]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/scsi/qla2xxx/qla_sup.c
[SCSI] qla2xxx: Add QoS support.
[net-next-2.6.git] / drivers / scsi / qla2xxx / qla_sup.c
1 /*
2  * QLogic Fibre Channel HBA Driver
3  * Copyright (c)  2003-2008 QLogic Corporation
4  *
5  * See LICENSE.qla2xxx for copyright and licensing details.
6  */
7 #include "qla_def.h"
8
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
12
13 /*
14  * NVRAM support routines
15  */
16
17 /**
18  * qla2x00_lock_nvram_access() -
19  * @ha: HA context
20  */
21 static void
22 qla2x00_lock_nvram_access(struct qla_hw_data *ha)
23 {
24         uint16_t data;
25         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
26
27         if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
28                 data = RD_REG_WORD(&reg->nvram);
29                 while (data & NVR_BUSY) {
30                         udelay(100);
31                         data = RD_REG_WORD(&reg->nvram);
32                 }
33
34                 /* Lock resource */
35                 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
36                 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
37                 udelay(5);
38                 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
39                 while ((data & BIT_0) == 0) {
40                         /* Lock failed */
41                         udelay(100);
42                         WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
43                         RD_REG_WORD(&reg->u.isp2300.host_semaphore);
44                         udelay(5);
45                         data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
46                 }
47         }
48 }
49
50 /**
51  * qla2x00_unlock_nvram_access() -
52  * @ha: HA context
53  */
54 static void
55 qla2x00_unlock_nvram_access(struct qla_hw_data *ha)
56 {
57         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
58
59         if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
60                 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
61                 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
62         }
63 }
64
65 /**
66  * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
67  * @ha: HA context
68  * @data: Serial interface selector
69  */
70 static void
71 qla2x00_nv_write(struct qla_hw_data *ha, uint16_t data)
72 {
73         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
74
75         WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
76         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
77         NVRAM_DELAY();
78         WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_CLOCK |
79             NVR_WRT_ENABLE);
80         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
81         NVRAM_DELAY();
82         WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
83         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
84         NVRAM_DELAY();
85 }
86
87 /**
88  * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
89  *      NVRAM.
90  * @ha: HA context
91  * @nv_cmd: NVRAM command
92  *
93  * Bit definitions for NVRAM command:
94  *
95  *      Bit 26     = start bit
96  *      Bit 25, 24 = opcode
97  *      Bit 23-16  = address
98  *      Bit 15-0   = write data
99  *
100  * Returns the word read from nvram @addr.
101  */
102 static uint16_t
103 qla2x00_nvram_request(struct qla_hw_data *ha, uint32_t nv_cmd)
104 {
105         uint8_t         cnt;
106         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
107         uint16_t        data = 0;
108         uint16_t        reg_data;
109
110         /* Send command to NVRAM. */
111         nv_cmd <<= 5;
112         for (cnt = 0; cnt < 11; cnt++) {
113                 if (nv_cmd & BIT_31)
114                         qla2x00_nv_write(ha, NVR_DATA_OUT);
115                 else
116                         qla2x00_nv_write(ha, 0);
117                 nv_cmd <<= 1;
118         }
119
120         /* Read data from NVRAM. */
121         for (cnt = 0; cnt < 16; cnt++) {
122                 WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
123                 RD_REG_WORD(&reg->nvram);       /* PCI Posting. */
124                 NVRAM_DELAY();
125                 data <<= 1;
126                 reg_data = RD_REG_WORD(&reg->nvram);
127                 if (reg_data & NVR_DATA_IN)
128                         data |= BIT_0;
129                 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130                 RD_REG_WORD(&reg->nvram);       /* PCI Posting. */
131                 NVRAM_DELAY();
132         }
133
134         /* Deselect chip. */
135         WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
136         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
137         NVRAM_DELAY();
138
139         return data;
140 }
141
142
143 /**
144  * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
145  *      request routine to get the word from NVRAM.
146  * @ha: HA context
147  * @addr: Address in NVRAM to read
148  *
149  * Returns the word read from nvram @addr.
150  */
151 static uint16_t
152 qla2x00_get_nvram_word(struct qla_hw_data *ha, uint32_t addr)
153 {
154         uint16_t        data;
155         uint32_t        nv_cmd;
156
157         nv_cmd = addr << 16;
158         nv_cmd |= NV_READ_OP;
159         data = qla2x00_nvram_request(ha, nv_cmd);
160
161         return (data);
162 }
163
164 /**
165  * qla2x00_nv_deselect() - Deselect NVRAM operations.
166  * @ha: HA context
167  */
168 static void
169 qla2x00_nv_deselect(struct qla_hw_data *ha)
170 {
171         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
172
173         WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
174         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
175         NVRAM_DELAY();
176 }
177
178 /**
179  * qla2x00_write_nvram_word() - Write NVRAM data.
180  * @ha: HA context
181  * @addr: Address in NVRAM to write
182  * @data: word to program
183  */
184 static void
185 qla2x00_write_nvram_word(struct qla_hw_data *ha, uint32_t addr, uint16_t data)
186 {
187         int count;
188         uint16_t word;
189         uint32_t nv_cmd, wait_cnt;
190         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
191
192         qla2x00_nv_write(ha, NVR_DATA_OUT);
193         qla2x00_nv_write(ha, 0);
194         qla2x00_nv_write(ha, 0);
195
196         for (word = 0; word < 8; word++)
197                 qla2x00_nv_write(ha, NVR_DATA_OUT);
198
199         qla2x00_nv_deselect(ha);
200
201         /* Write data */
202         nv_cmd = (addr << 16) | NV_WRITE_OP;
203         nv_cmd |= data;
204         nv_cmd <<= 5;
205         for (count = 0; count < 27; count++) {
206                 if (nv_cmd & BIT_31)
207                         qla2x00_nv_write(ha, NVR_DATA_OUT);
208                 else
209                         qla2x00_nv_write(ha, 0);
210
211                 nv_cmd <<= 1;
212         }
213
214         qla2x00_nv_deselect(ha);
215
216         /* Wait for NVRAM to become ready */
217         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
218         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
219         wait_cnt = NVR_WAIT_CNT;
220         do {
221                 if (!--wait_cnt) {
222                         DEBUG9_10(qla_printk(KERN_WARNING, ha,
223                             "NVRAM didn't go ready...\n"));
224                         break;
225                 }
226                 NVRAM_DELAY();
227                 word = RD_REG_WORD(&reg->nvram);
228         } while ((word & NVR_DATA_IN) == 0);
229
230         qla2x00_nv_deselect(ha);
231
232         /* Disable writes */
233         qla2x00_nv_write(ha, NVR_DATA_OUT);
234         for (count = 0; count < 10; count++)
235                 qla2x00_nv_write(ha, 0);
236
237         qla2x00_nv_deselect(ha);
238 }
239
240 static int
241 qla2x00_write_nvram_word_tmo(struct qla_hw_data *ha, uint32_t addr,
242         uint16_t data, uint32_t tmo)
243 {
244         int ret, count;
245         uint16_t word;
246         uint32_t nv_cmd;
247         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
248
249         ret = QLA_SUCCESS;
250
251         qla2x00_nv_write(ha, NVR_DATA_OUT);
252         qla2x00_nv_write(ha, 0);
253         qla2x00_nv_write(ha, 0);
254
255         for (word = 0; word < 8; word++)
256                 qla2x00_nv_write(ha, NVR_DATA_OUT);
257
258         qla2x00_nv_deselect(ha);
259
260         /* Write data */
261         nv_cmd = (addr << 16) | NV_WRITE_OP;
262         nv_cmd |= data;
263         nv_cmd <<= 5;
264         for (count = 0; count < 27; count++) {
265                 if (nv_cmd & BIT_31)
266                         qla2x00_nv_write(ha, NVR_DATA_OUT);
267                 else
268                         qla2x00_nv_write(ha, 0);
269
270                 nv_cmd <<= 1;
271         }
272
273         qla2x00_nv_deselect(ha);
274
275         /* Wait for NVRAM to become ready */
276         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
277         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
278         do {
279                 NVRAM_DELAY();
280                 word = RD_REG_WORD(&reg->nvram);
281                 if (!--tmo) {
282                         ret = QLA_FUNCTION_FAILED;
283                         break;
284                 }
285         } while ((word & NVR_DATA_IN) == 0);
286
287         qla2x00_nv_deselect(ha);
288
289         /* Disable writes */
290         qla2x00_nv_write(ha, NVR_DATA_OUT);
291         for (count = 0; count < 10; count++)
292                 qla2x00_nv_write(ha, 0);
293
294         qla2x00_nv_deselect(ha);
295
296         return ret;
297 }
298
299 /**
300  * qla2x00_clear_nvram_protection() -
301  * @ha: HA context
302  */
303 static int
304 qla2x00_clear_nvram_protection(struct qla_hw_data *ha)
305 {
306         int ret, stat;
307         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
308         uint32_t word, wait_cnt;
309         uint16_t wprot, wprot_old;
310
311         /* Clear NVRAM write protection. */
312         ret = QLA_FUNCTION_FAILED;
313
314         wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
315         stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
316             __constant_cpu_to_le16(0x1234), 100000);
317         wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318         if (stat != QLA_SUCCESS || wprot != 0x1234) {
319                 /* Write enable. */
320                 qla2x00_nv_write(ha, NVR_DATA_OUT);
321                 qla2x00_nv_write(ha, 0);
322                 qla2x00_nv_write(ha, 0);
323                 for (word = 0; word < 8; word++)
324                         qla2x00_nv_write(ha, NVR_DATA_OUT);
325
326                 qla2x00_nv_deselect(ha);
327
328                 /* Enable protection register. */
329                 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
330                 qla2x00_nv_write(ha, NVR_PR_ENABLE);
331                 qla2x00_nv_write(ha, NVR_PR_ENABLE);
332                 for (word = 0; word < 8; word++)
333                         qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
334
335                 qla2x00_nv_deselect(ha);
336
337                 /* Clear protection register (ffff is cleared). */
338                 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
339                 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
340                 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
341                 for (word = 0; word < 8; word++)
342                         qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
343
344                 qla2x00_nv_deselect(ha);
345
346                 /* Wait for NVRAM to become ready. */
347                 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
348                 RD_REG_WORD(&reg->nvram);       /* PCI Posting. */
349                 wait_cnt = NVR_WAIT_CNT;
350                 do {
351                         if (!--wait_cnt) {
352                                 DEBUG9_10(qla_printk(KERN_WARNING, ha,
353                                     "NVRAM didn't go ready...\n"));
354                                 break;
355                         }
356                         NVRAM_DELAY();
357                         word = RD_REG_WORD(&reg->nvram);
358                 } while ((word & NVR_DATA_IN) == 0);
359
360                 if (wait_cnt)
361                         ret = QLA_SUCCESS;
362         } else
363                 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
364
365         return ret;
366 }
367
368 static void
369 qla2x00_set_nvram_protection(struct qla_hw_data *ha, int stat)
370 {
371         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
372         uint32_t word, wait_cnt;
373
374         if (stat != QLA_SUCCESS)
375                 return;
376
377         /* Set NVRAM write protection. */
378         /* Write enable. */
379         qla2x00_nv_write(ha, NVR_DATA_OUT);
380         qla2x00_nv_write(ha, 0);
381         qla2x00_nv_write(ha, 0);
382         for (word = 0; word < 8; word++)
383                 qla2x00_nv_write(ha, NVR_DATA_OUT);
384
385         qla2x00_nv_deselect(ha);
386
387         /* Enable protection register. */
388         qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
389         qla2x00_nv_write(ha, NVR_PR_ENABLE);
390         qla2x00_nv_write(ha, NVR_PR_ENABLE);
391         for (word = 0; word < 8; word++)
392                 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
393
394         qla2x00_nv_deselect(ha);
395
396         /* Enable protection register. */
397         qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
398         qla2x00_nv_write(ha, NVR_PR_ENABLE);
399         qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
400         for (word = 0; word < 8; word++)
401                 qla2x00_nv_write(ha, NVR_PR_ENABLE);
402
403         qla2x00_nv_deselect(ha);
404
405         /* Wait for NVRAM to become ready. */
406         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
407         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
408         wait_cnt = NVR_WAIT_CNT;
409         do {
410                 if (!--wait_cnt) {
411                         DEBUG9_10(qla_printk(KERN_WARNING, ha,
412                             "NVRAM didn't go ready...\n"));
413                         break;
414                 }
415                 NVRAM_DELAY();
416                 word = RD_REG_WORD(&reg->nvram);
417         } while ((word & NVR_DATA_IN) == 0);
418 }
419
420
421 /*****************************************************************************/
422 /* Flash Manipulation Routines                                               */
423 /*****************************************************************************/
424
425 #define OPTROM_BURST_SIZE       0x1000
426 #define OPTROM_BURST_DWORDS     (OPTROM_BURST_SIZE / 4)
427
428 static inline uint32_t
429 flash_conf_addr(struct qla_hw_data *ha, uint32_t faddr)
430 {
431         return ha->flash_conf_off | faddr;
432 }
433
434 static inline uint32_t
435 flash_data_addr(struct qla_hw_data *ha, uint32_t faddr)
436 {
437         return ha->flash_data_off | faddr;
438 }
439
440 static inline uint32_t
441 nvram_conf_addr(struct qla_hw_data *ha, uint32_t naddr)
442 {
443         return ha->nvram_conf_off | naddr;
444 }
445
446 static inline uint32_t
447 nvram_data_addr(struct qla_hw_data *ha, uint32_t naddr)
448 {
449         return ha->nvram_data_off | naddr;
450 }
451
452 static uint32_t
453 qla24xx_read_flash_dword(struct qla_hw_data *ha, uint32_t addr)
454 {
455         int rval;
456         uint32_t cnt, data;
457         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
458
459         WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
460         /* Wait for READ cycle to complete. */
461         rval = QLA_SUCCESS;
462         for (cnt = 3000;
463             (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
464             rval == QLA_SUCCESS; cnt--) {
465                 if (cnt)
466                         udelay(10);
467                 else
468                         rval = QLA_FUNCTION_TIMEOUT;
469                 cond_resched();
470         }
471
472         /* TODO: What happens if we time out? */
473         data = 0xDEADDEAD;
474         if (rval == QLA_SUCCESS)
475                 data = RD_REG_DWORD(&reg->flash_data);
476
477         return data;
478 }
479
480 uint32_t *
481 qla24xx_read_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
482     uint32_t dwords)
483 {
484         uint32_t i;
485         struct qla_hw_data *ha = vha->hw;
486
487         /* Dword reads to flash. */
488         for (i = 0; i < dwords; i++, faddr++)
489                 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
490                     flash_data_addr(ha, faddr)));
491
492         return dwptr;
493 }
494
495 static int
496 qla24xx_write_flash_dword(struct qla_hw_data *ha, uint32_t addr, uint32_t data)
497 {
498         int rval;
499         uint32_t cnt;
500         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
501
502         WRT_REG_DWORD(&reg->flash_data, data);
503         RD_REG_DWORD(&reg->flash_data);         /* PCI Posting. */
504         WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
505         /* Wait for Write cycle to complete. */
506         rval = QLA_SUCCESS;
507         for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
508             rval == QLA_SUCCESS; cnt--) {
509                 if (cnt)
510                         udelay(10);
511                 else
512                         rval = QLA_FUNCTION_TIMEOUT;
513                 cond_resched();
514         }
515         return rval;
516 }
517
518 static void
519 qla24xx_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
520     uint8_t *flash_id)
521 {
522         uint32_t ids;
523
524         ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x03ab));
525         *man_id = LSB(ids);
526         *flash_id = MSB(ids);
527
528         /* Check if man_id and flash_id are valid. */
529         if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
530                 /* Read information using 0x9f opcode
531                  * Device ID, Mfg ID would be read in the format:
532                  *   <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
533                  * Example: ATMEL 0x00 01 45 1F
534                  * Extract MFG and Dev ID from last two bytes.
535                  */
536                 ids = qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x009f));
537                 *man_id = LSB(ids);
538                 *flash_id = MSB(ids);
539         }
540 }
541
542 static int
543 qla2xxx_find_flt_start(scsi_qla_host_t *vha, uint32_t *start)
544 {
545         const char *loc, *locations[] = { "DEF", "PCI" };
546         uint32_t pcihdr, pcids;
547         uint32_t *dcode;
548         uint8_t *buf, *bcode, last_image;
549         uint16_t cnt, chksum, *wptr;
550         struct qla_flt_location *fltl;
551         struct qla_hw_data *ha = vha->hw;
552         struct req_que *req = ha->req_q_map[0];
553
554         /*
555          * FLT-location structure resides after the last PCI region.
556          */
557
558         /* Begin with sane defaults. */
559         loc = locations[0];
560         *start = 0;
561         if (IS_QLA24XX_TYPE(ha))
562                 *start = FA_FLASH_LAYOUT_ADDR_24;
563         else if (IS_QLA25XX(ha))
564                 *start = FA_FLASH_LAYOUT_ADDR;
565         else if (IS_QLA81XX(ha))
566                 *start = FA_FLASH_LAYOUT_ADDR_81;
567         /* Begin with first PCI expansion ROM header. */
568         buf = (uint8_t *)req->ring;
569         dcode = (uint32_t *)req->ring;
570         pcihdr = 0;
571         last_image = 1;
572         do {
573                 /* Verify PCI expansion ROM header. */
574                 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
575                 bcode = buf + (pcihdr % 4);
576                 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
577                         goto end;
578
579                 /* Locate PCI data structure. */
580                 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
581                 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
582                 bcode = buf + (pcihdr % 4);
583
584                 /* Validate signature of PCI data structure. */
585                 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
586                     bcode[0x2] != 'I' || bcode[0x3] != 'R')
587                         goto end;
588
589                 last_image = bcode[0x15] & BIT_7;
590
591                 /* Locate next PCI expansion ROM. */
592                 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
593         } while (!last_image);
594
595         /* Now verify FLT-location structure. */
596         fltl = (struct qla_flt_location *)req->ring;
597         qla24xx_read_flash_data(vha, dcode, pcihdr >> 2,
598             sizeof(struct qla_flt_location) >> 2);
599         if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
600             fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
601                 goto end;
602
603         wptr = (uint16_t *)req->ring;
604         cnt = sizeof(struct qla_flt_location) >> 1;
605         for (chksum = 0; cnt; cnt--)
606                 chksum += le16_to_cpu(*wptr++);
607         if (chksum) {
608                 qla_printk(KERN_ERR, ha,
609                     "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
610                 qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
611                 return QLA_FUNCTION_FAILED;
612         }
613
614         /* Good data.  Use specified location. */
615         loc = locations[1];
616         *start = (le16_to_cpu(fltl->start_hi) << 16 |
617             le16_to_cpu(fltl->start_lo)) >> 2;
618 end:
619         DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
620         return QLA_SUCCESS;
621 }
622
623 static void
624 qla2xxx_get_flt_info(scsi_qla_host_t *vha, uint32_t flt_addr)
625 {
626         const char *loc, *locations[] = { "DEF", "FLT" };
627         const uint32_t def_fw[] =
628                 { FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR, FA_RISC_CODE_ADDR_81 };
629         const uint32_t def_boot[] =
630                 { FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR, FA_BOOT_CODE_ADDR_81 };
631         const uint32_t def_vpd_nvram[] =
632                 { FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR, FA_VPD_NVRAM_ADDR_81 };
633         const uint32_t def_vpd0[] =
634                 { 0, 0, FA_VPD0_ADDR_81 };
635         const uint32_t def_vpd1[] =
636                 { 0, 0, FA_VPD1_ADDR_81 };
637         const uint32_t def_nvram0[] =
638                 { 0, 0, FA_NVRAM0_ADDR_81 };
639         const uint32_t def_nvram1[] =
640                 { 0, 0, FA_NVRAM1_ADDR_81 };
641         const uint32_t def_fdt[] =
642                 { FA_FLASH_DESCR_ADDR_24, FA_FLASH_DESCR_ADDR,
643                         FA_FLASH_DESCR_ADDR_81 };
644         const uint32_t def_npiv_conf0[] =
645                 { FA_NPIV_CONF0_ADDR_24, FA_NPIV_CONF0_ADDR,
646                         FA_NPIV_CONF0_ADDR_81 };
647         const uint32_t def_npiv_conf1[] =
648                 { FA_NPIV_CONF1_ADDR_24, FA_NPIV_CONF1_ADDR,
649                         FA_NPIV_CONF1_ADDR_81 };
650         uint32_t def;
651         uint16_t *wptr;
652         uint16_t cnt, chksum;
653         uint32_t start;
654         struct qla_flt_header *flt;
655         struct qla_flt_region *region;
656         struct qla_hw_data *ha = vha->hw;
657         struct req_que *req = ha->req_q_map[0];
658
659         ha->flt_region_flt = flt_addr;
660         wptr = (uint16_t *)req->ring;
661         flt = (struct qla_flt_header *)req->ring;
662         region = (struct qla_flt_region *)&flt[1];
663         ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
664             flt_addr << 2, OPTROM_BURST_SIZE);
665         if (*wptr == __constant_cpu_to_le16(0xffff))
666                 goto no_flash_data;
667         if (flt->version != __constant_cpu_to_le16(1)) {
668                 DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
669                     "version=0x%x length=0x%x checksum=0x%x.\n",
670                     le16_to_cpu(flt->version), le16_to_cpu(flt->length),
671                     le16_to_cpu(flt->checksum)));
672                 goto no_flash_data;
673         }
674
675         cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
676         for (chksum = 0; cnt; cnt--)
677                 chksum += le16_to_cpu(*wptr++);
678         if (chksum) {
679                 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
680                     "version=0x%x length=0x%x checksum=0x%x.\n",
681                     le16_to_cpu(flt->version), le16_to_cpu(flt->length),
682                     chksum));
683                 goto no_flash_data;
684         }
685
686         loc = locations[1];
687         cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
688         for ( ; cnt; cnt--, region++) {
689                 /* Store addresses as DWORD offsets. */
690                 start = le32_to_cpu(region->start) >> 2;
691
692                 DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
693                     "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
694                     le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
695
696                 switch (le32_to_cpu(region->code) & 0xff) {
697                 case FLT_REG_FW:
698                         ha->flt_region_fw = start;
699                         break;
700                 case FLT_REG_BOOT_CODE:
701                         ha->flt_region_boot = start;
702                         break;
703                 case FLT_REG_VPD_0:
704                         ha->flt_region_vpd_nvram = start;
705                         if (!(PCI_FUNC(ha->pdev->devfn) & 1))
706                                 ha->flt_region_vpd = start;
707                         break;
708                 case FLT_REG_VPD_1:
709                         if (PCI_FUNC(ha->pdev->devfn) & 1)
710                                 ha->flt_region_vpd = start;
711                         break;
712                 case FLT_REG_NVRAM_0:
713                         if (!(PCI_FUNC(ha->pdev->devfn) & 1))
714                                 ha->flt_region_nvram = start;
715                         break;
716                 case FLT_REG_NVRAM_1:
717                         if (PCI_FUNC(ha->pdev->devfn) & 1)
718                                 ha->flt_region_nvram = start;
719                         break;
720                 case FLT_REG_FDT:
721                         ha->flt_region_fdt = start;
722                         break;
723                 case FLT_REG_NPIV_CONF_0:
724                         if (!(PCI_FUNC(ha->pdev->devfn) & 1))
725                                 ha->flt_region_npiv_conf = start;
726                         break;
727                 case FLT_REG_NPIV_CONF_1:
728                         if (PCI_FUNC(ha->pdev->devfn) & 1)
729                                 ha->flt_region_npiv_conf = start;
730                         break;
731                 }
732         }
733         goto done;
734
735 no_flash_data:
736         /* Use hardcoded defaults. */
737         loc = locations[0];
738         def = 0;
739         if (IS_QLA24XX_TYPE(ha))
740                 def = 0;
741         else if (IS_QLA25XX(ha))
742                 def = 1;
743         else if (IS_QLA81XX(ha))
744                 def = 2;
745         ha->flt_region_fw = def_fw[def];
746         ha->flt_region_boot = def_boot[def];
747         ha->flt_region_vpd_nvram = def_vpd_nvram[def];
748         ha->flt_region_vpd = !(PCI_FUNC(ha->pdev->devfn) & 1) ?
749             def_vpd0[def]: def_vpd1[def];
750         ha->flt_region_nvram = !(PCI_FUNC(ha->pdev->devfn) & 1) ?
751             def_nvram0[def]: def_nvram1[def];
752         ha->flt_region_fdt = def_fdt[def];
753         ha->flt_region_npiv_conf = !(PCI_FUNC(ha->pdev->devfn) & 1) ?
754             def_npiv_conf0[def]: def_npiv_conf1[def];
755 done:
756         DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
757             "vpd_nvram=0x%x vpd=0x%x nvram=0x%x fdt=0x%x flt=0x%x "
758             "npiv=0x%x.\n", loc, ha->flt_region_boot, ha->flt_region_fw,
759             ha->flt_region_vpd_nvram, ha->flt_region_vpd, ha->flt_region_nvram,
760             ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_npiv_conf));
761 }
762
763 static void
764 qla2xxx_get_fdt_info(scsi_qla_host_t *vha)
765 {
766 #define FLASH_BLK_SIZE_4K       0x1000
767 #define FLASH_BLK_SIZE_32K      0x8000
768 #define FLASH_BLK_SIZE_64K      0x10000
769         const char *loc, *locations[] = { "MID", "FDT" };
770         uint16_t cnt, chksum;
771         uint16_t *wptr;
772         struct qla_fdt_layout *fdt;
773         uint8_t man_id, flash_id;
774         uint16_t mid, fid;
775         struct qla_hw_data *ha = vha->hw;
776         struct req_que *req = ha->req_q_map[0];
777
778         wptr = (uint16_t *)req->ring;
779         fdt = (struct qla_fdt_layout *)req->ring;
780         ha->isp_ops->read_optrom(vha, (uint8_t *)req->ring,
781             ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
782         if (*wptr == __constant_cpu_to_le16(0xffff))
783                 goto no_flash_data;
784         if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
785             fdt->sig[3] != 'D')
786                 goto no_flash_data;
787
788         for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
789             cnt++)
790                 chksum += le16_to_cpu(*wptr++);
791         if (chksum) {
792                 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
793                     "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
794                     le16_to_cpu(fdt->version)));
795                 DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
796                 goto no_flash_data;
797         }
798
799         loc = locations[1];
800         mid = le16_to_cpu(fdt->man_id);
801         fid = le16_to_cpu(fdt->id);
802         ha->fdt_wrt_disable = fdt->wrt_disable_bits;
803         ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0300 | fdt->erase_cmd);
804         ha->fdt_block_size = le32_to_cpu(fdt->block_size);
805         if (fdt->unprotect_sec_cmd) {
806                 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0300 |
807                     fdt->unprotect_sec_cmd);
808                 ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
809                     flash_conf_addr(ha, 0x0300 | fdt->protect_sec_cmd):
810                     flash_conf_addr(ha, 0x0336);
811         }
812         goto done;
813 no_flash_data:
814         loc = locations[0];
815         qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
816         mid = man_id;
817         fid = flash_id;
818         ha->fdt_wrt_disable = 0x9c;
819         ha->fdt_erase_cmd = flash_conf_addr(ha, 0x03d8);
820         switch (man_id) {
821         case 0xbf: /* STT flash. */
822                 if (flash_id == 0x8e)
823                         ha->fdt_block_size = FLASH_BLK_SIZE_64K;
824                 else
825                         ha->fdt_block_size = FLASH_BLK_SIZE_32K;
826
827                 if (flash_id == 0x80)
828                         ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0352);
829                 break;
830         case 0x13: /* ST M25P80. */
831                 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
832                 break;
833         case 0x1f: /* Atmel 26DF081A. */
834                 ha->fdt_block_size = FLASH_BLK_SIZE_4K;
835                 ha->fdt_erase_cmd = flash_conf_addr(ha, 0x0320);
836                 ha->fdt_unprotect_sec_cmd = flash_conf_addr(ha, 0x0339);
837                 ha->fdt_protect_sec_cmd = flash_conf_addr(ha, 0x0336);
838                 break;
839         default:
840                 /* Default to 64 kb sector size. */
841                 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
842                 break;
843         }
844 done:
845         DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
846             "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
847             ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
848             ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
849             ha->fdt_block_size));
850 }
851
852 int
853 qla2xxx_get_flash_info(scsi_qla_host_t *vha)
854 {
855         int ret;
856         uint32_t flt_addr;
857         struct qla_hw_data *ha = vha->hw;
858
859         if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
860                 return QLA_SUCCESS;
861
862         ret = qla2xxx_find_flt_start(vha, &flt_addr);
863         if (ret != QLA_SUCCESS)
864                 return ret;
865
866         qla2xxx_get_flt_info(vha, flt_addr);
867         qla2xxx_get_fdt_info(vha);
868
869         return QLA_SUCCESS;
870 }
871
872 void
873 qla2xxx_flash_npiv_conf(scsi_qla_host_t *vha)
874 {
875 #define NPIV_CONFIG_SIZE        (16*1024)
876         void *data;
877         uint16_t *wptr;
878         uint16_t cnt, chksum;
879         int i;
880         struct qla_npiv_header hdr;
881         struct qla_npiv_entry *entry;
882         struct qla_hw_data *ha = vha->hw;
883
884         if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha) && !IS_QLA81XX(ha))
885                 return;
886
887         ha->isp_ops->read_optrom(vha, (uint8_t *)&hdr,
888             ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
889         if (hdr.version == __constant_cpu_to_le16(0xffff))
890                 return;
891         if (hdr.version != __constant_cpu_to_le16(1)) {
892                 DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
893                     "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
894                     le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
895                     le16_to_cpu(hdr.checksum)));
896                 return;
897         }
898
899         data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
900         if (!data) {
901                 DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
902                     "allocate memory.\n"));
903                 return;
904         }
905
906         ha->isp_ops->read_optrom(vha, (uint8_t *)data,
907             ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
908
909         cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
910             sizeof(struct qla_npiv_entry)) >> 1;
911         for (wptr = data, chksum = 0; cnt; cnt--)
912                 chksum += le16_to_cpu(*wptr++);
913         if (chksum) {
914                 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
915                     "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
916                     le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
917                     chksum));
918                 goto done;
919         }
920
921         entry = data + sizeof(struct qla_npiv_header);
922         cnt = le16_to_cpu(hdr.entries);
923         ha->flex_port_count = cnt;
924         for (i = 0; cnt; cnt--, entry++, i++) {
925                 uint16_t flags;
926                 struct fc_vport_identifiers vid;
927                 struct fc_vport *vport;
928
929                 flags = le16_to_cpu(entry->flags);
930                 if (flags == 0xffff)
931                         continue;
932                 if ((flags & BIT_0) == 0)
933                         continue;
934
935                 memset(&vid, 0, sizeof(vid));
936                 vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
937                 vid.vport_type = FC_PORTTYPE_NPIV;
938                 vid.disable = false;
939                 vid.port_name = wwn_to_u64(entry->port_name);
940                 vid.node_name = wwn_to_u64(entry->node_name);
941
942                 memcpy(&ha->npiv_info[i], entry, sizeof(struct qla_npiv_entry));
943
944                 DEBUG2(qla_printk(KERN_DEBUG, ha, "NPIV[%02x]: wwpn=%llx "
945                         "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt,
946                         vid.port_name, vid.node_name, le16_to_cpu(entry->vf_id),
947                         entry->q_qos, entry->f_qos));
948
949                 if (i < QLA_PRECONFIG_VPORTS) {
950                         vport = fc_vport_create(vha->host, 0, &vid);
951                         if (!vport)
952                                 qla_printk(KERN_INFO, ha,
953                                 "NPIV-Config: Failed to create vport [%02x]: "
954                                 "wwpn=%llx wwnn=%llx.\n", cnt,
955                                 vid.port_name, vid.node_name);
956                 }
957         }
958 done:
959         kfree(data);
960         ha->npiv_info = NULL;
961 }
962
963 static int
964 qla24xx_unprotect_flash(scsi_qla_host_t *vha)
965 {
966         struct qla_hw_data *ha = vha->hw;
967         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
968
969         if (ha->flags.fac_supported)
970                 return qla81xx_fac_do_write_enable(vha, 1);
971
972         /* Enable flash write. */
973         WRT_REG_DWORD(&reg->ctrl_status,
974             RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
975         RD_REG_DWORD(&reg->ctrl_status);        /* PCI Posting. */
976
977         if (!ha->fdt_wrt_disable)
978                 goto done;
979
980         /* Disable flash write-protection, first clear SR protection bit */
981         qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
982         /* Then write zero again to clear remaining SR bits.*/
983         qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101), 0);
984 done:
985         return QLA_SUCCESS;
986 }
987
988 static int
989 qla24xx_protect_flash(scsi_qla_host_t *vha)
990 {
991         uint32_t cnt;
992         struct qla_hw_data *ha = vha->hw;
993         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
994
995         if (ha->flags.fac_supported)
996                 return qla81xx_fac_do_write_enable(vha, 0);
997
998         if (!ha->fdt_wrt_disable)
999                 goto skip_wrt_protect;
1000
1001         /* Enable flash write-protection and wait for completion. */
1002         qla24xx_write_flash_dword(ha, flash_conf_addr(ha, 0x101),
1003             ha->fdt_wrt_disable);
1004         for (cnt = 300; cnt &&
1005             qla24xx_read_flash_dword(ha, flash_conf_addr(ha, 0x005)) & BIT_0;
1006             cnt--) {
1007                 udelay(10);
1008         }
1009
1010 skip_wrt_protect:
1011         /* Disable flash write. */
1012         WRT_REG_DWORD(&reg->ctrl_status,
1013             RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1014         RD_REG_DWORD(&reg->ctrl_status);        /* PCI Posting. */
1015
1016         return QLA_SUCCESS;
1017 }
1018
1019 static int
1020 qla24xx_erase_sector(scsi_qla_host_t *vha, uint32_t fdata)
1021 {
1022         struct qla_hw_data *ha = vha->hw;
1023         uint32_t start, finish;
1024
1025         if (ha->flags.fac_supported) {
1026                 start = fdata >> 2;
1027                 finish = start + (ha->fdt_block_size >> 2) - 1;
1028                 return qla81xx_fac_erase_sector(vha, flash_data_addr(ha,
1029                     start), flash_data_addr(ha, finish));
1030         }
1031
1032         return qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1033             (fdata & 0xff00) | ((fdata << 16) & 0xff0000) |
1034             ((fdata >> 16) & 0xff));
1035 }
1036
1037 static int
1038 qla24xx_write_flash_data(scsi_qla_host_t *vha, uint32_t *dwptr, uint32_t faddr,
1039     uint32_t dwords)
1040 {
1041         int ret;
1042         uint32_t liter;
1043         uint32_t sec_mask, rest_addr;
1044         uint32_t fdata;
1045         dma_addr_t optrom_dma;
1046         void *optrom = NULL;
1047         struct qla_hw_data *ha = vha->hw;
1048
1049         /* Prepare burst-capable write on supported ISPs. */
1050         if ((IS_QLA25XX(ha) || IS_QLA81XX(ha)) && !(faddr & 0xfff) &&
1051             dwords > OPTROM_BURST_DWORDS) {
1052                 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1053                     &optrom_dma, GFP_KERNEL);
1054                 if (!optrom) {
1055                         qla_printk(KERN_DEBUG, ha,
1056                             "Unable to allocate memory for optrom burst write "
1057                             "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
1058                 }
1059         }
1060
1061         rest_addr = (ha->fdt_block_size >> 2) - 1;
1062         sec_mask = ~rest_addr;
1063
1064         ret = qla24xx_unprotect_flash(vha);
1065         if (ret != QLA_SUCCESS) {
1066                 qla_printk(KERN_WARNING, ha,
1067                     "Unable to unprotect flash for update.\n");
1068                 goto done;
1069         }
1070
1071         for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
1072                 fdata = (faddr & sec_mask) << 2;
1073
1074                 /* Are we at the beginning of a sector? */
1075                 if ((faddr & rest_addr) == 0) {
1076                         /* Do sector unprotect. */
1077                         if (ha->fdt_unprotect_sec_cmd)
1078                                 qla24xx_write_flash_dword(ha,
1079                                     ha->fdt_unprotect_sec_cmd,
1080                                     (fdata & 0xff00) | ((fdata << 16) &
1081                                     0xff0000) | ((fdata >> 16) & 0xff));
1082                         ret = qla24xx_erase_sector(vha, fdata);
1083                         if (ret != QLA_SUCCESS) {
1084                                 DEBUG9(qla_printk(KERN_WARNING, ha,
1085                                     "Unable to erase sector: address=%x.\n",
1086                                     faddr));
1087                                 break;
1088                         }
1089                 }
1090
1091                 /* Go with burst-write. */
1092                 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1093                         /* Copy data to DMA'ble buffer. */
1094                         memcpy(optrom, dwptr, OPTROM_BURST_SIZE);
1095
1096                         ret = qla2x00_load_ram(vha, optrom_dma,
1097                             flash_data_addr(ha, faddr),
1098                             OPTROM_BURST_DWORDS);
1099                         if (ret != QLA_SUCCESS) {
1100                                 qla_printk(KERN_WARNING, ha,
1101                                     "Unable to burst-write optrom segment "
1102                                     "(%x/%x/%llx).\n", ret,
1103                                     flash_data_addr(ha, faddr),
1104                                     (unsigned long long)optrom_dma);
1105                                 qla_printk(KERN_WARNING, ha,
1106                                     "Reverting to slow-write.\n");
1107
1108                                 dma_free_coherent(&ha->pdev->dev,
1109                                     OPTROM_BURST_SIZE, optrom, optrom_dma);
1110                                 optrom = NULL;
1111                         } else {
1112                                 liter += OPTROM_BURST_DWORDS - 1;
1113                                 faddr += OPTROM_BURST_DWORDS - 1;
1114                                 dwptr += OPTROM_BURST_DWORDS - 1;
1115                                 continue;
1116                         }
1117                 }
1118
1119                 ret = qla24xx_write_flash_dword(ha,
1120                     flash_data_addr(ha, faddr), cpu_to_le32(*dwptr));
1121                 if (ret != QLA_SUCCESS) {
1122                         DEBUG9(printk("%s(%ld) Unable to program flash "
1123                             "address=%x data=%x.\n", __func__,
1124                             vha->host_no, faddr, *dwptr));
1125                         break;
1126                 }
1127
1128                 /* Do sector protect. */
1129                 if (ha->fdt_unprotect_sec_cmd &&
1130                     ((faddr & rest_addr) == rest_addr))
1131                         qla24xx_write_flash_dword(ha,
1132                             ha->fdt_protect_sec_cmd,
1133                             (fdata & 0xff00) | ((fdata << 16) &
1134                             0xff0000) | ((fdata >> 16) & 0xff));
1135         }
1136
1137         ret = qla24xx_protect_flash(vha);
1138         if (ret != QLA_SUCCESS)
1139                 qla_printk(KERN_WARNING, ha,
1140                     "Unable to protect flash after update.\n");
1141 done:
1142         if (optrom)
1143                 dma_free_coherent(&ha->pdev->dev,
1144                     OPTROM_BURST_SIZE, optrom, optrom_dma);
1145
1146         return ret;
1147 }
1148
1149 uint8_t *
1150 qla2x00_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1151     uint32_t bytes)
1152 {
1153         uint32_t i;
1154         uint16_t *wptr;
1155         struct qla_hw_data *ha = vha->hw;
1156
1157         /* Word reads to NVRAM via registers. */
1158         wptr = (uint16_t *)buf;
1159         qla2x00_lock_nvram_access(ha);
1160         for (i = 0; i < bytes >> 1; i++, naddr++)
1161                 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1162                     naddr));
1163         qla2x00_unlock_nvram_access(ha);
1164
1165         return buf;
1166 }
1167
1168 uint8_t *
1169 qla24xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1170     uint32_t bytes)
1171 {
1172         uint32_t i;
1173         uint32_t *dwptr;
1174         struct qla_hw_data *ha = vha->hw;
1175
1176         /* Dword reads to flash. */
1177         dwptr = (uint32_t *)buf;
1178         for (i = 0; i < bytes >> 2; i++, naddr++)
1179                 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1180                     nvram_data_addr(ha, naddr)));
1181
1182         return buf;
1183 }
1184
1185 int
1186 qla2x00_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1187     uint32_t bytes)
1188 {
1189         int ret, stat;
1190         uint32_t i;
1191         uint16_t *wptr;
1192         unsigned long flags;
1193         struct qla_hw_data *ha = vha->hw;
1194
1195         ret = QLA_SUCCESS;
1196
1197         spin_lock_irqsave(&ha->hardware_lock, flags);
1198         qla2x00_lock_nvram_access(ha);
1199
1200         /* Disable NVRAM write-protection. */
1201         stat = qla2x00_clear_nvram_protection(ha);
1202
1203         wptr = (uint16_t *)buf;
1204         for (i = 0; i < bytes >> 1; i++, naddr++) {
1205                 qla2x00_write_nvram_word(ha, naddr,
1206                     cpu_to_le16(*wptr));
1207                 wptr++;
1208         }
1209
1210         /* Enable NVRAM write-protection. */
1211         qla2x00_set_nvram_protection(ha, stat);
1212
1213         qla2x00_unlock_nvram_access(ha);
1214         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1215
1216         return ret;
1217 }
1218
1219 int
1220 qla24xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1221     uint32_t bytes)
1222 {
1223         int ret;
1224         uint32_t i;
1225         uint32_t *dwptr;
1226         struct qla_hw_data *ha = vha->hw;
1227         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1228
1229         ret = QLA_SUCCESS;
1230
1231         /* Enable flash write. */
1232         WRT_REG_DWORD(&reg->ctrl_status,
1233             RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1234         RD_REG_DWORD(&reg->ctrl_status);        /* PCI Posting. */
1235
1236         /* Disable NVRAM write-protection. */
1237         qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1238         qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0);
1239
1240         /* Dword writes to flash. */
1241         dwptr = (uint32_t *)buf;
1242         for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1243                 ret = qla24xx_write_flash_dword(ha,
1244                     nvram_data_addr(ha, naddr), cpu_to_le32(*dwptr));
1245                 if (ret != QLA_SUCCESS) {
1246                         DEBUG9(qla_printk(KERN_WARNING, ha,
1247                             "Unable to program nvram address=%x data=%x.\n",
1248                             naddr, *dwptr));
1249                         break;
1250                 }
1251         }
1252
1253         /* Enable NVRAM write-protection. */
1254         qla24xx_write_flash_dword(ha, nvram_conf_addr(ha, 0x101), 0x8c);
1255
1256         /* Disable flash write. */
1257         WRT_REG_DWORD(&reg->ctrl_status,
1258             RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1259         RD_REG_DWORD(&reg->ctrl_status);        /* PCI Posting. */
1260
1261         return ret;
1262 }
1263
1264 uint8_t *
1265 qla25xx_read_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1266     uint32_t bytes)
1267 {
1268         uint32_t i;
1269         uint32_t *dwptr;
1270         struct qla_hw_data *ha = vha->hw;
1271
1272         /* Dword reads to flash. */
1273         dwptr = (uint32_t *)buf;
1274         for (i = 0; i < bytes >> 2; i++, naddr++)
1275                 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1276                     flash_data_addr(ha, ha->flt_region_vpd_nvram | naddr)));
1277
1278         return buf;
1279 }
1280
1281 int
1282 qla25xx_write_nvram_data(scsi_qla_host_t *vha, uint8_t *buf, uint32_t naddr,
1283     uint32_t bytes)
1284 {
1285         struct qla_hw_data *ha = vha->hw;
1286 #define RMW_BUFFER_SIZE (64 * 1024)
1287         uint8_t *dbuf;
1288
1289         dbuf = vmalloc(RMW_BUFFER_SIZE);
1290         if (!dbuf)
1291                 return QLA_MEMORY_ALLOC_FAILED;
1292         ha->isp_ops->read_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1293             RMW_BUFFER_SIZE);
1294         memcpy(dbuf + (naddr << 2), buf, bytes);
1295         ha->isp_ops->write_optrom(vha, dbuf, ha->flt_region_vpd_nvram << 2,
1296             RMW_BUFFER_SIZE);
1297         vfree(dbuf);
1298
1299         return QLA_SUCCESS;
1300 }
1301
1302 static inline void
1303 qla2x00_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1304 {
1305         if (IS_QLA2322(ha)) {
1306                 /* Flip all colors. */
1307                 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1308                         /* Turn off. */
1309                         ha->beacon_color_state = 0;
1310                         *pflags = GPIO_LED_ALL_OFF;
1311                 } else {
1312                         /* Turn on. */
1313                         ha->beacon_color_state = QLA_LED_ALL_ON;
1314                         *pflags = GPIO_LED_RGA_ON;
1315                 }
1316         } else {
1317                 /* Flip green led only. */
1318                 if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1319                         /* Turn off. */
1320                         ha->beacon_color_state = 0;
1321                         *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1322                 } else {
1323                         /* Turn on. */
1324                         ha->beacon_color_state = QLA_LED_GRN_ON;
1325                         *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1326                 }
1327         }
1328 }
1329
1330 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1331
1332 void
1333 qla2x00_beacon_blink(struct scsi_qla_host *vha)
1334 {
1335         uint16_t gpio_enable;
1336         uint16_t gpio_data;
1337         uint16_t led_color = 0;
1338         unsigned long flags;
1339         struct qla_hw_data *ha = vha->hw;
1340         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1341
1342         spin_lock_irqsave(&ha->hardware_lock, flags);
1343
1344         /* Save the Original GPIOE. */
1345         if (ha->pio_address) {
1346                 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1347                 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1348         } else {
1349                 gpio_enable = RD_REG_WORD(&reg->gpioe);
1350                 gpio_data = RD_REG_WORD(&reg->gpiod);
1351         }
1352
1353         /* Set the modified gpio_enable values */
1354         gpio_enable |= GPIO_LED_MASK;
1355
1356         if (ha->pio_address) {
1357                 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1358         } else {
1359                 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1360                 RD_REG_WORD(&reg->gpioe);
1361         }
1362
1363         qla2x00_flip_colors(ha, &led_color);
1364
1365         /* Clear out any previously set LED color. */
1366         gpio_data &= ~GPIO_LED_MASK;
1367
1368         /* Set the new input LED color to GPIOD. */
1369         gpio_data |= led_color;
1370
1371         /* Set the modified gpio_data values */
1372         if (ha->pio_address) {
1373                 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1374         } else {
1375                 WRT_REG_WORD(&reg->gpiod, gpio_data);
1376                 RD_REG_WORD(&reg->gpiod);
1377         }
1378
1379         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1380 }
1381
1382 int
1383 qla2x00_beacon_on(struct scsi_qla_host *vha)
1384 {
1385         uint16_t gpio_enable;
1386         uint16_t gpio_data;
1387         unsigned long flags;
1388         struct qla_hw_data *ha = vha->hw;
1389         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1390
1391         ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1392         ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1393
1394         if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1395                 qla_printk(KERN_WARNING, ha,
1396                     "Unable to update fw options (beacon on).\n");
1397                 return QLA_FUNCTION_FAILED;
1398         }
1399
1400         /* Turn off LEDs. */
1401         spin_lock_irqsave(&ha->hardware_lock, flags);
1402         if (ha->pio_address) {
1403                 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1404                 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1405         } else {
1406                 gpio_enable = RD_REG_WORD(&reg->gpioe);
1407                 gpio_data = RD_REG_WORD(&reg->gpiod);
1408         }
1409         gpio_enable |= GPIO_LED_MASK;
1410
1411         /* Set the modified gpio_enable values. */
1412         if (ha->pio_address) {
1413                 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1414         } else {
1415                 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1416                 RD_REG_WORD(&reg->gpioe);
1417         }
1418
1419         /* Clear out previously set LED colour. */
1420         gpio_data &= ~GPIO_LED_MASK;
1421         if (ha->pio_address) {
1422                 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1423         } else {
1424                 WRT_REG_WORD(&reg->gpiod, gpio_data);
1425                 RD_REG_WORD(&reg->gpiod);
1426         }
1427         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1428
1429         /*
1430          * Let the per HBA timer kick off the blinking process based on
1431          * the following flags. No need to do anything else now.
1432          */
1433         ha->beacon_blink_led = 1;
1434         ha->beacon_color_state = 0;
1435
1436         return QLA_SUCCESS;
1437 }
1438
1439 int
1440 qla2x00_beacon_off(struct scsi_qla_host *vha)
1441 {
1442         int rval = QLA_SUCCESS;
1443         struct qla_hw_data *ha = vha->hw;
1444
1445         ha->beacon_blink_led = 0;
1446
1447         /* Set the on flag so when it gets flipped it will be off. */
1448         if (IS_QLA2322(ha))
1449                 ha->beacon_color_state = QLA_LED_ALL_ON;
1450         else
1451                 ha->beacon_color_state = QLA_LED_GRN_ON;
1452
1453         ha->isp_ops->beacon_blink(vha); /* This turns green LED off */
1454
1455         ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1456         ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1457
1458         rval = qla2x00_set_fw_options(vha, ha->fw_options);
1459         if (rval != QLA_SUCCESS)
1460                 qla_printk(KERN_WARNING, ha,
1461                     "Unable to update fw options (beacon off).\n");
1462         return rval;
1463 }
1464
1465
1466 static inline void
1467 qla24xx_flip_colors(struct qla_hw_data *ha, uint16_t *pflags)
1468 {
1469         /* Flip all colors. */
1470         if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1471                 /* Turn off. */
1472                 ha->beacon_color_state = 0;
1473                 *pflags = 0;
1474         } else {
1475                 /* Turn on. */
1476                 ha->beacon_color_state = QLA_LED_ALL_ON;
1477                 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1478         }
1479 }
1480
1481 void
1482 qla24xx_beacon_blink(struct scsi_qla_host *vha)
1483 {
1484         uint16_t led_color = 0;
1485         uint32_t gpio_data;
1486         unsigned long flags;
1487         struct qla_hw_data *ha = vha->hw;
1488         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1489
1490         /* Save the Original GPIOD. */
1491         spin_lock_irqsave(&ha->hardware_lock, flags);
1492         gpio_data = RD_REG_DWORD(&reg->gpiod);
1493
1494         /* Enable the gpio_data reg for update. */
1495         gpio_data |= GPDX_LED_UPDATE_MASK;
1496
1497         WRT_REG_DWORD(&reg->gpiod, gpio_data);
1498         gpio_data = RD_REG_DWORD(&reg->gpiod);
1499
1500         /* Set the color bits. */
1501         qla24xx_flip_colors(ha, &led_color);
1502
1503         /* Clear out any previously set LED color. */
1504         gpio_data &= ~GPDX_LED_COLOR_MASK;
1505
1506         /* Set the new input LED color to GPIOD. */
1507         gpio_data |= led_color;
1508
1509         /* Set the modified gpio_data values. */
1510         WRT_REG_DWORD(&reg->gpiod, gpio_data);
1511         gpio_data = RD_REG_DWORD(&reg->gpiod);
1512         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1513 }
1514
1515 int
1516 qla24xx_beacon_on(struct scsi_qla_host *vha)
1517 {
1518         uint32_t gpio_data;
1519         unsigned long flags;
1520         struct qla_hw_data *ha = vha->hw;
1521         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1522
1523         if (ha->beacon_blink_led == 0) {
1524                 /* Enable firmware for update */
1525                 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1526
1527                 if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS)
1528                         return QLA_FUNCTION_FAILED;
1529
1530                 if (qla2x00_get_fw_options(vha, ha->fw_options) !=
1531                     QLA_SUCCESS) {
1532                         qla_printk(KERN_WARNING, ha,
1533                             "Unable to update fw options (beacon on).\n");
1534                         return QLA_FUNCTION_FAILED;
1535                 }
1536
1537                 spin_lock_irqsave(&ha->hardware_lock, flags);
1538                 gpio_data = RD_REG_DWORD(&reg->gpiod);
1539
1540                 /* Enable the gpio_data reg for update. */
1541                 gpio_data |= GPDX_LED_UPDATE_MASK;
1542                 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1543                 RD_REG_DWORD(&reg->gpiod);
1544
1545                 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1546         }
1547
1548         /* So all colors blink together. */
1549         ha->beacon_color_state = 0;
1550
1551         /* Let the per HBA timer kick off the blinking process. */
1552         ha->beacon_blink_led = 1;
1553
1554         return QLA_SUCCESS;
1555 }
1556
1557 int
1558 qla24xx_beacon_off(struct scsi_qla_host *vha)
1559 {
1560         uint32_t gpio_data;
1561         unsigned long flags;
1562         struct qla_hw_data *ha = vha->hw;
1563         struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1564
1565         ha->beacon_blink_led = 0;
1566         ha->beacon_color_state = QLA_LED_ALL_ON;
1567
1568         ha->isp_ops->beacon_blink(vha); /* Will flip to all off. */
1569
1570         /* Give control back to firmware. */
1571         spin_lock_irqsave(&ha->hardware_lock, flags);
1572         gpio_data = RD_REG_DWORD(&reg->gpiod);
1573
1574         /* Disable the gpio_data reg for update. */
1575         gpio_data &= ~GPDX_LED_UPDATE_MASK;
1576         WRT_REG_DWORD(&reg->gpiod, gpio_data);
1577         RD_REG_DWORD(&reg->gpiod);
1578         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1579
1580         ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1581
1582         if (qla2x00_set_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1583                 qla_printk(KERN_WARNING, ha,
1584                     "Unable to update fw options (beacon off).\n");
1585                 return QLA_FUNCTION_FAILED;
1586         }
1587
1588         if (qla2x00_get_fw_options(vha, ha->fw_options) != QLA_SUCCESS) {
1589                 qla_printk(KERN_WARNING, ha,
1590                     "Unable to get fw options (beacon off).\n");
1591                 return QLA_FUNCTION_FAILED;
1592         }
1593
1594         return QLA_SUCCESS;
1595 }
1596
1597
1598 /*
1599  * Flash support routines
1600  */
1601
1602 /**
1603  * qla2x00_flash_enable() - Setup flash for reading and writing.
1604  * @ha: HA context
1605  */
1606 static void
1607 qla2x00_flash_enable(struct qla_hw_data *ha)
1608 {
1609         uint16_t data;
1610         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1611
1612         data = RD_REG_WORD(&reg->ctrl_status);
1613         data |= CSR_FLASH_ENABLE;
1614         WRT_REG_WORD(&reg->ctrl_status, data);
1615         RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1616 }
1617
1618 /**
1619  * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1620  * @ha: HA context
1621  */
1622 static void
1623 qla2x00_flash_disable(struct qla_hw_data *ha)
1624 {
1625         uint16_t data;
1626         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1627
1628         data = RD_REG_WORD(&reg->ctrl_status);
1629         data &= ~(CSR_FLASH_ENABLE);
1630         WRT_REG_WORD(&reg->ctrl_status, data);
1631         RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1632 }
1633
1634 /**
1635  * qla2x00_read_flash_byte() - Reads a byte from flash
1636  * @ha: HA context
1637  * @addr: Address in flash to read
1638  *
1639  * A word is read from the chip, but, only the lower byte is valid.
1640  *
1641  * Returns the byte read from flash @addr.
1642  */
1643 static uint8_t
1644 qla2x00_read_flash_byte(struct qla_hw_data *ha, uint32_t addr)
1645 {
1646         uint16_t data;
1647         uint16_t bank_select;
1648         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1649
1650         bank_select = RD_REG_WORD(&reg->ctrl_status);
1651
1652         if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1653                 /* Specify 64K address range: */
1654                 /*  clear out Module Select and Flash Address bits [19:16]. */
1655                 bank_select &= ~0xf8;
1656                 bank_select |= addr >> 12 & 0xf0;
1657                 bank_select |= CSR_FLASH_64K_BANK;
1658                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1659                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1660
1661                 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1662                 data = RD_REG_WORD(&reg->flash_data);
1663
1664                 return (uint8_t)data;
1665         }
1666
1667         /* Setup bit 16 of flash address. */
1668         if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1669                 bank_select |= CSR_FLASH_64K_BANK;
1670                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1671                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1672         } else if (((addr & BIT_16) == 0) &&
1673             (bank_select & CSR_FLASH_64K_BANK)) {
1674                 bank_select &= ~(CSR_FLASH_64K_BANK);
1675                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1676                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1677         }
1678
1679         /* Always perform IO mapped accesses to the FLASH registers. */
1680         if (ha->pio_address) {
1681                 uint16_t data2;
1682
1683                 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1684                 do {
1685                         data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1686                         barrier();
1687                         cpu_relax();
1688                         data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1689                 } while (data != data2);
1690         } else {
1691                 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1692                 data = qla2x00_debounce_register(&reg->flash_data);
1693         }
1694
1695         return (uint8_t)data;
1696 }
1697
1698 /**
1699  * qla2x00_write_flash_byte() - Write a byte to flash
1700  * @ha: HA context
1701  * @addr: Address in flash to write
1702  * @data: Data to write
1703  */
1704 static void
1705 qla2x00_write_flash_byte(struct qla_hw_data *ha, uint32_t addr, uint8_t data)
1706 {
1707         uint16_t bank_select;
1708         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1709
1710         bank_select = RD_REG_WORD(&reg->ctrl_status);
1711         if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1712                 /* Specify 64K address range: */
1713                 /*  clear out Module Select and Flash Address bits [19:16]. */
1714                 bank_select &= ~0xf8;
1715                 bank_select |= addr >> 12 & 0xf0;
1716                 bank_select |= CSR_FLASH_64K_BANK;
1717                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1718                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1719
1720                 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1721                 RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1722                 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1723                 RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1724
1725                 return;
1726         }
1727
1728         /* Setup bit 16 of flash address. */
1729         if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1730                 bank_select |= CSR_FLASH_64K_BANK;
1731                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1732                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1733         } else if (((addr & BIT_16) == 0) &&
1734             (bank_select & CSR_FLASH_64K_BANK)) {
1735                 bank_select &= ~(CSR_FLASH_64K_BANK);
1736                 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1737                 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1738         }
1739
1740         /* Always perform IO mapped accesses to the FLASH registers. */
1741         if (ha->pio_address) {
1742                 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1743                 WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1744         } else {
1745                 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1746                 RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1747                 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1748                 RD_REG_WORD(&reg->ctrl_status);         /* PCI Posting. */
1749         }
1750 }
1751
1752 /**
1753  * qla2x00_poll_flash() - Polls flash for completion.
1754  * @ha: HA context
1755  * @addr: Address in flash to poll
1756  * @poll_data: Data to be polled
1757  * @man_id: Flash manufacturer ID
1758  * @flash_id: Flash ID
1759  *
1760  * This function polls the device until bit 7 of what is read matches data
1761  * bit 7 or until data bit 5 becomes a 1.  If that hapens, the flash ROM timed
1762  * out (a fatal error).  The flash book recommeds reading bit 7 again after
1763  * reading bit 5 as a 1.
1764  *
1765  * Returns 0 on success, else non-zero.
1766  */
1767 static int
1768 qla2x00_poll_flash(struct qla_hw_data *ha, uint32_t addr, uint8_t poll_data,
1769     uint8_t man_id, uint8_t flash_id)
1770 {
1771         int status;
1772         uint8_t flash_data;
1773         uint32_t cnt;
1774
1775         status = 1;
1776
1777         /* Wait for 30 seconds for command to finish. */
1778         poll_data &= BIT_7;
1779         for (cnt = 3000000; cnt; cnt--) {
1780                 flash_data = qla2x00_read_flash_byte(ha, addr);
1781                 if ((flash_data & BIT_7) == poll_data) {
1782                         status = 0;
1783                         break;
1784                 }
1785
1786                 if (man_id != 0x40 && man_id != 0xda) {
1787                         if ((flash_data & BIT_5) && cnt > 2)
1788                                 cnt = 2;
1789                 }
1790                 udelay(10);
1791                 barrier();
1792                 cond_resched();
1793         }
1794         return status;
1795 }
1796
1797 /**
1798  * qla2x00_program_flash_address() - Programs a flash address
1799  * @ha: HA context
1800  * @addr: Address in flash to program
1801  * @data: Data to be written in flash
1802  * @man_id: Flash manufacturer ID
1803  * @flash_id: Flash ID
1804  *
1805  * Returns 0 on success, else non-zero.
1806  */
1807 static int
1808 qla2x00_program_flash_address(struct qla_hw_data *ha, uint32_t addr,
1809     uint8_t data, uint8_t man_id, uint8_t flash_id)
1810 {
1811         /* Write Program Command Sequence. */
1812         if (IS_OEM_001(ha)) {
1813                 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1814                 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1815                 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1816                 qla2x00_write_flash_byte(ha, addr, data);
1817         } else {
1818                 if (man_id == 0xda && flash_id == 0xc1) {
1819                         qla2x00_write_flash_byte(ha, addr, data);
1820                         if (addr & 0x7e)
1821                                 return 0;
1822                 } else {
1823                         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1824                         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1825                         qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1826                         qla2x00_write_flash_byte(ha, addr, data);
1827                 }
1828         }
1829
1830         udelay(150);
1831
1832         /* Wait for write to complete. */
1833         return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1834 }
1835
1836 /**
1837  * qla2x00_erase_flash() - Erase the flash.
1838  * @ha: HA context
1839  * @man_id: Flash manufacturer ID
1840  * @flash_id: Flash ID
1841  *
1842  * Returns 0 on success, else non-zero.
1843  */
1844 static int
1845 qla2x00_erase_flash(struct qla_hw_data *ha, uint8_t man_id, uint8_t flash_id)
1846 {
1847         /* Individual Sector Erase Command Sequence */
1848         if (IS_OEM_001(ha)) {
1849                 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1850                 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1851                 qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1852                 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1853                 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1854                 qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1855         } else {
1856                 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1857                 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1858                 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1859                 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1860                 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1861                 qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1862         }
1863
1864         udelay(150);
1865
1866         /* Wait for erase to complete. */
1867         return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1868 }
1869
1870 /**
1871  * qla2x00_erase_flash_sector() - Erase a flash sector.
1872  * @ha: HA context
1873  * @addr: Flash sector to erase
1874  * @sec_mask: Sector address mask
1875  * @man_id: Flash manufacturer ID
1876  * @flash_id: Flash ID
1877  *
1878  * Returns 0 on success, else non-zero.
1879  */
1880 static int
1881 qla2x00_erase_flash_sector(struct qla_hw_data *ha, uint32_t addr,
1882     uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1883 {
1884         /* Individual Sector Erase Command Sequence */
1885         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1886         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1887         qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1888         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1889         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1890         if (man_id == 0x1f && flash_id == 0x13)
1891                 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1892         else
1893                 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1894
1895         udelay(150);
1896
1897         /* Wait for erase to complete. */
1898         return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1899 }
1900
1901 /**
1902  * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1903  * @man_id: Flash manufacturer ID
1904  * @flash_id: Flash ID
1905  */
1906 static void
1907 qla2x00_get_flash_manufacturer(struct qla_hw_data *ha, uint8_t *man_id,
1908     uint8_t *flash_id)
1909 {
1910         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1911         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1912         qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1913         *man_id = qla2x00_read_flash_byte(ha, 0x0000);
1914         *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1915         qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1916         qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1917         qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1918 }
1919
1920 static void
1921 qla2x00_read_flash_data(struct qla_hw_data *ha, uint8_t *tmp_buf,
1922         uint32_t saddr, uint32_t length)
1923 {
1924         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1925         uint32_t midpoint, ilength;
1926         uint8_t data;
1927
1928         midpoint = length / 2;
1929
1930         WRT_REG_WORD(&reg->nvram, 0);
1931         RD_REG_WORD(&reg->nvram);
1932         for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1933                 if (ilength == midpoint) {
1934                         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1935                         RD_REG_WORD(&reg->nvram);
1936                 }
1937                 data = qla2x00_read_flash_byte(ha, saddr);
1938                 if (saddr % 100)
1939                         udelay(10);
1940                 *tmp_buf = data;
1941                 cond_resched();
1942         }
1943 }
1944
1945 static inline void
1946 qla2x00_suspend_hba(struct scsi_qla_host *vha)
1947 {
1948         int cnt;
1949         unsigned long flags;
1950         struct qla_hw_data *ha = vha->hw;
1951         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1952
1953         /* Suspend HBA. */
1954         scsi_block_requests(vha->host);
1955         ha->isp_ops->disable_intrs(ha);
1956         set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1957
1958         /* Pause RISC. */
1959         spin_lock_irqsave(&ha->hardware_lock, flags);
1960         WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1961         RD_REG_WORD(&reg->hccr);
1962         if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1963                 for (cnt = 0; cnt < 30000; cnt++) {
1964                         if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1965                                 break;
1966                         udelay(100);
1967                 }
1968         } else {
1969                 udelay(10);
1970         }
1971         spin_unlock_irqrestore(&ha->hardware_lock, flags);
1972 }
1973
1974 static inline void
1975 qla2x00_resume_hba(struct scsi_qla_host *vha)
1976 {
1977         struct qla_hw_data *ha = vha->hw;
1978
1979         /* Resume HBA. */
1980         clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1981         set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
1982         qla2xxx_wake_dpc(vha);
1983         qla2x00_wait_for_chip_reset(vha);
1984         scsi_unblock_requests(vha->host);
1985 }
1986
1987 uint8_t *
1988 qla2x00_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
1989     uint32_t offset, uint32_t length)
1990 {
1991         uint32_t addr, midpoint;
1992         uint8_t *data;
1993         struct qla_hw_data *ha = vha->hw;
1994         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1995
1996         /* Suspend HBA. */
1997         qla2x00_suspend_hba(vha);
1998
1999         /* Go with read. */
2000         midpoint = ha->optrom_size / 2;
2001
2002         qla2x00_flash_enable(ha);
2003         WRT_REG_WORD(&reg->nvram, 0);
2004         RD_REG_WORD(&reg->nvram);               /* PCI Posting. */
2005         for (addr = offset, data = buf; addr < length; addr++, data++) {
2006                 if (addr == midpoint) {
2007                         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2008                         RD_REG_WORD(&reg->nvram);       /* PCI Posting. */
2009                 }
2010
2011                 *data = qla2x00_read_flash_byte(ha, addr);
2012         }
2013         qla2x00_flash_disable(ha);
2014
2015         /* Resume HBA. */
2016         qla2x00_resume_hba(vha);
2017
2018         return buf;
2019 }
2020
2021 int
2022 qla2x00_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2023     uint32_t offset, uint32_t length)
2024 {
2025
2026         int rval;
2027         uint8_t man_id, flash_id, sec_number, data;
2028         uint16_t wd;
2029         uint32_t addr, liter, sec_mask, rest_addr;
2030         struct qla_hw_data *ha = vha->hw;
2031         struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
2032
2033         /* Suspend HBA. */
2034         qla2x00_suspend_hba(vha);
2035
2036         rval = QLA_SUCCESS;
2037         sec_number = 0;
2038
2039         /* Reset ISP chip. */
2040         WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
2041         pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
2042
2043         /* Go with write. */
2044         qla2x00_flash_enable(ha);
2045         do {    /* Loop once to provide quick error exit */
2046                 /* Structure of flash memory based on manufacturer */
2047                 if (IS_OEM_001(ha)) {
2048                         /* OEM variant with special flash part. */
2049                         man_id = flash_id = 0;
2050                         rest_addr = 0xffff;
2051                         sec_mask   = 0x10000;
2052                         goto update_flash;
2053                 }
2054                 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
2055                 switch (man_id) {
2056                 case 0x20: /* ST flash. */
2057                         if (flash_id == 0xd2 || flash_id == 0xe3) {
2058                                 /*
2059                                  * ST m29w008at part - 64kb sector size with
2060                                  * 32kb,8kb,8kb,16kb sectors at memory address
2061                                  * 0xf0000.
2062                                  */
2063                                 rest_addr = 0xffff;
2064                                 sec_mask = 0x10000;
2065                                 break;   
2066                         }
2067                         /*
2068                          * ST m29w010b part - 16kb sector size
2069                          * Default to 16kb sectors
2070                          */
2071                         rest_addr = 0x3fff;
2072                         sec_mask = 0x1c000;
2073                         break;
2074                 case 0x40: /* Mostel flash. */
2075                         /* Mostel v29c51001 part - 512 byte sector size. */
2076                         rest_addr = 0x1ff;
2077                         sec_mask = 0x1fe00;
2078                         break;
2079                 case 0xbf: /* SST flash. */
2080                         /* SST39sf10 part - 4kb sector size. */
2081                         rest_addr = 0xfff;
2082                         sec_mask = 0x1f000;
2083                         break;
2084                 case 0xda: /* Winbond flash. */
2085                         /* Winbond W29EE011 part - 256 byte sector size. */
2086                         rest_addr = 0x7f;
2087                         sec_mask = 0x1ff80;
2088                         break;
2089                 case 0xc2: /* Macronix flash. */
2090                         /* 64k sector size. */
2091                         if (flash_id == 0x38 || flash_id == 0x4f) {
2092                                 rest_addr = 0xffff;
2093                                 sec_mask = 0x10000;
2094                                 break;
2095                         }
2096                         /* Fall through... */
2097
2098                 case 0x1f: /* Atmel flash. */
2099                         /* 512k sector size. */
2100                         if (flash_id == 0x13) {
2101                                 rest_addr = 0x7fffffff;
2102                                 sec_mask =   0x80000000;
2103                                 break;
2104                         }
2105                         /* Fall through... */
2106
2107                 case 0x01: /* AMD flash. */
2108                         if (flash_id == 0x38 || flash_id == 0x40 ||
2109                             flash_id == 0x4f) {
2110                                 /* Am29LV081 part - 64kb sector size. */
2111                                 /* Am29LV002BT part - 64kb sector size. */
2112                                 rest_addr = 0xffff;
2113                                 sec_mask = 0x10000;
2114                                 break;
2115                         } else if (flash_id == 0x3e) {
2116                                 /*
2117                                  * Am29LV008b part - 64kb sector size with
2118                                  * 32kb,8kb,8kb,16kb sector at memory address
2119                                  * h0xf0000.
2120                                  */
2121                                 rest_addr = 0xffff;
2122                                 sec_mask = 0x10000;
2123                                 break;
2124                         } else if (flash_id == 0x20 || flash_id == 0x6e) {
2125                                 /*
2126                                  * Am29LV010 part or AM29f010 - 16kb sector
2127                                  * size.
2128                                  */
2129                                 rest_addr = 0x3fff;
2130                                 sec_mask = 0x1c000;
2131                                 break;
2132                         } else if (flash_id == 0x6d) {
2133                                 /* Am29LV001 part - 8kb sector size. */
2134                                 rest_addr = 0x1fff;
2135                                 sec_mask = 0x1e000;
2136                                 break;
2137                         }
2138                 default:
2139                         /* Default to 16 kb sector size. */
2140                         rest_addr = 0x3fff;
2141                         sec_mask = 0x1c000;
2142                         break;
2143                 }
2144
2145 update_flash:
2146                 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2147                         if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2148                                 rval = QLA_FUNCTION_FAILED;
2149                                 break;
2150                         }
2151                 }
2152
2153                 for (addr = offset, liter = 0; liter < length; liter++,
2154                     addr++) {
2155                         data = buf[liter];
2156                         /* Are we at the beginning of a sector? */
2157                         if ((addr & rest_addr) == 0) {
2158                                 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2159                                         if (addr >= 0x10000UL) {
2160                                                 if (((addr >> 12) & 0xf0) &&
2161                                                     ((man_id == 0x01 &&
2162                                                         flash_id == 0x3e) ||
2163                                                      (man_id == 0x20 &&
2164                                                          flash_id == 0xd2))) {
2165                                                         sec_number++;
2166                                                         if (sec_number == 1) {
2167                                                                 rest_addr =
2168                                                                     0x7fff;
2169                                                                 sec_mask =
2170                                                                     0x18000;
2171                                                         } else if (
2172                                                             sec_number == 2 ||
2173                                                             sec_number == 3) {
2174                                                                 rest_addr =
2175                                                                     0x1fff;
2176                                                                 sec_mask =
2177                                                                     0x1e000;
2178                                                         } else if (
2179                                                             sec_number == 4) {
2180                                                                 rest_addr =
2181                                                                     0x3fff;
2182                                                                 sec_mask =
2183                                                                     0x1c000;
2184                                                         }
2185                                                 }
2186                                         }
2187                                 } else if (addr == ha->optrom_size / 2) {
2188                                         WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2189                                         RD_REG_WORD(&reg->nvram);
2190                                 }
2191
2192                                 if (flash_id == 0xda && man_id == 0xc1) {
2193                                         qla2x00_write_flash_byte(ha, 0x5555,
2194                                             0xaa);
2195                                         qla2x00_write_flash_byte(ha, 0x2aaa,
2196                                             0x55);
2197                                         qla2x00_write_flash_byte(ha, 0x5555,
2198                                             0xa0);
2199                                 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2200                                         /* Then erase it */
2201                                         if (qla2x00_erase_flash_sector(ha,
2202                                             addr, sec_mask, man_id,
2203                                             flash_id)) {
2204                                                 rval = QLA_FUNCTION_FAILED;
2205                                                 break;
2206                                         }
2207                                         if (man_id == 0x01 && flash_id == 0x6d)
2208                                                 sec_number++;
2209                                 }
2210                         }
2211
2212                         if (man_id == 0x01 && flash_id == 0x6d) {
2213                                 if (sec_number == 1 &&
2214                                     addr == (rest_addr - 1)) {
2215                                         rest_addr = 0x0fff;
2216                                         sec_mask   = 0x1f000;
2217                                 } else if (sec_number == 3 && (addr & 0x7ffe)) {
2218                                         rest_addr = 0x3fff;
2219                                         sec_mask   = 0x1c000;
2220                                 }
2221                         }
2222
2223                         if (qla2x00_program_flash_address(ha, addr, data,
2224                             man_id, flash_id)) {
2225                                 rval = QLA_FUNCTION_FAILED;
2226                                 break;
2227                         }
2228                         cond_resched();
2229                 }
2230         } while (0);
2231         qla2x00_flash_disable(ha);
2232
2233         /* Resume HBA. */
2234         qla2x00_resume_hba(vha);
2235
2236         return rval;
2237 }
2238
2239 uint8_t *
2240 qla24xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2241     uint32_t offset, uint32_t length)
2242 {
2243         struct qla_hw_data *ha = vha->hw;
2244
2245         /* Suspend HBA. */
2246         scsi_block_requests(vha->host);
2247         set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2248
2249         /* Go with read. */
2250         qla24xx_read_flash_data(vha, (uint32_t *)buf, offset >> 2, length >> 2);
2251
2252         /* Resume HBA. */
2253         clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2254         scsi_unblock_requests(vha->host);
2255
2256         return buf;
2257 }
2258
2259 int
2260 qla24xx_write_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2261     uint32_t offset, uint32_t length)
2262 {
2263         int rval;
2264         struct qla_hw_data *ha = vha->hw;
2265
2266         /* Suspend HBA. */
2267         scsi_block_requests(vha->host);
2268         set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2269
2270         /* Go with write. */
2271         rval = qla24xx_write_flash_data(vha, (uint32_t *)buf, offset >> 2,
2272             length >> 2);
2273
2274         clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2275         scsi_unblock_requests(vha->host);
2276
2277         return rval;
2278 }
2279
2280 uint8_t *
2281 qla25xx_read_optrom_data(struct scsi_qla_host *vha, uint8_t *buf,
2282     uint32_t offset, uint32_t length)
2283 {
2284         int rval;
2285         dma_addr_t optrom_dma;
2286         void *optrom;
2287         uint8_t *pbuf;
2288         uint32_t faddr, left, burst;
2289         struct qla_hw_data *ha = vha->hw;
2290
2291         if (offset & 0xfff)
2292                 goto slow_read;
2293         if (length < OPTROM_BURST_SIZE)
2294                 goto slow_read;
2295
2296         optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2297             &optrom_dma, GFP_KERNEL);
2298         if (!optrom) {
2299                 qla_printk(KERN_DEBUG, ha,
2300                     "Unable to allocate memory for optrom burst read "
2301                     "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
2302
2303                 goto slow_read;
2304         }
2305
2306         pbuf = buf;
2307         faddr = offset >> 2;
2308         left = length >> 2;
2309         burst = OPTROM_BURST_DWORDS;
2310         while (left != 0) {
2311                 if (burst > left)
2312                         burst = left;
2313
2314                 rval = qla2x00_dump_ram(vha, optrom_dma,
2315                     flash_data_addr(ha, faddr), burst);
2316                 if (rval) {
2317                         qla_printk(KERN_WARNING, ha,
2318                             "Unable to burst-read optrom segment "
2319                             "(%x/%x/%llx).\n", rval,
2320                             flash_data_addr(ha, faddr),
2321                             (unsigned long long)optrom_dma);
2322                         qla_printk(KERN_WARNING, ha,
2323                             "Reverting to slow-read.\n");
2324
2325                         dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2326                             optrom, optrom_dma);
2327                         goto slow_read;
2328                 }
2329
2330                 memcpy(pbuf, optrom, burst * 4);
2331
2332                 left -= burst;
2333                 faddr += burst;
2334                 pbuf += burst * 4;
2335         }
2336
2337         dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2338             optrom_dma);
2339
2340         return buf;
2341
2342 slow_read:
2343     return qla24xx_read_optrom_data(vha, buf, offset, length);
2344 }
2345
2346 /**
2347  * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2348  * @ha: HA context
2349  * @pcids: Pointer to the FCODE PCI data structure
2350  *
2351  * The process of retrieving the FCODE version information is at best
2352  * described as interesting.
2353  *
2354  * Within the first 100h bytes of the image an ASCII string is present
2355  * which contains several pieces of information including the FCODE
2356  * version.  Unfortunately it seems the only reliable way to retrieve
2357  * the version is by scanning for another sentinel within the string,
2358  * the FCODE build date:
2359  *
2360  *      ... 2.00.02 10/17/02 ...
2361  *
2362  * Returns QLA_SUCCESS on successful retrieval of version.
2363  */
2364 static void
2365 qla2x00_get_fcode_version(struct qla_hw_data *ha, uint32_t pcids)
2366 {
2367         int ret = QLA_FUNCTION_FAILED;
2368         uint32_t istart, iend, iter, vend;
2369         uint8_t do_next, rbyte, *vbyte;
2370
2371         memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2372
2373         /* Skip the PCI data structure. */
2374         istart = pcids +
2375             ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2376                 qla2x00_read_flash_byte(ha, pcids + 0x0A));
2377         iend = istart + 0x100;
2378         do {
2379                 /* Scan for the sentinel date string...eeewww. */
2380                 do_next = 0;
2381                 iter = istart;
2382                 while ((iter < iend) && !do_next) {
2383                         iter++;
2384                         if (qla2x00_read_flash_byte(ha, iter) == '/') {
2385                                 if (qla2x00_read_flash_byte(ha, iter + 2) ==
2386                                     '/')
2387                                         do_next++;
2388                                 else if (qla2x00_read_flash_byte(ha,
2389                                     iter + 3) == '/')
2390                                         do_next++;
2391                         }
2392                 }
2393                 if (!do_next)
2394                         break;
2395
2396                 /* Backtrack to previous ' ' (space). */
2397                 do_next = 0;
2398                 while ((iter > istart) && !do_next) {
2399                         iter--;
2400                         if (qla2x00_read_flash_byte(ha, iter) == ' ')
2401                                 do_next++;
2402                 }
2403                 if (!do_next)
2404                         break;
2405
2406                 /*
2407                  * Mark end of version tag, and find previous ' ' (space) or
2408                  * string length (recent FCODE images -- major hack ahead!!!).
2409                  */
2410                 vend = iter - 1;
2411                 do_next = 0;
2412                 while ((iter > istart) && !do_next) {
2413                         iter--;
2414                         rbyte = qla2x00_read_flash_byte(ha, iter);
2415                         if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2416                                 do_next++;
2417                 }
2418                 if (!do_next)
2419                         break;
2420
2421                 /* Mark beginning of version tag, and copy data. */
2422                 iter++;
2423                 if ((vend - iter) &&
2424                     ((vend - iter) < sizeof(ha->fcode_revision))) {
2425                         vbyte = ha->fcode_revision;
2426                         while (iter <= vend) {
2427                                 *vbyte++ = qla2x00_read_flash_byte(ha, iter);
2428                                 iter++;
2429                         }
2430                         ret = QLA_SUCCESS;
2431                 }
2432         } while (0);
2433
2434         if (ret != QLA_SUCCESS)
2435                 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2436 }
2437
2438 int
2439 qla2x00_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2440 {
2441         int ret = QLA_SUCCESS;
2442         uint8_t code_type, last_image;
2443         uint32_t pcihdr, pcids;
2444         uint8_t *dbyte;
2445         uint16_t *dcode;
2446         struct qla_hw_data *ha = vha->hw;
2447
2448         if (!ha->pio_address || !mbuf)
2449                 return QLA_FUNCTION_FAILED;
2450
2451         memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2452         memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2453         memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2454         memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2455
2456         qla2x00_flash_enable(ha);
2457
2458         /* Begin with first PCI expansion ROM header. */
2459         pcihdr = 0;
2460         last_image = 1;
2461         do {
2462                 /* Verify PCI expansion ROM header. */
2463                 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2464                     qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2465                         /* No signature */
2466                         DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2467                             "signature.\n"));
2468                         ret = QLA_FUNCTION_FAILED;
2469                         break;
2470                 }
2471
2472                 /* Locate PCI data structure. */
2473                 pcids = pcihdr +
2474                     ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2475                         qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2476
2477                 /* Validate signature of PCI data structure. */
2478                 if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2479                     qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2480                     qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2481                     qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2482                         /* Incorrect header. */
2483                         DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2484                             "found pcir_adr=%x.\n", pcids));
2485                         ret = QLA_FUNCTION_FAILED;
2486                         break;
2487                 }
2488
2489                 /* Read version */
2490                 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2491                 switch (code_type) {
2492                 case ROM_CODE_TYPE_BIOS:
2493                         /* Intel x86, PC-AT compatible. */
2494                         ha->bios_revision[0] =
2495                             qla2x00_read_flash_byte(ha, pcids + 0x12);
2496                         ha->bios_revision[1] =
2497                             qla2x00_read_flash_byte(ha, pcids + 0x13);
2498                         DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2499                             ha->bios_revision[1], ha->bios_revision[0]));
2500                         break;
2501                 case ROM_CODE_TYPE_FCODE:
2502                         /* Open Firmware standard for PCI (FCode). */
2503                         /* Eeeewww... */
2504                         qla2x00_get_fcode_version(ha, pcids);
2505                         break;
2506                 case ROM_CODE_TYPE_EFI:
2507                         /* Extensible Firmware Interface (EFI). */
2508                         ha->efi_revision[0] =
2509                             qla2x00_read_flash_byte(ha, pcids + 0x12);
2510                         ha->efi_revision[1] =
2511                             qla2x00_read_flash_byte(ha, pcids + 0x13);
2512                         DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2513                             ha->efi_revision[1], ha->efi_revision[0]));
2514                         break;
2515                 default:
2516                         DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2517                             "type %x at pcids %x.\n", code_type, pcids));
2518                         break;
2519                 }
2520
2521                 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2522
2523                 /* Locate next PCI expansion ROM. */
2524                 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2525                     qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2526         } while (!last_image);
2527
2528         if (IS_QLA2322(ha)) {
2529                 /* Read firmware image information. */
2530                 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2531                 dbyte = mbuf;
2532                 memset(dbyte, 0, 8);
2533                 dcode = (uint16_t *)dbyte;
2534
2535                 qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2536                     8);
2537                 DEBUG3(qla_printk(KERN_DEBUG, ha, "dumping fw ver from "
2538                     "flash:\n"));
2539                 DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2540
2541                 if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2542                     dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2543                     (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2544                     dcode[3] == 0)) {
2545                         DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2546                             "revision at %x.\n", ha->flt_region_fw * 4));
2547                 } else {
2548                         /* values are in big endian */
2549                         ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2550                         ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2551                         ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2552                 }
2553         }
2554
2555         qla2x00_flash_disable(ha);
2556
2557         return ret;
2558 }
2559
2560 int
2561 qla24xx_get_flash_version(scsi_qla_host_t *vha, void *mbuf)
2562 {
2563         int ret = QLA_SUCCESS;
2564         uint32_t pcihdr, pcids;
2565         uint32_t *dcode;
2566         uint8_t *bcode;
2567         uint8_t code_type, last_image;
2568         int i;
2569         struct qla_hw_data *ha = vha->hw;
2570
2571         if (!mbuf)
2572                 return QLA_FUNCTION_FAILED;
2573
2574         memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2575         memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2576         memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2577         memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2578
2579         dcode = mbuf;
2580
2581         /* Begin with first PCI expansion ROM header. */
2582         pcihdr = ha->flt_region_boot << 2;
2583         last_image = 1;
2584         do {
2585                 /* Verify PCI expansion ROM header. */
2586                 qla24xx_read_flash_data(vha, dcode, pcihdr >> 2, 0x20);
2587                 bcode = mbuf + (pcihdr % 4);
2588                 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2589                         /* No signature */
2590                         DEBUG2(qla_printk(KERN_DEBUG, ha, "No matching ROM "
2591                             "signature.\n"));
2592                         ret = QLA_FUNCTION_FAILED;
2593                         break;
2594                 }
2595
2596                 /* Locate PCI data structure. */
2597                 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2598
2599                 qla24xx_read_flash_data(vha, dcode, pcids >> 2, 0x20);
2600                 bcode = mbuf + (pcihdr % 4);
2601
2602                 /* Validate signature of PCI data structure. */
2603                 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2604                     bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2605                         /* Incorrect header. */
2606                         DEBUG2(qla_printk(KERN_INFO, ha, "PCI data struct not "
2607                             "found pcir_adr=%x.\n", pcids));
2608                         ret = QLA_FUNCTION_FAILED;
2609                         break;
2610                 }
2611
2612                 /* Read version */
2613                 code_type = bcode[0x14];
2614                 switch (code_type) {
2615                 case ROM_CODE_TYPE_BIOS:
2616                         /* Intel x86, PC-AT compatible. */
2617                         ha->bios_revision[0] = bcode[0x12];
2618                         ha->bios_revision[1] = bcode[0x13];
2619                         DEBUG3(qla_printk(KERN_DEBUG, ha, "read BIOS %d.%d.\n",
2620                             ha->bios_revision[1], ha->bios_revision[0]));
2621                         break;
2622                 case ROM_CODE_TYPE_FCODE:
2623                         /* Open Firmware standard for PCI (FCode). */
2624                         ha->fcode_revision[0] = bcode[0x12];
2625                         ha->fcode_revision[1] = bcode[0x13];
2626                         DEBUG3(qla_printk(KERN_DEBUG, ha, "read FCODE %d.%d.\n",
2627                             ha->fcode_revision[1], ha->fcode_revision[0]));
2628                         break;
2629                 case ROM_CODE_TYPE_EFI:
2630                         /* Extensible Firmware Interface (EFI). */
2631                         ha->efi_revision[0] = bcode[0x12];
2632                         ha->efi_revision[1] = bcode[0x13];
2633                         DEBUG3(qla_printk(KERN_DEBUG, ha, "read EFI %d.%d.\n",
2634                             ha->efi_revision[1], ha->efi_revision[0]));
2635                         break;
2636                 default:
2637                         DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized code "
2638                             "type %x at pcids %x.\n", code_type, pcids));
2639                         break;
2640                 }
2641
2642                 last_image = bcode[0x15] & BIT_7;
2643
2644                 /* Locate next PCI expansion ROM. */
2645                 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2646         } while (!last_image);
2647
2648         /* Read firmware image information. */
2649         memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2650         dcode = mbuf;
2651
2652         qla24xx_read_flash_data(vha, dcode, ha->flt_region_fw + 4, 4);
2653         for (i = 0; i < 4; i++)
2654                 dcode[i] = be32_to_cpu(dcode[i]);
2655
2656         if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2657             dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2658             (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2659             dcode[3] == 0)) {
2660                 DEBUG2(qla_printk(KERN_INFO, ha, "Unrecognized fw "
2661                     "revision at %x.\n", ha->flt_region_fw * 4));
2662         } else {
2663                 ha->fw_revision[0] = dcode[0];
2664                 ha->fw_revision[1] = dcode[1];
2665                 ha->fw_revision[2] = dcode[2];
2666                 ha->fw_revision[3] = dcode[3];
2667         }
2668
2669         return ret;
2670 }
2671
2672 static int
2673 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2674 {
2675         if (pos >= end || *pos != 0x82)
2676                 return 0;
2677
2678         pos += 3 + pos[1];
2679         if (pos >= end || *pos != 0x90)
2680                 return 0;
2681
2682         pos += 3 + pos[1];
2683         if (pos >= end || *pos != 0x78)
2684                 return 0;
2685
2686         return 1;
2687 }
2688
2689 int
2690 qla2xxx_get_vpd_field(scsi_qla_host_t *vha, char *key, char *str, size_t size)
2691 {
2692         struct qla_hw_data *ha = vha->hw;
2693         uint8_t *pos = ha->vpd;
2694         uint8_t *end = pos + ha->vpd_size;
2695         int len = 0;
2696
2697         if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2698                 return 0;
2699
2700         while (pos < end && *pos != 0x78) {
2701                 len = (*pos == 0x82) ? pos[1] : pos[2];
2702
2703                 if (!strncmp(pos, key, strlen(key)))
2704                         break;
2705
2706                 if (*pos != 0x90 && *pos != 0x91)
2707                         pos += len;
2708
2709                 pos += 3;
2710         }
2711
2712         if (pos < end - len && *pos != 0x78)
2713                 return snprintf(str, size, "%.*s", len, pos + 3);
2714
2715         return 0;
2716 }