]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/scsi/qla2xxx/qla_sup.c
[SCSI] qla2xxx: add support for multi-queue adapter
[net-next-2.6.git] / drivers / scsi / qla2xxx / qla_sup.c
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
12
13 /*
14  * NVRAM support routines
15  */
16
17 /**
18  * qla2x00_lock_nvram_access() -
19  * @ha: HA context
20  */
21 static void
22 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
23 {
24         uint16_t data;
25         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
26
27         if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
28                 data = RD_REG_WORD(&reg->nvram);
29                 while (data & NVR_BUSY) {
30                         udelay(100);
31                         data = RD_REG_WORD(&reg->nvram);
32                 }
33
34                 /* Lock resource */
35                 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
36                 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
37                 udelay(5);
38                 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
39                 while ((data & BIT_0) == 0) {
40                         /* Lock failed */
41                         udelay(100);
42                         WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
43                         RD_REG_WORD(&reg->u.isp2300.host_semaphore);
44                         udelay(5);
45                         data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
46                 }
47         }
48 }
49
50 /**
51  * qla2x00_unlock_nvram_access() -
52  * @ha: HA context
53  */
54 static void
55 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
56 {
57         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
58
59         if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
60                 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
61                 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
62         }
63 }
64
65 /**
66  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
67  * @ha: HA context
68  * @data: Serial interface selector
69  */
70 static void
71 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
72 {
73         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
74
75         WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
76         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
77         NVRAM_DELAY();
78         WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
79             NVR_WRT_ENABLE);
80         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
81         NVRAM_DELAY();
82         WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
83         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
84         NVRAM_DELAY();
85 }
86
87 /**
88  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
89  *      NVRAM.
90  * @ha: HA context
91  * @nv_cmd: NVRAM command
92  *
93  * Bit definitions for NVRAM command:
94  *
95  *      Bit 26     = start bit
96  *      Bit 25, 24 = opcode
97  *      Bit 23-16  = address
98  *      Bit 15-0   = write data
99  *
100  * Returns the word read from nvram @addr.
101  */
102 static uint16_t
103 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
104 {
105         uint8_t         cnt;
106         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
107         uint16_t        data = 0;
108         uint16_t        reg_data;
109
110         /* Send command to NVRAM. */
111         nv_cmd <<= 5;
112         for (cnt = 0; cnt < 11; cnt++) {
113                 if (nv_cmd & BIT_31)
114                         qla2x00_nv_write(ha, NVR_DATA_OUT);
115                 else
116                         qla2x00_nv_write(ha, 0);
117                 nv_cmd <<= 1;
118         }
119
120         /* Read data from NVRAM. */
121         for (cnt = 0; cnt < 16; cnt++) {
122                 WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
123                 RD_REG_WORD(&reg->nvram);       /* PCI Posting. */
124                 NVRAM_DELAY();
125                 data <<= 1;
126                 reg_data = RD_REG_WORD(&reg->nvram);
127                 if (reg_data & NVR_DATA_IN)
128                         data |= BIT_0;
129                 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130                 RD_REG_WORD(&reg->nvram);       /* PCI Posting. */
131                 NVRAM_DELAY();
132         }
133
134         /* Deselect chip. */
135         WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
136         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
137         NVRAM_DELAY();
138
139         return data;
140 }
141
142
143 /**
144  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
145  *      request routine to get the word from NVRAM.
146  * @ha: HA context
147  * @addr: Address in NVRAM to read
148  *
149  * Returns the word read from nvram @addr.
150  */
151 static uint16_t
152 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
153 {
154         uint16_t        data;
155         uint32_t        nv_cmd;
156
157         nv_cmd = addr << 16;
158         nv_cmd |= NV_READ_OP;
159         data = qla2x00_nvram_request(ha, nv_cmd);
160
161         return (data);
162 }
163
164 /**
165  * qla2x00_nv_deselect() - Deselect NVRAM operations.
166  * @ha: HA context
167  */
168 static void
169 qla2x00_nv_deselect(struct qla_hw_data *ha)
170 {
171         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
172
173         WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
174         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
175         NVRAM_DELAY();
176 }
177
178 /**
179  * qla2x00_write_nvram_word() - Write NVRAM data.
180  * @ha: HA context
181  * @addr: Address in NVRAM to write
182  * @data: word to program
183  */
184 static void
185 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
186 {
187         int count;
188         uint16_t word;
189         uint32_t nv_cmd, wait_cnt;
190         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
191
192         qla2x00_nv_write(ha, NVR_DATA_OUT);
193         qla2x00_nv_write(ha, 0);
194         qla2x00_nv_write(ha, 0);
195
196         for (word = 0; word < 8; word++)
197                 qla2x00_nv_write(ha, NVR_DATA_OUT);
198
199         qla2x00_nv_deselect(ha);
200
201         /* Write data */
202         nv_cmd = (addr << 16) | NV_WRITE_OP;
203         nv_cmd |= data;
204         nv_cmd <<= 5;
205         for (count = 0; count < 27; count++) {
206                 if (nv_cmd & BIT_31)
207                         qla2x00_nv_write(ha, NVR_DATA_OUT);
208                 else
209                         qla2x00_nv_write(ha, 0);
210
211                 nv_cmd <<= 1;
212         }
213
214         qla2x00_nv_deselect(ha);
215
216         /* Wait for NVRAM to become ready */
217         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
218         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
219         wait_cnt = NVR_WAIT_CNT;
220         do {
221                 if (!--wait_cnt) {
222                         DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
223                             __func__, vha->host_no));
224                         break;
225                 }
226                 NVRAM_DELAY();
227                 word = RD_REG_WORD(&reg->nvram);
228         } while ((word & NVR_DATA_IN) == 0);
229
230         qla2x00_nv_deselect(ha);
231
232         /* Disable writes */
233         qla2x00_nv_write(ha, NVR_DATA_OUT);
234         for (count = 0; count < 10; count++)
235                 qla2x00_nv_write(ha, 0);
236
237         qla2x00_nv_deselect(ha);
238 }
239
240 static int
241 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
242         uint16_t data, uint32_t tmo)
243 {
244         int ret, count;
245         uint16_t word;
246         uint32_t nv_cmd;
247         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
248
249         ret = QLA_SUCCESS;
250
251         qla2x00_nv_write(ha, NVR_DATA_OUT);
252         qla2x00_nv_write(ha, 0);
253         qla2x00_nv_write(ha, 0);
254
255         for (word = 0; word < 8; word++)
256                 qla2x00_nv_write(ha, NVR_DATA_OUT);
257
258         qla2x00_nv_deselect(ha);
259
260         /* Write data */
261         nv_cmd = (addr << 16) | NV_WRITE_OP;
262         nv_cmd |= data;
263         nv_cmd <<= 5;
264         for (count = 0; count < 27; count++) {
265                 if (nv_cmd & BIT_31)
266                         qla2x00_nv_write(ha, NVR_DATA_OUT);
267                 else
268                         qla2x00_nv_write(ha, 0);
269
270                 nv_cmd <<= 1;
271         }
272
273         qla2x00_nv_deselect(ha);
274
275         /* Wait for NVRAM to become ready */
276         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
277         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
278         do {
279                 NVRAM_DELAY();
280                 word = RD_REG_WORD(&reg->nvram);
281                 if (!--tmo) {
282                         ret = QLA_FUNCTION_FAILED;
283                         break;
284                 }
285         } while ((word & NVR_DATA_IN) == 0);
286
287         qla2x00_nv_deselect(ha);
288
289         /* Disable writes */
290         qla2x00_nv_write(ha, NVR_DATA_OUT);
291         for (count = 0; count < 10; count++)
292                 qla2x00_nv_write(ha, 0);
293
294         qla2x00_nv_deselect(ha);
295
296         return ret;
297 }
298
299 /**
300  * qla2x00_clear_nvram_protection() -
301  * @ha: HA context
302  */
303 static int
304 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
305 {
306         int ret, stat;
307         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
308         uint32_t word, wait_cnt;
309         uint16_t wprot, wprot_old;
310
311         /* Clear NVRAM write protection. */
312         ret = QLA_FUNCTION_FAILED;
313
314         wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
315         stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
316             __constant_cpu_to_le16(0x1234), 100000);
317         wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318         if (stat != QLA_SUCCESS || wprot != 0x1234) {
319                 /* Write enable. */
320                 qla2x00_nv_write(ha, NVR_DATA_OUT);
321                 qla2x00_nv_write(ha, 0);
322                 qla2x00_nv_write(ha, 0);
323                 for (word = 0; word < 8; word++)
324                         qla2x00_nv_write(ha, NVR_DATA_OUT);
325
326                 qla2x00_nv_deselect(ha);
327
328                 /* Enable protection register. */
329                 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
330                 qla2x00_nv_write(ha, NVR_PR_ENABLE);
331                 qla2x00_nv_write(ha, NVR_PR_ENABLE);
332                 for (word = 0; word < 8; word++)
333                         qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
334
335                 qla2x00_nv_deselect(ha);
336
337                 /* Clear protection register (ffff is cleared). */
338                 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
339                 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
340                 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
341                 for (word = 0; word < 8; word++)
342                         qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
343
344                 qla2x00_nv_deselect(ha);
345
346                 /* Wait for NVRAM to become ready. */
347                 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
348                 RD_REG_WORD(&reg->nvram);       /* PCI Posting. */
349                 wait_cnt = NVR_WAIT_CNT;
350                 do {
351                         if (!--wait_cnt) {
352                                 DEBUG9_10(qla_printk(
353                                     "NVRAM didn't go ready...\n"));
354                                 break;
355                         }
356                         NVRAM_DELAY();
357                         word = RD_REG_WORD(&reg->nvram);
358                 } while ((word & NVR_DATA_IN) == 0);
359
360                 if (wait_cnt)
361                         ret = QLA_SUCCESS;
362         } else
363                 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
364
365         return ret;
366 }
367
368 static void
369 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
370 {
371         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
372         uint32_t word, wait_cnt;
373
374         if (stat != QLA_SUCCESS)
375                 return;
376
377         /* Set NVRAM write protection. */
378         /* Write enable. */
379         qla2x00_nv_write(ha, NVR_DATA_OUT);
380         qla2x00_nv_write(ha, 0);
381         qla2x00_nv_write(ha, 0);
382         for (word = 0; word < 8; word++)
383                 qla2x00_nv_write(ha, NVR_DATA_OUT);
384
385         qla2x00_nv_deselect(ha);
386
387         /* Enable protection register. */
388         qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
389         qla2x00_nv_write(ha, NVR_PR_ENABLE);
390         qla2x00_nv_write(ha, NVR_PR_ENABLE);
391         for (word = 0; word < 8; word++)
392                 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
393
394         qla2x00_nv_deselect(ha);
395
396         /* Enable protection register. */
397         qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
398         qla2x00_nv_write(ha, NVR_PR_ENABLE);
399         qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
400         for (word = 0; word < 8; word++)
401                 qla2x00_nv_write(ha, NVR_PR_ENABLE);
402
403         qla2x00_nv_deselect(ha);
404
405         /* Wait for NVRAM to become ready. */
406         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
407         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
408         wait_cnt = NVR_WAIT_CNT;
409         do {
410                 if (!--wait_cnt) {
411                         DEBUG9_10(qla_printk("NVRAM didn't go ready...\n"));
412                         break;
413                 }
414                 NVRAM_DELAY();
415                 word = RD_REG_WORD(&reg->nvram);
416         } while ((word & NVR_DATA_IN) == 0);
417 }
418
419
420 /*****************************************************************************/
421 /* Flash Manipulation Routines                                               */
422 /*****************************************************************************/
423
424 #define OPTROM_BURST_SIZE       0x1000
425 #define OPTROM_BURST_DWORDS     (OPTROM_BURST_SIZE / 4)
426
427 static inline uint32_t
428 flash_conf_to_access_addr(uint32_t faddr)
429 {
430         return FARX_ACCESS_FLASH_CONF | faddr;
431 }
432
433 static inline uint32_t
434 flash_data_to_access_addr(uint32_t faddr)
435 {
436         return FARX_ACCESS_FLASH_DATA | faddr;
437 }
438
439 static inline uint32_t
440 nvram_conf_to_access_addr(uint32_t naddr)
441 {
442         return FARX_ACCESS_NVRAM_CONF | naddr;
443 }
444
445 static inline uint32_t
446 nvram_data_to_access_addr(uint32_t naddr)
447 {
448         return FARX_ACCESS_NVRAM_DATA | naddr;
449 }
450
451 static uint32_t
452 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
453 {
454         int rval;
455         uint32_t cnt, data;
456         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
457
458         WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
459         /* Wait for READ cycle to complete. */
460         rval = QLA_SUCCESS;
461         for (cnt = 3000;
462             (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
463             rval == QLA_SUCCESS; cnt--) {
464                 if (cnt)
465                         udelay(10);
466                 else
467                         rval = QLA_FUNCTION_TIMEOUT;
468                 cond_resched();
469         }
470
471         /* TODO: What happens if we time out? */
472         data = 0xDEADDEAD;
473         if (rval == QLA_SUCCESS)
474                 data = RD_REG_DWORD(&reg->flash_data);
475
476         return data;
477 }
478
479 uint32_t *
480 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
481     uint32_t dwords)
482 {
483         uint32_t i;
484         /* Dword reads to flash. */
485         for (i = 0; i < dwords; i++, faddr++)
486                 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(vha->hw,
487                     flash_data_to_access_addr(faddr)));
488
489         return dwptr;
490 }
491
492 static int
493 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
494 {
495         int rval;
496         uint32_t cnt;
497         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
498
499         WRT_REG_DWORD(&reg->flash_data, data);
500         RD_REG_DWORD(&reg->flash_data);         /* PCI Posting. */
501         WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
502         /* Wait for Write cycle to complete. */
503         rval = QLA_SUCCESS;
504         for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
505             rval == QLA_SUCCESS; cnt--) {
506                 if (cnt)
507                         udelay(10);
508                 else
509                         rval = QLA_FUNCTION_TIMEOUT;
510                 cond_resched();
511         }
512         return rval;
513 }
514
515 static void
516 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
517     uint8_t *flash_id)
518 {
519         uint32_t ids;
520
521         ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
522         *man_id = LSB(ids);
523         *flash_id = MSB(ids);
524
525         /* Check if man_id and flash_id are valid. */
526         if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
527                 /* Read information using 0x9f opcode
528                  * Device ID, Mfg ID would be read in the format:
529                  *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
530                  * Example: ATMEL 0x00 01 45 1F
531                  * Extract MFG and Dev ID from last two bytes.
532                  */
533                 ids = qla24xx_read_flash_dword(ha,
534                     flash_data_to_access_addr(0xd009f));
535                 *man_id = LSB(ids);
536                 *flash_id = MSB(ids);
537         }
538 }
539
540 static int
541 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
542 {
543         const char *loc, *locations[] = { "DEF", "PCI" };
544         uint32_t pcihdr, pcids;
545         uint32_t *dcode;
546         uint8_t *buf, *bcode, last_image;
547         uint16_t cnt, chksum, *wptr;
548         struct qla_flt_location *fltl;
549         struct qla_hw_data *ha = vha->hw;
550         struct req_que *req = ha->req_q_map[0];
551
552         /*
553          * FLT-location structure resides after the last PCI region.
554          */
555
556         /* Begin with sane defaults. */
557         loc = locations[0];
558         *start = IS_QLA24XX_TYPE(ha) ? FA_FLASH_LAYOUT_ADDR_24:
559             FA_FLASH_LAYOUT_ADDR;
560
561         /* Begin with first PCI expansion ROM header. */
562         buf = (uint8_t *)req->ring;
563         dcode = (uint32_t *)req->ring;
564         pcihdr = 0;
565         last_image = 1;
566         do {
567                 /* Verify PCI expansion ROM header. */
568                 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
569                 bcode = buf + (pcihdr % 4);
570                 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
571                         goto end;
572
573                 /* Locate PCI data structure. */
574                 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
575                 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
576                 bcode = buf + (pcihdr % 4);
577
578                 /* Validate signature of PCI data structure. */
579                 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
580                     bcode[0x2] != 'I' || bcode[0x3] != 'R')
581                         goto end;
582
583                 last_image = bcode[0x15] & BIT_7;
584
585                 /* Locate next PCI expansion ROM. */
586                 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
587         } while (!last_image);
588
589         /* Now verify FLT-location structure. */
590         fltl = (struct qla_flt_location *)req->ring;
591         qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
592             sizeof(struct qla_flt_location) >> 2);
593         if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
594             fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
595                 goto end;
596
597         wptr = (uint16_t *)req->ring;
598         cnt = sizeof(struct qla_flt_location) >> 1;
599         for (chksum = 0; cnt; cnt--)
600                 chksum += le16_to_cpu(*wptr++);
601         if (chksum) {
602                 qla_printk(KERN_ERR, ha,
603                     "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
604                 qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
605                 return QLA_FUNCTION_FAILED;
606         }
607
608         /* Good data.  Use specified location. */
609         loc = locations[1];
610         *start = le16_to_cpu(fltl->start_hi) << 16 |
611             le16_to_cpu(fltl->start_lo);
612 end:
613         DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
614         return QLA_SUCCESS;
615 }
616
617 static void
618 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
619 {
620         const char *loc, *locations[] = { "DEF", "FLT" };
621         uint16_t *wptr;
622         uint16_t cnt, chksum;
623         uint32_t start;
624         struct qla_flt_header *flt;
625         struct qla_flt_region *region;
626         struct qla_hw_data *ha = vha->hw;
627         struct req_que *req = ha->req_q_map[0];
628
629         ha->flt_region_flt = flt_addr;
630         wptr = (uint16_t *)req->ring;
631         flt = (struct qla_flt_header *)req->ring;
632         region = (struct qla_flt_region *)&flt[1];
633         ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
634             flt_addr << 2, OPTROM_BURST_SIZE);
635         if (*wptr == __constant_cpu_to_le16(0xffff))
636                 goto no_flash_data;
637         if (flt->version != __constant_cpu_to_le16(1)) {
638                 DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
639                     "version=0x%x length=0x%x checksum=0x%x.\n",
640                     le16_to_cpu(flt->version), le16_to_cpu(flt->length),
641                     le16_to_cpu(flt->checksum)));
642                 goto no_flash_data;
643         }
644
645         cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
646         for (chksum = 0; cnt; cnt--)
647                 chksum += le16_to_cpu(*wptr++);
648         if (chksum) {
649                 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
650                     "version=0x%x length=0x%x checksum=0x%x.\n",
651                     le16_to_cpu(flt->version), le16_to_cpu(flt->length),
652                     chksum));
653                 goto no_flash_data;
654         }
655
656         loc = locations[1];
657         cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
658         for ( ; cnt; cnt--, region++) {
659                 /* Store addresses as DWORD offsets. */
660                 start = le32_to_cpu(region->start) >> 2;
661
662                 DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
663                     "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
664                     le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
665
666                 switch (le32_to_cpu(region->code)) {
667                 case FLT_REG_FW:
668                         ha->flt_region_fw = start;
669                         break;
670                 case FLT_REG_BOOT_CODE:
671                         ha->flt_region_boot = start;
672                         break;
673                 case FLT_REG_VPD_0:
674                         ha->flt_region_vpd_nvram = start;
675                         break;
676                 case FLT_REG_FDT:
677                         ha->flt_region_fdt = start;
678                         break;
679                 case FLT_REG_HW_EVENT_0:
680                         if (!PCI_FUNC(ha->pdev->devfn))
681                                 ha->flt_region_hw_event = start;
682                         break;
683                 case FLT_REG_HW_EVENT_1:
684                         if (PCI_FUNC(ha->pdev->devfn))
685                                 ha->flt_region_hw_event = start;
686                         break;
687                 case FLT_REG_NPIV_CONF_0:
688                         if (!PCI_FUNC(ha->pdev->devfn))
689                                 ha->flt_region_npiv_conf = start;
690                         break;
691                 case FLT_REG_NPIV_CONF_1:
692                         if (PCI_FUNC(ha->pdev->devfn))
693                                 ha->flt_region_npiv_conf = start;
694                         break;
695                 }
696         }
697         goto done;
698
699 no_flash_data:
700         /* Use hardcoded defaults. */
701         loc = locations[0];
702         ha->flt_region_fw = FA_RISC_CODE_ADDR;
703         ha->flt_region_boot = FA_BOOT_CODE_ADDR;
704         ha->flt_region_vpd_nvram = FA_VPD_NVRAM_ADDR;
705         ha->flt_region_fdt = IS_QLA24XX_TYPE(ha) ? FA_FLASH_DESCR_ADDR_24:
706             FA_FLASH_DESCR_ADDR;
707         ha->flt_region_hw_event = !PCI_FUNC(ha->pdev->devfn) ?
708             FA_HW_EVENT0_ADDR: FA_HW_EVENT1_ADDR;
709         ha->flt_region_npiv_conf = !PCI_FUNC(ha->pdev->devfn) ?
710             (IS_QLA24XX_TYPE(ha) ? FA_NPIV_CONF0_ADDR_24: FA_NPIV_CONF0_ADDR):
711             (IS_QLA24XX_TYPE(ha) ? FA_NPIV_CONF1_ADDR_24: FA_NPIV_CONF1_ADDR);
712 done:
713         DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
714             "vpd_nvram=0x%x fdt=0x%x flt=0x%x hwe=0x%x npiv=0x%x.\n", loc,
715             ha->flt_region_boot, ha->flt_region_fw, ha->flt_region_vpd_nvram,
716             ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_hw_event,
717             ha->flt_region_npiv_conf));
718 }
719
720 static void
721 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
722 {
723 #define FLASH_BLK_SIZE_4K       0x1000
724 #define FLASH_BLK_SIZE_32K      0x8000
725 #define FLASH_BLK_SIZE_64K      0x10000
726         const char *loc, *locations[] = { "MID", "FDT" };
727         uint16_t cnt, chksum;
728         uint16_t *wptr;
729         struct qla_fdt_layout *fdt;
730         uint8_t man_id, flash_id;
731         uint16_t mid, fid;
732         struct qla_hw_data *ha = vha->hw;
733         struct req_que *req = ha->req_q_map[0];
734
735         wptr = (uint16_t *)req->ring;
736         fdt = (struct qla_fdt_layout *)req->ring;
737         ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
738             ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
739         if (*wptr == __constant_cpu_to_le16(0xffff))
740                 goto no_flash_data;
741         if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
742             fdt->sig[3] != 'D')
743                 goto no_flash_data;
744
745         for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
746             cnt++)
747                 chksum += le16_to_cpu(*wptr++);
748         if (chksum) {
749                 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
750                     "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
751                     le16_to_cpu(fdt->version)));
752                 DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
753                 goto no_flash_data;
754         }
755
756         loc = locations[1];
757         mid = le16_to_cpu(fdt->man_id);
758         fid = le16_to_cpu(fdt->id);
759         ha->fdt_wrt_disable = fdt->wrt_disable_bits;
760         ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0300 | fdt->erase_cmd);
761         ha->fdt_block_size = le32_to_cpu(fdt->block_size);
762         if (fdt->unprotect_sec_cmd) {
763                 ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0300 |
764                     fdt->unprotect_sec_cmd);
765                 ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
766                     flash_conf_to_access_addr(0x0300 | fdt->protect_sec_cmd):
767                     flash_conf_to_access_addr(0x0336);
768         }
769         goto done;
770 no_flash_data:
771         loc = locations[0];
772         qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
773         mid = man_id;
774         fid = flash_id;
775         ha->fdt_wrt_disable = 0x9c;
776         ha->fdt_erase_cmd = flash_conf_to_access_addr(0x03d8);
777         switch (man_id) {
778         case 0xbf: /* STT flash. */
779                 if (flash_id == 0x8e)
780                         ha->fdt_block_size = FLASH_BLK_SIZE_64K;
781                 else
782                         ha->fdt_block_size = FLASH_BLK_SIZE_32K;
783
784                 if (flash_id == 0x80)
785                         ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0352);
786                 break;
787         case 0x13: /* ST M25P80. */
788                 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
789                 break;
790         case 0x1f: /* Atmel 26DF081A. */
791                 ha->fdt_block_size = FLASH_BLK_SIZE_4K;
792                 ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0320);
793                 ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0339);
794                 ha->fdt_protect_sec_cmd = flash_conf_to_access_addr(0x0336);
795                 break;
796         default:
797                 /* Default to 64 kb sector size. */
798                 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
799                 break;
800         }
801 done:
802         DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
803             "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
804             ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
805             ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
806             ha->fdt_block_size));
807 }
808
809 int
810 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
811 {
812         int ret;
813         uint32_t flt_addr;
814         struct qla_hw_data *ha = vha->hw;
815
816         if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha))
817                 return QLA_SUCCESS;
818
819         ret = qla2xxx_find_flt_start(vha, &flt_addr);
820         if (ret != QLA_SUCCESS)
821                 return ret;
822
823         qla2xxx_get_flt_info(vha, flt_addr);
824         qla2xxx_get_fdt_info(vha);
825
826         return QLA_SUCCESS;
827 }
828
829 void
830 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
831 {
832 #define NPIV_CONFIG_SIZE        (16*1024)
833         void *data;
834         uint16_t *wptr;
835         uint16_t cnt, chksum;
836         int i;
837         struct qla_npiv_header hdr;
838         struct qla_npiv_entry *entry;
839         struct qla_hw_data *ha = vha->hw;
840
841         if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha))
842                 return;
843
844         ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
845             ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
846         if (hdr.version == __constant_cpu_to_le16(0xffff))
847                 return;
848         if (hdr.version != __constant_cpu_to_le16(1)) {
849                 DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
850                     "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
851                     le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
852                     le16_to_cpu(hdr.checksum)));
853                 return;
854         }
855
856         data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
857         if (!data) {
858                 DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
859                     "allocate memory.\n"));
860                 return;
861         }
862
863         ha->isp_ops->read_optrom(vha, (uint8_t *)data,
864             ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
865
866         cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
867             sizeof(struct qla_npiv_entry)) >> 1;
868         for (wptr = data, chksum = 0; cnt; cnt--)
869                 chksum += le16_to_cpu(*wptr++);
870         if (chksum) {
871                 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
872                     "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
873                     le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
874                     chksum));
875                 goto done;
876         }
877
878         entry = data + sizeof(struct qla_npiv_header);
879         cnt = le16_to_cpu(hdr.entries);
880         for (i = 0; cnt; cnt--, entry++, i++) {
881                 uint16_t flags;
882                 struct fc_vport_identifiers vid;
883                 struct fc_vport *vport;
884
885                 flags = le16_to_cpu(entry->flags);
886                 if (flags == 0xffff)
887                         continue;
888                 if ((flags & BIT_0) == 0)
889                         continue;
890
891                 memset(&vid, 0, sizeof(vid));
892                 vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
893                 vid.vport_type = FC_PORTTYPE_NPIV;
894                 vid.disable = false;
895                 vid.port_name = wwn_to_u64(entry->port_name);
896                 vid.node_name = wwn_to_u64(entry->node_name);
897
898                 memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
899
900                 DEBUG2(qla_printk(KERN_DEBUG, ha, "NPIV[%02x]: wwpn=%llx "
901                         "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
902                         vid.port_name, vid.node_name, le16_to_cpu(entry->vf_id),
903                         entry->q_qos, entry->f_qos));
904
905                 if (i < QLA_PRECONFIG_VPORTS) {
906                         vport = fc_vport_create(vha->host, 0, &vid);
907                         if (!vport)
908                                 qla_printk(KERN_INFO, ha,
909                                 "NPIV-Config: Failed to create vport [%02x]: "
910                                 "wwpn=%llx wwnn=%llx.\n", cnt,
911                                 vid.port_name, vid.node_name);
912                 }
913         }
914 done:
915         kfree(data);
916         ha->npiv_info = NULL;
917 }
918
919 static void
920 qla24xx_unprotect_flash(struct qla_hw_data *ha)
921 {
922         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
923
924         /* Enable flash write. */
925         WRT_REG_DWORD(&reg->ctrl_status,
926             RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
927         RD_REG_DWORD(&reg->ctrl_status);        /* PCI Posting. */
928
929         if (!ha->fdt_wrt_disable)
930                 return;
931
932         /* Disable flash write-protection. */
933         qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
934         /* Some flash parts need an additional zero-write to clear bits.*/
935         qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
936 }
937
938 static void
939 qla24xx_protect_flash(struct qla_hw_data *ha)
940 {
941         uint32_t cnt;
942         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
943
944         if (!ha->fdt_wrt_disable)
945                 goto skip_wrt_protect;
946
947         /* Enable flash write-protection and wait for completion. */
948         qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101),
949             ha->fdt_wrt_disable);
950         for (cnt = 300; cnt &&
951             qla24xx_read_flash_dword(ha,
952                     flash_conf_to_access_addr(0x005)) & BIT_0;
953             cnt--) {
954                 udelay(10);
955         }
956
957 skip_wrt_protect:
958         /* Disable flash write. */
959         WRT_REG_DWORD(&reg->ctrl_status,
960             RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
961         RD_REG_DWORD(&reg->ctrl_status);        /* PCI Posting. */
962 }
963
964 static int
965 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
966     uint32_t dwords)
967 {
968         int ret;
969         uint32_t liter, miter;
970         uint32_t sec_mask, rest_addr;
971         uint32_t fdata, findex;
972         dma_addr_t optrom_dma;
973         void *optrom = NULL;
974         uint32_t *s, *d;
975         struct qla_hw_data *ha = vha->hw;
976
977         ret = QLA_SUCCESS;
978
979         /* Prepare burst-capable write on supported ISPs. */
980         if (IS_QLA25XX(ha) && !(faddr & 0xfff) &&
981             dwords > OPTROM_BURST_DWORDS) {
982                 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
983                     &optrom_dma, GFP_KERNEL);
984                 if (!optrom) {
985                         qla_printk(KERN_DEBUG, ha,
986                             "Unable to allocate memory for optrom burst write "
987                             "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
988                 }
989         }
990
991         rest_addr = (ha->fdt_block_size >> 2) - 1;
992         sec_mask = 0x80000 - (ha->fdt_block_size >> 2);
993
994         qla24xx_unprotect_flash(ha);
995
996         for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
997
998                 findex = faddr;
999                 fdata = (findex & sec_mask) << 2;
1000
1001                 /* Are we at the beginning of a sector? */
1002                 if ((findex & rest_addr) == 0) {
1003                         /* Do sector unprotect. */
1004                         if (ha->fdt_unprotect_sec_cmd)
1005                                 qla24xx_write_flash_dword(ha,
1006                                     ha->fdt_unprotect_sec_cmd,
1007                                     (fdata & 0xff00) | ((fdata << 16) &
1008                                     0xff0000) | ((fdata >> 16) & 0xff));
1009                         ret = qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1010                             (fdata & 0xff00) |((fdata << 16) &
1011                             0xff0000) | ((fdata >> 16) & 0xff));
1012                         if (ret != QLA_SUCCESS) {
1013                                 DEBUG9(qla_printk("Unable to flash sector: "
1014                                     "address=%x.\n", faddr));
1015                                 break;
1016                         }
1017                 }
1018
1019                 /* Go with burst-write. */
1020                 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1021                         /* Copy data to DMA'ble buffer. */
1022                         for (miter = 0, s = optrom, d = dwptr;
1023                             miter < OPTROM_BURST_DWORDS; miter++, s++, d++)
1024                                 *s = cpu_to_le32(*d);
1025
1026                         ret = qla2x00_load_ram(vha, optrom_dma,
1027                             flash_data_to_access_addr(faddr),
1028                             OPTROM_BURST_DWORDS);
1029                         if (ret != QLA_SUCCESS) {
1030                                 qla_printk(KERN_WARNING, ha,
1031                                     "Unable to burst-write optrom segment "
1032                                     "(%x/%x/%llx).\n", ret,
1033                                     flash_data_to_access_addr(faddr),
1034                                     (unsigned long long)optrom_dma);
1035                                 qla_printk(KERN_WARNING, ha,
1036                                     "Reverting to slow-write.\n");
1037
1038                                 dma_free_coherent(&ha->pdev->dev,
1039                                     OPTROM_BURST_SIZE, optrom, optrom_dma);
1040                                 optrom = NULL;
1041                         } else {
1042                                 liter += OPTROM_BURST_DWORDS - 1;
1043                                 faddr += OPTROM_BURST_DWORDS - 1;
1044                                 dwptr += OPTROM_BURST_DWORDS - 1;
1045                                 continue;
1046                         }
1047                 }
1048
1049                 ret = qla24xx_write_flash_dword(ha,
1050                     flash_data_to_access_addr(faddr), cpu_to_le32(*dwptr));
1051                 if (ret != QLA_SUCCESS) {
1052                         DEBUG9(printk("%s(%ld) Unable to program flash "
1053                             "address=%x data=%x.\n", __func__,
1054                             vha->host_no, faddr, *dwptr));
1055                         break;
1056                 }
1057
1058                 /* Do sector protect. */
1059                 if (ha->fdt_unprotect_sec_cmd &&
1060                     ((faddr & rest_addr) == rest_addr))
1061                         qla24xx_write_flash_dword(ha,
1062                             ha->fdt_protect_sec_cmd,
1063                             (fdata & 0xff00) | ((fdata << 16) &
1064                             0xff0000) | ((fdata >> 16) & 0xff));
1065         }
1066
1067         qla24xx_protect_flash(ha);
1068
1069         if (optrom)
1070                 dma_free_coherent(&ha->pdev->dev,
1071                     OPTROM_BURST_SIZE, optrom, optrom_dma);
1072
1073         return ret;
1074 }
1075
1076 uint8_t *
1077 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1078     uint32_t bytes)
1079 {
1080         uint32_t i;
1081         uint16_t *wptr;
1082         struct qla_hw_data *ha = vha->hw;
1083
1084         /* Word reads to NVRAM via registers. */
1085         wptr = (uint16_t *)buf;
1086         qla2x00_lock_nvram_access(ha);
1087         for (i = 0; i < bytes >> 1; i++, naddr++)
1088                 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1089                     naddr));
1090         qla2x00_unlock_nvram_access(ha);
1091
1092         return buf;
1093 }
1094
1095 uint8_t *
1096 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1097     uint32_t bytes)
1098 {
1099         uint32_t i;
1100         uint32_t *dwptr;
1101
1102         /* Dword reads to flash. */
1103         dwptr = (uint32_t *)buf;
1104         for (i = 0; i < bytes >> 2; i++, naddr++)
1105                 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(vha->hw,
1106                     nvram_data_to_access_addr(naddr)));
1107
1108         return buf;
1109 }
1110
1111 int
1112 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1113     uint32_t bytes)
1114 {
1115         int ret, stat;
1116         uint32_t i;
1117         uint16_t *wptr;
1118         unsigned long flags;
1119         struct qla_hw_data *ha = vha->hw;
1120
1121         ret = QLA_SUCCESS;
1122
1123         spin_lock_irqsave(&ha->hardware_lock, flags);
1124         qla2x00_lock_nvram_access(ha);
1125
1126         /* Disable NVRAM write-protection. */
1127         stat = qla2x00_clear_nvram_protection(ha);
1128
1129         wptr = (uint16_t *)buf;
1130         for (i = 0; i < bytes >> 1; i++, naddr++) {
1131                 qla2x00_write_nvram_word(ha, naddr,
1132                     cpu_to_le16(*wptr));
1133                 wptr++;
1134         }
1135
1136         /* Enable NVRAM write-protection. */
1137         qla2x00_set_nvram_protection(ha, stat);
1138
1139         qla2x00_unlock_nvram_access(ha);
1140         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1141
1142         return ret;
1143 }
1144
1145 int
1146 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1147     uint32_t bytes)
1148 {
1149         int ret;
1150         uint32_t i;
1151         uint32_t *dwptr;
1152         struct qla_hw_data *ha = vha->hw;
1153         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1154
1155         ret = QLA_SUCCESS;
1156
1157         /* Enable flash write. */
1158         WRT_REG_DWORD(&reg->ctrl_status,
1159             RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1160         RD_REG_DWORD(&reg->ctrl_status);        /* PCI Posting. */
1161
1162         /* Disable NVRAM write-protection. */
1163         qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
1164             0);
1165         qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
1166             0);
1167
1168         /* Dword writes to flash. */
1169         dwptr = (uint32_t *)buf;
1170         for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1171                 ret = qla24xx_write_flash_dword(ha,
1172                     nvram_data_to_access_addr(naddr),
1173                     cpu_to_le32(*dwptr));
1174                 if (ret != QLA_SUCCESS) {
1175                         DEBUG9(qla_printk("Unable to program nvram address=%x "
1176                             "data=%x.\n", naddr, *dwptr));
1177                         break;
1178                 }
1179         }
1180
1181         /* Enable NVRAM write-protection. */
1182         qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
1183             0x8c);
1184
1185         /* Disable flash write. */
1186         WRT_REG_DWORD(&reg->ctrl_status,
1187             RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1188         RD_REG_DWORD(&reg->ctrl_status);        /* PCI Posting. */
1189
1190         return ret;
1191 }
1192
1193 uint8_t *
1194 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1195     uint32_t bytes)
1196 {
1197         uint32_t i;
1198         uint32_t *dwptr;
1199         struct qla_hw_data *ha = vha->hw;
1200
1201         /* Dword reads to flash. */
1202         dwptr = (uint32_t *)buf;
1203         for (i = 0; i < bytes >> 2; i++, naddr++)
1204                 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1205                     flash_data_to_access_addr(ha->flt_region_vpd_nvram |
1206                     naddr)));
1207
1208         return buf;
1209 }
1210
1211 int
1212 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1213     uint32_t bytes)
1214 {
1215         struct qla_hw_data *ha = vha->hw;
1216 #define RMW_BUFFER_SIZE (64 * 1024)
1217         uint8_t *dbuf;
1218
1219         dbuf = vmalloc(RMW_BUFFER_SIZE);
1220         if (!dbuf)
1221                 return QLA_MEMORY_ALLOC_FAILED;
1222         ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1223             RMW_BUFFER_SIZE);
1224         memcpy(dbuf + (naddr << 2), buf, bytes);
1225         ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1226             RMW_BUFFER_SIZE);
1227         vfree(dbuf);
1228
1229         return QLA_SUCCESS;
1230 }
1231
1232 static inline void
1233 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1234 {
1235         if (IS_QLA2322(ha)) {
1236                 /* Flip all colors. */
1237                 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1238                         /* Turn off. */
1239                         ha->beacon_color_state = 0;
1240                         *pflags = GPIO_LED_ALL_OFF;
1241                 } else {
1242                         /* Turn on. */
1243                         ha->beacon_color_state = QLA_LED_ALL_ON;
1244                         *pflags = GPIO_LED_RGA_ON;
1245                 }
1246         } else {
1247                 /* Flip green led only. */
1248                 if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1249                         /* Turn off. */
1250                         ha->beacon_color_state = 0;
1251                         *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1252                 } else {
1253                         /* Turn on. */
1254                         ha->beacon_color_state = QLA_LED_GRN_ON;
1255                         *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1256                 }
1257         }
1258 }
1259
1260 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1261
1262 void
1263 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1264 {
1265         uint16_t gpio_enable;
1266         uint16_t gpio_data;
1267         uint16_t led_color = 0;
1268         unsigned long flags;
1269         struct qla_hw_data *ha = vha->hw;
1270         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1271
1272         spin_lock_irqsave(&ha->hardware_lock, flags);
1273
1274         /* Save the Original GPIOE. */
1275         if (ha->pio_address) {
1276                 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1277                 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1278         } else {
1279                 gpio_enable = RD_REG_WORD(&reg->gpioe);
1280                 gpio_data = RD_REG_WORD(&reg->gpiod);
1281         }
1282
1283         /* Set the modified gpio_enable values */
1284         gpio_enable |= GPIO_LED_MASK;
1285
1286         if (ha->pio_address) {
1287                 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1288         } else {
1289                 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1290                 RD_REG_WORD(&reg->gpioe);
1291         }
1292
1293         qla2x00_flip_colors(ha, &led_color);
1294
1295         /* Clear out any previously set LED color. */
1296         gpio_data &= ~GPIO_LED_MASK;
1297
1298         /* Set the new input LED color to GPIOD. */
1299         gpio_data |= led_color;
1300
1301         /* Set the modified gpio_data values */
1302         if (ha->pio_address) {
1303                 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1304         } else {
1305                 WRT_REG_WORD(&reg->gpiod, gpio_data);
1306                 RD_REG_WORD(&reg->gpiod);
1307         }
1308
1309         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1310 }
1311
1312 int
1313 qla2x00_beacon_on(struct scsi_qla_host *vha)
1314 {
1315         uint16_t gpio_enable;
1316         uint16_t gpio_data;
1317         unsigned long flags;
1318         struct qla_hw_data *ha = vha->hw;
1319         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1320
1321         ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1322         ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1323
1324         if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1325                 qla_printk(KERN_WARNING, ha,
1326                     "Unable to update fw options (beacon on).\n");
1327                 return QLA_FUNCTION_FAILED;
1328         }
1329
1330         /* Turn off LEDs. */
1331         spin_lock_irqsave(&ha->hardware_lock, flags);
1332         if (ha->pio_address) {
1333                 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1334                 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1335         } else {
1336                 gpio_enable = RD_REG_WORD(&reg->gpioe);
1337                 gpio_data = RD_REG_WORD(&reg->gpiod);
1338         }
1339         gpio_enable |= GPIO_LED_MASK;
1340
1341         /* Set the modified gpio_enable values. */
1342         if (ha->pio_address) {
1343                 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1344         } else {
1345                 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1346                 RD_REG_WORD(&reg->gpioe);
1347         }
1348
1349         /* Clear out previously set LED colour. */
1350         gpio_data &= ~GPIO_LED_MASK;
1351         if (ha->pio_address) {
1352                 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1353         } else {
1354                 WRT_REG_WORD(&reg->gpiod, gpio_data);
1355                 RD_REG_WORD(&reg->gpiod);
1356         }
1357         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1358
1359         /*
1360          * Let the per HBA timer kick off the blinking process based on
1361          * the following flags. No need to do anything else now.
1362          */
1363         ha->beacon_blink_led = 1;
1364         ha->beacon_color_state = 0;
1365
1366         return QLA_SUCCESS;
1367 }
1368
1369 int
1370 qla2x00_beacon_off(struct scsi_qla_host *vha)
1371 {
1372         int rval = QLA_SUCCESS;
1373         struct qla_hw_data *ha = vha->hw;
1374
1375         ha->beacon_blink_led = 0;
1376
1377         /* Set the on flag so when it gets flipped it will be off. */
1378         if (IS_QLA2322(ha))
1379                 ha->beacon_color_state = QLA_LED_ALL_ON;
1380         else
1381                 ha->beacon_color_state = QLA_LED_GRN_ON;
1382
1383         ha->isp_ops->beacon_blink(vha); /* This turns green LED off */
1384
1385         ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1386         ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1387
1388         rval = qla2x00_set_fw_options(vha, ha->fw_options);
1389         if (rval != QLA_SUCCESS)
1390                 qla_printk(KERN_WARNING, ha,
1391                     "Unable to update fw options (beacon off).\n");
1392         return rval;
1393 }
1394
1395
1396 static inline void
1397 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1398 {
1399         /* Flip all colors. */
1400         if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1401                 /* Turn off. */
1402                 ha->beacon_color_state = 0;
1403                 *pflags = 0;
1404         } else {
1405                 /* Turn on. */
1406                 ha->beacon_color_state = QLA_LED_ALL_ON;
1407                 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1408         }
1409 }
1410
1411 void
1412 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1413 {
1414         uint16_t led_color = 0;
1415         uint32_t gpio_data;
1416         unsigned long flags;
1417         struct qla_hw_data *ha = vha->hw;
1418         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1419
1420         /* Save the Original GPIOD. */
1421         spin_lock_irqsave(&ha->hardware_lock, flags);
1422         gpio_data = RD_REG_DWORD(&reg->gpiod);
1423
1424         /* Enable the gpio_data reg for update. */
1425         gpio_data |= GPDX_LED_UPDATE_MASK;
1426
1427         WRT_REG_DWORD(&reg->gpiod, gpio_data);
1428         gpio_data = RD_REG_DWORD(&reg->gpiod);
1429
1430         /* Set the color bits. */
1431         qla24xx_flip_colors(ha, &led_color);
1432
1433         /* Clear out any previously set LED color. */
1434         gpio_data &= ~GPDX_LED_COLOR_MASK;
1435
1436         /* Set the new input LED color to GPIOD. */
1437         gpio_data |= led_color;
1438
1439         /* Set the modified gpio_data values. */
1440         WRT_REG_DWORD(&reg->gpiod, gpio_data);
1441         gpio_data = RD_REG_DWORD(&reg->gpiod);
1442         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1443 }
1444
1445 int
1446 qla24xx_beacon_on(struct scsi_qla_host *vha)
1447 {
1448         uint32_t gpio_data;
1449         unsigned long flags;
1450         struct qla_hw_data *ha = vha->hw;
1451         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1452
1453         if (ha->beacon_blink_led == 0) {
1454                 /* Enable firmware for update */
1455                 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1456
1457                 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1458                         return QLA_FUNCTION_FAILED;
1459
1460                 if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1461                     QLA_SUCCESS) {
1462                         qla_printk(KERN_WARNING, ha,
1463                             "Unable to update fw options (beacon on).\n");
1464                         return QLA_FUNCTION_FAILED;
1465                 }
1466
1467                 spin_lock_irqsave(&ha->hardware_lock, flags);
1468                 gpio_data = RD_REG_DWORD(&reg->gpiod);
1469
1470                 /* Enable the gpio_data reg for update. */
1471                 gpio_data |= GPDX_LED_UPDATE_MASK;
1472                 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1473                 RD_REG_DWORD(&reg->gpiod);
1474
1475                 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1476         }
1477
1478         /* So all colors blink together. */
1479         ha->beacon_color_state = 0;
1480
1481         /* Let the per HBA timer kick off the blinking process. */
1482         ha->beacon_blink_led = 1;
1483
1484         return QLA_SUCCESS;
1485 }
1486
1487 int
1488 qla24xx_beacon_off(struct scsi_qla_host *vha)
1489 {
1490         uint32_t gpio_data;
1491         unsigned long flags;
1492         struct qla_hw_data *ha = vha->hw;
1493         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1494
1495         ha->beacon_blink_led = 0;
1496         ha->beacon_color_state = QLA_LED_ALL_ON;
1497
1498         ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */
1499
1500         /* Give control back to firmware. */
1501         spin_lock_irqsave(&ha->hardware_lock, flags);
1502         gpio_data = RD_REG_DWORD(&reg->gpiod);
1503
1504         /* Disable the gpio_data reg for update. */
1505         gpio_data &= ~GPDX_LED_UPDATE_MASK;
1506         WRT_REG_DWORD(&reg->gpiod, gpio_data);
1507         RD_REG_DWORD(&reg->gpiod);
1508         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1509
1510         ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1511
1512         if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1513                 qla_printk(KERN_WARNING, ha,
1514                     "Unable to update fw options (beacon off).\n");
1515                 return QLA_FUNCTION_FAILED;
1516         }
1517
1518         if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1519                 qla_printk(KERN_WARNING, ha,
1520                     "Unable to get fw options (beacon off).\n");
1521                 return QLA_FUNCTION_FAILED;
1522         }
1523
1524         return QLA_SUCCESS;
1525 }
1526
1527
1528 /*
1529  * Flash support routines
1530  */
1531
1532 /**
1533  * qla2x00_flash_enable() - Setup flash for reading and writing.
1534  * @ha: HA context
1535  */
1536 static void
1537 qla2x00_flash_enable(struct qla_hw_data *ha)
1538 {
1539         uint16_t data;
1540         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1541
1542         data = RD_REG_WORD(&reg->ctrl_status);
1543         data |= CSR_FLASH_ENABLE;
1544         WRT_REG_WORD(&reg->ctrl_status, data);
1545         RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1546 }
1547
1548 /**
1549  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1550  * @ha: HA context
1551  */
1552 static void
1553 qla2x00_flash_disable(struct qla_hw_data *ha)
1554 {
1555         uint16_t data;
1556         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1557
1558         data = RD_REG_WORD(&reg->ctrl_status);
1559         data &= ~(CSR_FLASH_ENABLE);
1560         WRT_REG_WORD(&reg->ctrl_status, data);
1561         RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1562 }
1563
1564 /**
1565  * qla2x00_read_flash_byte() - Reads a byte from flash
1566  * @ha: HA context
1567  * @addr: Address in flash to read
1568  *
1569  * A word is read from the chip, but, only the lower byte is valid.
1570  *
1571  * Returns the byte read from flash @addr.
1572  */
1573 static uint8_t
1574 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1575 {
1576         uint16_t data;
1577         uint16_t bank_select;
1578         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1579
1580         bank_select = RD_REG_WORD(&reg->ctrl_status);
1581
1582         if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1583                 /* Specify 64K address range: */
1584                 /*  clear out Module Select and Flash Address bits [19:16]. */
1585                 bank_select &= ~0xf8;
1586                 bank_select |= addr >> 12 & 0xf0;
1587                 bank_select |= CSR_FLASH_64K_BANK;
1588                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1589                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1590
1591                 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1592                 data = RD_REG_WORD(&reg->flash_data);
1593
1594                 return (uint8_t)data;
1595         }
1596
1597         /* Setup bit 16 of flash address. */
1598         if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1599                 bank_select |= CSR_FLASH_64K_BANK;
1600                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1601                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1602         } else if (((addr & BIT_16) == 0) &&
1603             (bank_select & CSR_FLASH_64K_BANK)) {
1604                 bank_select &= ~(CSR_FLASH_64K_BANK);
1605                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1606                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1607         }
1608
1609         /* Always perform IO mapped accesses to the FLASH registers. */
1610         if (ha->pio_address) {
1611                 uint16_t data2;
1612
1613                 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1614                 do {
1615                         data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1616                         barrier();
1617                         cpu_relax();
1618                         data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1619                 } while (data != data2);
1620         } else {
1621                 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1622                 data = qla2x00_debounce_register(&reg->flash_data);
1623         }
1624
1625         return (uint8_t)data;
1626 }
1627
1628 /**
1629  * qla2x00_write_flash_byte() - Write a byte to flash
1630  * @ha: HA context
1631  * @addr: Address in flash to write
1632  * @data: Data to write
1633  */
1634 static void
1635 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1636 {
1637         uint16_t bank_select;
1638         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1639
1640         bank_select = RD_REG_WORD(&reg->ctrl_status);
1641         if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1642                 /* Specify 64K address range: */
1643                 /*  clear out Module Select and Flash Address bits [19:16]. */
1644                 bank_select &= ~0xf8;
1645                 bank_select |= addr >> 12 & 0xf0;
1646                 bank_select |= CSR_FLASH_64K_BANK;
1647                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1648                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1649
1650                 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1651                 RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1652                 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1653                 RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1654
1655                 return;
1656         }
1657
1658         /* Setup bit 16 of flash address. */
1659         if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1660                 bank_select |= CSR_FLASH_64K_BANK;
1661                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1662                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1663         } else if (((addr & BIT_16) == 0) &&
1664             (bank_select & CSR_FLASH_64K_BANK)) {
1665                 bank_select &= ~(CSR_FLASH_64K_BANK);
1666                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1667                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1668         }
1669
1670         /* Always perform IO mapped accesses to the FLASH registers. */
1671         if (ha->pio_address) {
1672                 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1673                 WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1674         } else {
1675                 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1676                 RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1677                 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1678                 RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1679         }
1680 }
1681
1682 /**
1683  * qla2x00_poll_flash() - Polls flash for completion.
1684  * @ha: HA context
1685  * @addr: Address in flash to poll
1686  * @poll_data: Data to be polled
1687  * @man_id: Flash manufacturer ID
1688  * @flash_id: Flash ID
1689  *
1690  * This function polls the device until bit 7 of what is read matches data
1691  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1692  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1693  * reading bit 5 as a 1.
1694  *
1695  * Returns 0 on success, else non-zero.
1696  */
1697 static int
1698 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1699     uint8_t man_id, uint8_t flash_id)
1700 {
1701         int status;
1702         uint8_t flash_data;
1703         uint32_t cnt;
1704
1705         status = 1;
1706
1707         /* Wait for 30 seconds for command to finish. */
1708         poll_data &= BIT_7;
1709         for (cnt = 3000000; cnt; cnt--) {
1710                 flash_data = qla2x00_read_flash_byte(ha, addr);
1711                 if ((flash_data & BIT_7) == poll_data) {
1712                         status = 0;
1713                         break;
1714                 }
1715
1716                 if (man_id != 0x40 && man_id != 0xda) {
1717                         if ((flash_data & BIT_5) && cnt > 2)
1718                                 cnt = 2;
1719                 }
1720                 udelay(10);
1721                 barrier();
1722                 cond_resched();
1723         }
1724         return status;
1725 }
1726
1727 /**
1728  * qla2x00_program_flash_address() - Programs a flash address
1729  * @ha: HA context
1730  * @addr: Address in flash to program
1731  * @data: Data to be written in flash
1732  * @man_id: Flash manufacturer ID
1733  * @flash_id: Flash ID
1734  *
1735  * Returns 0 on success, else non-zero.
1736  */
1737 static int
1738 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
1739     uint8_t data, uint8_t man_id, uint8_t flash_id)
1740 {
1741         /* Write Program Command Sequence. */
1742         if (IS_OEM_001(ha)) {
1743                 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1744                 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1745                 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1746                 qla2x00_write_flash_byte(ha, addr, data);
1747         } else {
1748                 if (man_id == 0xda && flash_id == 0xc1) {
1749                         qla2x00_write_flash_byte(ha, addr, data);
1750                         if (addr & 0x7e)
1751                                 return 0;
1752                 } else {
1753                         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1754                         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1755                         qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1756                         qla2x00_write_flash_byte(ha, addr, data);
1757                 }
1758         }
1759
1760         udelay(150);
1761
1762         /* Wait for write to complete. */
1763         return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1764 }
1765
1766 /**
1767  * qla2x00_erase_flash() - Erase the flash.
1768  * @ha: HA context
1769  * @man_id: Flash manufacturer ID
1770  * @flash_id: Flash ID
1771  *
1772  * Returns 0 on success, else non-zero.
1773  */
1774 static int
1775 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1776 {
1777         /* Individual Sector Erase Command Sequence */
1778         if (IS_OEM_001(ha)) {
1779                 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1780                 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1781                 qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1782                 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1783                 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1784                 qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1785         } else {
1786                 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1787                 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1788                 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1789                 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1790                 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1791                 qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1792         }
1793
1794         udelay(150);
1795
1796         /* Wait for erase to complete. */
1797         return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1798 }
1799
1800 /**
1801  * qla2x00_erase_flash_sector() - Erase a flash sector.
1802  * @ha: HA context
1803  * @addr: Flash sector to erase
1804  * @sec_mask: Sector address mask
1805  * @man_id: Flash manufacturer ID
1806  * @flash_id: Flash ID
1807  *
1808  * Returns 0 on success, else non-zero.
1809  */
1810 static int
1811 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1812     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1813 {
1814         /* Individual Sector Erase Command Sequence */
1815         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1816         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1817         qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1818         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1819         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1820         if (man_id == 0x1f && flash_id == 0x13)
1821                 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1822         else
1823                 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1824
1825         udelay(150);
1826
1827         /* Wait for erase to complete. */
1828         return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1829 }
1830
1831 /**
1832  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1833  * @man_id: Flash manufacturer ID
1834  * @flash_id: Flash ID
1835  */
1836 static void
1837 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1838     uint8_t *flash_id)
1839 {
1840         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1841         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1842         qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1843         *man_id = qla2x00_read_flash_byte(ha, 0x0000);
1844         *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1845         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1846         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1847         qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1848 }
1849
1850 static void
1851 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
1852         uint32_t saddr, uint32_t length)
1853 {
1854         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1855         uint32_t midpoint, ilength;
1856         uint8_t data;
1857
1858         midpoint = length / 2;
1859
1860         WRT_REG_WORD(&reg->nvram, 0);
1861         RD_REG_WORD(&reg->nvram);
1862         for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1863                 if (ilength == midpoint) {
1864                         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1865                         RD_REG_WORD(&reg->nvram);
1866                 }
1867                 data = qla2x00_read_flash_byte(ha, saddr);
1868                 if (saddr % 100)
1869                         udelay(10);
1870                 *tmp_buf = data;
1871                 cond_resched();
1872         }
1873 }
1874
1875 static inline void
1876 qla2x00_suspend_hba(struct scsi_qla_host *vha)
1877 {
1878         int cnt;
1879         unsigned long flags;
1880         struct qla_hw_data *ha = vha->hw;
1881         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1882
1883         /* Suspend HBA. */
1884         scsi_block_requests(vha->host);
1885         ha->isp_ops->disable_intrs(ha);
1886         set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1887
1888         /* Pause RISC. */
1889         spin_lock_irqsave(&ha->hardware_lock, flags);
1890         WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1891         RD_REG_WORD(&reg->hccr);
1892         if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1893                 for (cnt = 0; cnt < 30000; cnt++) {
1894                         if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1895                                 break;
1896                         udelay(100);
1897                 }
1898         } else {
1899                 udelay(10);
1900         }
1901         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1902 }
1903
1904 static inline void
1905 qla2x00_resume_hba(struct scsi_qla_host *vha)
1906 {
1907         struct qla_hw_data *ha = vha->hw;
1908
1909         /* Resume HBA. */
1910         clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1911         set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
1912         qla2xxx_wake_dpc(vha);
1913         qla2x00_wait_for_hba_online(vha);
1914         scsi_unblock_requests(vha->host);
1915 }
1916
1917 uint8_t *
1918 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
1919     uint32_t offset, uint32_t length)
1920 {
1921         uint32_t addr, midpoint;
1922         uint8_t *data;
1923         struct qla_hw_data *ha = vha->hw;
1924         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1925
1926         /* Suspend HBA. */
1927         qla2x00_suspend_hba(vha);
1928
1929         /* Go with read. */
1930         midpoint = ha->optrom_size / 2;
1931
1932         qla2x00_flash_enable(ha);
1933         WRT_REG_WORD(&reg->nvram, 0);
1934         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
1935         for (addr = offset, data = buf; addr < length; addr++, data++) {
1936                 if (addr == midpoint) {
1937                         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1938                         RD_REG_WORD(&reg->nvram);       /* PCI Posting. */
1939                 }
1940
1941                 *data = qla2x00_read_flash_byte(ha, addr);
1942         }
1943         qla2x00_flash_disable(ha);
1944
1945         /* Resume HBA. */
1946         qla2x00_resume_hba(vha);
1947
1948         return buf;
1949 }
1950
1951 int
1952 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
1953     uint32_t offset, uint32_t length)
1954 {
1955
1956         int rval;
1957         uint8_t man_id, flash_id, sec_number, data;
1958         uint16_t wd;
1959         uint32_t addr, liter, sec_mask, rest_addr;
1960         struct qla_hw_data *ha = vha->hw;
1961         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1962
1963         /* Suspend HBA. */
1964         qla2x00_suspend_hba(vha);
1965
1966         rval = QLA_SUCCESS;
1967         sec_number = 0;
1968
1969         /* Reset ISP chip. */
1970         WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
1971         pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
1972
1973         /* Go with write. */
1974         qla2x00_flash_enable(ha);
1975         do {    /* Loop once to provide quick error exit */
1976                 /* Structure of flash memory based on manufacturer */
1977                 if (IS_OEM_001(ha)) {
1978                         /* OEM variant with special flash part. */
1979                         man_id = flash_id = 0;
1980                         rest_addr = 0xffff;
1981                         sec_mask   = 0x10000;
1982                         goto update_flash;
1983                 }
1984                 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
1985                 switch (man_id) {
1986                 case 0x20: /* ST flash. */
1987                         if (flash_id == 0xd2 || flash_id == 0xe3) {
1988                                 /*
1989                                  * ST m29w008at part - 64kb sector size with
1990                                  * 32kb,8kb,8kb,16kb sectors at memory address
1991                                  * 0xf0000.
1992                                  */
1993                                 rest_addr = 0xffff;
1994                                 sec_mask = 0x10000;
1995                                 break;   
1996                         }
1997                         /*
1998                          * ST m29w010b part - 16kb sector size
1999                          * Default to 16kb sectors
2000                          */
2001                         rest_addr = 0x3fff;
2002                         sec_mask = 0x1c000;
2003                         break;
2004                 case 0x40: /* Mostel flash. */
2005                         /* Mostel v29c51001 part - 512 byte sector size. */
2006                         rest_addr = 0x1ff;
2007                         sec_mask = 0x1fe00;
2008                         break;
2009                 case 0xbf: /* SST flash. */
2010                         /* SST39sf10 part - 4kb sector size. */
2011                         rest_addr = 0xfff;
2012                         sec_mask = 0x1f000;
2013                         break;
2014                 case 0xda: /* Winbond flash. */
2015                         /* Winbond W29EE011 part - 256 byte sector size. */
2016                         rest_addr = 0x7f;
2017                         sec_mask = 0x1ff80;
2018                         break;
2019                 case 0xc2: /* Macronix flash. */
2020                         /* 64k sector size. */
2021                         if (flash_id == 0x38 || flash_id == 0x4f) {
2022                                 rest_addr = 0xffff;
2023                                 sec_mask = 0x10000;
2024                                 break;
2025                         }
2026                         /* Fall through... */
2027
2028                 case 0x1f: /* Atmel flash. */
2029                         /* 512k sector size. */
2030                         if (flash_id == 0x13) {
2031                                 rest_addr = 0x7fffffff;
2032                                 sec_mask =   0x80000000;
2033                                 break;
2034                         }
2035                         /* Fall through... */
2036
2037                 case 0x01: /* AMD flash. */
2038                         if (flash_id == 0x38 || flash_id == 0x40 ||
2039                             flash_id == 0x4f) {
2040                                 /* Am29LV081 part - 64kb sector size. */
2041                                 /* Am29LV002BT part - 64kb sector size. */
2042                                 rest_addr = 0xffff;
2043                                 sec_mask = 0x10000;
2044                                 break;
2045                         } else if (flash_id == 0x3e) {
2046                                 /*
2047                                  * Am29LV008b part - 64kb sector size with
2048                                  * 32kb,8kb,8kb,16kb sector at memory address
2049                                  * h0xf0000.
2050                                  */
2051                                 rest_addr = 0xffff;
2052                                 sec_mask = 0x10000;
2053                                 break;
2054                         } else if (flash_id == 0x20 || flash_id == 0x6e) {
2055                                 /*
2056                                  * Am29LV010 part or AM29f010 - 16kb sector
2057                                  * size.
2058                                  */
2059                                 rest_addr = 0x3fff;
2060                                 sec_mask = 0x1c000;
2061                                 break;
2062                         } else if (flash_id == 0x6d) {
2063                                 /* Am29LV001 part - 8kb sector size. */
2064                                 rest_addr = 0x1fff;
2065                                 sec_mask = 0x1e000;
2066                                 break;
2067                         }
2068                 default:
2069                         /* Default to 16 kb sector size. */
2070                         rest_addr = 0x3fff;
2071                         sec_mask = 0x1c000;
2072                         break;
2073                 }
2074
2075 update_flash:
2076                 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2077                         if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2078                                 rval = QLA_FUNCTION_FAILED;
2079                                 break;
2080                         }
2081                 }
2082
2083                 for (addr = offset, liter = 0; liter < length; liter++,
2084                     addr++) {
2085                         data = buf[liter];
2086                         /* Are we at the beginning of a sector? */
2087                         if ((addr & rest_addr) == 0) {
2088                                 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2089                                         if (addr >= 0x10000UL) {
2090                                                 if (((addr >> 12) & 0xf0) &&
2091                                                     ((man_id == 0x01 &&
2092                                                         flash_id == 0x3e) ||
2093                                                      (man_id == 0x20 &&
2094                                                          flash_id == 0xd2))) {
2095                                                         sec_number++;
2096                                                         if (sec_number == 1) {
2097                                                                 rest_addr =
2098                                                                     0x7fff;
2099                                                                 sec_mask =
2100                                                                     0x18000;
2101                                                         } else if (
2102                                                             sec_number == 2 ||
2103                                                             sec_number == 3) {
2104                                                                 rest_addr =
2105                                                                     0x1fff;
2106                                                                 sec_mask =
2107                                                                     0x1e000;
2108                                                         } else if (
2109                                                             sec_number == 4) {
2110                                                                 rest_addr =
2111                                                                     0x3fff;
2112                                                                 sec_mask =
2113                                                                     0x1c000;
2114                                                         }
2115                                                 }
2116                                         }
2117                                 } else if (addr == ha->optrom_size / 2) {
2118                                         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2119                                         RD_REG_WORD(&reg->nvram);
2120                                 }
2121
2122                                 if (flash_id == 0xda && man_id == 0xc1) {
2123                                         qla2x00_write_flash_byte(ha, 0x5555,
2124                                             0xaa);
2125                                         qla2x00_write_flash_byte(ha, 0x2aaa,
2126                                             0x55);
2127                                         qla2x00_write_flash_byte(ha, 0x5555,
2128                                             0xa0);
2129                                 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2130                                         /* Then erase it */
2131                                         if (qla2x00_erase_flash_sector(ha,
2132                                             addr, sec_mask, man_id,
2133                                             flash_id)) {
2134                                                 rval = QLA_FUNCTION_FAILED;
2135                                                 break;
2136                                         }
2137                                         if (man_id == 0x01 && flash_id == 0x6d)
2138                                                 sec_number++;
2139                                 }
2140                         }
2141
2142                         if (man_id == 0x01 && flash_id == 0x6d) {
2143                                 if (sec_number == 1 &&
2144                                     addr == (rest_addr - 1)) {
2145                                         rest_addr = 0x0fff;
2146                                         sec_mask   = 0x1f000;
2147                                 } else if (sec_number == 3 && (addr & 0x7ffe)) {
2148                                         rest_addr = 0x3fff;
2149                                         sec_mask   = 0x1c000;
2150                                 }
2151                         }
2152
2153                         if (qla2x00_program_flash_address(ha, addr, data,
2154                             man_id, flash_id)) {
2155                                 rval = QLA_FUNCTION_FAILED;
2156                                 break;
2157                         }
2158                         cond_resched();
2159                 }
2160         } while (0);
2161         qla2x00_flash_disable(ha);
2162
2163         /* Resume HBA. */
2164         qla2x00_resume_hba(vha);
2165
2166         return rval;
2167 }
2168
2169 uint8_t *
2170 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2171     uint32_t offset, uint32_t length)
2172 {
2173         struct qla_hw_data *ha = vha->hw;
2174
2175         /* Suspend HBA. */
2176         scsi_block_requests(vha->host);
2177         set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2178
2179         /* Go with read. */
2180         qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2181
2182         /* Resume HBA. */
2183         clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2184         scsi_unblock_requests(vha->host);
2185
2186         return buf;
2187 }
2188
2189 int
2190 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2191     uint32_t offset, uint32_t length)
2192 {
2193         int rval;
2194         struct qla_hw_data *ha = vha->hw;
2195
2196         /* Suspend HBA. */
2197         scsi_block_requests(vha->host);
2198         set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2199
2200         /* Go with write. */
2201         rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2202             length >> 2);
2203
2204         /* Resume HBA -- RISC reset needed. */
2205         clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2206         set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
2207         qla2xxx_wake_dpc(vha);
2208         qla2x00_wait_for_hba_online(vha);
2209         scsi_unblock_requests(vha->host);
2210
2211         return rval;
2212 }
2213
2214 uint8_t *
2215 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2216     uint32_t offset, uint32_t length)
2217 {
2218         int rval;
2219         dma_addr_t optrom_dma;
2220         void *optrom;
2221         uint8_t *pbuf;
2222         uint32_t faddr, left, burst;
2223         struct qla_hw_data *ha = vha->hw;
2224
2225         if (offset & 0xfff)
2226                 goto slow_read;
2227         if (length < OPTROM_BURST_SIZE)
2228                 goto slow_read;
2229
2230         optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2231             &optrom_dma, GFP_KERNEL);
2232         if (!optrom) {
2233                 qla_printk(KERN_DEBUG, ha,
2234                     "Unable to allocate memory for optrom burst read "
2235                     "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
2236
2237                 goto slow_read;
2238         }
2239
2240         pbuf = buf;
2241         faddr = offset >> 2;
2242         left = length >> 2;
2243         burst = OPTROM_BURST_DWORDS;
2244         while (left != 0) {
2245                 if (burst > left)
2246                         burst = left;
2247
2248                 rval = qla2x00_dump_ram(vha, optrom_dma,
2249                     flash_data_to_access_addr(faddr), burst);
2250                 if (rval) {
2251                         qla_printk(KERN_WARNING, ha,
2252                             "Unable to burst-read optrom segment "
2253                             "(%x/%x/%llx).\n", rval,
2254                             flash_data_to_access_addr(faddr),
2255                             (unsigned long long)optrom_dma);
2256                         qla_printk(KERN_WARNING, ha,
2257                             "Reverting to slow-read.\n");
2258
2259                         dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2260                             optrom, optrom_dma);
2261                         goto slow_read;
2262                 }
2263
2264                 memcpy(pbuf, optrom, burst * 4);
2265
2266                 left -= burst;
2267                 faddr += burst;
2268                 pbuf += burst * 4;
2269         }
2270
2271         dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2272             optrom_dma);
2273
2274         return buf;
2275
2276 slow_read:
2277     return qla24xx_read_optrom_data(vha, buf, offset, length);
2278 }
2279
2280 /**
2281  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2282  * @ha: HA context
2283  * @pcids: Pointer to the FCODE PCI data structure
2284  *
2285  * The process of retrieving the FCODE version information is at best
2286  * described as interesting.
2287  *
2288  * Within the first 100h bytes of the image an ASCII string is present
2289  * which contains several pieces of information including the FCODE
2290  * version.  Unfortunately it seems the only reliable way to retrieve
2291  * the version is by scanning for another sentinel within the string,
2292  * the FCODE build date:
2293  *
2294  *      ... 2.00.02 10/17/02 ...
2295  *
2296  * Returns QLA_SUCCESS on successful retrieval of version.
2297  */
2298 static void
2299 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2300 {
2301         int ret = QLA_FUNCTION_FAILED;
2302         uint32_t istart, iend, iter, vend;
2303         uint8_t do_next, rbyte, *vbyte;
2304
2305         memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2306
2307         /* Skip the PCI data structure. */
2308         istart = pcids +
2309             ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2310                 qla2x00_read_flash_byte(ha, pcids + 0x0A));
2311         iend = istart + 0x100;
2312         do {
2313                 /* Scan for the sentinel date string...eeewww. */
2314                 do_next = 0;
2315                 iter = istart;
2316                 while ((iter < iend) && !do_next) {
2317                         iter++;
2318                         if (qla2x00_read_flash_byte(ha, iter) == '/') {
2319                                 if (qla2x00_read_flash_byte(ha, iter + 2) ==
2320                                     '/')
2321                                         do_next++;
2322                                 else if (qla2x00_read_flash_byte(ha,
2323                                     iter + 3) == '/')
2324                                         do_next++;
2325                         }
2326                 }
2327                 if (!do_next)
2328                         break;
2329
2330                 /* Backtrack to previous ' ' (space). */
2331                 do_next = 0;
2332                 while ((iter > istart) && !do_next) {
2333                         iter--;
2334                         if (qla2x00_read_flash_byte(ha, iter) == ' ')
2335                                 do_next++;
2336                 }
2337                 if (!do_next)
2338                         break;
2339
2340                 /*
2341                  * Mark end of version tag, and find previous ' ' (space) or
2342                  * string length (recent FCODE images -- major hack ahead!!!).
2343                  */
2344                 vend = iter - 1;
2345                 do_next = 0;
2346                 while ((iter > istart) && !do_next) {
2347                         iter--;
2348                         rbyte = qla2x00_read_flash_byte(ha, iter);
2349                         if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2350                                 do_next++;
2351                 }
2352                 if (!do_next)
2353                         break;
2354
2355                 /* Mark beginning of version tag, and copy data. */
2356                 iter++;
2357                 if ((vend - iter) &&
2358                     ((vend - iter) < sizeof(ha->fcode_revision))) {
2359                         vbyte = ha->fcode_revision;
2360                         while (iter <= vend) {
2361                                 *vbyte++ = qla2x00_read_flash_byte(ha, iter);
2362                                 iter++;
2363                         }
2364                         ret = QLA_SUCCESS;
2365                 }
2366         } while (0);
2367
2368         if (ret != QLA_SUCCESS)
2369                 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2370 }
2371
2372 int
2373 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2374 {
2375         int ret = QLA_SUCCESS;
2376         uint8_t code_type, last_image;
2377         uint32_t pcihdr, pcids;
2378         uint8_t *dbyte;
2379         uint16_t *dcode;
2380         struct qla_hw_data *ha = vha->hw;
2381
2382         if (!ha->pio_address || !mbuf)
2383                 return QLA_FUNCTION_FAILED;
2384
2385         memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2386         memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2387         memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2388         memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2389
2390         qla2x00_flash_enable(ha);
2391
2392         /* Begin with first PCI expansion ROM header. */
2393         pcihdr = 0;
2394         last_image = 1;
2395         do {
2396                 /* Verify PCI expansion ROM header. */
2397                 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2398                     qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2399                         /* No signature */
2400                         DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2401                             "signature.\n"));
2402                         ret = QLA_FUNCTION_FAILED;
2403                         break;
2404                 }
2405
2406                 /* Locate PCI data structure. */
2407                 pcids = pcihdr +
2408                     ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2409                         qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2410
2411                 /* Validate signature of PCI data structure. */
2412                 if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2413                     qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2414                     qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2415                     qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2416                         /* Incorrect header. */
2417                         DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2418                             "found pcir_adr=%x.\n", pcids));
2419                         ret = QLA_FUNCTION_FAILED;
2420                         break;
2421                 }
2422
2423                 /* Read version */
2424                 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2425                 switch (code_type) {
2426                 case ROM_CODE_TYPE_BIOS:
2427                         /* Intel x86, PC-AT compatible. */
2428                         ha->bios_revision[0] =
2429                             qla2x00_read_flash_byte(ha, pcids + 0x12);
2430                         ha->bios_revision[1] =
2431                             qla2x00_read_flash_byte(ha, pcids + 0x13);
2432                         DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2433                             ha->bios_revision[1], ha->bios_revision[0]));
2434                         break;
2435                 case ROM_CODE_TYPE_FCODE:
2436                         /* Open Firmware standard for PCI (FCode). */
2437                         /* Eeeewww... */
2438                         qla2x00_get_fcode_version(ha, pcids);
2439                         break;
2440                 case ROM_CODE_TYPE_EFI:
2441                         /* Extensible Firmware Interface (EFI). */
2442                         ha->efi_revision[0] =
2443                             qla2x00_read_flash_byte(ha, pcids + 0x12);
2444                         ha->efi_revision[1] =
2445                             qla2x00_read_flash_byte(ha, pcids + 0x13);
2446                         DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2447                             ha->efi_revision[1], ha->efi_revision[0]));
2448                         break;
2449                 default:
2450                         DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2451                             "type %x at pcids %x.\n", code_type, pcids));
2452                         break;
2453                 }
2454
2455                 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2456
2457                 /* Locate next PCI expansion ROM. */
2458                 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2459                     qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2460         } while (!last_image);
2461
2462         if (IS_QLA2322(ha)) {
2463                 /* Read firmware image information. */
2464                 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2465                 dbyte = mbuf;
2466                 memset(dbyte, 0, 8);
2467                 dcode = (uint16_t *)dbyte;
2468
2469                 qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2470                     8);
2471                 DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
2472                     "flash:\n"));
2473                 DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2474
2475                 if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2476                     dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2477                     (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2478                     dcode[3] == 0)) {
2479                         DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2480                             "revision at %x.\n", ha->flt_region_fw * 4));
2481                 } else {
2482                         /* values are in big endian */
2483                         ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2484                         ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2485                         ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2486                 }
2487         }
2488
2489         qla2x00_flash_disable(ha);
2490
2491         return ret;
2492 }
2493
2494 int
2495 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2496 {
2497         int ret = QLA_SUCCESS;
2498         uint32_t pcihdr, pcids;
2499         uint32_t *dcode;
2500         uint8_t *bcode;
2501         uint8_t code_type, last_image;
2502         int i;
2503         struct qla_hw_data *ha = vha->hw;
2504
2505         if (!mbuf)
2506                 return QLA_FUNCTION_FAILED;
2507
2508         memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2509         memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2510         memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2511         memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2512
2513         dcode = mbuf;
2514
2515         /* Begin with first PCI expansion ROM header. */
2516         pcihdr = ha->flt_region_boot;
2517         last_image = 1;
2518         do {
2519                 /* Verify PCI expansion ROM header. */
2520                 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2521                 bcode = mbuf + (pcihdr % 4);
2522                 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2523                         /* No signature */
2524                         DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2525                             "signature.\n"));
2526                         ret = QLA_FUNCTION_FAILED;
2527                         break;
2528                 }
2529
2530                 /* Locate PCI data structure. */
2531                 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2532
2533                 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2534                 bcode = mbuf + (pcihdr % 4);
2535
2536                 /* Validate signature of PCI data structure. */
2537                 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2538                     bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2539                         /* Incorrect header. */
2540                         DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2541                             "found pcir_adr=%x.\n", pcids));
2542                         ret = QLA_FUNCTION_FAILED;
2543                         break;
2544                 }
2545
2546                 /* Read version */
2547                 code_type = bcode[0x14];
2548                 switch (code_type) {
2549                 case ROM_CODE_TYPE_BIOS:
2550                         /* Intel x86, PC-AT compatible. */
2551                         ha->bios_revision[0] = bcode[0x12];
2552                         ha->bios_revision[1] = bcode[0x13];
2553                         DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2554                             ha->bios_revision[1], ha->bios_revision[0]));
2555                         break;
2556                 case ROM_CODE_TYPE_FCODE:
2557                         /* Open Firmware standard for PCI (FCode). */
2558                         ha->fcode_revision[0] = bcode[0x12];
2559                         ha->fcode_revision[1] = bcode[0x13];
2560                         DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2561                             ha->fcode_revision[1], ha->fcode_revision[0]));
2562                         break;
2563                 case ROM_CODE_TYPE_EFI:
2564                         /* Extensible Firmware Interface (EFI). */
2565                         ha->efi_revision[0] = bcode[0x12];
2566                         ha->efi_revision[1] = bcode[0x13];
2567                         DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2568                             ha->efi_revision[1], ha->efi_revision[0]));
2569                         break;
2570                 default:
2571                         DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2572                             "type %x at pcids %x.\n", code_type, pcids));
2573                         break;
2574                 }
2575
2576                 last_image = bcode[0x15] & BIT_7;
2577
2578                 /* Locate next PCI expansion ROM. */
2579                 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2580         } while (!last_image);
2581
2582         /* Read firmware image information. */
2583         memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2584         dcode = mbuf;
2585
2586         qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2587         for (i = 0; i < 4; i++)
2588                 dcode[i] = be32_to_cpu(dcode[i]);
2589
2590         if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2591             dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2592             (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2593             dcode[3] == 0)) {
2594                 DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2595                     "revision at %x.\n", ha->flt_region_fw * 4));
2596         } else {
2597                 ha->fw_revision[0] = dcode[0];
2598                 ha->fw_revision[1] = dcode[1];
2599                 ha->fw_revision[2] = dcode[2];
2600                 ha->fw_revision[3] = dcode[3];
2601         }
2602
2603         return ret;
2604 }
2605
2606 static int
2607 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2608 {
2609         if (pos >= end || *pos != 0x82)
2610                 return 0;
2611
2612         pos += 3 + pos[1];
2613         if (pos >= end || *pos != 0x90)
2614                 return 0;
2615
2616         pos += 3 + pos[1];
2617         if (pos >= end || *pos != 0x78)
2618                 return 0;
2619
2620         return 1;
2621 }
2622
2623 int
2624 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2625 {
2626         struct qla_hw_data *ha = vha->hw;
2627         uint8_t *pos = ha->vpd;
2628         uint8_t *end = pos + ha->vpd_size;
2629         int len = 0;
2630
2631         if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2632                 return 0;
2633
2634         while (pos < end && *pos != 0x78) {
2635                 len = (*pos == 0x82) ? pos[1] : pos[2];
2636
2637                 if (!strncmp(pos, key, strlen(key)))
2638                         break;
2639
2640                 if (*pos != 0x90 && *pos != 0x91)
2641                         pos += len;
2642
2643                 pos += 3;
2644         }
2645
2646         if (pos < end - len && *pos != 0x78)
2647                 return snprintf(str, size, "%.*s", len, pos + 3);
2648
2649         return 0;
2650 }
2651
2652 static int
2653 qla2xxx_hw_event_store(scsi_qla_host_t *vha, uint32_t *fdata)
2654 {
2655         uint32_t d[2], faddr;
2656         struct qla_hw_data *ha = vha->hw;
2657
2658         /* Locate first empty entry. */
2659         for (;;) {
2660                 if (ha->hw_event_ptr >=
2661                     ha->flt_region_hw_event + FA_HW_EVENT_SIZE) {
2662                         DEBUG2(qla_printk(KERN_WARNING, ha,
2663                             "HW event -- Log Full!\n"));
2664                         return QLA_MEMORY_ALLOC_FAILED;
2665                 }
2666
2667                 qla24xx_read_flash_data(vha, d, ha->hw_event_ptr, 2);
2668                 faddr = flash_data_to_access_addr(ha->hw_event_ptr);
2669                 ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
2670                 if (d[0] == __constant_cpu_to_le32(0xffffffff) &&
2671                     d[1] == __constant_cpu_to_le32(0xffffffff)) {
2672                         qla24xx_unprotect_flash(ha);
2673
2674                         qla24xx_write_flash_dword(ha, faddr++,
2675                             cpu_to_le32(jiffies));
2676                         qla24xx_write_flash_dword(ha, faddr++, 0);
2677                         qla24xx_write_flash_dword(ha, faddr++, *fdata++);
2678                         qla24xx_write_flash_dword(ha, faddr++, *fdata);
2679
2680                         qla24xx_protect_flash(ha);
2681                         break;
2682                 }
2683         }
2684         return QLA_SUCCESS;
2685 }
2686
2687 int
2688 qla2xxx_hw_event_log(scsi_qla_host_t *vha, uint16_t code, uint16_t d1,
2689     uint16_t d2, uint16_t d3)
2690 {
2691 #define QMARK(a, b, c, d) \
2692     cpu_to_le32(LSB(a) << 24 | LSB(b) << 16 | LSB(c) << 8 | LSB(d))
2693         struct qla_hw_data *ha = vha->hw;
2694         int rval;
2695         uint32_t marker[2], fdata[4];
2696
2697         if (ha->flt_region_hw_event == 0)
2698                 return QLA_FUNCTION_FAILED;
2699
2700         DEBUG2(qla_printk(KERN_WARNING, ha,
2701             "HW event -- code=%x, d1=%x, d2=%x, d3=%x.\n", code, d1, d2, d3));
2702
2703         /* If marker not already found, locate or write.  */
2704         if (!ha->flags.hw_event_marker_found) {
2705                 /* Create marker. */
2706                 marker[0] = QMARK('L', ha->fw_major_version,
2707                     ha->fw_minor_version, ha->fw_subminor_version);
2708                 marker[1] = QMARK(QLA_DRIVER_MAJOR_VER, QLA_DRIVER_MINOR_VER,
2709                     QLA_DRIVER_PATCH_VER, QLA_DRIVER_BETA_VER);
2710
2711                 /* Locate marker. */
2712                 ha->hw_event_ptr = ha->flt_region_hw_event;
2713                 for (;;) {
2714                         qla24xx_read_flash_data(vha, fdata, ha->hw_event_ptr,
2715                             4);
2716                         if (fdata[0] == __constant_cpu_to_le32(0xffffffff) &&
2717                             fdata[1] == __constant_cpu_to_le32(0xffffffff))
2718                                 break;
2719                         ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
2720                         if (ha->hw_event_ptr >=
2721                             ha->flt_region_hw_event + FA_HW_EVENT_SIZE) {
2722                                 DEBUG2(qla_printk(KERN_WARNING, ha,
2723                                     "HW event -- Log Full!\n"));
2724                                 return QLA_MEMORY_ALLOC_FAILED;
2725                         }
2726                         if (fdata[2] == marker[0] && fdata[3] == marker[1]) {
2727                                 ha->flags.hw_event_marker_found = 1;
2728                                 break;
2729                         }
2730                 }
2731                 /* No marker, write it. */
2732                 if (!ha->flags.hw_event_marker_found) {
2733                         rval = qla2xxx_hw_event_store(vha, marker);
2734                         if (rval != QLA_SUCCESS) {
2735                                 DEBUG2(qla_printk(KERN_WARNING, ha,
2736                                     "HW event -- Failed marker write=%x.!\n",
2737                                     rval));
2738                                 return rval;
2739                         }
2740                         ha->flags.hw_event_marker_found = 1;
2741                 }
2742         }
2743
2744         /* Store error.  */
2745         fdata[0] = cpu_to_le32(code << 16 | d1);
2746         fdata[1] = cpu_to_le32(d2 << 16 | d3);
2747         rval = qla2xxx_hw_event_store(vha, fdata);
2748         if (rval != QLA_SUCCESS) {
2749                 DEBUG2(qla_printk(KERN_WARNING, ha,
2750                     "HW event -- Failed error write=%x.!\n",
2751                     rval));
2752         }
2753
2754         return rval;
2755 }