]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/e1000e/netdev.c
8de64ed8762c99355ad30d81d7eb663e2cd0acdc
[net-next-2.6.git] / drivers / net / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52
53 #include "e1000.h"
54
55 #define DRV_VERSION "1.0.2-k2"
56 char e1000e_driver_name[] = "e1000e";
57 const char e1000e_driver_version[] = DRV_VERSION;
58
59 static const struct e1000_info *e1000_info_tbl[] = {
60         [board_82571]           = &e1000_82571_info,
61         [board_82572]           = &e1000_82572_info,
62         [board_82573]           = &e1000_82573_info,
63         [board_82574]           = &e1000_82574_info,
64         [board_82583]           = &e1000_82583_info,
65         [board_80003es2lan]     = &e1000_es2_info,
66         [board_ich8lan]         = &e1000_ich8_info,
67         [board_ich9lan]         = &e1000_ich9_info,
68         [board_ich10lan]        = &e1000_ich10_info,
69         [board_pchlan]          = &e1000_pch_info,
70 };
71
72 struct e1000_reg_info {
73         u32 ofs;
74         char *name;
75 };
76
77 #define E1000_RDFH      0x02410 /* Rx Data FIFO Head - RW */
78 #define E1000_RDFT      0x02418 /* Rx Data FIFO Tail - RW */
79 #define E1000_RDFHS     0x02420 /* Rx Data FIFO Head Saved - RW */
80 #define E1000_RDFTS     0x02428 /* Rx Data FIFO Tail Saved - RW */
81 #define E1000_RDFPC     0x02430 /* Rx Data FIFO Packet Count - RW */
82
83 #define E1000_TDFH      0x03410 /* Tx Data FIFO Head - RW */
84 #define E1000_TDFT      0x03418 /* Tx Data FIFO Tail - RW */
85 #define E1000_TDFHS     0x03420 /* Tx Data FIFO Head Saved - RW */
86 #define E1000_TDFTS     0x03428 /* Tx Data FIFO Tail Saved - RW */
87 #define E1000_TDFPC     0x03430 /* Tx Data FIFO Packet Count - RW */
88
89 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
90
91         /* General Registers */
92         {E1000_CTRL, "CTRL"},
93         {E1000_STATUS, "STATUS"},
94         {E1000_CTRL_EXT, "CTRL_EXT"},
95
96         /* Interrupt Registers */
97         {E1000_ICR, "ICR"},
98
99         /* RX Registers */
100         {E1000_RCTL, "RCTL"},
101         {E1000_RDLEN, "RDLEN"},
102         {E1000_RDH, "RDH"},
103         {E1000_RDT, "RDT"},
104         {E1000_RDTR, "RDTR"},
105         {E1000_RXDCTL(0), "RXDCTL"},
106         {E1000_ERT, "ERT"},
107         {E1000_RDBAL, "RDBAL"},
108         {E1000_RDBAH, "RDBAH"},
109         {E1000_RDFH, "RDFH"},
110         {E1000_RDFT, "RDFT"},
111         {E1000_RDFHS, "RDFHS"},
112         {E1000_RDFTS, "RDFTS"},
113         {E1000_RDFPC, "RDFPC"},
114
115         /* TX Registers */
116         {E1000_TCTL, "TCTL"},
117         {E1000_TDBAL, "TDBAL"},
118         {E1000_TDBAH, "TDBAH"},
119         {E1000_TDLEN, "TDLEN"},
120         {E1000_TDH, "TDH"},
121         {E1000_TDT, "TDT"},
122         {E1000_TIDV, "TIDV"},
123         {E1000_TXDCTL(0), "TXDCTL"},
124         {E1000_TADV, "TADV"},
125         {E1000_TARC(0), "TARC"},
126         {E1000_TDFH, "TDFH"},
127         {E1000_TDFT, "TDFT"},
128         {E1000_TDFHS, "TDFHS"},
129         {E1000_TDFTS, "TDFTS"},
130         {E1000_TDFPC, "TDFPC"},
131
132         /* List Terminator */
133         {}
134 };
135
136 /*
137  * e1000_regdump - register printout routine
138  */
139 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
140 {
141         int n = 0;
142         char rname[16];
143         u32 regs[8];
144
145         switch (reginfo->ofs) {
146         case E1000_RXDCTL(0):
147                 for (n = 0; n < 2; n++)
148                         regs[n] = __er32(hw, E1000_RXDCTL(n));
149                 break;
150         case E1000_TXDCTL(0):
151                 for (n = 0; n < 2; n++)
152                         regs[n] = __er32(hw, E1000_TXDCTL(n));
153                 break;
154         case E1000_TARC(0):
155                 for (n = 0; n < 2; n++)
156                         regs[n] = __er32(hw, E1000_TARC(n));
157                 break;
158         default:
159                 printk(KERN_INFO "%-15s %08x\n",
160                         reginfo->name, __er32(hw, reginfo->ofs));
161                 return;
162         }
163
164         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
165         printk(KERN_INFO "%-15s ", rname);
166         for (n = 0; n < 2; n++)
167                 printk(KERN_CONT "%08x ", regs[n]);
168         printk(KERN_CONT "\n");
169 }
170
171
172 /*
173  * e1000e_dump - Print registers, tx-ring and rx-ring
174  */
175 static void e1000e_dump(struct e1000_adapter *adapter)
176 {
177         struct net_device *netdev = adapter->netdev;
178         struct e1000_hw *hw = &adapter->hw;
179         struct e1000_reg_info *reginfo;
180         struct e1000_ring *tx_ring = adapter->tx_ring;
181         struct e1000_tx_desc *tx_desc;
182         struct my_u0 { u64 a; u64 b; } *u0;
183         struct e1000_buffer *buffer_info;
184         struct e1000_ring *rx_ring = adapter->rx_ring;
185         union e1000_rx_desc_packet_split *rx_desc_ps;
186         struct e1000_rx_desc *rx_desc;
187         struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
188         u32 staterr;
189         int i = 0;
190
191         if (!netif_msg_hw(adapter))
192                 return;
193
194         /* Print netdevice Info */
195         if (netdev) {
196                 dev_info(&adapter->pdev->dev, "Net device Info\n");
197                 printk(KERN_INFO "Device Name     state            "
198                         "trans_start      last_rx\n");
199                 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
200                         netdev->name,
201                         netdev->state,
202                         netdev->trans_start,
203                         netdev->last_rx);
204         }
205
206         /* Print Registers */
207         dev_info(&adapter->pdev->dev, "Register Dump\n");
208         printk(KERN_INFO " Register Name   Value\n");
209         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
210              reginfo->name; reginfo++) {
211                 e1000_regdump(hw, reginfo);
212         }
213
214         /* Print TX Ring Summary */
215         if (!netdev || !netif_running(netdev))
216                 goto exit;
217
218         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
219         printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
220                 " leng ntw timestamp\n");
221         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
222         printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
223                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
224                 (u64)buffer_info->dma,
225                 buffer_info->length,
226                 buffer_info->next_to_watch,
227                 (u64)buffer_info->time_stamp);
228
229         /* Print TX Rings */
230         if (!netif_msg_tx_done(adapter))
231                 goto rx_ring_summary;
232
233         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
234
235         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
236          *
237          * Legacy Transmit Descriptor
238          *   +--------------------------------------------------------------+
239          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
240          *   +--------------------------------------------------------------+
241          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
242          *   +--------------------------------------------------------------+
243          *   63       48 47        36 35    32 31     24 23    16 15        0
244          *
245          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
246          *   63      48 47    40 39       32 31             16 15    8 7      0
247          *   +----------------------------------------------------------------+
248          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
249          *   +----------------------------------------------------------------+
250          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
251          *   +----------------------------------------------------------------+
252          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
253          *
254          * Extended Data Descriptor (DTYP=0x1)
255          *   +----------------------------------------------------------------+
256          * 0 |                     Buffer Address [63:0]                      |
257          *   +----------------------------------------------------------------+
258          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
259          *   +----------------------------------------------------------------+
260          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
261          */
262         printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
263                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
264                 "<-- Legacy format\n");
265         printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
266                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
267                 "<-- Ext Context format\n");
268         printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
269                 " [bi->dma       ] leng  ntw timestamp        bi->skb "
270                 "<-- Ext Data format\n");
271         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
272                 tx_desc = E1000_TX_DESC(*tx_ring, i);
273                 buffer_info = &tx_ring->buffer_info[i];
274                 u0 = (struct my_u0 *)tx_desc;
275                 printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
276                         "%04X  %3X %016llX %p",
277                        (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
278                         ((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
279                        le64_to_cpu(u0->a), le64_to_cpu(u0->b),
280                        (u64)buffer_info->dma, buffer_info->length,
281                        buffer_info->next_to_watch, (u64)buffer_info->time_stamp,
282                        buffer_info->skb);
283                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
284                         printk(KERN_CONT " NTC/U\n");
285                 else if (i == tx_ring->next_to_use)
286                         printk(KERN_CONT " NTU\n");
287                 else if (i == tx_ring->next_to_clean)
288                         printk(KERN_CONT " NTC\n");
289                 else
290                         printk(KERN_CONT "\n");
291
292                 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
293                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
294                                         16, 1, phys_to_virt(buffer_info->dma),
295                                         buffer_info->length, true);
296         }
297
298         /* Print RX Rings Summary */
299 rx_ring_summary:
300         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
301         printk(KERN_INFO "Queue [NTU] [NTC]\n");
302         printk(KERN_INFO " %5d %5X %5X\n", 0,
303                 rx_ring->next_to_use, rx_ring->next_to_clean);
304
305         /* Print RX Rings */
306         if (!netif_msg_rx_status(adapter))
307                 goto exit;
308
309         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
310         switch (adapter->rx_ps_pages) {
311         case 1:
312         case 2:
313         case 3:
314                 /* [Extended] Packet Split Receive Descriptor Format
315                  *
316                  *    +-----------------------------------------------------+
317                  *  0 |                Buffer Address 0 [63:0]              |
318                  *    +-----------------------------------------------------+
319                  *  8 |                Buffer Address 1 [63:0]              |
320                  *    +-----------------------------------------------------+
321                  * 16 |                Buffer Address 2 [63:0]              |
322                  *    +-----------------------------------------------------+
323                  * 24 |                Buffer Address 3 [63:0]              |
324                  *    +-----------------------------------------------------+
325                  */
326                 printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
327                         "[buffer 1 63:0 ] "
328                        "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
329                        "[bi->skb] <-- Ext Pkt Split format\n");
330                 /* [Extended] Receive Descriptor (Write-Back) Format
331                  *
332                  *   63       48 47    32 31     13 12    8 7    4 3        0
333                  *   +------------------------------------------------------+
334                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
335                  *   | Checksum | Ident  |         | Queue |      |  Type   |
336                  *   +------------------------------------------------------+
337                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
338                  *   +------------------------------------------------------+
339                  *   63       48 47    32 31            20 19               0
340                  */
341                 printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
342                         "[vl   l0 ee  es] "
343                        "[ l3  l2  l1 hs] [reserved      ] ---------------- "
344                        "[bi->skb] <-- Ext Rx Write-Back format\n");
345                 for (i = 0; i < rx_ring->count; i++) {
346                         buffer_info = &rx_ring->buffer_info[i];
347                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
348                         u1 = (struct my_u1 *)rx_desc_ps;
349                         staterr =
350                                 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
351                         if (staterr & E1000_RXD_STAT_DD) {
352                                 /* Descriptor Done */
353                                 printk(KERN_INFO "RWB[0x%03X]     %016llX "
354                                         "%016llX %016llX %016llX "
355                                         "---------------- %p", i,
356                                         le64_to_cpu(u1->a),
357                                         le64_to_cpu(u1->b),
358                                         le64_to_cpu(u1->c),
359                                         le64_to_cpu(u1->d),
360                                         buffer_info->skb);
361                         } else {
362                                 printk(KERN_INFO "R  [0x%03X]     %016llX "
363                                         "%016llX %016llX %016llX %016llX %p", i,
364                                         le64_to_cpu(u1->a),
365                                         le64_to_cpu(u1->b),
366                                         le64_to_cpu(u1->c),
367                                         le64_to_cpu(u1->d),
368                                         (u64)buffer_info->dma,
369                                         buffer_info->skb);
370
371                                 if (netif_msg_pktdata(adapter))
372                                         print_hex_dump(KERN_INFO, "",
373                                                 DUMP_PREFIX_ADDRESS, 16, 1,
374                                                 phys_to_virt(buffer_info->dma),
375                                                 adapter->rx_ps_bsize0, true);
376                         }
377
378                         if (i == rx_ring->next_to_use)
379                                 printk(KERN_CONT " NTU\n");
380                         else if (i == rx_ring->next_to_clean)
381                                 printk(KERN_CONT " NTC\n");
382                         else
383                                 printk(KERN_CONT "\n");
384                 }
385                 break;
386         default:
387         case 0:
388                 /* Legacy Receive Descriptor Format
389                  *
390                  * +-----------------------------------------------------+
391                  * |                Buffer Address [63:0]                |
392                  * +-----------------------------------------------------+
393                  * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
394                  * +-----------------------------------------------------+
395                  * 63       48 47    40 39      32 31         16 15      0
396                  */
397                 printk(KERN_INFO "Rl[desc]     [address 63:0  ] "
398                         "[vl er S cks ln] [bi->dma       ] [bi->skb] "
399                         "<-- Legacy format\n");
400                 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
401                         rx_desc = E1000_RX_DESC(*rx_ring, i);
402                         buffer_info = &rx_ring->buffer_info[i];
403                         u0 = (struct my_u0 *)rx_desc;
404                         printk(KERN_INFO "Rl[0x%03X]    %016llX %016llX "
405                                 "%016llX %p",
406                                 i, le64_to_cpu(u0->a), le64_to_cpu(u0->b),
407                                 (u64)buffer_info->dma, buffer_info->skb);
408                         if (i == rx_ring->next_to_use)
409                                 printk(KERN_CONT " NTU\n");
410                         else if (i == rx_ring->next_to_clean)
411                                 printk(KERN_CONT " NTC\n");
412                         else
413                                 printk(KERN_CONT "\n");
414
415                         if (netif_msg_pktdata(adapter))
416                                 print_hex_dump(KERN_INFO, "",
417                                         DUMP_PREFIX_ADDRESS,
418                                         16, 1, phys_to_virt(buffer_info->dma),
419                                         adapter->rx_buffer_len, true);
420                 }
421         }
422
423 exit:
424         return;
425 }
426
427 /**
428  * e1000_desc_unused - calculate if we have unused descriptors
429  **/
430 static int e1000_desc_unused(struct e1000_ring *ring)
431 {
432         if (ring->next_to_clean > ring->next_to_use)
433                 return ring->next_to_clean - ring->next_to_use - 1;
434
435         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
436 }
437
438 /**
439  * e1000_receive_skb - helper function to handle Rx indications
440  * @adapter: board private structure
441  * @status: descriptor status field as written by hardware
442  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
443  * @skb: pointer to sk_buff to be indicated to stack
444  **/
445 static void e1000_receive_skb(struct e1000_adapter *adapter,
446                               struct net_device *netdev,
447                               struct sk_buff *skb,
448                               u8 status, __le16 vlan)
449 {
450         skb->protocol = eth_type_trans(skb, netdev);
451
452         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
453                 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
454                                  le16_to_cpu(vlan), skb);
455         else
456                 napi_gro_receive(&adapter->napi, skb);
457 }
458
459 /**
460  * e1000_rx_checksum - Receive Checksum Offload for 82543
461  * @adapter:     board private structure
462  * @status_err:  receive descriptor status and error fields
463  * @csum:       receive descriptor csum field
464  * @sk_buff:     socket buffer with received data
465  **/
466 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
467                               u32 csum, struct sk_buff *skb)
468 {
469         u16 status = (u16)status_err;
470         u8 errors = (u8)(status_err >> 24);
471         skb->ip_summed = CHECKSUM_NONE;
472
473         /* Ignore Checksum bit is set */
474         if (status & E1000_RXD_STAT_IXSM)
475                 return;
476         /* TCP/UDP checksum error bit is set */
477         if (errors & E1000_RXD_ERR_TCPE) {
478                 /* let the stack verify checksum errors */
479                 adapter->hw_csum_err++;
480                 return;
481         }
482
483         /* TCP/UDP Checksum has not been calculated */
484         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
485                 return;
486
487         /* It must be a TCP or UDP packet with a valid checksum */
488         if (status & E1000_RXD_STAT_TCPCS) {
489                 /* TCP checksum is good */
490                 skb->ip_summed = CHECKSUM_UNNECESSARY;
491         } else {
492                 /*
493                  * IP fragment with UDP payload
494                  * Hardware complements the payload checksum, so we undo it
495                  * and then put the value in host order for further stack use.
496                  */
497                 __sum16 sum = (__force __sum16)htons(csum);
498                 skb->csum = csum_unfold(~sum);
499                 skb->ip_summed = CHECKSUM_COMPLETE;
500         }
501         adapter->hw_csum_good++;
502 }
503
504 /**
505  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
506  * @adapter: address of board private structure
507  **/
508 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
509                                    int cleaned_count)
510 {
511         struct net_device *netdev = adapter->netdev;
512         struct pci_dev *pdev = adapter->pdev;
513         struct e1000_ring *rx_ring = adapter->rx_ring;
514         struct e1000_rx_desc *rx_desc;
515         struct e1000_buffer *buffer_info;
516         struct sk_buff *skb;
517         unsigned int i;
518         unsigned int bufsz = adapter->rx_buffer_len;
519
520         i = rx_ring->next_to_use;
521         buffer_info = &rx_ring->buffer_info[i];
522
523         while (cleaned_count--) {
524                 skb = buffer_info->skb;
525                 if (skb) {
526                         skb_trim(skb, 0);
527                         goto map_skb;
528                 }
529
530                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
531                 if (!skb) {
532                         /* Better luck next round */
533                         adapter->alloc_rx_buff_failed++;
534                         break;
535                 }
536
537                 buffer_info->skb = skb;
538 map_skb:
539                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
540                                                   adapter->rx_buffer_len,
541                                                   DMA_FROM_DEVICE);
542                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
543                         dev_err(&pdev->dev, "RX DMA map failed\n");
544                         adapter->rx_dma_failed++;
545                         break;
546                 }
547
548                 rx_desc = E1000_RX_DESC(*rx_ring, i);
549                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
550
551                 i++;
552                 if (i == rx_ring->count)
553                         i = 0;
554                 buffer_info = &rx_ring->buffer_info[i];
555         }
556
557         if (rx_ring->next_to_use != i) {
558                 rx_ring->next_to_use = i;
559                 if (i-- == 0)
560                         i = (rx_ring->count - 1);
561
562                 /*
563                  * Force memory writes to complete before letting h/w
564                  * know there are new descriptors to fetch.  (Only
565                  * applicable for weak-ordered memory model archs,
566                  * such as IA-64).
567                  */
568                 wmb();
569                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
570         }
571 }
572
573 /**
574  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
575  * @adapter: address of board private structure
576  **/
577 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
578                                       int cleaned_count)
579 {
580         struct net_device *netdev = adapter->netdev;
581         struct pci_dev *pdev = adapter->pdev;
582         union e1000_rx_desc_packet_split *rx_desc;
583         struct e1000_ring *rx_ring = adapter->rx_ring;
584         struct e1000_buffer *buffer_info;
585         struct e1000_ps_page *ps_page;
586         struct sk_buff *skb;
587         unsigned int i, j;
588
589         i = rx_ring->next_to_use;
590         buffer_info = &rx_ring->buffer_info[i];
591
592         while (cleaned_count--) {
593                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
594
595                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
596                         ps_page = &buffer_info->ps_pages[j];
597                         if (j >= adapter->rx_ps_pages) {
598                                 /* all unused desc entries get hw null ptr */
599                                 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
600                                 continue;
601                         }
602                         if (!ps_page->page) {
603                                 ps_page->page = alloc_page(GFP_ATOMIC);
604                                 if (!ps_page->page) {
605                                         adapter->alloc_rx_buff_failed++;
606                                         goto no_buffers;
607                                 }
608                                 ps_page->dma = dma_map_page(&pdev->dev,
609                                                             ps_page->page,
610                                                             0, PAGE_SIZE,
611                                                             DMA_FROM_DEVICE);
612                                 if (dma_mapping_error(&pdev->dev,
613                                                       ps_page->dma)) {
614                                         dev_err(&adapter->pdev->dev,
615                                           "RX DMA page map failed\n");
616                                         adapter->rx_dma_failed++;
617                                         goto no_buffers;
618                                 }
619                         }
620                         /*
621                          * Refresh the desc even if buffer_addrs
622                          * didn't change because each write-back
623                          * erases this info.
624                          */
625                         rx_desc->read.buffer_addr[j+1] =
626                              cpu_to_le64(ps_page->dma);
627                 }
628
629                 skb = netdev_alloc_skb_ip_align(netdev,
630                                                 adapter->rx_ps_bsize0);
631
632                 if (!skb) {
633                         adapter->alloc_rx_buff_failed++;
634                         break;
635                 }
636
637                 buffer_info->skb = skb;
638                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
639                                                   adapter->rx_ps_bsize0,
640                                                   DMA_FROM_DEVICE);
641                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
642                         dev_err(&pdev->dev, "RX DMA map failed\n");
643                         adapter->rx_dma_failed++;
644                         /* cleanup skb */
645                         dev_kfree_skb_any(skb);
646                         buffer_info->skb = NULL;
647                         break;
648                 }
649
650                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
651
652                 i++;
653                 if (i == rx_ring->count)
654                         i = 0;
655                 buffer_info = &rx_ring->buffer_info[i];
656         }
657
658 no_buffers:
659         if (rx_ring->next_to_use != i) {
660                 rx_ring->next_to_use = i;
661
662                 if (!(i--))
663                         i = (rx_ring->count - 1);
664
665                 /*
666                  * Force memory writes to complete before letting h/w
667                  * know there are new descriptors to fetch.  (Only
668                  * applicable for weak-ordered memory model archs,
669                  * such as IA-64).
670                  */
671                 wmb();
672                 /*
673                  * Hardware increments by 16 bytes, but packet split
674                  * descriptors are 32 bytes...so we increment tail
675                  * twice as much.
676                  */
677                 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
678         }
679 }
680
681 /**
682  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
683  * @adapter: address of board private structure
684  * @cleaned_count: number of buffers to allocate this pass
685  **/
686
687 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
688                                          int cleaned_count)
689 {
690         struct net_device *netdev = adapter->netdev;
691         struct pci_dev *pdev = adapter->pdev;
692         struct e1000_rx_desc *rx_desc;
693         struct e1000_ring *rx_ring = adapter->rx_ring;
694         struct e1000_buffer *buffer_info;
695         struct sk_buff *skb;
696         unsigned int i;
697         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
698
699         i = rx_ring->next_to_use;
700         buffer_info = &rx_ring->buffer_info[i];
701
702         while (cleaned_count--) {
703                 skb = buffer_info->skb;
704                 if (skb) {
705                         skb_trim(skb, 0);
706                         goto check_page;
707                 }
708
709                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
710                 if (unlikely(!skb)) {
711                         /* Better luck next round */
712                         adapter->alloc_rx_buff_failed++;
713                         break;
714                 }
715
716                 buffer_info->skb = skb;
717 check_page:
718                 /* allocate a new page if necessary */
719                 if (!buffer_info->page) {
720                         buffer_info->page = alloc_page(GFP_ATOMIC);
721                         if (unlikely(!buffer_info->page)) {
722                                 adapter->alloc_rx_buff_failed++;
723                                 break;
724                         }
725                 }
726
727                 if (!buffer_info->dma)
728                         buffer_info->dma = dma_map_page(&pdev->dev,
729                                                         buffer_info->page, 0,
730                                                         PAGE_SIZE,
731                                                         DMA_FROM_DEVICE);
732
733                 rx_desc = E1000_RX_DESC(*rx_ring, i);
734                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
735
736                 if (unlikely(++i == rx_ring->count))
737                         i = 0;
738                 buffer_info = &rx_ring->buffer_info[i];
739         }
740
741         if (likely(rx_ring->next_to_use != i)) {
742                 rx_ring->next_to_use = i;
743                 if (unlikely(i-- == 0))
744                         i = (rx_ring->count - 1);
745
746                 /* Force memory writes to complete before letting h/w
747                  * know there are new descriptors to fetch.  (Only
748                  * applicable for weak-ordered memory model archs,
749                  * such as IA-64). */
750                 wmb();
751                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
752         }
753 }
754
755 /**
756  * e1000_clean_rx_irq - Send received data up the network stack; legacy
757  * @adapter: board private structure
758  *
759  * the return value indicates whether actual cleaning was done, there
760  * is no guarantee that everything was cleaned
761  **/
762 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
763                                int *work_done, int work_to_do)
764 {
765         struct net_device *netdev = adapter->netdev;
766         struct pci_dev *pdev = adapter->pdev;
767         struct e1000_hw *hw = &adapter->hw;
768         struct e1000_ring *rx_ring = adapter->rx_ring;
769         struct e1000_rx_desc *rx_desc, *next_rxd;
770         struct e1000_buffer *buffer_info, *next_buffer;
771         u32 length;
772         unsigned int i;
773         int cleaned_count = 0;
774         bool cleaned = 0;
775         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
776
777         i = rx_ring->next_to_clean;
778         rx_desc = E1000_RX_DESC(*rx_ring, i);
779         buffer_info = &rx_ring->buffer_info[i];
780
781         while (rx_desc->status & E1000_RXD_STAT_DD) {
782                 struct sk_buff *skb;
783                 u8 status;
784
785                 if (*work_done >= work_to_do)
786                         break;
787                 (*work_done)++;
788
789                 status = rx_desc->status;
790                 skb = buffer_info->skb;
791                 buffer_info->skb = NULL;
792
793                 prefetch(skb->data - NET_IP_ALIGN);
794
795                 i++;
796                 if (i == rx_ring->count)
797                         i = 0;
798                 next_rxd = E1000_RX_DESC(*rx_ring, i);
799                 prefetch(next_rxd);
800
801                 next_buffer = &rx_ring->buffer_info[i];
802
803                 cleaned = 1;
804                 cleaned_count++;
805                 dma_unmap_single(&pdev->dev,
806                                  buffer_info->dma,
807                                  adapter->rx_buffer_len,
808                                  DMA_FROM_DEVICE);
809                 buffer_info->dma = 0;
810
811                 length = le16_to_cpu(rx_desc->length);
812
813                 /*
814                  * !EOP means multiple descriptors were used to store a single
815                  * packet, if that's the case we need to toss it.  In fact, we
816                  * need to toss every packet with the EOP bit clear and the
817                  * next frame that _does_ have the EOP bit set, as it is by
818                  * definition only a frame fragment
819                  */
820                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
821                         adapter->flags2 |= FLAG2_IS_DISCARDING;
822
823                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
824                         /* All receives must fit into a single buffer */
825                         e_dbg("Receive packet consumed multiple buffers\n");
826                         /* recycle */
827                         buffer_info->skb = skb;
828                         if (status & E1000_RXD_STAT_EOP)
829                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
830                         goto next_desc;
831                 }
832
833                 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
834                         /* recycle */
835                         buffer_info->skb = skb;
836                         goto next_desc;
837                 }
838
839                 /* adjust length to remove Ethernet CRC */
840                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
841                         length -= 4;
842
843                 total_rx_bytes += length;
844                 total_rx_packets++;
845
846                 /*
847                  * code added for copybreak, this should improve
848                  * performance for small packets with large amounts
849                  * of reassembly being done in the stack
850                  */
851                 if (length < copybreak) {
852                         struct sk_buff *new_skb =
853                             netdev_alloc_skb_ip_align(netdev, length);
854                         if (new_skb) {
855                                 skb_copy_to_linear_data_offset(new_skb,
856                                                                -NET_IP_ALIGN,
857                                                                (skb->data -
858                                                                 NET_IP_ALIGN),
859                                                                (length +
860                                                                 NET_IP_ALIGN));
861                                 /* save the skb in buffer_info as good */
862                                 buffer_info->skb = skb;
863                                 skb = new_skb;
864                         }
865                         /* else just continue with the old one */
866                 }
867                 /* end copybreak code */
868                 skb_put(skb, length);
869
870                 /* Receive Checksum Offload */
871                 e1000_rx_checksum(adapter,
872                                   (u32)(status) |
873                                   ((u32)(rx_desc->errors) << 24),
874                                   le16_to_cpu(rx_desc->csum), skb);
875
876                 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
877
878 next_desc:
879                 rx_desc->status = 0;
880
881                 /* return some buffers to hardware, one at a time is too slow */
882                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
883                         adapter->alloc_rx_buf(adapter, cleaned_count);
884                         cleaned_count = 0;
885                 }
886
887                 /* use prefetched values */
888                 rx_desc = next_rxd;
889                 buffer_info = next_buffer;
890         }
891         rx_ring->next_to_clean = i;
892
893         cleaned_count = e1000_desc_unused(rx_ring);
894         if (cleaned_count)
895                 adapter->alloc_rx_buf(adapter, cleaned_count);
896
897         adapter->total_rx_bytes += total_rx_bytes;
898         adapter->total_rx_packets += total_rx_packets;
899         netdev->stats.rx_bytes += total_rx_bytes;
900         netdev->stats.rx_packets += total_rx_packets;
901         return cleaned;
902 }
903
904 static void e1000_put_txbuf(struct e1000_adapter *adapter,
905                              struct e1000_buffer *buffer_info)
906 {
907         if (buffer_info->dma) {
908                 if (buffer_info->mapped_as_page)
909                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
910                                        buffer_info->length, DMA_TO_DEVICE);
911                 else
912                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
913                                          buffer_info->length, DMA_TO_DEVICE);
914                 buffer_info->dma = 0;
915         }
916         if (buffer_info->skb) {
917                 dev_kfree_skb_any(buffer_info->skb);
918                 buffer_info->skb = NULL;
919         }
920         buffer_info->time_stamp = 0;
921 }
922
923 static void e1000_print_hw_hang(struct work_struct *work)
924 {
925         struct e1000_adapter *adapter = container_of(work,
926                                                      struct e1000_adapter,
927                                                      print_hang_task);
928         struct e1000_ring *tx_ring = adapter->tx_ring;
929         unsigned int i = tx_ring->next_to_clean;
930         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
931         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
932         struct e1000_hw *hw = &adapter->hw;
933         u16 phy_status, phy_1000t_status, phy_ext_status;
934         u16 pci_status;
935
936         e1e_rphy(hw, PHY_STATUS, &phy_status);
937         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
938         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
939
940         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
941
942         /* detected Hardware unit hang */
943         e_err("Detected Hardware Unit Hang:\n"
944               "  TDH                  <%x>\n"
945               "  TDT                  <%x>\n"
946               "  next_to_use          <%x>\n"
947               "  next_to_clean        <%x>\n"
948               "buffer_info[next_to_clean]:\n"
949               "  time_stamp           <%lx>\n"
950               "  next_to_watch        <%x>\n"
951               "  jiffies              <%lx>\n"
952               "  next_to_watch.status <%x>\n"
953               "MAC Status             <%x>\n"
954               "PHY Status             <%x>\n"
955               "PHY 1000BASE-T Status  <%x>\n"
956               "PHY Extended Status    <%x>\n"
957               "PCI Status             <%x>\n",
958               readl(adapter->hw.hw_addr + tx_ring->head),
959               readl(adapter->hw.hw_addr + tx_ring->tail),
960               tx_ring->next_to_use,
961               tx_ring->next_to_clean,
962               tx_ring->buffer_info[eop].time_stamp,
963               eop,
964               jiffies,
965               eop_desc->upper.fields.status,
966               er32(STATUS),
967               phy_status,
968               phy_1000t_status,
969               phy_ext_status,
970               pci_status);
971 }
972
973 /**
974  * e1000_clean_tx_irq - Reclaim resources after transmit completes
975  * @adapter: board private structure
976  *
977  * the return value indicates whether actual cleaning was done, there
978  * is no guarantee that everything was cleaned
979  **/
980 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
981 {
982         struct net_device *netdev = adapter->netdev;
983         struct e1000_hw *hw = &adapter->hw;
984         struct e1000_ring *tx_ring = adapter->tx_ring;
985         struct e1000_tx_desc *tx_desc, *eop_desc;
986         struct e1000_buffer *buffer_info;
987         unsigned int i, eop;
988         unsigned int count = 0;
989         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
990
991         i = tx_ring->next_to_clean;
992         eop = tx_ring->buffer_info[i].next_to_watch;
993         eop_desc = E1000_TX_DESC(*tx_ring, eop);
994
995         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
996                (count < tx_ring->count)) {
997                 bool cleaned = false;
998                 for (; !cleaned; count++) {
999                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1000                         buffer_info = &tx_ring->buffer_info[i];
1001                         cleaned = (i == eop);
1002
1003                         if (cleaned) {
1004                                 total_tx_packets += buffer_info->segs;
1005                                 total_tx_bytes += buffer_info->bytecount;
1006                         }
1007
1008                         e1000_put_txbuf(adapter, buffer_info);
1009                         tx_desc->upper.data = 0;
1010
1011                         i++;
1012                         if (i == tx_ring->count)
1013                                 i = 0;
1014                 }
1015
1016                 if (i == tx_ring->next_to_use)
1017                         break;
1018                 eop = tx_ring->buffer_info[i].next_to_watch;
1019                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1020         }
1021
1022         tx_ring->next_to_clean = i;
1023
1024 #define TX_WAKE_THRESHOLD 32
1025         if (count && netif_carrier_ok(netdev) &&
1026             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1027                 /* Make sure that anybody stopping the queue after this
1028                  * sees the new next_to_clean.
1029                  */
1030                 smp_mb();
1031
1032                 if (netif_queue_stopped(netdev) &&
1033                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1034                         netif_wake_queue(netdev);
1035                         ++adapter->restart_queue;
1036                 }
1037         }
1038
1039         if (adapter->detect_tx_hung) {
1040                 /*
1041                  * Detect a transmit hang in hardware, this serializes the
1042                  * check with the clearing of time_stamp and movement of i
1043                  */
1044                 adapter->detect_tx_hung = 0;
1045                 if (tx_ring->buffer_info[i].time_stamp &&
1046                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1047                                + (adapter->tx_timeout_factor * HZ)) &&
1048                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1049                         schedule_work(&adapter->print_hang_task);
1050                         netif_stop_queue(netdev);
1051                 }
1052         }
1053         adapter->total_tx_bytes += total_tx_bytes;
1054         adapter->total_tx_packets += total_tx_packets;
1055         netdev->stats.tx_bytes += total_tx_bytes;
1056         netdev->stats.tx_packets += total_tx_packets;
1057         return (count < tx_ring->count);
1058 }
1059
1060 /**
1061  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1062  * @adapter: board private structure
1063  *
1064  * the return value indicates whether actual cleaning was done, there
1065  * is no guarantee that everything was cleaned
1066  **/
1067 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1068                                   int *work_done, int work_to_do)
1069 {
1070         struct e1000_hw *hw = &adapter->hw;
1071         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1072         struct net_device *netdev = adapter->netdev;
1073         struct pci_dev *pdev = adapter->pdev;
1074         struct e1000_ring *rx_ring = adapter->rx_ring;
1075         struct e1000_buffer *buffer_info, *next_buffer;
1076         struct e1000_ps_page *ps_page;
1077         struct sk_buff *skb;
1078         unsigned int i, j;
1079         u32 length, staterr;
1080         int cleaned_count = 0;
1081         bool cleaned = 0;
1082         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1083
1084         i = rx_ring->next_to_clean;
1085         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1086         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1087         buffer_info = &rx_ring->buffer_info[i];
1088
1089         while (staterr & E1000_RXD_STAT_DD) {
1090                 if (*work_done >= work_to_do)
1091                         break;
1092                 (*work_done)++;
1093                 skb = buffer_info->skb;
1094
1095                 /* in the packet split case this is header only */
1096                 prefetch(skb->data - NET_IP_ALIGN);
1097
1098                 i++;
1099                 if (i == rx_ring->count)
1100                         i = 0;
1101                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1102                 prefetch(next_rxd);
1103
1104                 next_buffer = &rx_ring->buffer_info[i];
1105
1106                 cleaned = 1;
1107                 cleaned_count++;
1108                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1109                                  adapter->rx_ps_bsize0,
1110                                  DMA_FROM_DEVICE);
1111                 buffer_info->dma = 0;
1112
1113                 /* see !EOP comment in other rx routine */
1114                 if (!(staterr & E1000_RXD_STAT_EOP))
1115                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1116
1117                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1118                         e_dbg("Packet Split buffers didn't pick up the full "
1119                               "packet\n");
1120                         dev_kfree_skb_irq(skb);
1121                         if (staterr & E1000_RXD_STAT_EOP)
1122                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1123                         goto next_desc;
1124                 }
1125
1126                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1127                         dev_kfree_skb_irq(skb);
1128                         goto next_desc;
1129                 }
1130
1131                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1132
1133                 if (!length) {
1134                         e_dbg("Last part of the packet spanning multiple "
1135                               "descriptors\n");
1136                         dev_kfree_skb_irq(skb);
1137                         goto next_desc;
1138                 }
1139
1140                 /* Good Receive */
1141                 skb_put(skb, length);
1142
1143                 {
1144                 /*
1145                  * this looks ugly, but it seems compiler issues make it
1146                  * more efficient than reusing j
1147                  */
1148                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1149
1150                 /*
1151                  * page alloc/put takes too long and effects small packet
1152                  * throughput, so unsplit small packets and save the alloc/put
1153                  * only valid in softirq (napi) context to call kmap_*
1154                  */
1155                 if (l1 && (l1 <= copybreak) &&
1156                     ((length + l1) <= adapter->rx_ps_bsize0)) {
1157                         u8 *vaddr;
1158
1159                         ps_page = &buffer_info->ps_pages[0];
1160
1161                         /*
1162                          * there is no documentation about how to call
1163                          * kmap_atomic, so we can't hold the mapping
1164                          * very long
1165                          */
1166                         dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1167                                                 PAGE_SIZE, DMA_FROM_DEVICE);
1168                         vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1169                         memcpy(skb_tail_pointer(skb), vaddr, l1);
1170                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1171                         dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1172                                                    PAGE_SIZE, DMA_FROM_DEVICE);
1173
1174                         /* remove the CRC */
1175                         if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1176                                 l1 -= 4;
1177
1178                         skb_put(skb, l1);
1179                         goto copydone;
1180                 } /* if */
1181                 }
1182
1183                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1184                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1185                         if (!length)
1186                                 break;
1187
1188                         ps_page = &buffer_info->ps_pages[j];
1189                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1190                                        DMA_FROM_DEVICE);
1191                         ps_page->dma = 0;
1192                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1193                         ps_page->page = NULL;
1194                         skb->len += length;
1195                         skb->data_len += length;
1196                         skb->truesize += length;
1197                 }
1198
1199                 /* strip the ethernet crc, problem is we're using pages now so
1200                  * this whole operation can get a little cpu intensive
1201                  */
1202                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1203                         pskb_trim(skb, skb->len - 4);
1204
1205 copydone:
1206                 total_rx_bytes += skb->len;
1207                 total_rx_packets++;
1208
1209                 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1210                         rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1211
1212                 if (rx_desc->wb.upper.header_status &
1213                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1214                         adapter->rx_hdr_split++;
1215
1216                 e1000_receive_skb(adapter, netdev, skb,
1217                                   staterr, rx_desc->wb.middle.vlan);
1218
1219 next_desc:
1220                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1221                 buffer_info->skb = NULL;
1222
1223                 /* return some buffers to hardware, one at a time is too slow */
1224                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1225                         adapter->alloc_rx_buf(adapter, cleaned_count);
1226                         cleaned_count = 0;
1227                 }
1228
1229                 /* use prefetched values */
1230                 rx_desc = next_rxd;
1231                 buffer_info = next_buffer;
1232
1233                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1234         }
1235         rx_ring->next_to_clean = i;
1236
1237         cleaned_count = e1000_desc_unused(rx_ring);
1238         if (cleaned_count)
1239                 adapter->alloc_rx_buf(adapter, cleaned_count);
1240
1241         adapter->total_rx_bytes += total_rx_bytes;
1242         adapter->total_rx_packets += total_rx_packets;
1243         netdev->stats.rx_bytes += total_rx_bytes;
1244         netdev->stats.rx_packets += total_rx_packets;
1245         return cleaned;
1246 }
1247
1248 /**
1249  * e1000_consume_page - helper function
1250  **/
1251 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1252                                u16 length)
1253 {
1254         bi->page = NULL;
1255         skb->len += length;
1256         skb->data_len += length;
1257         skb->truesize += length;
1258 }
1259
1260 /**
1261  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1262  * @adapter: board private structure
1263  *
1264  * the return value indicates whether actual cleaning was done, there
1265  * is no guarantee that everything was cleaned
1266  **/
1267
1268 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1269                                      int *work_done, int work_to_do)
1270 {
1271         struct net_device *netdev = adapter->netdev;
1272         struct pci_dev *pdev = adapter->pdev;
1273         struct e1000_ring *rx_ring = adapter->rx_ring;
1274         struct e1000_rx_desc *rx_desc, *next_rxd;
1275         struct e1000_buffer *buffer_info, *next_buffer;
1276         u32 length;
1277         unsigned int i;
1278         int cleaned_count = 0;
1279         bool cleaned = false;
1280         unsigned int total_rx_bytes=0, total_rx_packets=0;
1281
1282         i = rx_ring->next_to_clean;
1283         rx_desc = E1000_RX_DESC(*rx_ring, i);
1284         buffer_info = &rx_ring->buffer_info[i];
1285
1286         while (rx_desc->status & E1000_RXD_STAT_DD) {
1287                 struct sk_buff *skb;
1288                 u8 status;
1289
1290                 if (*work_done >= work_to_do)
1291                         break;
1292                 (*work_done)++;
1293
1294                 status = rx_desc->status;
1295                 skb = buffer_info->skb;
1296                 buffer_info->skb = NULL;
1297
1298                 ++i;
1299                 if (i == rx_ring->count)
1300                         i = 0;
1301                 next_rxd = E1000_RX_DESC(*rx_ring, i);
1302                 prefetch(next_rxd);
1303
1304                 next_buffer = &rx_ring->buffer_info[i];
1305
1306                 cleaned = true;
1307                 cleaned_count++;
1308                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1309                                DMA_FROM_DEVICE);
1310                 buffer_info->dma = 0;
1311
1312                 length = le16_to_cpu(rx_desc->length);
1313
1314                 /* errors is only valid for DD + EOP descriptors */
1315                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1316                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1317                                 /* recycle both page and skb */
1318                                 buffer_info->skb = skb;
1319                                 /* an error means any chain goes out the window
1320                                  * too */
1321                                 if (rx_ring->rx_skb_top)
1322                                         dev_kfree_skb(rx_ring->rx_skb_top);
1323                                 rx_ring->rx_skb_top = NULL;
1324                                 goto next_desc;
1325                 }
1326
1327 #define rxtop rx_ring->rx_skb_top
1328                 if (!(status & E1000_RXD_STAT_EOP)) {
1329                         /* this descriptor is only the beginning (or middle) */
1330                         if (!rxtop) {
1331                                 /* this is the beginning of a chain */
1332                                 rxtop = skb;
1333                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1334                                                    0, length);
1335                         } else {
1336                                 /* this is the middle of a chain */
1337                                 skb_fill_page_desc(rxtop,
1338                                     skb_shinfo(rxtop)->nr_frags,
1339                                     buffer_info->page, 0, length);
1340                                 /* re-use the skb, only consumed the page */
1341                                 buffer_info->skb = skb;
1342                         }
1343                         e1000_consume_page(buffer_info, rxtop, length);
1344                         goto next_desc;
1345                 } else {
1346                         if (rxtop) {
1347                                 /* end of the chain */
1348                                 skb_fill_page_desc(rxtop,
1349                                     skb_shinfo(rxtop)->nr_frags,
1350                                     buffer_info->page, 0, length);
1351                                 /* re-use the current skb, we only consumed the
1352                                  * page */
1353                                 buffer_info->skb = skb;
1354                                 skb = rxtop;
1355                                 rxtop = NULL;
1356                                 e1000_consume_page(buffer_info, skb, length);
1357                         } else {
1358                                 /* no chain, got EOP, this buf is the packet
1359                                  * copybreak to save the put_page/alloc_page */
1360                                 if (length <= copybreak &&
1361                                     skb_tailroom(skb) >= length) {
1362                                         u8 *vaddr;
1363                                         vaddr = kmap_atomic(buffer_info->page,
1364                                                            KM_SKB_DATA_SOFTIRQ);
1365                                         memcpy(skb_tail_pointer(skb), vaddr,
1366                                                length);
1367                                         kunmap_atomic(vaddr,
1368                                                       KM_SKB_DATA_SOFTIRQ);
1369                                         /* re-use the page, so don't erase
1370                                          * buffer_info->page */
1371                                         skb_put(skb, length);
1372                                 } else {
1373                                         skb_fill_page_desc(skb, 0,
1374                                                            buffer_info->page, 0,
1375                                                            length);
1376                                         e1000_consume_page(buffer_info, skb,
1377                                                            length);
1378                                 }
1379                         }
1380                 }
1381
1382                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1383                 e1000_rx_checksum(adapter,
1384                                   (u32)(status) |
1385                                   ((u32)(rx_desc->errors) << 24),
1386                                   le16_to_cpu(rx_desc->csum), skb);
1387
1388                 /* probably a little skewed due to removing CRC */
1389                 total_rx_bytes += skb->len;
1390                 total_rx_packets++;
1391
1392                 /* eth type trans needs skb->data to point to something */
1393                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1394                         e_err("pskb_may_pull failed.\n");
1395                         dev_kfree_skb(skb);
1396                         goto next_desc;
1397                 }
1398
1399                 e1000_receive_skb(adapter, netdev, skb, status,
1400                                   rx_desc->special);
1401
1402 next_desc:
1403                 rx_desc->status = 0;
1404
1405                 /* return some buffers to hardware, one at a time is too slow */
1406                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1407                         adapter->alloc_rx_buf(adapter, cleaned_count);
1408                         cleaned_count = 0;
1409                 }
1410
1411                 /* use prefetched values */
1412                 rx_desc = next_rxd;
1413                 buffer_info = next_buffer;
1414         }
1415         rx_ring->next_to_clean = i;
1416
1417         cleaned_count = e1000_desc_unused(rx_ring);
1418         if (cleaned_count)
1419                 adapter->alloc_rx_buf(adapter, cleaned_count);
1420
1421         adapter->total_rx_bytes += total_rx_bytes;
1422         adapter->total_rx_packets += total_rx_packets;
1423         netdev->stats.rx_bytes += total_rx_bytes;
1424         netdev->stats.rx_packets += total_rx_packets;
1425         return cleaned;
1426 }
1427
1428 /**
1429  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1430  * @adapter: board private structure
1431  **/
1432 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1433 {
1434         struct e1000_ring *rx_ring = adapter->rx_ring;
1435         struct e1000_buffer *buffer_info;
1436         struct e1000_ps_page *ps_page;
1437         struct pci_dev *pdev = adapter->pdev;
1438         unsigned int i, j;
1439
1440         /* Free all the Rx ring sk_buffs */
1441         for (i = 0; i < rx_ring->count; i++) {
1442                 buffer_info = &rx_ring->buffer_info[i];
1443                 if (buffer_info->dma) {
1444                         if (adapter->clean_rx == e1000_clean_rx_irq)
1445                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1446                                                  adapter->rx_buffer_len,
1447                                                  DMA_FROM_DEVICE);
1448                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1449                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1450                                                PAGE_SIZE,
1451                                                DMA_FROM_DEVICE);
1452                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1453                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1454                                                  adapter->rx_ps_bsize0,
1455                                                  DMA_FROM_DEVICE);
1456                         buffer_info->dma = 0;
1457                 }
1458
1459                 if (buffer_info->page) {
1460                         put_page(buffer_info->page);
1461                         buffer_info->page = NULL;
1462                 }
1463
1464                 if (buffer_info->skb) {
1465                         dev_kfree_skb(buffer_info->skb);
1466                         buffer_info->skb = NULL;
1467                 }
1468
1469                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1470                         ps_page = &buffer_info->ps_pages[j];
1471                         if (!ps_page->page)
1472                                 break;
1473                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1474                                        DMA_FROM_DEVICE);
1475                         ps_page->dma = 0;
1476                         put_page(ps_page->page);
1477                         ps_page->page = NULL;
1478                 }
1479         }
1480
1481         /* there also may be some cached data from a chained receive */
1482         if (rx_ring->rx_skb_top) {
1483                 dev_kfree_skb(rx_ring->rx_skb_top);
1484                 rx_ring->rx_skb_top = NULL;
1485         }
1486
1487         /* Zero out the descriptor ring */
1488         memset(rx_ring->desc, 0, rx_ring->size);
1489
1490         rx_ring->next_to_clean = 0;
1491         rx_ring->next_to_use = 0;
1492         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1493
1494         writel(0, adapter->hw.hw_addr + rx_ring->head);
1495         writel(0, adapter->hw.hw_addr + rx_ring->tail);
1496 }
1497
1498 static void e1000e_downshift_workaround(struct work_struct *work)
1499 {
1500         struct e1000_adapter *adapter = container_of(work,
1501                                         struct e1000_adapter, downshift_task);
1502
1503         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1504 }
1505
1506 /**
1507  * e1000_intr_msi - Interrupt Handler
1508  * @irq: interrupt number
1509  * @data: pointer to a network interface device structure
1510  **/
1511 static irqreturn_t e1000_intr_msi(int irq, void *data)
1512 {
1513         struct net_device *netdev = data;
1514         struct e1000_adapter *adapter = netdev_priv(netdev);
1515         struct e1000_hw *hw = &adapter->hw;
1516         u32 icr = er32(ICR);
1517
1518         /*
1519          * read ICR disables interrupts using IAM
1520          */
1521
1522         if (icr & E1000_ICR_LSC) {
1523                 hw->mac.get_link_status = 1;
1524                 /*
1525                  * ICH8 workaround-- Call gig speed drop workaround on cable
1526                  * disconnect (LSC) before accessing any PHY registers
1527                  */
1528                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1529                     (!(er32(STATUS) & E1000_STATUS_LU)))
1530                         schedule_work(&adapter->downshift_task);
1531
1532                 /*
1533                  * 80003ES2LAN workaround-- For packet buffer work-around on
1534                  * link down event; disable receives here in the ISR and reset
1535                  * adapter in watchdog
1536                  */
1537                 if (netif_carrier_ok(netdev) &&
1538                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1539                         /* disable receives */
1540                         u32 rctl = er32(RCTL);
1541                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1542                         adapter->flags |= FLAG_RX_RESTART_NOW;
1543                 }
1544                 /* guard against interrupt when we're going down */
1545                 if (!test_bit(__E1000_DOWN, &adapter->state))
1546                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1547         }
1548
1549         if (napi_schedule_prep(&adapter->napi)) {
1550                 adapter->total_tx_bytes = 0;
1551                 adapter->total_tx_packets = 0;
1552                 adapter->total_rx_bytes = 0;
1553                 adapter->total_rx_packets = 0;
1554                 __napi_schedule(&adapter->napi);
1555         }
1556
1557         return IRQ_HANDLED;
1558 }
1559
1560 /**
1561  * e1000_intr - Interrupt Handler
1562  * @irq: interrupt number
1563  * @data: pointer to a network interface device structure
1564  **/
1565 static irqreturn_t e1000_intr(int irq, void *data)
1566 {
1567         struct net_device *netdev = data;
1568         struct e1000_adapter *adapter = netdev_priv(netdev);
1569         struct e1000_hw *hw = &adapter->hw;
1570         u32 rctl, icr = er32(ICR);
1571
1572         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1573                 return IRQ_NONE;  /* Not our interrupt */
1574
1575         /*
1576          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1577          * not set, then the adapter didn't send an interrupt
1578          */
1579         if (!(icr & E1000_ICR_INT_ASSERTED))
1580                 return IRQ_NONE;
1581
1582         /*
1583          * Interrupt Auto-Mask...upon reading ICR,
1584          * interrupts are masked.  No need for the
1585          * IMC write
1586          */
1587
1588         if (icr & E1000_ICR_LSC) {
1589                 hw->mac.get_link_status = 1;
1590                 /*
1591                  * ICH8 workaround-- Call gig speed drop workaround on cable
1592                  * disconnect (LSC) before accessing any PHY registers
1593                  */
1594                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1595                     (!(er32(STATUS) & E1000_STATUS_LU)))
1596                         schedule_work(&adapter->downshift_task);
1597
1598                 /*
1599                  * 80003ES2LAN workaround--
1600                  * For packet buffer work-around on link down event;
1601                  * disable receives here in the ISR and
1602                  * reset adapter in watchdog
1603                  */
1604                 if (netif_carrier_ok(netdev) &&
1605                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1606                         /* disable receives */
1607                         rctl = er32(RCTL);
1608                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1609                         adapter->flags |= FLAG_RX_RESTART_NOW;
1610                 }
1611                 /* guard against interrupt when we're going down */
1612                 if (!test_bit(__E1000_DOWN, &adapter->state))
1613                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1614         }
1615
1616         if (napi_schedule_prep(&adapter->napi)) {
1617                 adapter->total_tx_bytes = 0;
1618                 adapter->total_tx_packets = 0;
1619                 adapter->total_rx_bytes = 0;
1620                 adapter->total_rx_packets = 0;
1621                 __napi_schedule(&adapter->napi);
1622         }
1623
1624         return IRQ_HANDLED;
1625 }
1626
1627 static irqreturn_t e1000_msix_other(int irq, void *data)
1628 {
1629         struct net_device *netdev = data;
1630         struct e1000_adapter *adapter = netdev_priv(netdev);
1631         struct e1000_hw *hw = &adapter->hw;
1632         u32 icr = er32(ICR);
1633
1634         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1635                 if (!test_bit(__E1000_DOWN, &adapter->state))
1636                         ew32(IMS, E1000_IMS_OTHER);
1637                 return IRQ_NONE;
1638         }
1639
1640         if (icr & adapter->eiac_mask)
1641                 ew32(ICS, (icr & adapter->eiac_mask));
1642
1643         if (icr & E1000_ICR_OTHER) {
1644                 if (!(icr & E1000_ICR_LSC))
1645                         goto no_link_interrupt;
1646                 hw->mac.get_link_status = 1;
1647                 /* guard against interrupt when we're going down */
1648                 if (!test_bit(__E1000_DOWN, &adapter->state))
1649                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1650         }
1651
1652 no_link_interrupt:
1653         if (!test_bit(__E1000_DOWN, &adapter->state))
1654                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1655
1656         return IRQ_HANDLED;
1657 }
1658
1659
1660 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1661 {
1662         struct net_device *netdev = data;
1663         struct e1000_adapter *adapter = netdev_priv(netdev);
1664         struct e1000_hw *hw = &adapter->hw;
1665         struct e1000_ring *tx_ring = adapter->tx_ring;
1666
1667
1668         adapter->total_tx_bytes = 0;
1669         adapter->total_tx_packets = 0;
1670
1671         if (!e1000_clean_tx_irq(adapter))
1672                 /* Ring was not completely cleaned, so fire another interrupt */
1673                 ew32(ICS, tx_ring->ims_val);
1674
1675         return IRQ_HANDLED;
1676 }
1677
1678 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1679 {
1680         struct net_device *netdev = data;
1681         struct e1000_adapter *adapter = netdev_priv(netdev);
1682
1683         /* Write the ITR value calculated at the end of the
1684          * previous interrupt.
1685          */
1686         if (adapter->rx_ring->set_itr) {
1687                 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1688                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1689                 adapter->rx_ring->set_itr = 0;
1690         }
1691
1692         if (napi_schedule_prep(&adapter->napi)) {
1693                 adapter->total_rx_bytes = 0;
1694                 adapter->total_rx_packets = 0;
1695                 __napi_schedule(&adapter->napi);
1696         }
1697         return IRQ_HANDLED;
1698 }
1699
1700 /**
1701  * e1000_configure_msix - Configure MSI-X hardware
1702  *
1703  * e1000_configure_msix sets up the hardware to properly
1704  * generate MSI-X interrupts.
1705  **/
1706 static void e1000_configure_msix(struct e1000_adapter *adapter)
1707 {
1708         struct e1000_hw *hw = &adapter->hw;
1709         struct e1000_ring *rx_ring = adapter->rx_ring;
1710         struct e1000_ring *tx_ring = adapter->tx_ring;
1711         int vector = 0;
1712         u32 ctrl_ext, ivar = 0;
1713
1714         adapter->eiac_mask = 0;
1715
1716         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1717         if (hw->mac.type == e1000_82574) {
1718                 u32 rfctl = er32(RFCTL);
1719                 rfctl |= E1000_RFCTL_ACK_DIS;
1720                 ew32(RFCTL, rfctl);
1721         }
1722
1723 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1724         /* Configure Rx vector */
1725         rx_ring->ims_val = E1000_IMS_RXQ0;
1726         adapter->eiac_mask |= rx_ring->ims_val;
1727         if (rx_ring->itr_val)
1728                 writel(1000000000 / (rx_ring->itr_val * 256),
1729                        hw->hw_addr + rx_ring->itr_register);
1730         else
1731                 writel(1, hw->hw_addr + rx_ring->itr_register);
1732         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1733
1734         /* Configure Tx vector */
1735         tx_ring->ims_val = E1000_IMS_TXQ0;
1736         vector++;
1737         if (tx_ring->itr_val)
1738                 writel(1000000000 / (tx_ring->itr_val * 256),
1739                        hw->hw_addr + tx_ring->itr_register);
1740         else
1741                 writel(1, hw->hw_addr + tx_ring->itr_register);
1742         adapter->eiac_mask |= tx_ring->ims_val;
1743         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1744
1745         /* set vector for Other Causes, e.g. link changes */
1746         vector++;
1747         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1748         if (rx_ring->itr_val)
1749                 writel(1000000000 / (rx_ring->itr_val * 256),
1750                        hw->hw_addr + E1000_EITR_82574(vector));
1751         else
1752                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1753
1754         /* Cause Tx interrupts on every write back */
1755         ivar |= (1 << 31);
1756
1757         ew32(IVAR, ivar);
1758
1759         /* enable MSI-X PBA support */
1760         ctrl_ext = er32(CTRL_EXT);
1761         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1762
1763         /* Auto-Mask Other interrupts upon ICR read */
1764 #define E1000_EIAC_MASK_82574   0x01F00000
1765         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1766         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1767         ew32(CTRL_EXT, ctrl_ext);
1768         e1e_flush();
1769 }
1770
1771 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1772 {
1773         if (adapter->msix_entries) {
1774                 pci_disable_msix(adapter->pdev);
1775                 kfree(adapter->msix_entries);
1776                 adapter->msix_entries = NULL;
1777         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1778                 pci_disable_msi(adapter->pdev);
1779                 adapter->flags &= ~FLAG_MSI_ENABLED;
1780         }
1781
1782         return;
1783 }
1784
1785 /**
1786  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1787  *
1788  * Attempt to configure interrupts using the best available
1789  * capabilities of the hardware and kernel.
1790  **/
1791 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1792 {
1793         int err;
1794         int numvecs, i;
1795
1796
1797         switch (adapter->int_mode) {
1798         case E1000E_INT_MODE_MSIX:
1799                 if (adapter->flags & FLAG_HAS_MSIX) {
1800                         numvecs = 3; /* RxQ0, TxQ0 and other */
1801                         adapter->msix_entries = kcalloc(numvecs,
1802                                                       sizeof(struct msix_entry),
1803                                                       GFP_KERNEL);
1804                         if (adapter->msix_entries) {
1805                                 for (i = 0; i < numvecs; i++)
1806                                         adapter->msix_entries[i].entry = i;
1807
1808                                 err = pci_enable_msix(adapter->pdev,
1809                                                       adapter->msix_entries,
1810                                                       numvecs);
1811                                 if (err == 0)
1812                                         return;
1813                         }
1814                         /* MSI-X failed, so fall through and try MSI */
1815                         e_err("Failed to initialize MSI-X interrupts.  "
1816                               "Falling back to MSI interrupts.\n");
1817                         e1000e_reset_interrupt_capability(adapter);
1818                 }
1819                 adapter->int_mode = E1000E_INT_MODE_MSI;
1820                 /* Fall through */
1821         case E1000E_INT_MODE_MSI:
1822                 if (!pci_enable_msi(adapter->pdev)) {
1823                         adapter->flags |= FLAG_MSI_ENABLED;
1824                 } else {
1825                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1826                         e_err("Failed to initialize MSI interrupts.  Falling "
1827                               "back to legacy interrupts.\n");
1828                 }
1829                 /* Fall through */
1830         case E1000E_INT_MODE_LEGACY:
1831                 /* Don't do anything; this is the system default */
1832                 break;
1833         }
1834
1835         return;
1836 }
1837
1838 /**
1839  * e1000_request_msix - Initialize MSI-X interrupts
1840  *
1841  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1842  * kernel.
1843  **/
1844 static int e1000_request_msix(struct e1000_adapter *adapter)
1845 {
1846         struct net_device *netdev = adapter->netdev;
1847         int err = 0, vector = 0;
1848
1849         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1850                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1851         else
1852                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1853         err = request_irq(adapter->msix_entries[vector].vector,
1854                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1855                           netdev);
1856         if (err)
1857                 goto out;
1858         adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1859         adapter->rx_ring->itr_val = adapter->itr;
1860         vector++;
1861
1862         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1863                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1864         else
1865                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1866         err = request_irq(adapter->msix_entries[vector].vector,
1867                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1868                           netdev);
1869         if (err)
1870                 goto out;
1871         adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1872         adapter->tx_ring->itr_val = adapter->itr;
1873         vector++;
1874
1875         err = request_irq(adapter->msix_entries[vector].vector,
1876                           e1000_msix_other, 0, netdev->name, netdev);
1877         if (err)
1878                 goto out;
1879
1880         e1000_configure_msix(adapter);
1881         return 0;
1882 out:
1883         return err;
1884 }
1885
1886 /**
1887  * e1000_request_irq - initialize interrupts
1888  *
1889  * Attempts to configure interrupts using the best available
1890  * capabilities of the hardware and kernel.
1891  **/
1892 static int e1000_request_irq(struct e1000_adapter *adapter)
1893 {
1894         struct net_device *netdev = adapter->netdev;
1895         int err;
1896
1897         if (adapter->msix_entries) {
1898                 err = e1000_request_msix(adapter);
1899                 if (!err)
1900                         return err;
1901                 /* fall back to MSI */
1902                 e1000e_reset_interrupt_capability(adapter);
1903                 adapter->int_mode = E1000E_INT_MODE_MSI;
1904                 e1000e_set_interrupt_capability(adapter);
1905         }
1906         if (adapter->flags & FLAG_MSI_ENABLED) {
1907                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1908                                   netdev->name, netdev);
1909                 if (!err)
1910                         return err;
1911
1912                 /* fall back to legacy interrupt */
1913                 e1000e_reset_interrupt_capability(adapter);
1914                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1915         }
1916
1917         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1918                           netdev->name, netdev);
1919         if (err)
1920                 e_err("Unable to allocate interrupt, Error: %d\n", err);
1921
1922         return err;
1923 }
1924
1925 static void e1000_free_irq(struct e1000_adapter *adapter)
1926 {
1927         struct net_device *netdev = adapter->netdev;
1928
1929         if (adapter->msix_entries) {
1930                 int vector = 0;
1931
1932                 free_irq(adapter->msix_entries[vector].vector, netdev);
1933                 vector++;
1934
1935                 free_irq(adapter->msix_entries[vector].vector, netdev);
1936                 vector++;
1937
1938                 /* Other Causes interrupt vector */
1939                 free_irq(adapter->msix_entries[vector].vector, netdev);
1940                 return;
1941         }
1942
1943         free_irq(adapter->pdev->irq, netdev);
1944 }
1945
1946 /**
1947  * e1000_irq_disable - Mask off interrupt generation on the NIC
1948  **/
1949 static void e1000_irq_disable(struct e1000_adapter *adapter)
1950 {
1951         struct e1000_hw *hw = &adapter->hw;
1952
1953         ew32(IMC, ~0);
1954         if (adapter->msix_entries)
1955                 ew32(EIAC_82574, 0);
1956         e1e_flush();
1957         synchronize_irq(adapter->pdev->irq);
1958 }
1959
1960 /**
1961  * e1000_irq_enable - Enable default interrupt generation settings
1962  **/
1963 static void e1000_irq_enable(struct e1000_adapter *adapter)
1964 {
1965         struct e1000_hw *hw = &adapter->hw;
1966
1967         if (adapter->msix_entries) {
1968                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1969                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1970         } else {
1971                 ew32(IMS, IMS_ENABLE_MASK);
1972         }
1973         e1e_flush();
1974 }
1975
1976 /**
1977  * e1000_get_hw_control - get control of the h/w from f/w
1978  * @adapter: address of board private structure
1979  *
1980  * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1981  * For ASF and Pass Through versions of f/w this means that
1982  * the driver is loaded. For AMT version (only with 82573)
1983  * of the f/w this means that the network i/f is open.
1984  **/
1985 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1986 {
1987         struct e1000_hw *hw = &adapter->hw;
1988         u32 ctrl_ext;
1989         u32 swsm;
1990
1991         /* Let firmware know the driver has taken over */
1992         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1993                 swsm = er32(SWSM);
1994                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1995         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1996                 ctrl_ext = er32(CTRL_EXT);
1997                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1998         }
1999 }
2000
2001 /**
2002  * e1000_release_hw_control - release control of the h/w to f/w
2003  * @adapter: address of board private structure
2004  *
2005  * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2006  * For ASF and Pass Through versions of f/w this means that the
2007  * driver is no longer loaded. For AMT version (only with 82573) i
2008  * of the f/w this means that the network i/f is closed.
2009  *
2010  **/
2011 static void e1000_release_hw_control(struct e1000_adapter *adapter)
2012 {
2013         struct e1000_hw *hw = &adapter->hw;
2014         u32 ctrl_ext;
2015         u32 swsm;
2016
2017         /* Let firmware taken over control of h/w */
2018         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2019                 swsm = er32(SWSM);
2020                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2021         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2022                 ctrl_ext = er32(CTRL_EXT);
2023                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2024         }
2025 }
2026
2027 /**
2028  * @e1000_alloc_ring - allocate memory for a ring structure
2029  **/
2030 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2031                                 struct e1000_ring *ring)
2032 {
2033         struct pci_dev *pdev = adapter->pdev;
2034
2035         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2036                                         GFP_KERNEL);
2037         if (!ring->desc)
2038                 return -ENOMEM;
2039
2040         return 0;
2041 }
2042
2043 /**
2044  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2045  * @adapter: board private structure
2046  *
2047  * Return 0 on success, negative on failure
2048  **/
2049 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2050 {
2051         struct e1000_ring *tx_ring = adapter->tx_ring;
2052         int err = -ENOMEM, size;
2053
2054         size = sizeof(struct e1000_buffer) * tx_ring->count;
2055         tx_ring->buffer_info = vmalloc(size);
2056         if (!tx_ring->buffer_info)
2057                 goto err;
2058         memset(tx_ring->buffer_info, 0, size);
2059
2060         /* round up to nearest 4K */
2061         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2062         tx_ring->size = ALIGN(tx_ring->size, 4096);
2063
2064         err = e1000_alloc_ring_dma(adapter, tx_ring);
2065         if (err)
2066                 goto err;
2067
2068         tx_ring->next_to_use = 0;
2069         tx_ring->next_to_clean = 0;
2070
2071         return 0;
2072 err:
2073         vfree(tx_ring->buffer_info);
2074         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2075         return err;
2076 }
2077
2078 /**
2079  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2080  * @adapter: board private structure
2081  *
2082  * Returns 0 on success, negative on failure
2083  **/
2084 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2085 {
2086         struct e1000_ring *rx_ring = adapter->rx_ring;
2087         struct e1000_buffer *buffer_info;
2088         int i, size, desc_len, err = -ENOMEM;
2089
2090         size = sizeof(struct e1000_buffer) * rx_ring->count;
2091         rx_ring->buffer_info = vmalloc(size);
2092         if (!rx_ring->buffer_info)
2093                 goto err;
2094         memset(rx_ring->buffer_info, 0, size);
2095
2096         for (i = 0; i < rx_ring->count; i++) {
2097                 buffer_info = &rx_ring->buffer_info[i];
2098                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2099                                                 sizeof(struct e1000_ps_page),
2100                                                 GFP_KERNEL);
2101                 if (!buffer_info->ps_pages)
2102                         goto err_pages;
2103         }
2104
2105         desc_len = sizeof(union e1000_rx_desc_packet_split);
2106
2107         /* Round up to nearest 4K */
2108         rx_ring->size = rx_ring->count * desc_len;
2109         rx_ring->size = ALIGN(rx_ring->size, 4096);
2110
2111         err = e1000_alloc_ring_dma(adapter, rx_ring);
2112         if (err)
2113                 goto err_pages;
2114
2115         rx_ring->next_to_clean = 0;
2116         rx_ring->next_to_use = 0;
2117         rx_ring->rx_skb_top = NULL;
2118
2119         return 0;
2120
2121 err_pages:
2122         for (i = 0; i < rx_ring->count; i++) {
2123                 buffer_info = &rx_ring->buffer_info[i];
2124                 kfree(buffer_info->ps_pages);
2125         }
2126 err:
2127         vfree(rx_ring->buffer_info);
2128         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2129         return err;
2130 }
2131
2132 /**
2133  * e1000_clean_tx_ring - Free Tx Buffers
2134  * @adapter: board private structure
2135  **/
2136 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2137 {
2138         struct e1000_ring *tx_ring = adapter->tx_ring;
2139         struct e1000_buffer *buffer_info;
2140         unsigned long size;
2141         unsigned int i;
2142
2143         for (i = 0; i < tx_ring->count; i++) {
2144                 buffer_info = &tx_ring->buffer_info[i];
2145                 e1000_put_txbuf(adapter, buffer_info);
2146         }
2147
2148         size = sizeof(struct e1000_buffer) * tx_ring->count;
2149         memset(tx_ring->buffer_info, 0, size);
2150
2151         memset(tx_ring->desc, 0, tx_ring->size);
2152
2153         tx_ring->next_to_use = 0;
2154         tx_ring->next_to_clean = 0;
2155
2156         writel(0, adapter->hw.hw_addr + tx_ring->head);
2157         writel(0, adapter->hw.hw_addr + tx_ring->tail);
2158 }
2159
2160 /**
2161  * e1000e_free_tx_resources - Free Tx Resources per Queue
2162  * @adapter: board private structure
2163  *
2164  * Free all transmit software resources
2165  **/
2166 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2167 {
2168         struct pci_dev *pdev = adapter->pdev;
2169         struct e1000_ring *tx_ring = adapter->tx_ring;
2170
2171         e1000_clean_tx_ring(adapter);
2172
2173         vfree(tx_ring->buffer_info);
2174         tx_ring->buffer_info = NULL;
2175
2176         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2177                           tx_ring->dma);
2178         tx_ring->desc = NULL;
2179 }
2180
2181 /**
2182  * e1000e_free_rx_resources - Free Rx Resources
2183  * @adapter: board private structure
2184  *
2185  * Free all receive software resources
2186  **/
2187
2188 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2189 {
2190         struct pci_dev *pdev = adapter->pdev;
2191         struct e1000_ring *rx_ring = adapter->rx_ring;
2192         int i;
2193
2194         e1000_clean_rx_ring(adapter);
2195
2196         for (i = 0; i < rx_ring->count; i++) {
2197                 kfree(rx_ring->buffer_info[i].ps_pages);
2198         }
2199
2200         vfree(rx_ring->buffer_info);
2201         rx_ring->buffer_info = NULL;
2202
2203         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2204                           rx_ring->dma);
2205         rx_ring->desc = NULL;
2206 }
2207
2208 /**
2209  * e1000_update_itr - update the dynamic ITR value based on statistics
2210  * @adapter: pointer to adapter
2211  * @itr_setting: current adapter->itr
2212  * @packets: the number of packets during this measurement interval
2213  * @bytes: the number of bytes during this measurement interval
2214  *
2215  *      Stores a new ITR value based on packets and byte
2216  *      counts during the last interrupt.  The advantage of per interrupt
2217  *      computation is faster updates and more accurate ITR for the current
2218  *      traffic pattern.  Constants in this function were computed
2219  *      based on theoretical maximum wire speed and thresholds were set based
2220  *      on testing data as well as attempting to minimize response time
2221  *      while increasing bulk throughput.  This functionality is controlled
2222  *      by the InterruptThrottleRate module parameter.
2223  **/
2224 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2225                                      u16 itr_setting, int packets,
2226                                      int bytes)
2227 {
2228         unsigned int retval = itr_setting;
2229
2230         if (packets == 0)
2231                 goto update_itr_done;
2232
2233         switch (itr_setting) {
2234         case lowest_latency:
2235                 /* handle TSO and jumbo frames */
2236                 if (bytes/packets > 8000)
2237                         retval = bulk_latency;
2238                 else if ((packets < 5) && (bytes > 512)) {
2239                         retval = low_latency;
2240                 }
2241                 break;
2242         case low_latency:  /* 50 usec aka 20000 ints/s */
2243                 if (bytes > 10000) {
2244                         /* this if handles the TSO accounting */
2245                         if (bytes/packets > 8000) {
2246                                 retval = bulk_latency;
2247                         } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2248                                 retval = bulk_latency;
2249                         } else if ((packets > 35)) {
2250                                 retval = lowest_latency;
2251                         }
2252                 } else if (bytes/packets > 2000) {
2253                         retval = bulk_latency;
2254                 } else if (packets <= 2 && bytes < 512) {
2255                         retval = lowest_latency;
2256                 }
2257                 break;
2258         case bulk_latency: /* 250 usec aka 4000 ints/s */
2259                 if (bytes > 25000) {
2260                         if (packets > 35) {
2261                                 retval = low_latency;
2262                         }
2263                 } else if (bytes < 6000) {
2264                         retval = low_latency;
2265                 }
2266                 break;
2267         }
2268
2269 update_itr_done:
2270         return retval;
2271 }
2272
2273 static void e1000_set_itr(struct e1000_adapter *adapter)
2274 {
2275         struct e1000_hw *hw = &adapter->hw;
2276         u16 current_itr;
2277         u32 new_itr = adapter->itr;
2278
2279         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2280         if (adapter->link_speed != SPEED_1000) {
2281                 current_itr = 0;
2282                 new_itr = 4000;
2283                 goto set_itr_now;
2284         }
2285
2286         adapter->tx_itr = e1000_update_itr(adapter,
2287                                     adapter->tx_itr,
2288                                     adapter->total_tx_packets,
2289                                     adapter->total_tx_bytes);
2290         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2291         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2292                 adapter->tx_itr = low_latency;
2293
2294         adapter->rx_itr = e1000_update_itr(adapter,
2295                                     adapter->rx_itr,
2296                                     adapter->total_rx_packets,
2297                                     adapter->total_rx_bytes);
2298         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2299         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2300                 adapter->rx_itr = low_latency;
2301
2302         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2303
2304         switch (current_itr) {
2305         /* counts and packets in update_itr are dependent on these numbers */
2306         case lowest_latency:
2307                 new_itr = 70000;
2308                 break;
2309         case low_latency:
2310                 new_itr = 20000; /* aka hwitr = ~200 */
2311                 break;
2312         case bulk_latency:
2313                 new_itr = 4000;
2314                 break;
2315         default:
2316                 break;
2317         }
2318
2319 set_itr_now:
2320         if (new_itr != adapter->itr) {
2321                 /*
2322                  * this attempts to bias the interrupt rate towards Bulk
2323                  * by adding intermediate steps when interrupt rate is
2324                  * increasing
2325                  */
2326                 new_itr = new_itr > adapter->itr ?
2327                              min(adapter->itr + (new_itr >> 2), new_itr) :
2328                              new_itr;
2329                 adapter->itr = new_itr;
2330                 adapter->rx_ring->itr_val = new_itr;
2331                 if (adapter->msix_entries)
2332                         adapter->rx_ring->set_itr = 1;
2333                 else
2334                         ew32(ITR, 1000000000 / (new_itr * 256));
2335         }
2336 }
2337
2338 /**
2339  * e1000_alloc_queues - Allocate memory for all rings
2340  * @adapter: board private structure to initialize
2341  **/
2342 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2343 {
2344         adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2345         if (!adapter->tx_ring)
2346                 goto err;
2347
2348         adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2349         if (!adapter->rx_ring)
2350                 goto err;
2351
2352         return 0;
2353 err:
2354         e_err("Unable to allocate memory for queues\n");
2355         kfree(adapter->rx_ring);
2356         kfree(adapter->tx_ring);
2357         return -ENOMEM;
2358 }
2359
2360 /**
2361  * e1000_clean - NAPI Rx polling callback
2362  * @napi: struct associated with this polling callback
2363  * @budget: amount of packets driver is allowed to process this poll
2364  **/
2365 static int e1000_clean(struct napi_struct *napi, int budget)
2366 {
2367         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2368         struct e1000_hw *hw = &adapter->hw;
2369         struct net_device *poll_dev = adapter->netdev;
2370         int tx_cleaned = 1, work_done = 0;
2371
2372         adapter = netdev_priv(poll_dev);
2373
2374         if (adapter->msix_entries &&
2375             !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2376                 goto clean_rx;
2377
2378         tx_cleaned = e1000_clean_tx_irq(adapter);
2379
2380 clean_rx:
2381         adapter->clean_rx(adapter, &work_done, budget);
2382
2383         if (!tx_cleaned)
2384                 work_done = budget;
2385
2386         /* If budget not fully consumed, exit the polling mode */
2387         if (work_done < budget) {
2388                 if (adapter->itr_setting & 3)
2389                         e1000_set_itr(adapter);
2390                 napi_complete(napi);
2391                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2392                         if (adapter->msix_entries)
2393                                 ew32(IMS, adapter->rx_ring->ims_val);
2394                         else
2395                                 e1000_irq_enable(adapter);
2396                 }
2397         }
2398
2399         return work_done;
2400 }
2401
2402 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2403 {
2404         struct e1000_adapter *adapter = netdev_priv(netdev);
2405         struct e1000_hw *hw = &adapter->hw;
2406         u32 vfta, index;
2407
2408         /* don't update vlan cookie if already programmed */
2409         if ((adapter->hw.mng_cookie.status &
2410              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2411             (vid == adapter->mng_vlan_id))
2412                 return;
2413
2414         /* add VID to filter table */
2415         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2416                 index = (vid >> 5) & 0x7F;
2417                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2418                 vfta |= (1 << (vid & 0x1F));
2419                 hw->mac.ops.write_vfta(hw, index, vfta);
2420         }
2421 }
2422
2423 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2424 {
2425         struct e1000_adapter *adapter = netdev_priv(netdev);
2426         struct e1000_hw *hw = &adapter->hw;
2427         u32 vfta, index;
2428
2429         if (!test_bit(__E1000_DOWN, &adapter->state))
2430                 e1000_irq_disable(adapter);
2431         vlan_group_set_device(adapter->vlgrp, vid, NULL);
2432
2433         if (!test_bit(__E1000_DOWN, &adapter->state))
2434                 e1000_irq_enable(adapter);
2435
2436         if ((adapter->hw.mng_cookie.status &
2437              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2438             (vid == adapter->mng_vlan_id)) {
2439                 /* release control to f/w */
2440                 e1000_release_hw_control(adapter);
2441                 return;
2442         }
2443
2444         /* remove VID from filter table */
2445         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2446                 index = (vid >> 5) & 0x7F;
2447                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2448                 vfta &= ~(1 << (vid & 0x1F));
2449                 hw->mac.ops.write_vfta(hw, index, vfta);
2450         }
2451 }
2452
2453 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2454 {
2455         struct net_device *netdev = adapter->netdev;
2456         u16 vid = adapter->hw.mng_cookie.vlan_id;
2457         u16 old_vid = adapter->mng_vlan_id;
2458
2459         if (!adapter->vlgrp)
2460                 return;
2461
2462         if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2463                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2464                 if (adapter->hw.mng_cookie.status &
2465                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2466                         e1000_vlan_rx_add_vid(netdev, vid);
2467                         adapter->mng_vlan_id = vid;
2468                 }
2469
2470                 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2471                                 (vid != old_vid) &&
2472                     !vlan_group_get_device(adapter->vlgrp, old_vid))
2473                         e1000_vlan_rx_kill_vid(netdev, old_vid);
2474         } else {
2475                 adapter->mng_vlan_id = vid;
2476         }
2477 }
2478
2479
2480 static void e1000_vlan_rx_register(struct net_device *netdev,
2481                                    struct vlan_group *grp)
2482 {
2483         struct e1000_adapter *adapter = netdev_priv(netdev);
2484         struct e1000_hw *hw = &adapter->hw;
2485         u32 ctrl, rctl;
2486
2487         if (!test_bit(__E1000_DOWN, &adapter->state))
2488                 e1000_irq_disable(adapter);
2489         adapter->vlgrp = grp;
2490
2491         if (grp) {
2492                 /* enable VLAN tag insert/strip */
2493                 ctrl = er32(CTRL);
2494                 ctrl |= E1000_CTRL_VME;
2495                 ew32(CTRL, ctrl);
2496
2497                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2498                         /* enable VLAN receive filtering */
2499                         rctl = er32(RCTL);
2500                         rctl &= ~E1000_RCTL_CFIEN;
2501                         ew32(RCTL, rctl);
2502                         e1000_update_mng_vlan(adapter);
2503                 }
2504         } else {
2505                 /* disable VLAN tag insert/strip */
2506                 ctrl = er32(CTRL);
2507                 ctrl &= ~E1000_CTRL_VME;
2508                 ew32(CTRL, ctrl);
2509
2510                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2511                         if (adapter->mng_vlan_id !=
2512                             (u16)E1000_MNG_VLAN_NONE) {
2513                                 e1000_vlan_rx_kill_vid(netdev,
2514                                                        adapter->mng_vlan_id);
2515                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2516                         }
2517                 }
2518         }
2519
2520         if (!test_bit(__E1000_DOWN, &adapter->state))
2521                 e1000_irq_enable(adapter);
2522 }
2523
2524 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2525 {
2526         u16 vid;
2527
2528         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2529
2530         if (!adapter->vlgrp)
2531                 return;
2532
2533         for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2534                 if (!vlan_group_get_device(adapter->vlgrp, vid))
2535                         continue;
2536                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2537         }
2538 }
2539
2540 static void e1000_init_manageability(struct e1000_adapter *adapter)
2541 {
2542         struct e1000_hw *hw = &adapter->hw;
2543         u32 manc, manc2h;
2544
2545         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2546                 return;
2547
2548         manc = er32(MANC);
2549
2550         /*
2551          * enable receiving management packets to the host. this will probably
2552          * generate destination unreachable messages from the host OS, but
2553          * the packets will be handled on SMBUS
2554          */
2555         manc |= E1000_MANC_EN_MNG2HOST;
2556         manc2h = er32(MANC2H);
2557 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2558 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2559         manc2h |= E1000_MNG2HOST_PORT_623;
2560         manc2h |= E1000_MNG2HOST_PORT_664;
2561         ew32(MANC2H, manc2h);
2562         ew32(MANC, manc);
2563 }
2564
2565 /**
2566  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2567  * @adapter: board private structure
2568  *
2569  * Configure the Tx unit of the MAC after a reset.
2570  **/
2571 static void e1000_configure_tx(struct e1000_adapter *adapter)
2572 {
2573         struct e1000_hw *hw = &adapter->hw;
2574         struct e1000_ring *tx_ring = adapter->tx_ring;
2575         u64 tdba;
2576         u32 tdlen, tctl, tipg, tarc;
2577         u32 ipgr1, ipgr2;
2578
2579         /* Setup the HW Tx Head and Tail descriptor pointers */
2580         tdba = tx_ring->dma;
2581         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2582         ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2583         ew32(TDBAH, (tdba >> 32));
2584         ew32(TDLEN, tdlen);
2585         ew32(TDH, 0);
2586         ew32(TDT, 0);
2587         tx_ring->head = E1000_TDH;
2588         tx_ring->tail = E1000_TDT;
2589
2590         /* Set the default values for the Tx Inter Packet Gap timer */
2591         tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2592         ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2593         ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2594
2595         if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2596                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2597
2598         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2599         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2600         ew32(TIPG, tipg);
2601
2602         /* Set the Tx Interrupt Delay register */
2603         ew32(TIDV, adapter->tx_int_delay);
2604         /* Tx irq moderation */
2605         ew32(TADV, adapter->tx_abs_int_delay);
2606
2607         /* Program the Transmit Control Register */
2608         tctl = er32(TCTL);
2609         tctl &= ~E1000_TCTL_CT;
2610         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2611                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2612
2613         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2614                 tarc = er32(TARC(0));
2615                 /*
2616                  * set the speed mode bit, we'll clear it if we're not at
2617                  * gigabit link later
2618                  */
2619 #define SPEED_MODE_BIT (1 << 21)
2620                 tarc |= SPEED_MODE_BIT;
2621                 ew32(TARC(0), tarc);
2622         }
2623
2624         /* errata: program both queues to unweighted RR */
2625         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2626                 tarc = er32(TARC(0));
2627                 tarc |= 1;
2628                 ew32(TARC(0), tarc);
2629                 tarc = er32(TARC(1));
2630                 tarc |= 1;
2631                 ew32(TARC(1), tarc);
2632         }
2633
2634         /* Setup Transmit Descriptor Settings for eop descriptor */
2635         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2636
2637         /* only set IDE if we are delaying interrupts using the timers */
2638         if (adapter->tx_int_delay)
2639                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2640
2641         /* enable Report Status bit */
2642         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2643
2644         ew32(TCTL, tctl);
2645
2646         e1000e_config_collision_dist(hw);
2647 }
2648
2649 /**
2650  * e1000_setup_rctl - configure the receive control registers
2651  * @adapter: Board private structure
2652  **/
2653 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2654                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2655 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2656 {
2657         struct e1000_hw *hw = &adapter->hw;
2658         u32 rctl, rfctl;
2659         u32 psrctl = 0;
2660         u32 pages = 0;
2661
2662         /* Program MC offset vector base */
2663         rctl = er32(RCTL);
2664         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2665         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2666                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2667                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2668
2669         /* Do not Store bad packets */
2670         rctl &= ~E1000_RCTL_SBP;
2671
2672         /* Enable Long Packet receive */
2673         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2674                 rctl &= ~E1000_RCTL_LPE;
2675         else
2676                 rctl |= E1000_RCTL_LPE;
2677
2678         /* Some systems expect that the CRC is included in SMBUS traffic. The
2679          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2680          * host memory when this is enabled
2681          */
2682         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2683                 rctl |= E1000_RCTL_SECRC;
2684
2685         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2686         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2687                 u16 phy_data;
2688
2689                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2690                 phy_data &= 0xfff8;
2691                 phy_data |= (1 << 2);
2692                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2693
2694                 e1e_rphy(hw, 22, &phy_data);
2695                 phy_data &= 0x0fff;
2696                 phy_data |= (1 << 14);
2697                 e1e_wphy(hw, 0x10, 0x2823);
2698                 e1e_wphy(hw, 0x11, 0x0003);
2699                 e1e_wphy(hw, 22, phy_data);
2700         }
2701
2702         /* Setup buffer sizes */
2703         rctl &= ~E1000_RCTL_SZ_4096;
2704         rctl |= E1000_RCTL_BSEX;
2705         switch (adapter->rx_buffer_len) {
2706         case 2048:
2707         default:
2708                 rctl |= E1000_RCTL_SZ_2048;
2709                 rctl &= ~E1000_RCTL_BSEX;
2710                 break;
2711         case 4096:
2712                 rctl |= E1000_RCTL_SZ_4096;
2713                 break;
2714         case 8192:
2715                 rctl |= E1000_RCTL_SZ_8192;
2716                 break;
2717         case 16384:
2718                 rctl |= E1000_RCTL_SZ_16384;
2719                 break;
2720         }
2721
2722         /*
2723          * 82571 and greater support packet-split where the protocol
2724          * header is placed in skb->data and the packet data is
2725          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2726          * In the case of a non-split, skb->data is linearly filled,
2727          * followed by the page buffers.  Therefore, skb->data is
2728          * sized to hold the largest protocol header.
2729          *
2730          * allocations using alloc_page take too long for regular MTU
2731          * so only enable packet split for jumbo frames
2732          *
2733          * Using pages when the page size is greater than 16k wastes
2734          * a lot of memory, since we allocate 3 pages at all times
2735          * per packet.
2736          */
2737         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2738         if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2739             (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2740                 adapter->rx_ps_pages = pages;
2741         else
2742                 adapter->rx_ps_pages = 0;
2743
2744         if (adapter->rx_ps_pages) {
2745                 /* Configure extra packet-split registers */
2746                 rfctl = er32(RFCTL);
2747                 rfctl |= E1000_RFCTL_EXTEN;
2748                 /*
2749                  * disable packet split support for IPv6 extension headers,
2750                  * because some malformed IPv6 headers can hang the Rx
2751                  */
2752                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2753                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
2754
2755                 ew32(RFCTL, rfctl);
2756
2757                 /* Enable Packet split descriptors */
2758                 rctl |= E1000_RCTL_DTYP_PS;
2759
2760                 psrctl |= adapter->rx_ps_bsize0 >>
2761                         E1000_PSRCTL_BSIZE0_SHIFT;
2762
2763                 switch (adapter->rx_ps_pages) {
2764                 case 3:
2765                         psrctl |= PAGE_SIZE <<
2766                                 E1000_PSRCTL_BSIZE3_SHIFT;
2767                 case 2:
2768                         psrctl |= PAGE_SIZE <<
2769                                 E1000_PSRCTL_BSIZE2_SHIFT;
2770                 case 1:
2771                         psrctl |= PAGE_SIZE >>
2772                                 E1000_PSRCTL_BSIZE1_SHIFT;
2773                         break;
2774                 }
2775
2776                 ew32(PSRCTL, psrctl);
2777         }
2778
2779         ew32(RCTL, rctl);
2780         /* just started the receive unit, no need to restart */
2781         adapter->flags &= ~FLAG_RX_RESTART_NOW;
2782 }
2783
2784 /**
2785  * e1000_configure_rx - Configure Receive Unit after Reset
2786  * @adapter: board private structure
2787  *
2788  * Configure the Rx unit of the MAC after a reset.
2789  **/
2790 static void e1000_configure_rx(struct e1000_adapter *adapter)
2791 {
2792         struct e1000_hw *hw = &adapter->hw;
2793         struct e1000_ring *rx_ring = adapter->rx_ring;
2794         u64 rdba;
2795         u32 rdlen, rctl, rxcsum, ctrl_ext;
2796
2797         if (adapter->rx_ps_pages) {
2798                 /* this is a 32 byte descriptor */
2799                 rdlen = rx_ring->count *
2800                         sizeof(union e1000_rx_desc_packet_split);
2801                 adapter->clean_rx = e1000_clean_rx_irq_ps;
2802                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2803         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2804                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2805                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2806                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2807         } else {
2808                 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2809                 adapter->clean_rx = e1000_clean_rx_irq;
2810                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2811         }
2812
2813         /* disable receives while setting up the descriptors */
2814         rctl = er32(RCTL);
2815         ew32(RCTL, rctl & ~E1000_RCTL_EN);
2816         e1e_flush();
2817         msleep(10);
2818
2819         /* set the Receive Delay Timer Register */
2820         ew32(RDTR, adapter->rx_int_delay);
2821
2822         /* irq moderation */
2823         ew32(RADV, adapter->rx_abs_int_delay);
2824         if (adapter->itr_setting != 0)
2825                 ew32(ITR, 1000000000 / (adapter->itr * 256));
2826
2827         ctrl_ext = er32(CTRL_EXT);
2828         /* Auto-Mask interrupts upon ICR access */
2829         ctrl_ext |= E1000_CTRL_EXT_IAME;
2830         ew32(IAM, 0xffffffff);
2831         ew32(CTRL_EXT, ctrl_ext);
2832         e1e_flush();
2833
2834         /*
2835          * Setup the HW Rx Head and Tail Descriptor Pointers and
2836          * the Base and Length of the Rx Descriptor Ring
2837          */
2838         rdba = rx_ring->dma;
2839         ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2840         ew32(RDBAH, (rdba >> 32));
2841         ew32(RDLEN, rdlen);
2842         ew32(RDH, 0);
2843         ew32(RDT, 0);
2844         rx_ring->head = E1000_RDH;
2845         rx_ring->tail = E1000_RDT;
2846
2847         /* Enable Receive Checksum Offload for TCP and UDP */
2848         rxcsum = er32(RXCSUM);
2849         if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2850                 rxcsum |= E1000_RXCSUM_TUOFL;
2851
2852                 /*
2853                  * IPv4 payload checksum for UDP fragments must be
2854                  * used in conjunction with packet-split.
2855                  */
2856                 if (adapter->rx_ps_pages)
2857                         rxcsum |= E1000_RXCSUM_IPPCSE;
2858         } else {
2859                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2860                 /* no need to clear IPPCSE as it defaults to 0 */
2861         }
2862         ew32(RXCSUM, rxcsum);
2863
2864         /*
2865          * Enable early receives on supported devices, only takes effect when
2866          * packet size is equal or larger than the specified value (in 8 byte
2867          * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2868          */
2869         if (adapter->flags & FLAG_HAS_ERT) {
2870                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2871                         u32 rxdctl = er32(RXDCTL(0));
2872                         ew32(RXDCTL(0), rxdctl | 0x3);
2873                         ew32(ERT, E1000_ERT_2048 | (1 << 13));
2874                         /*
2875                          * With jumbo frames and early-receive enabled,
2876                          * excessive C-state transition latencies result in
2877                          * dropped transactions.
2878                          */
2879                         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2880                                                   adapter->netdev->name, 55);
2881                 } else {
2882                         pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2883                                                   adapter->netdev->name,
2884                                                   PM_QOS_DEFAULT_VALUE);
2885                 }
2886         }
2887
2888         /* Enable Receives */
2889         ew32(RCTL, rctl);
2890 }
2891
2892 /**
2893  *  e1000_update_mc_addr_list - Update Multicast addresses
2894  *  @hw: pointer to the HW structure
2895  *  @mc_addr_list: array of multicast addresses to program
2896  *  @mc_addr_count: number of multicast addresses to program
2897  *
2898  *  Updates the Multicast Table Array.
2899  *  The caller must have a packed mc_addr_list of multicast addresses.
2900  **/
2901 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2902                                       u32 mc_addr_count)
2903 {
2904         hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2905 }
2906
2907 /**
2908  * e1000_set_multi - Multicast and Promiscuous mode set
2909  * @netdev: network interface device structure
2910  *
2911  * The set_multi entry point is called whenever the multicast address
2912  * list or the network interface flags are updated.  This routine is
2913  * responsible for configuring the hardware for proper multicast,
2914  * promiscuous mode, and all-multi behavior.
2915  **/
2916 static void e1000_set_multi(struct net_device *netdev)
2917 {
2918         struct e1000_adapter *adapter = netdev_priv(netdev);
2919         struct e1000_hw *hw = &adapter->hw;
2920         struct netdev_hw_addr *ha;
2921         u8  *mta_list;
2922         u32 rctl;
2923         int i;
2924
2925         /* Check for Promiscuous and All Multicast modes */
2926
2927         rctl = er32(RCTL);
2928
2929         if (netdev->flags & IFF_PROMISC) {
2930                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2931                 rctl &= ~E1000_RCTL_VFE;
2932         } else {
2933                 if (netdev->flags & IFF_ALLMULTI) {
2934                         rctl |= E1000_RCTL_MPE;
2935                         rctl &= ~E1000_RCTL_UPE;
2936                 } else {
2937                         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2938                 }
2939                 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2940                         rctl |= E1000_RCTL_VFE;
2941         }
2942
2943         ew32(RCTL, rctl);
2944
2945         if (!netdev_mc_empty(netdev)) {
2946                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
2947                 if (!mta_list)
2948                         return;
2949
2950                 /* prepare a packed array of only addresses. */
2951                 i = 0;
2952                 netdev_for_each_mc_addr(ha, netdev)
2953                         memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
2954
2955                 e1000_update_mc_addr_list(hw, mta_list, i);
2956                 kfree(mta_list);
2957         } else {
2958                 /*
2959                  * if we're called from probe, we might not have
2960                  * anything to do here, so clear out the list
2961                  */
2962                 e1000_update_mc_addr_list(hw, NULL, 0);
2963         }
2964 }
2965
2966 /**
2967  * e1000_configure - configure the hardware for Rx and Tx
2968  * @adapter: private board structure
2969  **/
2970 static void e1000_configure(struct e1000_adapter *adapter)
2971 {
2972         e1000_set_multi(adapter->netdev);
2973
2974         e1000_restore_vlan(adapter);
2975         e1000_init_manageability(adapter);
2976
2977         e1000_configure_tx(adapter);
2978         e1000_setup_rctl(adapter);
2979         e1000_configure_rx(adapter);
2980         adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2981 }
2982
2983 /**
2984  * e1000e_power_up_phy - restore link in case the phy was powered down
2985  * @adapter: address of board private structure
2986  *
2987  * The phy may be powered down to save power and turn off link when the
2988  * driver is unloaded and wake on lan is not enabled (among others)
2989  * *** this routine MUST be followed by a call to e1000e_reset ***
2990  **/
2991 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2992 {
2993         if (adapter->hw.phy.ops.power_up)
2994                 adapter->hw.phy.ops.power_up(&adapter->hw);
2995
2996         adapter->hw.mac.ops.setup_link(&adapter->hw);
2997 }
2998
2999 /**
3000  * e1000_power_down_phy - Power down the PHY
3001  *
3002  * Power down the PHY so no link is implied when interface is down.
3003  * The PHY cannot be powered down if management or WoL is active.
3004  */
3005 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3006 {
3007         /* WoL is enabled */
3008         if (adapter->wol)
3009                 return;
3010
3011         if (adapter->hw.phy.ops.power_down)
3012                 adapter->hw.phy.ops.power_down(&adapter->hw);
3013 }
3014
3015 /**
3016  * e1000e_reset - bring the hardware into a known good state
3017  *
3018  * This function boots the hardware and enables some settings that
3019  * require a configuration cycle of the hardware - those cannot be
3020  * set/changed during runtime. After reset the device needs to be
3021  * properly configured for Rx, Tx etc.
3022  */
3023 void e1000e_reset(struct e1000_adapter *adapter)
3024 {
3025         struct e1000_mac_info *mac = &adapter->hw.mac;
3026         struct e1000_fc_info *fc = &adapter->hw.fc;
3027         struct e1000_hw *hw = &adapter->hw;
3028         u32 tx_space, min_tx_space, min_rx_space;
3029         u32 pba = adapter->pba;
3030         u16 hwm;
3031
3032         /* reset Packet Buffer Allocation to default */
3033         ew32(PBA, pba);
3034
3035         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3036                 /*
3037                  * To maintain wire speed transmits, the Tx FIFO should be
3038                  * large enough to accommodate two full transmit packets,
3039                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3040                  * the Rx FIFO should be large enough to accommodate at least
3041                  * one full receive packet and is similarly rounded up and
3042                  * expressed in KB.
3043                  */
3044                 pba = er32(PBA);
3045                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3046                 tx_space = pba >> 16;
3047                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3048                 pba &= 0xffff;
3049                 /*
3050                  * the Tx fifo also stores 16 bytes of information about the tx
3051                  * but don't include ethernet FCS because hardware appends it
3052                  */
3053                 min_tx_space = (adapter->max_frame_size +
3054                                 sizeof(struct e1000_tx_desc) -
3055                                 ETH_FCS_LEN) * 2;
3056                 min_tx_space = ALIGN(min_tx_space, 1024);
3057                 min_tx_space >>= 10;
3058                 /* software strips receive CRC, so leave room for it */
3059                 min_rx_space = adapter->max_frame_size;
3060                 min_rx_space = ALIGN(min_rx_space, 1024);
3061                 min_rx_space >>= 10;
3062
3063                 /*
3064                  * If current Tx allocation is less than the min Tx FIFO size,
3065                  * and the min Tx FIFO size is less than the current Rx FIFO
3066                  * allocation, take space away from current Rx allocation
3067                  */
3068                 if ((tx_space < min_tx_space) &&
3069                     ((min_tx_space - tx_space) < pba)) {
3070                         pba -= min_tx_space - tx_space;
3071
3072                         /*
3073                          * if short on Rx space, Rx wins and must trump tx
3074                          * adjustment or use Early Receive if available
3075                          */
3076                         if ((pba < min_rx_space) &&
3077                             (!(adapter->flags & FLAG_HAS_ERT)))
3078                                 /* ERT enabled in e1000_configure_rx */
3079                                 pba = min_rx_space;
3080                 }
3081
3082                 ew32(PBA, pba);
3083         }
3084
3085
3086         /*
3087          * flow control settings
3088          *
3089          * The high water mark must be low enough to fit one full frame
3090          * (or the size used for early receive) above it in the Rx FIFO.
3091          * Set it to the lower of:
3092          * - 90% of the Rx FIFO size, and
3093          * - the full Rx FIFO size minus the early receive size (for parts
3094          *   with ERT support assuming ERT set to E1000_ERT_2048), or
3095          * - the full Rx FIFO size minus one full frame
3096          */
3097         if (hw->mac.type == e1000_pchlan) {
3098                 /*
3099                  * Workaround PCH LOM adapter hangs with certain network
3100                  * loads.  If hangs persist, try disabling Tx flow control.
3101                  */
3102                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3103                         fc->high_water = 0x3500;
3104                         fc->low_water  = 0x1500;
3105                 } else {
3106                         fc->high_water = 0x5000;
3107                         fc->low_water  = 0x3000;
3108                 }
3109         } else {
3110                 if ((adapter->flags & FLAG_HAS_ERT) &&
3111                     (adapter->netdev->mtu > ETH_DATA_LEN))
3112                         hwm = min(((pba << 10) * 9 / 10),
3113                                   ((pba << 10) - (E1000_ERT_2048 << 3)));
3114                 else
3115                         hwm = min(((pba << 10) * 9 / 10),
3116                                   ((pba << 10) - adapter->max_frame_size));
3117
3118                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3119                 fc->low_water = fc->high_water - 8;
3120         }
3121
3122         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3123                 fc->pause_time = 0xFFFF;
3124         else
3125                 fc->pause_time = E1000_FC_PAUSE_TIME;
3126         fc->send_xon = 1;
3127         fc->current_mode = fc->requested_mode;
3128
3129         /* Allow time for pending master requests to run */
3130         mac->ops.reset_hw(hw);
3131
3132         /*
3133          * For parts with AMT enabled, let the firmware know
3134          * that the network interface is in control
3135          */
3136         if (adapter->flags & FLAG_HAS_AMT)
3137                 e1000_get_hw_control(adapter);
3138
3139         ew32(WUC, 0);
3140         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)
3141                 e1e_wphy(&adapter->hw, BM_WUC, 0);
3142
3143         if (mac->ops.init_hw(hw))
3144                 e_err("Hardware Error\n");
3145
3146         /* additional part of the flow-control workaround above */
3147         if (hw->mac.type == e1000_pchlan)
3148                 ew32(FCRTV_PCH, 0x1000);
3149
3150         e1000_update_mng_vlan(adapter);
3151
3152         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3153         ew32(VET, ETH_P_8021Q);
3154
3155         e1000e_reset_adaptive(hw);
3156         e1000_get_phy_info(hw);
3157
3158         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3159             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3160                 u16 phy_data = 0;
3161                 /*
3162                  * speed up time to link by disabling smart power down, ignore
3163                  * the return value of this function because there is nothing
3164                  * different we would do if it failed
3165                  */
3166                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3167                 phy_data &= ~IGP02E1000_PM_SPD;
3168                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3169         }
3170 }
3171
3172 int e1000e_up(struct e1000_adapter *adapter)
3173 {
3174         struct e1000_hw *hw = &adapter->hw;
3175
3176         /* DMA latency requirement to workaround early-receive/jumbo issue */
3177         if (adapter->flags & FLAG_HAS_ERT)
3178                 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY,
3179                                        adapter->netdev->name,
3180                                        PM_QOS_DEFAULT_VALUE);
3181
3182         /* hardware has been reset, we need to reload some things */
3183         e1000_configure(adapter);
3184
3185         clear_bit(__E1000_DOWN, &adapter->state);
3186
3187         napi_enable(&adapter->napi);
3188         if (adapter->msix_entries)
3189                 e1000_configure_msix(adapter);
3190         e1000_irq_enable(adapter);
3191
3192         netif_wake_queue(adapter->netdev);
3193
3194         /* fire a link change interrupt to start the watchdog */
3195         ew32(ICS, E1000_ICS_LSC);
3196         return 0;
3197 }
3198
3199 void e1000e_down(struct e1000_adapter *adapter)
3200 {
3201         struct net_device *netdev = adapter->netdev;
3202         struct e1000_hw *hw = &adapter->hw;
3203         u32 tctl, rctl;
3204
3205         /*
3206          * signal that we're down so the interrupt handler does not
3207          * reschedule our watchdog timer
3208          */
3209         set_bit(__E1000_DOWN, &adapter->state);
3210
3211         /* disable receives in the hardware */
3212         rctl = er32(RCTL);
3213         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3214         /* flush and sleep below */
3215
3216         netif_stop_queue(netdev);
3217
3218         /* disable transmits in the hardware */
3219         tctl = er32(TCTL);
3220         tctl &= ~E1000_TCTL_EN;
3221         ew32(TCTL, tctl);
3222         /* flush both disables and wait for them to finish */
3223         e1e_flush();
3224         msleep(10);
3225
3226         napi_disable(&adapter->napi);
3227         e1000_irq_disable(adapter);
3228
3229         del_timer_sync(&adapter->watchdog_timer);
3230         del_timer_sync(&adapter->phy_info_timer);
3231
3232         netif_carrier_off(netdev);
3233         adapter->link_speed = 0;
3234         adapter->link_duplex = 0;
3235
3236         if (!pci_channel_offline(adapter->pdev))
3237                 e1000e_reset(adapter);
3238         e1000_clean_tx_ring(adapter);
3239         e1000_clean_rx_ring(adapter);
3240
3241         if (adapter->flags & FLAG_HAS_ERT)
3242                 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY,
3243                                           adapter->netdev->name);
3244
3245         /*
3246          * TODO: for power management, we could drop the link and
3247          * pci_disable_device here.
3248          */
3249 }
3250
3251 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3252 {
3253         might_sleep();
3254         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3255                 msleep(1);
3256         e1000e_down(adapter);
3257         e1000e_up(adapter);
3258         clear_bit(__E1000_RESETTING, &adapter->state);
3259 }
3260
3261 /**
3262  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3263  * @adapter: board private structure to initialize
3264  *
3265  * e1000_sw_init initializes the Adapter private data structure.
3266  * Fields are initialized based on PCI device information and
3267  * OS network device settings (MTU size).
3268  **/
3269 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3270 {
3271         struct net_device *netdev = adapter->netdev;
3272
3273         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3274         adapter->rx_ps_bsize0 = 128;
3275         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3276         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3277
3278         e1000e_set_interrupt_capability(adapter);
3279
3280         if (e1000_alloc_queues(adapter))
3281                 return -ENOMEM;
3282
3283         /* Explicitly disable IRQ since the NIC can be in any state. */
3284         e1000_irq_disable(adapter);
3285
3286         set_bit(__E1000_DOWN, &adapter->state);
3287         return 0;
3288 }
3289
3290 /**
3291  * e1000_intr_msi_test - Interrupt Handler
3292  * @irq: interrupt number
3293  * @data: pointer to a network interface device structure
3294  **/
3295 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3296 {
3297         struct net_device *netdev = data;
3298         struct e1000_adapter *adapter = netdev_priv(netdev);
3299         struct e1000_hw *hw = &adapter->hw;
3300         u32 icr = er32(ICR);
3301
3302         e_dbg("icr is %08X\n", icr);
3303         if (icr & E1000_ICR_RXSEQ) {
3304                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3305                 wmb();
3306         }
3307
3308         return IRQ_HANDLED;
3309 }
3310
3311 /**
3312  * e1000_test_msi_interrupt - Returns 0 for successful test
3313  * @adapter: board private struct
3314  *
3315  * code flow taken from tg3.c
3316  **/
3317 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3318 {
3319         struct net_device *netdev = adapter->netdev;
3320         struct e1000_hw *hw = &adapter->hw;
3321         int err;
3322
3323         /* poll_enable hasn't been called yet, so don't need disable */
3324         /* clear any pending events */
3325         er32(ICR);
3326
3327         /* free the real vector and request a test handler */
3328         e1000_free_irq(adapter);
3329         e1000e_reset_interrupt_capability(adapter);
3330
3331         /* Assume that the test fails, if it succeeds then the test
3332          * MSI irq handler will unset this flag */
3333         adapter->flags |= FLAG_MSI_TEST_FAILED;
3334
3335         err = pci_enable_msi(adapter->pdev);
3336         if (err)
3337                 goto msi_test_failed;
3338
3339         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3340                           netdev->name, netdev);
3341         if (err) {
3342                 pci_disable_msi(adapter->pdev);
3343                 goto msi_test_failed;
3344         }
3345
3346         wmb();
3347
3348         e1000_irq_enable(adapter);
3349
3350         /* fire an unusual interrupt on the test handler */
3351         ew32(ICS, E1000_ICS_RXSEQ);
3352         e1e_flush();
3353         msleep(50);
3354
3355         e1000_irq_disable(adapter);
3356
3357         rmb();
3358
3359         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3360                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3361                 err = -EIO;
3362                 e_info("MSI interrupt test failed!\n");
3363         }
3364
3365         free_irq(adapter->pdev->irq, netdev);
3366         pci_disable_msi(adapter->pdev);
3367
3368         if (err == -EIO)
3369                 goto msi_test_failed;
3370
3371         /* okay so the test worked, restore settings */
3372         e_dbg("MSI interrupt test succeeded!\n");
3373 msi_test_failed:
3374         e1000e_set_interrupt_capability(adapter);
3375         e1000_request_irq(adapter);
3376         return err;
3377 }
3378
3379 /**
3380  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3381  * @adapter: board private struct
3382  *
3383  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3384  **/
3385 static int e1000_test_msi(struct e1000_adapter *adapter)
3386 {
3387         int err;
3388         u16 pci_cmd;
3389
3390         if (!(adapter->flags & FLAG_MSI_ENABLED))
3391                 return 0;
3392
3393         /* disable SERR in case the MSI write causes a master abort */
3394         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3395         pci_write_config_word(adapter->pdev, PCI_COMMAND,
3396                               pci_cmd & ~PCI_COMMAND_SERR);
3397
3398         err = e1000_test_msi_interrupt(adapter);
3399
3400         /* restore previous setting of command word */
3401         pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3402
3403         /* success ! */
3404         if (!err)
3405                 return 0;
3406
3407         /* EIO means MSI test failed */
3408         if (err != -EIO)
3409                 return err;
3410
3411         /* back to INTx mode */
3412         e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3413
3414         e1000_free_irq(adapter);
3415
3416         err = e1000_request_irq(adapter);
3417
3418         return err;
3419 }
3420
3421 /**
3422  * e1000_open - Called when a network interface is made active
3423  * @netdev: network interface device structure
3424  *
3425  * Returns 0 on success, negative value on failure
3426  *
3427  * The open entry point is called when a network interface is made
3428  * active by the system (IFF_UP).  At this point all resources needed
3429  * for transmit and receive operations are allocated, the interrupt
3430  * handler is registered with the OS, the watchdog timer is started,
3431  * and the stack is notified that the interface is ready.
3432  **/
3433 static int e1000_open(struct net_device *netdev)
3434 {
3435         struct e1000_adapter *adapter = netdev_priv(netdev);
3436         struct e1000_hw *hw = &adapter->hw;
3437         struct pci_dev *pdev = adapter->pdev;
3438         int err;
3439
3440         /* disallow open during test */
3441         if (test_bit(__E1000_TESTING, &adapter->state))
3442                 return -EBUSY;
3443
3444         pm_runtime_get_sync(&pdev->dev);
3445
3446         netif_carrier_off(netdev);
3447
3448         /* allocate transmit descriptors */
3449         err = e1000e_setup_tx_resources(adapter);
3450         if (err)
3451                 goto err_setup_tx;
3452
3453         /* allocate receive descriptors */
3454         err = e1000e_setup_rx_resources(adapter);
3455         if (err)
3456                 goto err_setup_rx;
3457
3458         e1000e_power_up_phy(adapter);
3459
3460         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3461         if ((adapter->hw.mng_cookie.status &
3462              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3463                 e1000_update_mng_vlan(adapter);
3464
3465         /*
3466          * If AMT is enabled, let the firmware know that the network
3467          * interface is now open
3468          */
3469         if (adapter->flags & FLAG_HAS_AMT)
3470                 e1000_get_hw_control(adapter);
3471
3472         /*
3473          * before we allocate an interrupt, we must be ready to handle it.
3474          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3475          * as soon as we call pci_request_irq, so we have to setup our
3476          * clean_rx handler before we do so.
3477          */
3478         e1000_configure(adapter);
3479
3480         err = e1000_request_irq(adapter);
3481         if (err)
3482                 goto err_req_irq;
3483
3484         /*
3485          * Work around PCIe errata with MSI interrupts causing some chipsets to
3486          * ignore e1000e MSI messages, which means we need to test our MSI
3487          * interrupt now
3488          */
3489         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3490                 err = e1000_test_msi(adapter);
3491                 if (err) {
3492                         e_err("Interrupt allocation failed\n");
3493                         goto err_req_irq;
3494                 }
3495         }
3496
3497         /* From here on the code is the same as e1000e_up() */
3498         clear_bit(__E1000_DOWN, &adapter->state);
3499
3500         napi_enable(&adapter->napi);
3501
3502         e1000_irq_enable(adapter);
3503
3504         netif_start_queue(netdev);
3505
3506         adapter->idle_check = true;
3507         pm_runtime_put(&pdev->dev);
3508
3509         /* fire a link status change interrupt to start the watchdog */
3510         ew32(ICS, E1000_ICS_LSC);
3511
3512         return 0;
3513
3514 err_req_irq:
3515         e1000_release_hw_control(adapter);
3516         e1000_power_down_phy(adapter);
3517         e1000e_free_rx_resources(adapter);
3518 err_setup_rx:
3519         e1000e_free_tx_resources(adapter);
3520 err_setup_tx:
3521         e1000e_reset(adapter);
3522         pm_runtime_put_sync(&pdev->dev);
3523
3524         return err;
3525 }
3526
3527 /**
3528  * e1000_close - Disables a network interface
3529  * @netdev: network interface device structure
3530  *
3531  * Returns 0, this is not allowed to fail
3532  *
3533  * The close entry point is called when an interface is de-activated
3534  * by the OS.  The hardware is still under the drivers control, but
3535  * needs to be disabled.  A global MAC reset is issued to stop the
3536  * hardware, and all transmit and receive resources are freed.
3537  **/
3538 static int e1000_close(struct net_device *netdev)
3539 {
3540         struct e1000_adapter *adapter = netdev_priv(netdev);
3541         struct pci_dev *pdev = adapter->pdev;
3542
3543         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3544
3545         pm_runtime_get_sync(&pdev->dev);
3546
3547         if (!test_bit(__E1000_DOWN, &adapter->state)) {
3548                 e1000e_down(adapter);
3549                 e1000_free_irq(adapter);
3550         }
3551         e1000_power_down_phy(adapter);
3552
3553         e1000e_free_tx_resources(adapter);
3554         e1000e_free_rx_resources(adapter);
3555
3556         /*
3557          * kill manageability vlan ID if supported, but not if a vlan with
3558          * the same ID is registered on the host OS (let 8021q kill it)
3559          */
3560         if ((adapter->hw.mng_cookie.status &
3561                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3562              !(adapter->vlgrp &&
3563                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3564                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3565
3566         /*
3567          * If AMT is enabled, let the firmware know that the network
3568          * interface is now closed
3569          */
3570         if (adapter->flags & FLAG_HAS_AMT)
3571                 e1000_release_hw_control(adapter);
3572
3573         pm_runtime_put_sync(&pdev->dev);
3574
3575         return 0;
3576 }
3577 /**
3578  * e1000_set_mac - Change the Ethernet Address of the NIC
3579  * @netdev: network interface device structure
3580  * @p: pointer to an address structure
3581  *
3582  * Returns 0 on success, negative on failure
3583  **/
3584 static int e1000_set_mac(struct net_device *netdev, void *p)
3585 {
3586         struct e1000_adapter *adapter = netdev_priv(netdev);
3587         struct sockaddr *addr = p;
3588
3589         if (!is_valid_ether_addr(addr->sa_data))
3590                 return -EADDRNOTAVAIL;
3591
3592         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3593         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3594
3595         e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3596
3597         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3598                 /* activate the work around */
3599                 e1000e_set_laa_state_82571(&adapter->hw, 1);
3600
3601                 /*
3602                  * Hold a copy of the LAA in RAR[14] This is done so that
3603                  * between the time RAR[0] gets clobbered  and the time it
3604                  * gets fixed (in e1000_watchdog), the actual LAA is in one
3605                  * of the RARs and no incoming packets directed to this port
3606                  * are dropped. Eventually the LAA will be in RAR[0] and
3607                  * RAR[14]
3608                  */
3609                 e1000e_rar_set(&adapter->hw,
3610                               adapter->hw.mac.addr,
3611                               adapter->hw.mac.rar_entry_count - 1);
3612         }
3613
3614         return 0;
3615 }
3616
3617 /**
3618  * e1000e_update_phy_task - work thread to update phy
3619  * @work: pointer to our work struct
3620  *
3621  * this worker thread exists because we must acquire a
3622  * semaphore to read the phy, which we could msleep while
3623  * waiting for it, and we can't msleep in a timer.
3624  **/
3625 static void e1000e_update_phy_task(struct work_struct *work)
3626 {
3627         struct e1000_adapter *adapter = container_of(work,
3628                                         struct e1000_adapter, update_phy_task);
3629         e1000_get_phy_info(&adapter->hw);
3630 }
3631
3632 /*
3633  * Need to wait a few seconds after link up to get diagnostic information from
3634  * the phy
3635  */
3636 static void e1000_update_phy_info(unsigned long data)
3637 {
3638         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3639         schedule_work(&adapter->update_phy_task);
3640 }
3641
3642 /**
3643  * e1000e_update_stats - Update the board statistics counters
3644  * @adapter: board private structure
3645  **/
3646 void e1000e_update_stats(struct e1000_adapter *adapter)
3647 {
3648         struct net_device *netdev = adapter->netdev;
3649         struct e1000_hw *hw = &adapter->hw;
3650         struct pci_dev *pdev = adapter->pdev;
3651         u16 phy_data;
3652
3653         /*
3654          * Prevent stats update while adapter is being reset, or if the pci
3655          * connection is down.
3656          */
3657         if (adapter->link_speed == 0)
3658                 return;
3659         if (pci_channel_offline(pdev))
3660                 return;
3661
3662         adapter->stats.crcerrs += er32(CRCERRS);
3663         adapter->stats.gprc += er32(GPRC);
3664         adapter->stats.gorc += er32(GORCL);
3665         er32(GORCH); /* Clear gorc */
3666         adapter->stats.bprc += er32(BPRC);
3667         adapter->stats.mprc += er32(MPRC);
3668         adapter->stats.roc += er32(ROC);
3669
3670         adapter->stats.mpc += er32(MPC);
3671         if ((hw->phy.type == e1000_phy_82578) ||
3672             (hw->phy.type == e1000_phy_82577)) {
3673                 e1e_rphy(hw, HV_SCC_UPPER, &phy_data);
3674                 if (!e1e_rphy(hw, HV_SCC_LOWER, &phy_data))
3675                         adapter->stats.scc += phy_data;
3676
3677                 e1e_rphy(hw, HV_ECOL_UPPER, &phy_data);
3678                 if (!e1e_rphy(hw, HV_ECOL_LOWER, &phy_data))
3679                         adapter->stats.ecol += phy_data;
3680
3681                 e1e_rphy(hw, HV_MCC_UPPER, &phy_data);
3682                 if (!e1e_rphy(hw, HV_MCC_LOWER, &phy_data))
3683                         adapter->stats.mcc += phy_data;
3684
3685                 e1e_rphy(hw, HV_LATECOL_UPPER, &phy_data);
3686                 if (!e1e_rphy(hw, HV_LATECOL_LOWER, &phy_data))
3687                         adapter->stats.latecol += phy_data;
3688
3689                 e1e_rphy(hw, HV_DC_UPPER, &phy_data);
3690                 if (!e1e_rphy(hw, HV_DC_LOWER, &phy_data))
3691                         adapter->stats.dc += phy_data;
3692         } else {
3693                 adapter->stats.scc += er32(SCC);
3694                 adapter->stats.ecol += er32(ECOL);
3695                 adapter->stats.mcc += er32(MCC);
3696                 adapter->stats.latecol += er32(LATECOL);
3697                 adapter->stats.dc += er32(DC);
3698         }
3699         adapter->stats.xonrxc += er32(XONRXC);
3700         adapter->stats.xontxc += er32(XONTXC);
3701         adapter->stats.xoffrxc += er32(XOFFRXC);
3702         adapter->stats.xofftxc += er32(XOFFTXC);
3703         adapter->stats.gptc += er32(GPTC);
3704         adapter->stats.gotc += er32(GOTCL);
3705         er32(GOTCH); /* Clear gotc */
3706         adapter->stats.rnbc += er32(RNBC);
3707         adapter->stats.ruc += er32(RUC);
3708
3709         adapter->stats.mptc += er32(MPTC);
3710         adapter->stats.bptc += er32(BPTC);
3711
3712         /* used for adaptive IFS */
3713
3714         hw->mac.tx_packet_delta = er32(TPT);
3715         adapter->stats.tpt += hw->mac.tx_packet_delta;
3716         if ((hw->phy.type == e1000_phy_82578) ||
3717             (hw->phy.type == e1000_phy_82577)) {
3718                 e1e_rphy(hw, HV_COLC_UPPER, &phy_data);
3719                 if (!e1e_rphy(hw, HV_COLC_LOWER, &phy_data))
3720                         hw->mac.collision_delta = phy_data;
3721         } else {
3722                 hw->mac.collision_delta = er32(COLC);
3723         }
3724         adapter->stats.colc += hw->mac.collision_delta;
3725
3726         adapter->stats.algnerrc += er32(ALGNERRC);
3727         adapter->stats.rxerrc += er32(RXERRC);
3728         if ((hw->phy.type == e1000_phy_82578) ||
3729             (hw->phy.type == e1000_phy_82577)) {
3730                 e1e_rphy(hw, HV_TNCRS_UPPER, &phy_data);
3731                 if (!e1e_rphy(hw, HV_TNCRS_LOWER, &phy_data))
3732                         adapter->stats.tncrs += phy_data;
3733         } else {
3734                 if ((hw->mac.type != e1000_82574) &&
3735                     (hw->mac.type != e1000_82583))
3736                         adapter->stats.tncrs += er32(TNCRS);
3737         }
3738         adapter->stats.cexterr += er32(CEXTERR);
3739         adapter->stats.tsctc += er32(TSCTC);
3740         adapter->stats.tsctfc += er32(TSCTFC);
3741
3742         /* Fill out the OS statistics structure */
3743         netdev->stats.multicast = adapter->stats.mprc;
3744         netdev->stats.collisions = adapter->stats.colc;
3745
3746         /* Rx Errors */
3747
3748         /*
3749          * RLEC on some newer hardware can be incorrect so build
3750          * our own version based on RUC and ROC
3751          */
3752         netdev->stats.rx_errors = adapter->stats.rxerrc +
3753                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3754                 adapter->stats.ruc + adapter->stats.roc +
3755                 adapter->stats.cexterr;
3756         netdev->stats.rx_length_errors = adapter->stats.ruc +
3757                                               adapter->stats.roc;
3758         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3759         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3760         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3761
3762         /* Tx Errors */
3763         netdev->stats.tx_errors = adapter->stats.ecol +
3764                                        adapter->stats.latecol;
3765         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3766         netdev->stats.tx_window_errors = adapter->stats.latecol;
3767         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3768
3769         /* Tx Dropped needs to be maintained elsewhere */
3770
3771         /* Management Stats */
3772         adapter->stats.mgptc += er32(MGTPTC);
3773         adapter->stats.mgprc += er32(MGTPRC);
3774         adapter->stats.mgpdc += er32(MGTPDC);
3775 }
3776
3777 /**
3778  * e1000_phy_read_status - Update the PHY register status snapshot
3779  * @adapter: board private structure
3780  **/
3781 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3782 {
3783         struct e1000_hw *hw = &adapter->hw;
3784         struct e1000_phy_regs *phy = &adapter->phy_regs;
3785         int ret_val;
3786
3787         if ((er32(STATUS) & E1000_STATUS_LU) &&
3788             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3789                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3790                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3791                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3792                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3793                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3794                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3795                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3796                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3797                 if (ret_val)
3798                         e_warn("Error reading PHY register\n");
3799         } else {
3800                 /*
3801                  * Do not read PHY registers if link is not up
3802                  * Set values to typical power-on defaults
3803                  */
3804                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3805                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3806                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3807                              BMSR_ERCAP);
3808                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3809                                   ADVERTISE_ALL | ADVERTISE_CSMA);
3810                 phy->lpa = 0;
3811                 phy->expansion = EXPANSION_ENABLENPAGE;
3812                 phy->ctrl1000 = ADVERTISE_1000FULL;
3813                 phy->stat1000 = 0;
3814                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3815         }
3816 }
3817
3818 static void e1000_print_link_info(struct e1000_adapter *adapter)
3819 {
3820         struct e1000_hw *hw = &adapter->hw;
3821         u32 ctrl = er32(CTRL);
3822
3823         /* Link status message must follow this format for user tools */
3824         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3825                "Flow Control: %s\n",
3826                adapter->netdev->name,
3827                adapter->link_speed,
3828                (adapter->link_duplex == FULL_DUPLEX) ?
3829                                 "Full Duplex" : "Half Duplex",
3830                ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3831                                 "RX/TX" :
3832                ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3833                ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3834 }
3835
3836 bool e1000e_has_link(struct e1000_adapter *adapter)
3837 {
3838         struct e1000_hw *hw = &adapter->hw;
3839         bool link_active = 0;
3840         s32 ret_val = 0;
3841
3842         /*
3843          * get_link_status is set on LSC (link status) interrupt or
3844          * Rx sequence error interrupt.  get_link_status will stay
3845          * false until the check_for_link establishes link
3846          * for copper adapters ONLY
3847          */
3848         switch (hw->phy.media_type) {
3849         case e1000_media_type_copper:
3850                 if (hw->mac.get_link_status) {
3851                         ret_val = hw->mac.ops.check_for_link(hw);
3852                         link_active = !hw->mac.get_link_status;
3853                 } else {
3854                         link_active = 1;
3855                 }
3856                 break;
3857         case e1000_media_type_fiber:
3858                 ret_val = hw->mac.ops.check_for_link(hw);
3859                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3860                 break;
3861         case e1000_media_type_internal_serdes:
3862                 ret_val = hw->mac.ops.check_for_link(hw);
3863                 link_active = adapter->hw.mac.serdes_has_link;
3864                 break;
3865         default:
3866         case e1000_media_type_unknown:
3867                 break;
3868         }
3869
3870         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3871             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3872                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3873                 e_info("Gigabit has been disabled, downgrading speed\n");
3874         }
3875
3876         return link_active;
3877 }
3878
3879 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3880 {
3881         /* make sure the receive unit is started */
3882         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3883             (adapter->flags & FLAG_RX_RESTART_NOW)) {
3884                 struct e1000_hw *hw = &adapter->hw;
3885                 u32 rctl = er32(RCTL);
3886                 ew32(RCTL, rctl | E1000_RCTL_EN);
3887                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3888         }
3889 }
3890
3891 /**
3892  * e1000_watchdog - Timer Call-back
3893  * @data: pointer to adapter cast into an unsigned long
3894  **/
3895 static void e1000_watchdog(unsigned long data)
3896 {
3897         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3898
3899         /* Do the rest outside of interrupt context */
3900         schedule_work(&adapter->watchdog_task);
3901
3902         /* TODO: make this use queue_delayed_work() */
3903 }
3904
3905 static void e1000_watchdog_task(struct work_struct *work)
3906 {
3907         struct e1000_adapter *adapter = container_of(work,
3908                                         struct e1000_adapter, watchdog_task);
3909         struct net_device *netdev = adapter->netdev;
3910         struct e1000_mac_info *mac = &adapter->hw.mac;
3911         struct e1000_phy_info *phy = &adapter->hw.phy;
3912         struct e1000_ring *tx_ring = adapter->tx_ring;
3913         struct e1000_hw *hw = &adapter->hw;
3914         u32 link, tctl;
3915         int tx_pending = 0;
3916
3917         link = e1000e_has_link(adapter);
3918         if ((netif_carrier_ok(netdev)) && link) {
3919                 /* Cancel scheduled suspend requests. */
3920                 pm_runtime_resume(netdev->dev.parent);
3921
3922                 e1000e_enable_receives(adapter);
3923                 goto link_up;
3924         }
3925
3926         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3927             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3928                 e1000_update_mng_vlan(adapter);
3929
3930         if (link) {
3931                 if (!netif_carrier_ok(netdev)) {
3932                         bool txb2b = 1;
3933
3934                         /* Cancel scheduled suspend requests. */
3935                         pm_runtime_resume(netdev->dev.parent);
3936
3937                         /* update snapshot of PHY registers on LSC */
3938                         e1000_phy_read_status(adapter);
3939                         mac->ops.get_link_up_info(&adapter->hw,
3940                                                    &adapter->link_speed,
3941                                                    &adapter->link_duplex);
3942                         e1000_print_link_info(adapter);
3943                         /*
3944                          * On supported PHYs, check for duplex mismatch only
3945                          * if link has autonegotiated at 10/100 half
3946                          */
3947                         if ((hw->phy.type == e1000_phy_igp_3 ||
3948                              hw->phy.type == e1000_phy_bm) &&
3949                             (hw->mac.autoneg == true) &&
3950                             (adapter->link_speed == SPEED_10 ||
3951                              adapter->link_speed == SPEED_100) &&
3952                             (adapter->link_duplex == HALF_DUPLEX)) {
3953                                 u16 autoneg_exp;
3954
3955                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3956
3957                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3958                                         e_info("Autonegotiated half duplex but"
3959                                                " link partner cannot autoneg. "
3960                                                " Try forcing full duplex if "
3961                                                "link gets many collisions.\n");
3962                         }
3963
3964                         /* adjust timeout factor according to speed/duplex */
3965                         adapter->tx_timeout_factor = 1;
3966                         switch (adapter->link_speed) {
3967                         case SPEED_10:
3968                                 txb2b = 0;
3969                                 adapter->tx_timeout_factor = 16;
3970                                 break;
3971                         case SPEED_100:
3972                                 txb2b = 0;
3973                                 adapter->tx_timeout_factor = 10;
3974                                 break;
3975                         }
3976
3977                         /*
3978                          * workaround: re-program speed mode bit after
3979                          * link-up event
3980                          */
3981                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3982                             !txb2b) {
3983                                 u32 tarc0;
3984                                 tarc0 = er32(TARC(0));
3985                                 tarc0 &= ~SPEED_MODE_BIT;
3986                                 ew32(TARC(0), tarc0);
3987                         }
3988
3989                         /*
3990                          * disable TSO for pcie and 10/100 speeds, to avoid
3991                          * some hardware issues
3992                          */
3993                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
3994                                 switch (adapter->link_speed) {
3995                                 case SPEED_10:
3996                                 case SPEED_100:
3997                                         e_info("10/100 speed: disabling TSO\n");
3998                                         netdev->features &= ~NETIF_F_TSO;
3999                                         netdev->features &= ~NETIF_F_TSO6;
4000                                         break;
4001                                 case SPEED_1000:
4002                                         netdev->features |= NETIF_F_TSO;
4003                                         netdev->features |= NETIF_F_TSO6;
4004                                         break;
4005                                 default:
4006                                         /* oops */
4007                                         break;
4008                                 }
4009                         }
4010
4011                         /*
4012                          * enable transmits in the hardware, need to do this
4013                          * after setting TARC(0)
4014                          */
4015                         tctl = er32(TCTL);
4016                         tctl |= E1000_TCTL_EN;
4017                         ew32(TCTL, tctl);
4018
4019                         /*
4020                          * Perform any post-link-up configuration before
4021                          * reporting link up.
4022                          */
4023                         if (phy->ops.cfg_on_link_up)
4024                                 phy->ops.cfg_on_link_up(hw);
4025
4026                         netif_carrier_on(netdev);
4027
4028                         if (!test_bit(__E1000_DOWN, &adapter->state))
4029                                 mod_timer(&adapter->phy_info_timer,
4030                                           round_jiffies(jiffies + 2 * HZ));
4031                 }
4032         } else {
4033                 if (netif_carrier_ok(netdev)) {
4034                         adapter->link_speed = 0;
4035                         adapter->link_duplex = 0;
4036                         /* Link status message must follow this format */
4037                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4038                                adapter->netdev->name);
4039                         netif_carrier_off(netdev);
4040                         if (!test_bit(__E1000_DOWN, &adapter->state))
4041                                 mod_timer(&adapter->phy_info_timer,
4042                                           round_jiffies(jiffies + 2 * HZ));
4043
4044                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4045                                 schedule_work(&adapter->reset_task);
4046                         else
4047                                 pm_schedule_suspend(netdev->dev.parent,
4048                                                         LINK_TIMEOUT);
4049                 }
4050         }
4051
4052 link_up:
4053         e1000e_update_stats(adapter);
4054
4055         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4056         adapter->tpt_old = adapter->stats.tpt;
4057         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4058         adapter->colc_old = adapter->stats.colc;
4059
4060         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4061         adapter->gorc_old = adapter->stats.gorc;
4062         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4063         adapter->gotc_old = adapter->stats.gotc;
4064
4065         e1000e_update_adaptive(&adapter->hw);
4066
4067         if (!netif_carrier_ok(netdev)) {
4068                 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
4069                                tx_ring->count);
4070                 if (tx_pending) {
4071                         /*
4072                          * We've lost link, so the controller stops DMA,
4073                          * but we've got queued Tx work that's never going
4074                          * to get done, so reset controller to flush Tx.
4075                          * (Do the reset outside of interrupt context).
4076                          */
4077                         adapter->tx_timeout_count++;
4078                         schedule_work(&adapter->reset_task);
4079                         /* return immediately since reset is imminent */
4080                         return;
4081                 }
4082         }
4083
4084         /* Cause software interrupt to ensure Rx ring is cleaned */
4085         if (adapter->msix_entries)
4086                 ew32(ICS, adapter->rx_ring->ims_val);
4087         else
4088                 ew32(ICS, E1000_ICS_RXDMT0);
4089
4090         /* Force detection of hung controller every watchdog period */
4091         adapter->detect_tx_hung = 1;
4092
4093         /*
4094          * With 82571 controllers, LAA may be overwritten due to controller
4095          * reset from the other port. Set the appropriate LAA in RAR[0]
4096          */
4097         if (e1000e_get_laa_state_82571(hw))
4098                 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4099
4100         /* Reset the timer */
4101         if (!test_bit(__E1000_DOWN, &adapter->state))
4102                 mod_timer(&adapter->watchdog_timer,
4103                           round_jiffies(jiffies + 2 * HZ));
4104 }
4105
4106 #define E1000_TX_FLAGS_CSUM             0x00000001
4107 #define E1000_TX_FLAGS_VLAN             0x00000002
4108 #define E1000_TX_FLAGS_TSO              0x00000004
4109 #define E1000_TX_FLAGS_IPV4             0x00000008
4110 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
4111 #define E1000_TX_FLAGS_VLAN_SHIFT       16
4112
4113 static int e1000_tso(struct e1000_adapter *adapter,
4114                      struct sk_buff *skb)
4115 {
4116         struct e1000_ring *tx_ring = adapter->tx_ring;
4117         struct e1000_context_desc *context_desc;
4118         struct e1000_buffer *buffer_info;
4119         unsigned int i;
4120         u32 cmd_length = 0;
4121         u16 ipcse = 0, tucse, mss;
4122         u8 ipcss, ipcso, tucss, tucso, hdr_len;
4123         int err;
4124
4125         if (!skb_is_gso(skb))
4126                 return 0;
4127
4128         if (skb_header_cloned(skb)) {
4129                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4130                 if (err)
4131                         return err;
4132         }
4133
4134         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4135         mss = skb_shinfo(skb)->gso_size;
4136         if (skb->protocol == htons(ETH_P_IP)) {
4137                 struct iphdr *iph = ip_hdr(skb);
4138                 iph->tot_len = 0;
4139                 iph->check = 0;
4140                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4141                                                          0, IPPROTO_TCP, 0);
4142                 cmd_length = E1000_TXD_CMD_IP;
4143                 ipcse = skb_transport_offset(skb) - 1;
4144         } else if (skb_is_gso_v6(skb)) {
4145                 ipv6_hdr(skb)->payload_len = 0;
4146                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4147                                                        &ipv6_hdr(skb)->daddr,
4148                                                        0, IPPROTO_TCP, 0);
4149                 ipcse = 0;
4150         }
4151         ipcss = skb_network_offset(skb);
4152         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4153         tucss = skb_transport_offset(skb);
4154         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4155         tucse = 0;
4156
4157         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4158                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4159
4160         i = tx_ring->next_to_use;
4161         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4162         buffer_info = &tx_ring->buffer_info[i];
4163
4164         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4165         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4166         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4167         context_desc->upper_setup.tcp_fields.tucss = tucss;
4168         context_desc->upper_setup.tcp_fields.tucso = tucso;
4169         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4170         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4171         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4172         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4173
4174         buffer_info->time_stamp = jiffies;
4175         buffer_info->next_to_watch = i;
4176
4177         i++;
4178         if (i == tx_ring->count)
4179                 i = 0;
4180         tx_ring->next_to_use = i;
4181
4182         return 1;
4183 }
4184
4185 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4186 {
4187         struct e1000_ring *tx_ring = adapter->tx_ring;
4188         struct e1000_context_desc *context_desc;
4189         struct e1000_buffer *buffer_info;
4190         unsigned int i;
4191         u8 css;
4192         u32 cmd_len = E1000_TXD_CMD_DEXT;
4193         __be16 protocol;
4194
4195         if (skb->ip_summed != CHECKSUM_PARTIAL)
4196                 return 0;
4197
4198         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4199                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4200         else
4201                 protocol = skb->protocol;
4202
4203         switch (protocol) {
4204         case cpu_to_be16(ETH_P_IP):
4205                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4206                         cmd_len |= E1000_TXD_CMD_TCP;
4207                 break;
4208         case cpu_to_be16(ETH_P_IPV6):
4209                 /* XXX not handling all IPV6 headers */
4210                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4211                         cmd_len |= E1000_TXD_CMD_TCP;
4212                 break;
4213         default:
4214                 if (unlikely(net_ratelimit()))
4215                         e_warn("checksum_partial proto=%x!\n",
4216                                be16_to_cpu(protocol));
4217                 break;
4218         }
4219
4220         css = skb_transport_offset(skb);
4221
4222         i = tx_ring->next_to_use;
4223         buffer_info = &tx_ring->buffer_info[i];
4224         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4225
4226         context_desc->lower_setup.ip_config = 0;
4227         context_desc->upper_setup.tcp_fields.tucss = css;
4228         context_desc->upper_setup.tcp_fields.tucso =
4229                                 css + skb->csum_offset;
4230         context_desc->upper_setup.tcp_fields.tucse = 0;
4231         context_desc->tcp_seg_setup.data = 0;
4232         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4233
4234         buffer_info->time_stamp = jiffies;
4235         buffer_info->next_to_watch = i;
4236
4237         i++;
4238         if (i == tx_ring->count)
4239                 i = 0;
4240         tx_ring->next_to_use = i;
4241
4242         return 1;
4243 }
4244
4245 #define E1000_MAX_PER_TXD       8192
4246 #define E1000_MAX_TXD_PWR       12
4247
4248 static int e1000_tx_map(struct e1000_adapter *adapter,
4249                         struct sk_buff *skb, unsigned int first,
4250                         unsigned int max_per_txd, unsigned int nr_frags,
4251                         unsigned int mss)
4252 {
4253         struct e1000_ring *tx_ring = adapter->tx_ring;
4254         struct pci_dev *pdev = adapter->pdev;
4255         struct e1000_buffer *buffer_info;
4256         unsigned int len = skb_headlen(skb);
4257         unsigned int offset = 0, size, count = 0, i;
4258         unsigned int f, bytecount, segs;
4259
4260         i = tx_ring->next_to_use;
4261
4262         while (len) {
4263                 buffer_info = &tx_ring->buffer_info[i];
4264                 size = min(len, max_per_txd);
4265
4266                 buffer_info->length = size;
4267                 buffer_info->time_stamp = jiffies;
4268                 buffer_info->next_to_watch = i;
4269                 buffer_info->dma = dma_map_single(&pdev->dev,
4270                                                   skb->data + offset,
4271                                                   size, DMA_TO_DEVICE);
4272                 buffer_info->mapped_as_page = false;
4273                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4274                         goto dma_error;
4275
4276                 len -= size;
4277                 offset += size;
4278                 count++;
4279
4280                 if (len) {
4281                         i++;
4282                         if (i == tx_ring->count)
4283                                 i = 0;
4284                 }
4285         }
4286
4287         for (f = 0; f < nr_frags; f++) {
4288                 struct skb_frag_struct *frag;
4289
4290                 frag = &skb_shinfo(skb)->frags[f];
4291                 len = frag->size;
4292                 offset = frag->page_offset;
4293
4294                 while (len) {
4295                         i++;
4296                         if (i == tx_ring->count)
4297                                 i = 0;
4298
4299                         buffer_info = &tx_ring->buffer_info[i];
4300                         size = min(len, max_per_txd);
4301
4302                         buffer_info->length = size;
4303                         buffer_info->time_stamp = jiffies;
4304                         buffer_info->next_to_watch = i;
4305                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4306                                                         offset, size,
4307                                                         DMA_TO_DEVICE);
4308                         buffer_info->mapped_as_page = true;
4309                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4310                                 goto dma_error;
4311
4312                         len -= size;
4313                         offset += size;
4314                         count++;
4315                 }
4316         }
4317
4318         segs = skb_shinfo(skb)->gso_segs ?: 1;
4319         /* multiply data chunks by size of headers */
4320         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4321
4322         tx_ring->buffer_info[i].skb = skb;
4323         tx_ring->buffer_info[i].segs = segs;
4324         tx_ring->buffer_info[i].bytecount = bytecount;
4325         tx_ring->buffer_info[first].next_to_watch = i;
4326
4327         return count;
4328
4329 dma_error:
4330         dev_err(&pdev->dev, "TX DMA map failed\n");
4331         buffer_info->dma = 0;
4332         if (count)
4333                 count--;
4334
4335         while (count--) {
4336                 if (i==0)
4337                         i += tx_ring->count;
4338                 i--;
4339                 buffer_info = &tx_ring->buffer_info[i];
4340                 e1000_put_txbuf(adapter, buffer_info);;
4341         }
4342
4343         return 0;
4344 }
4345
4346 static void e1000_tx_queue(struct e1000_adapter *adapter,
4347                            int tx_flags, int count)
4348 {
4349         struct e1000_ring *tx_ring = adapter->tx_ring;
4350         struct e1000_tx_desc *tx_desc = NULL;
4351         struct e1000_buffer *buffer_info;
4352         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4353         unsigned int i;
4354
4355         if (tx_flags & E1000_TX_FLAGS_TSO) {
4356                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4357                              E1000_TXD_CMD_TSE;
4358                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4359
4360                 if (tx_flags & E1000_TX_FLAGS_IPV4)
4361                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4362         }
4363
4364         if (tx_flags & E1000_TX_FLAGS_CSUM) {
4365                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4366                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4367         }
4368
4369         if (tx_flags & E1000_TX_FLAGS_VLAN) {
4370                 txd_lower |= E1000_TXD_CMD_VLE;
4371                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4372         }
4373
4374         i = tx_ring->next_to_use;
4375
4376         while (count--) {
4377                 buffer_info = &tx_ring->buffer_info[i];
4378                 tx_desc = E1000_TX_DESC(*tx_ring, i);
4379                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4380                 tx_desc->lower.data =
4381                         cpu_to_le32(txd_lower | buffer_info->length);
4382                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4383
4384                 i++;
4385                 if (i == tx_ring->count)
4386                         i = 0;
4387         }
4388
4389         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4390
4391         /*
4392          * Force memory writes to complete before letting h/w
4393          * know there are new descriptors to fetch.  (Only
4394          * applicable for weak-ordered memory model archs,
4395          * such as IA-64).
4396          */
4397         wmb();
4398
4399         tx_ring->next_to_use = i;
4400         writel(i, adapter->hw.hw_addr + tx_ring->tail);
4401         /*
4402          * we need this if more than one processor can write to our tail
4403          * at a time, it synchronizes IO on IA64/Altix systems
4404          */
4405         mmiowb();
4406 }
4407
4408 #define MINIMUM_DHCP_PACKET_SIZE 282
4409 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4410                                     struct sk_buff *skb)
4411 {
4412         struct e1000_hw *hw =  &adapter->hw;
4413         u16 length, offset;
4414
4415         if (vlan_tx_tag_present(skb)) {
4416                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4417                     (adapter->hw.mng_cookie.status &
4418                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4419                         return 0;
4420         }
4421
4422         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4423                 return 0;
4424
4425         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4426                 return 0;
4427
4428         {
4429                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4430                 struct udphdr *udp;
4431
4432                 if (ip->protocol != IPPROTO_UDP)
4433                         return 0;
4434
4435                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4436                 if (ntohs(udp->dest) != 67)
4437                         return 0;
4438
4439                 offset = (u8 *)udp + 8 - skb->data;
4440                 length = skb->len - offset;
4441                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4442         }
4443
4444         return 0;
4445 }
4446
4447 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4448 {
4449         struct e1000_adapter *adapter = netdev_priv(netdev);
4450
4451         netif_stop_queue(netdev);
4452         /*
4453          * Herbert's original patch had:
4454          *  smp_mb__after_netif_stop_queue();
4455          * but since that doesn't exist yet, just open code it.
4456          */
4457         smp_mb();
4458
4459         /*
4460          * We need to check again in a case another CPU has just
4461          * made room available.
4462          */
4463         if (e1000_desc_unused(adapter->tx_ring) < size)
4464                 return -EBUSY;
4465
4466         /* A reprieve! */
4467         netif_start_queue(netdev);
4468         ++adapter->restart_queue;
4469         return 0;
4470 }
4471
4472 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4473 {
4474         struct e1000_adapter *adapter = netdev_priv(netdev);
4475
4476         if (e1000_desc_unused(adapter->tx_ring) >= size)
4477                 return 0;
4478         return __e1000_maybe_stop_tx(netdev, size);
4479 }
4480
4481 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4482 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4483                                     struct net_device *netdev)
4484 {
4485         struct e1000_adapter *adapter = netdev_priv(netdev);
4486         struct e1000_ring *tx_ring = adapter->tx_ring;
4487         unsigned int first;
4488         unsigned int max_per_txd = E1000_MAX_PER_TXD;
4489         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4490         unsigned int tx_flags = 0;
4491         unsigned int len = skb_headlen(skb);
4492         unsigned int nr_frags;
4493         unsigned int mss;
4494         int count = 0;
4495         int tso;
4496         unsigned int f;
4497
4498         if (test_bit(__E1000_DOWN, &adapter->state)) {
4499                 dev_kfree_skb_any(skb);
4500                 return NETDEV_TX_OK;
4501         }
4502
4503         if (skb->len <= 0) {
4504                 dev_kfree_skb_any(skb);
4505                 return NETDEV_TX_OK;
4506         }
4507
4508         mss = skb_shinfo(skb)->gso_size;
4509         /*
4510          * The controller does a simple calculation to
4511          * make sure there is enough room in the FIFO before
4512          * initiating the DMA for each buffer.  The calc is:
4513          * 4 = ceil(buffer len/mss).  To make sure we don't
4514          * overrun the FIFO, adjust the max buffer len if mss
4515          * drops.
4516          */
4517         if (mss) {
4518                 u8 hdr_len;
4519                 max_per_txd = min(mss << 2, max_per_txd);
4520                 max_txd_pwr = fls(max_per_txd) - 1;
4521
4522                 /*
4523                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4524                  * points to just header, pull a few bytes of payload from
4525                  * frags into skb->data
4526                  */
4527                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4528                 /*
4529                  * we do this workaround for ES2LAN, but it is un-necessary,
4530                  * avoiding it could save a lot of cycles
4531                  */
4532                 if (skb->data_len && (hdr_len == len)) {
4533                         unsigned int pull_size;
4534
4535                         pull_size = min((unsigned int)4, skb->data_len);
4536                         if (!__pskb_pull_tail(skb, pull_size)) {
4537                                 e_err("__pskb_pull_tail failed.\n");
4538                                 dev_kfree_skb_any(skb);
4539                                 return NETDEV_TX_OK;
4540                         }
4541                         len = skb_headlen(skb);
4542                 }
4543         }
4544
4545         /* reserve a descriptor for the offload context */
4546         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4547                 count++;
4548         count++;
4549
4550         count += TXD_USE_COUNT(len, max_txd_pwr);
4551
4552         nr_frags = skb_shinfo(skb)->nr_frags;
4553         for (f = 0; f < nr_frags; f++)
4554                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4555                                        max_txd_pwr);
4556
4557         if (adapter->hw.mac.tx_pkt_filtering)
4558                 e1000_transfer_dhcp_info(adapter, skb);
4559
4560         /*
4561          * need: count + 2 desc gap to keep tail from touching
4562          * head, otherwise try next time
4563          */
4564         if (e1000_maybe_stop_tx(netdev, count + 2))
4565                 return NETDEV_TX_BUSY;
4566
4567         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4568                 tx_flags |= E1000_TX_FLAGS_VLAN;
4569                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4570         }
4571
4572         first = tx_ring->next_to_use;
4573
4574         tso = e1000_tso(adapter, skb);
4575         if (tso < 0) {
4576                 dev_kfree_skb_any(skb);
4577                 return NETDEV_TX_OK;
4578         }
4579
4580         if (tso)
4581                 tx_flags |= E1000_TX_FLAGS_TSO;
4582         else if (e1000_tx_csum(adapter, skb))
4583                 tx_flags |= E1000_TX_FLAGS_CSUM;
4584
4585         /*
4586          * Old method was to assume IPv4 packet by default if TSO was enabled.
4587          * 82571 hardware supports TSO capabilities for IPv6 as well...
4588          * no longer assume, we must.
4589          */
4590         if (skb->protocol == htons(ETH_P_IP))
4591                 tx_flags |= E1000_TX_FLAGS_IPV4;
4592
4593         /* if count is 0 then mapping error has occured */
4594         count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4595         if (count) {
4596                 e1000_tx_queue(adapter, tx_flags, count);
4597                 /* Make sure there is space in the ring for the next send. */
4598                 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4599
4600         } else {
4601                 dev_kfree_skb_any(skb);
4602                 tx_ring->buffer_info[first].time_stamp = 0;
4603                 tx_ring->next_to_use = first;
4604         }
4605
4606         return NETDEV_TX_OK;
4607 }
4608
4609 /**
4610  * e1000_tx_timeout - Respond to a Tx Hang
4611  * @netdev: network interface device structure
4612  **/
4613 static void e1000_tx_timeout(struct net_device *netdev)
4614 {
4615         struct e1000_adapter *adapter = netdev_priv(netdev);
4616
4617         /* Do the reset outside of interrupt context */
4618         adapter->tx_timeout_count++;
4619         schedule_work(&adapter->reset_task);
4620 }
4621
4622 static void e1000_reset_task(struct work_struct *work)
4623 {
4624         struct e1000_adapter *adapter;
4625         adapter = container_of(work, struct e1000_adapter, reset_task);
4626
4627         e1000e_dump(adapter);
4628         e_err("Reset adapter\n");
4629         e1000e_reinit_locked(adapter);
4630 }
4631
4632 /**
4633  * e1000_get_stats - Get System Network Statistics
4634  * @netdev: network interface device structure
4635  *
4636  * Returns the address of the device statistics structure.
4637  * The statistics are actually updated from the timer callback.
4638  **/
4639 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4640 {
4641         /* only return the current stats */
4642         return &netdev->stats;
4643 }
4644
4645 /**
4646  * e1000_change_mtu - Change the Maximum Transfer Unit
4647  * @netdev: network interface device structure
4648  * @new_mtu: new value for maximum frame size
4649  *
4650  * Returns 0 on success, negative on failure
4651  **/
4652 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4653 {
4654         struct e1000_adapter *adapter = netdev_priv(netdev);
4655         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4656
4657         /* Jumbo frame support */
4658         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4659             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4660                 e_err("Jumbo Frames not supported.\n");
4661                 return -EINVAL;
4662         }
4663
4664         /* Supported frame sizes */
4665         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4666             (max_frame > adapter->max_hw_frame_size)) {
4667                 e_err("Unsupported MTU setting\n");
4668                 return -EINVAL;
4669         }
4670
4671         /* 82573 Errata 17 */
4672         if (((adapter->hw.mac.type == e1000_82573) ||
4673              (adapter->hw.mac.type == e1000_82574)) &&
4674             (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
4675                 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
4676                 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
4677         }
4678
4679         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4680                 msleep(1);
4681         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4682         adapter->max_frame_size = max_frame;
4683         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4684         netdev->mtu = new_mtu;
4685         if (netif_running(netdev))
4686                 e1000e_down(adapter);
4687
4688         /*
4689          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4690          * means we reserve 2 more, this pushes us to allocate from the next
4691          * larger slab size.
4692          * i.e. RXBUFFER_2048 --> size-4096 slab
4693          * However with the new *_jumbo_rx* routines, jumbo receives will use
4694          * fragmented skbs
4695          */
4696
4697         if (max_frame <= 2048)
4698                 adapter->rx_buffer_len = 2048;
4699         else
4700                 adapter->rx_buffer_len = 4096;
4701
4702         /* adjust allocation if LPE protects us, and we aren't using SBP */
4703         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4704              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4705                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4706                                          + ETH_FCS_LEN;
4707
4708         if (netif_running(netdev))
4709                 e1000e_up(adapter);
4710         else
4711                 e1000e_reset(adapter);
4712
4713         clear_bit(__E1000_RESETTING, &adapter->state);
4714
4715         return 0;
4716 }
4717
4718 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4719                            int cmd)
4720 {
4721         struct e1000_adapter *adapter = netdev_priv(netdev);
4722         struct mii_ioctl_data *data = if_mii(ifr);
4723
4724         if (adapter->hw.phy.media_type != e1000_media_type_copper)
4725                 return -EOPNOTSUPP;
4726
4727         switch (cmd) {
4728         case SIOCGMIIPHY:
4729                 data->phy_id = adapter->hw.phy.addr;
4730                 break;
4731         case SIOCGMIIREG:
4732                 e1000_phy_read_status(adapter);
4733
4734                 switch (data->reg_num & 0x1F) {
4735                 case MII_BMCR:
4736                         data->val_out = adapter->phy_regs.bmcr;
4737                         break;
4738                 case MII_BMSR:
4739                         data->val_out = adapter->phy_regs.bmsr;
4740                         break;
4741                 case MII_PHYSID1:
4742                         data->val_out = (adapter->hw.phy.id >> 16);
4743                         break;
4744                 case MII_PHYSID2:
4745                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
4746                         break;
4747                 case MII_ADVERTISE:
4748                         data->val_out = adapter->phy_regs.advertise;
4749                         break;
4750                 case MII_LPA:
4751                         data->val_out = adapter->phy_regs.lpa;
4752                         break;
4753                 case MII_EXPANSION:
4754                         data->val_out = adapter->phy_regs.expansion;
4755                         break;
4756                 case MII_CTRL1000:
4757                         data->val_out = adapter->phy_regs.ctrl1000;
4758                         break;
4759                 case MII_STAT1000:
4760                         data->val_out = adapter->phy_regs.stat1000;
4761                         break;
4762                 case MII_ESTATUS:
4763                         data->val_out = adapter->phy_regs.estatus;
4764                         break;
4765                 default:
4766                         return -EIO;
4767                 }
4768                 break;
4769         case SIOCSMIIREG:
4770         default:
4771                 return -EOPNOTSUPP;
4772         }
4773         return 0;
4774 }
4775
4776 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4777 {
4778         switch (cmd) {
4779         case SIOCGMIIPHY:
4780         case SIOCGMIIREG:
4781         case SIOCSMIIREG:
4782                 return e1000_mii_ioctl(netdev, ifr, cmd);
4783         default:
4784                 return -EOPNOTSUPP;
4785         }
4786 }
4787
4788 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
4789 {
4790         struct e1000_hw *hw = &adapter->hw;
4791         u32 i, mac_reg;
4792         u16 phy_reg;
4793         int retval = 0;
4794
4795         /* copy MAC RARs to PHY RARs */
4796         for (i = 0; i < adapter->hw.mac.rar_entry_count; i++) {
4797                 mac_reg = er32(RAL(i));
4798                 e1e_wphy(hw, BM_RAR_L(i), (u16)(mac_reg & 0xFFFF));
4799                 e1e_wphy(hw, BM_RAR_M(i), (u16)((mac_reg >> 16) & 0xFFFF));
4800                 mac_reg = er32(RAH(i));
4801                 e1e_wphy(hw, BM_RAR_H(i), (u16)(mac_reg & 0xFFFF));
4802                 e1e_wphy(hw, BM_RAR_CTRL(i), (u16)((mac_reg >> 16) & 0xFFFF));
4803         }
4804
4805         /* copy MAC MTA to PHY MTA */
4806         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
4807                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4808                 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
4809                 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
4810         }
4811
4812         /* configure PHY Rx Control register */
4813         e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
4814         mac_reg = er32(RCTL);
4815         if (mac_reg & E1000_RCTL_UPE)
4816                 phy_reg |= BM_RCTL_UPE;
4817         if (mac_reg & E1000_RCTL_MPE)
4818                 phy_reg |= BM_RCTL_MPE;
4819         phy_reg &= ~(BM_RCTL_MO_MASK);
4820         if (mac_reg & E1000_RCTL_MO_3)
4821                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4822                                 << BM_RCTL_MO_SHIFT);
4823         if (mac_reg & E1000_RCTL_BAM)
4824                 phy_reg |= BM_RCTL_BAM;
4825         if (mac_reg & E1000_RCTL_PMCF)
4826                 phy_reg |= BM_RCTL_PMCF;
4827         mac_reg = er32(CTRL);
4828         if (mac_reg & E1000_CTRL_RFCE)
4829                 phy_reg |= BM_RCTL_RFCE;
4830         e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
4831
4832         /* enable PHY wakeup in MAC register */
4833         ew32(WUFC, wufc);
4834         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
4835
4836         /* configure and enable PHY wakeup in PHY registers */
4837         e1e_wphy(&adapter->hw, BM_WUFC, wufc);
4838         e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
4839
4840         /* activate PHY wakeup */
4841         retval = hw->phy.ops.acquire(hw);
4842         if (retval) {
4843                 e_err("Could not acquire PHY\n");
4844                 return retval;
4845         }
4846         e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4847                                  (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
4848         retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
4849         if (retval) {
4850                 e_err("Could not read PHY page 769\n");
4851                 goto out;
4852         }
4853         phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
4854         retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
4855         if (retval)
4856                 e_err("Could not set PHY Host Wakeup bit\n");
4857 out:
4858         hw->phy.ops.release(hw);
4859
4860         return retval;
4861 }
4862
4863 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
4864                             bool runtime)
4865 {
4866         struct net_device *netdev = pci_get_drvdata(pdev);
4867         struct e1000_adapter *adapter = netdev_priv(netdev);
4868         struct e1000_hw *hw = &adapter->hw;
4869         u32 ctrl, ctrl_ext, rctl, status;
4870         /* Runtime suspend should only enable wakeup for link changes */
4871         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
4872         int retval = 0;
4873
4874         netif_device_detach(netdev);
4875
4876         if (netif_running(netdev)) {
4877                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4878                 e1000e_down(adapter);
4879                 e1000_free_irq(adapter);
4880         }
4881         e1000e_reset_interrupt_capability(adapter);
4882
4883         retval = pci_save_state(pdev);
4884         if (retval)
4885                 return retval;
4886
4887         status = er32(STATUS);
4888         if (status & E1000_STATUS_LU)
4889                 wufc &= ~E1000_WUFC_LNKC;
4890
4891         if (wufc) {
4892                 e1000_setup_rctl(adapter);
4893                 e1000_set_multi(netdev);
4894
4895                 /* turn on all-multi mode if wake on multicast is enabled */
4896                 if (wufc & E1000_WUFC_MC) {
4897                         rctl = er32(RCTL);
4898                         rctl |= E1000_RCTL_MPE;
4899                         ew32(RCTL, rctl);
4900                 }
4901
4902                 ctrl = er32(CTRL);
4903                 /* advertise wake from D3Cold */
4904                 #define E1000_CTRL_ADVD3WUC 0x00100000
4905                 /* phy power management enable */
4906                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4907                 ctrl |= E1000_CTRL_ADVD3WUC;
4908                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
4909                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
4910                 ew32(CTRL, ctrl);
4911
4912                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4913                     adapter->hw.phy.media_type ==
4914                     e1000_media_type_internal_serdes) {
4915                         /* keep the laser running in D3 */
4916                         ctrl_ext = er32(CTRL_EXT);
4917                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
4918                         ew32(CTRL_EXT, ctrl_ext);
4919                 }
4920
4921                 if (adapter->flags & FLAG_IS_ICH)
4922                         e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4923
4924                 /* Allow time for pending master requests to run */
4925                 e1000e_disable_pcie_master(&adapter->hw);
4926
4927                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
4928                         /* enable wakeup by the PHY */
4929                         retval = e1000_init_phy_wakeup(adapter, wufc);
4930                         if (retval)
4931                                 return retval;
4932                 } else {
4933                         /* enable wakeup by the MAC */
4934                         ew32(WUFC, wufc);
4935                         ew32(WUC, E1000_WUC_PME_EN);
4936                 }
4937         } else {
4938                 ew32(WUC, 0);
4939                 ew32(WUFC, 0);
4940         }
4941
4942         *enable_wake = !!wufc;
4943
4944         /* make sure adapter isn't asleep if manageability is enabled */
4945         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
4946             (hw->mac.ops.check_mng_mode(hw)))
4947                 *enable_wake = true;
4948
4949         if (adapter->hw.phy.type == e1000_phy_igp_3)
4950                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4951
4952         /*
4953          * Release control of h/w to f/w.  If f/w is AMT enabled, this
4954          * would have already happened in close and is redundant.
4955          */
4956         e1000_release_hw_control(adapter);
4957
4958         pci_disable_device(pdev);
4959
4960         return 0;
4961 }
4962
4963 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
4964 {
4965         if (sleep && wake) {
4966                 pci_prepare_to_sleep(pdev);
4967                 return;
4968         }
4969
4970         pci_wake_from_d3(pdev, wake);
4971         pci_set_power_state(pdev, PCI_D3hot);
4972 }
4973
4974 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
4975                                     bool wake)
4976 {
4977         struct net_device *netdev = pci_get_drvdata(pdev);
4978         struct e1000_adapter *adapter = netdev_priv(netdev);
4979
4980         /*
4981          * The pci-e switch on some quad port adapters will report a
4982          * correctable error when the MAC transitions from D0 to D3.  To
4983          * prevent this we need to mask off the correctable errors on the
4984          * downstream port of the pci-e switch.
4985          */
4986         if (adapter->flags & FLAG_IS_QUAD_PORT) {
4987                 struct pci_dev *us_dev = pdev->bus->self;
4988                 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4989                 u16 devctl;
4990
4991                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4992                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4993                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
4994
4995                 e1000_power_off(pdev, sleep, wake);
4996
4997                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4998         } else {
4999                 e1000_power_off(pdev, sleep, wake);
5000         }
5001 }
5002
5003 #ifdef CONFIG_PCIEASPM
5004 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5005 {
5006         pci_disable_link_state(pdev, state);
5007 }
5008 #else
5009 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5010 {
5011         int pos;
5012         u16 reg16;
5013
5014         /*
5015          * Both device and parent should have the same ASPM setting.
5016          * Disable ASPM in downstream component first and then upstream.
5017          */
5018         pos = pci_pcie_cap(pdev);
5019         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5020         reg16 &= ~state;
5021         pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5022
5023         if (!pdev->bus->self)
5024                 return;
5025
5026         pos = pci_pcie_cap(pdev->bus->self);
5027         pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5028         reg16 &= ~state;
5029         pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5030 }
5031 #endif
5032 void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5033 {
5034         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5035                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5036                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5037
5038         __e1000e_disable_aspm(pdev, state);
5039 }
5040
5041 #ifdef CONFIG_PM_OPS
5042 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5043 {
5044         return !!adapter->tx_ring->buffer_info;
5045 }
5046
5047 static int __e1000_resume(struct pci_dev *pdev)
5048 {
5049         struct net_device *netdev = pci_get_drvdata(pdev);
5050         struct e1000_adapter *adapter = netdev_priv(netdev);
5051         struct e1000_hw *hw = &adapter->hw;
5052         u32 err;
5053
5054         pci_set_power_state(pdev, PCI_D0);
5055         pci_restore_state(pdev);
5056         pci_save_state(pdev);
5057         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5058                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5059
5060         e1000e_set_interrupt_capability(adapter);
5061         if (netif_running(netdev)) {
5062                 err = e1000_request_irq(adapter);
5063                 if (err)
5064                         return err;
5065         }
5066
5067         e1000e_power_up_phy(adapter);
5068
5069         /* report the system wakeup cause from S3/S4 */
5070         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5071                 u16 phy_data;
5072
5073                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5074                 if (phy_data) {
5075                         e_info("PHY Wakeup cause - %s\n",
5076                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5077                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5078                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5079                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5080                                 phy_data & E1000_WUS_LNKC ? "Link Status "
5081                                 " Change" : "other");
5082                 }
5083                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5084         } else {
5085                 u32 wus = er32(WUS);
5086                 if (wus) {
5087                         e_info("MAC Wakeup cause - %s\n",
5088                                 wus & E1000_WUS_EX ? "Unicast Packet" :
5089                                 wus & E1000_WUS_MC ? "Multicast Packet" :
5090                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
5091                                 wus & E1000_WUS_MAG ? "Magic Packet" :
5092                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
5093                                 "other");
5094                 }
5095                 ew32(WUS, ~0);
5096         }
5097
5098         e1000e_reset(adapter);
5099
5100         e1000_init_manageability(adapter);
5101
5102         if (netif_running(netdev))
5103                 e1000e_up(adapter);
5104
5105         netif_device_attach(netdev);
5106
5107         /*
5108          * If the controller has AMT, do not set DRV_LOAD until the interface
5109          * is up.  For all other cases, let the f/w know that the h/w is now
5110          * under the control of the driver.
5111          */
5112         if (!(adapter->flags & FLAG_HAS_AMT))
5113                 e1000_get_hw_control(adapter);
5114
5115         return 0;
5116 }
5117
5118 #ifdef CONFIG_PM_SLEEP
5119 static int e1000_suspend(struct device *dev)
5120 {
5121         struct pci_dev *pdev = to_pci_dev(dev);
5122         int retval;
5123         bool wake;
5124
5125         retval = __e1000_shutdown(pdev, &wake, false);
5126         if (!retval)
5127                 e1000_complete_shutdown(pdev, true, wake);
5128
5129         return retval;
5130 }
5131
5132 static int e1000_resume(struct device *dev)
5133 {
5134         struct pci_dev *pdev = to_pci_dev(dev);
5135         struct net_device *netdev = pci_get_drvdata(pdev);
5136         struct e1000_adapter *adapter = netdev_priv(netdev);
5137
5138         if (e1000e_pm_ready(adapter))
5139                 adapter->idle_check = true;
5140
5141         return __e1000_resume(pdev);
5142 }
5143 #endif /* CONFIG_PM_SLEEP */
5144
5145 #ifdef CONFIG_PM_RUNTIME
5146 static int e1000_runtime_suspend(struct device *dev)
5147 {
5148         struct pci_dev *pdev = to_pci_dev(dev);
5149         struct net_device *netdev = pci_get_drvdata(pdev);
5150         struct e1000_adapter *adapter = netdev_priv(netdev);
5151
5152         if (e1000e_pm_ready(adapter)) {
5153                 bool wake;
5154
5155                 __e1000_shutdown(pdev, &wake, true);
5156         }
5157
5158         return 0;
5159 }
5160
5161 static int e1000_idle(struct device *dev)
5162 {
5163         struct pci_dev *pdev = to_pci_dev(dev);
5164         struct net_device *netdev = pci_get_drvdata(pdev);
5165         struct e1000_adapter *adapter = netdev_priv(netdev);
5166
5167         if (!e1000e_pm_ready(adapter))
5168                 return 0;
5169
5170         if (adapter->idle_check) {
5171                 adapter->idle_check = false;
5172                 if (!e1000e_has_link(adapter))
5173                         pm_schedule_suspend(dev, MSEC_PER_SEC);
5174         }
5175
5176         return -EBUSY;
5177 }
5178
5179 static int e1000_runtime_resume(struct device *dev)
5180 {
5181         struct pci_dev *pdev = to_pci_dev(dev);
5182         struct net_device *netdev = pci_get_drvdata(pdev);
5183         struct e1000_adapter *adapter = netdev_priv(netdev);
5184
5185         if (!e1000e_pm_ready(adapter))
5186                 return 0;
5187
5188         adapter->idle_check = !dev->power.runtime_auto;
5189         return __e1000_resume(pdev);
5190 }
5191 #endif /* CONFIG_PM_RUNTIME */
5192 #endif /* CONFIG_PM_OPS */
5193
5194 static void e1000_shutdown(struct pci_dev *pdev)
5195 {
5196         bool wake = false;
5197
5198         __e1000_shutdown(pdev, &wake, false);
5199
5200         if (system_state == SYSTEM_POWER_OFF)
5201                 e1000_complete_shutdown(pdev, false, wake);
5202 }
5203
5204 #ifdef CONFIG_NET_POLL_CONTROLLER
5205 /*
5206  * Polling 'interrupt' - used by things like netconsole to send skbs
5207  * without having to re-enable interrupts. It's not called while
5208  * the interrupt routine is executing.
5209  */
5210 static void e1000_netpoll(struct net_device *netdev)
5211 {
5212         struct e1000_adapter *adapter = netdev_priv(netdev);
5213
5214         disable_irq(adapter->pdev->irq);
5215         e1000_intr(adapter->pdev->irq, netdev);
5216
5217         enable_irq(adapter->pdev->irq);
5218 }
5219 #endif
5220
5221 /**
5222  * e1000_io_error_detected - called when PCI error is detected
5223  * @pdev: Pointer to PCI device
5224  * @state: The current pci connection state
5225  *
5226  * This function is called after a PCI bus error affecting
5227  * this device has been detected.
5228  */
5229 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5230                                                 pci_channel_state_t state)
5231 {
5232         struct net_device *netdev = pci_get_drvdata(pdev);
5233         struct e1000_adapter *adapter = netdev_priv(netdev);
5234
5235         netif_device_detach(netdev);
5236
5237         if (state == pci_channel_io_perm_failure)
5238                 return PCI_ERS_RESULT_DISCONNECT;
5239
5240         if (netif_running(netdev))
5241                 e1000e_down(adapter);
5242         pci_disable_device(pdev);
5243
5244         /* Request a slot slot reset. */
5245         return PCI_ERS_RESULT_NEED_RESET;
5246 }
5247
5248 /**
5249  * e1000_io_slot_reset - called after the pci bus has been reset.
5250  * @pdev: Pointer to PCI device
5251  *
5252  * Restart the card from scratch, as if from a cold-boot. Implementation
5253  * resembles the first-half of the e1000_resume routine.
5254  */
5255 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5256 {
5257         struct net_device *netdev = pci_get_drvdata(pdev);
5258         struct e1000_adapter *adapter = netdev_priv(netdev);
5259         struct e1000_hw *hw = &adapter->hw;
5260         int err;
5261         pci_ers_result_t result;
5262
5263         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5264                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5265         err = pci_enable_device_mem(pdev);
5266         if (err) {
5267                 dev_err(&pdev->dev,
5268                         "Cannot re-enable PCI device after reset.\n");
5269                 result = PCI_ERS_RESULT_DISCONNECT;
5270         } else {
5271                 pci_set_master(pdev);
5272                 pdev->state_saved = true;
5273                 pci_restore_state(pdev);
5274
5275                 pci_enable_wake(pdev, PCI_D3hot, 0);
5276                 pci_enable_wake(pdev, PCI_D3cold, 0);
5277
5278                 e1000e_reset(adapter);
5279                 ew32(WUS, ~0);
5280                 result = PCI_ERS_RESULT_RECOVERED;
5281         }
5282
5283         pci_cleanup_aer_uncorrect_error_status(pdev);
5284
5285         return result;
5286 }
5287
5288 /**
5289  * e1000_io_resume - called when traffic can start flowing again.
5290  * @pdev: Pointer to PCI device
5291  *
5292  * This callback is called when the error recovery driver tells us that
5293  * its OK to resume normal operation. Implementation resembles the
5294  * second-half of the e1000_resume routine.
5295  */
5296 static void e1000_io_resume(struct pci_dev *pdev)
5297 {
5298         struct net_device *netdev = pci_get_drvdata(pdev);
5299         struct e1000_adapter *adapter = netdev_priv(netdev);
5300
5301         e1000_init_manageability(adapter);
5302
5303         if (netif_running(netdev)) {
5304                 if (e1000e_up(adapter)) {
5305                         dev_err(&pdev->dev,
5306                                 "can't bring device back up after reset\n");
5307                         return;
5308                 }
5309         }
5310
5311         netif_device_attach(netdev);
5312
5313         /*
5314          * If the controller has AMT, do not set DRV_LOAD until the interface
5315          * is up.  For all other cases, let the f/w know that the h/w is now
5316          * under the control of the driver.
5317          */
5318         if (!(adapter->flags & FLAG_HAS_AMT))
5319                 e1000_get_hw_control(adapter);
5320
5321 }
5322
5323 static void e1000_print_device_info(struct e1000_adapter *adapter)
5324 {
5325         struct e1000_hw *hw = &adapter->hw;
5326         struct net_device *netdev = adapter->netdev;
5327         u32 pba_num;
5328
5329         /* print bus type/speed/width info */
5330         e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5331                /* bus width */
5332                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5333                 "Width x1"),
5334                /* MAC address */
5335                netdev->dev_addr);
5336         e_info("Intel(R) PRO/%s Network Connection\n",
5337                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5338         e1000e_read_pba_num(hw, &pba_num);
5339         e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
5340                hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
5341 }
5342
5343 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5344 {
5345         struct e1000_hw *hw = &adapter->hw;
5346         int ret_val;
5347         u16 buf = 0;
5348
5349         if (hw->mac.type != e1000_82573)
5350                 return;
5351
5352         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5353         if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5354                 /* Deep Smart Power Down (DSPD) */
5355                 dev_warn(&adapter->pdev->dev,
5356                          "Warning: detected DSPD enabled in EEPROM\n");
5357         }
5358 }
5359
5360 static const struct net_device_ops e1000e_netdev_ops = {
5361         .ndo_open               = e1000_open,
5362         .ndo_stop               = e1000_close,
5363         .ndo_start_xmit         = e1000_xmit_frame,
5364         .ndo_get_stats          = e1000_get_stats,
5365         .ndo_set_multicast_list = e1000_set_multi,
5366         .ndo_set_mac_address    = e1000_set_mac,
5367         .ndo_change_mtu         = e1000_change_mtu,
5368         .ndo_do_ioctl           = e1000_ioctl,
5369         .ndo_tx_timeout         = e1000_tx_timeout,
5370         .ndo_validate_addr      = eth_validate_addr,
5371
5372         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
5373         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
5374         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
5375 #ifdef CONFIG_NET_POLL_CONTROLLER
5376         .ndo_poll_controller    = e1000_netpoll,
5377 #endif
5378 };
5379
5380 /**
5381  * e1000_probe - Device Initialization Routine
5382  * @pdev: PCI device information struct
5383  * @ent: entry in e1000_pci_tbl
5384  *
5385  * Returns 0 on success, negative on failure
5386  *
5387  * e1000_probe initializes an adapter identified by a pci_dev structure.
5388  * The OS initialization, configuring of the adapter private structure,
5389  * and a hardware reset occur.
5390  **/
5391 static int __devinit e1000_probe(struct pci_dev *pdev,
5392                                  const struct pci_device_id *ent)
5393 {
5394         struct net_device *netdev;
5395         struct e1000_adapter *adapter;
5396         struct e1000_hw *hw;
5397         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5398         resource_size_t mmio_start, mmio_len;
5399         resource_size_t flash_start, flash_len;
5400
5401         static int cards_found;
5402         int i, err, pci_using_dac;
5403         u16 eeprom_data = 0;
5404         u16 eeprom_apme_mask = E1000_EEPROM_APME;
5405
5406         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5407                 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5408
5409         err = pci_enable_device_mem(pdev);
5410         if (err)
5411                 return err;
5412
5413         pci_using_dac = 0;
5414         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5415         if (!err) {
5416                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5417                 if (!err)
5418                         pci_using_dac = 1;
5419         } else {
5420                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5421                 if (err) {
5422                         err = dma_set_coherent_mask(&pdev->dev,
5423                                                     DMA_BIT_MASK(32));
5424                         if (err) {
5425                                 dev_err(&pdev->dev, "No usable DMA "
5426                                         "configuration, aborting\n");
5427                                 goto err_dma;
5428                         }
5429                 }
5430         }
5431
5432         err = pci_request_selected_regions_exclusive(pdev,
5433                                           pci_select_bars(pdev, IORESOURCE_MEM),
5434                                           e1000e_driver_name);
5435         if (err)
5436                 goto err_pci_reg;
5437
5438         /* AER (Advanced Error Reporting) hooks */
5439         pci_enable_pcie_error_reporting(pdev);
5440
5441         pci_set_master(pdev);
5442         /* PCI config space info */
5443         err = pci_save_state(pdev);
5444         if (err)
5445                 goto err_alloc_etherdev;
5446
5447         err = -ENOMEM;
5448         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5449         if (!netdev)
5450                 goto err_alloc_etherdev;
5451
5452         SET_NETDEV_DEV(netdev, &pdev->dev);
5453
5454         pci_set_drvdata(pdev, netdev);
5455         adapter = netdev_priv(netdev);
5456         hw = &adapter->hw;
5457         adapter->netdev = netdev;
5458         adapter->pdev = pdev;
5459         adapter->ei = ei;
5460         adapter->pba = ei->pba;
5461         adapter->flags = ei->flags;
5462         adapter->flags2 = ei->flags2;
5463         adapter->hw.adapter = adapter;
5464         adapter->hw.mac.type = ei->mac;
5465         adapter->max_hw_frame_size = ei->max_hw_frame_size;
5466         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5467
5468         mmio_start = pci_resource_start(pdev, 0);
5469         mmio_len = pci_resource_len(pdev, 0);
5470
5471         err = -EIO;
5472         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5473         if (!adapter->hw.hw_addr)
5474                 goto err_ioremap;
5475
5476         if ((adapter->flags & FLAG_HAS_FLASH) &&
5477             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5478                 flash_start = pci_resource_start(pdev, 1);
5479                 flash_len = pci_resource_len(pdev, 1);
5480                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5481                 if (!adapter->hw.flash_address)
5482                         goto err_flashmap;
5483         }
5484
5485         /* construct the net_device struct */
5486         netdev->netdev_ops              = &e1000e_netdev_ops;
5487         e1000e_set_ethtool_ops(netdev);
5488         netdev->watchdog_timeo          = 5 * HZ;
5489         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5490         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5491
5492         netdev->mem_start = mmio_start;
5493         netdev->mem_end = mmio_start + mmio_len;
5494
5495         adapter->bd_number = cards_found++;
5496
5497         e1000e_check_options(adapter);
5498
5499         /* setup adapter struct */
5500         err = e1000_sw_init(adapter);
5501         if (err)
5502                 goto err_sw_init;
5503
5504         err = -EIO;
5505
5506         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5507         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5508         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5509
5510         err = ei->get_variants(adapter);
5511         if (err)
5512                 goto err_hw_init;
5513
5514         if ((adapter->flags & FLAG_IS_ICH) &&
5515             (adapter->flags & FLAG_READ_ONLY_NVM))
5516                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5517
5518         hw->mac.ops.get_bus_info(&adapter->hw);
5519
5520         adapter->hw.phy.autoneg_wait_to_complete = 0;
5521
5522         /* Copper options */
5523         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5524                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5525                 adapter->hw.phy.disable_polarity_correction = 0;
5526                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5527         }
5528
5529         if (e1000_check_reset_block(&adapter->hw))
5530                 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5531
5532         netdev->features = NETIF_F_SG |
5533                            NETIF_F_HW_CSUM |
5534                            NETIF_F_HW_VLAN_TX |
5535                            NETIF_F_HW_VLAN_RX;
5536
5537         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5538                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5539
5540         netdev->features |= NETIF_F_TSO;
5541         netdev->features |= NETIF_F_TSO6;
5542
5543         netdev->vlan_features |= NETIF_F_TSO;
5544         netdev->vlan_features |= NETIF_F_TSO6;
5545         netdev->vlan_features |= NETIF_F_HW_CSUM;
5546         netdev->vlan_features |= NETIF_F_SG;
5547
5548         if (pci_using_dac)
5549                 netdev->features |= NETIF_F_HIGHDMA;
5550
5551         if (e1000e_enable_mng_pass_thru(&adapter->hw))
5552                 adapter->flags |= FLAG_MNG_PT_ENABLED;
5553
5554         /*
5555          * before reading the NVM, reset the controller to
5556          * put the device in a known good starting state
5557          */
5558         adapter->hw.mac.ops.reset_hw(&adapter->hw);
5559
5560         /*
5561          * systems with ASPM and others may see the checksum fail on the first
5562          * attempt. Let's give it a few tries
5563          */
5564         for (i = 0;; i++) {
5565                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5566                         break;
5567                 if (i == 2) {
5568                         e_err("The NVM Checksum Is Not Valid\n");
5569                         err = -EIO;
5570                         goto err_eeprom;
5571                 }
5572         }
5573
5574         e1000_eeprom_checks(adapter);
5575
5576         /* copy the MAC address */
5577         if (e1000e_read_mac_addr(&adapter->hw))
5578                 e_err("NVM Read Error while reading MAC address\n");
5579
5580         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5581         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5582
5583         if (!is_valid_ether_addr(netdev->perm_addr)) {
5584                 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5585                 err = -EIO;
5586                 goto err_eeprom;
5587         }
5588
5589         init_timer(&adapter->watchdog_timer);
5590         adapter->watchdog_timer.function = &e1000_watchdog;
5591         adapter->watchdog_timer.data = (unsigned long) adapter;
5592
5593         init_timer(&adapter->phy_info_timer);
5594         adapter->phy_info_timer.function = &e1000_update_phy_info;
5595         adapter->phy_info_timer.data = (unsigned long) adapter;
5596
5597         INIT_WORK(&adapter->reset_task, e1000_reset_task);
5598         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5599         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5600         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5601         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5602
5603         /* Initialize link parameters. User can change them with ethtool */
5604         adapter->hw.mac.autoneg = 1;
5605         adapter->fc_autoneg = 1;
5606         adapter->hw.fc.requested_mode = e1000_fc_default;
5607         adapter->hw.fc.current_mode = e1000_fc_default;
5608         adapter->hw.phy.autoneg_advertised = 0x2f;
5609
5610         /* ring size defaults */
5611         adapter->rx_ring->count = 256;
5612         adapter->tx_ring->count = 256;
5613
5614         /*
5615          * Initial Wake on LAN setting - If APM wake is enabled in
5616          * the EEPROM, enable the ACPI Magic Packet filter
5617          */
5618         if (adapter->flags & FLAG_APME_IN_WUC) {
5619                 /* APME bit in EEPROM is mapped to WUC.APME */
5620                 eeprom_data = er32(WUC);
5621                 eeprom_apme_mask = E1000_WUC_APME;
5622                 if (eeprom_data & E1000_WUC_PHY_WAKE)
5623                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5624         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5625                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5626                     (adapter->hw.bus.func == 1))
5627                         e1000_read_nvm(&adapter->hw,
5628                                 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5629                 else
5630                         e1000_read_nvm(&adapter->hw,
5631                                 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5632         }
5633
5634         /* fetch WoL from EEPROM */
5635         if (eeprom_data & eeprom_apme_mask)
5636                 adapter->eeprom_wol |= E1000_WUFC_MAG;
5637
5638         /*
5639          * now that we have the eeprom settings, apply the special cases
5640          * where the eeprom may be wrong or the board simply won't support
5641          * wake on lan on a particular port
5642          */
5643         if (!(adapter->flags & FLAG_HAS_WOL))
5644                 adapter->eeprom_wol = 0;
5645
5646         /* initialize the wol settings based on the eeprom settings */
5647         adapter->wol = adapter->eeprom_wol;
5648         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5649
5650         /* save off EEPROM version number */
5651         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5652
5653         /* reset the hardware with the new settings */
5654         e1000e_reset(adapter);
5655
5656         /*
5657          * If the controller has AMT, do not set DRV_LOAD until the interface
5658          * is up.  For all other cases, let the f/w know that the h/w is now
5659          * under the control of the driver.
5660          */
5661         if (!(adapter->flags & FLAG_HAS_AMT))
5662                 e1000_get_hw_control(adapter);
5663
5664         strcpy(netdev->name, "eth%d");
5665         err = register_netdev(netdev);
5666         if (err)
5667                 goto err_register;
5668
5669         /* carrier off reporting is important to ethtool even BEFORE open */
5670         netif_carrier_off(netdev);
5671
5672         e1000_print_device_info(adapter);
5673
5674         if (pci_dev_run_wake(pdev)) {
5675                 pm_runtime_set_active(&pdev->dev);
5676                 pm_runtime_enable(&pdev->dev);
5677         }
5678         pm_schedule_suspend(&pdev->dev, MSEC_PER_SEC);
5679
5680         return 0;
5681
5682 err_register:
5683         if (!(adapter->flags & FLAG_HAS_AMT))
5684                 e1000_release_hw_control(adapter);
5685 err_eeprom:
5686         if (!e1000_check_reset_block(&adapter->hw))
5687                 e1000_phy_hw_reset(&adapter->hw);
5688 err_hw_init:
5689
5690         kfree(adapter->tx_ring);
5691         kfree(adapter->rx_ring);
5692 err_sw_init:
5693         if (adapter->hw.flash_address)
5694                 iounmap(adapter->hw.flash_address);
5695         e1000e_reset_interrupt_capability(adapter);
5696 err_flashmap:
5697         iounmap(adapter->hw.hw_addr);
5698 err_ioremap:
5699         free_netdev(netdev);
5700 err_alloc_etherdev:
5701         pci_release_selected_regions(pdev,
5702                                      pci_select_bars(pdev, IORESOURCE_MEM));
5703 err_pci_reg:
5704 err_dma:
5705         pci_disable_device(pdev);
5706         return err;
5707 }
5708
5709 /**
5710  * e1000_remove - Device Removal Routine
5711  * @pdev: PCI device information struct
5712  *
5713  * e1000_remove is called by the PCI subsystem to alert the driver
5714  * that it should release a PCI device.  The could be caused by a
5715  * Hot-Plug event, or because the driver is going to be removed from
5716  * memory.
5717  **/
5718 static void __devexit e1000_remove(struct pci_dev *pdev)
5719 {
5720         struct net_device *netdev = pci_get_drvdata(pdev);
5721         struct e1000_adapter *adapter = netdev_priv(netdev);
5722         bool down = test_bit(__E1000_DOWN, &adapter->state);
5723
5724         pm_runtime_get_sync(&pdev->dev);
5725
5726         /*
5727          * flush_scheduled work may reschedule our watchdog task, so
5728          * explicitly disable watchdog tasks from being rescheduled
5729          */
5730         if (!down)
5731                 set_bit(__E1000_DOWN, &adapter->state);
5732         del_timer_sync(&adapter->watchdog_timer);
5733         del_timer_sync(&adapter->phy_info_timer);
5734
5735         cancel_work_sync(&adapter->reset_task);
5736         cancel_work_sync(&adapter->watchdog_task);
5737         cancel_work_sync(&adapter->downshift_task);
5738         cancel_work_sync(&adapter->update_phy_task);
5739         cancel_work_sync(&adapter->print_hang_task);
5740         flush_scheduled_work();
5741
5742         if (!(netdev->flags & IFF_UP))
5743                 e1000_power_down_phy(adapter);
5744
5745         /* Don't lie to e1000_close() down the road. */
5746         if (!down)
5747                 clear_bit(__E1000_DOWN, &adapter->state);
5748         unregister_netdev(netdev);
5749
5750         if (pci_dev_run_wake(pdev)) {
5751                 pm_runtime_disable(&pdev->dev);
5752                 pm_runtime_set_suspended(&pdev->dev);
5753         }
5754         pm_runtime_put_noidle(&pdev->dev);
5755
5756         /*
5757          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5758          * would have already happened in close and is redundant.
5759          */
5760         e1000_release_hw_control(adapter);
5761
5762         e1000e_reset_interrupt_capability(adapter);
5763         kfree(adapter->tx_ring);
5764         kfree(adapter->rx_ring);
5765
5766         iounmap(adapter->hw.hw_addr);
5767         if (adapter->hw.flash_address)
5768                 iounmap(adapter->hw.flash_address);
5769         pci_release_selected_regions(pdev,
5770                                      pci_select_bars(pdev, IORESOURCE_MEM));
5771
5772         free_netdev(netdev);
5773
5774         /* AER disable */
5775         pci_disable_pcie_error_reporting(pdev);
5776
5777         pci_disable_device(pdev);
5778 }
5779
5780 /* PCI Error Recovery (ERS) */
5781 static struct pci_error_handlers e1000_err_handler = {
5782         .error_detected = e1000_io_error_detected,
5783         .slot_reset = e1000_io_slot_reset,
5784         .resume = e1000_io_resume,
5785 };
5786
5787 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
5788         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5789         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5790         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5791         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5792         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5793         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5794         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5795         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5796         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5797
5798         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5799         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5800         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5801         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5802
5803         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5804         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5805         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5806
5807         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5808         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5809         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5810
5811         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5812           board_80003es2lan },
5813         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5814           board_80003es2lan },
5815         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5816           board_80003es2lan },
5817         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5818           board_80003es2lan },
5819
5820         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5821         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5822         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5823         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5824         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5825         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5826         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5827         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
5828
5829         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5830         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5831         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5832         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5833         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5834         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5835         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5836         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5837         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5838
5839         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5840         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5841         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5842
5843         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5844         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5845
5846         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
5847         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
5848         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
5849         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
5850
5851         { }     /* terminate list */
5852 };
5853 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5854
5855 #ifdef CONFIG_PM_OPS
5856 static const struct dev_pm_ops e1000_pm_ops = {
5857         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
5858         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
5859                                 e1000_runtime_resume, e1000_idle)
5860 };
5861 #endif
5862
5863 /* PCI Device API Driver */
5864 static struct pci_driver e1000_driver = {
5865         .name     = e1000e_driver_name,
5866         .id_table = e1000_pci_tbl,
5867         .probe    = e1000_probe,
5868         .remove   = __devexit_p(e1000_remove),
5869 #ifdef CONFIG_PM_OPS
5870         .driver.pm = &e1000_pm_ops,
5871 #endif
5872         .shutdown = e1000_shutdown,
5873         .err_handler = &e1000_err_handler
5874 };
5875
5876 /**
5877  * e1000_init_module - Driver Registration Routine
5878  *
5879  * e1000_init_module is the first routine called when the driver is
5880  * loaded. All it does is register with the PCI subsystem.
5881  **/
5882 static int __init e1000_init_module(void)
5883 {
5884         int ret;
5885         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
5886                 e1000e_driver_version);
5887         pr_info("Copyright (c) 1999 - 2009 Intel Corporation.\n");
5888         ret = pci_register_driver(&e1000_driver);
5889
5890         return ret;
5891 }
5892 module_init(e1000_init_module);
5893
5894 /**
5895  * e1000_exit_module - Driver Exit Cleanup Routine
5896  *
5897  * e1000_exit_module is called just before the driver is removed
5898  * from memory.
5899  **/
5900 static void __exit e1000_exit_module(void)
5901 {
5902         pci_unregister_driver(&e1000_driver);
5903 }
5904 module_exit(e1000_exit_module);
5905
5906
5907 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5908 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5909 MODULE_LICENSE("GPL");
5910 MODULE_VERSION(DRV_VERSION);
5911
5912 /* e1000_main.c */