]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Selectively enable self-reclaim
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43                                              int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45                                                      uint64_t offset,
46                                                      uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50                                            unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55                                 struct drm_i915_gem_pwrite *args,
56                                 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62                      unsigned long end)
63 {
64         drm_i915_private_t *dev_priv = dev->dev_private;
65
66         if (start >= end ||
67             (start & (PAGE_SIZE - 1)) != 0 ||
68             (end & (PAGE_SIZE - 1)) != 0) {
69                 return -EINVAL;
70         }
71
72         drm_mm_init(&dev_priv->mm.gtt_space, start,
73                     end - start);
74
75         dev->gtt_total = (uint32_t) (end - start);
76
77         return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82                     struct drm_file *file_priv)
83 {
84         struct drm_i915_gem_init *args = data;
85         int ret;
86
87         mutex_lock(&dev->struct_mutex);
88         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89         mutex_unlock(&dev->struct_mutex);
90
91         return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96                             struct drm_file *file_priv)
97 {
98         struct drm_i915_gem_get_aperture *args = data;
99
100         if (!(dev->driver->driver_features & DRIVER_GEM))
101                 return -ENODEV;
102
103         args->aper_size = dev->gtt_total;
104         args->aper_available_size = (args->aper_size -
105                                      atomic_read(&dev->pin_memory));
106
107         return 0;
108 }
109
110
111 /**
112  * Creates a new mm object and returns a handle to it.
113  */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116                       struct drm_file *file_priv)
117 {
118         struct drm_i915_gem_create *args = data;
119         struct drm_gem_object *obj;
120         int ret;
121         u32 handle;
122
123         args->size = roundup(args->size, PAGE_SIZE);
124
125         /* Allocate the new object */
126         obj = drm_gem_object_alloc(dev, args->size);
127         if (obj == NULL)
128                 return -ENOMEM;
129
130         ret = drm_gem_handle_create(file_priv, obj, &handle);
131         mutex_lock(&dev->struct_mutex);
132         drm_gem_object_handle_unreference(obj);
133         mutex_unlock(&dev->struct_mutex);
134
135         if (ret)
136                 return ret;
137
138         args->handle = handle;
139
140         return 0;
141 }
142
143 static inline int
144 fast_shmem_read(struct page **pages,
145                 loff_t page_base, int page_offset,
146                 char __user *data,
147                 int length)
148 {
149         char __iomem *vaddr;
150         int unwritten;
151
152         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153         if (vaddr == NULL)
154                 return -ENOMEM;
155         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156         kunmap_atomic(vaddr, KM_USER0);
157
158         if (unwritten)
159                 return -EFAULT;
160
161         return 0;
162 }
163
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
165 {
166         drm_i915_private_t *dev_priv = obj->dev->dev_private;
167         struct drm_i915_gem_object *obj_priv = obj->driver_private;
168
169         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170                 obj_priv->tiling_mode != I915_TILING_NONE;
171 }
172
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175                 int dst_offset,
176                 struct page *src_page,
177                 int src_offset,
178                 int length)
179 {
180         char *dst_vaddr, *src_vaddr;
181
182         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183         if (dst_vaddr == NULL)
184                 return -ENOMEM;
185
186         src_vaddr = kmap_atomic(src_page, KM_USER1);
187         if (src_vaddr == NULL) {
188                 kunmap_atomic(dst_vaddr, KM_USER0);
189                 return -ENOMEM;
190         }
191
192         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
193
194         kunmap_atomic(src_vaddr, KM_USER1);
195         kunmap_atomic(dst_vaddr, KM_USER0);
196
197         return 0;
198 }
199
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202                       int gpu_offset,
203                       struct page *cpu_page,
204                       int cpu_offset,
205                       int length,
206                       int is_read)
207 {
208         char *gpu_vaddr, *cpu_vaddr;
209
210         /* Use the unswizzled path if this page isn't affected. */
211         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212                 if (is_read)
213                         return slow_shmem_copy(cpu_page, cpu_offset,
214                                                gpu_page, gpu_offset, length);
215                 else
216                         return slow_shmem_copy(gpu_page, gpu_offset,
217                                                cpu_page, cpu_offset, length);
218         }
219
220         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221         if (gpu_vaddr == NULL)
222                 return -ENOMEM;
223
224         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225         if (cpu_vaddr == NULL) {
226                 kunmap_atomic(gpu_vaddr, KM_USER0);
227                 return -ENOMEM;
228         }
229
230         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231          * XORing with the other bits (A9 for Y, A9 and A10 for X)
232          */
233         while (length > 0) {
234                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235                 int this_length = min(cacheline_end - gpu_offset, length);
236                 int swizzled_gpu_offset = gpu_offset ^ 64;
237
238                 if (is_read) {
239                         memcpy(cpu_vaddr + cpu_offset,
240                                gpu_vaddr + swizzled_gpu_offset,
241                                this_length);
242                 } else {
243                         memcpy(gpu_vaddr + swizzled_gpu_offset,
244                                cpu_vaddr + cpu_offset,
245                                this_length);
246                 }
247                 cpu_offset += this_length;
248                 gpu_offset += this_length;
249                 length -= this_length;
250         }
251
252         kunmap_atomic(cpu_vaddr, KM_USER1);
253         kunmap_atomic(gpu_vaddr, KM_USER0);
254
255         return 0;
256 }
257
258 /**
259  * This is the fast shmem pread path, which attempts to copy_from_user directly
260  * from the backing pages of the object to the user's address space.  On a
261  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
262  */
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265                           struct drm_i915_gem_pread *args,
266                           struct drm_file *file_priv)
267 {
268         struct drm_i915_gem_object *obj_priv = obj->driver_private;
269         ssize_t remain;
270         loff_t offset, page_base;
271         char __user *user_data;
272         int page_offset, page_length;
273         int ret;
274
275         user_data = (char __user *) (uintptr_t) args->data_ptr;
276         remain = args->size;
277
278         mutex_lock(&dev->struct_mutex);
279
280         ret = i915_gem_object_get_pages(obj, 0);
281         if (ret != 0)
282                 goto fail_unlock;
283
284         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285                                                         args->size);
286         if (ret != 0)
287                 goto fail_put_pages;
288
289         obj_priv = obj->driver_private;
290         offset = args->offset;
291
292         while (remain > 0) {
293                 /* Operation in this page
294                  *
295                  * page_base = page offset within aperture
296                  * page_offset = offset within page
297                  * page_length = bytes to copy for this page
298                  */
299                 page_base = (offset & ~(PAGE_SIZE-1));
300                 page_offset = offset & (PAGE_SIZE-1);
301                 page_length = remain;
302                 if ((page_offset + remain) > PAGE_SIZE)
303                         page_length = PAGE_SIZE - page_offset;
304
305                 ret = fast_shmem_read(obj_priv->pages,
306                                       page_base, page_offset,
307                                       user_data, page_length);
308                 if (ret)
309                         goto fail_put_pages;
310
311                 remain -= page_length;
312                 user_data += page_length;
313                 offset += page_length;
314         }
315
316 fail_put_pages:
317         i915_gem_object_put_pages(obj);
318 fail_unlock:
319         mutex_unlock(&dev->struct_mutex);
320
321         return ret;
322 }
323
324 static int
325 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
326 {
327         int ret;
328
329         ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
330
331         /* If we've insufficient memory to map in the pages, attempt
332          * to make some space by throwing out some old buffers.
333          */
334         if (ret == -ENOMEM) {
335                 struct drm_device *dev = obj->dev;
336
337                 ret = i915_gem_evict_something(dev, obj->size);
338                 if (ret)
339                         return ret;
340
341                 ret = i915_gem_object_get_pages(obj, 0);
342         }
343
344         return ret;
345 }
346
347 /**
348  * This is the fallback shmem pread path, which allocates temporary storage
349  * in kernel space to copy_to_user into outside of the struct_mutex, so we
350  * can copy out of the object's backing pages while holding the struct mutex
351  * and not take page faults.
352  */
353 static int
354 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
355                           struct drm_i915_gem_pread *args,
356                           struct drm_file *file_priv)
357 {
358         struct drm_i915_gem_object *obj_priv = obj->driver_private;
359         struct mm_struct *mm = current->mm;
360         struct page **user_pages;
361         ssize_t remain;
362         loff_t offset, pinned_pages, i;
363         loff_t first_data_page, last_data_page, num_pages;
364         int shmem_page_index, shmem_page_offset;
365         int data_page_index,  data_page_offset;
366         int page_length;
367         int ret;
368         uint64_t data_ptr = args->data_ptr;
369         int do_bit17_swizzling;
370
371         remain = args->size;
372
373         /* Pin the user pages containing the data.  We can't fault while
374          * holding the struct mutex, yet we want to hold it while
375          * dereferencing the user data.
376          */
377         first_data_page = data_ptr / PAGE_SIZE;
378         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
379         num_pages = last_data_page - first_data_page + 1;
380
381         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
382         if (user_pages == NULL)
383                 return -ENOMEM;
384
385         down_read(&mm->mmap_sem);
386         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
387                                       num_pages, 1, 0, user_pages, NULL);
388         up_read(&mm->mmap_sem);
389         if (pinned_pages < num_pages) {
390                 ret = -EFAULT;
391                 goto fail_put_user_pages;
392         }
393
394         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
395
396         mutex_lock(&dev->struct_mutex);
397
398         ret = i915_gem_object_get_pages_or_evict(obj);
399         if (ret)
400                 goto fail_unlock;
401
402         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
403                                                         args->size);
404         if (ret != 0)
405                 goto fail_put_pages;
406
407         obj_priv = obj->driver_private;
408         offset = args->offset;
409
410         while (remain > 0) {
411                 /* Operation in this page
412                  *
413                  * shmem_page_index = page number within shmem file
414                  * shmem_page_offset = offset within page in shmem file
415                  * data_page_index = page number in get_user_pages return
416                  * data_page_offset = offset with data_page_index page.
417                  * page_length = bytes to copy for this page
418                  */
419                 shmem_page_index = offset / PAGE_SIZE;
420                 shmem_page_offset = offset & ~PAGE_MASK;
421                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
422                 data_page_offset = data_ptr & ~PAGE_MASK;
423
424                 page_length = remain;
425                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
426                         page_length = PAGE_SIZE - shmem_page_offset;
427                 if ((data_page_offset + page_length) > PAGE_SIZE)
428                         page_length = PAGE_SIZE - data_page_offset;
429
430                 if (do_bit17_swizzling) {
431                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
432                                                     shmem_page_offset,
433                                                     user_pages[data_page_index],
434                                                     data_page_offset,
435                                                     page_length,
436                                                     1);
437                 } else {
438                         ret = slow_shmem_copy(user_pages[data_page_index],
439                                               data_page_offset,
440                                               obj_priv->pages[shmem_page_index],
441                                               shmem_page_offset,
442                                               page_length);
443                 }
444                 if (ret)
445                         goto fail_put_pages;
446
447                 remain -= page_length;
448                 data_ptr += page_length;
449                 offset += page_length;
450         }
451
452 fail_put_pages:
453         i915_gem_object_put_pages(obj);
454 fail_unlock:
455         mutex_unlock(&dev->struct_mutex);
456 fail_put_user_pages:
457         for (i = 0; i < pinned_pages; i++) {
458                 SetPageDirty(user_pages[i]);
459                 page_cache_release(user_pages[i]);
460         }
461         drm_free_large(user_pages);
462
463         return ret;
464 }
465
466 /**
467  * Reads data from the object referenced by handle.
468  *
469  * On error, the contents of *data are undefined.
470  */
471 int
472 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
473                      struct drm_file *file_priv)
474 {
475         struct drm_i915_gem_pread *args = data;
476         struct drm_gem_object *obj;
477         struct drm_i915_gem_object *obj_priv;
478         int ret;
479
480         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
481         if (obj == NULL)
482                 return -EBADF;
483         obj_priv = obj->driver_private;
484
485         /* Bounds check source.
486          *
487          * XXX: This could use review for overflow issues...
488          */
489         if (args->offset > obj->size || args->size > obj->size ||
490             args->offset + args->size > obj->size) {
491                 drm_gem_object_unreference(obj);
492                 return -EINVAL;
493         }
494
495         if (i915_gem_object_needs_bit17_swizzle(obj)) {
496                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
497         } else {
498                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
499                 if (ret != 0)
500                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
501                                                         file_priv);
502         }
503
504         drm_gem_object_unreference(obj);
505
506         return ret;
507 }
508
509 /* This is the fast write path which cannot handle
510  * page faults in the source data
511  */
512
513 static inline int
514 fast_user_write(struct io_mapping *mapping,
515                 loff_t page_base, int page_offset,
516                 char __user *user_data,
517                 int length)
518 {
519         char *vaddr_atomic;
520         unsigned long unwritten;
521
522         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
523         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
524                                                       user_data, length);
525         io_mapping_unmap_atomic(vaddr_atomic);
526         if (unwritten)
527                 return -EFAULT;
528         return 0;
529 }
530
531 /* Here's the write path which can sleep for
532  * page faults
533  */
534
535 static inline int
536 slow_kernel_write(struct io_mapping *mapping,
537                   loff_t gtt_base, int gtt_offset,
538                   struct page *user_page, int user_offset,
539                   int length)
540 {
541         char *src_vaddr, *dst_vaddr;
542         unsigned long unwritten;
543
544         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
545         src_vaddr = kmap_atomic(user_page, KM_USER1);
546         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
547                                                       src_vaddr + user_offset,
548                                                       length);
549         kunmap_atomic(src_vaddr, KM_USER1);
550         io_mapping_unmap_atomic(dst_vaddr);
551         if (unwritten)
552                 return -EFAULT;
553         return 0;
554 }
555
556 static inline int
557 fast_shmem_write(struct page **pages,
558                  loff_t page_base, int page_offset,
559                  char __user *data,
560                  int length)
561 {
562         char __iomem *vaddr;
563         unsigned long unwritten;
564
565         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
566         if (vaddr == NULL)
567                 return -ENOMEM;
568         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
569         kunmap_atomic(vaddr, KM_USER0);
570
571         if (unwritten)
572                 return -EFAULT;
573         return 0;
574 }
575
576 /**
577  * This is the fast pwrite path, where we copy the data directly from the
578  * user into the GTT, uncached.
579  */
580 static int
581 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
582                          struct drm_i915_gem_pwrite *args,
583                          struct drm_file *file_priv)
584 {
585         struct drm_i915_gem_object *obj_priv = obj->driver_private;
586         drm_i915_private_t *dev_priv = dev->dev_private;
587         ssize_t remain;
588         loff_t offset, page_base;
589         char __user *user_data;
590         int page_offset, page_length;
591         int ret;
592
593         user_data = (char __user *) (uintptr_t) args->data_ptr;
594         remain = args->size;
595         if (!access_ok(VERIFY_READ, user_data, remain))
596                 return -EFAULT;
597
598
599         mutex_lock(&dev->struct_mutex);
600         ret = i915_gem_object_pin(obj, 0);
601         if (ret) {
602                 mutex_unlock(&dev->struct_mutex);
603                 return ret;
604         }
605         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
606         if (ret)
607                 goto fail;
608
609         obj_priv = obj->driver_private;
610         offset = obj_priv->gtt_offset + args->offset;
611
612         while (remain > 0) {
613                 /* Operation in this page
614                  *
615                  * page_base = page offset within aperture
616                  * page_offset = offset within page
617                  * page_length = bytes to copy for this page
618                  */
619                 page_base = (offset & ~(PAGE_SIZE-1));
620                 page_offset = offset & (PAGE_SIZE-1);
621                 page_length = remain;
622                 if ((page_offset + remain) > PAGE_SIZE)
623                         page_length = PAGE_SIZE - page_offset;
624
625                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
626                                        page_offset, user_data, page_length);
627
628                 /* If we get a fault while copying data, then (presumably) our
629                  * source page isn't available.  Return the error and we'll
630                  * retry in the slow path.
631                  */
632                 if (ret)
633                         goto fail;
634
635                 remain -= page_length;
636                 user_data += page_length;
637                 offset += page_length;
638         }
639
640 fail:
641         i915_gem_object_unpin(obj);
642         mutex_unlock(&dev->struct_mutex);
643
644         return ret;
645 }
646
647 /**
648  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
649  * the memory and maps it using kmap_atomic for copying.
650  *
651  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
652  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
653  */
654 static int
655 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
656                          struct drm_i915_gem_pwrite *args,
657                          struct drm_file *file_priv)
658 {
659         struct drm_i915_gem_object *obj_priv = obj->driver_private;
660         drm_i915_private_t *dev_priv = dev->dev_private;
661         ssize_t remain;
662         loff_t gtt_page_base, offset;
663         loff_t first_data_page, last_data_page, num_pages;
664         loff_t pinned_pages, i;
665         struct page **user_pages;
666         struct mm_struct *mm = current->mm;
667         int gtt_page_offset, data_page_offset, data_page_index, page_length;
668         int ret;
669         uint64_t data_ptr = args->data_ptr;
670
671         remain = args->size;
672
673         /* Pin the user pages containing the data.  We can't fault while
674          * holding the struct mutex, and all of the pwrite implementations
675          * want to hold it while dereferencing the user data.
676          */
677         first_data_page = data_ptr / PAGE_SIZE;
678         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
679         num_pages = last_data_page - first_data_page + 1;
680
681         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
682         if (user_pages == NULL)
683                 return -ENOMEM;
684
685         down_read(&mm->mmap_sem);
686         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
687                                       num_pages, 0, 0, user_pages, NULL);
688         up_read(&mm->mmap_sem);
689         if (pinned_pages < num_pages) {
690                 ret = -EFAULT;
691                 goto out_unpin_pages;
692         }
693
694         mutex_lock(&dev->struct_mutex);
695         ret = i915_gem_object_pin(obj, 0);
696         if (ret)
697                 goto out_unlock;
698
699         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
700         if (ret)
701                 goto out_unpin_object;
702
703         obj_priv = obj->driver_private;
704         offset = obj_priv->gtt_offset + args->offset;
705
706         while (remain > 0) {
707                 /* Operation in this page
708                  *
709                  * gtt_page_base = page offset within aperture
710                  * gtt_page_offset = offset within page in aperture
711                  * data_page_index = page number in get_user_pages return
712                  * data_page_offset = offset with data_page_index page.
713                  * page_length = bytes to copy for this page
714                  */
715                 gtt_page_base = offset & PAGE_MASK;
716                 gtt_page_offset = offset & ~PAGE_MASK;
717                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
718                 data_page_offset = data_ptr & ~PAGE_MASK;
719
720                 page_length = remain;
721                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
722                         page_length = PAGE_SIZE - gtt_page_offset;
723                 if ((data_page_offset + page_length) > PAGE_SIZE)
724                         page_length = PAGE_SIZE - data_page_offset;
725
726                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
727                                         gtt_page_base, gtt_page_offset,
728                                         user_pages[data_page_index],
729                                         data_page_offset,
730                                         page_length);
731
732                 /* If we get a fault while copying data, then (presumably) our
733                  * source page isn't available.  Return the error and we'll
734                  * retry in the slow path.
735                  */
736                 if (ret)
737                         goto out_unpin_object;
738
739                 remain -= page_length;
740                 offset += page_length;
741                 data_ptr += page_length;
742         }
743
744 out_unpin_object:
745         i915_gem_object_unpin(obj);
746 out_unlock:
747         mutex_unlock(&dev->struct_mutex);
748 out_unpin_pages:
749         for (i = 0; i < pinned_pages; i++)
750                 page_cache_release(user_pages[i]);
751         drm_free_large(user_pages);
752
753         return ret;
754 }
755
756 /**
757  * This is the fast shmem pwrite path, which attempts to directly
758  * copy_from_user into the kmapped pages backing the object.
759  */
760 static int
761 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
762                            struct drm_i915_gem_pwrite *args,
763                            struct drm_file *file_priv)
764 {
765         struct drm_i915_gem_object *obj_priv = obj->driver_private;
766         ssize_t remain;
767         loff_t offset, page_base;
768         char __user *user_data;
769         int page_offset, page_length;
770         int ret;
771
772         user_data = (char __user *) (uintptr_t) args->data_ptr;
773         remain = args->size;
774
775         mutex_lock(&dev->struct_mutex);
776
777         ret = i915_gem_object_get_pages(obj, 0);
778         if (ret != 0)
779                 goto fail_unlock;
780
781         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
782         if (ret != 0)
783                 goto fail_put_pages;
784
785         obj_priv = obj->driver_private;
786         offset = args->offset;
787         obj_priv->dirty = 1;
788
789         while (remain > 0) {
790                 /* Operation in this page
791                  *
792                  * page_base = page offset within aperture
793                  * page_offset = offset within page
794                  * page_length = bytes to copy for this page
795                  */
796                 page_base = (offset & ~(PAGE_SIZE-1));
797                 page_offset = offset & (PAGE_SIZE-1);
798                 page_length = remain;
799                 if ((page_offset + remain) > PAGE_SIZE)
800                         page_length = PAGE_SIZE - page_offset;
801
802                 ret = fast_shmem_write(obj_priv->pages,
803                                        page_base, page_offset,
804                                        user_data, page_length);
805                 if (ret)
806                         goto fail_put_pages;
807
808                 remain -= page_length;
809                 user_data += page_length;
810                 offset += page_length;
811         }
812
813 fail_put_pages:
814         i915_gem_object_put_pages(obj);
815 fail_unlock:
816         mutex_unlock(&dev->struct_mutex);
817
818         return ret;
819 }
820
821 /**
822  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
823  * the memory and maps it using kmap_atomic for copying.
824  *
825  * This avoids taking mmap_sem for faulting on the user's address while the
826  * struct_mutex is held.
827  */
828 static int
829 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
830                            struct drm_i915_gem_pwrite *args,
831                            struct drm_file *file_priv)
832 {
833         struct drm_i915_gem_object *obj_priv = obj->driver_private;
834         struct mm_struct *mm = current->mm;
835         struct page **user_pages;
836         ssize_t remain;
837         loff_t offset, pinned_pages, i;
838         loff_t first_data_page, last_data_page, num_pages;
839         int shmem_page_index, shmem_page_offset;
840         int data_page_index,  data_page_offset;
841         int page_length;
842         int ret;
843         uint64_t data_ptr = args->data_ptr;
844         int do_bit17_swizzling;
845
846         remain = args->size;
847
848         /* Pin the user pages containing the data.  We can't fault while
849          * holding the struct mutex, and all of the pwrite implementations
850          * want to hold it while dereferencing the user data.
851          */
852         first_data_page = data_ptr / PAGE_SIZE;
853         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
854         num_pages = last_data_page - first_data_page + 1;
855
856         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
857         if (user_pages == NULL)
858                 return -ENOMEM;
859
860         down_read(&mm->mmap_sem);
861         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
862                                       num_pages, 0, 0, user_pages, NULL);
863         up_read(&mm->mmap_sem);
864         if (pinned_pages < num_pages) {
865                 ret = -EFAULT;
866                 goto fail_put_user_pages;
867         }
868
869         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
870
871         mutex_lock(&dev->struct_mutex);
872
873         ret = i915_gem_object_get_pages_or_evict(obj);
874         if (ret)
875                 goto fail_unlock;
876
877         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
878         if (ret != 0)
879                 goto fail_put_pages;
880
881         obj_priv = obj->driver_private;
882         offset = args->offset;
883         obj_priv->dirty = 1;
884
885         while (remain > 0) {
886                 /* Operation in this page
887                  *
888                  * shmem_page_index = page number within shmem file
889                  * shmem_page_offset = offset within page in shmem file
890                  * data_page_index = page number in get_user_pages return
891                  * data_page_offset = offset with data_page_index page.
892                  * page_length = bytes to copy for this page
893                  */
894                 shmem_page_index = offset / PAGE_SIZE;
895                 shmem_page_offset = offset & ~PAGE_MASK;
896                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
897                 data_page_offset = data_ptr & ~PAGE_MASK;
898
899                 page_length = remain;
900                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
901                         page_length = PAGE_SIZE - shmem_page_offset;
902                 if ((data_page_offset + page_length) > PAGE_SIZE)
903                         page_length = PAGE_SIZE - data_page_offset;
904
905                 if (do_bit17_swizzling) {
906                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
907                                                     shmem_page_offset,
908                                                     user_pages[data_page_index],
909                                                     data_page_offset,
910                                                     page_length,
911                                                     0);
912                 } else {
913                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
914                                               shmem_page_offset,
915                                               user_pages[data_page_index],
916                                               data_page_offset,
917                                               page_length);
918                 }
919                 if (ret)
920                         goto fail_put_pages;
921
922                 remain -= page_length;
923                 data_ptr += page_length;
924                 offset += page_length;
925         }
926
927 fail_put_pages:
928         i915_gem_object_put_pages(obj);
929 fail_unlock:
930         mutex_unlock(&dev->struct_mutex);
931 fail_put_user_pages:
932         for (i = 0; i < pinned_pages; i++)
933                 page_cache_release(user_pages[i]);
934         drm_free_large(user_pages);
935
936         return ret;
937 }
938
939 /**
940  * Writes data to the object referenced by handle.
941  *
942  * On error, the contents of the buffer that were to be modified are undefined.
943  */
944 int
945 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
946                       struct drm_file *file_priv)
947 {
948         struct drm_i915_gem_pwrite *args = data;
949         struct drm_gem_object *obj;
950         struct drm_i915_gem_object *obj_priv;
951         int ret = 0;
952
953         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
954         if (obj == NULL)
955                 return -EBADF;
956         obj_priv = obj->driver_private;
957
958         /* Bounds check destination.
959          *
960          * XXX: This could use review for overflow issues...
961          */
962         if (args->offset > obj->size || args->size > obj->size ||
963             args->offset + args->size > obj->size) {
964                 drm_gem_object_unreference(obj);
965                 return -EINVAL;
966         }
967
968         /* We can only do the GTT pwrite on untiled buffers, as otherwise
969          * it would end up going through the fenced access, and we'll get
970          * different detiling behavior between reading and writing.
971          * pread/pwrite currently are reading and writing from the CPU
972          * perspective, requiring manual detiling by the client.
973          */
974         if (obj_priv->phys_obj)
975                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
976         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
977                  dev->gtt_total != 0) {
978                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
979                 if (ret == -EFAULT) {
980                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
981                                                        file_priv);
982                 }
983         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
984                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
985         } else {
986                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
987                 if (ret == -EFAULT) {
988                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
989                                                          file_priv);
990                 }
991         }
992
993 #if WATCH_PWRITE
994         if (ret)
995                 DRM_INFO("pwrite failed %d\n", ret);
996 #endif
997
998         drm_gem_object_unreference(obj);
999
1000         return ret;
1001 }
1002
1003 /**
1004  * Called when user space prepares to use an object with the CPU, either
1005  * through the mmap ioctl's mapping or a GTT mapping.
1006  */
1007 int
1008 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1009                           struct drm_file *file_priv)
1010 {
1011         struct drm_i915_private *dev_priv = dev->dev_private;
1012         struct drm_i915_gem_set_domain *args = data;
1013         struct drm_gem_object *obj;
1014         struct drm_i915_gem_object *obj_priv;
1015         uint32_t read_domains = args->read_domains;
1016         uint32_t write_domain = args->write_domain;
1017         int ret;
1018
1019         if (!(dev->driver->driver_features & DRIVER_GEM))
1020                 return -ENODEV;
1021
1022         /* Only handle setting domains to types used by the CPU. */
1023         if (write_domain & I915_GEM_GPU_DOMAINS)
1024                 return -EINVAL;
1025
1026         if (read_domains & I915_GEM_GPU_DOMAINS)
1027                 return -EINVAL;
1028
1029         /* Having something in the write domain implies it's in the read
1030          * domain, and only that read domain.  Enforce that in the request.
1031          */
1032         if (write_domain != 0 && read_domains != write_domain)
1033                 return -EINVAL;
1034
1035         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1036         if (obj == NULL)
1037                 return -EBADF;
1038         obj_priv = obj->driver_private;
1039
1040         mutex_lock(&dev->struct_mutex);
1041
1042         intel_mark_busy(dev, obj);
1043
1044 #if WATCH_BUF
1045         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1046                  obj, obj->size, read_domains, write_domain);
1047 #endif
1048         if (read_domains & I915_GEM_DOMAIN_GTT) {
1049                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1050
1051                 /* Update the LRU on the fence for the CPU access that's
1052                  * about to occur.
1053                  */
1054                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1055                         list_move_tail(&obj_priv->fence_list,
1056                                        &dev_priv->mm.fence_list);
1057                 }
1058
1059                 /* Silently promote "you're not bound, there was nothing to do"
1060                  * to success, since the client was just asking us to
1061                  * make sure everything was done.
1062                  */
1063                 if (ret == -EINVAL)
1064                         ret = 0;
1065         } else {
1066                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1067         }
1068
1069         drm_gem_object_unreference(obj);
1070         mutex_unlock(&dev->struct_mutex);
1071         return ret;
1072 }
1073
1074 /**
1075  * Called when user space has done writes to this buffer
1076  */
1077 int
1078 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1079                       struct drm_file *file_priv)
1080 {
1081         struct drm_i915_gem_sw_finish *args = data;
1082         struct drm_gem_object *obj;
1083         struct drm_i915_gem_object *obj_priv;
1084         int ret = 0;
1085
1086         if (!(dev->driver->driver_features & DRIVER_GEM))
1087                 return -ENODEV;
1088
1089         mutex_lock(&dev->struct_mutex);
1090         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1091         if (obj == NULL) {
1092                 mutex_unlock(&dev->struct_mutex);
1093                 return -EBADF;
1094         }
1095
1096 #if WATCH_BUF
1097         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1098                  __func__, args->handle, obj, obj->size);
1099 #endif
1100         obj_priv = obj->driver_private;
1101
1102         /* Pinned buffers may be scanout, so flush the cache */
1103         if (obj_priv->pin_count)
1104                 i915_gem_object_flush_cpu_write_domain(obj);
1105
1106         drm_gem_object_unreference(obj);
1107         mutex_unlock(&dev->struct_mutex);
1108         return ret;
1109 }
1110
1111 /**
1112  * Maps the contents of an object, returning the address it is mapped
1113  * into.
1114  *
1115  * While the mapping holds a reference on the contents of the object, it doesn't
1116  * imply a ref on the object itself.
1117  */
1118 int
1119 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1120                    struct drm_file *file_priv)
1121 {
1122         struct drm_i915_gem_mmap *args = data;
1123         struct drm_gem_object *obj;
1124         loff_t offset;
1125         unsigned long addr;
1126
1127         if (!(dev->driver->driver_features & DRIVER_GEM))
1128                 return -ENODEV;
1129
1130         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1131         if (obj == NULL)
1132                 return -EBADF;
1133
1134         offset = args->offset;
1135
1136         down_write(&current->mm->mmap_sem);
1137         addr = do_mmap(obj->filp, 0, args->size,
1138                        PROT_READ | PROT_WRITE, MAP_SHARED,
1139                        args->offset);
1140         up_write(&current->mm->mmap_sem);
1141         mutex_lock(&dev->struct_mutex);
1142         drm_gem_object_unreference(obj);
1143         mutex_unlock(&dev->struct_mutex);
1144         if (IS_ERR((void *)addr))
1145                 return addr;
1146
1147         args->addr_ptr = (uint64_t) addr;
1148
1149         return 0;
1150 }
1151
1152 /**
1153  * i915_gem_fault - fault a page into the GTT
1154  * vma: VMA in question
1155  * vmf: fault info
1156  *
1157  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1158  * from userspace.  The fault handler takes care of binding the object to
1159  * the GTT (if needed), allocating and programming a fence register (again,
1160  * only if needed based on whether the old reg is still valid or the object
1161  * is tiled) and inserting a new PTE into the faulting process.
1162  *
1163  * Note that the faulting process may involve evicting existing objects
1164  * from the GTT and/or fence registers to make room.  So performance may
1165  * suffer if the GTT working set is large or there are few fence registers
1166  * left.
1167  */
1168 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1169 {
1170         struct drm_gem_object *obj = vma->vm_private_data;
1171         struct drm_device *dev = obj->dev;
1172         struct drm_i915_private *dev_priv = dev->dev_private;
1173         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1174         pgoff_t page_offset;
1175         unsigned long pfn;
1176         int ret = 0;
1177         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1178
1179         /* We don't use vmf->pgoff since that has the fake offset */
1180         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1181                 PAGE_SHIFT;
1182
1183         /* Now bind it into the GTT if needed */
1184         mutex_lock(&dev->struct_mutex);
1185         if (!obj_priv->gtt_space) {
1186                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1187                 if (ret)
1188                         goto unlock;
1189
1190                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1191
1192                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1193                 if (ret)
1194                         goto unlock;
1195         }
1196
1197         /* Need a new fence register? */
1198         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1199                 ret = i915_gem_object_get_fence_reg(obj);
1200                 if (ret)
1201                         goto unlock;
1202         }
1203
1204         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1205                 page_offset;
1206
1207         /* Finally, remap it using the new GTT offset */
1208         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1209 unlock:
1210         mutex_unlock(&dev->struct_mutex);
1211
1212         switch (ret) {
1213         case 0:
1214         case -ERESTARTSYS:
1215                 return VM_FAULT_NOPAGE;
1216         case -ENOMEM:
1217         case -EAGAIN:
1218                 return VM_FAULT_OOM;
1219         default:
1220                 return VM_FAULT_SIGBUS;
1221         }
1222 }
1223
1224 /**
1225  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1226  * @obj: obj in question
1227  *
1228  * GEM memory mapping works by handing back to userspace a fake mmap offset
1229  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1230  * up the object based on the offset and sets up the various memory mapping
1231  * structures.
1232  *
1233  * This routine allocates and attaches a fake offset for @obj.
1234  */
1235 static int
1236 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1237 {
1238         struct drm_device *dev = obj->dev;
1239         struct drm_gem_mm *mm = dev->mm_private;
1240         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1241         struct drm_map_list *list;
1242         struct drm_local_map *map;
1243         int ret = 0;
1244
1245         /* Set the object up for mmap'ing */
1246         list = &obj->map_list;
1247         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1248         if (!list->map)
1249                 return -ENOMEM;
1250
1251         map = list->map;
1252         map->type = _DRM_GEM;
1253         map->size = obj->size;
1254         map->handle = obj;
1255
1256         /* Get a DRM GEM mmap offset allocated... */
1257         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1258                                                     obj->size / PAGE_SIZE, 0, 0);
1259         if (!list->file_offset_node) {
1260                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1261                 ret = -ENOMEM;
1262                 goto out_free_list;
1263         }
1264
1265         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1266                                                   obj->size / PAGE_SIZE, 0);
1267         if (!list->file_offset_node) {
1268                 ret = -ENOMEM;
1269                 goto out_free_list;
1270         }
1271
1272         list->hash.key = list->file_offset_node->start;
1273         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1274                 DRM_ERROR("failed to add to map hash\n");
1275                 ret = -ENOMEM;
1276                 goto out_free_mm;
1277         }
1278
1279         /* By now we should be all set, any drm_mmap request on the offset
1280          * below will get to our mmap & fault handler */
1281         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1282
1283         return 0;
1284
1285 out_free_mm:
1286         drm_mm_put_block(list->file_offset_node);
1287 out_free_list:
1288         kfree(list->map);
1289
1290         return ret;
1291 }
1292
1293 /**
1294  * i915_gem_release_mmap - remove physical page mappings
1295  * @obj: obj in question
1296  *
1297  * Preserve the reservation of the mmapping with the DRM core code, but
1298  * relinquish ownership of the pages back to the system.
1299  *
1300  * It is vital that we remove the page mapping if we have mapped a tiled
1301  * object through the GTT and then lose the fence register due to
1302  * resource pressure. Similarly if the object has been moved out of the
1303  * aperture, than pages mapped into userspace must be revoked. Removing the
1304  * mapping will then trigger a page fault on the next user access, allowing
1305  * fixup by i915_gem_fault().
1306  */
1307 void
1308 i915_gem_release_mmap(struct drm_gem_object *obj)
1309 {
1310         struct drm_device *dev = obj->dev;
1311         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1312
1313         if (dev->dev_mapping)
1314                 unmap_mapping_range(dev->dev_mapping,
1315                                     obj_priv->mmap_offset, obj->size, 1);
1316 }
1317
1318 static void
1319 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1320 {
1321         struct drm_device *dev = obj->dev;
1322         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1323         struct drm_gem_mm *mm = dev->mm_private;
1324         struct drm_map_list *list;
1325
1326         list = &obj->map_list;
1327         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1328
1329         if (list->file_offset_node) {
1330                 drm_mm_put_block(list->file_offset_node);
1331                 list->file_offset_node = NULL;
1332         }
1333
1334         if (list->map) {
1335                 kfree(list->map);
1336                 list->map = NULL;
1337         }
1338
1339         obj_priv->mmap_offset = 0;
1340 }
1341
1342 /**
1343  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1344  * @obj: object to check
1345  *
1346  * Return the required GTT alignment for an object, taking into account
1347  * potential fence register mapping if needed.
1348  */
1349 static uint32_t
1350 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1351 {
1352         struct drm_device *dev = obj->dev;
1353         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1354         int start, i;
1355
1356         /*
1357          * Minimum alignment is 4k (GTT page size), but might be greater
1358          * if a fence register is needed for the object.
1359          */
1360         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1361                 return 4096;
1362
1363         /*
1364          * Previous chips need to be aligned to the size of the smallest
1365          * fence register that can contain the object.
1366          */
1367         if (IS_I9XX(dev))
1368                 start = 1024*1024;
1369         else
1370                 start = 512*1024;
1371
1372         for (i = start; i < obj->size; i <<= 1)
1373                 ;
1374
1375         return i;
1376 }
1377
1378 /**
1379  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1380  * @dev: DRM device
1381  * @data: GTT mapping ioctl data
1382  * @file_priv: GEM object info
1383  *
1384  * Simply returns the fake offset to userspace so it can mmap it.
1385  * The mmap call will end up in drm_gem_mmap(), which will set things
1386  * up so we can get faults in the handler above.
1387  *
1388  * The fault handler will take care of binding the object into the GTT
1389  * (since it may have been evicted to make room for something), allocating
1390  * a fence register, and mapping the appropriate aperture address into
1391  * userspace.
1392  */
1393 int
1394 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1395                         struct drm_file *file_priv)
1396 {
1397         struct drm_i915_gem_mmap_gtt *args = data;
1398         struct drm_i915_private *dev_priv = dev->dev_private;
1399         struct drm_gem_object *obj;
1400         struct drm_i915_gem_object *obj_priv;
1401         int ret;
1402
1403         if (!(dev->driver->driver_features & DRIVER_GEM))
1404                 return -ENODEV;
1405
1406         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1407         if (obj == NULL)
1408                 return -EBADF;
1409
1410         mutex_lock(&dev->struct_mutex);
1411
1412         obj_priv = obj->driver_private;
1413
1414         if (obj_priv->madv != I915_MADV_WILLNEED) {
1415                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1416                 drm_gem_object_unreference(obj);
1417                 mutex_unlock(&dev->struct_mutex);
1418                 return -EINVAL;
1419         }
1420
1421
1422         if (!obj_priv->mmap_offset) {
1423                 ret = i915_gem_create_mmap_offset(obj);
1424                 if (ret) {
1425                         drm_gem_object_unreference(obj);
1426                         mutex_unlock(&dev->struct_mutex);
1427                         return ret;
1428                 }
1429         }
1430
1431         args->offset = obj_priv->mmap_offset;
1432
1433         /*
1434          * Pull it into the GTT so that we have a page list (makes the
1435          * initial fault faster and any subsequent flushing possible).
1436          */
1437         if (!obj_priv->agp_mem) {
1438                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1439                 if (ret) {
1440                         drm_gem_object_unreference(obj);
1441                         mutex_unlock(&dev->struct_mutex);
1442                         return ret;
1443                 }
1444                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1445         }
1446
1447         drm_gem_object_unreference(obj);
1448         mutex_unlock(&dev->struct_mutex);
1449
1450         return 0;
1451 }
1452
1453 void
1454 i915_gem_object_put_pages(struct drm_gem_object *obj)
1455 {
1456         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1457         int page_count = obj->size / PAGE_SIZE;
1458         int i;
1459
1460         BUG_ON(obj_priv->pages_refcount == 0);
1461         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1462
1463         if (--obj_priv->pages_refcount != 0)
1464                 return;
1465
1466         if (obj_priv->tiling_mode != I915_TILING_NONE)
1467                 i915_gem_object_save_bit_17_swizzle(obj);
1468
1469         if (obj_priv->madv == I915_MADV_DONTNEED)
1470                 obj_priv->dirty = 0;
1471
1472         for (i = 0; i < page_count; i++) {
1473                 if (obj_priv->pages[i] == NULL)
1474                         break;
1475
1476                 if (obj_priv->dirty)
1477                         set_page_dirty(obj_priv->pages[i]);
1478
1479                 if (obj_priv->madv == I915_MADV_WILLNEED)
1480                         mark_page_accessed(obj_priv->pages[i]);
1481
1482                 page_cache_release(obj_priv->pages[i]);
1483         }
1484         obj_priv->dirty = 0;
1485
1486         drm_free_large(obj_priv->pages);
1487         obj_priv->pages = NULL;
1488 }
1489
1490 static void
1491 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1492 {
1493         struct drm_device *dev = obj->dev;
1494         drm_i915_private_t *dev_priv = dev->dev_private;
1495         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1496
1497         /* Add a reference if we're newly entering the active list. */
1498         if (!obj_priv->active) {
1499                 drm_gem_object_reference(obj);
1500                 obj_priv->active = 1;
1501         }
1502         /* Move from whatever list we were on to the tail of execution. */
1503         spin_lock(&dev_priv->mm.active_list_lock);
1504         list_move_tail(&obj_priv->list,
1505                        &dev_priv->mm.active_list);
1506         spin_unlock(&dev_priv->mm.active_list_lock);
1507         obj_priv->last_rendering_seqno = seqno;
1508 }
1509
1510 static void
1511 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1512 {
1513         struct drm_device *dev = obj->dev;
1514         drm_i915_private_t *dev_priv = dev->dev_private;
1515         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1516
1517         BUG_ON(!obj_priv->active);
1518         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1519         obj_priv->last_rendering_seqno = 0;
1520 }
1521
1522 /* Immediately discard the backing storage */
1523 static void
1524 i915_gem_object_truncate(struct drm_gem_object *obj)
1525 {
1526         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1527         struct inode *inode;
1528
1529         inode = obj->filp->f_path.dentry->d_inode;
1530         if (inode->i_op->truncate)
1531                 inode->i_op->truncate (inode);
1532
1533         obj_priv->madv = __I915_MADV_PURGED;
1534 }
1535
1536 static inline int
1537 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1538 {
1539         return obj_priv->madv == I915_MADV_DONTNEED;
1540 }
1541
1542 static void
1543 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1544 {
1545         struct drm_device *dev = obj->dev;
1546         drm_i915_private_t *dev_priv = dev->dev_private;
1547         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1548
1549         i915_verify_inactive(dev, __FILE__, __LINE__);
1550         if (obj_priv->pin_count != 0)
1551                 list_del_init(&obj_priv->list);
1552         else
1553                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1554
1555         obj_priv->last_rendering_seqno = 0;
1556         if (obj_priv->active) {
1557                 obj_priv->active = 0;
1558                 drm_gem_object_unreference(obj);
1559         }
1560         i915_verify_inactive(dev, __FILE__, __LINE__);
1561 }
1562
1563 /**
1564  * Creates a new sequence number, emitting a write of it to the status page
1565  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1566  *
1567  * Must be called with struct_lock held.
1568  *
1569  * Returned sequence numbers are nonzero on success.
1570  */
1571 uint32_t
1572 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1573                  uint32_t flush_domains)
1574 {
1575         drm_i915_private_t *dev_priv = dev->dev_private;
1576         struct drm_i915_file_private *i915_file_priv = NULL;
1577         struct drm_i915_gem_request *request;
1578         uint32_t seqno;
1579         int was_empty;
1580         RING_LOCALS;
1581
1582         if (file_priv != NULL)
1583                 i915_file_priv = file_priv->driver_priv;
1584
1585         request = kzalloc(sizeof(*request), GFP_KERNEL);
1586         if (request == NULL)
1587                 return 0;
1588
1589         /* Grab the seqno we're going to make this request be, and bump the
1590          * next (skipping 0 so it can be the reserved no-seqno value).
1591          */
1592         seqno = dev_priv->mm.next_gem_seqno;
1593         dev_priv->mm.next_gem_seqno++;
1594         if (dev_priv->mm.next_gem_seqno == 0)
1595                 dev_priv->mm.next_gem_seqno++;
1596
1597         BEGIN_LP_RING(4);
1598         OUT_RING(MI_STORE_DWORD_INDEX);
1599         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1600         OUT_RING(seqno);
1601
1602         OUT_RING(MI_USER_INTERRUPT);
1603         ADVANCE_LP_RING();
1604
1605         DRM_DEBUG_DRIVER("%d\n", seqno);
1606
1607         request->seqno = seqno;
1608         request->emitted_jiffies = jiffies;
1609         was_empty = list_empty(&dev_priv->mm.request_list);
1610         list_add_tail(&request->list, &dev_priv->mm.request_list);
1611         if (i915_file_priv) {
1612                 list_add_tail(&request->client_list,
1613                               &i915_file_priv->mm.request_list);
1614         } else {
1615                 INIT_LIST_HEAD(&request->client_list);
1616         }
1617
1618         /* Associate any objects on the flushing list matching the write
1619          * domain we're flushing with our flush.
1620          */
1621         if (flush_domains != 0) {
1622                 struct drm_i915_gem_object *obj_priv, *next;
1623
1624                 list_for_each_entry_safe(obj_priv, next,
1625                                          &dev_priv->mm.flushing_list, list) {
1626                         struct drm_gem_object *obj = obj_priv->obj;
1627
1628                         if ((obj->write_domain & flush_domains) ==
1629                             obj->write_domain) {
1630                                 uint32_t old_write_domain = obj->write_domain;
1631
1632                                 obj->write_domain = 0;
1633                                 i915_gem_object_move_to_active(obj, seqno);
1634
1635                                 trace_i915_gem_object_change_domain(obj,
1636                                                                     obj->read_domains,
1637                                                                     old_write_domain);
1638                         }
1639                 }
1640
1641         }
1642
1643         if (!dev_priv->mm.suspended) {
1644                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1645                 if (was_empty)
1646                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1647         }
1648         return seqno;
1649 }
1650
1651 /**
1652  * Command execution barrier
1653  *
1654  * Ensures that all commands in the ring are finished
1655  * before signalling the CPU
1656  */
1657 static uint32_t
1658 i915_retire_commands(struct drm_device *dev)
1659 {
1660         drm_i915_private_t *dev_priv = dev->dev_private;
1661         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1662         uint32_t flush_domains = 0;
1663         RING_LOCALS;
1664
1665         /* The sampler always gets flushed on i965 (sigh) */
1666         if (IS_I965G(dev))
1667                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1668         BEGIN_LP_RING(2);
1669         OUT_RING(cmd);
1670         OUT_RING(0); /* noop */
1671         ADVANCE_LP_RING();
1672         return flush_domains;
1673 }
1674
1675 /**
1676  * Moves buffers associated only with the given active seqno from the active
1677  * to inactive list, potentially freeing them.
1678  */
1679 static void
1680 i915_gem_retire_request(struct drm_device *dev,
1681                         struct drm_i915_gem_request *request)
1682 {
1683         drm_i915_private_t *dev_priv = dev->dev_private;
1684
1685         trace_i915_gem_request_retire(dev, request->seqno);
1686
1687         /* Move any buffers on the active list that are no longer referenced
1688          * by the ringbuffer to the flushing/inactive lists as appropriate.
1689          */
1690         spin_lock(&dev_priv->mm.active_list_lock);
1691         while (!list_empty(&dev_priv->mm.active_list)) {
1692                 struct drm_gem_object *obj;
1693                 struct drm_i915_gem_object *obj_priv;
1694
1695                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1696                                             struct drm_i915_gem_object,
1697                                             list);
1698                 obj = obj_priv->obj;
1699
1700                 /* If the seqno being retired doesn't match the oldest in the
1701                  * list, then the oldest in the list must still be newer than
1702                  * this seqno.
1703                  */
1704                 if (obj_priv->last_rendering_seqno != request->seqno)
1705                         goto out;
1706
1707 #if WATCH_LRU
1708                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1709                          __func__, request->seqno, obj);
1710 #endif
1711
1712                 if (obj->write_domain != 0)
1713                         i915_gem_object_move_to_flushing(obj);
1714                 else {
1715                         /* Take a reference on the object so it won't be
1716                          * freed while the spinlock is held.  The list
1717                          * protection for this spinlock is safe when breaking
1718                          * the lock like this since the next thing we do
1719                          * is just get the head of the list again.
1720                          */
1721                         drm_gem_object_reference(obj);
1722                         i915_gem_object_move_to_inactive(obj);
1723                         spin_unlock(&dev_priv->mm.active_list_lock);
1724                         drm_gem_object_unreference(obj);
1725                         spin_lock(&dev_priv->mm.active_list_lock);
1726                 }
1727         }
1728 out:
1729         spin_unlock(&dev_priv->mm.active_list_lock);
1730 }
1731
1732 /**
1733  * Returns true if seq1 is later than seq2.
1734  */
1735 bool
1736 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1737 {
1738         return (int32_t)(seq1 - seq2) >= 0;
1739 }
1740
1741 uint32_t
1742 i915_get_gem_seqno(struct drm_device *dev)
1743 {
1744         drm_i915_private_t *dev_priv = dev->dev_private;
1745
1746         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1747 }
1748
1749 /**
1750  * This function clears the request list as sequence numbers are passed.
1751  */
1752 void
1753 i915_gem_retire_requests(struct drm_device *dev)
1754 {
1755         drm_i915_private_t *dev_priv = dev->dev_private;
1756         uint32_t seqno;
1757
1758         if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1759                 return;
1760
1761         seqno = i915_get_gem_seqno(dev);
1762
1763         while (!list_empty(&dev_priv->mm.request_list)) {
1764                 struct drm_i915_gem_request *request;
1765                 uint32_t retiring_seqno;
1766
1767                 request = list_first_entry(&dev_priv->mm.request_list,
1768                                            struct drm_i915_gem_request,
1769                                            list);
1770                 retiring_seqno = request->seqno;
1771
1772                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1773                     atomic_read(&dev_priv->mm.wedged)) {
1774                         i915_gem_retire_request(dev, request);
1775
1776                         list_del(&request->list);
1777                         list_del(&request->client_list);
1778                         kfree(request);
1779                 } else
1780                         break;
1781         }
1782
1783         if (unlikely (dev_priv->trace_irq_seqno &&
1784                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1785                 i915_user_irq_put(dev);
1786                 dev_priv->trace_irq_seqno = 0;
1787         }
1788 }
1789
1790 void
1791 i915_gem_retire_work_handler(struct work_struct *work)
1792 {
1793         drm_i915_private_t *dev_priv;
1794         struct drm_device *dev;
1795
1796         dev_priv = container_of(work, drm_i915_private_t,
1797                                 mm.retire_work.work);
1798         dev = dev_priv->dev;
1799
1800         mutex_lock(&dev->struct_mutex);
1801         i915_gem_retire_requests(dev);
1802         if (!dev_priv->mm.suspended &&
1803             !list_empty(&dev_priv->mm.request_list))
1804                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1805         mutex_unlock(&dev->struct_mutex);
1806 }
1807
1808 int
1809 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1810 {
1811         drm_i915_private_t *dev_priv = dev->dev_private;
1812         u32 ier;
1813         int ret = 0;
1814
1815         BUG_ON(seqno == 0);
1816
1817         if (atomic_read(&dev_priv->mm.wedged))
1818                 return -EIO;
1819
1820         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1821                 if (IS_IRONLAKE(dev))
1822                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1823                 else
1824                         ier = I915_READ(IER);
1825                 if (!ier) {
1826                         DRM_ERROR("something (likely vbetool) disabled "
1827                                   "interrupts, re-enabling\n");
1828                         i915_driver_irq_preinstall(dev);
1829                         i915_driver_irq_postinstall(dev);
1830                 }
1831
1832                 trace_i915_gem_request_wait_begin(dev, seqno);
1833
1834                 dev_priv->mm.waiting_gem_seqno = seqno;
1835                 i915_user_irq_get(dev);
1836                 if (interruptible)
1837                         ret = wait_event_interruptible(dev_priv->irq_queue,
1838                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1839                                 atomic_read(&dev_priv->mm.wedged));
1840                 else
1841                         wait_event(dev_priv->irq_queue,
1842                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1843                                 atomic_read(&dev_priv->mm.wedged));
1844
1845                 i915_user_irq_put(dev);
1846                 dev_priv->mm.waiting_gem_seqno = 0;
1847
1848                 trace_i915_gem_request_wait_end(dev, seqno);
1849         }
1850         if (atomic_read(&dev_priv->mm.wedged))
1851                 ret = -EIO;
1852
1853         if (ret && ret != -ERESTARTSYS)
1854                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1855                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1856
1857         /* Directly dispatch request retiring.  While we have the work queue
1858          * to handle this, the waiter on a request often wants an associated
1859          * buffer to have made it to the inactive list, and we would need
1860          * a separate wait queue to handle that.
1861          */
1862         if (ret == 0)
1863                 i915_gem_retire_requests(dev);
1864
1865         return ret;
1866 }
1867
1868 /**
1869  * Waits for a sequence number to be signaled, and cleans up the
1870  * request and object lists appropriately for that event.
1871  */
1872 static int
1873 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1874 {
1875         return i915_do_wait_request(dev, seqno, 1);
1876 }
1877
1878 static void
1879 i915_gem_flush(struct drm_device *dev,
1880                uint32_t invalidate_domains,
1881                uint32_t flush_domains)
1882 {
1883         drm_i915_private_t *dev_priv = dev->dev_private;
1884         uint32_t cmd;
1885         RING_LOCALS;
1886
1887 #if WATCH_EXEC
1888         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1889                   invalidate_domains, flush_domains);
1890 #endif
1891         trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1892                                      invalidate_domains, flush_domains);
1893
1894         if (flush_domains & I915_GEM_DOMAIN_CPU)
1895                 drm_agp_chipset_flush(dev);
1896
1897         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1898                 /*
1899                  * read/write caches:
1900                  *
1901                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1902                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1903                  * also flushed at 2d versus 3d pipeline switches.
1904                  *
1905                  * read-only caches:
1906                  *
1907                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1908                  * MI_READ_FLUSH is set, and is always flushed on 965.
1909                  *
1910                  * I915_GEM_DOMAIN_COMMAND may not exist?
1911                  *
1912                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1913                  * invalidated when MI_EXE_FLUSH is set.
1914                  *
1915                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1916                  * invalidated with every MI_FLUSH.
1917                  *
1918                  * TLBs:
1919                  *
1920                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1921                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1922                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1923                  * are flushed at any MI_FLUSH.
1924                  */
1925
1926                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1927                 if ((invalidate_domains|flush_domains) &
1928                     I915_GEM_DOMAIN_RENDER)
1929                         cmd &= ~MI_NO_WRITE_FLUSH;
1930                 if (!IS_I965G(dev)) {
1931                         /*
1932                          * On the 965, the sampler cache always gets flushed
1933                          * and this bit is reserved.
1934                          */
1935                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1936                                 cmd |= MI_READ_FLUSH;
1937                 }
1938                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1939                         cmd |= MI_EXE_FLUSH;
1940
1941 #if WATCH_EXEC
1942                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1943 #endif
1944                 BEGIN_LP_RING(2);
1945                 OUT_RING(cmd);
1946                 OUT_RING(MI_NOOP);
1947                 ADVANCE_LP_RING();
1948         }
1949 }
1950
1951 /**
1952  * Ensures that all rendering to the object has completed and the object is
1953  * safe to unbind from the GTT or access from the CPU.
1954  */
1955 static int
1956 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1957 {
1958         struct drm_device *dev = obj->dev;
1959         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1960         int ret;
1961
1962         /* This function only exists to support waiting for existing rendering,
1963          * not for emitting required flushes.
1964          */
1965         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1966
1967         /* If there is rendering queued on the buffer being evicted, wait for
1968          * it.
1969          */
1970         if (obj_priv->active) {
1971 #if WATCH_BUF
1972                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1973                           __func__, obj, obj_priv->last_rendering_seqno);
1974 #endif
1975                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1976                 if (ret != 0)
1977                         return ret;
1978         }
1979
1980         return 0;
1981 }
1982
1983 /**
1984  * Unbinds an object from the GTT aperture.
1985  */
1986 int
1987 i915_gem_object_unbind(struct drm_gem_object *obj)
1988 {
1989         struct drm_device *dev = obj->dev;
1990         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1991         int ret = 0;
1992
1993 #if WATCH_BUF
1994         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1995         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1996 #endif
1997         if (obj_priv->gtt_space == NULL)
1998                 return 0;
1999
2000         if (obj_priv->pin_count != 0) {
2001                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2002                 return -EINVAL;
2003         }
2004
2005         /* blow away mappings if mapped through GTT */
2006         i915_gem_release_mmap(obj);
2007
2008         /* Move the object to the CPU domain to ensure that
2009          * any possible CPU writes while it's not in the GTT
2010          * are flushed when we go to remap it. This will
2011          * also ensure that all pending GPU writes are finished
2012          * before we unbind.
2013          */
2014         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2015         if (ret) {
2016                 if (ret != -ERESTARTSYS)
2017                         DRM_ERROR("set_domain failed: %d\n", ret);
2018                 return ret;
2019         }
2020
2021         BUG_ON(obj_priv->active);
2022
2023         /* release the fence reg _after_ flushing */
2024         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2025                 i915_gem_clear_fence_reg(obj);
2026
2027         if (obj_priv->agp_mem != NULL) {
2028                 drm_unbind_agp(obj_priv->agp_mem);
2029                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2030                 obj_priv->agp_mem = NULL;
2031         }
2032
2033         i915_gem_object_put_pages(obj);
2034         BUG_ON(obj_priv->pages_refcount);
2035
2036         if (obj_priv->gtt_space) {
2037                 atomic_dec(&dev->gtt_count);
2038                 atomic_sub(obj->size, &dev->gtt_memory);
2039
2040                 drm_mm_put_block(obj_priv->gtt_space);
2041                 obj_priv->gtt_space = NULL;
2042         }
2043
2044         /* Remove ourselves from the LRU list if present. */
2045         if (!list_empty(&obj_priv->list))
2046                 list_del_init(&obj_priv->list);
2047
2048         if (i915_gem_object_is_purgeable(obj_priv))
2049                 i915_gem_object_truncate(obj);
2050
2051         trace_i915_gem_object_unbind(obj);
2052
2053         return 0;
2054 }
2055
2056 static struct drm_gem_object *
2057 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2058 {
2059         drm_i915_private_t *dev_priv = dev->dev_private;
2060         struct drm_i915_gem_object *obj_priv;
2061         struct drm_gem_object *best = NULL;
2062         struct drm_gem_object *first = NULL;
2063
2064         /* Try to find the smallest clean object */
2065         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2066                 struct drm_gem_object *obj = obj_priv->obj;
2067                 if (obj->size >= min_size) {
2068                         if ((!obj_priv->dirty ||
2069                              i915_gem_object_is_purgeable(obj_priv)) &&
2070                             (!best || obj->size < best->size)) {
2071                                 best = obj;
2072                                 if (best->size == min_size)
2073                                         return best;
2074                         }
2075                         if (!first)
2076                             first = obj;
2077                 }
2078         }
2079
2080         return best ? best : first;
2081 }
2082
2083 static int
2084 i915_gem_evict_everything(struct drm_device *dev)
2085 {
2086         drm_i915_private_t *dev_priv = dev->dev_private;
2087         uint32_t seqno;
2088         int ret;
2089         bool lists_empty;
2090
2091         spin_lock(&dev_priv->mm.active_list_lock);
2092         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2093                        list_empty(&dev_priv->mm.flushing_list) &&
2094                        list_empty(&dev_priv->mm.active_list));
2095         spin_unlock(&dev_priv->mm.active_list_lock);
2096
2097         if (lists_empty)
2098                 return -ENOSPC;
2099
2100         /* Flush everything (on to the inactive lists) and evict */
2101         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2102         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2103         if (seqno == 0)
2104                 return -ENOMEM;
2105
2106         ret = i915_wait_request(dev, seqno);
2107         if (ret)
2108                 return ret;
2109
2110         ret = i915_gem_evict_from_inactive_list(dev);
2111         if (ret)
2112                 return ret;
2113
2114         spin_lock(&dev_priv->mm.active_list_lock);
2115         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2116                        list_empty(&dev_priv->mm.flushing_list) &&
2117                        list_empty(&dev_priv->mm.active_list));
2118         spin_unlock(&dev_priv->mm.active_list_lock);
2119         BUG_ON(!lists_empty);
2120
2121         return 0;
2122 }
2123
2124 static int
2125 i915_gem_evict_something(struct drm_device *dev, int min_size)
2126 {
2127         drm_i915_private_t *dev_priv = dev->dev_private;
2128         struct drm_gem_object *obj;
2129         int ret;
2130
2131         for (;;) {
2132                 i915_gem_retire_requests(dev);
2133
2134                 /* If there's an inactive buffer available now, grab it
2135                  * and be done.
2136                  */
2137                 obj = i915_gem_find_inactive_object(dev, min_size);
2138                 if (obj) {
2139                         struct drm_i915_gem_object *obj_priv;
2140
2141 #if WATCH_LRU
2142                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2143 #endif
2144                         obj_priv = obj->driver_private;
2145                         BUG_ON(obj_priv->pin_count != 0);
2146                         BUG_ON(obj_priv->active);
2147
2148                         /* Wait on the rendering and unbind the buffer. */
2149                         return i915_gem_object_unbind(obj);
2150                 }
2151
2152                 /* If we didn't get anything, but the ring is still processing
2153                  * things, wait for the next to finish and hopefully leave us
2154                  * a buffer to evict.
2155                  */
2156                 if (!list_empty(&dev_priv->mm.request_list)) {
2157                         struct drm_i915_gem_request *request;
2158
2159                         request = list_first_entry(&dev_priv->mm.request_list,
2160                                                    struct drm_i915_gem_request,
2161                                                    list);
2162
2163                         ret = i915_wait_request(dev, request->seqno);
2164                         if (ret)
2165                                 return ret;
2166
2167                         continue;
2168                 }
2169
2170                 /* If we didn't have anything on the request list but there
2171                  * are buffers awaiting a flush, emit one and try again.
2172                  * When we wait on it, those buffers waiting for that flush
2173                  * will get moved to inactive.
2174                  */
2175                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2176                         struct drm_i915_gem_object *obj_priv;
2177
2178                         /* Find an object that we can immediately reuse */
2179                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2180                                 obj = obj_priv->obj;
2181                                 if (obj->size >= min_size)
2182                                         break;
2183
2184                                 obj = NULL;
2185                         }
2186
2187                         if (obj != NULL) {
2188                                 uint32_t seqno;
2189
2190                                 i915_gem_flush(dev,
2191                                                obj->write_domain,
2192                                                obj->write_domain);
2193                                 seqno = i915_add_request(dev, NULL, obj->write_domain);
2194                                 if (seqno == 0)
2195                                         return -ENOMEM;
2196
2197                                 ret = i915_wait_request(dev, seqno);
2198                                 if (ret)
2199                                         return ret;
2200
2201                                 continue;
2202                         }
2203                 }
2204
2205                 /* If we didn't do any of the above, there's no single buffer
2206                  * large enough to swap out for the new one, so just evict
2207                  * everything and start again. (This should be rare.)
2208                  */
2209                 if (!list_empty (&dev_priv->mm.inactive_list))
2210                         return i915_gem_evict_from_inactive_list(dev);
2211                 else
2212                         return i915_gem_evict_everything(dev);
2213         }
2214 }
2215
2216 int
2217 i915_gem_object_get_pages(struct drm_gem_object *obj,
2218                           gfp_t gfpmask)
2219 {
2220         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2221         int page_count, i;
2222         struct address_space *mapping;
2223         struct inode *inode;
2224         struct page *page;
2225         int ret;
2226
2227         if (obj_priv->pages_refcount++ != 0)
2228                 return 0;
2229
2230         /* Get the list of pages out of our struct file.  They'll be pinned
2231          * at this point until we release them.
2232          */
2233         page_count = obj->size / PAGE_SIZE;
2234         BUG_ON(obj_priv->pages != NULL);
2235         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2236         if (obj_priv->pages == NULL) {
2237                 obj_priv->pages_refcount--;
2238                 return -ENOMEM;
2239         }
2240
2241         inode = obj->filp->f_path.dentry->d_inode;
2242         mapping = inode->i_mapping;
2243         for (i = 0; i < page_count; i++) {
2244                 page = read_cache_page_gfp(mapping, i,
2245                                            mapping_gfp_mask (mapping) |
2246                                            __GFP_COLD |
2247                                            gfpmask);
2248                 if (IS_ERR(page)) {
2249                         ret = PTR_ERR(page);
2250                         i915_gem_object_put_pages(obj);
2251                         return ret;
2252                 }
2253                 obj_priv->pages[i] = page;
2254         }
2255
2256         if (obj_priv->tiling_mode != I915_TILING_NONE)
2257                 i915_gem_object_do_bit_17_swizzle(obj);
2258
2259         return 0;
2260 }
2261
2262 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2263 {
2264         struct drm_gem_object *obj = reg->obj;
2265         struct drm_device *dev = obj->dev;
2266         drm_i915_private_t *dev_priv = dev->dev_private;
2267         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2268         int regnum = obj_priv->fence_reg;
2269         uint64_t val;
2270
2271         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2272                     0xfffff000) << 32;
2273         val |= obj_priv->gtt_offset & 0xfffff000;
2274         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2275         if (obj_priv->tiling_mode == I915_TILING_Y)
2276                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2277         val |= I965_FENCE_REG_VALID;
2278
2279         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2280 }
2281
2282 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2283 {
2284         struct drm_gem_object *obj = reg->obj;
2285         struct drm_device *dev = obj->dev;
2286         drm_i915_private_t *dev_priv = dev->dev_private;
2287         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2288         int regnum = obj_priv->fence_reg;
2289         int tile_width;
2290         uint32_t fence_reg, val;
2291         uint32_t pitch_val;
2292
2293         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2294             (obj_priv->gtt_offset & (obj->size - 1))) {
2295                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2296                      __func__, obj_priv->gtt_offset, obj->size);
2297                 return;
2298         }
2299
2300         if (obj_priv->tiling_mode == I915_TILING_Y &&
2301             HAS_128_BYTE_Y_TILING(dev))
2302                 tile_width = 128;
2303         else
2304                 tile_width = 512;
2305
2306         /* Note: pitch better be a power of two tile widths */
2307         pitch_val = obj_priv->stride / tile_width;
2308         pitch_val = ffs(pitch_val) - 1;
2309
2310         val = obj_priv->gtt_offset;
2311         if (obj_priv->tiling_mode == I915_TILING_Y)
2312                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2313         val |= I915_FENCE_SIZE_BITS(obj->size);
2314         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2315         val |= I830_FENCE_REG_VALID;
2316
2317         if (regnum < 8)
2318                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2319         else
2320                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2321         I915_WRITE(fence_reg, val);
2322 }
2323
2324 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2325 {
2326         struct drm_gem_object *obj = reg->obj;
2327         struct drm_device *dev = obj->dev;
2328         drm_i915_private_t *dev_priv = dev->dev_private;
2329         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2330         int regnum = obj_priv->fence_reg;
2331         uint32_t val;
2332         uint32_t pitch_val;
2333         uint32_t fence_size_bits;
2334
2335         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2336             (obj_priv->gtt_offset & (obj->size - 1))) {
2337                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2338                      __func__, obj_priv->gtt_offset);
2339                 return;
2340         }
2341
2342         pitch_val = obj_priv->stride / 128;
2343         pitch_val = ffs(pitch_val) - 1;
2344         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2345
2346         val = obj_priv->gtt_offset;
2347         if (obj_priv->tiling_mode == I915_TILING_Y)
2348                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2349         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2350         WARN_ON(fence_size_bits & ~0x00000f00);
2351         val |= fence_size_bits;
2352         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2353         val |= I830_FENCE_REG_VALID;
2354
2355         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2356 }
2357
2358 /**
2359  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2360  * @obj: object to map through a fence reg
2361  *
2362  * When mapping objects through the GTT, userspace wants to be able to write
2363  * to them without having to worry about swizzling if the object is tiled.
2364  *
2365  * This function walks the fence regs looking for a free one for @obj,
2366  * stealing one if it can't find any.
2367  *
2368  * It then sets up the reg based on the object's properties: address, pitch
2369  * and tiling format.
2370  */
2371 int
2372 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2373 {
2374         struct drm_device *dev = obj->dev;
2375         struct drm_i915_private *dev_priv = dev->dev_private;
2376         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2377         struct drm_i915_fence_reg *reg = NULL;
2378         struct drm_i915_gem_object *old_obj_priv = NULL;
2379         int i, ret, avail;
2380
2381         /* Just update our place in the LRU if our fence is getting used. */
2382         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2383                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2384                 return 0;
2385         }
2386
2387         switch (obj_priv->tiling_mode) {
2388         case I915_TILING_NONE:
2389                 WARN(1, "allocating a fence for non-tiled object?\n");
2390                 break;
2391         case I915_TILING_X:
2392                 if (!obj_priv->stride)
2393                         return -EINVAL;
2394                 WARN((obj_priv->stride & (512 - 1)),
2395                      "object 0x%08x is X tiled but has non-512B pitch\n",
2396                      obj_priv->gtt_offset);
2397                 break;
2398         case I915_TILING_Y:
2399                 if (!obj_priv->stride)
2400                         return -EINVAL;
2401                 WARN((obj_priv->stride & (128 - 1)),
2402                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2403                      obj_priv->gtt_offset);
2404                 break;
2405         }
2406
2407         /* First try to find a free reg */
2408         avail = 0;
2409         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2410                 reg = &dev_priv->fence_regs[i];
2411                 if (!reg->obj)
2412                         break;
2413
2414                 old_obj_priv = reg->obj->driver_private;
2415                 if (!old_obj_priv->pin_count)
2416                     avail++;
2417         }
2418
2419         /* None available, try to steal one or wait for a user to finish */
2420         if (i == dev_priv->num_fence_regs) {
2421                 struct drm_gem_object *old_obj = NULL;
2422
2423                 if (avail == 0)
2424                         return -ENOSPC;
2425
2426                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2427                                     fence_list) {
2428                         old_obj = old_obj_priv->obj;
2429
2430                         if (old_obj_priv->pin_count)
2431                                 continue;
2432
2433                         /* Take a reference, as otherwise the wait_rendering
2434                          * below may cause the object to get freed out from
2435                          * under us.
2436                          */
2437                         drm_gem_object_reference(old_obj);
2438
2439                         /* i915 uses fences for GPU access to tiled buffers */
2440                         if (IS_I965G(dev) || !old_obj_priv->active)
2441                                 break;
2442
2443                         /* This brings the object to the head of the LRU if it
2444                          * had been written to.  The only way this should
2445                          * result in us waiting longer than the expected
2446                          * optimal amount of time is if there was a
2447                          * fence-using buffer later that was read-only.
2448                          */
2449                         i915_gem_object_flush_gpu_write_domain(old_obj);
2450                         ret = i915_gem_object_wait_rendering(old_obj);
2451                         if (ret != 0) {
2452                                 drm_gem_object_unreference(old_obj);
2453                                 return ret;
2454                         }
2455
2456                         break;
2457                 }
2458
2459                 /*
2460                  * Zap this virtual mapping so we can set up a fence again
2461                  * for this object next time we need it.
2462                  */
2463                 i915_gem_release_mmap(old_obj);
2464
2465                 i = old_obj_priv->fence_reg;
2466                 reg = &dev_priv->fence_regs[i];
2467
2468                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2469                 list_del_init(&old_obj_priv->fence_list);
2470
2471                 drm_gem_object_unreference(old_obj);
2472         }
2473
2474         obj_priv->fence_reg = i;
2475         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2476
2477         reg->obj = obj;
2478
2479         if (IS_I965G(dev))
2480                 i965_write_fence_reg(reg);
2481         else if (IS_I9XX(dev))
2482                 i915_write_fence_reg(reg);
2483         else
2484                 i830_write_fence_reg(reg);
2485
2486         trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2487
2488         return 0;
2489 }
2490
2491 /**
2492  * i915_gem_clear_fence_reg - clear out fence register info
2493  * @obj: object to clear
2494  *
2495  * Zeroes out the fence register itself and clears out the associated
2496  * data structures in dev_priv and obj_priv.
2497  */
2498 static void
2499 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2500 {
2501         struct drm_device *dev = obj->dev;
2502         drm_i915_private_t *dev_priv = dev->dev_private;
2503         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2504
2505         if (IS_I965G(dev))
2506                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2507         else {
2508                 uint32_t fence_reg;
2509
2510                 if (obj_priv->fence_reg < 8)
2511                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2512                 else
2513                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2514                                                        8) * 4;
2515
2516                 I915_WRITE(fence_reg, 0);
2517         }
2518
2519         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2520         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2521         list_del_init(&obj_priv->fence_list);
2522 }
2523
2524 /**
2525  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2526  * to the buffer to finish, and then resets the fence register.
2527  * @obj: tiled object holding a fence register.
2528  *
2529  * Zeroes out the fence register itself and clears out the associated
2530  * data structures in dev_priv and obj_priv.
2531  */
2532 int
2533 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2534 {
2535         struct drm_device *dev = obj->dev;
2536         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2537
2538         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2539                 return 0;
2540
2541         /* On the i915, GPU access to tiled buffers is via a fence,
2542          * therefore we must wait for any outstanding access to complete
2543          * before clearing the fence.
2544          */
2545         if (!IS_I965G(dev)) {
2546                 int ret;
2547
2548                 i915_gem_object_flush_gpu_write_domain(obj);
2549                 i915_gem_object_flush_gtt_write_domain(obj);
2550                 ret = i915_gem_object_wait_rendering(obj);
2551                 if (ret != 0)
2552                         return ret;
2553         }
2554
2555         i915_gem_clear_fence_reg (obj);
2556
2557         return 0;
2558 }
2559
2560 /**
2561  * Finds free space in the GTT aperture and binds the object there.
2562  */
2563 static int
2564 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2565 {
2566         struct drm_device *dev = obj->dev;
2567         drm_i915_private_t *dev_priv = dev->dev_private;
2568         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2569         struct drm_mm_node *free_space;
2570         gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2571         int ret;
2572
2573         if (obj_priv->madv != I915_MADV_WILLNEED) {
2574                 DRM_ERROR("Attempting to bind a purgeable object\n");
2575                 return -EINVAL;
2576         }
2577
2578         if (alignment == 0)
2579                 alignment = i915_gem_get_gtt_alignment(obj);
2580         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2581                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2582                 return -EINVAL;
2583         }
2584
2585  search_free:
2586         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2587                                         obj->size, alignment, 0);
2588         if (free_space != NULL) {
2589                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2590                                                        alignment);
2591                 if (obj_priv->gtt_space != NULL) {
2592                         obj_priv->gtt_space->private = obj;
2593                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2594                 }
2595         }
2596         if (obj_priv->gtt_space == NULL) {
2597                 /* If the gtt is empty and we're still having trouble
2598                  * fitting our object in, we're out of memory.
2599                  */
2600 #if WATCH_LRU
2601                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2602 #endif
2603                 ret = i915_gem_evict_something(dev, obj->size);
2604                 if (ret)
2605                         return ret;
2606
2607                 goto search_free;
2608         }
2609
2610 #if WATCH_BUF
2611         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2612                  obj->size, obj_priv->gtt_offset);
2613 #endif
2614         ret = i915_gem_object_get_pages(obj, gfpmask);
2615         if (ret) {
2616                 drm_mm_put_block(obj_priv->gtt_space);
2617                 obj_priv->gtt_space = NULL;
2618
2619                 if (ret == -ENOMEM) {
2620                         /* first try to clear up some space from the GTT */
2621                         ret = i915_gem_evict_something(dev, obj->size);
2622                         if (ret) {
2623                                 /* now try to shrink everyone else */
2624                                 if (gfpmask) {
2625                                         gfpmask = 0;
2626                                         goto search_free;
2627                                 }
2628
2629                                 return ret;
2630                         }
2631
2632                         goto search_free;
2633                 }
2634
2635                 return ret;
2636         }
2637
2638         /* Create an AGP memory structure pointing at our pages, and bind it
2639          * into the GTT.
2640          */
2641         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2642                                                obj_priv->pages,
2643                                                obj->size >> PAGE_SHIFT,
2644                                                obj_priv->gtt_offset,
2645                                                obj_priv->agp_type);
2646         if (obj_priv->agp_mem == NULL) {
2647                 i915_gem_object_put_pages(obj);
2648                 drm_mm_put_block(obj_priv->gtt_space);
2649                 obj_priv->gtt_space = NULL;
2650
2651                 ret = i915_gem_evict_something(dev, obj->size);
2652                 if (ret)
2653                         return ret;
2654
2655                 goto search_free;
2656         }
2657         atomic_inc(&dev->gtt_count);
2658         atomic_add(obj->size, &dev->gtt_memory);
2659
2660         /* Assert that the object is not currently in any GPU domain. As it
2661          * wasn't in the GTT, there shouldn't be any way it could have been in
2662          * a GPU cache
2663          */
2664         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2665         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2666
2667         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2668
2669         return 0;
2670 }
2671
2672 void
2673 i915_gem_clflush_object(struct drm_gem_object *obj)
2674 {
2675         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2676
2677         /* If we don't have a page list set up, then we're not pinned
2678          * to GPU, and we can ignore the cache flush because it'll happen
2679          * again at bind time.
2680          */
2681         if (obj_priv->pages == NULL)
2682                 return;
2683
2684         trace_i915_gem_object_clflush(obj);
2685
2686         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2687 }
2688
2689 /** Flushes any GPU write domain for the object if it's dirty. */
2690 static void
2691 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2692 {
2693         struct drm_device *dev = obj->dev;
2694         uint32_t seqno;
2695         uint32_t old_write_domain;
2696
2697         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2698                 return;
2699
2700         /* Queue the GPU write cache flushing we need. */
2701         old_write_domain = obj->write_domain;
2702         i915_gem_flush(dev, 0, obj->write_domain);
2703         seqno = i915_add_request(dev, NULL, obj->write_domain);
2704         obj->write_domain = 0;
2705         i915_gem_object_move_to_active(obj, seqno);
2706
2707         trace_i915_gem_object_change_domain(obj,
2708                                             obj->read_domains,
2709                                             old_write_domain);
2710 }
2711
2712 /** Flushes the GTT write domain for the object if it's dirty. */
2713 static void
2714 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2715 {
2716         uint32_t old_write_domain;
2717
2718         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2719                 return;
2720
2721         /* No actual flushing is required for the GTT write domain.   Writes
2722          * to it immediately go to main memory as far as we know, so there's
2723          * no chipset flush.  It also doesn't land in render cache.
2724          */
2725         old_write_domain = obj->write_domain;
2726         obj->write_domain = 0;
2727
2728         trace_i915_gem_object_change_domain(obj,
2729                                             obj->read_domains,
2730                                             old_write_domain);
2731 }
2732
2733 /** Flushes the CPU write domain for the object if it's dirty. */
2734 static void
2735 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2736 {
2737         struct drm_device *dev = obj->dev;
2738         uint32_t old_write_domain;
2739
2740         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2741                 return;
2742
2743         i915_gem_clflush_object(obj);
2744         drm_agp_chipset_flush(dev);
2745         old_write_domain = obj->write_domain;
2746         obj->write_domain = 0;
2747
2748         trace_i915_gem_object_change_domain(obj,
2749                                             obj->read_domains,
2750                                             old_write_domain);
2751 }
2752
2753 void
2754 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2755 {
2756         switch (obj->write_domain) {
2757         case I915_GEM_DOMAIN_GTT:
2758                 i915_gem_object_flush_gtt_write_domain(obj);
2759                 break;
2760         case I915_GEM_DOMAIN_CPU:
2761                 i915_gem_object_flush_cpu_write_domain(obj);
2762                 break;
2763         default:
2764                 i915_gem_object_flush_gpu_write_domain(obj);
2765                 break;
2766         }
2767 }
2768
2769 /**
2770  * Moves a single object to the GTT read, and possibly write domain.
2771  *
2772  * This function returns when the move is complete, including waiting on
2773  * flushes to occur.
2774  */
2775 int
2776 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2777 {
2778         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2779         uint32_t old_write_domain, old_read_domains;
2780         int ret;
2781
2782         /* Not valid to be called on unbound objects. */
2783         if (obj_priv->gtt_space == NULL)
2784                 return -EINVAL;
2785
2786         i915_gem_object_flush_gpu_write_domain(obj);
2787         /* Wait on any GPU rendering and flushing to occur. */
2788         ret = i915_gem_object_wait_rendering(obj);
2789         if (ret != 0)
2790                 return ret;
2791
2792         old_write_domain = obj->write_domain;
2793         old_read_domains = obj->read_domains;
2794
2795         /* If we're writing through the GTT domain, then CPU and GPU caches
2796          * will need to be invalidated at next use.
2797          */
2798         if (write)
2799                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2800
2801         i915_gem_object_flush_cpu_write_domain(obj);
2802
2803         /* It should now be out of any other write domains, and we can update
2804          * the domain values for our changes.
2805          */
2806         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2807         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2808         if (write) {
2809                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2810                 obj_priv->dirty = 1;
2811         }
2812
2813         trace_i915_gem_object_change_domain(obj,
2814                                             old_read_domains,
2815                                             old_write_domain);
2816
2817         return 0;
2818 }
2819
2820 /*
2821  * Prepare buffer for display plane. Use uninterruptible for possible flush
2822  * wait, as in modesetting process we're not supposed to be interrupted.
2823  */
2824 int
2825 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2826 {
2827         struct drm_device *dev = obj->dev;
2828         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2829         uint32_t old_write_domain, old_read_domains;
2830         int ret;
2831
2832         /* Not valid to be called on unbound objects. */
2833         if (obj_priv->gtt_space == NULL)
2834                 return -EINVAL;
2835
2836         i915_gem_object_flush_gpu_write_domain(obj);
2837
2838         /* Wait on any GPU rendering and flushing to occur. */
2839         if (obj_priv->active) {
2840 #if WATCH_BUF
2841                 DRM_INFO("%s: object %p wait for seqno %08x\n",
2842                           __func__, obj, obj_priv->last_rendering_seqno);
2843 #endif
2844                 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2845                 if (ret != 0)
2846                         return ret;
2847         }
2848
2849         old_write_domain = obj->write_domain;
2850         old_read_domains = obj->read_domains;
2851
2852         obj->read_domains &= I915_GEM_DOMAIN_GTT;
2853
2854         i915_gem_object_flush_cpu_write_domain(obj);
2855
2856         /* It should now be out of any other write domains, and we can update
2857          * the domain values for our changes.
2858          */
2859         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2860         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2861         obj->write_domain = I915_GEM_DOMAIN_GTT;
2862         obj_priv->dirty = 1;
2863
2864         trace_i915_gem_object_change_domain(obj,
2865                                             old_read_domains,
2866                                             old_write_domain);
2867
2868         return 0;
2869 }
2870
2871 /**
2872  * Moves a single object to the CPU read, and possibly write domain.
2873  *
2874  * This function returns when the move is complete, including waiting on
2875  * flushes to occur.
2876  */
2877 static int
2878 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2879 {
2880         uint32_t old_write_domain, old_read_domains;
2881         int ret;
2882
2883         i915_gem_object_flush_gpu_write_domain(obj);
2884         /* Wait on any GPU rendering and flushing to occur. */
2885         ret = i915_gem_object_wait_rendering(obj);
2886         if (ret != 0)
2887                 return ret;
2888
2889         i915_gem_object_flush_gtt_write_domain(obj);
2890
2891         /* If we have a partially-valid cache of the object in the CPU,
2892          * finish invalidating it and free the per-page flags.
2893          */
2894         i915_gem_object_set_to_full_cpu_read_domain(obj);
2895
2896         old_write_domain = obj->write_domain;
2897         old_read_domains = obj->read_domains;
2898
2899         /* Flush the CPU cache if it's still invalid. */
2900         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2901                 i915_gem_clflush_object(obj);
2902
2903                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2904         }
2905
2906         /* It should now be out of any other write domains, and we can update
2907          * the domain values for our changes.
2908          */
2909         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2910
2911         /* If we're writing through the CPU, then the GPU read domains will
2912          * need to be invalidated at next use.
2913          */
2914         if (write) {
2915                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2916                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2917         }
2918
2919         trace_i915_gem_object_change_domain(obj,
2920                                             old_read_domains,
2921                                             old_write_domain);
2922
2923         return 0;
2924 }
2925
2926 /*
2927  * Set the next domain for the specified object. This
2928  * may not actually perform the necessary flushing/invaliding though,
2929  * as that may want to be batched with other set_domain operations
2930  *
2931  * This is (we hope) the only really tricky part of gem. The goal
2932  * is fairly simple -- track which caches hold bits of the object
2933  * and make sure they remain coherent. A few concrete examples may
2934  * help to explain how it works. For shorthand, we use the notation
2935  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2936  * a pair of read and write domain masks.
2937  *
2938  * Case 1: the batch buffer
2939  *
2940  *      1. Allocated
2941  *      2. Written by CPU
2942  *      3. Mapped to GTT
2943  *      4. Read by GPU
2944  *      5. Unmapped from GTT
2945  *      6. Freed
2946  *
2947  *      Let's take these a step at a time
2948  *
2949  *      1. Allocated
2950  *              Pages allocated from the kernel may still have
2951  *              cache contents, so we set them to (CPU, CPU) always.
2952  *      2. Written by CPU (using pwrite)
2953  *              The pwrite function calls set_domain (CPU, CPU) and
2954  *              this function does nothing (as nothing changes)
2955  *      3. Mapped by GTT
2956  *              This function asserts that the object is not
2957  *              currently in any GPU-based read or write domains
2958  *      4. Read by GPU
2959  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2960  *              As write_domain is zero, this function adds in the
2961  *              current read domains (CPU+COMMAND, 0).
2962  *              flush_domains is set to CPU.
2963  *              invalidate_domains is set to COMMAND
2964  *              clflush is run to get data out of the CPU caches
2965  *              then i915_dev_set_domain calls i915_gem_flush to
2966  *              emit an MI_FLUSH and drm_agp_chipset_flush
2967  *      5. Unmapped from GTT
2968  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2969  *              flush_domains and invalidate_domains end up both zero
2970  *              so no flushing/invalidating happens
2971  *      6. Freed
2972  *              yay, done
2973  *
2974  * Case 2: The shared render buffer
2975  *
2976  *      1. Allocated
2977  *      2. Mapped to GTT
2978  *      3. Read/written by GPU
2979  *      4. set_domain to (CPU,CPU)
2980  *      5. Read/written by CPU
2981  *      6. Read/written by GPU
2982  *
2983  *      1. Allocated
2984  *              Same as last example, (CPU, CPU)
2985  *      2. Mapped to GTT
2986  *              Nothing changes (assertions find that it is not in the GPU)
2987  *      3. Read/written by GPU
2988  *              execbuffer calls set_domain (RENDER, RENDER)
2989  *              flush_domains gets CPU
2990  *              invalidate_domains gets GPU
2991  *              clflush (obj)
2992  *              MI_FLUSH and drm_agp_chipset_flush
2993  *      4. set_domain (CPU, CPU)
2994  *              flush_domains gets GPU
2995  *              invalidate_domains gets CPU
2996  *              wait_rendering (obj) to make sure all drawing is complete.
2997  *              This will include an MI_FLUSH to get the data from GPU
2998  *              to memory
2999  *              clflush (obj) to invalidate the CPU cache
3000  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3001  *      5. Read/written by CPU
3002  *              cache lines are loaded and dirtied
3003  *      6. Read written by GPU
3004  *              Same as last GPU access
3005  *
3006  * Case 3: The constant buffer
3007  *
3008  *      1. Allocated
3009  *      2. Written by CPU
3010  *      3. Read by GPU
3011  *      4. Updated (written) by CPU again
3012  *      5. Read by GPU
3013  *
3014  *      1. Allocated
3015  *              (CPU, CPU)
3016  *      2. Written by CPU
3017  *              (CPU, CPU)
3018  *      3. Read by GPU
3019  *              (CPU+RENDER, 0)
3020  *              flush_domains = CPU
3021  *              invalidate_domains = RENDER
3022  *              clflush (obj)
3023  *              MI_FLUSH
3024  *              drm_agp_chipset_flush
3025  *      4. Updated (written) by CPU again
3026  *              (CPU, CPU)
3027  *              flush_domains = 0 (no previous write domain)
3028  *              invalidate_domains = 0 (no new read domains)
3029  *      5. Read by GPU
3030  *              (CPU+RENDER, 0)
3031  *              flush_domains = CPU
3032  *              invalidate_domains = RENDER
3033  *              clflush (obj)
3034  *              MI_FLUSH
3035  *              drm_agp_chipset_flush
3036  */
3037 static void
3038 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3039 {
3040         struct drm_device               *dev = obj->dev;
3041         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
3042         uint32_t                        invalidate_domains = 0;
3043         uint32_t                        flush_domains = 0;
3044         uint32_t                        old_read_domains;
3045
3046         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3047         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3048
3049         intel_mark_busy(dev, obj);
3050
3051 #if WATCH_BUF
3052         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3053                  __func__, obj,
3054                  obj->read_domains, obj->pending_read_domains,
3055                  obj->write_domain, obj->pending_write_domain);
3056 #endif
3057         /*
3058          * If the object isn't moving to a new write domain,
3059          * let the object stay in multiple read domains
3060          */
3061         if (obj->pending_write_domain == 0)
3062                 obj->pending_read_domains |= obj->read_domains;
3063         else
3064                 obj_priv->dirty = 1;
3065
3066         /*
3067          * Flush the current write domain if
3068          * the new read domains don't match. Invalidate
3069          * any read domains which differ from the old
3070          * write domain
3071          */
3072         if (obj->write_domain &&
3073             obj->write_domain != obj->pending_read_domains) {
3074                 flush_domains |= obj->write_domain;
3075                 invalidate_domains |=
3076                         obj->pending_read_domains & ~obj->write_domain;
3077         }
3078         /*
3079          * Invalidate any read caches which may have
3080          * stale data. That is, any new read domains.
3081          */
3082         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3083         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3084 #if WATCH_BUF
3085                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3086                          __func__, flush_domains, invalidate_domains);
3087 #endif
3088                 i915_gem_clflush_object(obj);
3089         }
3090
3091         old_read_domains = obj->read_domains;
3092
3093         /* The actual obj->write_domain will be updated with
3094          * pending_write_domain after we emit the accumulated flush for all
3095          * of our domain changes in execbuffers (which clears objects'
3096          * write_domains).  So if we have a current write domain that we
3097          * aren't changing, set pending_write_domain to that.
3098          */
3099         if (flush_domains == 0 && obj->pending_write_domain == 0)
3100                 obj->pending_write_domain = obj->write_domain;
3101         obj->read_domains = obj->pending_read_domains;
3102
3103         dev->invalidate_domains |= invalidate_domains;
3104         dev->flush_domains |= flush_domains;
3105 #if WATCH_BUF
3106         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3107                  __func__,
3108                  obj->read_domains, obj->write_domain,
3109                  dev->invalidate_domains, dev->flush_domains);
3110 #endif
3111
3112         trace_i915_gem_object_change_domain(obj,
3113                                             old_read_domains,
3114                                             obj->write_domain);
3115 }
3116
3117 /**
3118  * Moves the object from a partially CPU read to a full one.
3119  *
3120  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3121  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3122  */
3123 static void
3124 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3125 {
3126         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3127
3128         if (!obj_priv->page_cpu_valid)
3129                 return;
3130
3131         /* If we're partially in the CPU read domain, finish moving it in.
3132          */
3133         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3134                 int i;
3135
3136                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3137                         if (obj_priv->page_cpu_valid[i])
3138                                 continue;
3139                         drm_clflush_pages(obj_priv->pages + i, 1);
3140                 }
3141         }
3142
3143         /* Free the page_cpu_valid mappings which are now stale, whether
3144          * or not we've got I915_GEM_DOMAIN_CPU.
3145          */
3146         kfree(obj_priv->page_cpu_valid);
3147         obj_priv->page_cpu_valid = NULL;
3148 }
3149
3150 /**
3151  * Set the CPU read domain on a range of the object.
3152  *
3153  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3154  * not entirely valid.  The page_cpu_valid member of the object flags which
3155  * pages have been flushed, and will be respected by
3156  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3157  * of the whole object.
3158  *
3159  * This function returns when the move is complete, including waiting on
3160  * flushes to occur.
3161  */
3162 static int
3163 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3164                                           uint64_t offset, uint64_t size)
3165 {
3166         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3167         uint32_t old_read_domains;
3168         int i, ret;
3169
3170         if (offset == 0 && size == obj->size)
3171                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3172
3173         i915_gem_object_flush_gpu_write_domain(obj);
3174         /* Wait on any GPU rendering and flushing to occur. */
3175         ret = i915_gem_object_wait_rendering(obj);
3176         if (ret != 0)
3177                 return ret;
3178         i915_gem_object_flush_gtt_write_domain(obj);
3179
3180         /* If we're already fully in the CPU read domain, we're done. */
3181         if (obj_priv->page_cpu_valid == NULL &&
3182             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3183                 return 0;
3184
3185         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3186          * newly adding I915_GEM_DOMAIN_CPU
3187          */
3188         if (obj_priv->page_cpu_valid == NULL) {
3189                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3190                                                    GFP_KERNEL);
3191                 if (obj_priv->page_cpu_valid == NULL)
3192                         return -ENOMEM;
3193         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3194                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3195
3196         /* Flush the cache on any pages that are still invalid from the CPU's
3197          * perspective.
3198          */
3199         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3200              i++) {
3201                 if (obj_priv->page_cpu_valid[i])
3202                         continue;
3203
3204                 drm_clflush_pages(obj_priv->pages + i, 1);
3205
3206                 obj_priv->page_cpu_valid[i] = 1;
3207         }
3208
3209         /* It should now be out of any other write domains, and we can update
3210          * the domain values for our changes.
3211          */
3212         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3213
3214         old_read_domains = obj->read_domains;
3215         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3216
3217         trace_i915_gem_object_change_domain(obj,
3218                                             old_read_domains,
3219                                             obj->write_domain);
3220
3221         return 0;
3222 }
3223
3224 /**
3225  * Pin an object to the GTT and evaluate the relocations landing in it.
3226  */
3227 static int
3228 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3229                                  struct drm_file *file_priv,
3230                                  struct drm_i915_gem_exec_object2 *entry,
3231                                  struct drm_i915_gem_relocation_entry *relocs)
3232 {
3233         struct drm_device *dev = obj->dev;
3234         drm_i915_private_t *dev_priv = dev->dev_private;
3235         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3236         int i, ret;
3237         void __iomem *reloc_page;
3238         bool need_fence;
3239
3240         need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3241                      obj_priv->tiling_mode != I915_TILING_NONE;
3242
3243         /* Check fence reg constraints and rebind if necessary */
3244         if (need_fence && !i915_obj_fenceable(dev, obj))
3245                 i915_gem_object_unbind(obj);
3246
3247         /* Choose the GTT offset for our buffer and put it there. */
3248         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3249         if (ret)
3250                 return ret;
3251
3252         /*
3253          * Pre-965 chips need a fence register set up in order to
3254          * properly handle blits to/from tiled surfaces.
3255          */
3256         if (need_fence) {
3257                 ret = i915_gem_object_get_fence_reg(obj);
3258                 if (ret != 0) {
3259                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3260                                 DRM_ERROR("Failure to install fence: %d\n",
3261                                           ret);
3262                         i915_gem_object_unpin(obj);
3263                         return ret;
3264                 }
3265         }
3266
3267         entry->offset = obj_priv->gtt_offset;
3268
3269         /* Apply the relocations, using the GTT aperture to avoid cache
3270          * flushing requirements.
3271          */
3272         for (i = 0; i < entry->relocation_count; i++) {
3273                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3274                 struct drm_gem_object *target_obj;
3275                 struct drm_i915_gem_object *target_obj_priv;
3276                 uint32_t reloc_val, reloc_offset;
3277                 uint32_t __iomem *reloc_entry;
3278
3279                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3280                                                    reloc->target_handle);
3281                 if (target_obj == NULL) {
3282                         i915_gem_object_unpin(obj);
3283                         return -EBADF;
3284                 }
3285                 target_obj_priv = target_obj->driver_private;
3286
3287 #if WATCH_RELOC
3288                 DRM_INFO("%s: obj %p offset %08x target %d "
3289                          "read %08x write %08x gtt %08x "
3290                          "presumed %08x delta %08x\n",
3291                          __func__,
3292                          obj,
3293                          (int) reloc->offset,
3294                          (int) reloc->target_handle,
3295                          (int) reloc->read_domains,
3296                          (int) reloc->write_domain,
3297                          (int) target_obj_priv->gtt_offset,
3298                          (int) reloc->presumed_offset,
3299                          reloc->delta);
3300 #endif
3301
3302                 /* The target buffer should have appeared before us in the
3303                  * exec_object list, so it should have a GTT space bound by now.
3304                  */
3305                 if (target_obj_priv->gtt_space == NULL) {
3306                         DRM_ERROR("No GTT space found for object %d\n",
3307                                   reloc->target_handle);
3308                         drm_gem_object_unreference(target_obj);
3309                         i915_gem_object_unpin(obj);
3310                         return -EINVAL;
3311                 }
3312
3313                 /* Validate that the target is in a valid r/w GPU domain */
3314                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3315                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3316                         DRM_ERROR("reloc with read/write CPU domains: "
3317                                   "obj %p target %d offset %d "
3318                                   "read %08x write %08x",
3319                                   obj, reloc->target_handle,
3320                                   (int) reloc->offset,
3321                                   reloc->read_domains,
3322                                   reloc->write_domain);
3323                         drm_gem_object_unreference(target_obj);
3324                         i915_gem_object_unpin(obj);
3325                         return -EINVAL;
3326                 }
3327                 if (reloc->write_domain && target_obj->pending_write_domain &&
3328                     reloc->write_domain != target_obj->pending_write_domain) {
3329                         DRM_ERROR("Write domain conflict: "
3330                                   "obj %p target %d offset %d "
3331                                   "new %08x old %08x\n",
3332                                   obj, reloc->target_handle,
3333                                   (int) reloc->offset,
3334                                   reloc->write_domain,
3335                                   target_obj->pending_write_domain);
3336                         drm_gem_object_unreference(target_obj);
3337                         i915_gem_object_unpin(obj);
3338                         return -EINVAL;
3339                 }
3340
3341                 target_obj->pending_read_domains |= reloc->read_domains;
3342                 target_obj->pending_write_domain |= reloc->write_domain;
3343
3344                 /* If the relocation already has the right value in it, no
3345                  * more work needs to be done.
3346                  */
3347                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3348                         drm_gem_object_unreference(target_obj);
3349                         continue;
3350                 }
3351
3352                 /* Check that the relocation address is valid... */
3353                 if (reloc->offset > obj->size - 4) {
3354                         DRM_ERROR("Relocation beyond object bounds: "
3355                                   "obj %p target %d offset %d size %d.\n",
3356                                   obj, reloc->target_handle,
3357                                   (int) reloc->offset, (int) obj->size);
3358                         drm_gem_object_unreference(target_obj);
3359                         i915_gem_object_unpin(obj);
3360                         return -EINVAL;
3361                 }
3362                 if (reloc->offset & 3) {
3363                         DRM_ERROR("Relocation not 4-byte aligned: "
3364                                   "obj %p target %d offset %d.\n",
3365                                   obj, reloc->target_handle,
3366                                   (int) reloc->offset);
3367                         drm_gem_object_unreference(target_obj);
3368                         i915_gem_object_unpin(obj);
3369                         return -EINVAL;
3370                 }
3371
3372                 /* and points to somewhere within the target object. */
3373                 if (reloc->delta >= target_obj->size) {
3374                         DRM_ERROR("Relocation beyond target object bounds: "
3375                                   "obj %p target %d delta %d size %d.\n",
3376                                   obj, reloc->target_handle,
3377                                   (int) reloc->delta, (int) target_obj->size);
3378                         drm_gem_object_unreference(target_obj);
3379                         i915_gem_object_unpin(obj);
3380                         return -EINVAL;
3381                 }
3382
3383                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3384                 if (ret != 0) {
3385                         drm_gem_object_unreference(target_obj);
3386                         i915_gem_object_unpin(obj);
3387                         return -EINVAL;
3388                 }
3389
3390                 /* Map the page containing the relocation we're going to
3391                  * perform.
3392                  */
3393                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3394                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3395                                                       (reloc_offset &
3396                                                        ~(PAGE_SIZE - 1)));
3397                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3398                                                    (reloc_offset & (PAGE_SIZE - 1)));
3399                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3400
3401 #if WATCH_BUF
3402                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3403                           obj, (unsigned int) reloc->offset,
3404                           readl(reloc_entry), reloc_val);
3405 #endif
3406                 writel(reloc_val, reloc_entry);
3407                 io_mapping_unmap_atomic(reloc_page);
3408
3409                 /* The updated presumed offset for this entry will be
3410                  * copied back out to the user.
3411                  */
3412                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3413
3414                 drm_gem_object_unreference(target_obj);
3415         }
3416
3417 #if WATCH_BUF
3418         if (0)
3419                 i915_gem_dump_object(obj, 128, __func__, ~0);
3420 #endif
3421         return 0;
3422 }
3423
3424 /** Dispatch a batchbuffer to the ring
3425  */
3426 static int
3427 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3428                               struct drm_i915_gem_execbuffer2 *exec,
3429                               struct drm_clip_rect *cliprects,
3430                               uint64_t exec_offset)
3431 {
3432         drm_i915_private_t *dev_priv = dev->dev_private;
3433         int nbox = exec->num_cliprects;
3434         int i = 0, count;
3435         uint32_t exec_start, exec_len;
3436         RING_LOCALS;
3437
3438         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3439         exec_len = (uint32_t) exec->batch_len;
3440
3441         trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3442
3443         count = nbox ? nbox : 1;
3444
3445         for (i = 0; i < count; i++) {
3446                 if (i < nbox) {
3447                         int ret = i915_emit_box(dev, cliprects, i,
3448                                                 exec->DR1, exec->DR4);
3449                         if (ret)
3450                                 return ret;
3451                 }
3452
3453                 if (IS_I830(dev) || IS_845G(dev)) {
3454                         BEGIN_LP_RING(4);
3455                         OUT_RING(MI_BATCH_BUFFER);
3456                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3457                         OUT_RING(exec_start + exec_len - 4);
3458                         OUT_RING(0);
3459                         ADVANCE_LP_RING();
3460                 } else {
3461                         BEGIN_LP_RING(2);
3462                         if (IS_I965G(dev)) {
3463                                 OUT_RING(MI_BATCH_BUFFER_START |
3464                                          (2 << 6) |
3465                                          MI_BATCH_NON_SECURE_I965);
3466                                 OUT_RING(exec_start);
3467                         } else {
3468                                 OUT_RING(MI_BATCH_BUFFER_START |
3469                                          (2 << 6));
3470                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3471                         }
3472                         ADVANCE_LP_RING();
3473                 }
3474         }
3475
3476         /* XXX breadcrumb */
3477         return 0;
3478 }
3479
3480 /* Throttle our rendering by waiting until the ring has completed our requests
3481  * emitted over 20 msec ago.
3482  *
3483  * Note that if we were to use the current jiffies each time around the loop,
3484  * we wouldn't escape the function with any frames outstanding if the time to
3485  * render a frame was over 20ms.
3486  *
3487  * This should get us reasonable parallelism between CPU and GPU but also
3488  * relatively low latency when blocking on a particular request to finish.
3489  */
3490 static int
3491 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3492 {
3493         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3494         int ret = 0;
3495         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3496
3497         mutex_lock(&dev->struct_mutex);
3498         while (!list_empty(&i915_file_priv->mm.request_list)) {
3499                 struct drm_i915_gem_request *request;
3500
3501                 request = list_first_entry(&i915_file_priv->mm.request_list,
3502                                            struct drm_i915_gem_request,
3503                                            client_list);
3504
3505                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3506                         break;
3507
3508                 ret = i915_wait_request(dev, request->seqno);
3509                 if (ret != 0)
3510                         break;
3511         }
3512         mutex_unlock(&dev->struct_mutex);
3513
3514         return ret;
3515 }
3516
3517 static int
3518 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3519                               uint32_t buffer_count,
3520                               struct drm_i915_gem_relocation_entry **relocs)
3521 {
3522         uint32_t reloc_count = 0, reloc_index = 0, i;
3523         int ret;
3524
3525         *relocs = NULL;
3526         for (i = 0; i < buffer_count; i++) {
3527                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3528                         return -EINVAL;
3529                 reloc_count += exec_list[i].relocation_count;
3530         }
3531
3532         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3533         if (*relocs == NULL) {
3534                 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3535                 return -ENOMEM;
3536         }
3537
3538         for (i = 0; i < buffer_count; i++) {
3539                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3540
3541                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3542
3543                 ret = copy_from_user(&(*relocs)[reloc_index],
3544                                      user_relocs,
3545                                      exec_list[i].relocation_count *
3546                                      sizeof(**relocs));
3547                 if (ret != 0) {
3548                         drm_free_large(*relocs);
3549                         *relocs = NULL;
3550                         return -EFAULT;
3551                 }
3552
3553                 reloc_index += exec_list[i].relocation_count;
3554         }
3555
3556         return 0;
3557 }
3558
3559 static int
3560 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3561                             uint32_t buffer_count,
3562                             struct drm_i915_gem_relocation_entry *relocs)
3563 {
3564         uint32_t reloc_count = 0, i;
3565         int ret = 0;
3566
3567         for (i = 0; i < buffer_count; i++) {
3568                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3569                 int unwritten;
3570
3571                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3572
3573                 unwritten = copy_to_user(user_relocs,
3574                                          &relocs[reloc_count],
3575                                          exec_list[i].relocation_count *
3576                                          sizeof(*relocs));
3577
3578                 if (unwritten) {
3579                         ret = -EFAULT;
3580                         goto err;
3581                 }
3582
3583                 reloc_count += exec_list[i].relocation_count;
3584         }
3585
3586 err:
3587         drm_free_large(relocs);
3588
3589         return ret;
3590 }
3591
3592 static int
3593 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3594                            uint64_t exec_offset)
3595 {
3596         uint32_t exec_start, exec_len;
3597
3598         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3599         exec_len = (uint32_t) exec->batch_len;
3600
3601         if ((exec_start | exec_len) & 0x7)
3602                 return -EINVAL;
3603
3604         if (!exec_start)
3605                 return -EINVAL;
3606
3607         return 0;
3608 }
3609
3610 static int
3611 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3612                                struct drm_gem_object **object_list,
3613                                int count)
3614 {
3615         drm_i915_private_t *dev_priv = dev->dev_private;
3616         struct drm_i915_gem_object *obj_priv;
3617         DEFINE_WAIT(wait);
3618         int i, ret = 0;
3619
3620         for (;;) {
3621                 prepare_to_wait(&dev_priv->pending_flip_queue,
3622                                 &wait, TASK_INTERRUPTIBLE);
3623                 for (i = 0; i < count; i++) {
3624                         obj_priv = object_list[i]->driver_private;
3625                         if (atomic_read(&obj_priv->pending_flip) > 0)
3626                                 break;
3627                 }
3628                 if (i == count)
3629                         break;
3630
3631                 if (!signal_pending(current)) {
3632                         mutex_unlock(&dev->struct_mutex);
3633                         schedule();
3634                         mutex_lock(&dev->struct_mutex);
3635                         continue;
3636                 }
3637                 ret = -ERESTARTSYS;
3638                 break;
3639         }
3640         finish_wait(&dev_priv->pending_flip_queue, &wait);
3641
3642         return ret;
3643 }
3644
3645 int
3646 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3647                        struct drm_file *file_priv,
3648                        struct drm_i915_gem_execbuffer2 *args,
3649                        struct drm_i915_gem_exec_object2 *exec_list)
3650 {
3651         drm_i915_private_t *dev_priv = dev->dev_private;
3652         struct drm_gem_object **object_list = NULL;
3653         struct drm_gem_object *batch_obj;
3654         struct drm_i915_gem_object *obj_priv;
3655         struct drm_clip_rect *cliprects = NULL;
3656         struct drm_i915_gem_relocation_entry *relocs;
3657         int ret = 0, ret2, i, pinned = 0;
3658         uint64_t exec_offset;
3659         uint32_t seqno, flush_domains, reloc_index;
3660         int pin_tries, flips;
3661
3662 #if WATCH_EXEC
3663         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3664                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3665 #endif
3666
3667         if (args->buffer_count < 1) {
3668                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3669                 return -EINVAL;
3670         }
3671         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3672         if (object_list == NULL) {
3673                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3674                           args->buffer_count);
3675                 ret = -ENOMEM;
3676                 goto pre_mutex_err;
3677         }
3678
3679         if (args->num_cliprects != 0) {
3680                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3681                                     GFP_KERNEL);
3682                 if (cliprects == NULL)
3683                         goto pre_mutex_err;
3684
3685                 ret = copy_from_user(cliprects,
3686                                      (struct drm_clip_rect __user *)
3687                                      (uintptr_t) args->cliprects_ptr,
3688                                      sizeof(*cliprects) * args->num_cliprects);
3689                 if (ret != 0) {
3690                         DRM_ERROR("copy %d cliprects failed: %d\n",
3691                                   args->num_cliprects, ret);
3692                         goto pre_mutex_err;
3693                 }
3694         }
3695
3696         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3697                                             &relocs);
3698         if (ret != 0)
3699                 goto pre_mutex_err;
3700
3701         mutex_lock(&dev->struct_mutex);
3702
3703         i915_verify_inactive(dev, __FILE__, __LINE__);
3704
3705         if (atomic_read(&dev_priv->mm.wedged)) {
3706                 mutex_unlock(&dev->struct_mutex);
3707                 ret = -EIO;
3708                 goto pre_mutex_err;
3709         }
3710
3711         if (dev_priv->mm.suspended) {
3712                 mutex_unlock(&dev->struct_mutex);
3713                 ret = -EBUSY;
3714                 goto pre_mutex_err;
3715         }
3716
3717         /* Look up object handles */
3718         flips = 0;
3719         for (i = 0; i < args->buffer_count; i++) {
3720                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3721                                                        exec_list[i].handle);
3722                 if (object_list[i] == NULL) {
3723                         DRM_ERROR("Invalid object handle %d at index %d\n",
3724                                    exec_list[i].handle, i);
3725                         ret = -EBADF;
3726                         goto err;
3727                 }
3728
3729                 obj_priv = object_list[i]->driver_private;
3730                 if (obj_priv->in_execbuffer) {
3731                         DRM_ERROR("Object %p appears more than once in object list\n",
3732                                    object_list[i]);
3733                         ret = -EBADF;
3734                         goto err;
3735                 }
3736                 obj_priv->in_execbuffer = true;
3737                 flips += atomic_read(&obj_priv->pending_flip);
3738         }
3739
3740         if (flips > 0) {
3741                 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3742                                                      args->buffer_count);
3743                 if (ret)
3744                         goto err;
3745         }
3746
3747         /* Pin and relocate */
3748         for (pin_tries = 0; ; pin_tries++) {
3749                 ret = 0;
3750                 reloc_index = 0;
3751
3752                 for (i = 0; i < args->buffer_count; i++) {
3753                         object_list[i]->pending_read_domains = 0;
3754                         object_list[i]->pending_write_domain = 0;
3755                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3756                                                                file_priv,
3757                                                                &exec_list[i],
3758                                                                &relocs[reloc_index]);
3759                         if (ret)
3760                                 break;
3761                         pinned = i + 1;
3762                         reloc_index += exec_list[i].relocation_count;
3763                 }
3764                 /* success */
3765                 if (ret == 0)
3766                         break;
3767
3768                 /* error other than GTT full, or we've already tried again */
3769                 if (ret != -ENOSPC || pin_tries >= 1) {
3770                         if (ret != -ERESTARTSYS) {
3771                                 unsigned long long total_size = 0;
3772                                 for (i = 0; i < args->buffer_count; i++)
3773                                         total_size += object_list[i]->size;
3774                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3775                                           pinned+1, args->buffer_count,
3776                                           total_size, ret);
3777                                 DRM_ERROR("%d objects [%d pinned], "
3778                                           "%d object bytes [%d pinned], "
3779                                           "%d/%d gtt bytes\n",
3780                                           atomic_read(&dev->object_count),
3781                                           atomic_read(&dev->pin_count),
3782                                           atomic_read(&dev->object_memory),
3783                                           atomic_read(&dev->pin_memory),
3784                                           atomic_read(&dev->gtt_memory),
3785                                           dev->gtt_total);
3786                         }
3787                         goto err;
3788                 }
3789
3790                 /* unpin all of our buffers */
3791                 for (i = 0; i < pinned; i++)
3792                         i915_gem_object_unpin(object_list[i]);
3793                 pinned = 0;
3794
3795                 /* evict everyone we can from the aperture */
3796                 ret = i915_gem_evict_everything(dev);
3797                 if (ret && ret != -ENOSPC)
3798                         goto err;
3799         }
3800
3801         /* Set the pending read domains for the batch buffer to COMMAND */
3802         batch_obj = object_list[args->buffer_count-1];
3803         if (batch_obj->pending_write_domain) {
3804                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3805                 ret = -EINVAL;
3806                 goto err;
3807         }
3808         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3809
3810         /* Sanity check the batch buffer, prior to moving objects */
3811         exec_offset = exec_list[args->buffer_count - 1].offset;
3812         ret = i915_gem_check_execbuffer (args, exec_offset);
3813         if (ret != 0) {
3814                 DRM_ERROR("execbuf with invalid offset/length\n");
3815                 goto err;
3816         }
3817
3818         i915_verify_inactive(dev, __FILE__, __LINE__);
3819
3820         /* Zero the global flush/invalidate flags. These
3821          * will be modified as new domains are computed
3822          * for each object
3823          */
3824         dev->invalidate_domains = 0;
3825         dev->flush_domains = 0;
3826
3827         for (i = 0; i < args->buffer_count; i++) {
3828                 struct drm_gem_object *obj = object_list[i];
3829
3830                 /* Compute new gpu domains and update invalidate/flush */
3831                 i915_gem_object_set_to_gpu_domain(obj);
3832         }
3833
3834         i915_verify_inactive(dev, __FILE__, __LINE__);
3835
3836         if (dev->invalidate_domains | dev->flush_domains) {
3837 #if WATCH_EXEC
3838                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3839                           __func__,
3840                          dev->invalidate_domains,
3841                          dev->flush_domains);
3842 #endif
3843                 i915_gem_flush(dev,
3844                                dev->invalidate_domains,
3845                                dev->flush_domains);
3846                 if (dev->flush_domains)
3847                         (void)i915_add_request(dev, file_priv,
3848                                                dev->flush_domains);
3849         }
3850
3851         for (i = 0; i < args->buffer_count; i++) {
3852                 struct drm_gem_object *obj = object_list[i];
3853                 uint32_t old_write_domain = obj->write_domain;
3854
3855                 obj->write_domain = obj->pending_write_domain;
3856                 trace_i915_gem_object_change_domain(obj,
3857                                                     obj->read_domains,
3858                                                     old_write_domain);
3859         }
3860
3861         i915_verify_inactive(dev, __FILE__, __LINE__);
3862
3863 #if WATCH_COHERENCY
3864         for (i = 0; i < args->buffer_count; i++) {
3865                 i915_gem_object_check_coherency(object_list[i],
3866                                                 exec_list[i].handle);
3867         }
3868 #endif
3869
3870 #if WATCH_EXEC
3871         i915_gem_dump_object(batch_obj,
3872                               args->batch_len,
3873                               __func__,
3874                               ~0);
3875 #endif
3876
3877         /* Exec the batchbuffer */
3878         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3879         if (ret) {
3880                 DRM_ERROR("dispatch failed %d\n", ret);
3881                 goto err;
3882         }
3883
3884         /*
3885          * Ensure that the commands in the batch buffer are
3886          * finished before the interrupt fires
3887          */
3888         flush_domains = i915_retire_commands(dev);
3889
3890         i915_verify_inactive(dev, __FILE__, __LINE__);
3891
3892         /*
3893          * Get a seqno representing the execution of the current buffer,
3894          * which we can wait on.  We would like to mitigate these interrupts,
3895          * likely by only creating seqnos occasionally (so that we have
3896          * *some* interrupts representing completion of buffers that we can
3897          * wait on when trying to clear up gtt space).
3898          */
3899         seqno = i915_add_request(dev, file_priv, flush_domains);
3900         BUG_ON(seqno == 0);
3901         for (i = 0; i < args->buffer_count; i++) {
3902                 struct drm_gem_object *obj = object_list[i];
3903
3904                 i915_gem_object_move_to_active(obj, seqno);
3905 #if WATCH_LRU
3906                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3907 #endif
3908         }
3909 #if WATCH_LRU
3910         i915_dump_lru(dev, __func__);
3911 #endif
3912
3913         i915_verify_inactive(dev, __FILE__, __LINE__);
3914
3915 err:
3916         for (i = 0; i < pinned; i++)
3917                 i915_gem_object_unpin(object_list[i]);
3918
3919         for (i = 0; i < args->buffer_count; i++) {
3920                 if (object_list[i]) {
3921                         obj_priv = object_list[i]->driver_private;
3922                         obj_priv->in_execbuffer = false;
3923                 }
3924                 drm_gem_object_unreference(object_list[i]);
3925         }
3926
3927         mutex_unlock(&dev->struct_mutex);
3928
3929         /* Copy the updated relocations out regardless of current error
3930          * state.  Failure to update the relocs would mean that the next
3931          * time userland calls execbuf, it would do so with presumed offset
3932          * state that didn't match the actual object state.
3933          */
3934         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3935                                            relocs);
3936         if (ret2 != 0) {
3937                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3938
3939                 if (ret == 0)
3940                         ret = ret2;
3941         }
3942
3943 pre_mutex_err:
3944         drm_free_large(object_list);
3945         kfree(cliprects);
3946
3947         return ret;
3948 }
3949
3950 /*
3951  * Legacy execbuffer just creates an exec2 list from the original exec object
3952  * list array and passes it to the real function.
3953  */
3954 int
3955 i915_gem_execbuffer(struct drm_device *dev, void *data,
3956                     struct drm_file *file_priv)
3957 {
3958         struct drm_i915_gem_execbuffer *args = data;
3959         struct drm_i915_gem_execbuffer2 exec2;
3960         struct drm_i915_gem_exec_object *exec_list = NULL;
3961         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3962         int ret, i;
3963
3964 #if WATCH_EXEC
3965         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3966                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3967 #endif
3968
3969         if (args->buffer_count < 1) {
3970                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3971                 return -EINVAL;
3972         }
3973
3974         /* Copy in the exec list from userland */
3975         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3976         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3977         if (exec_list == NULL || exec2_list == NULL) {
3978                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3979                           args->buffer_count);
3980                 drm_free_large(exec_list);
3981                 drm_free_large(exec2_list);
3982                 return -ENOMEM;
3983         }
3984         ret = copy_from_user(exec_list,
3985                              (struct drm_i915_relocation_entry __user *)
3986                              (uintptr_t) args->buffers_ptr,
3987                              sizeof(*exec_list) * args->buffer_count);
3988         if (ret != 0) {
3989                 DRM_ERROR("copy %d exec entries failed %d\n",
3990                           args->buffer_count, ret);
3991                 drm_free_large(exec_list);
3992                 drm_free_large(exec2_list);
3993                 return -EFAULT;
3994         }
3995
3996         for (i = 0; i < args->buffer_count; i++) {
3997                 exec2_list[i].handle = exec_list[i].handle;
3998                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3999                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4000                 exec2_list[i].alignment = exec_list[i].alignment;
4001                 exec2_list[i].offset = exec_list[i].offset;
4002                 if (!IS_I965G(dev))
4003                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4004                 else
4005                         exec2_list[i].flags = 0;
4006         }
4007
4008         exec2.buffers_ptr = args->buffers_ptr;
4009         exec2.buffer_count = args->buffer_count;
4010         exec2.batch_start_offset = args->batch_start_offset;
4011         exec2.batch_len = args->batch_len;
4012         exec2.DR1 = args->DR1;
4013         exec2.DR4 = args->DR4;
4014         exec2.num_cliprects = args->num_cliprects;
4015         exec2.cliprects_ptr = args->cliprects_ptr;
4016         exec2.flags = 0;
4017
4018         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4019         if (!ret) {
4020                 /* Copy the new buffer offsets back to the user's exec list. */
4021                 for (i = 0; i < args->buffer_count; i++)
4022                         exec_list[i].offset = exec2_list[i].offset;
4023                 /* ... and back out to userspace */
4024                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4025                                    (uintptr_t) args->buffers_ptr,
4026                                    exec_list,
4027                                    sizeof(*exec_list) * args->buffer_count);
4028                 if (ret) {
4029                         ret = -EFAULT;
4030                         DRM_ERROR("failed to copy %d exec entries "
4031                                   "back to user (%d)\n",
4032                                   args->buffer_count, ret);
4033                 }
4034         }
4035
4036         drm_free_large(exec_list);
4037         drm_free_large(exec2_list);
4038         return ret;
4039 }
4040
4041 int
4042 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4043                      struct drm_file *file_priv)
4044 {
4045         struct drm_i915_gem_execbuffer2 *args = data;
4046         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4047         int ret;
4048
4049 #if WATCH_EXEC
4050         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4051                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4052 #endif
4053
4054         if (args->buffer_count < 1) {
4055                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4056                 return -EINVAL;
4057         }
4058
4059         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4060         if (exec2_list == NULL) {
4061                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4062                           args->buffer_count);
4063                 return -ENOMEM;
4064         }
4065         ret = copy_from_user(exec2_list,
4066                              (struct drm_i915_relocation_entry __user *)
4067                              (uintptr_t) args->buffers_ptr,
4068                              sizeof(*exec2_list) * args->buffer_count);
4069         if (ret != 0) {
4070                 DRM_ERROR("copy %d exec entries failed %d\n",
4071                           args->buffer_count, ret);
4072                 drm_free_large(exec2_list);
4073                 return -EFAULT;
4074         }
4075
4076         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4077         if (!ret) {
4078                 /* Copy the new buffer offsets back to the user's exec list. */
4079                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4080                                    (uintptr_t) args->buffers_ptr,
4081                                    exec2_list,
4082                                    sizeof(*exec2_list) * args->buffer_count);
4083                 if (ret) {
4084                         ret = -EFAULT;
4085                         DRM_ERROR("failed to copy %d exec entries "
4086                                   "back to user (%d)\n",
4087                                   args->buffer_count, ret);
4088                 }
4089         }
4090
4091         drm_free_large(exec2_list);
4092         return ret;
4093 }
4094
4095 int
4096 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4097 {
4098         struct drm_device *dev = obj->dev;
4099         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4100         int ret;
4101
4102         i915_verify_inactive(dev, __FILE__, __LINE__);
4103         if (obj_priv->gtt_space == NULL) {
4104                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4105                 if (ret)
4106                         return ret;
4107         }
4108
4109         obj_priv->pin_count++;
4110
4111         /* If the object is not active and not pending a flush,
4112          * remove it from the inactive list
4113          */
4114         if (obj_priv->pin_count == 1) {
4115                 atomic_inc(&dev->pin_count);
4116                 atomic_add(obj->size, &dev->pin_memory);
4117                 if (!obj_priv->active &&
4118                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4119                     !list_empty(&obj_priv->list))
4120                         list_del_init(&obj_priv->list);
4121         }
4122         i915_verify_inactive(dev, __FILE__, __LINE__);
4123
4124         return 0;
4125 }
4126
4127 void
4128 i915_gem_object_unpin(struct drm_gem_object *obj)
4129 {
4130         struct drm_device *dev = obj->dev;
4131         drm_i915_private_t *dev_priv = dev->dev_private;
4132         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4133
4134         i915_verify_inactive(dev, __FILE__, __LINE__);
4135         obj_priv->pin_count--;
4136         BUG_ON(obj_priv->pin_count < 0);
4137         BUG_ON(obj_priv->gtt_space == NULL);
4138
4139         /* If the object is no longer pinned, and is
4140          * neither active nor being flushed, then stick it on
4141          * the inactive list
4142          */
4143         if (obj_priv->pin_count == 0) {
4144                 if (!obj_priv->active &&
4145                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4146                         list_move_tail(&obj_priv->list,
4147                                        &dev_priv->mm.inactive_list);
4148                 atomic_dec(&dev->pin_count);
4149                 atomic_sub(obj->size, &dev->pin_memory);
4150         }
4151         i915_verify_inactive(dev, __FILE__, __LINE__);
4152 }
4153
4154 int
4155 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4156                    struct drm_file *file_priv)
4157 {
4158         struct drm_i915_gem_pin *args = data;
4159         struct drm_gem_object *obj;
4160         struct drm_i915_gem_object *obj_priv;
4161         int ret;
4162
4163         mutex_lock(&dev->struct_mutex);
4164
4165         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4166         if (obj == NULL) {
4167                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4168                           args->handle);
4169                 mutex_unlock(&dev->struct_mutex);
4170                 return -EBADF;
4171         }
4172         obj_priv = obj->driver_private;
4173
4174         if (obj_priv->madv != I915_MADV_WILLNEED) {
4175                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4176                 drm_gem_object_unreference(obj);
4177                 mutex_unlock(&dev->struct_mutex);
4178                 return -EINVAL;
4179         }
4180
4181         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4182                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4183                           args->handle);
4184                 drm_gem_object_unreference(obj);
4185                 mutex_unlock(&dev->struct_mutex);
4186                 return -EINVAL;
4187         }
4188
4189         obj_priv->user_pin_count++;
4190         obj_priv->pin_filp = file_priv;
4191         if (obj_priv->user_pin_count == 1) {
4192                 ret = i915_gem_object_pin(obj, args->alignment);
4193                 if (ret != 0) {
4194                         drm_gem_object_unreference(obj);
4195                         mutex_unlock(&dev->struct_mutex);
4196                         return ret;
4197                 }
4198         }
4199
4200         /* XXX - flush the CPU caches for pinned objects
4201          * as the X server doesn't manage domains yet
4202          */
4203         i915_gem_object_flush_cpu_write_domain(obj);
4204         args->offset = obj_priv->gtt_offset;
4205         drm_gem_object_unreference(obj);
4206         mutex_unlock(&dev->struct_mutex);
4207
4208         return 0;
4209 }
4210
4211 int
4212 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4213                      struct drm_file *file_priv)
4214 {
4215         struct drm_i915_gem_pin *args = data;
4216         struct drm_gem_object *obj;
4217         struct drm_i915_gem_object *obj_priv;
4218
4219         mutex_lock(&dev->struct_mutex);
4220
4221         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4222         if (obj == NULL) {
4223                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4224                           args->handle);
4225                 mutex_unlock(&dev->struct_mutex);
4226                 return -EBADF;
4227         }
4228
4229         obj_priv = obj->driver_private;
4230         if (obj_priv->pin_filp != file_priv) {
4231                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4232                           args->handle);
4233                 drm_gem_object_unreference(obj);
4234                 mutex_unlock(&dev->struct_mutex);
4235                 return -EINVAL;
4236         }
4237         obj_priv->user_pin_count--;
4238         if (obj_priv->user_pin_count == 0) {
4239                 obj_priv->pin_filp = NULL;
4240                 i915_gem_object_unpin(obj);
4241         }
4242
4243         drm_gem_object_unreference(obj);
4244         mutex_unlock(&dev->struct_mutex);
4245         return 0;
4246 }
4247
4248 int
4249 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4250                     struct drm_file *file_priv)
4251 {
4252         struct drm_i915_gem_busy *args = data;
4253         struct drm_gem_object *obj;
4254         struct drm_i915_gem_object *obj_priv;
4255
4256         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4257         if (obj == NULL) {
4258                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4259                           args->handle);
4260                 return -EBADF;
4261         }
4262
4263         mutex_lock(&dev->struct_mutex);
4264         /* Update the active list for the hardware's current position.
4265          * Otherwise this only updates on a delayed timer or when irqs are
4266          * actually unmasked, and our working set ends up being larger than
4267          * required.
4268          */
4269         i915_gem_retire_requests(dev);
4270
4271         obj_priv = obj->driver_private;
4272         /* Don't count being on the flushing list against the object being
4273          * done.  Otherwise, a buffer left on the flushing list but not getting
4274          * flushed (because nobody's flushing that domain) won't ever return
4275          * unbusy and get reused by libdrm's bo cache.  The other expected
4276          * consumer of this interface, OpenGL's occlusion queries, also specs
4277          * that the objects get unbusy "eventually" without any interference.
4278          */
4279         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4280
4281         drm_gem_object_unreference(obj);
4282         mutex_unlock(&dev->struct_mutex);
4283         return 0;
4284 }
4285
4286 int
4287 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4288                         struct drm_file *file_priv)
4289 {
4290     return i915_gem_ring_throttle(dev, file_priv);
4291 }
4292
4293 int
4294 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4295                        struct drm_file *file_priv)
4296 {
4297         struct drm_i915_gem_madvise *args = data;
4298         struct drm_gem_object *obj;
4299         struct drm_i915_gem_object *obj_priv;
4300
4301         switch (args->madv) {
4302         case I915_MADV_DONTNEED:
4303         case I915_MADV_WILLNEED:
4304             break;
4305         default:
4306             return -EINVAL;
4307         }
4308
4309         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4310         if (obj == NULL) {
4311                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4312                           args->handle);
4313                 return -EBADF;
4314         }
4315
4316         mutex_lock(&dev->struct_mutex);
4317         obj_priv = obj->driver_private;
4318
4319         if (obj_priv->pin_count) {
4320                 drm_gem_object_unreference(obj);
4321                 mutex_unlock(&dev->struct_mutex);
4322
4323                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4324                 return -EINVAL;
4325         }
4326
4327         if (obj_priv->madv != __I915_MADV_PURGED)
4328                 obj_priv->madv = args->madv;
4329
4330         /* if the object is no longer bound, discard its backing storage */
4331         if (i915_gem_object_is_purgeable(obj_priv) &&
4332             obj_priv->gtt_space == NULL)
4333                 i915_gem_object_truncate(obj);
4334
4335         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4336
4337         drm_gem_object_unreference(obj);
4338         mutex_unlock(&dev->struct_mutex);
4339
4340         return 0;
4341 }
4342
4343 int i915_gem_init_object(struct drm_gem_object *obj)
4344 {
4345         struct drm_i915_gem_object *obj_priv;
4346
4347         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4348         if (obj_priv == NULL)
4349                 return -ENOMEM;
4350
4351         /*
4352          * We've just allocated pages from the kernel,
4353          * so they've just been written by the CPU with
4354          * zeros. They'll need to be clflushed before we
4355          * use them with the GPU.
4356          */
4357         obj->write_domain = I915_GEM_DOMAIN_CPU;
4358         obj->read_domains = I915_GEM_DOMAIN_CPU;
4359
4360         obj_priv->agp_type = AGP_USER_MEMORY;
4361
4362         obj->driver_private = obj_priv;
4363         obj_priv->obj = obj;
4364         obj_priv->fence_reg = I915_FENCE_REG_NONE;
4365         INIT_LIST_HEAD(&obj_priv->list);
4366         INIT_LIST_HEAD(&obj_priv->fence_list);
4367         obj_priv->madv = I915_MADV_WILLNEED;
4368
4369         trace_i915_gem_object_create(obj);
4370
4371         return 0;
4372 }
4373
4374 void i915_gem_free_object(struct drm_gem_object *obj)
4375 {
4376         struct drm_device *dev = obj->dev;
4377         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4378
4379         trace_i915_gem_object_destroy(obj);
4380
4381         while (obj_priv->pin_count > 0)
4382                 i915_gem_object_unpin(obj);
4383
4384         if (obj_priv->phys_obj)
4385                 i915_gem_detach_phys_object(dev, obj);
4386
4387         i915_gem_object_unbind(obj);
4388
4389         if (obj_priv->mmap_offset)
4390                 i915_gem_free_mmap_offset(obj);
4391
4392         kfree(obj_priv->page_cpu_valid);
4393         kfree(obj_priv->bit_17);
4394         kfree(obj->driver_private);
4395 }
4396
4397 /** Unbinds all inactive objects. */
4398 static int
4399 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4400 {
4401         drm_i915_private_t *dev_priv = dev->dev_private;
4402
4403         while (!list_empty(&dev_priv->mm.inactive_list)) {
4404                 struct drm_gem_object *obj;
4405                 int ret;
4406
4407                 obj = list_first_entry(&dev_priv->mm.inactive_list,
4408                                        struct drm_i915_gem_object,
4409                                        list)->obj;
4410
4411                 ret = i915_gem_object_unbind(obj);
4412                 if (ret != 0) {
4413                         DRM_ERROR("Error unbinding object: %d\n", ret);
4414                         return ret;
4415                 }
4416         }
4417
4418         return 0;
4419 }
4420
4421 int
4422 i915_gem_idle(struct drm_device *dev)
4423 {
4424         drm_i915_private_t *dev_priv = dev->dev_private;
4425         uint32_t seqno, cur_seqno, last_seqno;
4426         int stuck, ret;
4427
4428         mutex_lock(&dev->struct_mutex);
4429
4430         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4431                 mutex_unlock(&dev->struct_mutex);
4432                 return 0;
4433         }
4434
4435         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4436          * We need to replace this with a semaphore, or something.
4437          */
4438         dev_priv->mm.suspended = 1;
4439         del_timer(&dev_priv->hangcheck_timer);
4440
4441         /* Cancel the retire work handler, wait for it to finish if running
4442          */
4443         mutex_unlock(&dev->struct_mutex);
4444         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4445         mutex_lock(&dev->struct_mutex);
4446
4447         i915_kernel_lost_context(dev);
4448
4449         /* Flush the GPU along with all non-CPU write domains
4450          */
4451         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4452         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4453
4454         if (seqno == 0) {
4455                 mutex_unlock(&dev->struct_mutex);
4456                 return -ENOMEM;
4457         }
4458
4459         dev_priv->mm.waiting_gem_seqno = seqno;
4460         last_seqno = 0;
4461         stuck = 0;
4462         for (;;) {
4463                 cur_seqno = i915_get_gem_seqno(dev);
4464                 if (i915_seqno_passed(cur_seqno, seqno))
4465                         break;
4466                 if (last_seqno == cur_seqno) {
4467                         if (stuck++ > 100) {
4468                                 DRM_ERROR("hardware wedged\n");
4469                                 atomic_set(&dev_priv->mm.wedged, 1);
4470                                 DRM_WAKEUP(&dev_priv->irq_queue);
4471                                 break;
4472                         }
4473                 }
4474                 msleep(10);
4475                 last_seqno = cur_seqno;
4476         }
4477         dev_priv->mm.waiting_gem_seqno = 0;
4478
4479         i915_gem_retire_requests(dev);
4480
4481         spin_lock(&dev_priv->mm.active_list_lock);
4482         if (!atomic_read(&dev_priv->mm.wedged)) {
4483                 /* Active and flushing should now be empty as we've
4484                  * waited for a sequence higher than any pending execbuffer
4485                  */
4486                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4487                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4488                 /* Request should now be empty as we've also waited
4489                  * for the last request in the list
4490                  */
4491                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4492         }
4493
4494         /* Empty the active and flushing lists to inactive.  If there's
4495          * anything left at this point, it means that we're wedged and
4496          * nothing good's going to happen by leaving them there.  So strip
4497          * the GPU domains and just stuff them onto inactive.
4498          */
4499         while (!list_empty(&dev_priv->mm.active_list)) {
4500                 struct drm_gem_object *obj;
4501                 uint32_t old_write_domain;
4502
4503                 obj = list_first_entry(&dev_priv->mm.active_list,
4504                                        struct drm_i915_gem_object,
4505                                        list)->obj;
4506                 old_write_domain = obj->write_domain;
4507                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4508                 i915_gem_object_move_to_inactive(obj);
4509
4510                 trace_i915_gem_object_change_domain(obj,
4511                                                     obj->read_domains,
4512                                                     old_write_domain);
4513         }
4514         spin_unlock(&dev_priv->mm.active_list_lock);
4515
4516         while (!list_empty(&dev_priv->mm.flushing_list)) {
4517                 struct drm_gem_object *obj;
4518                 uint32_t old_write_domain;
4519
4520                 obj = list_first_entry(&dev_priv->mm.flushing_list,
4521                                        struct drm_i915_gem_object,
4522                                        list)->obj;
4523                 old_write_domain = obj->write_domain;
4524                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4525                 i915_gem_object_move_to_inactive(obj);
4526
4527                 trace_i915_gem_object_change_domain(obj,
4528                                                     obj->read_domains,
4529                                                     old_write_domain);
4530         }
4531
4532
4533         /* Move all inactive buffers out of the GTT. */
4534         ret = i915_gem_evict_from_inactive_list(dev);
4535         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4536         if (ret) {
4537                 mutex_unlock(&dev->struct_mutex);
4538                 return ret;
4539         }
4540
4541         i915_gem_cleanup_ringbuffer(dev);
4542         mutex_unlock(&dev->struct_mutex);
4543
4544         return 0;
4545 }
4546
4547 static int
4548 i915_gem_init_hws(struct drm_device *dev)
4549 {
4550         drm_i915_private_t *dev_priv = dev->dev_private;
4551         struct drm_gem_object *obj;
4552         struct drm_i915_gem_object *obj_priv;
4553         int ret;
4554
4555         /* If we need a physical address for the status page, it's already
4556          * initialized at driver load time.
4557          */
4558         if (!I915_NEED_GFX_HWS(dev))
4559                 return 0;
4560
4561         obj = drm_gem_object_alloc(dev, 4096);
4562         if (obj == NULL) {
4563                 DRM_ERROR("Failed to allocate status page\n");
4564                 return -ENOMEM;
4565         }
4566         obj_priv = obj->driver_private;
4567         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4568
4569         ret = i915_gem_object_pin(obj, 4096);
4570         if (ret != 0) {
4571                 drm_gem_object_unreference(obj);
4572                 return ret;
4573         }
4574
4575         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4576
4577         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4578         if (dev_priv->hw_status_page == NULL) {
4579                 DRM_ERROR("Failed to map status page.\n");
4580                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4581                 i915_gem_object_unpin(obj);
4582                 drm_gem_object_unreference(obj);
4583                 return -EINVAL;
4584         }
4585         dev_priv->hws_obj = obj;
4586         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4587         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4588         I915_READ(HWS_PGA); /* posting read */
4589         DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4590
4591         return 0;
4592 }
4593
4594 static void
4595 i915_gem_cleanup_hws(struct drm_device *dev)
4596 {
4597         drm_i915_private_t *dev_priv = dev->dev_private;
4598         struct drm_gem_object *obj;
4599         struct drm_i915_gem_object *obj_priv;
4600
4601         if (dev_priv->hws_obj == NULL)
4602                 return;
4603
4604         obj = dev_priv->hws_obj;
4605         obj_priv = obj->driver_private;
4606
4607         kunmap(obj_priv->pages[0]);
4608         i915_gem_object_unpin(obj);
4609         drm_gem_object_unreference(obj);
4610         dev_priv->hws_obj = NULL;
4611
4612         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4613         dev_priv->hw_status_page = NULL;
4614
4615         /* Write high address into HWS_PGA when disabling. */
4616         I915_WRITE(HWS_PGA, 0x1ffff000);
4617 }
4618
4619 int
4620 i915_gem_init_ringbuffer(struct drm_device *dev)
4621 {
4622         drm_i915_private_t *dev_priv = dev->dev_private;
4623         struct drm_gem_object *obj;
4624         struct drm_i915_gem_object *obj_priv;
4625         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4626         int ret;
4627         u32 head;
4628
4629         ret = i915_gem_init_hws(dev);
4630         if (ret != 0)
4631                 return ret;
4632
4633         obj = drm_gem_object_alloc(dev, 128 * 1024);
4634         if (obj == NULL) {
4635                 DRM_ERROR("Failed to allocate ringbuffer\n");
4636                 i915_gem_cleanup_hws(dev);
4637                 return -ENOMEM;
4638         }
4639         obj_priv = obj->driver_private;
4640
4641         ret = i915_gem_object_pin(obj, 4096);
4642         if (ret != 0) {
4643                 drm_gem_object_unreference(obj);
4644                 i915_gem_cleanup_hws(dev);
4645                 return ret;
4646         }
4647
4648         /* Set up the kernel mapping for the ring. */
4649         ring->Size = obj->size;
4650
4651         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4652         ring->map.size = obj->size;
4653         ring->map.type = 0;
4654         ring->map.flags = 0;
4655         ring->map.mtrr = 0;
4656
4657         drm_core_ioremap_wc(&ring->map, dev);
4658         if (ring->map.handle == NULL) {
4659                 DRM_ERROR("Failed to map ringbuffer.\n");
4660                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4661                 i915_gem_object_unpin(obj);
4662                 drm_gem_object_unreference(obj);
4663                 i915_gem_cleanup_hws(dev);
4664                 return -EINVAL;
4665         }
4666         ring->ring_obj = obj;
4667         ring->virtual_start = ring->map.handle;
4668
4669         /* Stop the ring if it's running. */
4670         I915_WRITE(PRB0_CTL, 0);
4671         I915_WRITE(PRB0_TAIL, 0);
4672         I915_WRITE(PRB0_HEAD, 0);
4673
4674         /* Initialize the ring. */
4675         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4676         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4677
4678         /* G45 ring initialization fails to reset head to zero */
4679         if (head != 0) {
4680                 DRM_ERROR("Ring head not reset to zero "
4681                           "ctl %08x head %08x tail %08x start %08x\n",
4682                           I915_READ(PRB0_CTL),
4683                           I915_READ(PRB0_HEAD),
4684                           I915_READ(PRB0_TAIL),
4685                           I915_READ(PRB0_START));
4686                 I915_WRITE(PRB0_HEAD, 0);
4687
4688                 DRM_ERROR("Ring head forced to zero "
4689                           "ctl %08x head %08x tail %08x start %08x\n",
4690                           I915_READ(PRB0_CTL),
4691                           I915_READ(PRB0_HEAD),
4692                           I915_READ(PRB0_TAIL),
4693                           I915_READ(PRB0_START));
4694         }
4695
4696         I915_WRITE(PRB0_CTL,
4697                    ((obj->size - 4096) & RING_NR_PAGES) |
4698                    RING_NO_REPORT |
4699                    RING_VALID);
4700
4701         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4702
4703         /* If the head is still not zero, the ring is dead */
4704         if (head != 0) {
4705                 DRM_ERROR("Ring initialization failed "
4706                           "ctl %08x head %08x tail %08x start %08x\n",
4707                           I915_READ(PRB0_CTL),
4708                           I915_READ(PRB0_HEAD),
4709                           I915_READ(PRB0_TAIL),
4710                           I915_READ(PRB0_START));
4711                 return -EIO;
4712         }
4713
4714         /* Update our cache of the ring state */
4715         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4716                 i915_kernel_lost_context(dev);
4717         else {
4718                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4719                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4720                 ring->space = ring->head - (ring->tail + 8);
4721                 if (ring->space < 0)
4722                         ring->space += ring->Size;
4723         }
4724
4725         return 0;
4726 }
4727
4728 void
4729 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4730 {
4731         drm_i915_private_t *dev_priv = dev->dev_private;
4732
4733         if (dev_priv->ring.ring_obj == NULL)
4734                 return;
4735
4736         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4737
4738         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4739         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4740         dev_priv->ring.ring_obj = NULL;
4741         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4742
4743         i915_gem_cleanup_hws(dev);
4744 }
4745
4746 int
4747 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4748                        struct drm_file *file_priv)
4749 {
4750         drm_i915_private_t *dev_priv = dev->dev_private;
4751         int ret;
4752
4753         if (drm_core_check_feature(dev, DRIVER_MODESET))
4754                 return 0;
4755
4756         if (atomic_read(&dev_priv->mm.wedged)) {
4757                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4758                 atomic_set(&dev_priv->mm.wedged, 0);
4759         }
4760
4761         mutex_lock(&dev->struct_mutex);
4762         dev_priv->mm.suspended = 0;
4763
4764         ret = i915_gem_init_ringbuffer(dev);
4765         if (ret != 0) {
4766                 mutex_unlock(&dev->struct_mutex);
4767                 return ret;
4768         }
4769
4770         spin_lock(&dev_priv->mm.active_list_lock);
4771         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4772         spin_unlock(&dev_priv->mm.active_list_lock);
4773
4774         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4775         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4776         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4777         mutex_unlock(&dev->struct_mutex);
4778
4779         drm_irq_install(dev);
4780
4781         return 0;
4782 }
4783
4784 int
4785 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4786                        struct drm_file *file_priv)
4787 {
4788         if (drm_core_check_feature(dev, DRIVER_MODESET))
4789                 return 0;
4790
4791         drm_irq_uninstall(dev);
4792         return i915_gem_idle(dev);
4793 }
4794
4795 void
4796 i915_gem_lastclose(struct drm_device *dev)
4797 {
4798         int ret;
4799
4800         if (drm_core_check_feature(dev, DRIVER_MODESET))
4801                 return;
4802
4803         ret = i915_gem_idle(dev);
4804         if (ret)
4805                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4806 }
4807
4808 void
4809 i915_gem_load(struct drm_device *dev)
4810 {
4811         int i;
4812         drm_i915_private_t *dev_priv = dev->dev_private;
4813
4814         spin_lock_init(&dev_priv->mm.active_list_lock);
4815         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4816         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4817         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4818         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4819         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4820         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4821                           i915_gem_retire_work_handler);
4822         dev_priv->mm.next_gem_seqno = 1;
4823
4824         spin_lock(&shrink_list_lock);
4825         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4826         spin_unlock(&shrink_list_lock);
4827
4828         /* Old X drivers will take 0-2 for front, back, depth buffers */
4829         dev_priv->fence_reg_start = 3;
4830
4831         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4832                 dev_priv->num_fence_regs = 16;
4833         else
4834                 dev_priv->num_fence_regs = 8;
4835
4836         /* Initialize fence registers to zero */
4837         if (IS_I965G(dev)) {
4838                 for (i = 0; i < 16; i++)
4839                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4840         } else {
4841                 for (i = 0; i < 8; i++)
4842                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4843                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4844                         for (i = 0; i < 8; i++)
4845                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4846         }
4847         i915_gem_detect_bit_6_swizzle(dev);
4848         init_waitqueue_head(&dev_priv->pending_flip_queue);
4849 }
4850
4851 /*
4852  * Create a physically contiguous memory object for this object
4853  * e.g. for cursor + overlay regs
4854  */
4855 int i915_gem_init_phys_object(struct drm_device *dev,
4856                               int id, int size)
4857 {
4858         drm_i915_private_t *dev_priv = dev->dev_private;
4859         struct drm_i915_gem_phys_object *phys_obj;
4860         int ret;
4861
4862         if (dev_priv->mm.phys_objs[id - 1] || !size)
4863                 return 0;
4864
4865         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4866         if (!phys_obj)
4867                 return -ENOMEM;
4868
4869         phys_obj->id = id;
4870
4871         phys_obj->handle = drm_pci_alloc(dev, size, 0);
4872         if (!phys_obj->handle) {
4873                 ret = -ENOMEM;
4874                 goto kfree_obj;
4875         }
4876 #ifdef CONFIG_X86
4877         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4878 #endif
4879
4880         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4881
4882         return 0;
4883 kfree_obj:
4884         kfree(phys_obj);
4885         return ret;
4886 }
4887
4888 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4889 {
4890         drm_i915_private_t *dev_priv = dev->dev_private;
4891         struct drm_i915_gem_phys_object *phys_obj;
4892
4893         if (!dev_priv->mm.phys_objs[id - 1])
4894                 return;
4895
4896         phys_obj = dev_priv->mm.phys_objs[id - 1];
4897         if (phys_obj->cur_obj) {
4898                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4899         }
4900
4901 #ifdef CONFIG_X86
4902         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4903 #endif
4904         drm_pci_free(dev, phys_obj->handle);
4905         kfree(phys_obj);
4906         dev_priv->mm.phys_objs[id - 1] = NULL;
4907 }
4908
4909 void i915_gem_free_all_phys_object(struct drm_device *dev)
4910 {
4911         int i;
4912
4913         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4914                 i915_gem_free_phys_object(dev, i);
4915 }
4916
4917 void i915_gem_detach_phys_object(struct drm_device *dev,
4918                                  struct drm_gem_object *obj)
4919 {
4920         struct drm_i915_gem_object *obj_priv;
4921         int i;
4922         int ret;
4923         int page_count;
4924
4925         obj_priv = obj->driver_private;
4926         if (!obj_priv->phys_obj)
4927                 return;
4928
4929         ret = i915_gem_object_get_pages(obj, 0);
4930         if (ret)
4931                 goto out;
4932
4933         page_count = obj->size / PAGE_SIZE;
4934
4935         for (i = 0; i < page_count; i++) {
4936                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4937                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4938
4939                 memcpy(dst, src, PAGE_SIZE);
4940                 kunmap_atomic(dst, KM_USER0);
4941         }
4942         drm_clflush_pages(obj_priv->pages, page_count);
4943         drm_agp_chipset_flush(dev);
4944
4945         i915_gem_object_put_pages(obj);
4946 out:
4947         obj_priv->phys_obj->cur_obj = NULL;
4948         obj_priv->phys_obj = NULL;
4949 }
4950
4951 int
4952 i915_gem_attach_phys_object(struct drm_device *dev,
4953                             struct drm_gem_object *obj, int id)
4954 {
4955         drm_i915_private_t *dev_priv = dev->dev_private;
4956         struct drm_i915_gem_object *obj_priv;
4957         int ret = 0;
4958         int page_count;
4959         int i;
4960
4961         if (id > I915_MAX_PHYS_OBJECT)
4962                 return -EINVAL;
4963
4964         obj_priv = obj->driver_private;
4965
4966         if (obj_priv->phys_obj) {
4967                 if (obj_priv->phys_obj->id == id)
4968                         return 0;
4969                 i915_gem_detach_phys_object(dev, obj);
4970         }
4971
4972
4973         /* create a new object */
4974         if (!dev_priv->mm.phys_objs[id - 1]) {
4975                 ret = i915_gem_init_phys_object(dev, id,
4976                                                 obj->size);
4977                 if (ret) {
4978                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4979                         goto out;
4980                 }
4981         }
4982
4983         /* bind to the object */
4984         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4985         obj_priv->phys_obj->cur_obj = obj;
4986
4987         ret = i915_gem_object_get_pages(obj, 0);
4988         if (ret) {
4989                 DRM_ERROR("failed to get page list\n");
4990                 goto out;
4991         }
4992
4993         page_count = obj->size / PAGE_SIZE;
4994
4995         for (i = 0; i < page_count; i++) {
4996                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4997                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4998
4999                 memcpy(dst, src, PAGE_SIZE);
5000                 kunmap_atomic(src, KM_USER0);
5001         }
5002
5003         i915_gem_object_put_pages(obj);
5004
5005         return 0;
5006 out:
5007         return ret;
5008 }
5009
5010 static int
5011 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
5012                      struct drm_i915_gem_pwrite *args,
5013                      struct drm_file *file_priv)
5014 {
5015         struct drm_i915_gem_object *obj_priv = obj->driver_private;
5016         void *obj_addr;
5017         int ret;
5018         char __user *user_data;
5019
5020         user_data = (char __user *) (uintptr_t) args->data_ptr;
5021         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5022
5023         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5024         ret = copy_from_user(obj_addr, user_data, args->size);
5025         if (ret)
5026                 return -EFAULT;
5027
5028         drm_agp_chipset_flush(dev);
5029         return 0;
5030 }
5031
5032 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5033 {
5034         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5035
5036         /* Clean up our request list when the client is going away, so that
5037          * later retire_requests won't dereference our soon-to-be-gone
5038          * file_priv.
5039          */
5040         mutex_lock(&dev->struct_mutex);
5041         while (!list_empty(&i915_file_priv->mm.request_list))
5042                 list_del_init(i915_file_priv->mm.request_list.next);
5043         mutex_unlock(&dev->struct_mutex);
5044 }
5045
5046 static int
5047 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5048 {
5049         drm_i915_private_t *dev_priv, *next_dev;
5050         struct drm_i915_gem_object *obj_priv, *next_obj;
5051         int cnt = 0;
5052         int would_deadlock = 1;
5053
5054         /* "fast-path" to count number of available objects */
5055         if (nr_to_scan == 0) {
5056                 spin_lock(&shrink_list_lock);
5057                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5058                         struct drm_device *dev = dev_priv->dev;
5059
5060                         if (mutex_trylock(&dev->struct_mutex)) {
5061                                 list_for_each_entry(obj_priv,
5062                                                     &dev_priv->mm.inactive_list,
5063                                                     list)
5064                                         cnt++;
5065                                 mutex_unlock(&dev->struct_mutex);
5066                         }
5067                 }
5068                 spin_unlock(&shrink_list_lock);
5069
5070                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5071         }
5072
5073         spin_lock(&shrink_list_lock);
5074
5075         /* first scan for clean buffers */
5076         list_for_each_entry_safe(dev_priv, next_dev,
5077                                  &shrink_list, mm.shrink_list) {
5078                 struct drm_device *dev = dev_priv->dev;
5079
5080                 if (! mutex_trylock(&dev->struct_mutex))
5081                         continue;
5082
5083                 spin_unlock(&shrink_list_lock);
5084
5085                 i915_gem_retire_requests(dev);
5086
5087                 list_for_each_entry_safe(obj_priv, next_obj,
5088                                          &dev_priv->mm.inactive_list,
5089                                          list) {
5090                         if (i915_gem_object_is_purgeable(obj_priv)) {
5091                                 i915_gem_object_unbind(obj_priv->obj);
5092                                 if (--nr_to_scan <= 0)
5093                                         break;
5094                         }
5095                 }
5096
5097                 spin_lock(&shrink_list_lock);
5098                 mutex_unlock(&dev->struct_mutex);
5099
5100                 would_deadlock = 0;
5101
5102                 if (nr_to_scan <= 0)
5103                         break;
5104         }
5105
5106         /* second pass, evict/count anything still on the inactive list */
5107         list_for_each_entry_safe(dev_priv, next_dev,
5108                                  &shrink_list, mm.shrink_list) {
5109                 struct drm_device *dev = dev_priv->dev;
5110
5111                 if (! mutex_trylock(&dev->struct_mutex))
5112                         continue;
5113
5114                 spin_unlock(&shrink_list_lock);
5115
5116                 list_for_each_entry_safe(obj_priv, next_obj,
5117                                          &dev_priv->mm.inactive_list,
5118                                          list) {
5119                         if (nr_to_scan > 0) {
5120                                 i915_gem_object_unbind(obj_priv->obj);
5121                                 nr_to_scan--;
5122                         } else
5123                                 cnt++;
5124                 }
5125
5126                 spin_lock(&shrink_list_lock);
5127                 mutex_unlock(&dev->struct_mutex);
5128
5129                 would_deadlock = 0;
5130         }
5131
5132         spin_unlock(&shrink_list_lock);
5133
5134         if (would_deadlock)
5135                 return -1;
5136         else if (cnt > 0)
5137                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5138         else
5139                 return 0;
5140 }
5141
5142 static struct shrinker shrinker = {
5143         .shrink = i915_gem_shrink,
5144         .seeks = DEFAULT_SEEKS,
5145 };
5146
5147 __init void
5148 i915_gem_shrinker_init(void)
5149 {
5150     register_shrinker(&shrinker);
5151 }
5152
5153 __exit void
5154 i915_gem_shrinker_exit(void)
5155 {
5156     unregister_shrinker(&shrinker);
5157 }