]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/ixgbevf/ixgbevf_main.c
1d7de555e6302ab3c8d341bd2d4b39eaa3345333
[net-next-2.6.git] / drivers / net / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/vmalloc.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47
48 #include "ixgbevf.h"
49
50 char ixgbevf_driver_name[] = "ixgbevf";
51 static const char ixgbevf_driver_string[] =
52         "Intel(R) 82599 Virtual Function";
53
54 #define DRV_VERSION "1.0.12-k0"
55 const char ixgbevf_driver_version[] = DRV_VERSION;
56 static char ixgbevf_copyright[] =
57         "Copyright (c) 2009 - 2010 Intel Corporation.";
58
59 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
60         [board_82599_vf] = &ixgbevf_vf_info,
61 };
62
63 /* ixgbevf_pci_tbl - PCI Device ID Table
64  *
65  * Wildcard entries (PCI_ANY_ID) should come last
66  * Last entry must be all 0s
67  *
68  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
69  *   Class, Class Mask, private data (not used) }
70  */
71 static struct pci_device_id ixgbevf_pci_tbl[] = {
72         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
73         board_82599_vf},
74
75         /* required last entry */
76         {0, }
77 };
78 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
79
80 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
81 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
82 MODULE_LICENSE("GPL");
83 MODULE_VERSION(DRV_VERSION);
84
85 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
86
87 /* forward decls */
88 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
89 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
90                                u32 itr_reg);
91
92 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
93                                            struct ixgbevf_ring *rx_ring,
94                                            u32 val)
95 {
96         /*
97          * Force memory writes to complete before letting h/w
98          * know there are new descriptors to fetch.  (Only
99          * applicable for weak-ordered memory model archs,
100          * such as IA-64).
101          */
102         wmb();
103         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
104 }
105
106 /*
107  * ixgbe_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
108  * @adapter: pointer to adapter struct
109  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
110  * @queue: queue to map the corresponding interrupt to
111  * @msix_vector: the vector to map to the corresponding queue
112  *
113  */
114 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
115                              u8 queue, u8 msix_vector)
116 {
117         u32 ivar, index;
118         struct ixgbe_hw *hw = &adapter->hw;
119         if (direction == -1) {
120                 /* other causes */
121                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
122                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
123                 ivar &= ~0xFF;
124                 ivar |= msix_vector;
125                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
126         } else {
127                 /* tx or rx causes */
128                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
129                 index = ((16 * (queue & 1)) + (8 * direction));
130                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
131                 ivar &= ~(0xFF << index);
132                 ivar |= (msix_vector << index);
133                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
134         }
135 }
136
137 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
138                                                struct ixgbevf_tx_buffer
139                                                *tx_buffer_info)
140 {
141         if (tx_buffer_info->dma) {
142                 if (tx_buffer_info->mapped_as_page)
143                         dma_unmap_page(&adapter->pdev->dev,
144                                        tx_buffer_info->dma,
145                                        tx_buffer_info->length,
146                                        DMA_TO_DEVICE);
147                 else
148                         dma_unmap_single(&adapter->pdev->dev,
149                                          tx_buffer_info->dma,
150                                          tx_buffer_info->length,
151                                          DMA_TO_DEVICE);
152                 tx_buffer_info->dma = 0;
153         }
154         if (tx_buffer_info->skb) {
155                 dev_kfree_skb_any(tx_buffer_info->skb);
156                 tx_buffer_info->skb = NULL;
157         }
158         tx_buffer_info->time_stamp = 0;
159         /* tx_buffer_info must be completely set up in the transmit path */
160 }
161
162 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_adapter *adapter,
163                                          struct ixgbevf_ring *tx_ring,
164                                          unsigned int eop)
165 {
166         struct ixgbe_hw *hw = &adapter->hw;
167         u32 head, tail;
168
169         /* Detect a transmit hang in hardware, this serializes the
170          * check with the clearing of time_stamp and movement of eop */
171         head = readl(hw->hw_addr + tx_ring->head);
172         tail = readl(hw->hw_addr + tx_ring->tail);
173         adapter->detect_tx_hung = false;
174         if ((head != tail) &&
175             tx_ring->tx_buffer_info[eop].time_stamp &&
176             time_after(jiffies, tx_ring->tx_buffer_info[eop].time_stamp + HZ)) {
177                 /* detected Tx unit hang */
178                 union ixgbe_adv_tx_desc *tx_desc;
179                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
180                 printk(KERN_ERR "Detected Tx Unit Hang\n"
181                        "  Tx Queue             <%d>\n"
182                        "  TDH, TDT             <%x>, <%x>\n"
183                        "  next_to_use          <%x>\n"
184                        "  next_to_clean        <%x>\n"
185                        "tx_buffer_info[next_to_clean]\n"
186                        "  time_stamp           <%lx>\n"
187                        "  jiffies              <%lx>\n",
188                        tx_ring->queue_index,
189                        head, tail,
190                        tx_ring->next_to_use, eop,
191                        tx_ring->tx_buffer_info[eop].time_stamp, jiffies);
192                 return true;
193         }
194
195         return false;
196 }
197
198 #define IXGBE_MAX_TXD_PWR       14
199 #define IXGBE_MAX_DATA_PER_TXD  (1 << IXGBE_MAX_TXD_PWR)
200
201 /* Tx Descriptors needed, worst case */
202 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
203                          (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
204 #ifdef MAX_SKB_FRAGS
205 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
206         MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
207 #else
208 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
209 #endif
210
211 static void ixgbevf_tx_timeout(struct net_device *netdev);
212
213 /**
214  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
215  * @adapter: board private structure
216  * @tx_ring: tx ring to clean
217  **/
218 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
219                                  struct ixgbevf_ring *tx_ring)
220 {
221         struct net_device *netdev = adapter->netdev;
222         struct ixgbe_hw *hw = &adapter->hw;
223         union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
224         struct ixgbevf_tx_buffer *tx_buffer_info;
225         unsigned int i, eop, count = 0;
226         unsigned int total_bytes = 0, total_packets = 0;
227
228         i = tx_ring->next_to_clean;
229         eop = tx_ring->tx_buffer_info[i].next_to_watch;
230         eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
231
232         while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
233                (count < tx_ring->work_limit)) {
234                 bool cleaned = false;
235                 rmb(); /* read buffer_info after eop_desc */
236                 for ( ; !cleaned; count++) {
237                         struct sk_buff *skb;
238                         tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
239                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
240                         cleaned = (i == eop);
241                         skb = tx_buffer_info->skb;
242
243                         if (cleaned && skb) {
244                                 unsigned int segs, bytecount;
245
246                                 /* gso_segs is currently only valid for tcp */
247                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
248                                 /* multiply data chunks by size of headers */
249                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
250                                             skb->len;
251                                 total_packets += segs;
252                                 total_bytes += bytecount;
253                         }
254
255                         ixgbevf_unmap_and_free_tx_resource(adapter,
256                                                            tx_buffer_info);
257
258                         tx_desc->wb.status = 0;
259
260                         i++;
261                         if (i == tx_ring->count)
262                                 i = 0;
263                 }
264
265                 eop = tx_ring->tx_buffer_info[i].next_to_watch;
266                 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
267         }
268
269         tx_ring->next_to_clean = i;
270
271 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
272         if (unlikely(count && netif_carrier_ok(netdev) &&
273                      (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
274                 /* Make sure that anybody stopping the queue after this
275                  * sees the new next_to_clean.
276                  */
277                 smp_mb();
278 #ifdef HAVE_TX_MQ
279                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
280                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
281                         netif_wake_subqueue(netdev, tx_ring->queue_index);
282                         ++adapter->restart_queue;
283                 }
284 #else
285                 if (netif_queue_stopped(netdev) &&
286                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
287                         netif_wake_queue(netdev);
288                         ++adapter->restart_queue;
289                 }
290 #endif
291         }
292
293         if (adapter->detect_tx_hung) {
294                 if (ixgbevf_check_tx_hang(adapter, tx_ring, i)) {
295                         /* schedule immediate reset if we believe we hung */
296                         printk(KERN_INFO
297                                "tx hang %d detected, resetting adapter\n",
298                                adapter->tx_timeout_count + 1);
299                         ixgbevf_tx_timeout(adapter->netdev);
300                 }
301         }
302
303         /* re-arm the interrupt */
304         if ((count >= tx_ring->work_limit) &&
305             (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
306                 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
307         }
308
309         tx_ring->total_bytes += total_bytes;
310         tx_ring->total_packets += total_packets;
311
312         netdev->stats.tx_bytes += total_bytes;
313         netdev->stats.tx_packets += total_packets;
314
315         return count < tx_ring->work_limit;
316 }
317
318 /**
319  * ixgbevf_receive_skb - Send a completed packet up the stack
320  * @q_vector: structure containing interrupt and ring information
321  * @skb: packet to send up
322  * @status: hardware indication of status of receive
323  * @rx_ring: rx descriptor ring (for a specific queue) to setup
324  * @rx_desc: rx descriptor
325  **/
326 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
327                                 struct sk_buff *skb, u8 status,
328                                 struct ixgbevf_ring *ring,
329                                 union ixgbe_adv_rx_desc *rx_desc)
330 {
331         struct ixgbevf_adapter *adapter = q_vector->adapter;
332         bool is_vlan = (status & IXGBE_RXD_STAT_VP);
333         u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
334         int ret;
335
336         if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL)) {
337                 if (adapter->vlgrp && is_vlan)
338                         vlan_gro_receive(&q_vector->napi,
339                                          adapter->vlgrp,
340                                          tag, skb);
341                 else
342                         napi_gro_receive(&q_vector->napi, skb);
343         } else {
344                 if (adapter->vlgrp && is_vlan)
345                         ret = vlan_hwaccel_rx(skb, adapter->vlgrp, tag);
346                 else
347                         ret = netif_rx(skb);
348         }
349 }
350
351 /**
352  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
353  * @adapter: address of board private structure
354  * @status_err: hardware indication of status of receive
355  * @skb: skb currently being received and modified
356  **/
357 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
358                                        u32 status_err, struct sk_buff *skb)
359 {
360         skb_checksum_none_assert(skb);
361
362         /* Rx csum disabled */
363         if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
364                 return;
365
366         /* if IP and error */
367         if ((status_err & IXGBE_RXD_STAT_IPCS) &&
368             (status_err & IXGBE_RXDADV_ERR_IPE)) {
369                 adapter->hw_csum_rx_error++;
370                 return;
371         }
372
373         if (!(status_err & IXGBE_RXD_STAT_L4CS))
374                 return;
375
376         if (status_err & IXGBE_RXDADV_ERR_TCPE) {
377                 adapter->hw_csum_rx_error++;
378                 return;
379         }
380
381         /* It must be a TCP or UDP packet with a valid checksum */
382         skb->ip_summed = CHECKSUM_UNNECESSARY;
383         adapter->hw_csum_rx_good++;
384 }
385
386 /**
387  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
388  * @adapter: address of board private structure
389  **/
390 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
391                                      struct ixgbevf_ring *rx_ring,
392                                      int cleaned_count)
393 {
394         struct pci_dev *pdev = adapter->pdev;
395         union ixgbe_adv_rx_desc *rx_desc;
396         struct ixgbevf_rx_buffer *bi;
397         struct sk_buff *skb;
398         unsigned int i;
399         unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
400
401         i = rx_ring->next_to_use;
402         bi = &rx_ring->rx_buffer_info[i];
403
404         while (cleaned_count--) {
405                 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
406
407                 if (!bi->page_dma &&
408                     (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
409                         if (!bi->page) {
410                                 bi->page = netdev_alloc_page(adapter->netdev);
411                                 if (!bi->page) {
412                                         adapter->alloc_rx_page_failed++;
413                                         goto no_buffers;
414                                 }
415                                 bi->page_offset = 0;
416                         } else {
417                                 /* use a half page if we're re-using */
418                                 bi->page_offset ^= (PAGE_SIZE / 2);
419                         }
420
421                         bi->page_dma = dma_map_page(&pdev->dev, bi->page,
422                                                     bi->page_offset,
423                                                     (PAGE_SIZE / 2),
424                                                     DMA_FROM_DEVICE);
425                 }
426
427                 skb = bi->skb;
428                 if (!skb) {
429                         skb = netdev_alloc_skb(adapter->netdev,
430                                                                bufsz);
431
432                         if (!skb) {
433                                 adapter->alloc_rx_buff_failed++;
434                                 goto no_buffers;
435                         }
436
437                         /*
438                          * Make buffer alignment 2 beyond a 16 byte boundary
439                          * this will result in a 16 byte aligned IP header after
440                          * the 14 byte MAC header is removed
441                          */
442                         skb_reserve(skb, NET_IP_ALIGN);
443
444                         bi->skb = skb;
445                 }
446                 if (!bi->dma) {
447                         bi->dma = dma_map_single(&pdev->dev, skb->data,
448                                                  rx_ring->rx_buf_len,
449                                                  DMA_FROM_DEVICE);
450                 }
451                 /* Refresh the desc even if buffer_addrs didn't change because
452                  * each write-back erases this info. */
453                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
454                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
455                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
456                 } else {
457                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
458                 }
459
460                 i++;
461                 if (i == rx_ring->count)
462                         i = 0;
463                 bi = &rx_ring->rx_buffer_info[i];
464         }
465
466 no_buffers:
467         if (rx_ring->next_to_use != i) {
468                 rx_ring->next_to_use = i;
469                 if (i-- == 0)
470                         i = (rx_ring->count - 1);
471
472                 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
473         }
474 }
475
476 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
477                                              u64 qmask)
478 {
479         u32 mask;
480         struct ixgbe_hw *hw = &adapter->hw;
481
482         mask = (qmask & 0xFFFFFFFF);
483         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
484 }
485
486 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
487 {
488         return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
489 }
490
491 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
492 {
493         return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
494 }
495
496 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
497                                  struct ixgbevf_ring *rx_ring,
498                                  int *work_done, int work_to_do)
499 {
500         struct ixgbevf_adapter *adapter = q_vector->adapter;
501         struct pci_dev *pdev = adapter->pdev;
502         union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
503         struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
504         struct sk_buff *skb;
505         unsigned int i;
506         u32 len, staterr;
507         u16 hdr_info;
508         bool cleaned = false;
509         int cleaned_count = 0;
510         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
511
512         i = rx_ring->next_to_clean;
513         rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
514         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
515         rx_buffer_info = &rx_ring->rx_buffer_info[i];
516
517         while (staterr & IXGBE_RXD_STAT_DD) {
518                 u32 upper_len = 0;
519                 if (*work_done >= work_to_do)
520                         break;
521                 (*work_done)++;
522
523                 rmb(); /* read descriptor and rx_buffer_info after status DD */
524                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
525                         hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
526                         len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
527                                IXGBE_RXDADV_HDRBUFLEN_SHIFT;
528                         if (hdr_info & IXGBE_RXDADV_SPH)
529                                 adapter->rx_hdr_split++;
530                         if (len > IXGBEVF_RX_HDR_SIZE)
531                                 len = IXGBEVF_RX_HDR_SIZE;
532                         upper_len = le16_to_cpu(rx_desc->wb.upper.length);
533                 } else {
534                         len = le16_to_cpu(rx_desc->wb.upper.length);
535                 }
536                 cleaned = true;
537                 skb = rx_buffer_info->skb;
538                 prefetch(skb->data - NET_IP_ALIGN);
539                 rx_buffer_info->skb = NULL;
540
541                 if (rx_buffer_info->dma) {
542                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
543                                          rx_ring->rx_buf_len,
544                                          DMA_FROM_DEVICE);
545                         rx_buffer_info->dma = 0;
546                         skb_put(skb, len);
547                 }
548
549                 if (upper_len) {
550                         dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
551                                        PAGE_SIZE / 2, DMA_FROM_DEVICE);
552                         rx_buffer_info->page_dma = 0;
553                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
554                                            rx_buffer_info->page,
555                                            rx_buffer_info->page_offset,
556                                            upper_len);
557
558                         if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
559                             (page_count(rx_buffer_info->page) != 1))
560                                 rx_buffer_info->page = NULL;
561                         else
562                                 get_page(rx_buffer_info->page);
563
564                         skb->len += upper_len;
565                         skb->data_len += upper_len;
566                         skb->truesize += upper_len;
567                 }
568
569                 i++;
570                 if (i == rx_ring->count)
571                         i = 0;
572
573                 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
574                 prefetch(next_rxd);
575                 cleaned_count++;
576
577                 next_buffer = &rx_ring->rx_buffer_info[i];
578
579                 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
580                         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
581                                 rx_buffer_info->skb = next_buffer->skb;
582                                 rx_buffer_info->dma = next_buffer->dma;
583                                 next_buffer->skb = skb;
584                                 next_buffer->dma = 0;
585                         } else {
586                                 skb->next = next_buffer->skb;
587                                 skb->next->prev = skb;
588                         }
589                         adapter->non_eop_descs++;
590                         goto next_desc;
591                 }
592
593                 /* ERR_MASK will only have valid bits if EOP set */
594                 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
595                         dev_kfree_skb_irq(skb);
596                         goto next_desc;
597                 }
598
599                 ixgbevf_rx_checksum(adapter, staterr, skb);
600
601                 /* probably a little skewed due to removing CRC */
602                 total_rx_bytes += skb->len;
603                 total_rx_packets++;
604
605                 /*
606                  * Work around issue of some types of VM to VM loop back
607                  * packets not getting split correctly
608                  */
609                 if (staterr & IXGBE_RXD_STAT_LB) {
610                         u32 header_fixup_len = skb_headlen(skb);
611                         if (header_fixup_len < 14)
612                                 skb_push(skb, header_fixup_len);
613                 }
614                 skb->protocol = eth_type_trans(skb, adapter->netdev);
615
616                 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
617
618 next_desc:
619                 rx_desc->wb.upper.status_error = 0;
620
621                 /* return some buffers to hardware, one at a time is too slow */
622                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
623                         ixgbevf_alloc_rx_buffers(adapter, rx_ring,
624                                                  cleaned_count);
625                         cleaned_count = 0;
626                 }
627
628                 /* use prefetched values */
629                 rx_desc = next_rxd;
630                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
631
632                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
633         }
634
635         rx_ring->next_to_clean = i;
636         cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
637
638         if (cleaned_count)
639                 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
640
641         rx_ring->total_packets += total_rx_packets;
642         rx_ring->total_bytes += total_rx_bytes;
643         adapter->netdev->stats.rx_bytes += total_rx_bytes;
644         adapter->netdev->stats.rx_packets += total_rx_packets;
645
646         return cleaned;
647 }
648
649 /**
650  * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
651  * @napi: napi struct with our devices info in it
652  * @budget: amount of work driver is allowed to do this pass, in packets
653  *
654  * This function is optimized for cleaning one queue only on a single
655  * q_vector!!!
656  **/
657 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
658 {
659         struct ixgbevf_q_vector *q_vector =
660                 container_of(napi, struct ixgbevf_q_vector, napi);
661         struct ixgbevf_adapter *adapter = q_vector->adapter;
662         struct ixgbevf_ring *rx_ring = NULL;
663         int work_done = 0;
664         long r_idx;
665
666         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
667         rx_ring = &(adapter->rx_ring[r_idx]);
668
669         ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
670
671         /* If all Rx work done, exit the polling mode */
672         if (work_done < budget) {
673                 napi_complete(napi);
674                 if (adapter->itr_setting & 1)
675                         ixgbevf_set_itr_msix(q_vector);
676                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
677                         ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
678         }
679
680         return work_done;
681 }
682
683 /**
684  * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
685  * @napi: napi struct with our devices info in it
686  * @budget: amount of work driver is allowed to do this pass, in packets
687  *
688  * This function will clean more than one rx queue associated with a
689  * q_vector.
690  **/
691 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
692 {
693         struct ixgbevf_q_vector *q_vector =
694                 container_of(napi, struct ixgbevf_q_vector, napi);
695         struct ixgbevf_adapter *adapter = q_vector->adapter;
696         struct ixgbevf_ring *rx_ring = NULL;
697         int work_done = 0, i;
698         long r_idx;
699         u64 enable_mask = 0;
700
701         /* attempt to distribute budget to each queue fairly, but don't allow
702          * the budget to go below 1 because we'll exit polling */
703         budget /= (q_vector->rxr_count ?: 1);
704         budget = max(budget, 1);
705         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
706         for (i = 0; i < q_vector->rxr_count; i++) {
707                 rx_ring = &(adapter->rx_ring[r_idx]);
708                 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
709                 enable_mask |= rx_ring->v_idx;
710                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
711                                       r_idx + 1);
712         }
713
714 #ifndef HAVE_NETDEV_NAPI_LIST
715         if (!netif_running(adapter->netdev))
716                 work_done = 0;
717
718 #endif
719         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
720         rx_ring = &(adapter->rx_ring[r_idx]);
721
722         /* If all Rx work done, exit the polling mode */
723         if (work_done < budget) {
724                 napi_complete(napi);
725                 if (adapter->itr_setting & 1)
726                         ixgbevf_set_itr_msix(q_vector);
727                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
728                         ixgbevf_irq_enable_queues(adapter, enable_mask);
729         }
730
731         return work_done;
732 }
733
734
735 /**
736  * ixgbevf_configure_msix - Configure MSI-X hardware
737  * @adapter: board private structure
738  *
739  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
740  * interrupts.
741  **/
742 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
743 {
744         struct ixgbevf_q_vector *q_vector;
745         struct ixgbe_hw *hw = &adapter->hw;
746         int i, j, q_vectors, v_idx, r_idx;
747         u32 mask;
748
749         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
750
751         /*
752          * Populate the IVAR table and set the ITR values to the
753          * corresponding register.
754          */
755         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
756                 q_vector = adapter->q_vector[v_idx];
757                 /* XXX for_each_set_bit(...) */
758                 r_idx = find_first_bit(q_vector->rxr_idx,
759                                        adapter->num_rx_queues);
760
761                 for (i = 0; i < q_vector->rxr_count; i++) {
762                         j = adapter->rx_ring[r_idx].reg_idx;
763                         ixgbevf_set_ivar(adapter, 0, j, v_idx);
764                         r_idx = find_next_bit(q_vector->rxr_idx,
765                                               adapter->num_rx_queues,
766                                               r_idx + 1);
767                 }
768                 r_idx = find_first_bit(q_vector->txr_idx,
769                                        adapter->num_tx_queues);
770
771                 for (i = 0; i < q_vector->txr_count; i++) {
772                         j = adapter->tx_ring[r_idx].reg_idx;
773                         ixgbevf_set_ivar(adapter, 1, j, v_idx);
774                         r_idx = find_next_bit(q_vector->txr_idx,
775                                               adapter->num_tx_queues,
776                                               r_idx + 1);
777                 }
778
779                 /* if this is a tx only vector halve the interrupt rate */
780                 if (q_vector->txr_count && !q_vector->rxr_count)
781                         q_vector->eitr = (adapter->eitr_param >> 1);
782                 else if (q_vector->rxr_count)
783                         /* rx only */
784                         q_vector->eitr = adapter->eitr_param;
785
786                 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
787         }
788
789         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
790
791         /* set up to autoclear timer, and the vectors */
792         mask = IXGBE_EIMS_ENABLE_MASK;
793         mask &= ~IXGBE_EIMS_OTHER;
794         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
795 }
796
797 enum latency_range {
798         lowest_latency = 0,
799         low_latency = 1,
800         bulk_latency = 2,
801         latency_invalid = 255
802 };
803
804 /**
805  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
806  * @adapter: pointer to adapter
807  * @eitr: eitr setting (ints per sec) to give last timeslice
808  * @itr_setting: current throttle rate in ints/second
809  * @packets: the number of packets during this measurement interval
810  * @bytes: the number of bytes during this measurement interval
811  *
812  *      Stores a new ITR value based on packets and byte
813  *      counts during the last interrupt.  The advantage of per interrupt
814  *      computation is faster updates and more accurate ITR for the current
815  *      traffic pattern.  Constants in this function were computed
816  *      based on theoretical maximum wire speed and thresholds were set based
817  *      on testing data as well as attempting to minimize response time
818  *      while increasing bulk throughput.
819  **/
820 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
821                              u32 eitr, u8 itr_setting,
822                              int packets, int bytes)
823 {
824         unsigned int retval = itr_setting;
825         u32 timepassed_us;
826         u64 bytes_perint;
827
828         if (packets == 0)
829                 goto update_itr_done;
830
831
832         /* simple throttlerate management
833          *    0-20MB/s lowest (100000 ints/s)
834          *   20-100MB/s low   (20000 ints/s)
835          *  100-1249MB/s bulk (8000 ints/s)
836          */
837         /* what was last interrupt timeslice? */
838         timepassed_us = 1000000/eitr;
839         bytes_perint = bytes / timepassed_us; /* bytes/usec */
840
841         switch (itr_setting) {
842         case lowest_latency:
843                 if (bytes_perint > adapter->eitr_low)
844                         retval = low_latency;
845                 break;
846         case low_latency:
847                 if (bytes_perint > adapter->eitr_high)
848                         retval = bulk_latency;
849                 else if (bytes_perint <= adapter->eitr_low)
850                         retval = lowest_latency;
851                 break;
852         case bulk_latency:
853                 if (bytes_perint <= adapter->eitr_high)
854                         retval = low_latency;
855                 break;
856         }
857
858 update_itr_done:
859         return retval;
860 }
861
862 /**
863  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
864  * @adapter: pointer to adapter struct
865  * @v_idx: vector index into q_vector array
866  * @itr_reg: new value to be written in *register* format, not ints/s
867  *
868  * This function is made to be called by ethtool and by the driver
869  * when it needs to update VTEITR registers at runtime.  Hardware
870  * specific quirks/differences are taken care of here.
871  */
872 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
873                                u32 itr_reg)
874 {
875         struct ixgbe_hw *hw = &adapter->hw;
876
877         itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
878
879         /*
880          * set the WDIS bit to not clear the timer bits and cause an
881          * immediate assertion of the interrupt
882          */
883         itr_reg |= IXGBE_EITR_CNT_WDIS;
884
885         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
886 }
887
888 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
889 {
890         struct ixgbevf_adapter *adapter = q_vector->adapter;
891         u32 new_itr;
892         u8 current_itr, ret_itr;
893         int i, r_idx, v_idx = q_vector->v_idx;
894         struct ixgbevf_ring *rx_ring, *tx_ring;
895
896         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
897         for (i = 0; i < q_vector->txr_count; i++) {
898                 tx_ring = &(adapter->tx_ring[r_idx]);
899                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
900                                              q_vector->tx_itr,
901                                              tx_ring->total_packets,
902                                              tx_ring->total_bytes);
903                 /* if the result for this queue would decrease interrupt
904                  * rate for this vector then use that result */
905                 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
906                                     q_vector->tx_itr - 1 : ret_itr);
907                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
908                                       r_idx + 1);
909         }
910
911         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
912         for (i = 0; i < q_vector->rxr_count; i++) {
913                 rx_ring = &(adapter->rx_ring[r_idx]);
914                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
915                                              q_vector->rx_itr,
916                                              rx_ring->total_packets,
917                                              rx_ring->total_bytes);
918                 /* if the result for this queue would decrease interrupt
919                  * rate for this vector then use that result */
920                 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
921                                     q_vector->rx_itr - 1 : ret_itr);
922                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
923                                       r_idx + 1);
924         }
925
926         current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
927
928         switch (current_itr) {
929         /* counts and packets in update_itr are dependent on these numbers */
930         case lowest_latency:
931                 new_itr = 100000;
932                 break;
933         case low_latency:
934                 new_itr = 20000; /* aka hwitr = ~200 */
935                 break;
936         case bulk_latency:
937         default:
938                 new_itr = 8000;
939                 break;
940         }
941
942         if (new_itr != q_vector->eitr) {
943                 u32 itr_reg;
944
945                 /* save the algorithm value here, not the smoothed one */
946                 q_vector->eitr = new_itr;
947                 /* do an exponential smoothing */
948                 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
949                 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
950                 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
951         }
952 }
953
954 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
955 {
956         struct net_device *netdev = data;
957         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
958         struct ixgbe_hw *hw = &adapter->hw;
959         u32 eicr;
960         u32 msg;
961
962         eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
963         IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
964
965         if (!hw->mbx.ops.check_for_ack(hw)) {
966                 /*
967                  * checking for the ack clears the PFACK bit.  Place
968                  * it back in the v2p_mailbox cache so that anyone
969                  * polling for an ack will not miss it.  Also
970                  * avoid the read below because the code to read
971                  * the mailbox will also clear the ack bit.  This was
972                  * causing lost acks.  Just cache the bit and exit
973                  * the IRQ handler.
974                  */
975                 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
976                 goto out;
977         }
978
979         /* Not an ack interrupt, go ahead and read the message */
980         hw->mbx.ops.read(hw, &msg, 1);
981
982         if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
983                 mod_timer(&adapter->watchdog_timer,
984                           round_jiffies(jiffies + 1));
985
986 out:
987         return IRQ_HANDLED;
988 }
989
990 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
991 {
992         struct ixgbevf_q_vector *q_vector = data;
993         struct ixgbevf_adapter  *adapter = q_vector->adapter;
994         struct ixgbevf_ring     *tx_ring;
995         int i, r_idx;
996
997         if (!q_vector->txr_count)
998                 return IRQ_HANDLED;
999
1000         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
1001         for (i = 0; i < q_vector->txr_count; i++) {
1002                 tx_ring = &(adapter->tx_ring[r_idx]);
1003                 tx_ring->total_bytes = 0;
1004                 tx_ring->total_packets = 0;
1005                 ixgbevf_clean_tx_irq(adapter, tx_ring);
1006                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
1007                                       r_idx + 1);
1008         }
1009
1010         if (adapter->itr_setting & 1)
1011                 ixgbevf_set_itr_msix(q_vector);
1012
1013         return IRQ_HANDLED;
1014 }
1015
1016 /**
1017  * ixgbe_msix_clean_rx - single unshared vector rx clean (all queues)
1018  * @irq: unused
1019  * @data: pointer to our q_vector struct for this interrupt vector
1020  **/
1021 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
1022 {
1023         struct ixgbevf_q_vector *q_vector = data;
1024         struct ixgbevf_adapter  *adapter = q_vector->adapter;
1025         struct ixgbe_hw *hw = &adapter->hw;
1026         struct ixgbevf_ring  *rx_ring;
1027         int r_idx;
1028         int i;
1029
1030         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1031         for (i = 0; i < q_vector->rxr_count; i++) {
1032                 rx_ring = &(adapter->rx_ring[r_idx]);
1033                 rx_ring->total_bytes = 0;
1034                 rx_ring->total_packets = 0;
1035                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1036                                       r_idx + 1);
1037         }
1038
1039         if (!q_vector->rxr_count)
1040                 return IRQ_HANDLED;
1041
1042         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1043         rx_ring = &(adapter->rx_ring[r_idx]);
1044         /* disable interrupts on this vector only */
1045         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1046         napi_schedule(&q_vector->napi);
1047
1048
1049         return IRQ_HANDLED;
1050 }
1051
1052 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1053 {
1054         ixgbevf_msix_clean_rx(irq, data);
1055         ixgbevf_msix_clean_tx(irq, data);
1056
1057         return IRQ_HANDLED;
1058 }
1059
1060 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1061                                      int r_idx)
1062 {
1063         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1064
1065         set_bit(r_idx, q_vector->rxr_idx);
1066         q_vector->rxr_count++;
1067         a->rx_ring[r_idx].v_idx = 1 << v_idx;
1068 }
1069
1070 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1071                                      int t_idx)
1072 {
1073         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1074
1075         set_bit(t_idx, q_vector->txr_idx);
1076         q_vector->txr_count++;
1077         a->tx_ring[t_idx].v_idx = 1 << v_idx;
1078 }
1079
1080 /**
1081  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1082  * @adapter: board private structure to initialize
1083  *
1084  * This function maps descriptor rings to the queue-specific vectors
1085  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1086  * one vector per ring/queue, but on a constrained vector budget, we
1087  * group the rings as "efficiently" as possible.  You would add new
1088  * mapping configurations in here.
1089  **/
1090 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1091 {
1092         int q_vectors;
1093         int v_start = 0;
1094         int rxr_idx = 0, txr_idx = 0;
1095         int rxr_remaining = adapter->num_rx_queues;
1096         int txr_remaining = adapter->num_tx_queues;
1097         int i, j;
1098         int rqpv, tqpv;
1099         int err = 0;
1100
1101         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1102
1103         /*
1104          * The ideal configuration...
1105          * We have enough vectors to map one per queue.
1106          */
1107         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1108                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1109                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1110
1111                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1112                         map_vector_to_txq(adapter, v_start, txr_idx);
1113                 goto out;
1114         }
1115
1116         /*
1117          * If we don't have enough vectors for a 1-to-1
1118          * mapping, we'll have to group them so there are
1119          * multiple queues per vector.
1120          */
1121         /* Re-adjusting *qpv takes care of the remainder. */
1122         for (i = v_start; i < q_vectors; i++) {
1123                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1124                 for (j = 0; j < rqpv; j++) {
1125                         map_vector_to_rxq(adapter, i, rxr_idx);
1126                         rxr_idx++;
1127                         rxr_remaining--;
1128                 }
1129         }
1130         for (i = v_start; i < q_vectors; i++) {
1131                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1132                 for (j = 0; j < tqpv; j++) {
1133                         map_vector_to_txq(adapter, i, txr_idx);
1134                         txr_idx++;
1135                         txr_remaining--;
1136                 }
1137         }
1138
1139 out:
1140         return err;
1141 }
1142
1143 /**
1144  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1145  * @adapter: board private structure
1146  *
1147  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1148  * interrupts from the kernel.
1149  **/
1150 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1151 {
1152         struct net_device *netdev = adapter->netdev;
1153         irqreturn_t (*handler)(int, void *);
1154         int i, vector, q_vectors, err;
1155         int ri = 0, ti = 0;
1156
1157         /* Decrement for Other and TCP Timer vectors */
1158         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1159
1160 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1161                                           ? &ixgbevf_msix_clean_many : \
1162                           (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1163                           (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1164                           NULL)
1165         for (vector = 0; vector < q_vectors; vector++) {
1166                 handler = SET_HANDLER(adapter->q_vector[vector]);
1167
1168                 if (handler == &ixgbevf_msix_clean_rx) {
1169                         sprintf(adapter->name[vector], "%s-%s-%d",
1170                                 netdev->name, "rx", ri++);
1171                 } else if (handler == &ixgbevf_msix_clean_tx) {
1172                         sprintf(adapter->name[vector], "%s-%s-%d",
1173                                 netdev->name, "tx", ti++);
1174                 } else if (handler == &ixgbevf_msix_clean_many) {
1175                         sprintf(adapter->name[vector], "%s-%s-%d",
1176                                 netdev->name, "TxRx", vector);
1177                 } else {
1178                         /* skip this unused q_vector */
1179                         continue;
1180                 }
1181                 err = request_irq(adapter->msix_entries[vector].vector,
1182                                   handler, 0, adapter->name[vector],
1183                                   adapter->q_vector[vector]);
1184                 if (err) {
1185                         hw_dbg(&adapter->hw,
1186                                "request_irq failed for MSIX interrupt "
1187                                "Error: %d\n", err);
1188                         goto free_queue_irqs;
1189                 }
1190         }
1191
1192         sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1193         err = request_irq(adapter->msix_entries[vector].vector,
1194                           &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1195         if (err) {
1196                 hw_dbg(&adapter->hw,
1197                        "request_irq for msix_mbx failed: %d\n", err);
1198                 goto free_queue_irqs;
1199         }
1200
1201         return 0;
1202
1203 free_queue_irqs:
1204         for (i = vector - 1; i >= 0; i--)
1205                 free_irq(adapter->msix_entries[--vector].vector,
1206                          &(adapter->q_vector[i]));
1207         pci_disable_msix(adapter->pdev);
1208         kfree(adapter->msix_entries);
1209         adapter->msix_entries = NULL;
1210         return err;
1211 }
1212
1213 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1214 {
1215         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1216
1217         for (i = 0; i < q_vectors; i++) {
1218                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1219                 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1220                 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1221                 q_vector->rxr_count = 0;
1222                 q_vector->txr_count = 0;
1223                 q_vector->eitr = adapter->eitr_param;
1224         }
1225 }
1226
1227 /**
1228  * ixgbevf_request_irq - initialize interrupts
1229  * @adapter: board private structure
1230  *
1231  * Attempts to configure interrupts using the best available
1232  * capabilities of the hardware and kernel.
1233  **/
1234 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1235 {
1236         int err = 0;
1237
1238         err = ixgbevf_request_msix_irqs(adapter);
1239
1240         if (err)
1241                 hw_dbg(&adapter->hw,
1242                        "request_irq failed, Error %d\n", err);
1243
1244         return err;
1245 }
1246
1247 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1248 {
1249         struct net_device *netdev = adapter->netdev;
1250         int i, q_vectors;
1251
1252         q_vectors = adapter->num_msix_vectors;
1253
1254         i = q_vectors - 1;
1255
1256         free_irq(adapter->msix_entries[i].vector, netdev);
1257         i--;
1258
1259         for (; i >= 0; i--) {
1260                 free_irq(adapter->msix_entries[i].vector,
1261                          adapter->q_vector[i]);
1262         }
1263
1264         ixgbevf_reset_q_vectors(adapter);
1265 }
1266
1267 /**
1268  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1269  * @adapter: board private structure
1270  **/
1271 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1272 {
1273         int i;
1274         struct ixgbe_hw *hw = &adapter->hw;
1275
1276         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1277
1278         IXGBE_WRITE_FLUSH(hw);
1279
1280         for (i = 0; i < adapter->num_msix_vectors; i++)
1281                 synchronize_irq(adapter->msix_entries[i].vector);
1282 }
1283
1284 /**
1285  * ixgbevf_irq_enable - Enable default interrupt generation settings
1286  * @adapter: board private structure
1287  **/
1288 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1289                                       bool queues, bool flush)
1290 {
1291         struct ixgbe_hw *hw = &adapter->hw;
1292         u32 mask;
1293         u64 qmask;
1294
1295         mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1296         qmask = ~0;
1297
1298         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1299
1300         if (queues)
1301                 ixgbevf_irq_enable_queues(adapter, qmask);
1302
1303         if (flush)
1304                 IXGBE_WRITE_FLUSH(hw);
1305 }
1306
1307 /**
1308  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1309  * @adapter: board private structure
1310  *
1311  * Configure the Tx unit of the MAC after a reset.
1312  **/
1313 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1314 {
1315         u64 tdba;
1316         struct ixgbe_hw *hw = &adapter->hw;
1317         u32 i, j, tdlen, txctrl;
1318
1319         /* Setup the HW Tx Head and Tail descriptor pointers */
1320         for (i = 0; i < adapter->num_tx_queues; i++) {
1321                 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1322                 j = ring->reg_idx;
1323                 tdba = ring->dma;
1324                 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1325                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1326                                 (tdba & DMA_BIT_MASK(32)));
1327                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1328                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1329                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1330                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1331                 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1332                 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1333                 /* Disable Tx Head Writeback RO bit, since this hoses
1334                  * bookkeeping if things aren't delivered in order.
1335                  */
1336                 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1337                 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1338                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1339         }
1340 }
1341
1342 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1343
1344 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1345 {
1346         struct ixgbevf_ring *rx_ring;
1347         struct ixgbe_hw *hw = &adapter->hw;
1348         u32 srrctl;
1349
1350         rx_ring = &adapter->rx_ring[index];
1351
1352         srrctl = IXGBE_SRRCTL_DROP_EN;
1353
1354         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1355                 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1356                 /* grow the amount we can receive on large page machines */
1357                 if (bufsz < (PAGE_SIZE / 2))
1358                         bufsz = (PAGE_SIZE / 2);
1359                 /* cap the bufsz at our largest descriptor size */
1360                 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1361
1362                 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1363                 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1364                 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1365                            IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1366                            IXGBE_SRRCTL_BSIZEHDR_MASK);
1367         } else {
1368                 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1369
1370                 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1371                         srrctl |= IXGBEVF_RXBUFFER_2048 >>
1372                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1373                 else
1374                         srrctl |= rx_ring->rx_buf_len >>
1375                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1376         }
1377         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1378 }
1379
1380 /**
1381  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1382  * @adapter: board private structure
1383  *
1384  * Configure the Rx unit of the MAC after a reset.
1385  **/
1386 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1387 {
1388         u64 rdba;
1389         struct ixgbe_hw *hw = &adapter->hw;
1390         struct net_device *netdev = adapter->netdev;
1391         int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1392         int i, j;
1393         u32 rdlen;
1394         int rx_buf_len;
1395
1396         /* Decide whether to use packet split mode or not */
1397         if (netdev->mtu > ETH_DATA_LEN) {
1398                 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1399                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1400                 else
1401                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1402         } else {
1403                 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1404                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1405                 else
1406                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1407         }
1408
1409         /* Set the RX buffer length according to the mode */
1410         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1411                 /* PSRTYPE must be initialized in 82599 */
1412                 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1413                         IXGBE_PSRTYPE_UDPHDR |
1414                         IXGBE_PSRTYPE_IPV4HDR |
1415                         IXGBE_PSRTYPE_IPV6HDR |
1416                         IXGBE_PSRTYPE_L2HDR;
1417                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1418                 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1419         } else {
1420                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1421                 if (netdev->mtu <= ETH_DATA_LEN)
1422                         rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1423                 else
1424                         rx_buf_len = ALIGN(max_frame, 1024);
1425         }
1426
1427         rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1428         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1429          * the Base and Length of the Rx Descriptor Ring */
1430         for (i = 0; i < adapter->num_rx_queues; i++) {
1431                 rdba = adapter->rx_ring[i].dma;
1432                 j = adapter->rx_ring[i].reg_idx;
1433                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1434                                 (rdba & DMA_BIT_MASK(32)));
1435                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1436                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1437                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1438                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1439                 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1440                 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1441                 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1442
1443                 ixgbevf_configure_srrctl(adapter, j);
1444         }
1445 }
1446
1447 static void ixgbevf_vlan_rx_register(struct net_device *netdev,
1448                                      struct vlan_group *grp)
1449 {
1450         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1451         struct ixgbe_hw *hw = &adapter->hw;
1452         int i, j;
1453         u32 ctrl;
1454
1455         adapter->vlgrp = grp;
1456
1457         for (i = 0; i < adapter->num_rx_queues; i++) {
1458                 j = adapter->rx_ring[i].reg_idx;
1459                 ctrl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1460                 ctrl |= IXGBE_RXDCTL_VME;
1461                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), ctrl);
1462         }
1463 }
1464
1465 static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1466 {
1467         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1468         struct ixgbe_hw *hw = &adapter->hw;
1469
1470         /* add VID to filter table */
1471         if (hw->mac.ops.set_vfta)
1472                 hw->mac.ops.set_vfta(hw, vid, 0, true);
1473 }
1474
1475 static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1476 {
1477         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1478         struct ixgbe_hw *hw = &adapter->hw;
1479
1480         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1481                 ixgbevf_irq_disable(adapter);
1482
1483         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1484
1485         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1486                 ixgbevf_irq_enable(adapter, true, true);
1487
1488         /* remove VID from filter table */
1489         if (hw->mac.ops.set_vfta)
1490                 hw->mac.ops.set_vfta(hw, vid, 0, false);
1491 }
1492
1493 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1494 {
1495         ixgbevf_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1496
1497         if (adapter->vlgrp) {
1498                 u16 vid;
1499                 for (vid = 0; vid < VLAN_N_VID; vid++) {
1500                         if (!vlan_group_get_device(adapter->vlgrp, vid))
1501                                 continue;
1502                         ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1503                 }
1504         }
1505 }
1506
1507 /**
1508  * ixgbevf_set_rx_mode - Multicast set
1509  * @netdev: network interface device structure
1510  *
1511  * The set_rx_method entry point is called whenever the multicast address
1512  * list or the network interface flags are updated.  This routine is
1513  * responsible for configuring the hardware for proper multicast mode.
1514  **/
1515 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1516 {
1517         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1518         struct ixgbe_hw *hw = &adapter->hw;
1519
1520         /* reprogram multicast list */
1521         if (hw->mac.ops.update_mc_addr_list)
1522                 hw->mac.ops.update_mc_addr_list(hw, netdev);
1523 }
1524
1525 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1526 {
1527         int q_idx;
1528         struct ixgbevf_q_vector *q_vector;
1529         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1530
1531         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1532                 struct napi_struct *napi;
1533                 q_vector = adapter->q_vector[q_idx];
1534                 if (!q_vector->rxr_count)
1535                         continue;
1536                 napi = &q_vector->napi;
1537                 if (q_vector->rxr_count > 1)
1538                         napi->poll = &ixgbevf_clean_rxonly_many;
1539
1540                 napi_enable(napi);
1541         }
1542 }
1543
1544 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1545 {
1546         int q_idx;
1547         struct ixgbevf_q_vector *q_vector;
1548         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1549
1550         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1551                 q_vector = adapter->q_vector[q_idx];
1552                 if (!q_vector->rxr_count)
1553                         continue;
1554                 napi_disable(&q_vector->napi);
1555         }
1556 }
1557
1558 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1559 {
1560         struct net_device *netdev = adapter->netdev;
1561         int i;
1562
1563         ixgbevf_set_rx_mode(netdev);
1564
1565         ixgbevf_restore_vlan(adapter);
1566
1567         ixgbevf_configure_tx(adapter);
1568         ixgbevf_configure_rx(adapter);
1569         for (i = 0; i < adapter->num_rx_queues; i++) {
1570                 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1571                 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1572                 ring->next_to_use = ring->count - 1;
1573                 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1574         }
1575 }
1576
1577 #define IXGBE_MAX_RX_DESC_POLL 10
1578 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1579                                                 int rxr)
1580 {
1581         struct ixgbe_hw *hw = &adapter->hw;
1582         int j = adapter->rx_ring[rxr].reg_idx;
1583         int k;
1584
1585         for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1586                 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1587                         break;
1588                 else
1589                         msleep(1);
1590         }
1591         if (k >= IXGBE_MAX_RX_DESC_POLL) {
1592                 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1593                        "not set within the polling period\n", rxr);
1594         }
1595
1596         ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1597                                 (adapter->rx_ring[rxr].count - 1));
1598 }
1599
1600 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1601 {
1602         /* Only save pre-reset stats if there are some */
1603         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1604                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1605                         adapter->stats.base_vfgprc;
1606                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1607                         adapter->stats.base_vfgptc;
1608                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1609                         adapter->stats.base_vfgorc;
1610                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1611                         adapter->stats.base_vfgotc;
1612                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1613                         adapter->stats.base_vfmprc;
1614         }
1615 }
1616
1617 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1618 {
1619         struct ixgbe_hw *hw = &adapter->hw;
1620
1621         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1622         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1623         adapter->stats.last_vfgorc |=
1624                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1625         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1626         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1627         adapter->stats.last_vfgotc |=
1628                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1629         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1630
1631         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1632         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1633         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1634         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1635         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1636 }
1637
1638 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1639 {
1640         struct net_device *netdev = adapter->netdev;
1641         struct ixgbe_hw *hw = &adapter->hw;
1642         int i, j = 0;
1643         int num_rx_rings = adapter->num_rx_queues;
1644         u32 txdctl, rxdctl;
1645
1646         for (i = 0; i < adapter->num_tx_queues; i++) {
1647                 j = adapter->tx_ring[i].reg_idx;
1648                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1649                 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1650                 txdctl |= (8 << 16);
1651                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1652         }
1653
1654         for (i = 0; i < adapter->num_tx_queues; i++) {
1655                 j = adapter->tx_ring[i].reg_idx;
1656                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1657                 txdctl |= IXGBE_TXDCTL_ENABLE;
1658                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1659         }
1660
1661         for (i = 0; i < num_rx_rings; i++) {
1662                 j = adapter->rx_ring[i].reg_idx;
1663                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1664                 rxdctl |= IXGBE_RXDCTL_ENABLE;
1665                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1666                 ixgbevf_rx_desc_queue_enable(adapter, i);
1667         }
1668
1669         ixgbevf_configure_msix(adapter);
1670
1671         if (hw->mac.ops.set_rar) {
1672                 if (is_valid_ether_addr(hw->mac.addr))
1673                         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1674                 else
1675                         hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1676         }
1677
1678         clear_bit(__IXGBEVF_DOWN, &adapter->state);
1679         ixgbevf_napi_enable_all(adapter);
1680
1681         /* enable transmits */
1682         netif_tx_start_all_queues(netdev);
1683
1684         ixgbevf_save_reset_stats(adapter);
1685         ixgbevf_init_last_counter_stats(adapter);
1686
1687         /* bring the link up in the watchdog, this could race with our first
1688          * link up interrupt but shouldn't be a problem */
1689         adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1690         adapter->link_check_timeout = jiffies;
1691         mod_timer(&adapter->watchdog_timer, jiffies);
1692         return 0;
1693 }
1694
1695 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1696 {
1697         int err;
1698         struct ixgbe_hw *hw = &adapter->hw;
1699
1700         ixgbevf_configure(adapter);
1701
1702         err = ixgbevf_up_complete(adapter);
1703
1704         /* clear any pending interrupts, may auto mask */
1705         IXGBE_READ_REG(hw, IXGBE_VTEICR);
1706
1707         ixgbevf_irq_enable(adapter, true, true);
1708
1709         return err;
1710 }
1711
1712 /**
1713  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1714  * @adapter: board private structure
1715  * @rx_ring: ring to free buffers from
1716  **/
1717 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1718                                   struct ixgbevf_ring *rx_ring)
1719 {
1720         struct pci_dev *pdev = adapter->pdev;
1721         unsigned long size;
1722         unsigned int i;
1723
1724         if (!rx_ring->rx_buffer_info)
1725                 return;
1726
1727         /* Free all the Rx ring sk_buffs */
1728         for (i = 0; i < rx_ring->count; i++) {
1729                 struct ixgbevf_rx_buffer *rx_buffer_info;
1730
1731                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1732                 if (rx_buffer_info->dma) {
1733                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1734                                          rx_ring->rx_buf_len,
1735                                          DMA_FROM_DEVICE);
1736                         rx_buffer_info->dma = 0;
1737                 }
1738                 if (rx_buffer_info->skb) {
1739                         struct sk_buff *skb = rx_buffer_info->skb;
1740                         rx_buffer_info->skb = NULL;
1741                         do {
1742                                 struct sk_buff *this = skb;
1743                                 skb = skb->prev;
1744                                 dev_kfree_skb(this);
1745                         } while (skb);
1746                 }
1747                 if (!rx_buffer_info->page)
1748                         continue;
1749                 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1750                                PAGE_SIZE / 2, DMA_FROM_DEVICE);
1751                 rx_buffer_info->page_dma = 0;
1752                 put_page(rx_buffer_info->page);
1753                 rx_buffer_info->page = NULL;
1754                 rx_buffer_info->page_offset = 0;
1755         }
1756
1757         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1758         memset(rx_ring->rx_buffer_info, 0, size);
1759
1760         /* Zero out the descriptor ring */
1761         memset(rx_ring->desc, 0, rx_ring->size);
1762
1763         rx_ring->next_to_clean = 0;
1764         rx_ring->next_to_use = 0;
1765
1766         if (rx_ring->head)
1767                 writel(0, adapter->hw.hw_addr + rx_ring->head);
1768         if (rx_ring->tail)
1769                 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1770 }
1771
1772 /**
1773  * ixgbevf_clean_tx_ring - Free Tx Buffers
1774  * @adapter: board private structure
1775  * @tx_ring: ring to be cleaned
1776  **/
1777 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1778                                   struct ixgbevf_ring *tx_ring)
1779 {
1780         struct ixgbevf_tx_buffer *tx_buffer_info;
1781         unsigned long size;
1782         unsigned int i;
1783
1784         if (!tx_ring->tx_buffer_info)
1785                 return;
1786
1787         /* Free all the Tx ring sk_buffs */
1788
1789         for (i = 0; i < tx_ring->count; i++) {
1790                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1791                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1792         }
1793
1794         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1795         memset(tx_ring->tx_buffer_info, 0, size);
1796
1797         memset(tx_ring->desc, 0, tx_ring->size);
1798
1799         tx_ring->next_to_use = 0;
1800         tx_ring->next_to_clean = 0;
1801
1802         if (tx_ring->head)
1803                 writel(0, adapter->hw.hw_addr + tx_ring->head);
1804         if (tx_ring->tail)
1805                 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1806 }
1807
1808 /**
1809  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1810  * @adapter: board private structure
1811  **/
1812 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1813 {
1814         int i;
1815
1816         for (i = 0; i < adapter->num_rx_queues; i++)
1817                 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1818 }
1819
1820 /**
1821  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1822  * @adapter: board private structure
1823  **/
1824 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1825 {
1826         int i;
1827
1828         for (i = 0; i < adapter->num_tx_queues; i++)
1829                 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1830 }
1831
1832 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1833 {
1834         struct net_device *netdev = adapter->netdev;
1835         struct ixgbe_hw *hw = &adapter->hw;
1836         u32 txdctl;
1837         int i, j;
1838
1839         /* signal that we are down to the interrupt handler */
1840         set_bit(__IXGBEVF_DOWN, &adapter->state);
1841         /* disable receives */
1842
1843         netif_tx_disable(netdev);
1844
1845         msleep(10);
1846
1847         netif_tx_stop_all_queues(netdev);
1848
1849         ixgbevf_irq_disable(adapter);
1850
1851         ixgbevf_napi_disable_all(adapter);
1852
1853         del_timer_sync(&adapter->watchdog_timer);
1854         /* can't call flush scheduled work here because it can deadlock
1855          * if linkwatch_event tries to acquire the rtnl_lock which we are
1856          * holding */
1857         while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1858                 msleep(1);
1859
1860         /* disable transmits in the hardware now that interrupts are off */
1861         for (i = 0; i < adapter->num_tx_queues; i++) {
1862                 j = adapter->tx_ring[i].reg_idx;
1863                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1864                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1865                                 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1866         }
1867
1868         netif_carrier_off(netdev);
1869
1870         if (!pci_channel_offline(adapter->pdev))
1871                 ixgbevf_reset(adapter);
1872
1873         ixgbevf_clean_all_tx_rings(adapter);
1874         ixgbevf_clean_all_rx_rings(adapter);
1875 }
1876
1877 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1878 {
1879         struct ixgbe_hw *hw = &adapter->hw;
1880
1881         WARN_ON(in_interrupt());
1882
1883         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1884                 msleep(1);
1885
1886         /*
1887          * Check if PF is up before re-init.  If not then skip until
1888          * later when the PF is up and ready to service requests from
1889          * the VF via mailbox.  If the VF is up and running then the
1890          * watchdog task will continue to schedule reset tasks until
1891          * the PF is up and running.
1892          */
1893         if (!hw->mac.ops.reset_hw(hw)) {
1894                 ixgbevf_down(adapter);
1895                 ixgbevf_up(adapter);
1896         }
1897
1898         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1899 }
1900
1901 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1902 {
1903         struct ixgbe_hw *hw = &adapter->hw;
1904         struct net_device *netdev = adapter->netdev;
1905
1906         if (hw->mac.ops.reset_hw(hw))
1907                 hw_dbg(hw, "PF still resetting\n");
1908         else
1909                 hw->mac.ops.init_hw(hw);
1910
1911         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1912                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1913                        netdev->addr_len);
1914                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1915                        netdev->addr_len);
1916         }
1917 }
1918
1919 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1920                                          int vectors)
1921 {
1922         int err, vector_threshold;
1923
1924         /* We'll want at least 3 (vector_threshold):
1925          * 1) TxQ[0] Cleanup
1926          * 2) RxQ[0] Cleanup
1927          * 3) Other (Link Status Change, etc.)
1928          */
1929         vector_threshold = MIN_MSIX_COUNT;
1930
1931         /* The more we get, the more we will assign to Tx/Rx Cleanup
1932          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1933          * Right now, we simply care about how many we'll get; we'll
1934          * set them up later while requesting irq's.
1935          */
1936         while (vectors >= vector_threshold) {
1937                 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1938                                       vectors);
1939                 if (!err) /* Success in acquiring all requested vectors. */
1940                         break;
1941                 else if (err < 0)
1942                         vectors = 0; /* Nasty failure, quit now */
1943                 else /* err == number of vectors we should try again with */
1944                         vectors = err;
1945         }
1946
1947         if (vectors < vector_threshold) {
1948                 /* Can't allocate enough MSI-X interrupts?  Oh well.
1949                  * This just means we'll go with either a single MSI
1950                  * vector or fall back to legacy interrupts.
1951                  */
1952                 hw_dbg(&adapter->hw,
1953                        "Unable to allocate MSI-X interrupts\n");
1954                 kfree(adapter->msix_entries);
1955                 adapter->msix_entries = NULL;
1956         } else {
1957                 /*
1958                  * Adjust for only the vectors we'll use, which is minimum
1959                  * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1960                  * vectors we were allocated.
1961                  */
1962                 adapter->num_msix_vectors = vectors;
1963         }
1964 }
1965
1966 /*
1967  * ixgbe_set_num_queues: Allocate queues for device, feature dependant
1968  * @adapter: board private structure to initialize
1969  *
1970  * This is the top level queue allocation routine.  The order here is very
1971  * important, starting with the "most" number of features turned on at once,
1972  * and ending with the smallest set of features.  This way large combinations
1973  * can be allocated if they're turned on, and smaller combinations are the
1974  * fallthrough conditions.
1975  *
1976  **/
1977 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1978 {
1979         /* Start with base case */
1980         adapter->num_rx_queues = 1;
1981         adapter->num_tx_queues = 1;
1982         adapter->num_rx_pools = adapter->num_rx_queues;
1983         adapter->num_rx_queues_per_pool = 1;
1984 }
1985
1986 /**
1987  * ixgbevf_alloc_queues - Allocate memory for all rings
1988  * @adapter: board private structure to initialize
1989  *
1990  * We allocate one ring per queue at run-time since we don't know the
1991  * number of queues at compile-time.  The polling_netdev array is
1992  * intended for Multiqueue, but should work fine with a single queue.
1993  **/
1994 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1995 {
1996         int i;
1997
1998         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1999                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
2000         if (!adapter->tx_ring)
2001                 goto err_tx_ring_allocation;
2002
2003         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
2004                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
2005         if (!adapter->rx_ring)
2006                 goto err_rx_ring_allocation;
2007
2008         for (i = 0; i < adapter->num_tx_queues; i++) {
2009                 adapter->tx_ring[i].count = adapter->tx_ring_count;
2010                 adapter->tx_ring[i].queue_index = i;
2011                 adapter->tx_ring[i].reg_idx = i;
2012         }
2013
2014         for (i = 0; i < adapter->num_rx_queues; i++) {
2015                 adapter->rx_ring[i].count = adapter->rx_ring_count;
2016                 adapter->rx_ring[i].queue_index = i;
2017                 adapter->rx_ring[i].reg_idx = i;
2018         }
2019
2020         return 0;
2021
2022 err_rx_ring_allocation:
2023         kfree(adapter->tx_ring);
2024 err_tx_ring_allocation:
2025         return -ENOMEM;
2026 }
2027
2028 /**
2029  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2030  * @adapter: board private structure to initialize
2031  *
2032  * Attempt to configure the interrupts using the best available
2033  * capabilities of the hardware and the kernel.
2034  **/
2035 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2036 {
2037         int err = 0;
2038         int vector, v_budget;
2039
2040         /*
2041          * It's easy to be greedy for MSI-X vectors, but it really
2042          * doesn't do us much good if we have a lot more vectors
2043          * than CPU's.  So let's be conservative and only ask for
2044          * (roughly) twice the number of vectors as there are CPU's.
2045          */
2046         v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2047                        (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2048
2049         /* A failure in MSI-X entry allocation isn't fatal, but it does
2050          * mean we disable MSI-X capabilities of the adapter. */
2051         adapter->msix_entries = kcalloc(v_budget,
2052                                         sizeof(struct msix_entry), GFP_KERNEL);
2053         if (!adapter->msix_entries) {
2054                 err = -ENOMEM;
2055                 goto out;
2056         }
2057
2058         for (vector = 0; vector < v_budget; vector++)
2059                 adapter->msix_entries[vector].entry = vector;
2060
2061         ixgbevf_acquire_msix_vectors(adapter, v_budget);
2062
2063 out:
2064         return err;
2065 }
2066
2067 /**
2068  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2069  * @adapter: board private structure to initialize
2070  *
2071  * We allocate one q_vector per queue interrupt.  If allocation fails we
2072  * return -ENOMEM.
2073  **/
2074 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2075 {
2076         int q_idx, num_q_vectors;
2077         struct ixgbevf_q_vector *q_vector;
2078         int napi_vectors;
2079         int (*poll)(struct napi_struct *, int);
2080
2081         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2082         napi_vectors = adapter->num_rx_queues;
2083         poll = &ixgbevf_clean_rxonly;
2084
2085         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2086                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2087                 if (!q_vector)
2088                         goto err_out;
2089                 q_vector->adapter = adapter;
2090                 q_vector->v_idx = q_idx;
2091                 q_vector->eitr = adapter->eitr_param;
2092                 if (q_idx < napi_vectors)
2093                         netif_napi_add(adapter->netdev, &q_vector->napi,
2094                                        (*poll), 64);
2095                 adapter->q_vector[q_idx] = q_vector;
2096         }
2097
2098         return 0;
2099
2100 err_out:
2101         while (q_idx) {
2102                 q_idx--;
2103                 q_vector = adapter->q_vector[q_idx];
2104                 netif_napi_del(&q_vector->napi);
2105                 kfree(q_vector);
2106                 adapter->q_vector[q_idx] = NULL;
2107         }
2108         return -ENOMEM;
2109 }
2110
2111 /**
2112  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2113  * @adapter: board private structure to initialize
2114  *
2115  * This function frees the memory allocated to the q_vectors.  In addition if
2116  * NAPI is enabled it will delete any references to the NAPI struct prior
2117  * to freeing the q_vector.
2118  **/
2119 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2120 {
2121         int q_idx, num_q_vectors;
2122         int napi_vectors;
2123
2124         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2125         napi_vectors = adapter->num_rx_queues;
2126
2127         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2128                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2129
2130                 adapter->q_vector[q_idx] = NULL;
2131                 if (q_idx < napi_vectors)
2132                         netif_napi_del(&q_vector->napi);
2133                 kfree(q_vector);
2134         }
2135 }
2136
2137 /**
2138  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2139  * @adapter: board private structure
2140  *
2141  **/
2142 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2143 {
2144         pci_disable_msix(adapter->pdev);
2145         kfree(adapter->msix_entries);
2146         adapter->msix_entries = NULL;
2147 }
2148
2149 /**
2150  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2151  * @adapter: board private structure to initialize
2152  *
2153  **/
2154 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2155 {
2156         int err;
2157
2158         /* Number of supported queues */
2159         ixgbevf_set_num_queues(adapter);
2160
2161         err = ixgbevf_set_interrupt_capability(adapter);
2162         if (err) {
2163                 hw_dbg(&adapter->hw,
2164                        "Unable to setup interrupt capabilities\n");
2165                 goto err_set_interrupt;
2166         }
2167
2168         err = ixgbevf_alloc_q_vectors(adapter);
2169         if (err) {
2170                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2171                        "vectors\n");
2172                 goto err_alloc_q_vectors;
2173         }
2174
2175         err = ixgbevf_alloc_queues(adapter);
2176         if (err) {
2177                 printk(KERN_ERR "Unable to allocate memory for queues\n");
2178                 goto err_alloc_queues;
2179         }
2180
2181         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2182                "Tx Queue count = %u\n",
2183                (adapter->num_rx_queues > 1) ? "Enabled" :
2184                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2185
2186         set_bit(__IXGBEVF_DOWN, &adapter->state);
2187
2188         return 0;
2189 err_alloc_queues:
2190         ixgbevf_free_q_vectors(adapter);
2191 err_alloc_q_vectors:
2192         ixgbevf_reset_interrupt_capability(adapter);
2193 err_set_interrupt:
2194         return err;
2195 }
2196
2197 /**
2198  * ixgbevf_sw_init - Initialize general software structures
2199  * (struct ixgbevf_adapter)
2200  * @adapter: board private structure to initialize
2201  *
2202  * ixgbevf_sw_init initializes the Adapter private data structure.
2203  * Fields are initialized based on PCI device information and
2204  * OS network device settings (MTU size).
2205  **/
2206 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2207 {
2208         struct ixgbe_hw *hw = &adapter->hw;
2209         struct pci_dev *pdev = adapter->pdev;
2210         int err;
2211
2212         /* PCI config space info */
2213
2214         hw->vendor_id = pdev->vendor;
2215         hw->device_id = pdev->device;
2216         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2217         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2218         hw->subsystem_device_id = pdev->subsystem_device;
2219
2220         hw->mbx.ops.init_params(hw);
2221         hw->mac.max_tx_queues = MAX_TX_QUEUES;
2222         hw->mac.max_rx_queues = MAX_RX_QUEUES;
2223         err = hw->mac.ops.reset_hw(hw);
2224         if (err) {
2225                 dev_info(&pdev->dev,
2226                          "PF still in reset state, assigning new address\n");
2227                 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2228         } else {
2229                 err = hw->mac.ops.init_hw(hw);
2230                 if (err) {
2231                         printk(KERN_ERR "init_shared_code failed: %d\n", err);
2232                         goto out;
2233                 }
2234         }
2235
2236         /* Enable dynamic interrupt throttling rates */
2237         adapter->eitr_param = 20000;
2238         adapter->itr_setting = 1;
2239
2240         /* set defaults for eitr in MegaBytes */
2241         adapter->eitr_low = 10;
2242         adapter->eitr_high = 20;
2243
2244         /* set default ring sizes */
2245         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2246         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2247
2248         /* enable rx csum by default */
2249         adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2250
2251         set_bit(__IXGBEVF_DOWN, &adapter->state);
2252
2253 out:
2254         return err;
2255 }
2256
2257 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2258         {                                                       \
2259                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2260                 if (current_counter < last_counter)             \
2261                         counter += 0x100000000LL;               \
2262                 last_counter = current_counter;                 \
2263                 counter &= 0xFFFFFFFF00000000LL;                \
2264                 counter |= current_counter;                     \
2265         }
2266
2267 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2268         {                                                                \
2269                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2270                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2271                 u64 current_counter = (current_counter_msb << 32) |      \
2272                         current_counter_lsb;                             \
2273                 if (current_counter < last_counter)                      \
2274                         counter += 0x1000000000LL;                       \
2275                 last_counter = current_counter;                          \
2276                 counter &= 0xFFFFFFF000000000LL;                         \
2277                 counter |= current_counter;                              \
2278         }
2279 /**
2280  * ixgbevf_update_stats - Update the board statistics counters.
2281  * @adapter: board private structure
2282  **/
2283 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2284 {
2285         struct ixgbe_hw *hw = &adapter->hw;
2286
2287         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2288                                 adapter->stats.vfgprc);
2289         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2290                                 adapter->stats.vfgptc);
2291         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2292                                 adapter->stats.last_vfgorc,
2293                                 adapter->stats.vfgorc);
2294         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2295                                 adapter->stats.last_vfgotc,
2296                                 adapter->stats.vfgotc);
2297         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2298                                 adapter->stats.vfmprc);
2299
2300         /* Fill out the OS statistics structure */
2301         adapter->netdev->stats.multicast = adapter->stats.vfmprc -
2302                 adapter->stats.base_vfmprc;
2303 }
2304
2305 /**
2306  * ixgbevf_watchdog - Timer Call-back
2307  * @data: pointer to adapter cast into an unsigned long
2308  **/
2309 static void ixgbevf_watchdog(unsigned long data)
2310 {
2311         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2312         struct ixgbe_hw *hw = &adapter->hw;
2313         u64 eics = 0;
2314         int i;
2315
2316         /*
2317          * Do the watchdog outside of interrupt context due to the lovely
2318          * delays that some of the newer hardware requires
2319          */
2320
2321         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2322                 goto watchdog_short_circuit;
2323
2324         /* get one bit for every active tx/rx interrupt vector */
2325         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2326                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2327                 if (qv->rxr_count || qv->txr_count)
2328                         eics |= (1 << i);
2329         }
2330
2331         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2332
2333 watchdog_short_circuit:
2334         schedule_work(&adapter->watchdog_task);
2335 }
2336
2337 /**
2338  * ixgbevf_tx_timeout - Respond to a Tx Hang
2339  * @netdev: network interface device structure
2340  **/
2341 static void ixgbevf_tx_timeout(struct net_device *netdev)
2342 {
2343         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2344
2345         /* Do the reset outside of interrupt context */
2346         schedule_work(&adapter->reset_task);
2347 }
2348
2349 static void ixgbevf_reset_task(struct work_struct *work)
2350 {
2351         struct ixgbevf_adapter *adapter;
2352         adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2353
2354         /* If we're already down or resetting, just bail */
2355         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2356             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2357                 return;
2358
2359         adapter->tx_timeout_count++;
2360
2361         ixgbevf_reinit_locked(adapter);
2362 }
2363
2364 /**
2365  * ixgbevf_watchdog_task - worker thread to bring link up
2366  * @work: pointer to work_struct containing our data
2367  **/
2368 static void ixgbevf_watchdog_task(struct work_struct *work)
2369 {
2370         struct ixgbevf_adapter *adapter = container_of(work,
2371                                                        struct ixgbevf_adapter,
2372                                                        watchdog_task);
2373         struct net_device *netdev = adapter->netdev;
2374         struct ixgbe_hw *hw = &adapter->hw;
2375         u32 link_speed = adapter->link_speed;
2376         bool link_up = adapter->link_up;
2377
2378         adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2379
2380         /*
2381          * Always check the link on the watchdog because we have
2382          * no LSC interrupt
2383          */
2384         if (hw->mac.ops.check_link) {
2385                 if ((hw->mac.ops.check_link(hw, &link_speed,
2386                                             &link_up, false)) != 0) {
2387                         adapter->link_up = link_up;
2388                         adapter->link_speed = link_speed;
2389                         netif_carrier_off(netdev);
2390                         netif_tx_stop_all_queues(netdev);
2391                         schedule_work(&adapter->reset_task);
2392                         goto pf_has_reset;
2393                 }
2394         } else {
2395                 /* always assume link is up, if no check link
2396                  * function */
2397                 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2398                 link_up = true;
2399         }
2400         adapter->link_up = link_up;
2401         adapter->link_speed = link_speed;
2402
2403         if (link_up) {
2404                 if (!netif_carrier_ok(netdev)) {
2405                         hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2406                                (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2407                                10 : 1);
2408                         netif_carrier_on(netdev);
2409                         netif_tx_wake_all_queues(netdev);
2410                 } else {
2411                         /* Force detection of hung controller */
2412                         adapter->detect_tx_hung = true;
2413                 }
2414         } else {
2415                 adapter->link_up = false;
2416                 adapter->link_speed = 0;
2417                 if (netif_carrier_ok(netdev)) {
2418                         hw_dbg(&adapter->hw, "NIC Link is Down\n");
2419                         netif_carrier_off(netdev);
2420                         netif_tx_stop_all_queues(netdev);
2421                 }
2422         }
2423
2424         ixgbevf_update_stats(adapter);
2425
2426 pf_has_reset:
2427         /* Force detection of hung controller every watchdog period */
2428         adapter->detect_tx_hung = true;
2429
2430         /* Reset the timer */
2431         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2432                 mod_timer(&adapter->watchdog_timer,
2433                           round_jiffies(jiffies + (2 * HZ)));
2434
2435         adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2436 }
2437
2438 /**
2439  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2440  * @adapter: board private structure
2441  * @tx_ring: Tx descriptor ring for a specific queue
2442  *
2443  * Free all transmit software resources
2444  **/
2445 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2446                                struct ixgbevf_ring *tx_ring)
2447 {
2448         struct pci_dev *pdev = adapter->pdev;
2449
2450         ixgbevf_clean_tx_ring(adapter, tx_ring);
2451
2452         vfree(tx_ring->tx_buffer_info);
2453         tx_ring->tx_buffer_info = NULL;
2454
2455         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2456                           tx_ring->dma);
2457
2458         tx_ring->desc = NULL;
2459 }
2460
2461 /**
2462  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2463  * @adapter: board private structure
2464  *
2465  * Free all transmit software resources
2466  **/
2467 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2468 {
2469         int i;
2470
2471         for (i = 0; i < adapter->num_tx_queues; i++)
2472                 if (adapter->tx_ring[i].desc)
2473                         ixgbevf_free_tx_resources(adapter,
2474                                                   &adapter->tx_ring[i]);
2475
2476 }
2477
2478 /**
2479  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2480  * @adapter: board private structure
2481  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2482  *
2483  * Return 0 on success, negative on failure
2484  **/
2485 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2486                                struct ixgbevf_ring *tx_ring)
2487 {
2488         struct pci_dev *pdev = adapter->pdev;
2489         int size;
2490
2491         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2492         tx_ring->tx_buffer_info = vmalloc(size);
2493         if (!tx_ring->tx_buffer_info)
2494                 goto err;
2495         memset(tx_ring->tx_buffer_info, 0, size);
2496
2497         /* round up to nearest 4K */
2498         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2499         tx_ring->size = ALIGN(tx_ring->size, 4096);
2500
2501         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2502                                            &tx_ring->dma, GFP_KERNEL);
2503         if (!tx_ring->desc)
2504                 goto err;
2505
2506         tx_ring->next_to_use = 0;
2507         tx_ring->next_to_clean = 0;
2508         tx_ring->work_limit = tx_ring->count;
2509         return 0;
2510
2511 err:
2512         vfree(tx_ring->tx_buffer_info);
2513         tx_ring->tx_buffer_info = NULL;
2514         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2515                "descriptor ring\n");
2516         return -ENOMEM;
2517 }
2518
2519 /**
2520  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2521  * @adapter: board private structure
2522  *
2523  * If this function returns with an error, then it's possible one or
2524  * more of the rings is populated (while the rest are not).  It is the
2525  * callers duty to clean those orphaned rings.
2526  *
2527  * Return 0 on success, negative on failure
2528  **/
2529 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2530 {
2531         int i, err = 0;
2532
2533         for (i = 0; i < adapter->num_tx_queues; i++) {
2534                 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2535                 if (!err)
2536                         continue;
2537                 hw_dbg(&adapter->hw,
2538                        "Allocation for Tx Queue %u failed\n", i);
2539                 break;
2540         }
2541
2542         return err;
2543 }
2544
2545 /**
2546  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2547  * @adapter: board private structure
2548  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2549  *
2550  * Returns 0 on success, negative on failure
2551  **/
2552 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2553                                struct ixgbevf_ring *rx_ring)
2554 {
2555         struct pci_dev *pdev = adapter->pdev;
2556         int size;
2557
2558         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2559         rx_ring->rx_buffer_info = vmalloc(size);
2560         if (!rx_ring->rx_buffer_info) {
2561                 hw_dbg(&adapter->hw,
2562                        "Unable to vmalloc buffer memory for "
2563                        "the receive descriptor ring\n");
2564                 goto alloc_failed;
2565         }
2566         memset(rx_ring->rx_buffer_info, 0, size);
2567
2568         /* Round up to nearest 4K */
2569         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2570         rx_ring->size = ALIGN(rx_ring->size, 4096);
2571
2572         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2573                                            &rx_ring->dma, GFP_KERNEL);
2574
2575         if (!rx_ring->desc) {
2576                 hw_dbg(&adapter->hw,
2577                        "Unable to allocate memory for "
2578                        "the receive descriptor ring\n");
2579                 vfree(rx_ring->rx_buffer_info);
2580                 rx_ring->rx_buffer_info = NULL;
2581                 goto alloc_failed;
2582         }
2583
2584         rx_ring->next_to_clean = 0;
2585         rx_ring->next_to_use = 0;
2586
2587         return 0;
2588 alloc_failed:
2589         return -ENOMEM;
2590 }
2591
2592 /**
2593  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2594  * @adapter: board private structure
2595  *
2596  * If this function returns with an error, then it's possible one or
2597  * more of the rings is populated (while the rest are not).  It is the
2598  * callers duty to clean those orphaned rings.
2599  *
2600  * Return 0 on success, negative on failure
2601  **/
2602 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2603 {
2604         int i, err = 0;
2605
2606         for (i = 0; i < adapter->num_rx_queues; i++) {
2607                 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2608                 if (!err)
2609                         continue;
2610                 hw_dbg(&adapter->hw,
2611                        "Allocation for Rx Queue %u failed\n", i);
2612                 break;
2613         }
2614         return err;
2615 }
2616
2617 /**
2618  * ixgbevf_free_rx_resources - Free Rx Resources
2619  * @adapter: board private structure
2620  * @rx_ring: ring to clean the resources from
2621  *
2622  * Free all receive software resources
2623  **/
2624 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2625                                struct ixgbevf_ring *rx_ring)
2626 {
2627         struct pci_dev *pdev = adapter->pdev;
2628
2629         ixgbevf_clean_rx_ring(adapter, rx_ring);
2630
2631         vfree(rx_ring->rx_buffer_info);
2632         rx_ring->rx_buffer_info = NULL;
2633
2634         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2635                           rx_ring->dma);
2636
2637         rx_ring->desc = NULL;
2638 }
2639
2640 /**
2641  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2642  * @adapter: board private structure
2643  *
2644  * Free all receive software resources
2645  **/
2646 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2647 {
2648         int i;
2649
2650         for (i = 0; i < adapter->num_rx_queues; i++)
2651                 if (adapter->rx_ring[i].desc)
2652                         ixgbevf_free_rx_resources(adapter,
2653                                                   &adapter->rx_ring[i]);
2654 }
2655
2656 /**
2657  * ixgbevf_open - Called when a network interface is made active
2658  * @netdev: network interface device structure
2659  *
2660  * Returns 0 on success, negative value on failure
2661  *
2662  * The open entry point is called when a network interface is made
2663  * active by the system (IFF_UP).  At this point all resources needed
2664  * for transmit and receive operations are allocated, the interrupt
2665  * handler is registered with the OS, the watchdog timer is started,
2666  * and the stack is notified that the interface is ready.
2667  **/
2668 static int ixgbevf_open(struct net_device *netdev)
2669 {
2670         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2671         struct ixgbe_hw *hw = &adapter->hw;
2672         int err;
2673
2674         /* disallow open during test */
2675         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2676                 return -EBUSY;
2677
2678         if (hw->adapter_stopped) {
2679                 ixgbevf_reset(adapter);
2680                 /* if adapter is still stopped then PF isn't up and
2681                  * the vf can't start. */
2682                 if (hw->adapter_stopped) {
2683                         err = IXGBE_ERR_MBX;
2684                         printk(KERN_ERR "Unable to start - perhaps the PF"
2685                                " Driver isn't up yet\n");
2686                         goto err_setup_reset;
2687                 }
2688         }
2689
2690         /* allocate transmit descriptors */
2691         err = ixgbevf_setup_all_tx_resources(adapter);
2692         if (err)
2693                 goto err_setup_tx;
2694
2695         /* allocate receive descriptors */
2696         err = ixgbevf_setup_all_rx_resources(adapter);
2697         if (err)
2698                 goto err_setup_rx;
2699
2700         ixgbevf_configure(adapter);
2701
2702         /*
2703          * Map the Tx/Rx rings to the vectors we were allotted.
2704          * if request_irq will be called in this function map_rings
2705          * must be called *before* up_complete
2706          */
2707         ixgbevf_map_rings_to_vectors(adapter);
2708
2709         err = ixgbevf_up_complete(adapter);
2710         if (err)
2711                 goto err_up;
2712
2713         /* clear any pending interrupts, may auto mask */
2714         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2715         err = ixgbevf_request_irq(adapter);
2716         if (err)
2717                 goto err_req_irq;
2718
2719         ixgbevf_irq_enable(adapter, true, true);
2720
2721         return 0;
2722
2723 err_req_irq:
2724         ixgbevf_down(adapter);
2725 err_up:
2726         ixgbevf_free_irq(adapter);
2727 err_setup_rx:
2728         ixgbevf_free_all_rx_resources(adapter);
2729 err_setup_tx:
2730         ixgbevf_free_all_tx_resources(adapter);
2731         ixgbevf_reset(adapter);
2732
2733 err_setup_reset:
2734
2735         return err;
2736 }
2737
2738 /**
2739  * ixgbevf_close - Disables a network interface
2740  * @netdev: network interface device structure
2741  *
2742  * Returns 0, this is not allowed to fail
2743  *
2744  * The close entry point is called when an interface is de-activated
2745  * by the OS.  The hardware is still under the drivers control, but
2746  * needs to be disabled.  A global MAC reset is issued to stop the
2747  * hardware, and all transmit and receive resources are freed.
2748  **/
2749 static int ixgbevf_close(struct net_device *netdev)
2750 {
2751         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2752
2753         ixgbevf_down(adapter);
2754         ixgbevf_free_irq(adapter);
2755
2756         ixgbevf_free_all_tx_resources(adapter);
2757         ixgbevf_free_all_rx_resources(adapter);
2758
2759         return 0;
2760 }
2761
2762 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2763                        struct ixgbevf_ring *tx_ring,
2764                        struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2765 {
2766         struct ixgbe_adv_tx_context_desc *context_desc;
2767         unsigned int i;
2768         int err;
2769         struct ixgbevf_tx_buffer *tx_buffer_info;
2770         u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2771         u32 mss_l4len_idx, l4len;
2772
2773         if (skb_is_gso(skb)) {
2774                 if (skb_header_cloned(skb)) {
2775                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2776                         if (err)
2777                                 return err;
2778                 }
2779                 l4len = tcp_hdrlen(skb);
2780                 *hdr_len += l4len;
2781
2782                 if (skb->protocol == htons(ETH_P_IP)) {
2783                         struct iphdr *iph = ip_hdr(skb);
2784                         iph->tot_len = 0;
2785                         iph->check = 0;
2786                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2787                                                                  iph->daddr, 0,
2788                                                                  IPPROTO_TCP,
2789                                                                  0);
2790                         adapter->hw_tso_ctxt++;
2791                 } else if (skb_is_gso_v6(skb)) {
2792                         ipv6_hdr(skb)->payload_len = 0;
2793                         tcp_hdr(skb)->check =
2794                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2795                                              &ipv6_hdr(skb)->daddr,
2796                                              0, IPPROTO_TCP, 0);
2797                         adapter->hw_tso6_ctxt++;
2798                 }
2799
2800                 i = tx_ring->next_to_use;
2801
2802                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2803                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2804
2805                 /* VLAN MACLEN IPLEN */
2806                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2807                         vlan_macip_lens |=
2808                                 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2809                 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2810                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2811                 *hdr_len += skb_network_offset(skb);
2812                 vlan_macip_lens |=
2813                         (skb_transport_header(skb) - skb_network_header(skb));
2814                 *hdr_len +=
2815                         (skb_transport_header(skb) - skb_network_header(skb));
2816                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2817                 context_desc->seqnum_seed = 0;
2818
2819                 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2820                 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2821                                     IXGBE_ADVTXD_DTYP_CTXT);
2822
2823                 if (skb->protocol == htons(ETH_P_IP))
2824                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2825                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2826                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2827
2828                 /* MSS L4LEN IDX */
2829                 mss_l4len_idx =
2830                         (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2831                 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2832                 /* use index 1 for TSO */
2833                 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2834                 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2835
2836                 tx_buffer_info->time_stamp = jiffies;
2837                 tx_buffer_info->next_to_watch = i;
2838
2839                 i++;
2840                 if (i == tx_ring->count)
2841                         i = 0;
2842                 tx_ring->next_to_use = i;
2843
2844                 return true;
2845         }
2846
2847         return false;
2848 }
2849
2850 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2851                             struct ixgbevf_ring *tx_ring,
2852                             struct sk_buff *skb, u32 tx_flags)
2853 {
2854         struct ixgbe_adv_tx_context_desc *context_desc;
2855         unsigned int i;
2856         struct ixgbevf_tx_buffer *tx_buffer_info;
2857         u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2858
2859         if (skb->ip_summed == CHECKSUM_PARTIAL ||
2860             (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2861                 i = tx_ring->next_to_use;
2862                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2863                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2864
2865                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2866                         vlan_macip_lens |= (tx_flags &
2867                                             IXGBE_TX_FLAGS_VLAN_MASK);
2868                 vlan_macip_lens |= (skb_network_offset(skb) <<
2869                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2870                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2871                         vlan_macip_lens |= (skb_transport_header(skb) -
2872                                             skb_network_header(skb));
2873
2874                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2875                 context_desc->seqnum_seed = 0;
2876
2877                 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2878                                     IXGBE_ADVTXD_DTYP_CTXT);
2879
2880                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2881                         switch (skb->protocol) {
2882                         case __constant_htons(ETH_P_IP):
2883                                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2884                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2885                                         type_tucmd_mlhl |=
2886                                             IXGBE_ADVTXD_TUCMD_L4T_TCP;
2887                                 break;
2888                         case __constant_htons(ETH_P_IPV6):
2889                                 /* XXX what about other V6 headers?? */
2890                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2891                                         type_tucmd_mlhl |=
2892                                                 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2893                                 break;
2894                         default:
2895                                 if (unlikely(net_ratelimit())) {
2896                                         printk(KERN_WARNING
2897                                                "partial checksum but "
2898                                                "proto=%x!\n",
2899                                                skb->protocol);
2900                                 }
2901                                 break;
2902                         }
2903                 }
2904
2905                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2906                 /* use index zero for tx checksum offload */
2907                 context_desc->mss_l4len_idx = 0;
2908
2909                 tx_buffer_info->time_stamp = jiffies;
2910                 tx_buffer_info->next_to_watch = i;
2911
2912                 adapter->hw_csum_tx_good++;
2913                 i++;
2914                 if (i == tx_ring->count)
2915                         i = 0;
2916                 tx_ring->next_to_use = i;
2917
2918                 return true;
2919         }
2920
2921         return false;
2922 }
2923
2924 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2925                           struct ixgbevf_ring *tx_ring,
2926                           struct sk_buff *skb, u32 tx_flags,
2927                           unsigned int first)
2928 {
2929         struct pci_dev *pdev = adapter->pdev;
2930         struct ixgbevf_tx_buffer *tx_buffer_info;
2931         unsigned int len;
2932         unsigned int total = skb->len;
2933         unsigned int offset = 0, size;
2934         int count = 0;
2935         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2936         unsigned int f;
2937         int i;
2938
2939         i = tx_ring->next_to_use;
2940
2941         len = min(skb_headlen(skb), total);
2942         while (len) {
2943                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2944                 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2945
2946                 tx_buffer_info->length = size;
2947                 tx_buffer_info->mapped_as_page = false;
2948                 tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2949                                                      skb->data + offset,
2950                                                      size, DMA_TO_DEVICE);
2951                 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2952                         goto dma_error;
2953                 tx_buffer_info->time_stamp = jiffies;
2954                 tx_buffer_info->next_to_watch = i;
2955
2956                 len -= size;
2957                 total -= size;
2958                 offset += size;
2959                 count++;
2960                 i++;
2961                 if (i == tx_ring->count)
2962                         i = 0;
2963         }
2964
2965         for (f = 0; f < nr_frags; f++) {
2966                 struct skb_frag_struct *frag;
2967
2968                 frag = &skb_shinfo(skb)->frags[f];
2969                 len = min((unsigned int)frag->size, total);
2970                 offset = frag->page_offset;
2971
2972                 while (len) {
2973                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
2974                         size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2975
2976                         tx_buffer_info->length = size;
2977                         tx_buffer_info->dma = dma_map_page(&adapter->pdev->dev,
2978                                                            frag->page,
2979                                                            offset,
2980                                                            size,
2981                                                            DMA_TO_DEVICE);
2982                         tx_buffer_info->mapped_as_page = true;
2983                         if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2984                                 goto dma_error;
2985                         tx_buffer_info->time_stamp = jiffies;
2986                         tx_buffer_info->next_to_watch = i;
2987
2988                         len -= size;
2989                         total -= size;
2990                         offset += size;
2991                         count++;
2992                         i++;
2993                         if (i == tx_ring->count)
2994                                 i = 0;
2995                 }
2996                 if (total == 0)
2997                         break;
2998         }
2999
3000         if (i == 0)
3001                 i = tx_ring->count - 1;
3002         else
3003                 i = i - 1;
3004         tx_ring->tx_buffer_info[i].skb = skb;
3005         tx_ring->tx_buffer_info[first].next_to_watch = i;
3006
3007         return count;
3008
3009 dma_error:
3010         dev_err(&pdev->dev, "TX DMA map failed\n");
3011
3012         /* clear timestamp and dma mappings for failed tx_buffer_info map */
3013         tx_buffer_info->dma = 0;
3014         tx_buffer_info->time_stamp = 0;
3015         tx_buffer_info->next_to_watch = 0;
3016         count--;
3017
3018         /* clear timestamp and dma mappings for remaining portion of packet */
3019         while (count >= 0) {
3020                 count--;
3021                 i--;
3022                 if (i < 0)
3023                         i += tx_ring->count;
3024                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3025                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
3026         }
3027
3028         return count;
3029 }
3030
3031 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
3032                              struct ixgbevf_ring *tx_ring, int tx_flags,
3033                              int count, u32 paylen, u8 hdr_len)
3034 {
3035         union ixgbe_adv_tx_desc *tx_desc = NULL;
3036         struct ixgbevf_tx_buffer *tx_buffer_info;
3037         u32 olinfo_status = 0, cmd_type_len = 0;
3038         unsigned int i;
3039
3040         u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3041
3042         cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3043
3044         cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3045
3046         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3047                 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3048
3049         if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3050                 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3051
3052                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3053                         IXGBE_ADVTXD_POPTS_SHIFT;
3054
3055                 /* use index 1 context for tso */
3056                 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3057                 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3058                         olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3059                                 IXGBE_ADVTXD_POPTS_SHIFT;
3060
3061         } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3062                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3063                         IXGBE_ADVTXD_POPTS_SHIFT;
3064
3065         olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3066
3067         i = tx_ring->next_to_use;
3068         while (count--) {
3069                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3070                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3071                 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3072                 tx_desc->read.cmd_type_len =
3073                         cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3074                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3075                 i++;
3076                 if (i == tx_ring->count)
3077                         i = 0;
3078         }
3079
3080         tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3081
3082         /*
3083          * Force memory writes to complete before letting h/w
3084          * know there are new descriptors to fetch.  (Only
3085          * applicable for weak-ordered memory model archs,
3086          * such as IA-64).
3087          */
3088         wmb();
3089
3090         tx_ring->next_to_use = i;
3091         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3092 }
3093
3094 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3095                                    struct ixgbevf_ring *tx_ring, int size)
3096 {
3097         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3098
3099         netif_stop_subqueue(netdev, tx_ring->queue_index);
3100         /* Herbert's original patch had:
3101          *  smp_mb__after_netif_stop_queue();
3102          * but since that doesn't exist yet, just open code it. */
3103         smp_mb();
3104
3105         /* We need to check again in a case another CPU has just
3106          * made room available. */
3107         if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3108                 return -EBUSY;
3109
3110         /* A reprieve! - use start_queue because it doesn't call schedule */
3111         netif_start_subqueue(netdev, tx_ring->queue_index);
3112         ++adapter->restart_queue;
3113         return 0;
3114 }
3115
3116 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3117                                  struct ixgbevf_ring *tx_ring, int size)
3118 {
3119         if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3120                 return 0;
3121         return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3122 }
3123
3124 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3125 {
3126         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3127         struct ixgbevf_ring *tx_ring;
3128         unsigned int first;
3129         unsigned int tx_flags = 0;
3130         u8 hdr_len = 0;
3131         int r_idx = 0, tso;
3132         int count = 0;
3133
3134         unsigned int f;
3135
3136         tx_ring = &adapter->tx_ring[r_idx];
3137
3138         if (vlan_tx_tag_present(skb)) {
3139                 tx_flags |= vlan_tx_tag_get(skb);
3140                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3141                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3142         }
3143
3144         /* four things can cause us to need a context descriptor */
3145         if (skb_is_gso(skb) ||
3146             (skb->ip_summed == CHECKSUM_PARTIAL) ||
3147             (tx_flags & IXGBE_TX_FLAGS_VLAN))
3148                 count++;
3149
3150         count += TXD_USE_COUNT(skb_headlen(skb));
3151         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3152                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3153
3154         if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3155                 adapter->tx_busy++;
3156                 return NETDEV_TX_BUSY;
3157         }
3158
3159         first = tx_ring->next_to_use;
3160
3161         if (skb->protocol == htons(ETH_P_IP))
3162                 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3163         tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3164         if (tso < 0) {
3165                 dev_kfree_skb_any(skb);
3166                 return NETDEV_TX_OK;
3167         }
3168
3169         if (tso)
3170                 tx_flags |= IXGBE_TX_FLAGS_TSO;
3171         else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3172                  (skb->ip_summed == CHECKSUM_PARTIAL))
3173                 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3174
3175         ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3176                          ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3177                          skb->len, hdr_len);
3178
3179         ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3180
3181         return NETDEV_TX_OK;
3182 }
3183
3184 /**
3185  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3186  * @netdev: network interface device structure
3187  * @p: pointer to an address structure
3188  *
3189  * Returns 0 on success, negative on failure
3190  **/
3191 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3192 {
3193         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3194         struct ixgbe_hw *hw = &adapter->hw;
3195         struct sockaddr *addr = p;
3196
3197         if (!is_valid_ether_addr(addr->sa_data))
3198                 return -EADDRNOTAVAIL;
3199
3200         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3201         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3202
3203         if (hw->mac.ops.set_rar)
3204                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3205
3206         return 0;
3207 }
3208
3209 /**
3210  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3211  * @netdev: network interface device structure
3212  * @new_mtu: new value for maximum frame size
3213  *
3214  * Returns 0 on success, negative on failure
3215  **/
3216 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3217 {
3218         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3219         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3220
3221         /* MTU < 68 is an error and causes problems on some kernels */
3222         if ((new_mtu < 68) || (max_frame > MAXIMUM_ETHERNET_VLAN_SIZE))
3223                 return -EINVAL;
3224
3225         hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3226                netdev->mtu, new_mtu);
3227         /* must set new MTU before calling down or up */
3228         netdev->mtu = new_mtu;
3229
3230         if (netif_running(netdev))
3231                 ixgbevf_reinit_locked(adapter);
3232
3233         return 0;
3234 }
3235
3236 static void ixgbevf_shutdown(struct pci_dev *pdev)
3237 {
3238         struct net_device *netdev = pci_get_drvdata(pdev);
3239         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3240
3241         netif_device_detach(netdev);
3242
3243         if (netif_running(netdev)) {
3244                 ixgbevf_down(adapter);
3245                 ixgbevf_free_irq(adapter);
3246                 ixgbevf_free_all_tx_resources(adapter);
3247                 ixgbevf_free_all_rx_resources(adapter);
3248         }
3249
3250 #ifdef CONFIG_PM
3251         pci_save_state(pdev);
3252 #endif
3253
3254         pci_disable_device(pdev);
3255 }
3256
3257 static const struct net_device_ops ixgbe_netdev_ops = {
3258         .ndo_open               = &ixgbevf_open,
3259         .ndo_stop               = &ixgbevf_close,
3260         .ndo_start_xmit         = &ixgbevf_xmit_frame,
3261         .ndo_set_rx_mode        = &ixgbevf_set_rx_mode,
3262         .ndo_set_multicast_list = &ixgbevf_set_rx_mode,
3263         .ndo_validate_addr      = eth_validate_addr,
3264         .ndo_set_mac_address    = &ixgbevf_set_mac,
3265         .ndo_change_mtu         = &ixgbevf_change_mtu,
3266         .ndo_tx_timeout         = &ixgbevf_tx_timeout,
3267         .ndo_vlan_rx_register   = &ixgbevf_vlan_rx_register,
3268         .ndo_vlan_rx_add_vid    = &ixgbevf_vlan_rx_add_vid,
3269         .ndo_vlan_rx_kill_vid   = &ixgbevf_vlan_rx_kill_vid,
3270 };
3271
3272 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3273 {
3274         struct ixgbevf_adapter *adapter;
3275         adapter = netdev_priv(dev);
3276         dev->netdev_ops = &ixgbe_netdev_ops;
3277         ixgbevf_set_ethtool_ops(dev);
3278         dev->watchdog_timeo = 5 * HZ;
3279 }
3280
3281 /**
3282  * ixgbevf_probe - Device Initialization Routine
3283  * @pdev: PCI device information struct
3284  * @ent: entry in ixgbevf_pci_tbl
3285  *
3286  * Returns 0 on success, negative on failure
3287  *
3288  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3289  * The OS initialization, configuring of the adapter private structure,
3290  * and a hardware reset occur.
3291  **/
3292 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3293                                    const struct pci_device_id *ent)
3294 {
3295         struct net_device *netdev;
3296         struct ixgbevf_adapter *adapter = NULL;
3297         struct ixgbe_hw *hw = NULL;
3298         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3299         static int cards_found;
3300         int err, pci_using_dac;
3301
3302         err = pci_enable_device(pdev);
3303         if (err)
3304                 return err;
3305
3306         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3307             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3308                 pci_using_dac = 1;
3309         } else {
3310                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3311                 if (err) {
3312                         err = dma_set_coherent_mask(&pdev->dev,
3313                                                     DMA_BIT_MASK(32));
3314                         if (err) {
3315                                 dev_err(&pdev->dev, "No usable DMA "
3316                                         "configuration, aborting\n");
3317                                 goto err_dma;
3318                         }
3319                 }
3320                 pci_using_dac = 0;
3321         }
3322
3323         err = pci_request_regions(pdev, ixgbevf_driver_name);
3324         if (err) {
3325                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3326                 goto err_pci_reg;
3327         }
3328
3329         pci_set_master(pdev);
3330
3331 #ifdef HAVE_TX_MQ
3332         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3333                                    MAX_TX_QUEUES);
3334 #else
3335         netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3336 #endif
3337         if (!netdev) {
3338                 err = -ENOMEM;
3339                 goto err_alloc_etherdev;
3340         }
3341
3342         SET_NETDEV_DEV(netdev, &pdev->dev);
3343
3344         pci_set_drvdata(pdev, netdev);
3345         adapter = netdev_priv(netdev);
3346
3347         adapter->netdev = netdev;
3348         adapter->pdev = pdev;
3349         hw = &adapter->hw;
3350         hw->back = adapter;
3351         adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3352
3353         /*
3354          * call save state here in standalone driver because it relies on
3355          * adapter struct to exist, and needs to call netdev_priv
3356          */
3357         pci_save_state(pdev);
3358
3359         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3360                               pci_resource_len(pdev, 0));
3361         if (!hw->hw_addr) {
3362                 err = -EIO;
3363                 goto err_ioremap;
3364         }
3365
3366         ixgbevf_assign_netdev_ops(netdev);
3367
3368         adapter->bd_number = cards_found;
3369
3370         /* Setup hw api */
3371         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3372         hw->mac.type  = ii->mac;
3373
3374         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3375                sizeof(struct ixgbe_mac_operations));
3376
3377         adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3378         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3379         adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3380
3381         /* setup the private structure */
3382         err = ixgbevf_sw_init(adapter);
3383
3384         netdev->features = NETIF_F_SG |
3385                            NETIF_F_IP_CSUM |
3386                            NETIF_F_HW_VLAN_TX |
3387                            NETIF_F_HW_VLAN_RX |
3388                            NETIF_F_HW_VLAN_FILTER;
3389
3390         netdev->features |= NETIF_F_IPV6_CSUM;
3391         netdev->features |= NETIF_F_TSO;
3392         netdev->features |= NETIF_F_TSO6;
3393         netdev->features |= NETIF_F_GRO;
3394         netdev->vlan_features |= NETIF_F_TSO;
3395         netdev->vlan_features |= NETIF_F_TSO6;
3396         netdev->vlan_features |= NETIF_F_IP_CSUM;
3397         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3398         netdev->vlan_features |= NETIF_F_SG;
3399
3400         if (pci_using_dac)
3401                 netdev->features |= NETIF_F_HIGHDMA;
3402
3403         /* The HW MAC address was set and/or determined in sw_init */
3404         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3405         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3406
3407         if (!is_valid_ether_addr(netdev->dev_addr)) {
3408                 printk(KERN_ERR "invalid MAC address\n");
3409                 err = -EIO;
3410                 goto err_sw_init;
3411         }
3412
3413         init_timer(&adapter->watchdog_timer);
3414         adapter->watchdog_timer.function = ixgbevf_watchdog;
3415         adapter->watchdog_timer.data = (unsigned long)adapter;
3416
3417         INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3418         INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3419
3420         err = ixgbevf_init_interrupt_scheme(adapter);
3421         if (err)
3422                 goto err_sw_init;
3423
3424         /* pick up the PCI bus settings for reporting later */
3425         if (hw->mac.ops.get_bus_info)
3426                 hw->mac.ops.get_bus_info(hw);
3427
3428
3429         netif_carrier_off(netdev);
3430         netif_tx_stop_all_queues(netdev);
3431
3432         strcpy(netdev->name, "eth%d");
3433
3434         err = register_netdev(netdev);
3435         if (err)
3436                 goto err_register;
3437
3438         adapter->netdev_registered = true;
3439
3440         ixgbevf_init_last_counter_stats(adapter);
3441
3442         /* print the MAC address */
3443         hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3444                netdev->dev_addr[0],
3445                netdev->dev_addr[1],
3446                netdev->dev_addr[2],
3447                netdev->dev_addr[3],
3448                netdev->dev_addr[4],
3449                netdev->dev_addr[5]);
3450
3451         hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3452
3453         hw_dbg(hw, "LRO is disabled\n");
3454
3455         hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3456         cards_found++;
3457         return 0;
3458
3459 err_register:
3460 err_sw_init:
3461         ixgbevf_reset_interrupt_capability(adapter);
3462         iounmap(hw->hw_addr);
3463 err_ioremap:
3464         free_netdev(netdev);
3465 err_alloc_etherdev:
3466         pci_release_regions(pdev);
3467 err_pci_reg:
3468 err_dma:
3469         pci_disable_device(pdev);
3470         return err;
3471 }
3472
3473 /**
3474  * ixgbevf_remove - Device Removal Routine
3475  * @pdev: PCI device information struct
3476  *
3477  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3478  * that it should release a PCI device.  The could be caused by a
3479  * Hot-Plug event, or because the driver is going to be removed from
3480  * memory.
3481  **/
3482 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3483 {
3484         struct net_device *netdev = pci_get_drvdata(pdev);
3485         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3486
3487         set_bit(__IXGBEVF_DOWN, &adapter->state);
3488
3489         del_timer_sync(&adapter->watchdog_timer);
3490
3491         cancel_work_sync(&adapter->watchdog_task);
3492
3493         flush_scheduled_work();
3494
3495         if (adapter->netdev_registered) {
3496                 unregister_netdev(netdev);
3497                 adapter->netdev_registered = false;
3498         }
3499
3500         ixgbevf_reset_interrupt_capability(adapter);
3501
3502         iounmap(adapter->hw.hw_addr);
3503         pci_release_regions(pdev);
3504
3505         hw_dbg(&adapter->hw, "Remove complete\n");
3506
3507         kfree(adapter->tx_ring);
3508         kfree(adapter->rx_ring);
3509
3510         free_netdev(netdev);
3511
3512         pci_disable_device(pdev);
3513 }
3514
3515 static struct pci_driver ixgbevf_driver = {
3516         .name     = ixgbevf_driver_name,
3517         .id_table = ixgbevf_pci_tbl,
3518         .probe    = ixgbevf_probe,
3519         .remove   = __devexit_p(ixgbevf_remove),
3520         .shutdown = ixgbevf_shutdown,
3521 };
3522
3523 /**
3524  * ixgbe_init_module - Driver Registration Routine
3525  *
3526  * ixgbe_init_module is the first routine called when the driver is
3527  * loaded. All it does is register with the PCI subsystem.
3528  **/
3529 static int __init ixgbevf_init_module(void)
3530 {
3531         int ret;
3532         printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
3533                ixgbevf_driver_version);
3534
3535         printk(KERN_INFO "%s\n", ixgbevf_copyright);
3536
3537         ret = pci_register_driver(&ixgbevf_driver);
3538         return ret;
3539 }
3540
3541 module_init(ixgbevf_init_module);
3542
3543 /**
3544  * ixgbe_exit_module - Driver Exit Cleanup Routine
3545  *
3546  * ixgbe_exit_module is called just before the driver is removed
3547  * from memory.
3548  **/
3549 static void __exit ixgbevf_exit_module(void)
3550 {
3551         pci_unregister_driver(&ixgbevf_driver);
3552 }
3553
3554 #ifdef DEBUG
3555 /**
3556  * ixgbe_get_hw_dev_name - return device name string
3557  * used by hardware layer to print debugging information
3558  **/
3559 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3560 {
3561         struct ixgbevf_adapter *adapter = hw->back;
3562         return adapter->netdev->name;
3563 }
3564
3565 #endif
3566 module_exit(ixgbevf_exit_module);
3567
3568 /* ixgbevf_main.c */