]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/wireless/rt2x00/rt2500usb.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[net-next-2.6.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/usb.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt2500usb.h"
38
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static int modparam_nohwcrypt;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47  * Register access.
48  * All access to the CSR registers will go through the methods
49  * rt2500usb_register_read and rt2500usb_register_write.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers BBPCSR and RFCSR to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attampt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  * If the csr_mutex is already held then the _lock variants must
59  * be used instead.
60  */
61 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
62                                            const unsigned int offset,
63                                            u16 *value)
64 {
65         __le16 reg;
66         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
67                                       USB_VENDOR_REQUEST_IN, offset,
68                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
69         *value = le16_to_cpu(reg);
70 }
71
72 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
73                                                 const unsigned int offset,
74                                                 u16 *value)
75 {
76         __le16 reg;
77         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
78                                        USB_VENDOR_REQUEST_IN, offset,
79                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
80         *value = le16_to_cpu(reg);
81 }
82
83 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
84                                                 const unsigned int offset,
85                                                 void *value, const u16 length)
86 {
87         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
88                                       USB_VENDOR_REQUEST_IN, offset,
89                                       value, length,
90                                       REGISTER_TIMEOUT16(length));
91 }
92
93 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
94                                             const unsigned int offset,
95                                             u16 value)
96 {
97         __le16 reg = cpu_to_le16(value);
98         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
99                                       USB_VENDOR_REQUEST_OUT, offset,
100                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
101 }
102
103 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
104                                                  const unsigned int offset,
105                                                  u16 value)
106 {
107         __le16 reg = cpu_to_le16(value);
108         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
109                                        USB_VENDOR_REQUEST_OUT, offset,
110                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
111 }
112
113 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
114                                                  const unsigned int offset,
115                                                  void *value, const u16 length)
116 {
117         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
118                                       USB_VENDOR_REQUEST_OUT, offset,
119                                       value, length,
120                                       REGISTER_TIMEOUT16(length));
121 }
122
123 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
124                                   const unsigned int offset,
125                                   struct rt2x00_field16 field,
126                                   u16 *reg)
127 {
128         unsigned int i;
129
130         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
131                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
132                 if (!rt2x00_get_field16(*reg, field))
133                         return 1;
134                 udelay(REGISTER_BUSY_DELAY);
135         }
136
137         ERROR(rt2x00dev, "Indirect register access failed: "
138               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
139         *reg = ~0;
140
141         return 0;
142 }
143
144 #define WAIT_FOR_BBP(__dev, __reg) \
145         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
146 #define WAIT_FOR_RF(__dev, __reg) \
147         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
148
149 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
150                                 const unsigned int word, const u8 value)
151 {
152         u16 reg;
153
154         mutex_lock(&rt2x00dev->csr_mutex);
155
156         /*
157          * Wait until the BBP becomes available, afterwards we
158          * can safely write the new data into the register.
159          */
160         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
161                 reg = 0;
162                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
163                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
164                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
165
166                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
167         }
168
169         mutex_unlock(&rt2x00dev->csr_mutex);
170 }
171
172 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
173                                const unsigned int word, u8 *value)
174 {
175         u16 reg;
176
177         mutex_lock(&rt2x00dev->csr_mutex);
178
179         /*
180          * Wait until the BBP becomes available, afterwards we
181          * can safely write the read request into the register.
182          * After the data has been written, we wait until hardware
183          * returns the correct value, if at any time the register
184          * doesn't become available in time, reg will be 0xffffffff
185          * which means we return 0xff to the caller.
186          */
187         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
188                 reg = 0;
189                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
190                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
191
192                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
193
194                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
195                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
196         }
197
198         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
199
200         mutex_unlock(&rt2x00dev->csr_mutex);
201 }
202
203 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
204                                const unsigned int word, const u32 value)
205 {
206         u16 reg;
207
208         mutex_lock(&rt2x00dev->csr_mutex);
209
210         /*
211          * Wait until the RF becomes available, afterwards we
212          * can safely write the new data into the register.
213          */
214         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
215                 reg = 0;
216                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
217                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
218
219                 reg = 0;
220                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
221                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
222                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
223                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
224
225                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
226                 rt2x00_rf_write(rt2x00dev, word, value);
227         }
228
229         mutex_unlock(&rt2x00dev->csr_mutex);
230 }
231
232 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
233 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
234                                      const unsigned int offset,
235                                      u32 *value)
236 {
237         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
238 }
239
240 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
241                                       const unsigned int offset,
242                                       u32 value)
243 {
244         rt2500usb_register_write(rt2x00dev, offset, value);
245 }
246
247 static const struct rt2x00debug rt2500usb_rt2x00debug = {
248         .owner  = THIS_MODULE,
249         .csr    = {
250                 .read           = _rt2500usb_register_read,
251                 .write          = _rt2500usb_register_write,
252                 .flags          = RT2X00DEBUGFS_OFFSET,
253                 .word_base      = CSR_REG_BASE,
254                 .word_size      = sizeof(u16),
255                 .word_count     = CSR_REG_SIZE / sizeof(u16),
256         },
257         .eeprom = {
258                 .read           = rt2x00_eeprom_read,
259                 .write          = rt2x00_eeprom_write,
260                 .word_base      = EEPROM_BASE,
261                 .word_size      = sizeof(u16),
262                 .word_count     = EEPROM_SIZE / sizeof(u16),
263         },
264         .bbp    = {
265                 .read           = rt2500usb_bbp_read,
266                 .write          = rt2500usb_bbp_write,
267                 .word_base      = BBP_BASE,
268                 .word_size      = sizeof(u8),
269                 .word_count     = BBP_SIZE / sizeof(u8),
270         },
271         .rf     = {
272                 .read           = rt2x00_rf_read,
273                 .write          = rt2500usb_rf_write,
274                 .word_base      = RF_BASE,
275                 .word_size      = sizeof(u32),
276                 .word_count     = RF_SIZE / sizeof(u32),
277         },
278 };
279 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
280
281 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
282 {
283         u16 reg;
284
285         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
286         return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
287 }
288
289 #ifdef CONFIG_RT2X00_LIB_LEDS
290 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
291                                      enum led_brightness brightness)
292 {
293         struct rt2x00_led *led =
294             container_of(led_cdev, struct rt2x00_led, led_dev);
295         unsigned int enabled = brightness != LED_OFF;
296         u16 reg;
297
298         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
299
300         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
301                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
302         else if (led->type == LED_TYPE_ACTIVITY)
303                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
304
305         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
306 }
307
308 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
309                                unsigned long *delay_on,
310                                unsigned long *delay_off)
311 {
312         struct rt2x00_led *led =
313             container_of(led_cdev, struct rt2x00_led, led_dev);
314         u16 reg;
315
316         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
317         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
318         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
319         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
320
321         return 0;
322 }
323
324 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
325                                struct rt2x00_led *led,
326                                enum led_type type)
327 {
328         led->rt2x00dev = rt2x00dev;
329         led->type = type;
330         led->led_dev.brightness_set = rt2500usb_brightness_set;
331         led->led_dev.blink_set = rt2500usb_blink_set;
332         led->flags = LED_INITIALIZED;
333 }
334 #endif /* CONFIG_RT2X00_LIB_LEDS */
335
336 /*
337  * Configuration handlers.
338  */
339
340 /*
341  * rt2500usb does not differentiate between shared and pairwise
342  * keys, so we should use the same function for both key types.
343  */
344 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
345                                 struct rt2x00lib_crypto *crypto,
346                                 struct ieee80211_key_conf *key)
347 {
348         u32 mask;
349         u16 reg;
350         enum cipher curr_cipher;
351
352         if (crypto->cmd == SET_KEY) {
353                 /*
354                  * Disallow to set WEP key other than with index 0,
355                  * it is known that not work at least on some hardware.
356                  * SW crypto will be used in that case.
357                  */
358                 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
359                      key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
360                     key->keyidx != 0)
361                         return -EOPNOTSUPP;
362
363                 /*
364                  * Pairwise key will always be entry 0, but this
365                  * could collide with a shared key on the same
366                  * position...
367                  */
368                 mask = TXRX_CSR0_KEY_ID.bit_mask;
369
370                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
371                 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
372                 reg &= mask;
373
374                 if (reg && reg == mask)
375                         return -ENOSPC;
376
377                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
378
379                 key->hw_key_idx += reg ? ffz(reg) : 0;
380                 /*
381                  * Hardware requires that all keys use the same cipher
382                  * (e.g. TKIP-only, AES-only, but not TKIP+AES).
383                  * If this is not the first key, compare the cipher with the
384                  * first one and fall back to SW crypto if not the same.
385                  */
386                 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
387                         return -EOPNOTSUPP;
388
389                 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
390                                               crypto->key, sizeof(crypto->key));
391
392                 /*
393                  * The driver does not support the IV/EIV generation
394                  * in hardware. However it demands the data to be provided
395                  * both separately as well as inside the frame.
396                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
397                  * to ensure rt2x00lib will not strip the data from the
398                  * frame after the copy, now we must tell mac80211
399                  * to generate the IV/EIV data.
400                  */
401                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
402                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
403         }
404
405         /*
406          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
407          * a particular key is valid.
408          */
409         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
410         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
411         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
412
413         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
414         if (crypto->cmd == SET_KEY)
415                 mask |= 1 << key->hw_key_idx;
416         else if (crypto->cmd == DISABLE_KEY)
417                 mask &= ~(1 << key->hw_key_idx);
418         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
419         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
420
421         return 0;
422 }
423
424 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
425                                     const unsigned int filter_flags)
426 {
427         u16 reg;
428
429         /*
430          * Start configuration steps.
431          * Note that the version error will always be dropped
432          * and broadcast frames will always be accepted since
433          * there is no filter for it at this time.
434          */
435         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
436         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
437                            !(filter_flags & FIF_FCSFAIL));
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
439                            !(filter_flags & FIF_PLCPFAIL));
440         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
441                            !(filter_flags & FIF_CONTROL));
442         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
443                            !(filter_flags & FIF_PROMISC_IN_BSS));
444         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
445                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
446                            !rt2x00dev->intf_ap_count);
447         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
448         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
449                            !(filter_flags & FIF_ALLMULTI));
450         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
451         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
452 }
453
454 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
455                                   struct rt2x00_intf *intf,
456                                   struct rt2x00intf_conf *conf,
457                                   const unsigned int flags)
458 {
459         unsigned int bcn_preload;
460         u16 reg;
461
462         if (flags & CONFIG_UPDATE_TYPE) {
463                 /*
464                  * Enable beacon config
465                  */
466                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
467                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
468                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
469                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
470                                    2 * (conf->type != NL80211_IFTYPE_STATION));
471                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
472
473                 /*
474                  * Enable synchronisation.
475                  */
476                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
477                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
478                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
479
480                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
481                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
482                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
483                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
484                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
485         }
486
487         if (flags & CONFIG_UPDATE_MAC)
488                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
489                                               (3 * sizeof(__le16)));
490
491         if (flags & CONFIG_UPDATE_BSSID)
492                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
493                                               (3 * sizeof(__le16)));
494 }
495
496 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
497                                  struct rt2x00lib_erp *erp,
498                                  u32 changed)
499 {
500         u16 reg;
501
502         if (changed & BSS_CHANGED_ERP_PREAMBLE) {
503                 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
504                 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
505                                    !!erp->short_preamble);
506                 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
507         }
508
509         if (changed & BSS_CHANGED_BASIC_RATES)
510                 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
511                                          erp->basic_rates);
512
513         if (changed & BSS_CHANGED_BEACON_INT) {
514                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
515                 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
516                                    erp->beacon_int * 4);
517                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
518         }
519
520         if (changed & BSS_CHANGED_ERP_SLOT) {
521                 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
522                 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
523                 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
524         }
525 }
526
527 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
528                                  struct antenna_setup *ant)
529 {
530         u8 r2;
531         u8 r14;
532         u16 csr5;
533         u16 csr6;
534
535         /*
536          * We should never come here because rt2x00lib is supposed
537          * to catch this and send us the correct antenna explicitely.
538          */
539         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
540                ant->tx == ANTENNA_SW_DIVERSITY);
541
542         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
543         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
544         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
545         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
546
547         /*
548          * Configure the TX antenna.
549          */
550         switch (ant->tx) {
551         case ANTENNA_HW_DIVERSITY:
552                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
553                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
554                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
555                 break;
556         case ANTENNA_A:
557                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
558                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
559                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
560                 break;
561         case ANTENNA_B:
562         default:
563                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
564                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
565                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
566                 break;
567         }
568
569         /*
570          * Configure the RX antenna.
571          */
572         switch (ant->rx) {
573         case ANTENNA_HW_DIVERSITY:
574                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
575                 break;
576         case ANTENNA_A:
577                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
578                 break;
579         case ANTENNA_B:
580         default:
581                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
582                 break;
583         }
584
585         /*
586          * RT2525E and RT5222 need to flip TX I/Q
587          */
588         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
589                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
590                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
591                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
592
593                 /*
594                  * RT2525E does not need RX I/Q Flip.
595                  */
596                 if (rt2x00_rf(rt2x00dev, RF2525E))
597                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
598         } else {
599                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
600                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
601         }
602
603         rt2500usb_bbp_write(rt2x00dev, 2, r2);
604         rt2500usb_bbp_write(rt2x00dev, 14, r14);
605         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
606         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
607 }
608
609 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
610                                      struct rf_channel *rf, const int txpower)
611 {
612         /*
613          * Set TXpower.
614          */
615         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
616
617         /*
618          * For RT2525E we should first set the channel to half band higher.
619          */
620         if (rt2x00_rf(rt2x00dev, RF2525E)) {
621                 static const u32 vals[] = {
622                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
623                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
624                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
625                         0x00000902, 0x00000906
626                 };
627
628                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
629                 if (rf->rf4)
630                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
631         }
632
633         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
634         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
635         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
636         if (rf->rf4)
637                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
638 }
639
640 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
641                                      const int txpower)
642 {
643         u32 rf3;
644
645         rt2x00_rf_read(rt2x00dev, 3, &rf3);
646         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
647         rt2500usb_rf_write(rt2x00dev, 3, rf3);
648 }
649
650 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
651                                 struct rt2x00lib_conf *libconf)
652 {
653         enum dev_state state =
654             (libconf->conf->flags & IEEE80211_CONF_PS) ?
655                 STATE_SLEEP : STATE_AWAKE;
656         u16 reg;
657
658         if (state == STATE_SLEEP) {
659                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
660                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
661                                    rt2x00dev->beacon_int - 20);
662                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
663                                    libconf->conf->listen_interval - 1);
664
665                 /* We must first disable autowake before it can be enabled */
666                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
667                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
668
669                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
670                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
671         } else {
672                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
673                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
674                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
675         }
676
677         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
678 }
679
680 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
681                              struct rt2x00lib_conf *libconf,
682                              const unsigned int flags)
683 {
684         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
685                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
686                                          libconf->conf->power_level);
687         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
688             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
689                 rt2500usb_config_txpower(rt2x00dev,
690                                          libconf->conf->power_level);
691         if (flags & IEEE80211_CONF_CHANGE_PS)
692                 rt2500usb_config_ps(rt2x00dev, libconf);
693 }
694
695 /*
696  * Link tuning
697  */
698 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
699                                  struct link_qual *qual)
700 {
701         u16 reg;
702
703         /*
704          * Update FCS error count from register.
705          */
706         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
707         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
708
709         /*
710          * Update False CCA count from register.
711          */
712         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
713         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
714 }
715
716 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
717                                   struct link_qual *qual)
718 {
719         u16 eeprom;
720         u16 value;
721
722         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
723         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
724         rt2500usb_bbp_write(rt2x00dev, 24, value);
725
726         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
727         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
728         rt2500usb_bbp_write(rt2x00dev, 25, value);
729
730         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
731         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
732         rt2500usb_bbp_write(rt2x00dev, 61, value);
733
734         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
735         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
736         rt2500usb_bbp_write(rt2x00dev, 17, value);
737
738         qual->vgc_level = value;
739 }
740
741 /*
742  * Initialization functions.
743  */
744 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
745 {
746         u16 reg;
747
748         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
749                                     USB_MODE_TEST, REGISTER_TIMEOUT);
750         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
751                                     0x00f0, REGISTER_TIMEOUT);
752
753         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
754         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
755         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
756
757         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
758         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
759
760         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
761         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
762         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
763         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
764         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
765
766         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
767         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
768         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
769         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
770         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
771
772         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
773         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
774         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
775         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
776         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
777         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
778
779         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
780         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
781         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
782         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
783         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
784         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
785
786         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
787         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
788         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
789         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
790         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
791         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
792
793         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
794         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
795         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
796         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
797         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
798         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
799
800         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
801         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
802         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
803         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
804         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
805         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
806
807         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
808         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
809
810         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
811                 return -EBUSY;
812
813         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
814         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
815         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
816         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
817         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
818
819         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
820                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
821                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
822         } else {
823                 reg = 0;
824                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
825                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
826         }
827         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
828
829         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
830         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
831         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
832         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
833
834         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
835         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
836                            rt2x00dev->rx->data_size);
837         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
838
839         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
840         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
841         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
842         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
843         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
844
845         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
846         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
847         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
848
849         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
850         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
851         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
852
853         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
854         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
855         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
856
857         return 0;
858 }
859
860 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
861 {
862         unsigned int i;
863         u8 value;
864
865         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
866                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
867                 if ((value != 0xff) && (value != 0x00))
868                         return 0;
869                 udelay(REGISTER_BUSY_DELAY);
870         }
871
872         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
873         return -EACCES;
874 }
875
876 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
877 {
878         unsigned int i;
879         u16 eeprom;
880         u8 value;
881         u8 reg_id;
882
883         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
884                 return -EACCES;
885
886         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
887         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
888         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
889         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
890         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
891         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
892         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
893         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
894         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
895         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
896         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
897         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
898         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
899         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
900         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
901         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
902         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
903         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
904         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
905         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
906         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
907         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
908         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
909         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
910         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
911         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
912         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
913         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
914         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
915         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
916         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
917
918         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
919                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
920
921                 if (eeprom != 0xffff && eeprom != 0x0000) {
922                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
923                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
924                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
925                 }
926         }
927
928         return 0;
929 }
930
931 /*
932  * Device state switch handlers.
933  */
934 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
935                                 enum dev_state state)
936 {
937         u16 reg;
938
939         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
940         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
941                            (state == STATE_RADIO_RX_OFF));
942         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
943 }
944
945 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
946 {
947         /*
948          * Initialize all registers.
949          */
950         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
951                      rt2500usb_init_bbp(rt2x00dev)))
952                 return -EIO;
953
954         return 0;
955 }
956
957 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
958 {
959         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
960         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
961
962         /*
963          * Disable synchronisation.
964          */
965         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
966
967         rt2x00usb_disable_radio(rt2x00dev);
968 }
969
970 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
971                                enum dev_state state)
972 {
973         u16 reg;
974         u16 reg2;
975         unsigned int i;
976         char put_to_sleep;
977         char bbp_state;
978         char rf_state;
979
980         put_to_sleep = (state != STATE_AWAKE);
981
982         reg = 0;
983         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
984         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
985         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
986         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
987         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
988         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
989
990         /*
991          * Device is not guaranteed to be in the requested state yet.
992          * We must wait until the register indicates that the
993          * device has entered the correct state.
994          */
995         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
996                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
997                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
998                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
999                 if (bbp_state == state && rf_state == state)
1000                         return 0;
1001                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1002                 msleep(30);
1003         }
1004
1005         return -EBUSY;
1006 }
1007
1008 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1009                                       enum dev_state state)
1010 {
1011         int retval = 0;
1012
1013         switch (state) {
1014         case STATE_RADIO_ON:
1015                 retval = rt2500usb_enable_radio(rt2x00dev);
1016                 break;
1017         case STATE_RADIO_OFF:
1018                 rt2500usb_disable_radio(rt2x00dev);
1019                 break;
1020         case STATE_RADIO_RX_ON:
1021         case STATE_RADIO_RX_OFF:
1022                 rt2500usb_toggle_rx(rt2x00dev, state);
1023                 break;
1024         case STATE_RADIO_IRQ_ON:
1025         case STATE_RADIO_IRQ_ON_ISR:
1026         case STATE_RADIO_IRQ_OFF:
1027         case STATE_RADIO_IRQ_OFF_ISR:
1028                 /* No support, but no error either */
1029                 break;
1030         case STATE_DEEP_SLEEP:
1031         case STATE_SLEEP:
1032         case STATE_STANDBY:
1033         case STATE_AWAKE:
1034                 retval = rt2500usb_set_state(rt2x00dev, state);
1035                 break;
1036         default:
1037                 retval = -ENOTSUPP;
1038                 break;
1039         }
1040
1041         if (unlikely(retval))
1042                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1043                       state, retval);
1044
1045         return retval;
1046 }
1047
1048 /*
1049  * TX descriptor initialization
1050  */
1051 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1052                                     struct txentry_desc *txdesc)
1053 {
1054         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1055         __le32 *txd = (__le32 *) entry->skb->data;
1056         u32 word;
1057
1058         /*
1059          * Start writing the descriptor words.
1060          */
1061         rt2x00_desc_read(txd, 0, &word);
1062         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1063         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1064                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1065         rt2x00_set_field32(&word, TXD_W0_ACK,
1066                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1067         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1068                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1069         rt2x00_set_field32(&word, TXD_W0_OFDM,
1070                            (txdesc->rate_mode == RATE_MODE_OFDM));
1071         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1072                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1073         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1074         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1075         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1076         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1077         rt2x00_desc_write(txd, 0, word);
1078
1079         rt2x00_desc_read(txd, 1, &word);
1080         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1081         rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1082         rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1083         rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1084         rt2x00_desc_write(txd, 1, word);
1085
1086         rt2x00_desc_read(txd, 2, &word);
1087         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1088         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1089         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1090         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1091         rt2x00_desc_write(txd, 2, word);
1092
1093         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1094                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1095                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1096         }
1097
1098         /*
1099          * Register descriptor details in skb frame descriptor.
1100          */
1101         skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1102         skbdesc->desc = txd;
1103         skbdesc->desc_len = TXD_DESC_SIZE;
1104 }
1105
1106 /*
1107  * TX data initialization
1108  */
1109 static void rt2500usb_beacondone(struct urb *urb);
1110
1111 static void rt2500usb_write_beacon(struct queue_entry *entry,
1112                                    struct txentry_desc *txdesc)
1113 {
1114         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1115         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1116         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1117         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1118         int length;
1119         u16 reg, reg0;
1120
1121         /*
1122          * Disable beaconing while we are reloading the beacon data,
1123          * otherwise we might be sending out invalid data.
1124          */
1125         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1126         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1127         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1128
1129         /*
1130          * Add space for the descriptor in front of the skb.
1131          */
1132         skb_push(entry->skb, TXD_DESC_SIZE);
1133         memset(entry->skb->data, 0, TXD_DESC_SIZE);
1134
1135         /*
1136          * Write the TX descriptor for the beacon.
1137          */
1138         rt2500usb_write_tx_desc(entry, txdesc);
1139
1140         /*
1141          * Dump beacon to userspace through debugfs.
1142          */
1143         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1144
1145         /*
1146          * USB devices cannot blindly pass the skb->len as the
1147          * length of the data to usb_fill_bulk_urb. Pass the skb
1148          * to the driver to determine what the length should be.
1149          */
1150         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1151
1152         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1153                           entry->skb->data, length, rt2500usb_beacondone,
1154                           entry);
1155
1156         /*
1157          * Second we need to create the guardian byte.
1158          * We only need a single byte, so lets recycle
1159          * the 'flags' field we are not using for beacons.
1160          */
1161         bcn_priv->guardian_data = 0;
1162         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1163                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1164                           entry);
1165
1166         /*
1167          * Send out the guardian byte.
1168          */
1169         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1170
1171         /*
1172          * Enable beaconing again.
1173          */
1174         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1175         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1176         reg0 = reg;
1177         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1178         /*
1179          * Beacon generation will fail initially.
1180          * To prevent this we need to change the TXRX_CSR19
1181          * register several times (reg0 is the same as reg
1182          * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1183          * and 1 in reg).
1184          */
1185         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1186         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1187         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1188         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1189         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1190 }
1191
1192 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1193 {
1194         int length;
1195
1196         /*
1197          * The length _must_ be a multiple of 2,
1198          * but it must _not_ be a multiple of the USB packet size.
1199          */
1200         length = roundup(entry->skb->len, 2);
1201         length += (2 * !(length % entry->queue->usb_maxpacket));
1202
1203         return length;
1204 }
1205
1206 static void rt2500usb_kill_tx_queue(struct data_queue *queue)
1207 {
1208         if (queue->qid == QID_BEACON)
1209                 rt2500usb_register_write(queue->rt2x00dev, TXRX_CSR19, 0);
1210
1211         rt2x00usb_kill_tx_queue(queue);
1212 }
1213
1214 /*
1215  * RX control handlers
1216  */
1217 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1218                                   struct rxdone_entry_desc *rxdesc)
1219 {
1220         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1221         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1222         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1223         __le32 *rxd =
1224             (__le32 *)(entry->skb->data +
1225                        (entry_priv->urb->actual_length -
1226                         entry->queue->desc_size));
1227         u32 word0;
1228         u32 word1;
1229
1230         /*
1231          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1232          * frame data in rt2x00usb.
1233          */
1234         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1235         rxd = (__le32 *)skbdesc->desc;
1236
1237         /*
1238          * It is now safe to read the descriptor on all architectures.
1239          */
1240         rt2x00_desc_read(rxd, 0, &word0);
1241         rt2x00_desc_read(rxd, 1, &word1);
1242
1243         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1244                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1245         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1246                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1247
1248         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1249         if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1250                 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1251
1252         if (rxdesc->cipher != CIPHER_NONE) {
1253                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1254                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1255                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1256
1257                 /* ICV is located at the end of frame */
1258
1259                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1260                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1261                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1262                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1263                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1264         }
1265
1266         /*
1267          * Obtain the status about this packet.
1268          * When frame was received with an OFDM bitrate,
1269          * the signal is the PLCP value. If it was received with
1270          * a CCK bitrate the signal is the rate in 100kbit/s.
1271          */
1272         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1273         rxdesc->rssi =
1274             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1275         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1276
1277         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1278                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1279         else
1280                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1281         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1282                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1283
1284         /*
1285          * Adjust the skb memory window to the frame boundaries.
1286          */
1287         skb_trim(entry->skb, rxdesc->size);
1288 }
1289
1290 /*
1291  * Interrupt functions.
1292  */
1293 static void rt2500usb_beacondone(struct urb *urb)
1294 {
1295         struct queue_entry *entry = (struct queue_entry *)urb->context;
1296         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1297
1298         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1299                 return;
1300
1301         /*
1302          * Check if this was the guardian beacon,
1303          * if that was the case we need to send the real beacon now.
1304          * Otherwise we should free the sk_buffer, the device
1305          * should be doing the rest of the work now.
1306          */
1307         if (bcn_priv->guardian_urb == urb) {
1308                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1309         } else if (bcn_priv->urb == urb) {
1310                 dev_kfree_skb(entry->skb);
1311                 entry->skb = NULL;
1312         }
1313 }
1314
1315 /*
1316  * Device probe functions.
1317  */
1318 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1319 {
1320         u16 word;
1321         u8 *mac;
1322         u8 bbp;
1323
1324         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1325
1326         /*
1327          * Start validation of the data that has been read.
1328          */
1329         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1330         if (!is_valid_ether_addr(mac)) {
1331                 random_ether_addr(mac);
1332                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1333         }
1334
1335         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1336         if (word == 0xffff) {
1337                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1338                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1339                                    ANTENNA_SW_DIVERSITY);
1340                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1341                                    ANTENNA_SW_DIVERSITY);
1342                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1343                                    LED_MODE_DEFAULT);
1344                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1345                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1346                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1347                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1348                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1349         }
1350
1351         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1352         if (word == 0xffff) {
1353                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1354                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1355                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1356                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1357                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1358         }
1359
1360         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1361         if (word == 0xffff) {
1362                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1363                                    DEFAULT_RSSI_OFFSET);
1364                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1365                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1366         }
1367
1368         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1369         if (word == 0xffff) {
1370                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1371                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1372                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1373         }
1374
1375         /*
1376          * Switch lower vgc bound to current BBP R17 value,
1377          * lower the value a bit for better quality.
1378          */
1379         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1380         bbp -= 6;
1381
1382         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1383         if (word == 0xffff) {
1384                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1385                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1386                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1387                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1388         } else {
1389                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1390                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1391         }
1392
1393         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1394         if (word == 0xffff) {
1395                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1396                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1397                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1398                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1399         }
1400
1401         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1402         if (word == 0xffff) {
1403                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1404                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1405                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1406                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1407         }
1408
1409         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1410         if (word == 0xffff) {
1411                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1412                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1413                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1414                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1415         }
1416
1417         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1418         if (word == 0xffff) {
1419                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1420                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1421                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1422                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1429 {
1430         u16 reg;
1431         u16 value;
1432         u16 eeprom;
1433
1434         /*
1435          * Read EEPROM word for configuration.
1436          */
1437         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1438
1439         /*
1440          * Identify RF chipset.
1441          */
1442         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1443         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1444         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1445
1446         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1447                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1448                 return -ENODEV;
1449         }
1450
1451         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1452             !rt2x00_rf(rt2x00dev, RF2523) &&
1453             !rt2x00_rf(rt2x00dev, RF2524) &&
1454             !rt2x00_rf(rt2x00dev, RF2525) &&
1455             !rt2x00_rf(rt2x00dev, RF2525E) &&
1456             !rt2x00_rf(rt2x00dev, RF5222)) {
1457                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1458                 return -ENODEV;
1459         }
1460
1461         /*
1462          * Identify default antenna configuration.
1463          */
1464         rt2x00dev->default_ant.tx =
1465             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1466         rt2x00dev->default_ant.rx =
1467             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1468
1469         /*
1470          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1471          * I am not 100% sure about this, but the legacy drivers do not
1472          * indicate antenna swapping in software is required when
1473          * diversity is enabled.
1474          */
1475         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1476                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1477         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1478                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1479
1480         /*
1481          * Store led mode, for correct led behaviour.
1482          */
1483 #ifdef CONFIG_RT2X00_LIB_LEDS
1484         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1485
1486         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1487         if (value == LED_MODE_TXRX_ACTIVITY ||
1488             value == LED_MODE_DEFAULT ||
1489             value == LED_MODE_ASUS)
1490                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1491                                    LED_TYPE_ACTIVITY);
1492 #endif /* CONFIG_RT2X00_LIB_LEDS */
1493
1494         /*
1495          * Detect if this device has an hardware controlled radio.
1496          */
1497         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1498                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1499
1500         /*
1501          * Read the RSSI <-> dBm offset information.
1502          */
1503         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1504         rt2x00dev->rssi_offset =
1505             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1506
1507         return 0;
1508 }
1509
1510 /*
1511  * RF value list for RF2522
1512  * Supports: 2.4 GHz
1513  */
1514 static const struct rf_channel rf_vals_bg_2522[] = {
1515         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1516         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1517         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1518         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1519         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1520         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1521         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1522         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1523         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1524         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1525         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1526         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1527         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1528         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1529 };
1530
1531 /*
1532  * RF value list for RF2523
1533  * Supports: 2.4 GHz
1534  */
1535 static const struct rf_channel rf_vals_bg_2523[] = {
1536         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1537         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1538         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1539         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1540         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1541         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1542         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1543         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1544         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1545         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1546         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1547         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1548         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1549         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1550 };
1551
1552 /*
1553  * RF value list for RF2524
1554  * Supports: 2.4 GHz
1555  */
1556 static const struct rf_channel rf_vals_bg_2524[] = {
1557         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1558         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1559         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1560         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1561         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1562         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1563         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1564         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1565         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1566         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1567         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1568         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1569         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1570         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1571 };
1572
1573 /*
1574  * RF value list for RF2525
1575  * Supports: 2.4 GHz
1576  */
1577 static const struct rf_channel rf_vals_bg_2525[] = {
1578         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1579         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1580         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1581         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1582         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1583         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1584         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1585         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1586         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1587         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1588         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1589         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1590         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1591         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1592 };
1593
1594 /*
1595  * RF value list for RF2525e
1596  * Supports: 2.4 GHz
1597  */
1598 static const struct rf_channel rf_vals_bg_2525e[] = {
1599         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1600         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1601         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1602         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1603         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1604         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1605         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1606         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1607         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1608         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1609         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1610         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1611         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1612         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1613 };
1614
1615 /*
1616  * RF value list for RF5222
1617  * Supports: 2.4 GHz & 5.2 GHz
1618  */
1619 static const struct rf_channel rf_vals_5222[] = {
1620         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1621         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1622         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1623         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1624         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1625         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1626         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1627         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1628         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1629         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1630         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1631         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1632         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1633         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1634
1635         /* 802.11 UNI / HyperLan 2 */
1636         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1637         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1638         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1639         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1640         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1641         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1642         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1643         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1644
1645         /* 802.11 HyperLan 2 */
1646         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1647         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1648         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1649         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1650         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1651         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1652         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1653         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1654         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1655         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1656
1657         /* 802.11 UNII */
1658         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1659         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1660         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1661         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1662         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1663 };
1664
1665 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1666 {
1667         struct hw_mode_spec *spec = &rt2x00dev->spec;
1668         struct channel_info *info;
1669         char *tx_power;
1670         unsigned int i;
1671
1672         /*
1673          * Initialize all hw fields.
1674          *
1675          * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1676          * capable of sending the buffered frames out after the DTIM
1677          * transmission using rt2x00lib_beacondone. This will send out
1678          * multicast and broadcast traffic immediately instead of buffering it
1679          * infinitly and thus dropping it after some time.
1680          */
1681         rt2x00dev->hw->flags =
1682             IEEE80211_HW_RX_INCLUDES_FCS |
1683             IEEE80211_HW_SIGNAL_DBM |
1684             IEEE80211_HW_SUPPORTS_PS |
1685             IEEE80211_HW_PS_NULLFUNC_STACK;
1686
1687         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1688         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1689                                 rt2x00_eeprom_addr(rt2x00dev,
1690                                                    EEPROM_MAC_ADDR_0));
1691
1692         /*
1693          * Initialize hw_mode information.
1694          */
1695         spec->supported_bands = SUPPORT_BAND_2GHZ;
1696         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1697
1698         if (rt2x00_rf(rt2x00dev, RF2522)) {
1699                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1700                 spec->channels = rf_vals_bg_2522;
1701         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1702                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1703                 spec->channels = rf_vals_bg_2523;
1704         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1705                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1706                 spec->channels = rf_vals_bg_2524;
1707         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1708                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1709                 spec->channels = rf_vals_bg_2525;
1710         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1711                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1712                 spec->channels = rf_vals_bg_2525e;
1713         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1714                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1715                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1716                 spec->channels = rf_vals_5222;
1717         }
1718
1719         /*
1720          * Create channel information array
1721          */
1722         info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1723         if (!info)
1724                 return -ENOMEM;
1725
1726         spec->channels_info = info;
1727
1728         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1729         for (i = 0; i < 14; i++) {
1730                 info[i].max_power = MAX_TXPOWER;
1731                 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1732         }
1733
1734         if (spec->num_channels > 14) {
1735                 for (i = 14; i < spec->num_channels; i++) {
1736                         info[i].max_power = MAX_TXPOWER;
1737                         info[i].default_power1 = DEFAULT_TXPOWER;
1738                 }
1739         }
1740
1741         return 0;
1742 }
1743
1744 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1745 {
1746         int retval;
1747
1748         /*
1749          * Allocate eeprom data.
1750          */
1751         retval = rt2500usb_validate_eeprom(rt2x00dev);
1752         if (retval)
1753                 return retval;
1754
1755         retval = rt2500usb_init_eeprom(rt2x00dev);
1756         if (retval)
1757                 return retval;
1758
1759         /*
1760          * Initialize hw specifications.
1761          */
1762         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1763         if (retval)
1764                 return retval;
1765
1766         /*
1767          * This device requires the atim queue
1768          */
1769         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1770         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1771         if (!modparam_nohwcrypt) {
1772                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1773                 __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1774         }
1775         __set_bit(DRIVER_SUPPORT_WATCHDOG, &rt2x00dev->flags);
1776
1777         /*
1778          * Set the rssi offset.
1779          */
1780         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1781
1782         return 0;
1783 }
1784
1785 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1786         .tx                     = rt2x00mac_tx,
1787         .start                  = rt2x00mac_start,
1788         .stop                   = rt2x00mac_stop,
1789         .add_interface          = rt2x00mac_add_interface,
1790         .remove_interface       = rt2x00mac_remove_interface,
1791         .config                 = rt2x00mac_config,
1792         .configure_filter       = rt2x00mac_configure_filter,
1793         .set_tim                = rt2x00mac_set_tim,
1794         .set_key                = rt2x00mac_set_key,
1795         .sw_scan_start          = rt2x00mac_sw_scan_start,
1796         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1797         .get_stats              = rt2x00mac_get_stats,
1798         .bss_info_changed       = rt2x00mac_bss_info_changed,
1799         .conf_tx                = rt2x00mac_conf_tx,
1800         .rfkill_poll            = rt2x00mac_rfkill_poll,
1801         .flush                  = rt2x00mac_flush,
1802 };
1803
1804 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1805         .probe_hw               = rt2500usb_probe_hw,
1806         .initialize             = rt2x00usb_initialize,
1807         .uninitialize           = rt2x00usb_uninitialize,
1808         .clear_entry            = rt2x00usb_clear_entry,
1809         .set_device_state       = rt2500usb_set_device_state,
1810         .rfkill_poll            = rt2500usb_rfkill_poll,
1811         .link_stats             = rt2500usb_link_stats,
1812         .reset_tuner            = rt2500usb_reset_tuner,
1813         .watchdog               = rt2x00usb_watchdog,
1814         .write_tx_desc          = rt2500usb_write_tx_desc,
1815         .write_beacon           = rt2500usb_write_beacon,
1816         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1817         .kick_tx_queue          = rt2x00usb_kick_tx_queue,
1818         .kill_tx_queue          = rt2500usb_kill_tx_queue,
1819         .fill_rxdone            = rt2500usb_fill_rxdone,
1820         .config_shared_key      = rt2500usb_config_key,
1821         .config_pairwise_key    = rt2500usb_config_key,
1822         .config_filter          = rt2500usb_config_filter,
1823         .config_intf            = rt2500usb_config_intf,
1824         .config_erp             = rt2500usb_config_erp,
1825         .config_ant             = rt2500usb_config_ant,
1826         .config                 = rt2500usb_config,
1827 };
1828
1829 static const struct data_queue_desc rt2500usb_queue_rx = {
1830         .entry_num              = 32,
1831         .data_size              = DATA_FRAME_SIZE,
1832         .desc_size              = RXD_DESC_SIZE,
1833         .priv_size              = sizeof(struct queue_entry_priv_usb),
1834 };
1835
1836 static const struct data_queue_desc rt2500usb_queue_tx = {
1837         .entry_num              = 32,
1838         .data_size              = DATA_FRAME_SIZE,
1839         .desc_size              = TXD_DESC_SIZE,
1840         .priv_size              = sizeof(struct queue_entry_priv_usb),
1841 };
1842
1843 static const struct data_queue_desc rt2500usb_queue_bcn = {
1844         .entry_num              = 1,
1845         .data_size              = MGMT_FRAME_SIZE,
1846         .desc_size              = TXD_DESC_SIZE,
1847         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1848 };
1849
1850 static const struct data_queue_desc rt2500usb_queue_atim = {
1851         .entry_num              = 8,
1852         .data_size              = DATA_FRAME_SIZE,
1853         .desc_size              = TXD_DESC_SIZE,
1854         .priv_size              = sizeof(struct queue_entry_priv_usb),
1855 };
1856
1857 static const struct rt2x00_ops rt2500usb_ops = {
1858         .name                   = KBUILD_MODNAME,
1859         .max_sta_intf           = 1,
1860         .max_ap_intf            = 1,
1861         .eeprom_size            = EEPROM_SIZE,
1862         .rf_size                = RF_SIZE,
1863         .tx_queues              = NUM_TX_QUEUES,
1864         .extra_tx_headroom      = TXD_DESC_SIZE,
1865         .rx                     = &rt2500usb_queue_rx,
1866         .tx                     = &rt2500usb_queue_tx,
1867         .bcn                    = &rt2500usb_queue_bcn,
1868         .atim                   = &rt2500usb_queue_atim,
1869         .lib                    = &rt2500usb_rt2x00_ops,
1870         .hw                     = &rt2500usb_mac80211_ops,
1871 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1872         .debugfs                = &rt2500usb_rt2x00debug,
1873 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1874 };
1875
1876 /*
1877  * rt2500usb module information.
1878  */
1879 static struct usb_device_id rt2500usb_device_table[] = {
1880         /* ASUS */
1881         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1882         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1883         /* Belkin */
1884         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1885         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1886         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1887         /* Cisco Systems */
1888         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1889         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1890         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1891         /* CNet */
1892         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
1893         /* Conceptronic */
1894         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1895         /* D-LINK */
1896         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1897         /* Gigabyte */
1898         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1899         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1900         /* Hercules */
1901         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1902         /* Melco */
1903         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1904         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1905         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1906         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1907         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1908         /* MSI */
1909         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1910         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1911         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1912         /* Ralink */
1913         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1914         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1915         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1916         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1917         /* Sagem */
1918         { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
1919         /* Siemens */
1920         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1921         /* SMC */
1922         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1923         /* Spairon */
1924         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1925         /* SURECOM */
1926         { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
1927         /* Trust */
1928         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1929         /* VTech */
1930         { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
1931         /* Zinwell */
1932         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1933         { 0, }
1934 };
1935
1936 MODULE_AUTHOR(DRV_PROJECT);
1937 MODULE_VERSION(DRV_VERSION);
1938 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1939 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1940 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1941 MODULE_LICENSE("GPL");
1942
1943 static struct usb_driver rt2500usb_driver = {
1944         .name           = KBUILD_MODNAME,
1945         .id_table       = rt2500usb_device_table,
1946         .probe          = rt2x00usb_probe,
1947         .disconnect     = rt2x00usb_disconnect,
1948         .suspend        = rt2x00usb_suspend,
1949         .resume         = rt2x00usb_resume,
1950 };
1951
1952 static int __init rt2500usb_init(void)
1953 {
1954         return usb_register(&rt2500usb_driver);
1955 }
1956
1957 static void __exit rt2500usb_exit(void)
1958 {
1959         usb_deregister(&rt2500usb_driver);
1960 }
1961
1962 module_init(rt2500usb_init);
1963 module_exit(rt2500usb_exit);