]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/stmmac/stmmac_main.c
c59c1061252af28ecf3f01667355ed8f00d8b883
[net-next-2.6.git] / drivers / net / stmmac / stmmac_main.c
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4
5   Copyright (C) 2007-2009  STMicroelectronics Ltd
6
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25   Documentation available at:
26         http://www.stlinux.com
27   Support available at:
28         https://bugzilla.stlinux.com/
29 *******************************************************************************/
30
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/kernel.h>
34 #include <linux/interrupt.h>
35 #include <linux/etherdevice.h>
36 #include <linux/platform_device.h>
37 #include <linux/ip.h>
38 #include <linux/tcp.h>
39 #include <linux/skbuff.h>
40 #include <linux/ethtool.h>
41 #include <linux/if_ether.h>
42 #include <linux/crc32.h>
43 #include <linux/mii.h>
44 #include <linux/phy.h>
45 #include <linux/if_vlan.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/slab.h>
48 #include "stmmac.h"
49
50 #define STMMAC_RESOURCE_NAME    "stmmaceth"
51 #define PHY_RESOURCE_NAME       "stmmacphy"
52
53 #undef STMMAC_DEBUG
54 /*#define STMMAC_DEBUG*/
55 #ifdef STMMAC_DEBUG
56 #define DBG(nlevel, klevel, fmt, args...) \
57                 ((void)(netif_msg_##nlevel(priv) && \
58                 printk(KERN_##klevel fmt, ## args)))
59 #else
60 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
61 #endif
62
63 #undef STMMAC_RX_DEBUG
64 /*#define STMMAC_RX_DEBUG*/
65 #ifdef STMMAC_RX_DEBUG
66 #define RX_DBG(fmt, args...)  printk(fmt, ## args)
67 #else
68 #define RX_DBG(fmt, args...)  do { } while (0)
69 #endif
70
71 #undef STMMAC_XMIT_DEBUG
72 /*#define STMMAC_XMIT_DEBUG*/
73 #ifdef STMMAC_TX_DEBUG
74 #define TX_DBG(fmt, args...)  printk(fmt, ## args)
75 #else
76 #define TX_DBG(fmt, args...)  do { } while (0)
77 #endif
78
79 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
80 #define JUMBO_LEN       9000
81
82 /* Module parameters */
83 #define TX_TIMEO 5000 /* default 5 seconds */
84 static int watchdog = TX_TIMEO;
85 module_param(watchdog, int, S_IRUGO | S_IWUSR);
86 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
87
88 static int debug = -1;          /* -1: default, 0: no output, 16:  all */
89 module_param(debug, int, S_IRUGO | S_IWUSR);
90 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
91
92 static int phyaddr = -1;
93 module_param(phyaddr, int, S_IRUGO);
94 MODULE_PARM_DESC(phyaddr, "Physical device address");
95
96 #define DMA_TX_SIZE 256
97 static int dma_txsize = DMA_TX_SIZE;
98 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
99 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
100
101 #define DMA_RX_SIZE 256
102 static int dma_rxsize = DMA_RX_SIZE;
103 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
105
106 static int flow_ctrl = FLOW_OFF;
107 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
109
110 static int pause = PAUSE_TIME;
111 module_param(pause, int, S_IRUGO | S_IWUSR);
112 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
113
114 #define TC_DEFAULT 64
115 static int tc = TC_DEFAULT;
116 module_param(tc, int, S_IRUGO | S_IWUSR);
117 MODULE_PARM_DESC(tc, "DMA threshold control value");
118
119 #define RX_NO_COALESCE  1       /* Always interrupt on completion */
120 #define TX_NO_COALESCE  -1      /* No moderation by default */
121
122 /* Pay attention to tune this parameter; take care of both
123  * hardware capability and network stabitily/performance impact.
124  * Many tests showed that ~4ms latency seems to be good enough. */
125 #ifdef CONFIG_STMMAC_TIMER
126 #define DEFAULT_PERIODIC_RATE   256
127 static int tmrate = DEFAULT_PERIODIC_RATE;
128 module_param(tmrate, int, S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
130 #endif
131
132 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
133 static int buf_sz = DMA_BUFFER_SIZE;
134 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
135 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
136
137 /* In case of Giga ETH, we can enable/disable the COE for the
138  * transmit HW checksum computation.
139  * Note that, if tx csum is off in HW, SG will be still supported. */
140 static int tx_coe = HW_CSUM;
141 module_param(tx_coe, int, S_IRUGO | S_IWUSR);
142 MODULE_PARM_DESC(tx_coe, "GMAC COE type 2 [on/off]");
143
144 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
145                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |
146                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
147
148 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
149 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev);
150
151 /**
152  * stmmac_verify_args - verify the driver parameters.
153  * Description: it verifies if some wrong parameter is passed to the driver.
154  * Note that wrong parameters are replaced with the default values.
155  */
156 static void stmmac_verify_args(void)
157 {
158         if (unlikely(watchdog < 0))
159                 watchdog = TX_TIMEO;
160         if (unlikely(dma_rxsize < 0))
161                 dma_rxsize = DMA_RX_SIZE;
162         if (unlikely(dma_txsize < 0))
163                 dma_txsize = DMA_TX_SIZE;
164         if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
165                 buf_sz = DMA_BUFFER_SIZE;
166         if (unlikely(flow_ctrl > 1))
167                 flow_ctrl = FLOW_AUTO;
168         else if (likely(flow_ctrl < 0))
169                 flow_ctrl = FLOW_OFF;
170         if (unlikely((pause < 0) || (pause > 0xffff)))
171                 pause = PAUSE_TIME;
172 }
173
174 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
175 static void print_pkt(unsigned char *buf, int len)
176 {
177         int j;
178         pr_info("len = %d byte, buf addr: 0x%p", len, buf);
179         for (j = 0; j < len; j++) {
180                 if ((j % 16) == 0)
181                         pr_info("\n %03x:", j);
182                 pr_info(" %02x", buf[j]);
183         }
184         pr_info("\n");
185 }
186 #endif
187
188 /* minimum number of free TX descriptors required to wake up TX process */
189 #define STMMAC_TX_THRESH(x)     (x->dma_tx_size/4)
190
191 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
192 {
193         return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
194 }
195
196 /**
197  * stmmac_adjust_link
198  * @dev: net device structure
199  * Description: it adjusts the link parameters.
200  */
201 static void stmmac_adjust_link(struct net_device *dev)
202 {
203         struct stmmac_priv *priv = netdev_priv(dev);
204         struct phy_device *phydev = priv->phydev;
205         unsigned long flags;
206         int new_state = 0;
207         unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
208
209         if (phydev == NULL)
210                 return;
211
212         DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
213             phydev->addr, phydev->link);
214
215         spin_lock_irqsave(&priv->lock, flags);
216         if (phydev->link) {
217                 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
218
219                 /* Now we make sure that we can be in full duplex mode.
220                  * If not, we operate in half-duplex mode. */
221                 if (phydev->duplex != priv->oldduplex) {
222                         new_state = 1;
223                         if (!(phydev->duplex))
224                                 ctrl &= ~priv->hw->link.duplex;
225                         else
226                                 ctrl |= priv->hw->link.duplex;
227                         priv->oldduplex = phydev->duplex;
228                 }
229                 /* Flow Control operation */
230                 if (phydev->pause)
231                         priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
232                                                  fc, pause_time);
233
234                 if (phydev->speed != priv->speed) {
235                         new_state = 1;
236                         switch (phydev->speed) {
237                         case 1000:
238                                 if (likely(priv->is_gmac))
239                                         ctrl &= ~priv->hw->link.port;
240                                 if (likely(priv->fix_mac_speed))
241                                         priv->fix_mac_speed(priv->bsp_priv,
242                                                             phydev->speed);
243                                 break;
244                         case 100:
245                         case 10:
246                                 if (priv->is_gmac) {
247                                         ctrl |= priv->hw->link.port;
248                                         if (phydev->speed == SPEED_100) {
249                                                 ctrl |= priv->hw->link.speed;
250                                         } else {
251                                                 ctrl &= ~(priv->hw->link.speed);
252                                         }
253                                 } else {
254                                         ctrl &= ~priv->hw->link.port;
255                                 }
256                                 if (likely(priv->fix_mac_speed))
257                                         priv->fix_mac_speed(priv->bsp_priv,
258                                                             phydev->speed);
259                                 break;
260                         default:
261                                 if (netif_msg_link(priv))
262                                         pr_warning("%s: Speed (%d) is not 10"
263                                        " or 100!\n", dev->name, phydev->speed);
264                                 break;
265                         }
266
267                         priv->speed = phydev->speed;
268                 }
269
270                 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
271
272                 if (!priv->oldlink) {
273                         new_state = 1;
274                         priv->oldlink = 1;
275                 }
276         } else if (priv->oldlink) {
277                 new_state = 1;
278                 priv->oldlink = 0;
279                 priv->speed = 0;
280                 priv->oldduplex = -1;
281         }
282
283         if (new_state && netif_msg_link(priv))
284                 phy_print_status(phydev);
285
286         spin_unlock_irqrestore(&priv->lock, flags);
287
288         DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
289 }
290
291 /**
292  * stmmac_init_phy - PHY initialization
293  * @dev: net device structure
294  * Description: it initializes the driver's PHY state, and attaches the PHY
295  * to the mac driver.
296  *  Return value:
297  *  0 on success
298  */
299 static int stmmac_init_phy(struct net_device *dev)
300 {
301         struct stmmac_priv *priv = netdev_priv(dev);
302         struct phy_device *phydev;
303         char phy_id[MII_BUS_ID_SIZE + 3];
304         char bus_id[MII_BUS_ID_SIZE];
305
306         priv->oldlink = 0;
307         priv->speed = 0;
308         priv->oldduplex = -1;
309
310         if (priv->phy_addr == -1) {
311                 /* We don't have a PHY, so do nothing */
312                 return 0;
313         }
314
315         snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->bus_id);
316         snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
317                  priv->phy_addr);
318         pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id);
319
320         phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0,
321                         priv->phy_interface);
322
323         if (IS_ERR(phydev)) {
324                 pr_err("%s: Could not attach to PHY\n", dev->name);
325                 return PTR_ERR(phydev);
326         }
327
328         /*
329          * Broken HW is sometimes missing the pull-up resistor on the
330          * MDIO line, which results in reads to non-existent devices returning
331          * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
332          * device as well.
333          * Note: phydev->phy_id is the result of reading the UID PHY registers.
334          */
335         if (phydev->phy_id == 0) {
336                 phy_disconnect(phydev);
337                 return -ENODEV;
338         }
339         pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
340                " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
341
342         priv->phydev = phydev;
343
344         return 0;
345 }
346
347 static inline void stmmac_mac_enable_rx(void __iomem *ioaddr)
348 {
349         u32 value = readl(ioaddr + MAC_CTRL_REG);
350         value |= MAC_RNABLE_RX;
351         /* Set the RE (receive enable bit into the MAC CTRL register).  */
352         writel(value, ioaddr + MAC_CTRL_REG);
353 }
354
355 static inline void stmmac_mac_enable_tx(void __iomem *ioaddr)
356 {
357         u32 value = readl(ioaddr + MAC_CTRL_REG);
358         value |= MAC_ENABLE_TX;
359         /* Set the TE (transmit enable bit into the MAC CTRL register).  */
360         writel(value, ioaddr + MAC_CTRL_REG);
361 }
362
363 static inline void stmmac_mac_disable_rx(void __iomem *ioaddr)
364 {
365         u32 value = readl(ioaddr + MAC_CTRL_REG);
366         value &= ~MAC_RNABLE_RX;
367         writel(value, ioaddr + MAC_CTRL_REG);
368 }
369
370 static inline void stmmac_mac_disable_tx(void __iomem *ioaddr)
371 {
372         u32 value = readl(ioaddr + MAC_CTRL_REG);
373         value &= ~MAC_ENABLE_TX;
374         writel(value, ioaddr + MAC_CTRL_REG);
375 }
376
377 /**
378  * display_ring
379  * @p: pointer to the ring.
380  * @size: size of the ring.
381  * Description: display all the descriptors within the ring.
382  */
383 static void display_ring(struct dma_desc *p, int size)
384 {
385         struct tmp_s {
386                 u64 a;
387                 unsigned int b;
388                 unsigned int c;
389         };
390         int i;
391         for (i = 0; i < size; i++) {
392                 struct tmp_s *x = (struct tmp_s *)(p + i);
393                 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
394                        i, (unsigned int)virt_to_phys(&p[i]),
395                        (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
396                        x->b, x->c);
397                 pr_info("\n");
398         }
399 }
400
401 /**
402  * init_dma_desc_rings - init the RX/TX descriptor rings
403  * @dev: net device structure
404  * Description:  this function initializes the DMA RX/TX descriptors
405  * and allocates the socket buffers.
406  */
407 static void init_dma_desc_rings(struct net_device *dev)
408 {
409         int i;
410         struct stmmac_priv *priv = netdev_priv(dev);
411         struct sk_buff *skb;
412         unsigned int txsize = priv->dma_tx_size;
413         unsigned int rxsize = priv->dma_rx_size;
414         unsigned int bfsize = priv->dma_buf_sz;
415         int buff2_needed = 0, dis_ic = 0;
416
417         /* Set the Buffer size according to the MTU;
418          * indeed, in case of jumbo we need to bump-up the buffer sizes.
419          */
420         if (unlikely(dev->mtu >= BUF_SIZE_8KiB))
421                 bfsize = BUF_SIZE_16KiB;
422         else if (unlikely(dev->mtu >= BUF_SIZE_4KiB))
423                 bfsize = BUF_SIZE_8KiB;
424         else if (unlikely(dev->mtu >= BUF_SIZE_2KiB))
425                 bfsize = BUF_SIZE_4KiB;
426         else if (unlikely(dev->mtu >= DMA_BUFFER_SIZE))
427                 bfsize = BUF_SIZE_2KiB;
428         else
429                 bfsize = DMA_BUFFER_SIZE;
430
431 #ifdef CONFIG_STMMAC_TIMER
432         /* Disable interrupts on completion for the reception if timer is on */
433         if (likely(priv->tm->enable))
434                 dis_ic = 1;
435 #endif
436         /* If the MTU exceeds 8k so use the second buffer in the chain */
437         if (bfsize >= BUF_SIZE_8KiB)
438                 buff2_needed = 1;
439
440         DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
441             txsize, rxsize, bfsize);
442
443         priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
444         priv->rx_skbuff =
445             kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
446         priv->dma_rx =
447             (struct dma_desc *)dma_alloc_coherent(priv->device,
448                                                   rxsize *
449                                                   sizeof(struct dma_desc),
450                                                   &priv->dma_rx_phy,
451                                                   GFP_KERNEL);
452         priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
453                                        GFP_KERNEL);
454         priv->dma_tx =
455             (struct dma_desc *)dma_alloc_coherent(priv->device,
456                                                   txsize *
457                                                   sizeof(struct dma_desc),
458                                                   &priv->dma_tx_phy,
459                                                   GFP_KERNEL);
460
461         if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
462                 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
463                 return;
464         }
465
466         DBG(probe, INFO, "stmmac (%s) DMA desc rings: virt addr (Rx %p, "
467             "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
468             dev->name, priv->dma_rx, priv->dma_tx,
469             (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
470
471         /* RX INITIALIZATION */
472         DBG(probe, INFO, "stmmac: SKB addresses:\n"
473                          "skb\t\tskb data\tdma data\n");
474
475         for (i = 0; i < rxsize; i++) {
476                 struct dma_desc *p = priv->dma_rx + i;
477
478                 skb = netdev_alloc_skb_ip_align(dev, bfsize);
479                 if (unlikely(skb == NULL)) {
480                         pr_err("%s: Rx init fails; skb is NULL\n", __func__);
481                         break;
482                 }
483                 priv->rx_skbuff[i] = skb;
484                 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
485                                                 bfsize, DMA_FROM_DEVICE);
486
487                 p->des2 = priv->rx_skbuff_dma[i];
488                 if (unlikely(buff2_needed))
489                         p->des3 = p->des2 + BUF_SIZE_8KiB;
490                 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
491                         priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
492         }
493         priv->cur_rx = 0;
494         priv->dirty_rx = (unsigned int)(i - rxsize);
495         priv->dma_buf_sz = bfsize;
496         buf_sz = bfsize;
497
498         /* TX INITIALIZATION */
499         for (i = 0; i < txsize; i++) {
500                 priv->tx_skbuff[i] = NULL;
501                 priv->dma_tx[i].des2 = 0;
502         }
503         priv->dirty_tx = 0;
504         priv->cur_tx = 0;
505
506         /* Clear the Rx/Tx descriptors */
507         priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
508         priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
509
510         if (netif_msg_hw(priv)) {
511                 pr_info("RX descriptor ring:\n");
512                 display_ring(priv->dma_rx, rxsize);
513                 pr_info("TX descriptor ring:\n");
514                 display_ring(priv->dma_tx, txsize);
515         }
516 }
517
518 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
519 {
520         int i;
521
522         for (i = 0; i < priv->dma_rx_size; i++) {
523                 if (priv->rx_skbuff[i]) {
524                         dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
525                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
526                         dev_kfree_skb_any(priv->rx_skbuff[i]);
527                 }
528                 priv->rx_skbuff[i] = NULL;
529         }
530 }
531
532 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
533 {
534         int i;
535
536         for (i = 0; i < priv->dma_tx_size; i++) {
537                 if (priv->tx_skbuff[i] != NULL) {
538                         struct dma_desc *p = priv->dma_tx + i;
539                         if (p->des2)
540                                 dma_unmap_single(priv->device, p->des2,
541                                                  priv->hw->desc->get_tx_len(p),
542                                                  DMA_TO_DEVICE);
543                         dev_kfree_skb_any(priv->tx_skbuff[i]);
544                         priv->tx_skbuff[i] = NULL;
545                 }
546         }
547 }
548
549 static void free_dma_desc_resources(struct stmmac_priv *priv)
550 {
551         /* Release the DMA TX/RX socket buffers */
552         dma_free_rx_skbufs(priv);
553         dma_free_tx_skbufs(priv);
554
555         /* Free the region of consistent memory previously allocated for
556          * the DMA */
557         dma_free_coherent(priv->device,
558                           priv->dma_tx_size * sizeof(struct dma_desc),
559                           priv->dma_tx, priv->dma_tx_phy);
560         dma_free_coherent(priv->device,
561                           priv->dma_rx_size * sizeof(struct dma_desc),
562                           priv->dma_rx, priv->dma_rx_phy);
563         kfree(priv->rx_skbuff_dma);
564         kfree(priv->rx_skbuff);
565         kfree(priv->tx_skbuff);
566 }
567
568 /**
569  *  stmmac_dma_operation_mode - HW DMA operation mode
570  *  @priv : pointer to the private device structure.
571  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
572  *  or Store-And-Forward capability. It also verifies the COE for the
573  *  transmission in case of Giga ETH.
574  */
575 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
576 {
577         if (!priv->is_gmac) {
578                 /* MAC 10/100 */
579                 priv->hw->dma->dma_mode(priv->ioaddr, tc, 0);
580                 priv->tx_coe = NO_HW_CSUM;
581         } else {
582                 if ((priv->dev->mtu <= ETH_DATA_LEN) && (tx_coe)) {
583                         priv->hw->dma->dma_mode(priv->ioaddr,
584                                                 SF_DMA_MODE, SF_DMA_MODE);
585                         tc = SF_DMA_MODE;
586                         priv->tx_coe = HW_CSUM;
587                 } else {
588                         /* Checksum computation is performed in software. */
589                         priv->hw->dma->dma_mode(priv->ioaddr, tc,
590                                                 SF_DMA_MODE);
591                         priv->tx_coe = NO_HW_CSUM;
592                 }
593         }
594         tx_coe = priv->tx_coe;
595 }
596
597 /**
598  * stmmac_tx:
599  * @priv: private driver structure
600  * Description: it reclaims resources after transmission completes.
601  */
602 static void stmmac_tx(struct stmmac_priv *priv)
603 {
604         unsigned int txsize = priv->dma_tx_size;
605
606         while (priv->dirty_tx != priv->cur_tx) {
607                 int last;
608                 unsigned int entry = priv->dirty_tx % txsize;
609                 struct sk_buff *skb = priv->tx_skbuff[entry];
610                 struct dma_desc *p = priv->dma_tx + entry;
611
612                 /* Check if the descriptor is owned by the DMA. */
613                 if (priv->hw->desc->get_tx_owner(p))
614                         break;
615
616                 /* Verify tx error by looking at the last segment */
617                 last = priv->hw->desc->get_tx_ls(p);
618                 if (likely(last)) {
619                         int tx_error =
620                                 priv->hw->desc->tx_status(&priv->dev->stats,
621                                                           &priv->xstats, p,
622                                                           priv->ioaddr);
623                         if (likely(tx_error == 0)) {
624                                 priv->dev->stats.tx_packets++;
625                                 priv->xstats.tx_pkt_n++;
626                         } else
627                                 priv->dev->stats.tx_errors++;
628                 }
629                 TX_DBG("%s: curr %d, dirty %d\n", __func__,
630                         priv->cur_tx, priv->dirty_tx);
631
632                 if (likely(p->des2))
633                         dma_unmap_single(priv->device, p->des2,
634                                          priv->hw->desc->get_tx_len(p),
635                                          DMA_TO_DEVICE);
636                 if (unlikely(p->des3))
637                         p->des3 = 0;
638
639                 if (likely(skb != NULL)) {
640                         /*
641                          * If there's room in the queue (limit it to size)
642                          * we add this skb back into the pool,
643                          * if it's the right size.
644                          */
645                         if ((skb_queue_len(&priv->rx_recycle) <
646                                 priv->dma_rx_size) &&
647                                 skb_recycle_check(skb, priv->dma_buf_sz))
648                                 __skb_queue_head(&priv->rx_recycle, skb);
649                         else
650                                 dev_kfree_skb(skb);
651
652                         priv->tx_skbuff[entry] = NULL;
653                 }
654
655                 priv->hw->desc->release_tx_desc(p);
656
657                 entry = (++priv->dirty_tx) % txsize;
658         }
659         if (unlikely(netif_queue_stopped(priv->dev) &&
660                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
661                 netif_tx_lock(priv->dev);
662                 if (netif_queue_stopped(priv->dev) &&
663                      stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
664                         TX_DBG("%s: restart transmit\n", __func__);
665                         netif_wake_queue(priv->dev);
666                 }
667                 netif_tx_unlock(priv->dev);
668         }
669 }
670
671 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
672 {
673 #ifdef CONFIG_STMMAC_TIMER
674         if (likely(priv->tm->enable))
675                 priv->tm->timer_start(tmrate);
676         else
677 #endif
678                 priv->hw->dma->enable_dma_irq(priv->ioaddr);
679 }
680
681 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
682 {
683 #ifdef CONFIG_STMMAC_TIMER
684         if (likely(priv->tm->enable))
685                 priv->tm->timer_stop();
686         else
687 #endif
688                 priv->hw->dma->disable_dma_irq(priv->ioaddr);
689 }
690
691 static int stmmac_has_work(struct stmmac_priv *priv)
692 {
693         unsigned int has_work = 0;
694         int rxret, tx_work = 0;
695
696         rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
697                 (priv->cur_rx % priv->dma_rx_size));
698
699         if (priv->dirty_tx != priv->cur_tx)
700                 tx_work = 1;
701
702         if (likely(!rxret || tx_work))
703                 has_work = 1;
704
705         return has_work;
706 }
707
708 static inline void _stmmac_schedule(struct stmmac_priv *priv)
709 {
710         if (likely(stmmac_has_work(priv))) {
711                 stmmac_disable_irq(priv);
712                 napi_schedule(&priv->napi);
713         }
714 }
715
716 #ifdef CONFIG_STMMAC_TIMER
717 void stmmac_schedule(struct net_device *dev)
718 {
719         struct stmmac_priv *priv = netdev_priv(dev);
720
721         priv->xstats.sched_timer_n++;
722
723         _stmmac_schedule(priv);
724 }
725
726 static void stmmac_no_timer_started(unsigned int x)
727 {;
728 };
729
730 static void stmmac_no_timer_stopped(void)
731 {;
732 };
733 #endif
734
735 /**
736  * stmmac_tx_err:
737  * @priv: pointer to the private device structure
738  * Description: it cleans the descriptors and restarts the transmission
739  * in case of errors.
740  */
741 static void stmmac_tx_err(struct stmmac_priv *priv)
742 {
743
744         netif_stop_queue(priv->dev);
745
746         priv->hw->dma->stop_tx(priv->ioaddr);
747         dma_free_tx_skbufs(priv);
748         priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
749         priv->dirty_tx = 0;
750         priv->cur_tx = 0;
751         priv->hw->dma->start_tx(priv->ioaddr);
752
753         priv->dev->stats.tx_errors++;
754         netif_wake_queue(priv->dev);
755 }
756
757
758 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
759 {
760         int status;
761
762         status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
763         if (likely(status == handle_tx_rx))
764                 _stmmac_schedule(priv);
765
766         else if (unlikely(status == tx_hard_error_bump_tc)) {
767                 /* Try to bump up the dma threshold on this failure */
768                 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
769                         tc += 64;
770                         priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
771                         priv->xstats.threshold = tc;
772                 }
773                 stmmac_tx_err(priv);
774         } else if (unlikely(status == tx_hard_error))
775                 stmmac_tx_err(priv);
776 }
777
778 /**
779  *  stmmac_open - open entry point of the driver
780  *  @dev : pointer to the device structure.
781  *  Description:
782  *  This function is the open entry point of the driver.
783  *  Return value:
784  *  0 on success and an appropriate (-)ve integer as defined in errno.h
785  *  file on failure.
786  */
787 static int stmmac_open(struct net_device *dev)
788 {
789         struct stmmac_priv *priv = netdev_priv(dev);
790         int ret;
791
792         /* Check that the MAC address is valid.  If its not, refuse
793          * to bring the device up. The user must specify an
794          * address using the following linux command:
795          *      ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx  */
796         if (!is_valid_ether_addr(dev->dev_addr)) {
797                 random_ether_addr(dev->dev_addr);
798                 pr_warning("%s: generated random MAC address %pM\n", dev->name,
799                         dev->dev_addr);
800         }
801
802         stmmac_verify_args();
803
804         ret = stmmac_init_phy(dev);
805         if (unlikely(ret)) {
806                 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
807                 return ret;
808         }
809
810         /* Request the IRQ lines */
811         ret = request_irq(dev->irq, stmmac_interrupt,
812                           IRQF_SHARED, dev->name, dev);
813         if (unlikely(ret < 0)) {
814                 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
815                        __func__, dev->irq, ret);
816                 return ret;
817         }
818
819 #ifdef CONFIG_STMMAC_TIMER
820         priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
821         if (unlikely(priv->tm == NULL)) {
822                 pr_err("%s: ERROR: timer memory alloc failed\n", __func__);
823                 return -ENOMEM;
824         }
825         priv->tm->freq = tmrate;
826
827         /* Test if the external timer can be actually used.
828          * In case of failure continue without timer. */
829         if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
830                 pr_warning("stmmaceth: cannot attach the external timer.\n");
831                 priv->tm->freq = 0;
832                 priv->tm->timer_start = stmmac_no_timer_started;
833                 priv->tm->timer_stop = stmmac_no_timer_stopped;
834         } else
835                 priv->tm->enable = 1;
836 #endif
837
838         /* Create and initialize the TX/RX descriptors chains. */
839         priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
840         priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
841         priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
842         init_dma_desc_rings(dev);
843
844         /* DMA initialization and SW reset */
845         if (unlikely(priv->hw->dma->init(priv->ioaddr, priv->pbl,
846                                          priv->dma_tx_phy,
847                                          priv->dma_rx_phy) < 0)) {
848
849                 pr_err("%s: DMA initialization failed\n", __func__);
850                 return -1;
851         }
852
853         /* Copy the MAC addr into the HW  */
854         priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
855         /* If required, perform hw setup of the bus. */
856         if (priv->bus_setup)
857                 priv->bus_setup(priv->ioaddr);
858         /* Initialize the MAC Core */
859         priv->hw->mac->core_init(priv->ioaddr);
860
861         priv->shutdown = 0;
862
863         /* Initialise the MMC (if present) to disable all interrupts. */
864         writel(0xffffffff, priv->ioaddr + MMC_HIGH_INTR_MASK);
865         writel(0xffffffff, priv->ioaddr + MMC_LOW_INTR_MASK);
866
867         /* Enable the MAC Rx/Tx */
868         stmmac_mac_enable_rx(priv->ioaddr);
869         stmmac_mac_enable_tx(priv->ioaddr);
870
871         /* Set the HW DMA mode and the COE */
872         stmmac_dma_operation_mode(priv);
873
874         /* Extra statistics */
875         memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
876         priv->xstats.threshold = tc;
877
878         /* Start the ball rolling... */
879         DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
880         priv->hw->dma->start_tx(priv->ioaddr);
881         priv->hw->dma->start_rx(priv->ioaddr);
882
883 #ifdef CONFIG_STMMAC_TIMER
884         priv->tm->timer_start(tmrate);
885 #endif
886         /* Dump DMA/MAC registers */
887         if (netif_msg_hw(priv)) {
888                 priv->hw->mac->dump_regs(priv->ioaddr);
889                 priv->hw->dma->dump_regs(priv->ioaddr);
890         }
891
892         if (priv->phydev)
893                 phy_start(priv->phydev);
894
895         napi_enable(&priv->napi);
896         skb_queue_head_init(&priv->rx_recycle);
897         netif_start_queue(dev);
898         return 0;
899 }
900
901 /**
902  *  stmmac_release - close entry point of the driver
903  *  @dev : device pointer.
904  *  Description:
905  *  This is the stop entry point of the driver.
906  */
907 static int stmmac_release(struct net_device *dev)
908 {
909         struct stmmac_priv *priv = netdev_priv(dev);
910
911         /* Stop and disconnect the PHY */
912         if (priv->phydev) {
913                 phy_stop(priv->phydev);
914                 phy_disconnect(priv->phydev);
915                 priv->phydev = NULL;
916         }
917
918         netif_stop_queue(dev);
919
920 #ifdef CONFIG_STMMAC_TIMER
921         /* Stop and release the timer */
922         stmmac_close_ext_timer();
923         if (priv->tm != NULL)
924                 kfree(priv->tm);
925 #endif
926         napi_disable(&priv->napi);
927         skb_queue_purge(&priv->rx_recycle);
928
929         /* Free the IRQ lines */
930         free_irq(dev->irq, dev);
931
932         /* Stop TX/RX DMA and clear the descriptors */
933         priv->hw->dma->stop_tx(priv->ioaddr);
934         priv->hw->dma->stop_rx(priv->ioaddr);
935
936         /* Release and free the Rx/Tx resources */
937         free_dma_desc_resources(priv);
938
939         /* Disable the MAC core */
940         stmmac_mac_disable_tx(priv->ioaddr);
941         stmmac_mac_disable_rx(priv->ioaddr);
942
943         netif_carrier_off(dev);
944
945         return 0;
946 }
947
948 /*
949  * To perform emulated hardware segmentation on skb.
950  */
951 static int stmmac_sw_tso(struct stmmac_priv *priv, struct sk_buff *skb)
952 {
953         struct sk_buff *segs, *curr_skb;
954         int gso_segs = skb_shinfo(skb)->gso_segs;
955
956         /* Estimate the number of fragments in the worst case */
957         if (unlikely(stmmac_tx_avail(priv) < gso_segs)) {
958                 netif_stop_queue(priv->dev);
959                 TX_DBG(KERN_ERR "%s: TSO BUG! Tx Ring full when queue awake\n",
960                        __func__);
961                 if (stmmac_tx_avail(priv) < gso_segs)
962                         return NETDEV_TX_BUSY;
963
964                 netif_wake_queue(priv->dev);
965         }
966         TX_DBG("\tstmmac_sw_tso: segmenting: skb %p (len %d)\n",
967                skb, skb->len);
968
969         segs = skb_gso_segment(skb, priv->dev->features & ~NETIF_F_TSO);
970         if (unlikely(IS_ERR(segs)))
971                 goto sw_tso_end;
972
973         do {
974                 curr_skb = segs;
975                 segs = segs->next;
976                 TX_DBG("\t\tcurrent skb->len: %d, *curr %p,"
977                        "*next %p\n", curr_skb->len, curr_skb, segs);
978                 curr_skb->next = NULL;
979                 stmmac_xmit(curr_skb, priv->dev);
980         } while (segs);
981
982 sw_tso_end:
983         dev_kfree_skb(skb);
984
985         return NETDEV_TX_OK;
986 }
987
988 static unsigned int stmmac_handle_jumbo_frames(struct sk_buff *skb,
989                                                struct net_device *dev,
990                                                int csum_insertion)
991 {
992         struct stmmac_priv *priv = netdev_priv(dev);
993         unsigned int nopaged_len = skb_headlen(skb);
994         unsigned int txsize = priv->dma_tx_size;
995         unsigned int entry = priv->cur_tx % txsize;
996         struct dma_desc *desc = priv->dma_tx + entry;
997
998         if (nopaged_len > BUF_SIZE_8KiB) {
999
1000                 int buf2_size = nopaged_len - BUF_SIZE_8KiB;
1001
1002                 desc->des2 = dma_map_single(priv->device, skb->data,
1003                                             BUF_SIZE_8KiB, DMA_TO_DEVICE);
1004                 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1005                 priv->hw->desc->prepare_tx_desc(desc, 1, BUF_SIZE_8KiB,
1006                                                 csum_insertion);
1007
1008                 entry = (++priv->cur_tx) % txsize;
1009                 desc = priv->dma_tx + entry;
1010
1011                 desc->des2 = dma_map_single(priv->device,
1012                                         skb->data + BUF_SIZE_8KiB,
1013                                         buf2_size, DMA_TO_DEVICE);
1014                 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1015                 priv->hw->desc->prepare_tx_desc(desc, 0, buf2_size,
1016                                                 csum_insertion);
1017                 priv->hw->desc->set_tx_owner(desc);
1018                 priv->tx_skbuff[entry] = NULL;
1019         } else {
1020                 desc->des2 = dma_map_single(priv->device, skb->data,
1021                                         nopaged_len, DMA_TO_DEVICE);
1022                 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1023                 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1024                                                 csum_insertion);
1025         }
1026         return entry;
1027 }
1028
1029 /**
1030  *  stmmac_xmit:
1031  *  @skb : the socket buffer
1032  *  @dev : device pointer
1033  *  Description : Tx entry point of the driver.
1034  */
1035 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1036 {
1037         struct stmmac_priv *priv = netdev_priv(dev);
1038         unsigned int txsize = priv->dma_tx_size;
1039         unsigned int entry;
1040         int i, csum_insertion = 0;
1041         int nfrags = skb_shinfo(skb)->nr_frags;
1042         struct dma_desc *desc, *first;
1043
1044         if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1045                 if (!netif_queue_stopped(dev)) {
1046                         netif_stop_queue(dev);
1047                         /* This is a hard error, log it. */
1048                         pr_err("%s: BUG! Tx Ring full when queue awake\n",
1049                                 __func__);
1050                 }
1051                 return NETDEV_TX_BUSY;
1052         }
1053
1054         entry = priv->cur_tx % txsize;
1055
1056 #ifdef STMMAC_XMIT_DEBUG
1057         if ((skb->len > ETH_FRAME_LEN) || nfrags)
1058                 pr_info("stmmac xmit:\n"
1059                        "\tskb addr %p - len: %d - nopaged_len: %d\n"
1060                        "\tn_frags: %d - ip_summed: %d - %s gso\n",
1061                        skb, skb->len, skb_headlen(skb), nfrags, skb->ip_summed,
1062                        !skb_is_gso(skb) ? "isn't" : "is");
1063 #endif
1064
1065         if (unlikely(skb_is_gso(skb)))
1066                 return stmmac_sw_tso(priv, skb);
1067
1068         if (likely((skb->ip_summed == CHECKSUM_PARTIAL))) {
1069                 if (likely(priv->tx_coe == NO_HW_CSUM))
1070                         skb_checksum_help(skb);
1071                 else
1072                         csum_insertion = 1;
1073         }
1074
1075         desc = priv->dma_tx + entry;
1076         first = desc;
1077
1078 #ifdef STMMAC_XMIT_DEBUG
1079         if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1080                 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1081                        "\t\tn_frags: %d, ip_summed: %d\n",
1082                        skb->len, skb_headlen(skb), nfrags, skb->ip_summed);
1083 #endif
1084         priv->tx_skbuff[entry] = skb;
1085         if (unlikely(skb->len >= BUF_SIZE_4KiB)) {
1086                 entry = stmmac_handle_jumbo_frames(skb, dev, csum_insertion);
1087                 desc = priv->dma_tx + entry;
1088         } else {
1089                 unsigned int nopaged_len = skb_headlen(skb);
1090                 desc->des2 = dma_map_single(priv->device, skb->data,
1091                                         nopaged_len, DMA_TO_DEVICE);
1092                 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1093                                                 csum_insertion);
1094         }
1095
1096         for (i = 0; i < nfrags; i++) {
1097                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1098                 int len = frag->size;
1099
1100                 entry = (++priv->cur_tx) % txsize;
1101                 desc = priv->dma_tx + entry;
1102
1103                 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1104                 desc->des2 = dma_map_page(priv->device, frag->page,
1105                                           frag->page_offset,
1106                                           len, DMA_TO_DEVICE);
1107                 priv->tx_skbuff[entry] = NULL;
1108                 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1109                 priv->hw->desc->set_tx_owner(desc);
1110         }
1111
1112         /* Interrupt on completition only for the latest segment */
1113         priv->hw->desc->close_tx_desc(desc);
1114
1115 #ifdef CONFIG_STMMAC_TIMER
1116         /* Clean IC while using timer */
1117         if (likely(priv->tm->enable))
1118                 priv->hw->desc->clear_tx_ic(desc);
1119 #endif
1120         /* To avoid raise condition */
1121         priv->hw->desc->set_tx_owner(first);
1122
1123         priv->cur_tx++;
1124
1125 #ifdef STMMAC_XMIT_DEBUG
1126         if (netif_msg_pktdata(priv)) {
1127                 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1128                        "first=%p, nfrags=%d\n",
1129                        (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1130                        entry, first, nfrags);
1131                 display_ring(priv->dma_tx, txsize);
1132                 pr_info(">>> frame to be transmitted: ");
1133                 print_pkt(skb->data, skb->len);
1134         }
1135 #endif
1136         if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1137                 TX_DBG("%s: stop transmitted packets\n", __func__);
1138                 netif_stop_queue(dev);
1139         }
1140
1141         dev->stats.tx_bytes += skb->len;
1142
1143         priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1144
1145         return NETDEV_TX_OK;
1146 }
1147
1148 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1149 {
1150         unsigned int rxsize = priv->dma_rx_size;
1151         int bfsize = priv->dma_buf_sz;
1152         struct dma_desc *p = priv->dma_rx;
1153
1154         for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1155                 unsigned int entry = priv->dirty_rx % rxsize;
1156                 if (likely(priv->rx_skbuff[entry] == NULL)) {
1157                         struct sk_buff *skb;
1158
1159                         skb = __skb_dequeue(&priv->rx_recycle);
1160                         if (skb == NULL)
1161                                 skb = netdev_alloc_skb_ip_align(priv->dev,
1162                                                                 bfsize);
1163
1164                         if (unlikely(skb == NULL))
1165                                 break;
1166
1167                         priv->rx_skbuff[entry] = skb;
1168                         priv->rx_skbuff_dma[entry] =
1169                             dma_map_single(priv->device, skb->data, bfsize,
1170                                            DMA_FROM_DEVICE);
1171
1172                         (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1173                         if (unlikely(priv->is_gmac)) {
1174                                 if (bfsize >= BUF_SIZE_8KiB)
1175                                         (p + entry)->des3 =
1176                                             (p + entry)->des2 + BUF_SIZE_8KiB;
1177                         }
1178                         RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1179                 }
1180                 priv->hw->desc->set_rx_owner(p + entry);
1181         }
1182 }
1183
1184 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1185 {
1186         unsigned int rxsize = priv->dma_rx_size;
1187         unsigned int entry = priv->cur_rx % rxsize;
1188         unsigned int next_entry;
1189         unsigned int count = 0;
1190         struct dma_desc *p = priv->dma_rx + entry;
1191         struct dma_desc *p_next;
1192
1193 #ifdef STMMAC_RX_DEBUG
1194         if (netif_msg_hw(priv)) {
1195                 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1196                 display_ring(priv->dma_rx, rxsize);
1197         }
1198 #endif
1199         count = 0;
1200         while (!priv->hw->desc->get_rx_owner(p)) {
1201                 int status;
1202
1203                 if (count >= limit)
1204                         break;
1205
1206                 count++;
1207
1208                 next_entry = (++priv->cur_rx) % rxsize;
1209                 p_next = priv->dma_rx + next_entry;
1210                 prefetch(p_next);
1211
1212                 /* read the status of the incoming frame */
1213                 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1214                                                     &priv->xstats, p));
1215                 if (unlikely(status == discard_frame))
1216                         priv->dev->stats.rx_errors++;
1217                 else {
1218                         struct sk_buff *skb;
1219                         int frame_len;
1220
1221                         frame_len = priv->hw->desc->get_rx_frame_len(p);
1222                         /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1223                          * Type frames (LLC/LLC-SNAP) */
1224                         if (unlikely(status != llc_snap))
1225                                 frame_len -= ETH_FCS_LEN;
1226 #ifdef STMMAC_RX_DEBUG
1227                         if (frame_len > ETH_FRAME_LEN)
1228                                 pr_debug("\tRX frame size %d, COE status: %d\n",
1229                                         frame_len, status);
1230
1231                         if (netif_msg_hw(priv))
1232                                 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1233                                         p, entry, p->des2);
1234 #endif
1235                         skb = priv->rx_skbuff[entry];
1236                         if (unlikely(!skb)) {
1237                                 pr_err("%s: Inconsistent Rx descriptor chain\n",
1238                                         priv->dev->name);
1239                                 priv->dev->stats.rx_dropped++;
1240                                 break;
1241                         }
1242                         prefetch(skb->data - NET_IP_ALIGN);
1243                         priv->rx_skbuff[entry] = NULL;
1244
1245                         skb_put(skb, frame_len);
1246                         dma_unmap_single(priv->device,
1247                                          priv->rx_skbuff_dma[entry],
1248                                          priv->dma_buf_sz, DMA_FROM_DEVICE);
1249 #ifdef STMMAC_RX_DEBUG
1250                         if (netif_msg_pktdata(priv)) {
1251                                 pr_info(" frame received (%dbytes)", frame_len);
1252                                 print_pkt(skb->data, frame_len);
1253                         }
1254 #endif
1255                         skb->protocol = eth_type_trans(skb, priv->dev);
1256
1257                         if (unlikely(status == csum_none)) {
1258                                 /* always for the old mac 10/100 */
1259                                 skb->ip_summed = CHECKSUM_NONE;
1260                                 netif_receive_skb(skb);
1261                         } else {
1262                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1263                                 napi_gro_receive(&priv->napi, skb);
1264                         }
1265
1266                         priv->dev->stats.rx_packets++;
1267                         priv->dev->stats.rx_bytes += frame_len;
1268                 }
1269                 entry = next_entry;
1270                 p = p_next;     /* use prefetched values */
1271         }
1272
1273         stmmac_rx_refill(priv);
1274
1275         priv->xstats.rx_pkt_n += count;
1276
1277         return count;
1278 }
1279
1280 /**
1281  *  stmmac_poll - stmmac poll method (NAPI)
1282  *  @napi : pointer to the napi structure.
1283  *  @budget : maximum number of packets that the current CPU can receive from
1284  *            all interfaces.
1285  *  Description :
1286  *   This function implements the the reception process.
1287  *   Also it runs the TX completion thread
1288  */
1289 static int stmmac_poll(struct napi_struct *napi, int budget)
1290 {
1291         struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1292         int work_done = 0;
1293
1294         priv->xstats.poll_n++;
1295         stmmac_tx(priv);
1296         work_done = stmmac_rx(priv, budget);
1297
1298         if (work_done < budget) {
1299                 napi_complete(napi);
1300                 stmmac_enable_irq(priv);
1301         }
1302         return work_done;
1303 }
1304
1305 /**
1306  *  stmmac_tx_timeout
1307  *  @dev : Pointer to net device structure
1308  *  Description: this function is called when a packet transmission fails to
1309  *   complete within a reasonable tmrate. The driver will mark the error in the
1310  *   netdev structure and arrange for the device to be reset to a sane state
1311  *   in order to transmit a new packet.
1312  */
1313 static void stmmac_tx_timeout(struct net_device *dev)
1314 {
1315         struct stmmac_priv *priv = netdev_priv(dev);
1316
1317         /* Clear Tx resources and restart transmitting again */
1318         stmmac_tx_err(priv);
1319 }
1320
1321 /* Configuration changes (passed on by ifconfig) */
1322 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1323 {
1324         if (dev->flags & IFF_UP)        /* can't act on a running interface */
1325                 return -EBUSY;
1326
1327         /* Don't allow changing the I/O address */
1328         if (map->base_addr != dev->base_addr) {
1329                 pr_warning("%s: can't change I/O address\n", dev->name);
1330                 return -EOPNOTSUPP;
1331         }
1332
1333         /* Don't allow changing the IRQ */
1334         if (map->irq != dev->irq) {
1335                 pr_warning("%s: can't change IRQ number %d\n",
1336                        dev->name, dev->irq);
1337                 return -EOPNOTSUPP;
1338         }
1339
1340         /* ignore other fields */
1341         return 0;
1342 }
1343
1344 /**
1345  *  stmmac_multicast_list - entry point for multicast addressing
1346  *  @dev : pointer to the device structure
1347  *  Description:
1348  *  This function is a driver entry point which gets called by the kernel
1349  *  whenever multicast addresses must be enabled/disabled.
1350  *  Return value:
1351  *  void.
1352  */
1353 static void stmmac_multicast_list(struct net_device *dev)
1354 {
1355         struct stmmac_priv *priv = netdev_priv(dev);
1356
1357         spin_lock(&priv->lock);
1358         priv->hw->mac->set_filter(dev);
1359         spin_unlock(&priv->lock);
1360 }
1361
1362 /**
1363  *  stmmac_change_mtu - entry point to change MTU size for the device.
1364  *  @dev : device pointer.
1365  *  @new_mtu : the new MTU size for the device.
1366  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1367  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1368  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1369  *  Return value:
1370  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1371  *  file on failure.
1372  */
1373 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1374 {
1375         struct stmmac_priv *priv = netdev_priv(dev);
1376         int max_mtu;
1377
1378         if (netif_running(dev)) {
1379                 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1380                 return -EBUSY;
1381         }
1382
1383         if (priv->is_gmac)
1384                 max_mtu = JUMBO_LEN;
1385         else
1386                 max_mtu = ETH_DATA_LEN;
1387
1388         if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1389                 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1390                 return -EINVAL;
1391         }
1392
1393         dev->mtu = new_mtu;
1394
1395         return 0;
1396 }
1397
1398 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1399 {
1400         struct net_device *dev = (struct net_device *)dev_id;
1401         struct stmmac_priv *priv = netdev_priv(dev);
1402
1403         if (unlikely(!dev)) {
1404                 pr_err("%s: invalid dev pointer\n", __func__);
1405                 return IRQ_NONE;
1406         }
1407
1408         if (priv->is_gmac)
1409                 /* To handle GMAC own interrupts */
1410                 priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1411
1412         stmmac_dma_interrupt(priv);
1413
1414         return IRQ_HANDLED;
1415 }
1416
1417 #ifdef CONFIG_NET_POLL_CONTROLLER
1418 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1419  * to allow network I/O with interrupts disabled. */
1420 static void stmmac_poll_controller(struct net_device *dev)
1421 {
1422         disable_irq(dev->irq);
1423         stmmac_interrupt(dev->irq, dev);
1424         enable_irq(dev->irq);
1425 }
1426 #endif
1427
1428 /**
1429  *  stmmac_ioctl - Entry point for the Ioctl
1430  *  @dev: Device pointer.
1431  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1432  *  a proprietary structure used to pass information to the driver.
1433  *  @cmd: IOCTL command
1434  *  Description:
1435  *  Currently there are no special functionality supported in IOCTL, just the
1436  *  phy_mii_ioctl(...) can be invoked.
1437  */
1438 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1439 {
1440         struct stmmac_priv *priv = netdev_priv(dev);
1441         int ret;
1442
1443         if (!netif_running(dev))
1444                 return -EINVAL;
1445
1446         if (!priv->phydev)
1447                 return -EINVAL;
1448
1449         spin_lock(&priv->lock);
1450         ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1451         spin_unlock(&priv->lock);
1452
1453         return ret;
1454 }
1455
1456 #ifdef STMMAC_VLAN_TAG_USED
1457 static void stmmac_vlan_rx_register(struct net_device *dev,
1458                                     struct vlan_group *grp)
1459 {
1460         struct stmmac_priv *priv = netdev_priv(dev);
1461
1462         DBG(probe, INFO, "%s: Setting vlgrp to %p\n", dev->name, grp);
1463
1464         spin_lock(&priv->lock);
1465         priv->vlgrp = grp;
1466         spin_unlock(&priv->lock);
1467 }
1468 #endif
1469
1470 static const struct net_device_ops stmmac_netdev_ops = {
1471         .ndo_open = stmmac_open,
1472         .ndo_start_xmit = stmmac_xmit,
1473         .ndo_stop = stmmac_release,
1474         .ndo_change_mtu = stmmac_change_mtu,
1475         .ndo_set_multicast_list = stmmac_multicast_list,
1476         .ndo_tx_timeout = stmmac_tx_timeout,
1477         .ndo_do_ioctl = stmmac_ioctl,
1478         .ndo_set_config = stmmac_config,
1479 #ifdef STMMAC_VLAN_TAG_USED
1480         .ndo_vlan_rx_register = stmmac_vlan_rx_register,
1481 #endif
1482 #ifdef CONFIG_NET_POLL_CONTROLLER
1483         .ndo_poll_controller = stmmac_poll_controller,
1484 #endif
1485         .ndo_set_mac_address = eth_mac_addr,
1486 };
1487
1488 /**
1489  * stmmac_probe - Initialization of the adapter .
1490  * @dev : device pointer
1491  * Description: The function initializes the network device structure for
1492  * the STMMAC driver. It also calls the low level routines
1493  * in order to init the HW (i.e. the DMA engine)
1494  */
1495 static int stmmac_probe(struct net_device *dev)
1496 {
1497         int ret = 0;
1498         struct stmmac_priv *priv = netdev_priv(dev);
1499
1500         ether_setup(dev);
1501
1502         dev->netdev_ops = &stmmac_netdev_ops;
1503         stmmac_set_ethtool_ops(dev);
1504
1505         dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA);
1506         dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1507 #ifdef STMMAC_VLAN_TAG_USED
1508         /* Both mac100 and gmac support receive VLAN tag detection */
1509         dev->features |= NETIF_F_HW_VLAN_RX;
1510 #endif
1511         priv->msg_enable = netif_msg_init(debug, default_msg_level);
1512
1513         if (priv->is_gmac)
1514                 priv->rx_csum = 1;
1515
1516         if (flow_ctrl)
1517                 priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
1518
1519         priv->pause = pause;
1520         netif_napi_add(dev, &priv->napi, stmmac_poll, 64);
1521
1522         /* Get the MAC address */
1523         priv->hw->mac->get_umac_addr((void __iomem *) dev->base_addr,
1524                                      dev->dev_addr, 0);
1525
1526         if (!is_valid_ether_addr(dev->dev_addr))
1527                 pr_warning("\tno valid MAC address;"
1528                         "please, use ifconfig or nwhwconfig!\n");
1529
1530         ret = register_netdev(dev);
1531         if (ret) {
1532                 pr_err("%s: ERROR %i registering the device\n",
1533                        __func__, ret);
1534                 return -ENODEV;
1535         }
1536
1537         DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
1538             dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
1539             (dev->features & NETIF_F_HW_CSUM) ? "on" : "off");
1540
1541         spin_lock_init(&priv->lock);
1542
1543         return ret;
1544 }
1545
1546 /**
1547  * stmmac_mac_device_setup
1548  * @dev : device pointer
1549  * Description: select and initialise the mac device (mac100 or Gmac).
1550  */
1551 static int stmmac_mac_device_setup(struct net_device *dev)
1552 {
1553         struct stmmac_priv *priv = netdev_priv(dev);
1554
1555         struct mac_device_info *device;
1556
1557         if (priv->is_gmac)
1558                 device = dwmac1000_setup(priv->ioaddr);
1559         else
1560                 device = dwmac100_setup(priv->ioaddr);
1561
1562         if (!device)
1563                 return -ENOMEM;
1564
1565         if (priv->enh_desc) {
1566                 device->desc = &enh_desc_ops;
1567                 pr_info("\tEnhanced descriptor structure\n");
1568         } else
1569                 device->desc = &ndesc_ops;
1570
1571         priv->hw = device;
1572
1573         priv->wolenabled = priv->hw->pmt;       /* PMT supported */
1574         if (priv->wolenabled == PMT_SUPPORTED)
1575                 priv->wolopts = WAKE_MAGIC;             /* Magic Frame */
1576
1577         return 0;
1578 }
1579
1580 static int stmmacphy_dvr_probe(struct platform_device *pdev)
1581 {
1582         struct plat_stmmacphy_data *plat_dat = pdev->dev.platform_data;
1583
1584         pr_debug("stmmacphy_dvr_probe: added phy for bus %d\n",
1585                plat_dat->bus_id);
1586
1587         return 0;
1588 }
1589
1590 static int stmmacphy_dvr_remove(struct platform_device *pdev)
1591 {
1592         return 0;
1593 }
1594
1595 static struct platform_driver stmmacphy_driver = {
1596         .driver = {
1597                    .name = PHY_RESOURCE_NAME,
1598                    },
1599         .probe = stmmacphy_dvr_probe,
1600         .remove = stmmacphy_dvr_remove,
1601 };
1602
1603 /**
1604  * stmmac_associate_phy
1605  * @dev: pointer to device structure
1606  * @data: points to the private structure.
1607  * Description: Scans through all the PHYs we have registered and checks if
1608  * any are associated with our MAC.  If so, then just fill in
1609  * the blanks in our local context structure
1610  */
1611 static int stmmac_associate_phy(struct device *dev, void *data)
1612 {
1613         struct stmmac_priv *priv = (struct stmmac_priv *)data;
1614         struct plat_stmmacphy_data *plat_dat = dev->platform_data;
1615
1616         DBG(probe, DEBUG, "%s: checking phy for bus %d\n", __func__,
1617                 plat_dat->bus_id);
1618
1619         /* Check that this phy is for the MAC being initialised */
1620         if (priv->bus_id != plat_dat->bus_id)
1621                 return 0;
1622
1623         /* OK, this PHY is connected to the MAC.
1624            Go ahead and get the parameters */
1625         DBG(probe, DEBUG, "%s: OK. Found PHY config\n", __func__);
1626         priv->phy_irq =
1627             platform_get_irq_byname(to_platform_device(dev), "phyirq");
1628         DBG(probe, DEBUG, "%s: PHY irq on bus %d is %d\n", __func__,
1629             plat_dat->bus_id, priv->phy_irq);
1630
1631         /* Override with kernel parameters if supplied XXX CRS XXX
1632          * this needs to have multiple instances */
1633         if ((phyaddr >= 0) && (phyaddr <= 31))
1634                 plat_dat->phy_addr = phyaddr;
1635
1636         priv->phy_addr = plat_dat->phy_addr;
1637         priv->phy_mask = plat_dat->phy_mask;
1638         priv->phy_interface = plat_dat->interface;
1639         priv->phy_reset = plat_dat->phy_reset;
1640
1641         DBG(probe, DEBUG, "%s: exiting\n", __func__);
1642         return 1;       /* forces exit of driver_for_each_device() */
1643 }
1644
1645 /**
1646  * stmmac_dvr_probe
1647  * @pdev: platform device pointer
1648  * Description: the driver is initialized through platform_device.
1649  */
1650 static int stmmac_dvr_probe(struct platform_device *pdev)
1651 {
1652         int ret = 0;
1653         struct resource *res;
1654         void __iomem *addr = NULL;
1655         struct net_device *ndev = NULL;
1656         struct stmmac_priv *priv;
1657         struct plat_stmmacenet_data *plat_dat;
1658
1659         pr_info("STMMAC driver:\n\tplatform registration... ");
1660         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1661         if (!res) {
1662                 ret = -ENODEV;
1663                 goto out;
1664         }
1665         pr_info("done!\n");
1666
1667         if (!request_mem_region(res->start, resource_size(res),
1668                                 pdev->name)) {
1669                 pr_err("%s: ERROR: memory allocation failed"
1670                        "cannot get the I/O addr 0x%x\n",
1671                        __func__, (unsigned int)res->start);
1672                 ret = -EBUSY;
1673                 goto out;
1674         }
1675
1676         addr = ioremap(res->start, resource_size(res));
1677         if (!addr) {
1678                 pr_err("%s: ERROR: memory mapping failed\n", __func__);
1679                 ret = -ENOMEM;
1680                 goto out;
1681         }
1682
1683         ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1684         if (!ndev) {
1685                 pr_err("%s: ERROR: allocating the device\n", __func__);
1686                 ret = -ENOMEM;
1687                 goto out;
1688         }
1689
1690         SET_NETDEV_DEV(ndev, &pdev->dev);
1691
1692         /* Get the MAC information */
1693         ndev->irq = platform_get_irq_byname(pdev, "macirq");
1694         if (ndev->irq == -ENXIO) {
1695                 pr_err("%s: ERROR: MAC IRQ configuration "
1696                        "information not found\n", __func__);
1697                 ret = -ENODEV;
1698                 goto out;
1699         }
1700
1701         priv = netdev_priv(ndev);
1702         priv->device = &(pdev->dev);
1703         priv->dev = ndev;
1704         plat_dat = pdev->dev.platform_data;
1705         priv->bus_id = plat_dat->bus_id;
1706         priv->pbl = plat_dat->pbl;      /* TLI */
1707         priv->is_gmac = plat_dat->has_gmac;     /* GMAC is on board */
1708         priv->enh_desc = plat_dat->enh_desc;
1709         priv->ioaddr = addr;
1710
1711         platform_set_drvdata(pdev, ndev);
1712
1713         /* Set the I/O base addr */
1714         ndev->base_addr = (unsigned long)addr;
1715
1716         /* Verify embedded resource for the platform */
1717         ret = stmmac_claim_resource(pdev);
1718         if (ret < 0)
1719                 goto out;
1720
1721         /* MAC HW revice detection */
1722         ret = stmmac_mac_device_setup(ndev);
1723         if (ret < 0)
1724                 goto out;
1725
1726         /* Network Device Registration */
1727         ret = stmmac_probe(ndev);
1728         if (ret < 0)
1729                 goto out;
1730
1731         /* associate a PHY - it is provided by another platform bus */
1732         if (!driver_for_each_device
1733             (&(stmmacphy_driver.driver), NULL, (void *)priv,
1734              stmmac_associate_phy)) {
1735                 pr_err("No PHY device is associated with this MAC!\n");
1736                 ret = -ENODEV;
1737                 goto out;
1738         }
1739
1740         priv->fix_mac_speed = plat_dat->fix_mac_speed;
1741         priv->bus_setup = plat_dat->bus_setup;
1742         priv->bsp_priv = plat_dat->bsp_priv;
1743
1744         pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
1745                "\tIO base addr: 0x%08x)\n", ndev->name, pdev->name,
1746                pdev->id, ndev->irq, (unsigned int)addr);
1747
1748         /* MDIO bus Registration */
1749         pr_debug("\tMDIO bus (id: %d)...", priv->bus_id);
1750         ret = stmmac_mdio_register(ndev);
1751         if (ret < 0)
1752                 goto out;
1753         pr_debug("registered!\n");
1754
1755 out:
1756         if (ret < 0) {
1757                 platform_set_drvdata(pdev, NULL);
1758                 release_mem_region(res->start, resource_size(res));
1759                 if (addr != NULL)
1760                         iounmap(addr);
1761         }
1762
1763         return ret;
1764 }
1765
1766 /**
1767  * stmmac_dvr_remove
1768  * @pdev: platform device pointer
1769  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1770  * changes the link status, releases the DMA descriptor rings,
1771  * unregisters the MDIO bus and unmaps the allocated memory.
1772  */
1773 static int stmmac_dvr_remove(struct platform_device *pdev)
1774 {
1775         struct net_device *ndev = platform_get_drvdata(pdev);
1776         struct stmmac_priv *priv = netdev_priv(ndev);
1777         struct resource *res;
1778
1779         pr_info("%s:\n\tremoving driver", __func__);
1780
1781         priv->hw->dma->stop_rx(priv->ioaddr);
1782         priv->hw->dma->stop_tx(priv->ioaddr);
1783
1784         stmmac_mac_disable_rx(priv->ioaddr);
1785         stmmac_mac_disable_tx(priv->ioaddr);
1786
1787         netif_carrier_off(ndev);
1788
1789         stmmac_mdio_unregister(ndev);
1790
1791         platform_set_drvdata(pdev, NULL);
1792         unregister_netdev(ndev);
1793
1794         iounmap((void *)priv->ioaddr);
1795         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1796         release_mem_region(res->start, resource_size(res));
1797
1798         free_netdev(ndev);
1799
1800         return 0;
1801 }
1802
1803 #ifdef CONFIG_PM
1804 static int stmmac_suspend(struct platform_device *pdev, pm_message_t state)
1805 {
1806         struct net_device *dev = platform_get_drvdata(pdev);
1807         struct stmmac_priv *priv = netdev_priv(dev);
1808         int dis_ic = 0;
1809
1810         if (!dev || !netif_running(dev))
1811                 return 0;
1812
1813         spin_lock(&priv->lock);
1814
1815         if (state.event == PM_EVENT_SUSPEND) {
1816                 netif_device_detach(dev);
1817                 netif_stop_queue(dev);
1818                 if (priv->phydev)
1819                         phy_stop(priv->phydev);
1820
1821 #ifdef CONFIG_STMMAC_TIMER
1822                 priv->tm->timer_stop();
1823                 if (likely(priv->tm->enable))
1824                         dis_ic = 1;
1825 #endif
1826                 napi_disable(&priv->napi);
1827
1828                 /* Stop TX/RX DMA */
1829                 priv->hw->dma->stop_tx(priv->ioaddr);
1830                 priv->hw->dma->stop_rx(priv->ioaddr);
1831                 /* Clear the Rx/Tx descriptors */
1832                 priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
1833                                              dis_ic);
1834                 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
1835
1836                 stmmac_mac_disable_tx(priv->ioaddr);
1837
1838                 if (device_may_wakeup(&(pdev->dev))) {
1839                         /* Enable Power down mode by programming the PMT regs */
1840                         if (priv->wolenabled == PMT_SUPPORTED)
1841                                 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
1842                 } else {
1843                         stmmac_mac_disable_rx(priv->ioaddr);
1844                 }
1845         } else {
1846                 priv->shutdown = 1;
1847                 /* Although this can appear slightly redundant it actually
1848                  * makes fast the standby operation and guarantees the driver
1849                  * working if hibernation is on media. */
1850                 stmmac_release(dev);
1851         }
1852
1853         spin_unlock(&priv->lock);
1854         return 0;
1855 }
1856
1857 static int stmmac_resume(struct platform_device *pdev)
1858 {
1859         struct net_device *dev = platform_get_drvdata(pdev);
1860         struct stmmac_priv *priv = netdev_priv(dev);
1861
1862         if (!netif_running(dev))
1863                 return 0;
1864
1865         spin_lock(&priv->lock);
1866
1867         if (priv->shutdown) {
1868                 /* Re-open the interface and re-init the MAC/DMA
1869                    and the rings. */
1870                 stmmac_open(dev);
1871                 goto out_resume;
1872         }
1873
1874         /* Power Down bit, into the PM register, is cleared
1875          * automatically as soon as a magic packet or a Wake-up frame
1876          * is received. Anyway, it's better to manually clear
1877          * this bit because it can generate problems while resuming
1878          * from another devices (e.g. serial console). */
1879         if (device_may_wakeup(&(pdev->dev)))
1880                 if (priv->wolenabled == PMT_SUPPORTED)
1881                         priv->hw->mac->pmt(priv->ioaddr, 0);
1882
1883         netif_device_attach(dev);
1884
1885         /* Enable the MAC and DMA */
1886         stmmac_mac_enable_rx(priv->ioaddr);
1887         stmmac_mac_enable_tx(priv->ioaddr);
1888         priv->hw->dma->start_tx(priv->ioaddr);
1889         priv->hw->dma->start_rx(priv->ioaddr);
1890
1891 #ifdef CONFIG_STMMAC_TIMER
1892         priv->tm->timer_start(tmrate);
1893 #endif
1894         napi_enable(&priv->napi);
1895
1896         if (priv->phydev)
1897                 phy_start(priv->phydev);
1898
1899         netif_start_queue(dev);
1900
1901 out_resume:
1902         spin_unlock(&priv->lock);
1903         return 0;
1904 }
1905 #endif
1906
1907 static struct platform_driver stmmac_driver = {
1908         .driver = {
1909                    .name = STMMAC_RESOURCE_NAME,
1910                    },
1911         .probe = stmmac_dvr_probe,
1912         .remove = stmmac_dvr_remove,
1913 #ifdef CONFIG_PM
1914         .suspend = stmmac_suspend,
1915         .resume = stmmac_resume,
1916 #endif
1917
1918 };
1919
1920 /**
1921  * stmmac_init_module - Entry point for the driver
1922  * Description: This function is the entry point for the driver.
1923  */
1924 static int __init stmmac_init_module(void)
1925 {
1926         int ret;
1927
1928         if (platform_driver_register(&stmmacphy_driver)) {
1929                 pr_err("No PHY devices registered!\n");
1930                 return -ENODEV;
1931         }
1932
1933         ret = platform_driver_register(&stmmac_driver);
1934         return ret;
1935 }
1936
1937 /**
1938  * stmmac_cleanup_module - Cleanup routine for the driver
1939  * Description: This function is the cleanup routine for the driver.
1940  */
1941 static void __exit stmmac_cleanup_module(void)
1942 {
1943         platform_driver_unregister(&stmmacphy_driver);
1944         platform_driver_unregister(&stmmac_driver);
1945 }
1946
1947 #ifndef MODULE
1948 static int __init stmmac_cmdline_opt(char *str)
1949 {
1950         char *opt;
1951
1952         if (!str || !*str)
1953                 return -EINVAL;
1954         while ((opt = strsep(&str, ",")) != NULL) {
1955                 if (!strncmp(opt, "debug:", 6))
1956                         strict_strtoul(opt + 6, 0, (unsigned long *)&debug);
1957                 else if (!strncmp(opt, "phyaddr:", 8))
1958                         strict_strtoul(opt + 8, 0, (unsigned long *)&phyaddr);
1959                 else if (!strncmp(opt, "dma_txsize:", 11))
1960                         strict_strtoul(opt + 11, 0,
1961                                        (unsigned long *)&dma_txsize);
1962                 else if (!strncmp(opt, "dma_rxsize:", 11))
1963                         strict_strtoul(opt + 11, 0,
1964                                        (unsigned long *)&dma_rxsize);
1965                 else if (!strncmp(opt, "buf_sz:", 7))
1966                         strict_strtoul(opt + 7, 0, (unsigned long *)&buf_sz);
1967                 else if (!strncmp(opt, "tc:", 3))
1968                         strict_strtoul(opt + 3, 0, (unsigned long *)&tc);
1969                 else if (!strncmp(opt, "tx_coe:", 7))
1970                         strict_strtoul(opt + 7, 0, (unsigned long *)&tx_coe);
1971                 else if (!strncmp(opt, "watchdog:", 9))
1972                         strict_strtoul(opt + 9, 0, (unsigned long *)&watchdog);
1973                 else if (!strncmp(opt, "flow_ctrl:", 10))
1974                         strict_strtoul(opt + 10, 0,
1975                                        (unsigned long *)&flow_ctrl);
1976                 else if (!strncmp(opt, "pause:", 6))
1977                         strict_strtoul(opt + 6, 0, (unsigned long *)&pause);
1978 #ifdef CONFIG_STMMAC_TIMER
1979                 else if (!strncmp(opt, "tmrate:", 7))
1980                         strict_strtoul(opt + 7, 0, (unsigned long *)&tmrate);
1981 #endif
1982         }
1983         return 0;
1984 }
1985
1986 __setup("stmmaceth=", stmmac_cmdline_opt);
1987 #endif
1988
1989 module_init(stmmac_init_module);
1990 module_exit(stmmac_cleanup_module);
1991
1992 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
1993 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
1994 MODULE_LICENSE("GPL");