]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/wireless/rt2x00/rt2800pci.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[net-next-2.6.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
1 /*
2         Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3         Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4         Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5         Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6         Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7         Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8         Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9         Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10         <http://rt2x00.serialmonkey.com>
11
12         This program is free software; you can redistribute it and/or modify
13         it under the terms of the GNU General Public License as published by
14         the Free Software Foundation; either version 2 of the License, or
15         (at your option) any later version.
16
17         This program is distributed in the hope that it will be useful,
18         but WITHOUT ANY WARRANTY; without even the implied warranty of
19         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20         GNU General Public License for more details.
21
22         You should have received a copy of the GNU General Public License
23         along with this program; if not, write to the
24         Free Software Foundation, Inc.,
25         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27
28 /*
29         Module: rt2800pci
30         Abstract: rt2800pci device specific routines.
31         Supported chipsets: RT2800E & RT2800ED.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/etherdevice.h>
36 #include <linux/init.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/platform_device.h>
41 #include <linux/eeprom_93cx6.h>
42
43 #include "rt2x00.h"
44 #include "rt2x00pci.h"
45 #include "rt2x00soc.h"
46 #include "rt2800lib.h"
47 #include "rt2800.h"
48 #include "rt2800pci.h"
49
50 /*
51  * Allow hardware encryption to be disabled.
52  */
53 static int modparam_nohwcrypt = 0;
54 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
55 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
56
57 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
58 {
59         unsigned int i;
60         u32 reg;
61
62         /*
63          * SOC devices don't support MCU requests.
64          */
65         if (rt2x00_is_soc(rt2x00dev))
66                 return;
67
68         for (i = 0; i < 200; i++) {
69                 rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70
71                 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
72                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
73                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
74                     (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
75                         break;
76
77                 udelay(REGISTER_BUSY_DELAY);
78         }
79
80         if (i == 200)
81                 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
82
83         rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
84         rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 }
86
87 #ifdef CONFIG_RT2800PCI_SOC
88 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
89 {
90         u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
91
92         memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93 }
94 #else
95 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
96 {
97 }
98 #endif /* CONFIG_RT2800PCI_SOC */
99
100 #ifdef CONFIG_RT2800PCI_PCI
101 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
102 {
103         struct rt2x00_dev *rt2x00dev = eeprom->data;
104         u32 reg;
105
106         rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
107
108         eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
109         eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
110         eeprom->reg_data_clock =
111             !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
112         eeprom->reg_chip_select =
113             !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
114 }
115
116 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
117 {
118         struct rt2x00_dev *rt2x00dev = eeprom->data;
119         u32 reg = 0;
120
121         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
122         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
123         rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
124                            !!eeprom->reg_data_clock);
125         rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
126                            !!eeprom->reg_chip_select);
127
128         rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
129 }
130
131 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
132 {
133         struct eeprom_93cx6 eeprom;
134         u32 reg;
135
136         rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
137
138         eeprom.data = rt2x00dev;
139         eeprom.register_read = rt2800pci_eepromregister_read;
140         eeprom.register_write = rt2800pci_eepromregister_write;
141         switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
142         {
143         case 0:
144                 eeprom.width = PCI_EEPROM_WIDTH_93C46;
145                 break;
146         case 1:
147                 eeprom.width = PCI_EEPROM_WIDTH_93C66;
148                 break;
149         default:
150                 eeprom.width = PCI_EEPROM_WIDTH_93C86;
151                 break;
152         }
153         eeprom.reg_data_in = 0;
154         eeprom.reg_data_out = 0;
155         eeprom.reg_data_clock = 0;
156         eeprom.reg_chip_select = 0;
157
158         eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
159                                EEPROM_SIZE / sizeof(u16));
160 }
161
162 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
163 {
164         return rt2800_efuse_detect(rt2x00dev);
165 }
166
167 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
168 {
169         rt2800_read_eeprom_efuse(rt2x00dev);
170 }
171 #else
172 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
173 {
174 }
175
176 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
177 {
178         return 0;
179 }
180
181 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
182 {
183 }
184 #endif /* CONFIG_RT2800PCI_PCI */
185
186 /*
187  * Firmware functions
188  */
189 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
190 {
191         return FIRMWARE_RT2860;
192 }
193
194 static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
195                                     const u8 *data, const size_t len)
196 {
197         u32 reg;
198
199         /*
200          * enable Host program ram write selection
201          */
202         reg = 0;
203         rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
204         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
205
206         /*
207          * Write firmware to device.
208          */
209         rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
210                                    data, len);
211
212         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
213         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
214
215         rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
216         rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
217
218         return 0;
219 }
220
221 /*
222  * Initialization functions.
223  */
224 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
225 {
226         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
227         u32 word;
228
229         if (entry->queue->qid == QID_RX) {
230                 rt2x00_desc_read(entry_priv->desc, 1, &word);
231
232                 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
233         } else {
234                 rt2x00_desc_read(entry_priv->desc, 1, &word);
235
236                 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
237         }
238 }
239
240 static void rt2800pci_clear_entry(struct queue_entry *entry)
241 {
242         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
243         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
244         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
245         u32 word;
246
247         if (entry->queue->qid == QID_RX) {
248                 rt2x00_desc_read(entry_priv->desc, 0, &word);
249                 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
250                 rt2x00_desc_write(entry_priv->desc, 0, word);
251
252                 rt2x00_desc_read(entry_priv->desc, 1, &word);
253                 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
254                 rt2x00_desc_write(entry_priv->desc, 1, word);
255
256                 /*
257                  * Set RX IDX in register to inform hardware that we have
258                  * handled this entry and it is available for reuse again.
259                  */
260                 rt2800_register_write(rt2x00dev, RX_CRX_IDX,
261                                       entry->entry_idx);
262         } else {
263                 rt2x00_desc_read(entry_priv->desc, 1, &word);
264                 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
265                 rt2x00_desc_write(entry_priv->desc, 1, word);
266         }
267 }
268
269 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
270 {
271         struct queue_entry_priv_pci *entry_priv;
272         u32 reg;
273
274         /*
275          * Initialize registers.
276          */
277         entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
278         rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
279         rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
280         rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
281         rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
282
283         entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
284         rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
285         rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
286         rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
287         rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
288
289         entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
290         rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
291         rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
292         rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
293         rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
294
295         entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
296         rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
297         rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
298         rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
299         rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
300
301         entry_priv = rt2x00dev->rx->entries[0].priv_data;
302         rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
303         rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
304         rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
305         rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
306
307         /*
308          * Enable global DMA configuration
309          */
310         rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
311         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
312         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
313         rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
314         rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
315
316         rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
317
318         return 0;
319 }
320
321 /*
322  * Device state switch handlers.
323  */
324 static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
325                                 enum dev_state state)
326 {
327         u32 reg;
328
329         rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
330         rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
331                            (state == STATE_RADIO_RX_ON));
332         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
333 }
334
335 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
336                                  enum dev_state state)
337 {
338         int mask = (state == STATE_RADIO_IRQ_ON) ||
339                    (state == STATE_RADIO_IRQ_ON_ISR);
340         u32 reg;
341
342         /*
343          * When interrupts are being enabled, the interrupt registers
344          * should clear the register to assure a clean state.
345          */
346         if (state == STATE_RADIO_IRQ_ON) {
347                 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
348                 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
349         }
350
351         rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
352         rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
353         rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
354         rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
355         rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
356         rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
357         rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
358         rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
359         rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
360         rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
361         rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
362         rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
363         rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
364         rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
365         rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
366         rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
367         rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
368         rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
369         rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
370         rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
371 }
372
373 static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
374 {
375         u32 reg;
376
377         /*
378          * Reset DMA indexes
379          */
380         rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
381         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
382         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
383         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
384         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
385         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
386         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
387         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
388         rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
389
390         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
391         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
392
393         rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
394
395         rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
396         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
397         rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
398         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
399
400         rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
401
402         return 0;
403 }
404
405 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
406 {
407         if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
408                      rt2800pci_init_queues(rt2x00dev)))
409                 return -EIO;
410
411         return rt2800_enable_radio(rt2x00dev);
412 }
413
414 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
415 {
416         u32 reg;
417
418         rt2800_disable_radio(rt2x00dev);
419
420         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
421
422         rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
423         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
424         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
425         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
426         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
427         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
428         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
429         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
430         rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
431
432         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
433         rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
434 }
435
436 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
437                                enum dev_state state)
438 {
439         /*
440          * Always put the device to sleep (even when we intend to wakeup!)
441          * if the device is booting and wasn't asleep it will return
442          * failure when attempting to wakeup.
443          */
444         rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0xff, 2);
445
446         if (state == STATE_AWAKE) {
447                 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
448                 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
449         }
450
451         return 0;
452 }
453
454 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
455                                       enum dev_state state)
456 {
457         int retval = 0;
458
459         switch (state) {
460         case STATE_RADIO_ON:
461                 /*
462                  * Before the radio can be enabled, the device first has
463                  * to be woken up. After that it needs a bit of time
464                  * to be fully awake and then the radio can be enabled.
465                  */
466                 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
467                 msleep(1);
468                 retval = rt2800pci_enable_radio(rt2x00dev);
469                 break;
470         case STATE_RADIO_OFF:
471                 /*
472                  * After the radio has been disabled, the device should
473                  * be put to sleep for powersaving.
474                  */
475                 rt2800pci_disable_radio(rt2x00dev);
476                 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
477                 break;
478         case STATE_RADIO_RX_ON:
479         case STATE_RADIO_RX_OFF:
480                 rt2800pci_toggle_rx(rt2x00dev, state);
481                 break;
482         case STATE_RADIO_IRQ_ON:
483         case STATE_RADIO_IRQ_ON_ISR:
484         case STATE_RADIO_IRQ_OFF:
485         case STATE_RADIO_IRQ_OFF_ISR:
486                 rt2800pci_toggle_irq(rt2x00dev, state);
487                 break;
488         case STATE_DEEP_SLEEP:
489         case STATE_SLEEP:
490         case STATE_STANDBY:
491         case STATE_AWAKE:
492                 retval = rt2800pci_set_state(rt2x00dev, state);
493                 break;
494         default:
495                 retval = -ENOTSUPP;
496                 break;
497         }
498
499         if (unlikely(retval))
500                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
501                       state, retval);
502
503         return retval;
504 }
505
506 /*
507  * TX descriptor initialization
508  */
509 static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
510 {
511         return (__le32 *) entry->skb->data;
512 }
513
514 static void rt2800pci_write_tx_desc(struct queue_entry *entry,
515                                     struct txentry_desc *txdesc)
516 {
517         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
518         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
519         __le32 *txd = entry_priv->desc;
520         u32 word;
521
522         /*
523          * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
524          * must contains a TXWI structure + 802.11 header + padding + 802.11
525          * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
526          * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
527          * data. It means that LAST_SEC0 is always 0.
528          */
529
530         /*
531          * Initialize TX descriptor
532          */
533         rt2x00_desc_read(txd, 0, &word);
534         rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
535         rt2x00_desc_write(txd, 0, word);
536
537         rt2x00_desc_read(txd, 1, &word);
538         rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
539         rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
540                            !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
541         rt2x00_set_field32(&word, TXD_W1_BURST,
542                            test_bit(ENTRY_TXD_BURST, &txdesc->flags));
543         rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
544         rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
545         rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
546         rt2x00_desc_write(txd, 1, word);
547
548         rt2x00_desc_read(txd, 2, &word);
549         rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
550                            skbdesc->skb_dma + TXWI_DESC_SIZE);
551         rt2x00_desc_write(txd, 2, word);
552
553         rt2x00_desc_read(txd, 3, &word);
554         rt2x00_set_field32(&word, TXD_W3_WIV,
555                            !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
556         rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
557         rt2x00_desc_write(txd, 3, word);
558
559         /*
560          * Register descriptor details in skb frame descriptor.
561          */
562         skbdesc->desc = txd;
563         skbdesc->desc_len = TXD_DESC_SIZE;
564 }
565
566 /*
567  * TX data initialization
568  */
569 static void rt2800pci_kick_tx_queue(struct data_queue *queue)
570 {
571         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
572         struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
573         unsigned int qidx;
574
575         if (queue->qid == QID_MGMT)
576                 qidx = 5;
577         else
578                 qidx = queue->qid;
579
580         rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), entry->entry_idx);
581 }
582
583 static void rt2800pci_kill_tx_queue(struct data_queue *queue)
584 {
585         struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
586         u32 reg;
587
588         if (queue->qid == QID_BEACON) {
589                 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
590                 return;
591         }
592
593         rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
594         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (queue->qid == QID_AC_BE));
595         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (queue->qid == QID_AC_BK));
596         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (queue->qid == QID_AC_VI));
597         rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (queue->qid == QID_AC_VO));
598         rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
599 }
600
601 /*
602  * RX control handlers
603  */
604 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
605                                   struct rxdone_entry_desc *rxdesc)
606 {
607         struct queue_entry_priv_pci *entry_priv = entry->priv_data;
608         __le32 *rxd = entry_priv->desc;
609         u32 word;
610
611         rt2x00_desc_read(rxd, 3, &word);
612
613         if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
614                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
615
616         /*
617          * Unfortunately we don't know the cipher type used during
618          * decryption. This prevents us from correct providing
619          * correct statistics through debugfs.
620          */
621         rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
622
623         if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
624                 /*
625                  * Hardware has stripped IV/EIV data from 802.11 frame during
626                  * decryption. Unfortunately the descriptor doesn't contain
627                  * any fields with the EIV/IV data either, so they can't
628                  * be restored by rt2x00lib.
629                  */
630                 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
631
632                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
633                         rxdesc->flags |= RX_FLAG_DECRYPTED;
634                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
635                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
636         }
637
638         if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
639                 rxdesc->dev_flags |= RXDONE_MY_BSS;
640
641         if (rt2x00_get_field32(word, RXD_W3_L2PAD))
642                 rxdesc->dev_flags |= RXDONE_L2PAD;
643
644         /*
645          * Process the RXWI structure that is at the start of the buffer.
646          */
647         rt2800_process_rxwi(entry, rxdesc);
648 }
649
650 /*
651  * Interrupt functions.
652  */
653 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
654 {
655         struct ieee80211_conf conf = { .flags = 0 };
656         struct rt2x00lib_conf libconf = { .conf = &conf };
657
658         rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
659 }
660
661 static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
662 {
663         struct data_queue *queue;
664         struct queue_entry *entry;
665         u32 status;
666         u8 qid;
667
668         while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo)) {
669                 /* Now remove the tx status from the FIFO */
670                 if (kfifo_out(&rt2x00dev->txstatus_fifo, &status,
671                               sizeof(status)) != sizeof(status)) {
672                         WARN_ON(1);
673                         break;
674                 }
675
676                 qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
677                 if (qid >= QID_RX) {
678                         /*
679                          * Unknown queue, this shouldn't happen. Just drop
680                          * this tx status.
681                          */
682                         WARNING(rt2x00dev, "Got TX status report with "
683                                            "unexpected pid %u, dropping", qid);
684                         break;
685                 }
686
687                 queue = rt2x00queue_get_queue(rt2x00dev, qid);
688                 if (unlikely(queue == NULL)) {
689                         /*
690                          * The queue is NULL, this shouldn't happen. Stop
691                          * processing here and drop the tx status
692                          */
693                         WARNING(rt2x00dev, "Got TX status for an unavailable "
694                                            "queue %u, dropping", qid);
695                         break;
696                 }
697
698                 if (rt2x00queue_empty(queue)) {
699                         /*
700                          * The queue is empty. Stop processing here
701                          * and drop the tx status.
702                          */
703                         WARNING(rt2x00dev, "Got TX status for an empty "
704                                            "queue %u, dropping", qid);
705                         break;
706                 }
707
708                 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
709                 rt2800_txdone_entry(entry, status);
710         }
711 }
712
713 static void rt2800pci_txstatus_tasklet(unsigned long data)
714 {
715         rt2800pci_txdone((struct rt2x00_dev *)data);
716 }
717
718 static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
719 {
720         struct rt2x00_dev *rt2x00dev = dev_instance;
721         u32 reg = rt2x00dev->irqvalue[0];
722
723         /*
724          * 1 - Pre TBTT interrupt.
725          */
726         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
727                 rt2x00lib_pretbtt(rt2x00dev);
728
729         /*
730          * 2 - Beacondone interrupt.
731          */
732         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
733                 rt2x00lib_beacondone(rt2x00dev);
734
735         /*
736          * 3 - Rx ring done interrupt.
737          */
738         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
739                 rt2x00pci_rxdone(rt2x00dev);
740
741         /*
742          * 4 - Auto wakeup interrupt.
743          */
744         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
745                 rt2800pci_wakeup(rt2x00dev);
746
747         /* Enable interrupts again. */
748         rt2x00dev->ops->lib->set_device_state(rt2x00dev,
749                                               STATE_RADIO_IRQ_ON_ISR);
750
751         return IRQ_HANDLED;
752 }
753
754 static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
755 {
756         u32 status;
757         int i;
758
759         /*
760          * The TX_FIFO_STATUS interrupt needs special care. We should
761          * read TX_STA_FIFO but we should do it immediately as otherwise
762          * the register can overflow and we would lose status reports.
763          *
764          * Hence, read the TX_STA_FIFO register and copy all tx status
765          * reports into a kernel FIFO which is handled in the txstatus
766          * tasklet. We use a tasklet to process the tx status reports
767          * because we can schedule the tasklet multiple times (when the
768          * interrupt fires again during tx status processing).
769          *
770          * Furthermore we don't disable the TX_FIFO_STATUS
771          * interrupt here but leave it enabled so that the TX_STA_FIFO
772          * can also be read while the interrupt thread gets executed.
773          *
774          * Since we have only one producer and one consumer we don't
775          * need to lock the kfifo.
776          */
777         for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
778                 rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status);
779
780                 if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
781                         break;
782
783                 if (kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
784                         WARNING(rt2x00dev, "TX status FIFO overrun,"
785                                 " drop tx status report.\n");
786                         break;
787                 }
788
789                 if (kfifo_in(&rt2x00dev->txstatus_fifo, &status,
790                              sizeof(status)) != sizeof(status)) {
791                         WARNING(rt2x00dev, "TX status FIFO overrun,"
792                                 "drop tx status report.\n");
793                         break;
794                 }
795         }
796
797         /* Schedule the tasklet for processing the tx status. */
798         tasklet_schedule(&rt2x00dev->txstatus_tasklet);
799 }
800
801 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
802 {
803         struct rt2x00_dev *rt2x00dev = dev_instance;
804         u32 reg;
805         irqreturn_t ret = IRQ_HANDLED;
806
807         /* Read status and ACK all interrupts */
808         rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
809         rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
810
811         if (!reg)
812                 return IRQ_NONE;
813
814         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
815                 return IRQ_HANDLED;
816
817         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
818                 rt2800pci_txstatus_interrupt(rt2x00dev);
819
820         if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT) ||
821             rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT) ||
822             rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE) ||
823             rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) {
824                 /*
825                  * All other interrupts are handled in the interrupt thread.
826                  * Store irqvalue for use in the interrupt thread.
827                  */
828                 rt2x00dev->irqvalue[0] = reg;
829
830                 /*
831                  * Disable interrupts, will be enabled again in the
832                  * interrupt thread.
833                 */
834                 rt2x00dev->ops->lib->set_device_state(rt2x00dev,
835                                                       STATE_RADIO_IRQ_OFF_ISR);
836
837                 /*
838                  * Leave the TX_FIFO_STATUS interrupt enabled to not lose any
839                  * tx status reports.
840                  */
841                 rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
842                 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
843                 rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
844
845                 ret = IRQ_WAKE_THREAD;
846         }
847
848         return ret;
849 }
850
851 /*
852  * Device probe functions.
853  */
854 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
855 {
856         /*
857          * Read EEPROM into buffer
858          */
859         if (rt2x00_is_soc(rt2x00dev))
860                 rt2800pci_read_eeprom_soc(rt2x00dev);
861         else if (rt2800pci_efuse_detect(rt2x00dev))
862                 rt2800pci_read_eeprom_efuse(rt2x00dev);
863         else
864                 rt2800pci_read_eeprom_pci(rt2x00dev);
865
866         return rt2800_validate_eeprom(rt2x00dev);
867 }
868
869 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
870 {
871         int retval;
872
873         /*
874          * Allocate eeprom data.
875          */
876         retval = rt2800pci_validate_eeprom(rt2x00dev);
877         if (retval)
878                 return retval;
879
880         retval = rt2800_init_eeprom(rt2x00dev);
881         if (retval)
882                 return retval;
883
884         /*
885          * Initialize hw specifications.
886          */
887         retval = rt2800_probe_hw_mode(rt2x00dev);
888         if (retval)
889                 return retval;
890
891         /*
892          * This device has multiple filters for control frames
893          * and has a separate filter for PS Poll frames.
894          */
895         __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
896         __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
897
898         /*
899          * This device has a pre tbtt interrupt and thus fetches
900          * a new beacon directly prior to transmission.
901          */
902         __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
903
904         /*
905          * This device requires firmware.
906          */
907         if (!rt2x00_is_soc(rt2x00dev))
908                 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
909         __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
910         __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
911         __set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags);
912         if (!modparam_nohwcrypt)
913                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
914         __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
915
916         /*
917          * Set the rssi offset.
918          */
919         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
920
921         return 0;
922 }
923
924 static const struct ieee80211_ops rt2800pci_mac80211_ops = {
925         .tx                     = rt2x00mac_tx,
926         .start                  = rt2x00mac_start,
927         .stop                   = rt2x00mac_stop,
928         .add_interface          = rt2x00mac_add_interface,
929         .remove_interface       = rt2x00mac_remove_interface,
930         .config                 = rt2x00mac_config,
931         .configure_filter       = rt2x00mac_configure_filter,
932         .set_key                = rt2x00mac_set_key,
933         .sw_scan_start          = rt2x00mac_sw_scan_start,
934         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
935         .get_stats              = rt2x00mac_get_stats,
936         .get_tkip_seq           = rt2800_get_tkip_seq,
937         .set_rts_threshold      = rt2800_set_rts_threshold,
938         .bss_info_changed       = rt2x00mac_bss_info_changed,
939         .conf_tx                = rt2800_conf_tx,
940         .get_tsf                = rt2800_get_tsf,
941         .rfkill_poll            = rt2x00mac_rfkill_poll,
942         .ampdu_action           = rt2800_ampdu_action,
943         .flush                  = rt2x00mac_flush,
944 };
945
946 static const struct rt2800_ops rt2800pci_rt2800_ops = {
947         .register_read          = rt2x00pci_register_read,
948         .register_read_lock     = rt2x00pci_register_read, /* same for PCI */
949         .register_write         = rt2x00pci_register_write,
950         .register_write_lock    = rt2x00pci_register_write, /* same for PCI */
951         .register_multiread     = rt2x00pci_register_multiread,
952         .register_multiwrite    = rt2x00pci_register_multiwrite,
953         .regbusy_read           = rt2x00pci_regbusy_read,
954         .drv_write_firmware     = rt2800pci_write_firmware,
955         .drv_init_registers     = rt2800pci_init_registers,
956         .drv_get_txwi           = rt2800pci_get_txwi,
957 };
958
959 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
960         .irq_handler            = rt2800pci_interrupt,
961         .irq_handler_thread     = rt2800pci_interrupt_thread,
962         .txstatus_tasklet       = rt2800pci_txstatus_tasklet,
963         .probe_hw               = rt2800pci_probe_hw,
964         .get_firmware_name      = rt2800pci_get_firmware_name,
965         .check_firmware         = rt2800_check_firmware,
966         .load_firmware          = rt2800_load_firmware,
967         .initialize             = rt2x00pci_initialize,
968         .uninitialize           = rt2x00pci_uninitialize,
969         .get_entry_state        = rt2800pci_get_entry_state,
970         .clear_entry            = rt2800pci_clear_entry,
971         .set_device_state       = rt2800pci_set_device_state,
972         .rfkill_poll            = rt2800_rfkill_poll,
973         .link_stats             = rt2800_link_stats,
974         .reset_tuner            = rt2800_reset_tuner,
975         .link_tuner             = rt2800_link_tuner,
976         .write_tx_desc          = rt2800pci_write_tx_desc,
977         .write_tx_data          = rt2800_write_tx_data,
978         .write_beacon           = rt2800_write_beacon,
979         .kick_tx_queue          = rt2800pci_kick_tx_queue,
980         .kill_tx_queue          = rt2800pci_kill_tx_queue,
981         .fill_rxdone            = rt2800pci_fill_rxdone,
982         .config_shared_key      = rt2800_config_shared_key,
983         .config_pairwise_key    = rt2800_config_pairwise_key,
984         .config_filter          = rt2800_config_filter,
985         .config_intf            = rt2800_config_intf,
986         .config_erp             = rt2800_config_erp,
987         .config_ant             = rt2800_config_ant,
988         .config                 = rt2800_config,
989 };
990
991 static const struct data_queue_desc rt2800pci_queue_rx = {
992         .entry_num              = 128,
993         .data_size              = AGGREGATION_SIZE,
994         .desc_size              = RXD_DESC_SIZE,
995         .priv_size              = sizeof(struct queue_entry_priv_pci),
996 };
997
998 static const struct data_queue_desc rt2800pci_queue_tx = {
999         .entry_num              = 64,
1000         .data_size              = AGGREGATION_SIZE,
1001         .desc_size              = TXD_DESC_SIZE,
1002         .priv_size              = sizeof(struct queue_entry_priv_pci),
1003 };
1004
1005 static const struct data_queue_desc rt2800pci_queue_bcn = {
1006         .entry_num              = 8,
1007         .data_size              = 0, /* No DMA required for beacons */
1008         .desc_size              = TXWI_DESC_SIZE,
1009         .priv_size              = sizeof(struct queue_entry_priv_pci),
1010 };
1011
1012 static const struct rt2x00_ops rt2800pci_ops = {
1013         .name                   = KBUILD_MODNAME,
1014         .max_sta_intf           = 1,
1015         .max_ap_intf            = 8,
1016         .eeprom_size            = EEPROM_SIZE,
1017         .rf_size                = RF_SIZE,
1018         .tx_queues              = NUM_TX_QUEUES,
1019         .extra_tx_headroom      = TXWI_DESC_SIZE,
1020         .rx                     = &rt2800pci_queue_rx,
1021         .tx                     = &rt2800pci_queue_tx,
1022         .bcn                    = &rt2800pci_queue_bcn,
1023         .lib                    = &rt2800pci_rt2x00_ops,
1024         .drv                    = &rt2800pci_rt2800_ops,
1025         .hw                     = &rt2800pci_mac80211_ops,
1026 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1027         .debugfs                = &rt2800_rt2x00debug,
1028 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1029 };
1030
1031 /*
1032  * RT2800pci module information.
1033  */
1034 #ifdef CONFIG_RT2800PCI_PCI
1035 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1036         { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
1037         { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
1038         { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
1039         { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1040         { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
1041         { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
1042         { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
1043         { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
1044         { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
1045         { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
1046         { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1047         { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
1048 #ifdef CONFIG_RT2800PCI_RT30XX
1049         { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
1050         { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
1051         { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1052         { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
1053 #endif
1054 #ifdef CONFIG_RT2800PCI_RT35XX
1055         { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
1056         { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1057         { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
1058         { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1059         { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1060 #endif
1061         { 0, }
1062 };
1063 #endif /* CONFIG_RT2800PCI_PCI */
1064
1065 MODULE_AUTHOR(DRV_PROJECT);
1066 MODULE_VERSION(DRV_VERSION);
1067 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1068 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1069 #ifdef CONFIG_RT2800PCI_PCI
1070 MODULE_FIRMWARE(FIRMWARE_RT2860);
1071 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1072 #endif /* CONFIG_RT2800PCI_PCI */
1073 MODULE_LICENSE("GPL");
1074
1075 #ifdef CONFIG_RT2800PCI_SOC
1076 static int rt2800soc_probe(struct platform_device *pdev)
1077 {
1078         return rt2x00soc_probe(pdev, &rt2800pci_ops);
1079 }
1080
1081 static struct platform_driver rt2800soc_driver = {
1082         .driver         = {
1083                 .name           = "rt2800_wmac",
1084                 .owner          = THIS_MODULE,
1085                 .mod_name       = KBUILD_MODNAME,
1086         },
1087         .probe          = rt2800soc_probe,
1088         .remove         = __devexit_p(rt2x00soc_remove),
1089         .suspend        = rt2x00soc_suspend,
1090         .resume         = rt2x00soc_resume,
1091 };
1092 #endif /* CONFIG_RT2800PCI_SOC */
1093
1094 #ifdef CONFIG_RT2800PCI_PCI
1095 static struct pci_driver rt2800pci_driver = {
1096         .name           = KBUILD_MODNAME,
1097         .id_table       = rt2800pci_device_table,
1098         .probe          = rt2x00pci_probe,
1099         .remove         = __devexit_p(rt2x00pci_remove),
1100         .suspend        = rt2x00pci_suspend,
1101         .resume         = rt2x00pci_resume,
1102 };
1103 #endif /* CONFIG_RT2800PCI_PCI */
1104
1105 static int __init rt2800pci_init(void)
1106 {
1107         int ret = 0;
1108
1109 #ifdef CONFIG_RT2800PCI_SOC
1110         ret = platform_driver_register(&rt2800soc_driver);
1111         if (ret)
1112                 return ret;
1113 #endif
1114 #ifdef CONFIG_RT2800PCI_PCI
1115         ret = pci_register_driver(&rt2800pci_driver);
1116         if (ret) {
1117 #ifdef CONFIG_RT2800PCI_SOC
1118                 platform_driver_unregister(&rt2800soc_driver);
1119 #endif
1120                 return ret;
1121         }
1122 #endif
1123
1124         return ret;
1125 }
1126
1127 static void __exit rt2800pci_exit(void)
1128 {
1129 #ifdef CONFIG_RT2800PCI_PCI
1130         pci_unregister_driver(&rt2800pci_driver);
1131 #endif
1132 #ifdef CONFIG_RT2800PCI_SOC
1133         platform_driver_unregister(&rt2800soc_driver);
1134 #endif
1135 }
1136
1137 module_init(rt2800pci_init);
1138 module_exit(rt2800pci_exit);