DESC(irq, "Interrupt (16)");
1272 #else
1273 module_param(io, int, S_IRUGO);
1274 MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
1275
1276 module_param(irq, int, S_IRUGO);
1277 MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
1278
1279 module_param(threshold, int, S_IRUGO);
1280 MODULE_PARM_DESC(threshold, "space detection threshold (3)");
1281 #endif
1282
1283 module_param(debug, bool, S_IRUGO | S_IWUSR);
1284 MODULE_PARM_DESC(debug, "Enable debugging messages");