]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/ixgbe/ixgbe_phy.c
ixgbe: make silicon specific functions generic
[net-next-2.6.git] / drivers / net / ixgbe / ixgbe_phy.c
1 /*******************************************************************************
2
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
34
35 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
36 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
37 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
38 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
39 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
40 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
41 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
42 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
43 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
44 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
45 static bool ixgbe_get_i2c_data(u32 *i2cctl);
46 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
47 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
48 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
49
50 /**
51  *  ixgbe_identify_phy_generic - Get physical layer module
52  *  @hw: pointer to hardware structure
53  *
54  *  Determines the physical layer module found on the current adapter.
55  **/
56 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
57 {
58         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
59         u32 phy_addr;
60
61         if (hw->phy.type == ixgbe_phy_unknown) {
62                 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
63                         hw->phy.mdio.prtad = phy_addr;
64                         if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
65                                 ixgbe_get_phy_id(hw);
66                                 hw->phy.type =
67                                         ixgbe_get_phy_type_from_id(hw->phy.id);
68                                 status = 0;
69                                 break;
70                         }
71                 }
72                 /* clear value if nothing found */
73                 hw->phy.mdio.prtad = 0;
74         } else {
75                 status = 0;
76         }
77
78         return status;
79 }
80
81 /**
82  *  ixgbe_get_phy_id - Get the phy type
83  *  @hw: pointer to hardware structure
84  *
85  **/
86 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
87 {
88         u32 status;
89         u16 phy_id_high = 0;
90         u16 phy_id_low = 0;
91
92         status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
93                                       &phy_id_high);
94
95         if (status == 0) {
96                 hw->phy.id = (u32)(phy_id_high << 16);
97                 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
98                                               &phy_id_low);
99                 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
100                 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
101         }
102         return status;
103 }
104
105 /**
106  *  ixgbe_get_phy_type_from_id - Get the phy type
107  *  @hw: pointer to hardware structure
108  *
109  **/
110 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
111 {
112         enum ixgbe_phy_type phy_type;
113
114         switch (phy_id) {
115         case TN1010_PHY_ID:
116                 phy_type = ixgbe_phy_tn;
117                 break;
118         case QT2022_PHY_ID:
119                 phy_type = ixgbe_phy_qt;
120                 break;
121         case ATH_PHY_ID:
122                 phy_type = ixgbe_phy_nl;
123                 break;
124         default:
125                 phy_type = ixgbe_phy_unknown;
126                 break;
127         }
128
129         return phy_type;
130 }
131
132 /**
133  *  ixgbe_reset_phy_generic - Performs a PHY reset
134  *  @hw: pointer to hardware structure
135  **/
136 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
137 {
138         /* Don't reset PHY if it's shut down due to overtemp. */
139         if (!hw->phy.reset_if_overtemp &&
140             (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
141                 return 0;
142
143         /*
144          * Perform soft PHY reset to the PHY_XS.
145          * This will cause a soft reset to the PHY
146          */
147         return hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
148                                      MDIO_CTRL1_RESET);
149 }
150
151 /**
152  *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
153  *  @hw: pointer to hardware structure
154  *  @reg_addr: 32 bit address of PHY register to read
155  *  @phy_data: Pointer to read data from PHY register
156  **/
157 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
158                                u32 device_type, u16 *phy_data)
159 {
160         u32 command;
161         u32 i;
162         u32 data;
163         s32 status = 0;
164         u16 gssr;
165
166         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
167                 gssr = IXGBE_GSSR_PHY1_SM;
168         else
169                 gssr = IXGBE_GSSR_PHY0_SM;
170
171         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
172                 status = IXGBE_ERR_SWFW_SYNC;
173
174         if (status == 0) {
175                 /* Setup and write the address cycle command */
176                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
177                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
178                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
179                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
180
181                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
182
183                 /*
184                  * Check every 10 usec to see if the address cycle completed.
185                  * The MDI Command bit will clear when the operation is
186                  * complete
187                  */
188                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
189                         udelay(10);
190
191                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
192
193                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
194                                 break;
195                 }
196
197                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
198                         hw_dbg(hw, "PHY address command did not complete.\n");
199                         status = IXGBE_ERR_PHY;
200                 }
201
202                 if (status == 0) {
203                         /*
204                          * Address cycle complete, setup and write the read
205                          * command
206                          */
207                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
208                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
209                                    (hw->phy.mdio.prtad <<
210                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
211                                    (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
212
213                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
214
215                         /*
216                          * Check every 10 usec to see if the address cycle
217                          * completed. The MDI Command bit will clear when the
218                          * operation is complete
219                          */
220                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
221                                 udelay(10);
222
223                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
224
225                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
226                                         break;
227                         }
228
229                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
230                                 hw_dbg(hw, "PHY read command didn't complete\n");
231                                 status = IXGBE_ERR_PHY;
232                         } else {
233                                 /*
234                                  * Read operation is complete.  Get the data
235                                  * from MSRWD
236                                  */
237                                 data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
238                                 data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
239                                 *phy_data = (u16)(data);
240                         }
241                 }
242
243                 ixgbe_release_swfw_sync(hw, gssr);
244         }
245
246         return status;
247 }
248
249 /**
250  *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
251  *  @hw: pointer to hardware structure
252  *  @reg_addr: 32 bit PHY register to write
253  *  @device_type: 5 bit device type
254  *  @phy_data: Data to write to the PHY register
255  **/
256 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
257                                 u32 device_type, u16 phy_data)
258 {
259         u32 command;
260         u32 i;
261         s32 status = 0;
262         u16 gssr;
263
264         if (IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)
265                 gssr = IXGBE_GSSR_PHY1_SM;
266         else
267                 gssr = IXGBE_GSSR_PHY0_SM;
268
269         if (ixgbe_acquire_swfw_sync(hw, gssr) != 0)
270                 status = IXGBE_ERR_SWFW_SYNC;
271
272         if (status == 0) {
273                 /* Put the data in the MDI single read and write data register*/
274                 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
275
276                 /* Setup and write the address cycle command */
277                 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
278                            (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
279                            (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
280                            (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
281
282                 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
283
284                 /*
285                  * Check every 10 usec to see if the address cycle completed.
286                  * The MDI Command bit will clear when the operation is
287                  * complete
288                  */
289                 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
290                         udelay(10);
291
292                         command = IXGBE_READ_REG(hw, IXGBE_MSCA);
293
294                         if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
295                                 break;
296                 }
297
298                 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
299                         hw_dbg(hw, "PHY address cmd didn't complete\n");
300                         status = IXGBE_ERR_PHY;
301                 }
302
303                 if (status == 0) {
304                         /*
305                          * Address cycle complete, setup and write the write
306                          * command
307                          */
308                         command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
309                                    (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
310                                    (hw->phy.mdio.prtad <<
311                                     IXGBE_MSCA_PHY_ADDR_SHIFT) |
312                                    (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
313
314                         IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
315
316                         /*
317                          * Check every 10 usec to see if the address cycle
318                          * completed. The MDI Command bit will clear when the
319                          * operation is complete
320                          */
321                         for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
322                                 udelay(10);
323
324                                 command = IXGBE_READ_REG(hw, IXGBE_MSCA);
325
326                                 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
327                                         break;
328                         }
329
330                         if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
331                                 hw_dbg(hw, "PHY address cmd didn't complete\n");
332                                 status = IXGBE_ERR_PHY;
333                         }
334                 }
335
336                 ixgbe_release_swfw_sync(hw, gssr);
337         }
338
339         return status;
340 }
341
342 /**
343  *  ixgbe_setup_phy_link_generic - Set and restart autoneg
344  *  @hw: pointer to hardware structure
345  *
346  *  Restart autonegotiation and PHY and waits for completion.
347  **/
348 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
349 {
350         s32 status = IXGBE_NOT_IMPLEMENTED;
351         u32 time_out;
352         u32 max_time_out = 10;
353         u16 autoneg_reg;
354
355         /*
356          * Set advertisement settings in PHY based on autoneg_advertised
357          * settings. If autoneg_advertised = 0, then advertise default values
358          * tnx devices cannot be "forced" to a autoneg 10G and fail.  But can
359          * for a 1G.
360          */
361         hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
362
363         if (hw->phy.autoneg_advertised == IXGBE_LINK_SPEED_1GB_FULL)
364                 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
365         else
366                 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
367
368         hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
369
370         /* Restart PHY autonegotiation and wait for completion */
371         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, &autoneg_reg);
372
373         autoneg_reg |= MDIO_AN_CTRL1_RESTART;
374
375         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_AN, autoneg_reg);
376
377         /* Wait for autonegotiation to finish */
378         for (time_out = 0; time_out < max_time_out; time_out++) {
379                 udelay(10);
380                 /* Restart PHY autonegotiation and wait for completion */
381                 status = hw->phy.ops.read_reg(hw, MDIO_STAT1, MDIO_MMD_AN,
382                                               &autoneg_reg);
383
384                 autoneg_reg &= MDIO_AN_STAT1_COMPLETE;
385                 if (autoneg_reg == MDIO_AN_STAT1_COMPLETE) {
386                         status = 0;
387                         break;
388                 }
389         }
390
391         if (time_out == max_time_out)
392                 status = IXGBE_ERR_LINK_SETUP;
393
394         return status;
395 }
396
397 /**
398  *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
399  *  @hw: pointer to hardware structure
400  *  @speed: new link speed
401  *  @autoneg: true if autonegotiation enabled
402  **/
403 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
404                                        ixgbe_link_speed speed,
405                                        bool autoneg,
406                                        bool autoneg_wait_to_complete)
407 {
408
409         /*
410          * Clear autoneg_advertised and set new values based on input link
411          * speed.
412          */
413         hw->phy.autoneg_advertised = 0;
414
415         if (speed & IXGBE_LINK_SPEED_10GB_FULL)
416                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
417
418         if (speed & IXGBE_LINK_SPEED_1GB_FULL)
419                 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
420
421         /* Setup link based on the new speed settings */
422         hw->phy.ops.setup_link(hw);
423
424         return 0;
425 }
426
427 /**
428  * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
429  * @hw: pointer to hardware structure
430  * @speed: pointer to link speed
431  * @autoneg: boolean auto-negotiation value
432  *
433  * Determines the link capabilities by reading the AUTOC register.
434  */
435 s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
436                                                       ixgbe_link_speed *speed,
437                                                       bool *autoneg)
438 {
439         s32 status = IXGBE_ERR_LINK_SETUP;
440         u16 speed_ability;
441
442         *speed = 0;
443         *autoneg = true;
444
445         status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
446                                       &speed_ability);
447
448         if (status == 0) {
449                 if (speed_ability & MDIO_SPEED_10G)
450                         *speed |= IXGBE_LINK_SPEED_10GB_FULL;
451                 if (speed_ability & MDIO_PMA_SPEED_1000)
452                         *speed |= IXGBE_LINK_SPEED_1GB_FULL;
453                 if (speed_ability & MDIO_PMA_SPEED_100)
454                         *speed |= IXGBE_LINK_SPEED_100_FULL;
455         }
456
457         return status;
458 }
459
460 /**
461  *  ixgbe_reset_phy_nl - Performs a PHY reset
462  *  @hw: pointer to hardware structure
463  **/
464 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
465 {
466         u16 phy_offset, control, eword, edata, block_crc;
467         bool end_data = false;
468         u16 list_offset, data_offset;
469         u16 phy_data = 0;
470         s32 ret_val = 0;
471         u32 i;
472
473         hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
474
475         /* reset the PHY and poll for completion */
476         hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
477                               (phy_data | MDIO_CTRL1_RESET));
478
479         for (i = 0; i < 100; i++) {
480                 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
481                                      &phy_data);
482                 if ((phy_data & MDIO_CTRL1_RESET) == 0)
483                         break;
484                 msleep(10);
485         }
486
487         if ((phy_data & MDIO_CTRL1_RESET) != 0) {
488                 hw_dbg(hw, "PHY reset did not complete.\n");
489                 ret_val = IXGBE_ERR_PHY;
490                 goto out;
491         }
492
493         /* Get init offsets */
494         ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
495                                                       &data_offset);
496         if (ret_val != 0)
497                 goto out;
498
499         ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
500         data_offset++;
501         while (!end_data) {
502                 /*
503                  * Read control word from PHY init contents offset
504                  */
505                 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
506                 control = (eword & IXGBE_CONTROL_MASK_NL) >>
507                            IXGBE_CONTROL_SHIFT_NL;
508                 edata = eword & IXGBE_DATA_MASK_NL;
509                 switch (control) {
510                 case IXGBE_DELAY_NL:
511                         data_offset++;
512                         hw_dbg(hw, "DELAY: %d MS\n", edata);
513                         msleep(edata);
514                         break;
515                 case IXGBE_DATA_NL:
516                         hw_dbg(hw, "DATA:\n");
517                         data_offset++;
518                         hw->eeprom.ops.read(hw, data_offset++,
519                                             &phy_offset);
520                         for (i = 0; i < edata; i++) {
521                                 hw->eeprom.ops.read(hw, data_offset, &eword);
522                                 hw->phy.ops.write_reg(hw, phy_offset,
523                                                       MDIO_MMD_PMAPMD, eword);
524                                 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
525                                        phy_offset);
526                                 data_offset++;
527                                 phy_offset++;
528                         }
529                         break;
530                 case IXGBE_CONTROL_NL:
531                         data_offset++;
532                         hw_dbg(hw, "CONTROL:\n");
533                         if (edata == IXGBE_CONTROL_EOL_NL) {
534                                 hw_dbg(hw, "EOL\n");
535                                 end_data = true;
536                         } else if (edata == IXGBE_CONTROL_SOL_NL) {
537                                 hw_dbg(hw, "SOL\n");
538                         } else {
539                                 hw_dbg(hw, "Bad control value\n");
540                                 ret_val = IXGBE_ERR_PHY;
541                                 goto out;
542                         }
543                         break;
544                 default:
545                         hw_dbg(hw, "Bad control type\n");
546                         ret_val = IXGBE_ERR_PHY;
547                         goto out;
548                 }
549         }
550
551 out:
552         return ret_val;
553 }
554
555 /**
556  *  ixgbe_identify_sfp_module_generic - Identifies SFP module and assigns
557  *                                      the PHY type.
558  *  @hw: pointer to hardware structure
559  *
560  *  Searches for and indentifies the SFP module.  Assings appropriate PHY type.
561  **/
562 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
563 {
564         s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
565         u32 vendor_oui = 0;
566         enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
567         u8 identifier = 0;
568         u8 comp_codes_1g = 0;
569         u8 comp_codes_10g = 0;
570         u8 oui_bytes[3] = {0, 0, 0};
571         u8 cable_tech = 0;
572         u8 cable_spec = 0;
573         u16 enforce_sfp = 0;
574
575         if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
576                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
577                 status = IXGBE_ERR_SFP_NOT_PRESENT;
578                 goto out;
579         }
580
581         status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
582                                              &identifier);
583
584         if (status == IXGBE_ERR_SFP_NOT_PRESENT || status == IXGBE_ERR_I2C) {
585                 status = IXGBE_ERR_SFP_NOT_PRESENT;
586                 hw->phy.sfp_type = ixgbe_sfp_type_not_present;
587                 if (hw->phy.type != ixgbe_phy_nl) {
588                         hw->phy.id = 0;
589                         hw->phy.type = ixgbe_phy_unknown;
590                 }
591                 goto out;
592         }
593
594         if (identifier == IXGBE_SFF_IDENTIFIER_SFP) {
595                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_1GBE_COMP_CODES,
596                                             &comp_codes_1g);
597                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES,
598                                             &comp_codes_10g);
599                 hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_CABLE_TECHNOLOGY,
600                                             &cable_tech);
601
602                 /* ID Module
603                  * =========
604                  * 0    SFP_DA_CU
605                  * 1    SFP_SR
606                  * 2    SFP_LR
607                  * 3    SFP_DA_CORE0 - 82599-specific
608                  * 4    SFP_DA_CORE1 - 82599-specific
609                  * 5    SFP_SR/LR_CORE0 - 82599-specific
610                  * 6    SFP_SR/LR_CORE1 - 82599-specific
611                  * 7    SFP_act_lmt_DA_CORE0 - 82599-specific
612                  * 8    SFP_act_lmt_DA_CORE1 - 82599-specific
613                  * 9    SFP_1g_cu_CORE0 - 82599-specific
614                  * 10   SFP_1g_cu_CORE1 - 82599-specific
615                  */
616                 if (hw->mac.type == ixgbe_mac_82598EB) {
617                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
618                                 hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
619                         else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
620                                 hw->phy.sfp_type = ixgbe_sfp_type_sr;
621                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
622                                 hw->phy.sfp_type = ixgbe_sfp_type_lr;
623                         else
624                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
625                 } else if (hw->mac.type == ixgbe_mac_82599EB) {
626                         if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
627                                 if (hw->bus.lan_id == 0)
628                                         hw->phy.sfp_type =
629                                                      ixgbe_sfp_type_da_cu_core0;
630                                 else
631                                         hw->phy.sfp_type =
632                                                      ixgbe_sfp_type_da_cu_core1;
633                         } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
634                                 hw->phy.ops.read_i2c_eeprom(
635                                                 hw, IXGBE_SFF_CABLE_SPEC_COMP,
636                                                 &cable_spec);
637                                 if (cable_spec &
638                                     IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
639                                         if (hw->bus.lan_id == 0)
640                                                 hw->phy.sfp_type =
641                                                 ixgbe_sfp_type_da_act_lmt_core0;
642                                         else
643                                                 hw->phy.sfp_type =
644                                                 ixgbe_sfp_type_da_act_lmt_core1;
645                                 } else {
646                                         hw->phy.sfp_type =
647                                                 ixgbe_sfp_type_unknown;
648                                 }
649                         } else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
650                                 if (hw->bus.lan_id == 0)
651                                         hw->phy.sfp_type =
652                                                       ixgbe_sfp_type_srlr_core0;
653                                 else
654                                         hw->phy.sfp_type =
655                                                       ixgbe_sfp_type_srlr_core1;
656                         else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
657                                 if (hw->bus.lan_id == 0)
658                                         hw->phy.sfp_type =
659                                                       ixgbe_sfp_type_srlr_core0;
660                                 else
661                                         hw->phy.sfp_type =
662                                                       ixgbe_sfp_type_srlr_core1;
663                         else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE)
664                                 if (hw->bus.lan_id == 0)
665                                         hw->phy.sfp_type =
666                                                 ixgbe_sfp_type_1g_cu_core0;
667                                 else
668                                         hw->phy.sfp_type =
669                                                 ixgbe_sfp_type_1g_cu_core1;
670                         else
671                                 hw->phy.sfp_type = ixgbe_sfp_type_unknown;
672                 }
673
674                 if (hw->phy.sfp_type != stored_sfp_type)
675                         hw->phy.sfp_setup_needed = true;
676
677                 /* Determine if the SFP+ PHY is dual speed or not. */
678                 hw->phy.multispeed_fiber = false;
679                 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
680                    (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
681                    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
682                    (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
683                         hw->phy.multispeed_fiber = true;
684
685                 /* Determine PHY vendor */
686                 if (hw->phy.type != ixgbe_phy_nl) {
687                         hw->phy.id = identifier;
688                         hw->phy.ops.read_i2c_eeprom(hw,
689                                                     IXGBE_SFF_VENDOR_OUI_BYTE0,
690                                                     &oui_bytes[0]);
691                         hw->phy.ops.read_i2c_eeprom(hw,
692                                                     IXGBE_SFF_VENDOR_OUI_BYTE1,
693                                                     &oui_bytes[1]);
694                         hw->phy.ops.read_i2c_eeprom(hw,
695                                                     IXGBE_SFF_VENDOR_OUI_BYTE2,
696                                                     &oui_bytes[2]);
697
698                         vendor_oui =
699                           ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
700                            (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
701                            (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
702
703                         switch (vendor_oui) {
704                         case IXGBE_SFF_VENDOR_OUI_TYCO:
705                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
706                                         hw->phy.type =
707                                                 ixgbe_phy_sfp_passive_tyco;
708                                 break;
709                         case IXGBE_SFF_VENDOR_OUI_FTL:
710                                 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
711                                         hw->phy.type = ixgbe_phy_sfp_ftl_active;
712                                 else
713                                         hw->phy.type = ixgbe_phy_sfp_ftl;
714                                 break;
715                         case IXGBE_SFF_VENDOR_OUI_AVAGO:
716                                 hw->phy.type = ixgbe_phy_sfp_avago;
717                                 break;
718                         case IXGBE_SFF_VENDOR_OUI_INTEL:
719                                 hw->phy.type = ixgbe_phy_sfp_intel;
720                                 break;
721                         default:
722                                 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
723                                         hw->phy.type =
724                                                 ixgbe_phy_sfp_passive_unknown;
725                                 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
726                                         hw->phy.type =
727                                                 ixgbe_phy_sfp_active_unknown;
728                                 else
729                                         hw->phy.type = ixgbe_phy_sfp_unknown;
730                                 break;
731                         }
732                 }
733
734                 /* All passive DA cables are supported */
735                 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
736                     IXGBE_SFF_DA_ACTIVE_CABLE)) {
737                         status = 0;
738                         goto out;
739                 }
740
741                 /* Verify supported 1G SFP modules */
742                 if (comp_codes_10g == 0 &&
743                     !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
744                       hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0)) {
745                         hw->phy.type = ixgbe_phy_sfp_unsupported;
746                         status = IXGBE_ERR_SFP_NOT_SUPPORTED;
747                         goto out;
748                 }
749
750                 /* Anything else 82598-based is supported */
751                 if (hw->mac.type == ixgbe_mac_82598EB) {
752                         status = 0;
753                         goto out;
754                 }
755
756                 /* This is guaranteed to be 82599, no need to check for NULL */
757                 hw->mac.ops.get_device_caps(hw, &enforce_sfp);
758                 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
759                     !((hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0) ||
760                       (hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1))) {
761                         /* Make sure we're a supported PHY type */
762                         if (hw->phy.type == ixgbe_phy_sfp_intel) {
763                                 status = 0;
764                         } else {
765                                 hw_dbg(hw, "SFP+ module not supported\n");
766                                 hw->phy.type = ixgbe_phy_sfp_unsupported;
767                                 status = IXGBE_ERR_SFP_NOT_SUPPORTED;
768                         }
769                 } else {
770                         status = 0;
771                 }
772         }
773
774 out:
775         return status;
776 }
777
778 /**
779  *  ixgbe_get_sfp_init_sequence_offsets - Checks the MAC's EEPROM to see
780  *  if it supports a given SFP+ module type, if so it returns the offsets to the
781  *  phy init sequence block.
782  *  @hw: pointer to hardware structure
783  *  @list_offset: offset to the SFP ID list
784  *  @data_offset: offset to the SFP data block
785  **/
786 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
787                                         u16 *list_offset,
788                                         u16 *data_offset)
789 {
790         u16 sfp_id;
791         u16 sfp_type = hw->phy.sfp_type;
792
793         if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
794                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
795
796         if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
797                 return IXGBE_ERR_SFP_NOT_PRESENT;
798
799         if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
800             (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
801                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
802
803         /*
804          * Limiting active cables and 1G Phys must be initialized as
805          * SR modules
806          */
807         if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
808             sfp_type == ixgbe_sfp_type_1g_cu_core0)
809                 sfp_type = ixgbe_sfp_type_srlr_core0;
810         else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
811                  sfp_type == ixgbe_sfp_type_1g_cu_core1)
812                 sfp_type = ixgbe_sfp_type_srlr_core1;
813
814         /* Read offset to PHY init contents */
815         hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset);
816
817         if ((!*list_offset) || (*list_offset == 0xFFFF))
818                 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
819
820         /* Shift offset to first ID word */
821         (*list_offset)++;
822
823         /*
824          * Find the matching SFP ID in the EEPROM
825          * and program the init sequence
826          */
827         hw->eeprom.ops.read(hw, *list_offset, &sfp_id);
828
829         while (sfp_id != IXGBE_PHY_INIT_END_NL) {
830                 if (sfp_id == sfp_type) {
831                         (*list_offset)++;
832                         hw->eeprom.ops.read(hw, *list_offset, data_offset);
833                         if ((!*data_offset) || (*data_offset == 0xFFFF)) {
834                                 hw_dbg(hw, "SFP+ module not supported\n");
835                                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
836                         } else {
837                                 break;
838                         }
839                 } else {
840                         (*list_offset) += 2;
841                         if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
842                                 return IXGBE_ERR_PHY;
843                 }
844         }
845
846         if (sfp_id == IXGBE_PHY_INIT_END_NL) {
847                 hw_dbg(hw, "No matching SFP+ module found\n");
848                 return IXGBE_ERR_SFP_NOT_SUPPORTED;
849         }
850
851         return 0;
852 }
853
854 /**
855  *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
856  *  @hw: pointer to hardware structure
857  *  @byte_offset: EEPROM byte offset to read
858  *  @eeprom_data: value read
859  *
860  *  Performs byte read operation to SFP module's EEPROM over I2C interface.
861  **/
862 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
863                                   u8 *eeprom_data)
864 {
865         return hw->phy.ops.read_i2c_byte(hw, byte_offset,
866                                          IXGBE_I2C_EEPROM_DEV_ADDR,
867                                          eeprom_data);
868 }
869
870 /**
871  *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
872  *  @hw: pointer to hardware structure
873  *  @byte_offset: EEPROM byte offset to write
874  *  @eeprom_data: value to write
875  *
876  *  Performs byte write operation to SFP module's EEPROM over I2C interface.
877  **/
878 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
879                                    u8 eeprom_data)
880 {
881         return hw->phy.ops.write_i2c_byte(hw, byte_offset,
882                                           IXGBE_I2C_EEPROM_DEV_ADDR,
883                                           eeprom_data);
884 }
885
886 /**
887  *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
888  *  @hw: pointer to hardware structure
889  *  @byte_offset: byte offset to read
890  *  @data: value read
891  *
892  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
893  *  a specified deivce address.
894  **/
895 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
896                                 u8 dev_addr, u8 *data)
897 {
898         s32 status = 0;
899         u32 max_retry = 1;
900         u32 retry = 0;
901         bool nack = 1;
902
903         do {
904                 ixgbe_i2c_start(hw);
905
906                 /* Device Address and write indication */
907                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
908                 if (status != 0)
909                         goto fail;
910
911                 status = ixgbe_get_i2c_ack(hw);
912                 if (status != 0)
913                         goto fail;
914
915                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
916                 if (status != 0)
917                         goto fail;
918
919                 status = ixgbe_get_i2c_ack(hw);
920                 if (status != 0)
921                         goto fail;
922
923                 ixgbe_i2c_start(hw);
924
925                 /* Device Address and read indication */
926                 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
927                 if (status != 0)
928                         goto fail;
929
930                 status = ixgbe_get_i2c_ack(hw);
931                 if (status != 0)
932                         goto fail;
933
934                 status = ixgbe_clock_in_i2c_byte(hw, data);
935                 if (status != 0)
936                         goto fail;
937
938                 status = ixgbe_clock_out_i2c_bit(hw, nack);
939                 if (status != 0)
940                         goto fail;
941
942                 ixgbe_i2c_stop(hw);
943                 break;
944
945 fail:
946                 ixgbe_i2c_bus_clear(hw);
947                 retry++;
948                 if (retry < max_retry)
949                         hw_dbg(hw, "I2C byte read error - Retrying.\n");
950                 else
951                         hw_dbg(hw, "I2C byte read error.\n");
952
953         } while (retry < max_retry);
954
955         return status;
956 }
957
958 /**
959  *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
960  *  @hw: pointer to hardware structure
961  *  @byte_offset: byte offset to write
962  *  @data: value to write
963  *
964  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
965  *  a specified device address.
966  **/
967 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
968                                  u8 dev_addr, u8 data)
969 {
970         s32 status = 0;
971         u32 max_retry = 1;
972         u32 retry = 0;
973
974         do {
975                 ixgbe_i2c_start(hw);
976
977                 status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
978                 if (status != 0)
979                         goto fail;
980
981                 status = ixgbe_get_i2c_ack(hw);
982                 if (status != 0)
983                         goto fail;
984
985                 status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
986                 if (status != 0)
987                         goto fail;
988
989                 status = ixgbe_get_i2c_ack(hw);
990                 if (status != 0)
991                         goto fail;
992
993                 status = ixgbe_clock_out_i2c_byte(hw, data);
994                 if (status != 0)
995                         goto fail;
996
997                 status = ixgbe_get_i2c_ack(hw);
998                 if (status != 0)
999                         goto fail;
1000
1001                 ixgbe_i2c_stop(hw);
1002                 break;
1003
1004 fail:
1005                 ixgbe_i2c_bus_clear(hw);
1006                 retry++;
1007                 if (retry < max_retry)
1008                         hw_dbg(hw, "I2C byte write error - Retrying.\n");
1009                 else
1010                         hw_dbg(hw, "I2C byte write error.\n");
1011         } while (retry < max_retry);
1012
1013         return status;
1014 }
1015
1016 /**
1017  *  ixgbe_i2c_start - Sets I2C start condition
1018  *  @hw: pointer to hardware structure
1019  *
1020  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
1021  **/
1022 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
1023 {
1024         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1025
1026         /* Start condition must begin with data and clock high */
1027         ixgbe_set_i2c_data(hw, &i2cctl, 1);
1028         ixgbe_raise_i2c_clk(hw, &i2cctl);
1029
1030         /* Setup time for start condition (4.7us) */
1031         udelay(IXGBE_I2C_T_SU_STA);
1032
1033         ixgbe_set_i2c_data(hw, &i2cctl, 0);
1034
1035         /* Hold time for start condition (4us) */
1036         udelay(IXGBE_I2C_T_HD_STA);
1037
1038         ixgbe_lower_i2c_clk(hw, &i2cctl);
1039
1040         /* Minimum low period of clock is 4.7 us */
1041         udelay(IXGBE_I2C_T_LOW);
1042
1043 }
1044
1045 /**
1046  *  ixgbe_i2c_stop - Sets I2C stop condition
1047  *  @hw: pointer to hardware structure
1048  *
1049  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
1050  **/
1051 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
1052 {
1053         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1054
1055         /* Stop condition must begin with data low and clock high */
1056         ixgbe_set_i2c_data(hw, &i2cctl, 0);
1057         ixgbe_raise_i2c_clk(hw, &i2cctl);
1058
1059         /* Setup time for stop condition (4us) */
1060         udelay(IXGBE_I2C_T_SU_STO);
1061
1062         ixgbe_set_i2c_data(hw, &i2cctl, 1);
1063
1064         /* bus free time between stop and start (4.7us)*/
1065         udelay(IXGBE_I2C_T_BUF);
1066 }
1067
1068 /**
1069  *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
1070  *  @hw: pointer to hardware structure
1071  *  @data: data byte to clock in
1072  *
1073  *  Clocks in one byte data via I2C data/clock
1074  **/
1075 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
1076 {
1077         s32 status = 0;
1078         s32 i;
1079         bool bit = 0;
1080
1081         for (i = 7; i >= 0; i--) {
1082                 status = ixgbe_clock_in_i2c_bit(hw, &bit);
1083                 *data |= bit << i;
1084
1085                 if (status != 0)
1086                         break;
1087         }
1088
1089         return status;
1090 }
1091
1092 /**
1093  *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
1094  *  @hw: pointer to hardware structure
1095  *  @data: data byte clocked out
1096  *
1097  *  Clocks out one byte data via I2C data/clock
1098  **/
1099 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
1100 {
1101         s32 status = 0;
1102         s32 i;
1103         u32 i2cctl;
1104         bool bit = 0;
1105
1106         for (i = 7; i >= 0; i--) {
1107                 bit = (data >> i) & 0x1;
1108                 status = ixgbe_clock_out_i2c_bit(hw, bit);
1109
1110                 if (status != 0)
1111                         break;
1112         }
1113
1114         /* Release SDA line (set high) */
1115         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1116         i2cctl |= IXGBE_I2C_DATA_OUT;
1117         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, i2cctl);
1118
1119         return status;
1120 }
1121
1122 /**
1123  *  ixgbe_get_i2c_ack - Polls for I2C ACK
1124  *  @hw: pointer to hardware structure
1125  *
1126  *  Clocks in/out one bit via I2C data/clock
1127  **/
1128 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
1129 {
1130         s32 status;
1131         u32 i = 0;
1132         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1133         u32 timeout = 10;
1134         bool ack = 1;
1135
1136         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1137
1138         if (status != 0)
1139                 goto out;
1140
1141         /* Minimum high period of clock is 4us */
1142         udelay(IXGBE_I2C_T_HIGH);
1143
1144         /* Poll for ACK.  Note that ACK in I2C spec is
1145          * transition from 1 to 0 */
1146         for (i = 0; i < timeout; i++) {
1147                 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1148                 ack = ixgbe_get_i2c_data(&i2cctl);
1149
1150                 udelay(1);
1151                 if (ack == 0)
1152                         break;
1153         }
1154
1155         if (ack == 1) {
1156                 hw_dbg(hw, "I2C ack was not received.\n");
1157                 status = IXGBE_ERR_I2C;
1158         }
1159
1160         ixgbe_lower_i2c_clk(hw, &i2cctl);
1161
1162         /* Minimum low period of clock is 4.7 us */
1163         udelay(IXGBE_I2C_T_LOW);
1164
1165 out:
1166         return status;
1167 }
1168
1169 /**
1170  *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
1171  *  @hw: pointer to hardware structure
1172  *  @data: read data value
1173  *
1174  *  Clocks in one bit via I2C data/clock
1175  **/
1176 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
1177 {
1178         s32 status;
1179         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1180
1181         status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1182
1183         /* Minimum high period of clock is 4us */
1184         udelay(IXGBE_I2C_T_HIGH);
1185
1186         i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1187         *data = ixgbe_get_i2c_data(&i2cctl);
1188
1189         ixgbe_lower_i2c_clk(hw, &i2cctl);
1190
1191         /* Minimum low period of clock is 4.7 us */
1192         udelay(IXGBE_I2C_T_LOW);
1193
1194         return status;
1195 }
1196
1197 /**
1198  *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
1199  *  @hw: pointer to hardware structure
1200  *  @data: data value to write
1201  *
1202  *  Clocks out one bit via I2C data/clock
1203  **/
1204 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
1205 {
1206         s32 status;
1207         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1208
1209         status = ixgbe_set_i2c_data(hw, &i2cctl, data);
1210         if (status == 0) {
1211                 status = ixgbe_raise_i2c_clk(hw, &i2cctl);
1212
1213                 /* Minimum high period of clock is 4us */
1214                 udelay(IXGBE_I2C_T_HIGH);
1215
1216                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1217
1218                 /* Minimum low period of clock is 4.7 us.
1219                  * This also takes care of the data hold time.
1220                  */
1221                 udelay(IXGBE_I2C_T_LOW);
1222         } else {
1223                 status = IXGBE_ERR_I2C;
1224                 hw_dbg(hw, "I2C data was not set to %X\n", data);
1225         }
1226
1227         return status;
1228 }
1229 /**
1230  *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
1231  *  @hw: pointer to hardware structure
1232  *  @i2cctl: Current value of I2CCTL register
1233  *
1234  *  Raises the I2C clock line '0'->'1'
1235  **/
1236 static s32 ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1237 {
1238         s32 status = 0;
1239
1240         *i2cctl |= IXGBE_I2C_CLK_OUT;
1241
1242         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1243
1244         /* SCL rise time (1000ns) */
1245         udelay(IXGBE_I2C_T_RISE);
1246
1247         return status;
1248 }
1249
1250 /**
1251  *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
1252  *  @hw: pointer to hardware structure
1253  *  @i2cctl: Current value of I2CCTL register
1254  *
1255  *  Lowers the I2C clock line '1'->'0'
1256  **/
1257 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
1258 {
1259
1260         *i2cctl &= ~IXGBE_I2C_CLK_OUT;
1261
1262         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1263
1264         /* SCL fall time (300ns) */
1265         udelay(IXGBE_I2C_T_FALL);
1266 }
1267
1268 /**
1269  *  ixgbe_set_i2c_data - Sets the I2C data bit
1270  *  @hw: pointer to hardware structure
1271  *  @i2cctl: Current value of I2CCTL register
1272  *  @data: I2C data value (0 or 1) to set
1273  *
1274  *  Sets the I2C data bit
1275  **/
1276 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
1277 {
1278         s32 status = 0;
1279
1280         if (data)
1281                 *i2cctl |= IXGBE_I2C_DATA_OUT;
1282         else
1283                 *i2cctl &= ~IXGBE_I2C_DATA_OUT;
1284
1285         IXGBE_WRITE_REG(hw, IXGBE_I2CCTL, *i2cctl);
1286
1287         /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
1288         udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
1289
1290         /* Verify data was set correctly */
1291         *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1292         if (data != ixgbe_get_i2c_data(i2cctl)) {
1293                 status = IXGBE_ERR_I2C;
1294                 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
1295         }
1296
1297         return status;
1298 }
1299
1300 /**
1301  *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
1302  *  @hw: pointer to hardware structure
1303  *  @i2cctl: Current value of I2CCTL register
1304  *
1305  *  Returns the I2C data bit value
1306  **/
1307 static bool ixgbe_get_i2c_data(u32 *i2cctl)
1308 {
1309         bool data;
1310
1311         if (*i2cctl & IXGBE_I2C_DATA_IN)
1312                 data = 1;
1313         else
1314                 data = 0;
1315
1316         return data;
1317 }
1318
1319 /**
1320  *  ixgbe_i2c_bus_clear - Clears the I2C bus
1321  *  @hw: pointer to hardware structure
1322  *
1323  *  Clears the I2C bus by sending nine clock pulses.
1324  *  Used when data line is stuck low.
1325  **/
1326 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
1327 {
1328         u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL);
1329         u32 i;
1330
1331         ixgbe_set_i2c_data(hw, &i2cctl, 1);
1332
1333         for (i = 0; i < 9; i++) {
1334                 ixgbe_raise_i2c_clk(hw, &i2cctl);
1335
1336                 /* Min high period of clock is 4us */
1337                 udelay(IXGBE_I2C_T_HIGH);
1338
1339                 ixgbe_lower_i2c_clk(hw, &i2cctl);
1340
1341                 /* Min low period of clock is 4.7us*/
1342                 udelay(IXGBE_I2C_T_LOW);
1343         }
1344
1345         /* Put the i2c bus back to default state */
1346         ixgbe_i2c_stop(hw);
1347 }
1348
1349 /**
1350  *  ixgbe_check_phy_link_tnx - Determine link and speed status
1351  *  @hw: pointer to hardware structure
1352  *
1353  *  Reads the VS1 register to determine if link is up and the current speed for
1354  *  the PHY.
1355  **/
1356 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1357                              bool *link_up)
1358 {
1359         s32 status = 0;
1360         u32 time_out;
1361         u32 max_time_out = 10;
1362         u16 phy_link = 0;
1363         u16 phy_speed = 0;
1364         u16 phy_data = 0;
1365
1366         /* Initialize speed and link to default case */
1367         *link_up = false;
1368         *speed = IXGBE_LINK_SPEED_10GB_FULL;
1369
1370         /*
1371          * Check current speed and link status of the PHY register.
1372          * This is a vendor specific register and may have to
1373          * be changed for other copper PHYs.
1374          */
1375         for (time_out = 0; time_out < max_time_out; time_out++) {
1376                 udelay(10);
1377                 status = hw->phy.ops.read_reg(hw,
1378                                         IXGBE_MDIO_VENDOR_SPECIFIC_1_STATUS,
1379                                         MDIO_MMD_VEND1,
1380                                         &phy_data);
1381                 phy_link = phy_data &
1382                            IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1383                 phy_speed = phy_data &
1384                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1385                 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1386                         *link_up = true;
1387                         if (phy_speed ==
1388                             IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1389                                 *speed = IXGBE_LINK_SPEED_1GB_FULL;
1390                         break;
1391                 }
1392         }
1393
1394         return status;
1395 }
1396
1397 /**
1398  *  ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
1399  *  @hw: pointer to hardware structure
1400  *  @firmware_version: pointer to the PHY Firmware Version
1401  **/
1402 s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
1403                                        u16 *firmware_version)
1404 {
1405         s32 status = 0;
1406
1407         status = hw->phy.ops.read_reg(hw, TNX_FW_REV, MDIO_MMD_VEND1,
1408                                       firmware_version);
1409
1410         return status;
1411 }
1412
1413 /**
1414  *  ixgbe_tn_check_overtemp - Checks if an overtemp occured.
1415  *  @hw: pointer to hardware structure
1416  *
1417  *  Checks if the LASI temp alarm status was triggered due to overtemp
1418  **/
1419 s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
1420 {
1421         s32 status = 0;
1422         u16 phy_data = 0;
1423
1424         if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
1425                 goto out;
1426
1427         /* Check that the LASI temp alarm status was triggered */
1428         hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
1429                              MDIO_MMD_PMAPMD, &phy_data);
1430
1431         if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
1432                 goto out;
1433
1434         status = IXGBE_ERR_OVERTEMP;
1435 out:
1436         return status;
1437 }