]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/gpu/drm/i915/i915_gem.c
b4b25e17d4e9b40dacab1fbc880657d90241caca
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
39 static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43                                              int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45                                                      uint64_t offset,
46                                                      uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50                                            unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53                                 struct drm_i915_gem_pwrite *args,
54                                 struct drm_file *file_priv);
55 static void i915_gem_free_object_tail(struct drm_gem_object *obj);
56
57 static LIST_HEAD(shrink_list);
58 static DEFINE_SPINLOCK(shrink_list_lock);
59
60 static inline bool
61 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
62 {
63         return obj_priv->gtt_space &&
64                 !obj_priv->active &&
65                 obj_priv->pin_count == 0;
66 }
67
68 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
69                      unsigned long end)
70 {
71         drm_i915_private_t *dev_priv = dev->dev_private;
72
73         if (start >= end ||
74             (start & (PAGE_SIZE - 1)) != 0 ||
75             (end & (PAGE_SIZE - 1)) != 0) {
76                 return -EINVAL;
77         }
78
79         drm_mm_init(&dev_priv->mm.gtt_space, start,
80                     end - start);
81
82         dev->gtt_total = (uint32_t) (end - start);
83
84         return 0;
85 }
86
87 int
88 i915_gem_init_ioctl(struct drm_device *dev, void *data,
89                     struct drm_file *file_priv)
90 {
91         struct drm_i915_gem_init *args = data;
92         int ret;
93
94         mutex_lock(&dev->struct_mutex);
95         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
96         mutex_unlock(&dev->struct_mutex);
97
98         return ret;
99 }
100
101 int
102 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
103                             struct drm_file *file_priv)
104 {
105         struct drm_i915_gem_get_aperture *args = data;
106
107         if (!(dev->driver->driver_features & DRIVER_GEM))
108                 return -ENODEV;
109
110         args->aper_size = dev->gtt_total;
111         args->aper_available_size = (args->aper_size -
112                                      atomic_read(&dev->pin_memory));
113
114         return 0;
115 }
116
117
118 /**
119  * Creates a new mm object and returns a handle to it.
120  */
121 int
122 i915_gem_create_ioctl(struct drm_device *dev, void *data,
123                       struct drm_file *file_priv)
124 {
125         struct drm_i915_gem_create *args = data;
126         struct drm_gem_object *obj;
127         int ret;
128         u32 handle;
129
130         args->size = roundup(args->size, PAGE_SIZE);
131
132         /* Allocate the new object */
133         obj = i915_gem_alloc_object(dev, args->size);
134         if (obj == NULL)
135                 return -ENOMEM;
136
137         ret = drm_gem_handle_create(file_priv, obj, &handle);
138         drm_gem_object_unreference_unlocked(obj);
139         if (ret)
140                 return ret;
141
142         args->handle = handle;
143
144         return 0;
145 }
146
147 static inline int
148 fast_shmem_read(struct page **pages,
149                 loff_t page_base, int page_offset,
150                 char __user *data,
151                 int length)
152 {
153         char __iomem *vaddr;
154         int unwritten;
155
156         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
157         if (vaddr == NULL)
158                 return -ENOMEM;
159         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
160         kunmap_atomic(vaddr, KM_USER0);
161
162         if (unwritten)
163                 return -EFAULT;
164
165         return 0;
166 }
167
168 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
169 {
170         drm_i915_private_t *dev_priv = obj->dev->dev_private;
171         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
172
173         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
174                 obj_priv->tiling_mode != I915_TILING_NONE;
175 }
176
177 static inline void
178 slow_shmem_copy(struct page *dst_page,
179                 int dst_offset,
180                 struct page *src_page,
181                 int src_offset,
182                 int length)
183 {
184         char *dst_vaddr, *src_vaddr;
185
186         dst_vaddr = kmap(dst_page);
187         src_vaddr = kmap(src_page);
188
189         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
190
191         kunmap(src_page);
192         kunmap(dst_page);
193 }
194
195 static inline void
196 slow_shmem_bit17_copy(struct page *gpu_page,
197                       int gpu_offset,
198                       struct page *cpu_page,
199                       int cpu_offset,
200                       int length,
201                       int is_read)
202 {
203         char *gpu_vaddr, *cpu_vaddr;
204
205         /* Use the unswizzled path if this page isn't affected. */
206         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
207                 if (is_read)
208                         return slow_shmem_copy(cpu_page, cpu_offset,
209                                                gpu_page, gpu_offset, length);
210                 else
211                         return slow_shmem_copy(gpu_page, gpu_offset,
212                                                cpu_page, cpu_offset, length);
213         }
214
215         gpu_vaddr = kmap(gpu_page);
216         cpu_vaddr = kmap(cpu_page);
217
218         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
219          * XORing with the other bits (A9 for Y, A9 and A10 for X)
220          */
221         while (length > 0) {
222                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
223                 int this_length = min(cacheline_end - gpu_offset, length);
224                 int swizzled_gpu_offset = gpu_offset ^ 64;
225
226                 if (is_read) {
227                         memcpy(cpu_vaddr + cpu_offset,
228                                gpu_vaddr + swizzled_gpu_offset,
229                                this_length);
230                 } else {
231                         memcpy(gpu_vaddr + swizzled_gpu_offset,
232                                cpu_vaddr + cpu_offset,
233                                this_length);
234                 }
235                 cpu_offset += this_length;
236                 gpu_offset += this_length;
237                 length -= this_length;
238         }
239
240         kunmap(cpu_page);
241         kunmap(gpu_page);
242 }
243
244 /**
245  * This is the fast shmem pread path, which attempts to copy_from_user directly
246  * from the backing pages of the object to the user's address space.  On a
247  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
248  */
249 static int
250 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
251                           struct drm_i915_gem_pread *args,
252                           struct drm_file *file_priv)
253 {
254         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
255         ssize_t remain;
256         loff_t offset, page_base;
257         char __user *user_data;
258         int page_offset, page_length;
259         int ret;
260
261         user_data = (char __user *) (uintptr_t) args->data_ptr;
262         remain = args->size;
263
264         mutex_lock(&dev->struct_mutex);
265
266         ret = i915_gem_object_get_pages(obj, 0);
267         if (ret != 0)
268                 goto fail_unlock;
269
270         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
271                                                         args->size);
272         if (ret != 0)
273                 goto fail_put_pages;
274
275         obj_priv = to_intel_bo(obj);
276         offset = args->offset;
277
278         while (remain > 0) {
279                 /* Operation in this page
280                  *
281                  * page_base = page offset within aperture
282                  * page_offset = offset within page
283                  * page_length = bytes to copy for this page
284                  */
285                 page_base = (offset & ~(PAGE_SIZE-1));
286                 page_offset = offset & (PAGE_SIZE-1);
287                 page_length = remain;
288                 if ((page_offset + remain) > PAGE_SIZE)
289                         page_length = PAGE_SIZE - page_offset;
290
291                 ret = fast_shmem_read(obj_priv->pages,
292                                       page_base, page_offset,
293                                       user_data, page_length);
294                 if (ret)
295                         goto fail_put_pages;
296
297                 remain -= page_length;
298                 user_data += page_length;
299                 offset += page_length;
300         }
301
302 fail_put_pages:
303         i915_gem_object_put_pages(obj);
304 fail_unlock:
305         mutex_unlock(&dev->struct_mutex);
306
307         return ret;
308 }
309
310 static int
311 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
312 {
313         int ret;
314
315         ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
316
317         /* If we've insufficient memory to map in the pages, attempt
318          * to make some space by throwing out some old buffers.
319          */
320         if (ret == -ENOMEM) {
321                 struct drm_device *dev = obj->dev;
322
323                 ret = i915_gem_evict_something(dev, obj->size,
324                                                i915_gem_get_gtt_alignment(obj));
325                 if (ret)
326                         return ret;
327
328                 ret = i915_gem_object_get_pages(obj, 0);
329         }
330
331         return ret;
332 }
333
334 /**
335  * This is the fallback shmem pread path, which allocates temporary storage
336  * in kernel space to copy_to_user into outside of the struct_mutex, so we
337  * can copy out of the object's backing pages while holding the struct mutex
338  * and not take page faults.
339  */
340 static int
341 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
342                           struct drm_i915_gem_pread *args,
343                           struct drm_file *file_priv)
344 {
345         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
346         struct mm_struct *mm = current->mm;
347         struct page **user_pages;
348         ssize_t remain;
349         loff_t offset, pinned_pages, i;
350         loff_t first_data_page, last_data_page, num_pages;
351         int shmem_page_index, shmem_page_offset;
352         int data_page_index,  data_page_offset;
353         int page_length;
354         int ret;
355         uint64_t data_ptr = args->data_ptr;
356         int do_bit17_swizzling;
357
358         remain = args->size;
359
360         /* Pin the user pages containing the data.  We can't fault while
361          * holding the struct mutex, yet we want to hold it while
362          * dereferencing the user data.
363          */
364         first_data_page = data_ptr / PAGE_SIZE;
365         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
366         num_pages = last_data_page - first_data_page + 1;
367
368         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
369         if (user_pages == NULL)
370                 return -ENOMEM;
371
372         down_read(&mm->mmap_sem);
373         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
374                                       num_pages, 1, 0, user_pages, NULL);
375         up_read(&mm->mmap_sem);
376         if (pinned_pages < num_pages) {
377                 ret = -EFAULT;
378                 goto fail_put_user_pages;
379         }
380
381         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
382
383         mutex_lock(&dev->struct_mutex);
384
385         ret = i915_gem_object_get_pages_or_evict(obj);
386         if (ret)
387                 goto fail_unlock;
388
389         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
390                                                         args->size);
391         if (ret != 0)
392                 goto fail_put_pages;
393
394         obj_priv = to_intel_bo(obj);
395         offset = args->offset;
396
397         while (remain > 0) {
398                 /* Operation in this page
399                  *
400                  * shmem_page_index = page number within shmem file
401                  * shmem_page_offset = offset within page in shmem file
402                  * data_page_index = page number in get_user_pages return
403                  * data_page_offset = offset with data_page_index page.
404                  * page_length = bytes to copy for this page
405                  */
406                 shmem_page_index = offset / PAGE_SIZE;
407                 shmem_page_offset = offset & ~PAGE_MASK;
408                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
409                 data_page_offset = data_ptr & ~PAGE_MASK;
410
411                 page_length = remain;
412                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
413                         page_length = PAGE_SIZE - shmem_page_offset;
414                 if ((data_page_offset + page_length) > PAGE_SIZE)
415                         page_length = PAGE_SIZE - data_page_offset;
416
417                 if (do_bit17_swizzling) {
418                         slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
419                                               shmem_page_offset,
420                                               user_pages[data_page_index],
421                                               data_page_offset,
422                                               page_length,
423                                               1);
424                 } else {
425                         slow_shmem_copy(user_pages[data_page_index],
426                                         data_page_offset,
427                                         obj_priv->pages[shmem_page_index],
428                                         shmem_page_offset,
429                                         page_length);
430                 }
431
432                 remain -= page_length;
433                 data_ptr += page_length;
434                 offset += page_length;
435         }
436
437 fail_put_pages:
438         i915_gem_object_put_pages(obj);
439 fail_unlock:
440         mutex_unlock(&dev->struct_mutex);
441 fail_put_user_pages:
442         for (i = 0; i < pinned_pages; i++) {
443                 SetPageDirty(user_pages[i]);
444                 page_cache_release(user_pages[i]);
445         }
446         drm_free_large(user_pages);
447
448         return ret;
449 }
450
451 /**
452  * Reads data from the object referenced by handle.
453  *
454  * On error, the contents of *data are undefined.
455  */
456 int
457 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
458                      struct drm_file *file_priv)
459 {
460         struct drm_i915_gem_pread *args = data;
461         struct drm_gem_object *obj;
462         struct drm_i915_gem_object *obj_priv;
463         int ret;
464
465         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
466         if (obj == NULL)
467                 return -EBADF;
468         obj_priv = to_intel_bo(obj);
469
470         /* Bounds check source.
471          *
472          * XXX: This could use review for overflow issues...
473          */
474         if (args->offset > obj->size || args->size > obj->size ||
475             args->offset + args->size > obj->size) {
476                 drm_gem_object_unreference_unlocked(obj);
477                 return -EINVAL;
478         }
479
480         if (i915_gem_object_needs_bit17_swizzle(obj)) {
481                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
482         } else {
483                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
484                 if (ret != 0)
485                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
486                                                         file_priv);
487         }
488
489         drm_gem_object_unreference_unlocked(obj);
490
491         return ret;
492 }
493
494 /* This is the fast write path which cannot handle
495  * page faults in the source data
496  */
497
498 static inline int
499 fast_user_write(struct io_mapping *mapping,
500                 loff_t page_base, int page_offset,
501                 char __user *user_data,
502                 int length)
503 {
504         char *vaddr_atomic;
505         unsigned long unwritten;
506
507         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
508         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
509                                                       user_data, length);
510         io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
511         if (unwritten)
512                 return -EFAULT;
513         return 0;
514 }
515
516 /* Here's the write path which can sleep for
517  * page faults
518  */
519
520 static inline void
521 slow_kernel_write(struct io_mapping *mapping,
522                   loff_t gtt_base, int gtt_offset,
523                   struct page *user_page, int user_offset,
524                   int length)
525 {
526         char __iomem *dst_vaddr;
527         char *src_vaddr;
528
529         dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
530         src_vaddr = kmap(user_page);
531
532         memcpy_toio(dst_vaddr + gtt_offset,
533                     src_vaddr + user_offset,
534                     length);
535
536         kunmap(user_page);
537         io_mapping_unmap(dst_vaddr);
538 }
539
540 static inline int
541 fast_shmem_write(struct page **pages,
542                  loff_t page_base, int page_offset,
543                  char __user *data,
544                  int length)
545 {
546         char __iomem *vaddr;
547         unsigned long unwritten;
548
549         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
550         if (vaddr == NULL)
551                 return -ENOMEM;
552         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
553         kunmap_atomic(vaddr, KM_USER0);
554
555         if (unwritten)
556                 return -EFAULT;
557         return 0;
558 }
559
560 /**
561  * This is the fast pwrite path, where we copy the data directly from the
562  * user into the GTT, uncached.
563  */
564 static int
565 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
566                          struct drm_i915_gem_pwrite *args,
567                          struct drm_file *file_priv)
568 {
569         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
570         drm_i915_private_t *dev_priv = dev->dev_private;
571         ssize_t remain;
572         loff_t offset, page_base;
573         char __user *user_data;
574         int page_offset, page_length;
575         int ret;
576
577         user_data = (char __user *) (uintptr_t) args->data_ptr;
578         remain = args->size;
579         if (!access_ok(VERIFY_READ, user_data, remain))
580                 return -EFAULT;
581
582
583         mutex_lock(&dev->struct_mutex);
584         ret = i915_gem_object_pin(obj, 0);
585         if (ret) {
586                 mutex_unlock(&dev->struct_mutex);
587                 return ret;
588         }
589         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
590         if (ret)
591                 goto fail;
592
593         obj_priv = to_intel_bo(obj);
594         offset = obj_priv->gtt_offset + args->offset;
595
596         while (remain > 0) {
597                 /* Operation in this page
598                  *
599                  * page_base = page offset within aperture
600                  * page_offset = offset within page
601                  * page_length = bytes to copy for this page
602                  */
603                 page_base = (offset & ~(PAGE_SIZE-1));
604                 page_offset = offset & (PAGE_SIZE-1);
605                 page_length = remain;
606                 if ((page_offset + remain) > PAGE_SIZE)
607                         page_length = PAGE_SIZE - page_offset;
608
609                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
610                                        page_offset, user_data, page_length);
611
612                 /* If we get a fault while copying data, then (presumably) our
613                  * source page isn't available.  Return the error and we'll
614                  * retry in the slow path.
615                  */
616                 if (ret)
617                         goto fail;
618
619                 remain -= page_length;
620                 user_data += page_length;
621                 offset += page_length;
622         }
623
624 fail:
625         i915_gem_object_unpin(obj);
626         mutex_unlock(&dev->struct_mutex);
627
628         return ret;
629 }
630
631 /**
632  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
633  * the memory and maps it using kmap_atomic for copying.
634  *
635  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
636  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
637  */
638 static int
639 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
640                          struct drm_i915_gem_pwrite *args,
641                          struct drm_file *file_priv)
642 {
643         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
644         drm_i915_private_t *dev_priv = dev->dev_private;
645         ssize_t remain;
646         loff_t gtt_page_base, offset;
647         loff_t first_data_page, last_data_page, num_pages;
648         loff_t pinned_pages, i;
649         struct page **user_pages;
650         struct mm_struct *mm = current->mm;
651         int gtt_page_offset, data_page_offset, data_page_index, page_length;
652         int ret;
653         uint64_t data_ptr = args->data_ptr;
654
655         remain = args->size;
656
657         /* Pin the user pages containing the data.  We can't fault while
658          * holding the struct mutex, and all of the pwrite implementations
659          * want to hold it while dereferencing the user data.
660          */
661         first_data_page = data_ptr / PAGE_SIZE;
662         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
663         num_pages = last_data_page - first_data_page + 1;
664
665         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
666         if (user_pages == NULL)
667                 return -ENOMEM;
668
669         down_read(&mm->mmap_sem);
670         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
671                                       num_pages, 0, 0, user_pages, NULL);
672         up_read(&mm->mmap_sem);
673         if (pinned_pages < num_pages) {
674                 ret = -EFAULT;
675                 goto out_unpin_pages;
676         }
677
678         mutex_lock(&dev->struct_mutex);
679         ret = i915_gem_object_pin(obj, 0);
680         if (ret)
681                 goto out_unlock;
682
683         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
684         if (ret)
685                 goto out_unpin_object;
686
687         obj_priv = to_intel_bo(obj);
688         offset = obj_priv->gtt_offset + args->offset;
689
690         while (remain > 0) {
691                 /* Operation in this page
692                  *
693                  * gtt_page_base = page offset within aperture
694                  * gtt_page_offset = offset within page in aperture
695                  * data_page_index = page number in get_user_pages return
696                  * data_page_offset = offset with data_page_index page.
697                  * page_length = bytes to copy for this page
698                  */
699                 gtt_page_base = offset & PAGE_MASK;
700                 gtt_page_offset = offset & ~PAGE_MASK;
701                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
702                 data_page_offset = data_ptr & ~PAGE_MASK;
703
704                 page_length = remain;
705                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
706                         page_length = PAGE_SIZE - gtt_page_offset;
707                 if ((data_page_offset + page_length) > PAGE_SIZE)
708                         page_length = PAGE_SIZE - data_page_offset;
709
710                 slow_kernel_write(dev_priv->mm.gtt_mapping,
711                                   gtt_page_base, gtt_page_offset,
712                                   user_pages[data_page_index],
713                                   data_page_offset,
714                                   page_length);
715
716                 remain -= page_length;
717                 offset += page_length;
718                 data_ptr += page_length;
719         }
720
721 out_unpin_object:
722         i915_gem_object_unpin(obj);
723 out_unlock:
724         mutex_unlock(&dev->struct_mutex);
725 out_unpin_pages:
726         for (i = 0; i < pinned_pages; i++)
727                 page_cache_release(user_pages[i]);
728         drm_free_large(user_pages);
729
730         return ret;
731 }
732
733 /**
734  * This is the fast shmem pwrite path, which attempts to directly
735  * copy_from_user into the kmapped pages backing the object.
736  */
737 static int
738 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
739                            struct drm_i915_gem_pwrite *args,
740                            struct drm_file *file_priv)
741 {
742         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
743         ssize_t remain;
744         loff_t offset, page_base;
745         char __user *user_data;
746         int page_offset, page_length;
747         int ret;
748
749         user_data = (char __user *) (uintptr_t) args->data_ptr;
750         remain = args->size;
751
752         mutex_lock(&dev->struct_mutex);
753
754         ret = i915_gem_object_get_pages(obj, 0);
755         if (ret != 0)
756                 goto fail_unlock;
757
758         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
759         if (ret != 0)
760                 goto fail_put_pages;
761
762         obj_priv = to_intel_bo(obj);
763         offset = args->offset;
764         obj_priv->dirty = 1;
765
766         while (remain > 0) {
767                 /* Operation in this page
768                  *
769                  * page_base = page offset within aperture
770                  * page_offset = offset within page
771                  * page_length = bytes to copy for this page
772                  */
773                 page_base = (offset & ~(PAGE_SIZE-1));
774                 page_offset = offset & (PAGE_SIZE-1);
775                 page_length = remain;
776                 if ((page_offset + remain) > PAGE_SIZE)
777                         page_length = PAGE_SIZE - page_offset;
778
779                 ret = fast_shmem_write(obj_priv->pages,
780                                        page_base, page_offset,
781                                        user_data, page_length);
782                 if (ret)
783                         goto fail_put_pages;
784
785                 remain -= page_length;
786                 user_data += page_length;
787                 offset += page_length;
788         }
789
790 fail_put_pages:
791         i915_gem_object_put_pages(obj);
792 fail_unlock:
793         mutex_unlock(&dev->struct_mutex);
794
795         return ret;
796 }
797
798 /**
799  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
800  * the memory and maps it using kmap_atomic for copying.
801  *
802  * This avoids taking mmap_sem for faulting on the user's address while the
803  * struct_mutex is held.
804  */
805 static int
806 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
807                            struct drm_i915_gem_pwrite *args,
808                            struct drm_file *file_priv)
809 {
810         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
811         struct mm_struct *mm = current->mm;
812         struct page **user_pages;
813         ssize_t remain;
814         loff_t offset, pinned_pages, i;
815         loff_t first_data_page, last_data_page, num_pages;
816         int shmem_page_index, shmem_page_offset;
817         int data_page_index,  data_page_offset;
818         int page_length;
819         int ret;
820         uint64_t data_ptr = args->data_ptr;
821         int do_bit17_swizzling;
822
823         remain = args->size;
824
825         /* Pin the user pages containing the data.  We can't fault while
826          * holding the struct mutex, and all of the pwrite implementations
827          * want to hold it while dereferencing the user data.
828          */
829         first_data_page = data_ptr / PAGE_SIZE;
830         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
831         num_pages = last_data_page - first_data_page + 1;
832
833         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
834         if (user_pages == NULL)
835                 return -ENOMEM;
836
837         down_read(&mm->mmap_sem);
838         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
839                                       num_pages, 0, 0, user_pages, NULL);
840         up_read(&mm->mmap_sem);
841         if (pinned_pages < num_pages) {
842                 ret = -EFAULT;
843                 goto fail_put_user_pages;
844         }
845
846         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
847
848         mutex_lock(&dev->struct_mutex);
849
850         ret = i915_gem_object_get_pages_or_evict(obj);
851         if (ret)
852                 goto fail_unlock;
853
854         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
855         if (ret != 0)
856                 goto fail_put_pages;
857
858         obj_priv = to_intel_bo(obj);
859         offset = args->offset;
860         obj_priv->dirty = 1;
861
862         while (remain > 0) {
863                 /* Operation in this page
864                  *
865                  * shmem_page_index = page number within shmem file
866                  * shmem_page_offset = offset within page in shmem file
867                  * data_page_index = page number in get_user_pages return
868                  * data_page_offset = offset with data_page_index page.
869                  * page_length = bytes to copy for this page
870                  */
871                 shmem_page_index = offset / PAGE_SIZE;
872                 shmem_page_offset = offset & ~PAGE_MASK;
873                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
874                 data_page_offset = data_ptr & ~PAGE_MASK;
875
876                 page_length = remain;
877                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
878                         page_length = PAGE_SIZE - shmem_page_offset;
879                 if ((data_page_offset + page_length) > PAGE_SIZE)
880                         page_length = PAGE_SIZE - data_page_offset;
881
882                 if (do_bit17_swizzling) {
883                         slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
884                                               shmem_page_offset,
885                                               user_pages[data_page_index],
886                                               data_page_offset,
887                                               page_length,
888                                               0);
889                 } else {
890                         slow_shmem_copy(obj_priv->pages[shmem_page_index],
891                                         shmem_page_offset,
892                                         user_pages[data_page_index],
893                                         data_page_offset,
894                                         page_length);
895                 }
896
897                 remain -= page_length;
898                 data_ptr += page_length;
899                 offset += page_length;
900         }
901
902 fail_put_pages:
903         i915_gem_object_put_pages(obj);
904 fail_unlock:
905         mutex_unlock(&dev->struct_mutex);
906 fail_put_user_pages:
907         for (i = 0; i < pinned_pages; i++)
908                 page_cache_release(user_pages[i]);
909         drm_free_large(user_pages);
910
911         return ret;
912 }
913
914 /**
915  * Writes data to the object referenced by handle.
916  *
917  * On error, the contents of the buffer that were to be modified are undefined.
918  */
919 int
920 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
921                       struct drm_file *file_priv)
922 {
923         struct drm_i915_gem_pwrite *args = data;
924         struct drm_gem_object *obj;
925         struct drm_i915_gem_object *obj_priv;
926         int ret = 0;
927
928         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
929         if (obj == NULL)
930                 return -EBADF;
931         obj_priv = to_intel_bo(obj);
932
933         /* Bounds check destination.
934          *
935          * XXX: This could use review for overflow issues...
936          */
937         if (args->offset > obj->size || args->size > obj->size ||
938             args->offset + args->size > obj->size) {
939                 drm_gem_object_unreference_unlocked(obj);
940                 return -EINVAL;
941         }
942
943         /* We can only do the GTT pwrite on untiled buffers, as otherwise
944          * it would end up going through the fenced access, and we'll get
945          * different detiling behavior between reading and writing.
946          * pread/pwrite currently are reading and writing from the CPU
947          * perspective, requiring manual detiling by the client.
948          */
949         if (obj_priv->phys_obj)
950                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
951         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
952                  dev->gtt_total != 0 &&
953                  obj->write_domain != I915_GEM_DOMAIN_CPU) {
954                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
955                 if (ret == -EFAULT) {
956                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
957                                                        file_priv);
958                 }
959         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
960                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
961         } else {
962                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
963                 if (ret == -EFAULT) {
964                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
965                                                          file_priv);
966                 }
967         }
968
969 #if WATCH_PWRITE
970         if (ret)
971                 DRM_INFO("pwrite failed %d\n", ret);
972 #endif
973
974         drm_gem_object_unreference_unlocked(obj);
975
976         return ret;
977 }
978
979 /**
980  * Called when user space prepares to use an object with the CPU, either
981  * through the mmap ioctl's mapping or a GTT mapping.
982  */
983 int
984 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
985                           struct drm_file *file_priv)
986 {
987         struct drm_i915_private *dev_priv = dev->dev_private;
988         struct drm_i915_gem_set_domain *args = data;
989         struct drm_gem_object *obj;
990         struct drm_i915_gem_object *obj_priv;
991         uint32_t read_domains = args->read_domains;
992         uint32_t write_domain = args->write_domain;
993         int ret;
994
995         if (!(dev->driver->driver_features & DRIVER_GEM))
996                 return -ENODEV;
997
998         /* Only handle setting domains to types used by the CPU. */
999         if (write_domain & I915_GEM_GPU_DOMAINS)
1000                 return -EINVAL;
1001
1002         if (read_domains & I915_GEM_GPU_DOMAINS)
1003                 return -EINVAL;
1004
1005         /* Having something in the write domain implies it's in the read
1006          * domain, and only that read domain.  Enforce that in the request.
1007          */
1008         if (write_domain != 0 && read_domains != write_domain)
1009                 return -EINVAL;
1010
1011         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1012         if (obj == NULL)
1013                 return -EBADF;
1014         obj_priv = to_intel_bo(obj);
1015
1016         mutex_lock(&dev->struct_mutex);
1017
1018         intel_mark_busy(dev, obj);
1019
1020 #if WATCH_BUF
1021         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1022                  obj, obj->size, read_domains, write_domain);
1023 #endif
1024         if (read_domains & I915_GEM_DOMAIN_GTT) {
1025                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1026
1027                 /* Update the LRU on the fence for the CPU access that's
1028                  * about to occur.
1029                  */
1030                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1031                         struct drm_i915_fence_reg *reg =
1032                                 &dev_priv->fence_regs[obj_priv->fence_reg];
1033                         list_move_tail(&reg->lru_list,
1034                                        &dev_priv->mm.fence_list);
1035                 }
1036
1037                 /* Silently promote "you're not bound, there was nothing to do"
1038                  * to success, since the client was just asking us to
1039                  * make sure everything was done.
1040                  */
1041                 if (ret == -EINVAL)
1042                         ret = 0;
1043         } else {
1044                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1045         }
1046
1047         
1048         /* Maintain LRU order of "inactive" objects */
1049         if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1050                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1051
1052         drm_gem_object_unreference(obj);
1053         mutex_unlock(&dev->struct_mutex);
1054         return ret;
1055 }
1056
1057 /**
1058  * Called when user space has done writes to this buffer
1059  */
1060 int
1061 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1062                       struct drm_file *file_priv)
1063 {
1064         struct drm_i915_gem_sw_finish *args = data;
1065         struct drm_gem_object *obj;
1066         struct drm_i915_gem_object *obj_priv;
1067         int ret = 0;
1068
1069         if (!(dev->driver->driver_features & DRIVER_GEM))
1070                 return -ENODEV;
1071
1072         mutex_lock(&dev->struct_mutex);
1073         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1074         if (obj == NULL) {
1075                 mutex_unlock(&dev->struct_mutex);
1076                 return -EBADF;
1077         }
1078
1079 #if WATCH_BUF
1080         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1081                  __func__, args->handle, obj, obj->size);
1082 #endif
1083         obj_priv = to_intel_bo(obj);
1084
1085         /* Pinned buffers may be scanout, so flush the cache */
1086         if (obj_priv->pin_count)
1087                 i915_gem_object_flush_cpu_write_domain(obj);
1088
1089         drm_gem_object_unreference(obj);
1090         mutex_unlock(&dev->struct_mutex);
1091         return ret;
1092 }
1093
1094 /**
1095  * Maps the contents of an object, returning the address it is mapped
1096  * into.
1097  *
1098  * While the mapping holds a reference on the contents of the object, it doesn't
1099  * imply a ref on the object itself.
1100  */
1101 int
1102 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1103                    struct drm_file *file_priv)
1104 {
1105         struct drm_i915_gem_mmap *args = data;
1106         struct drm_gem_object *obj;
1107         loff_t offset;
1108         unsigned long addr;
1109
1110         if (!(dev->driver->driver_features & DRIVER_GEM))
1111                 return -ENODEV;
1112
1113         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1114         if (obj == NULL)
1115                 return -EBADF;
1116
1117         offset = args->offset;
1118
1119         down_write(&current->mm->mmap_sem);
1120         addr = do_mmap(obj->filp, 0, args->size,
1121                        PROT_READ | PROT_WRITE, MAP_SHARED,
1122                        args->offset);
1123         up_write(&current->mm->mmap_sem);
1124         drm_gem_object_unreference_unlocked(obj);
1125         if (IS_ERR((void *)addr))
1126                 return addr;
1127
1128         args->addr_ptr = (uint64_t) addr;
1129
1130         return 0;
1131 }
1132
1133 /**
1134  * i915_gem_fault - fault a page into the GTT
1135  * vma: VMA in question
1136  * vmf: fault info
1137  *
1138  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1139  * from userspace.  The fault handler takes care of binding the object to
1140  * the GTT (if needed), allocating and programming a fence register (again,
1141  * only if needed based on whether the old reg is still valid or the object
1142  * is tiled) and inserting a new PTE into the faulting process.
1143  *
1144  * Note that the faulting process may involve evicting existing objects
1145  * from the GTT and/or fence registers to make room.  So performance may
1146  * suffer if the GTT working set is large or there are few fence registers
1147  * left.
1148  */
1149 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1150 {
1151         struct drm_gem_object *obj = vma->vm_private_data;
1152         struct drm_device *dev = obj->dev;
1153         drm_i915_private_t *dev_priv = dev->dev_private;
1154         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1155         pgoff_t page_offset;
1156         unsigned long pfn;
1157         int ret = 0;
1158         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1159
1160         /* We don't use vmf->pgoff since that has the fake offset */
1161         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1162                 PAGE_SHIFT;
1163
1164         /* Now bind it into the GTT if needed */
1165         mutex_lock(&dev->struct_mutex);
1166         if (!obj_priv->gtt_space) {
1167                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1168                 if (ret)
1169                         goto unlock;
1170
1171                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1172                 if (ret)
1173                         goto unlock;
1174         }
1175
1176         /* Need a new fence register? */
1177         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1178                 ret = i915_gem_object_get_fence_reg(obj);
1179                 if (ret)
1180                         goto unlock;
1181         }
1182
1183         if (i915_gem_object_is_inactive(obj_priv))
1184                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1185
1186         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1187                 page_offset;
1188
1189         /* Finally, remap it using the new GTT offset */
1190         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1191 unlock:
1192         mutex_unlock(&dev->struct_mutex);
1193
1194         switch (ret) {
1195         case 0:
1196         case -ERESTARTSYS:
1197                 return VM_FAULT_NOPAGE;
1198         case -ENOMEM:
1199         case -EAGAIN:
1200                 return VM_FAULT_OOM;
1201         default:
1202                 return VM_FAULT_SIGBUS;
1203         }
1204 }
1205
1206 /**
1207  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1208  * @obj: obj in question
1209  *
1210  * GEM memory mapping works by handing back to userspace a fake mmap offset
1211  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1212  * up the object based on the offset and sets up the various memory mapping
1213  * structures.
1214  *
1215  * This routine allocates and attaches a fake offset for @obj.
1216  */
1217 static int
1218 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1219 {
1220         struct drm_device *dev = obj->dev;
1221         struct drm_gem_mm *mm = dev->mm_private;
1222         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1223         struct drm_map_list *list;
1224         struct drm_local_map *map;
1225         int ret = 0;
1226
1227         /* Set the object up for mmap'ing */
1228         list = &obj->map_list;
1229         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1230         if (!list->map)
1231                 return -ENOMEM;
1232
1233         map = list->map;
1234         map->type = _DRM_GEM;
1235         map->size = obj->size;
1236         map->handle = obj;
1237
1238         /* Get a DRM GEM mmap offset allocated... */
1239         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1240                                                     obj->size / PAGE_SIZE, 0, 0);
1241         if (!list->file_offset_node) {
1242                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1243                 ret = -ENOMEM;
1244                 goto out_free_list;
1245         }
1246
1247         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1248                                                   obj->size / PAGE_SIZE, 0);
1249         if (!list->file_offset_node) {
1250                 ret = -ENOMEM;
1251                 goto out_free_list;
1252         }
1253
1254         list->hash.key = list->file_offset_node->start;
1255         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1256                 DRM_ERROR("failed to add to map hash\n");
1257                 ret = -ENOMEM;
1258                 goto out_free_mm;
1259         }
1260
1261         /* By now we should be all set, any drm_mmap request on the offset
1262          * below will get to our mmap & fault handler */
1263         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1264
1265         return 0;
1266
1267 out_free_mm:
1268         drm_mm_put_block(list->file_offset_node);
1269 out_free_list:
1270         kfree(list->map);
1271
1272         return ret;
1273 }
1274
1275 /**
1276  * i915_gem_release_mmap - remove physical page mappings
1277  * @obj: obj in question
1278  *
1279  * Preserve the reservation of the mmapping with the DRM core code, but
1280  * relinquish ownership of the pages back to the system.
1281  *
1282  * It is vital that we remove the page mapping if we have mapped a tiled
1283  * object through the GTT and then lose the fence register due to
1284  * resource pressure. Similarly if the object has been moved out of the
1285  * aperture, than pages mapped into userspace must be revoked. Removing the
1286  * mapping will then trigger a page fault on the next user access, allowing
1287  * fixup by i915_gem_fault().
1288  */
1289 void
1290 i915_gem_release_mmap(struct drm_gem_object *obj)
1291 {
1292         struct drm_device *dev = obj->dev;
1293         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1294
1295         if (dev->dev_mapping)
1296                 unmap_mapping_range(dev->dev_mapping,
1297                                     obj_priv->mmap_offset, obj->size, 1);
1298 }
1299
1300 static void
1301 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1302 {
1303         struct drm_device *dev = obj->dev;
1304         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1305         struct drm_gem_mm *mm = dev->mm_private;
1306         struct drm_map_list *list;
1307
1308         list = &obj->map_list;
1309         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1310
1311         if (list->file_offset_node) {
1312                 drm_mm_put_block(list->file_offset_node);
1313                 list->file_offset_node = NULL;
1314         }
1315
1316         if (list->map) {
1317                 kfree(list->map);
1318                 list->map = NULL;
1319         }
1320
1321         obj_priv->mmap_offset = 0;
1322 }
1323
1324 /**
1325  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1326  * @obj: object to check
1327  *
1328  * Return the required GTT alignment for an object, taking into account
1329  * potential fence register mapping if needed.
1330  */
1331 static uint32_t
1332 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1333 {
1334         struct drm_device *dev = obj->dev;
1335         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1336         int start, i;
1337
1338         /*
1339          * Minimum alignment is 4k (GTT page size), but might be greater
1340          * if a fence register is needed for the object.
1341          */
1342         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1343                 return 4096;
1344
1345         /*
1346          * Previous chips need to be aligned to the size of the smallest
1347          * fence register that can contain the object.
1348          */
1349         if (IS_I9XX(dev))
1350                 start = 1024*1024;
1351         else
1352                 start = 512*1024;
1353
1354         for (i = start; i < obj->size; i <<= 1)
1355                 ;
1356
1357         return i;
1358 }
1359
1360 /**
1361  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1362  * @dev: DRM device
1363  * @data: GTT mapping ioctl data
1364  * @file_priv: GEM object info
1365  *
1366  * Simply returns the fake offset to userspace so it can mmap it.
1367  * The mmap call will end up in drm_gem_mmap(), which will set things
1368  * up so we can get faults in the handler above.
1369  *
1370  * The fault handler will take care of binding the object into the GTT
1371  * (since it may have been evicted to make room for something), allocating
1372  * a fence register, and mapping the appropriate aperture address into
1373  * userspace.
1374  */
1375 int
1376 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1377                         struct drm_file *file_priv)
1378 {
1379         struct drm_i915_gem_mmap_gtt *args = data;
1380         struct drm_gem_object *obj;
1381         struct drm_i915_gem_object *obj_priv;
1382         int ret;
1383
1384         if (!(dev->driver->driver_features & DRIVER_GEM))
1385                 return -ENODEV;
1386
1387         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1388         if (obj == NULL)
1389                 return -EBADF;
1390
1391         mutex_lock(&dev->struct_mutex);
1392
1393         obj_priv = to_intel_bo(obj);
1394
1395         if (obj_priv->madv != I915_MADV_WILLNEED) {
1396                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1397                 drm_gem_object_unreference(obj);
1398                 mutex_unlock(&dev->struct_mutex);
1399                 return -EINVAL;
1400         }
1401
1402
1403         if (!obj_priv->mmap_offset) {
1404                 ret = i915_gem_create_mmap_offset(obj);
1405                 if (ret) {
1406                         drm_gem_object_unreference(obj);
1407                         mutex_unlock(&dev->struct_mutex);
1408                         return ret;
1409                 }
1410         }
1411
1412         args->offset = obj_priv->mmap_offset;
1413
1414         /*
1415          * Pull it into the GTT so that we have a page list (makes the
1416          * initial fault faster and any subsequent flushing possible).
1417          */
1418         if (!obj_priv->agp_mem) {
1419                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1420                 if (ret) {
1421                         drm_gem_object_unreference(obj);
1422                         mutex_unlock(&dev->struct_mutex);
1423                         return ret;
1424                 }
1425         }
1426
1427         drm_gem_object_unreference(obj);
1428         mutex_unlock(&dev->struct_mutex);
1429
1430         return 0;
1431 }
1432
1433 void
1434 i915_gem_object_put_pages(struct drm_gem_object *obj)
1435 {
1436         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1437         int page_count = obj->size / PAGE_SIZE;
1438         int i;
1439
1440         BUG_ON(obj_priv->pages_refcount == 0);
1441         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1442
1443         if (--obj_priv->pages_refcount != 0)
1444                 return;
1445
1446         if (obj_priv->tiling_mode != I915_TILING_NONE)
1447                 i915_gem_object_save_bit_17_swizzle(obj);
1448
1449         if (obj_priv->madv == I915_MADV_DONTNEED)
1450                 obj_priv->dirty = 0;
1451
1452         for (i = 0; i < page_count; i++) {
1453                 if (obj_priv->dirty)
1454                         set_page_dirty(obj_priv->pages[i]);
1455
1456                 if (obj_priv->madv == I915_MADV_WILLNEED)
1457                         mark_page_accessed(obj_priv->pages[i]);
1458
1459                 page_cache_release(obj_priv->pages[i]);
1460         }
1461         obj_priv->dirty = 0;
1462
1463         drm_free_large(obj_priv->pages);
1464         obj_priv->pages = NULL;
1465 }
1466
1467 static void
1468 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1469                                struct intel_ring_buffer *ring)
1470 {
1471         struct drm_device *dev = obj->dev;
1472         drm_i915_private_t *dev_priv = dev->dev_private;
1473         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1474         BUG_ON(ring == NULL);
1475         obj_priv->ring = ring;
1476
1477         /* Add a reference if we're newly entering the active list. */
1478         if (!obj_priv->active) {
1479                 drm_gem_object_reference(obj);
1480                 obj_priv->active = 1;
1481         }
1482         /* Move from whatever list we were on to the tail of execution. */
1483         spin_lock(&dev_priv->mm.active_list_lock);
1484         list_move_tail(&obj_priv->list, &ring->active_list);
1485         spin_unlock(&dev_priv->mm.active_list_lock);
1486         obj_priv->last_rendering_seqno = seqno;
1487 }
1488
1489 static void
1490 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1491 {
1492         struct drm_device *dev = obj->dev;
1493         drm_i915_private_t *dev_priv = dev->dev_private;
1494         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1495
1496         BUG_ON(!obj_priv->active);
1497         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1498         obj_priv->last_rendering_seqno = 0;
1499 }
1500
1501 /* Immediately discard the backing storage */
1502 static void
1503 i915_gem_object_truncate(struct drm_gem_object *obj)
1504 {
1505         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1506         struct inode *inode;
1507
1508         /* Our goal here is to return as much of the memory as
1509          * is possible back to the system as we are called from OOM.
1510          * To do this we must instruct the shmfs to drop all of its
1511          * backing pages, *now*. Here we mirror the actions taken
1512          * when by shmem_delete_inode() to release the backing store.
1513          */
1514         inode = obj->filp->f_path.dentry->d_inode;
1515         truncate_inode_pages(inode->i_mapping, 0);
1516         if (inode->i_op->truncate_range)
1517                 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1518
1519         obj_priv->madv = __I915_MADV_PURGED;
1520 }
1521
1522 static inline int
1523 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1524 {
1525         return obj_priv->madv == I915_MADV_DONTNEED;
1526 }
1527
1528 static void
1529 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1530 {
1531         struct drm_device *dev = obj->dev;
1532         drm_i915_private_t *dev_priv = dev->dev_private;
1533         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1534
1535         i915_verify_inactive(dev, __FILE__, __LINE__);
1536         if (obj_priv->pin_count != 0)
1537                 list_del_init(&obj_priv->list);
1538         else
1539                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1540
1541         BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1542
1543         obj_priv->last_rendering_seqno = 0;
1544         obj_priv->ring = NULL;
1545         if (obj_priv->active) {
1546                 obj_priv->active = 0;
1547                 drm_gem_object_unreference(obj);
1548         }
1549         i915_verify_inactive(dev, __FILE__, __LINE__);
1550 }
1551
1552 static void
1553 i915_gem_process_flushing_list(struct drm_device *dev,
1554                                uint32_t flush_domains, uint32_t seqno,
1555                                struct intel_ring_buffer *ring)
1556 {
1557         drm_i915_private_t *dev_priv = dev->dev_private;
1558         struct drm_i915_gem_object *obj_priv, *next;
1559
1560         list_for_each_entry_safe(obj_priv, next,
1561                                  &dev_priv->mm.gpu_write_list,
1562                                  gpu_write_list) {
1563                 struct drm_gem_object *obj = &obj_priv->base;
1564
1565                 if ((obj->write_domain & flush_domains) ==
1566                     obj->write_domain &&
1567                     obj_priv->ring->ring_flag == ring->ring_flag) {
1568                         uint32_t old_write_domain = obj->write_domain;
1569
1570                         obj->write_domain = 0;
1571                         list_del_init(&obj_priv->gpu_write_list);
1572                         i915_gem_object_move_to_active(obj, seqno, ring);
1573
1574                         /* update the fence lru list */
1575                         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1576                                 struct drm_i915_fence_reg *reg =
1577                                         &dev_priv->fence_regs[obj_priv->fence_reg];
1578                                 list_move_tail(&reg->lru_list,
1579                                                 &dev_priv->mm.fence_list);
1580                         }
1581
1582                         trace_i915_gem_object_change_domain(obj,
1583                                                             obj->read_domains,
1584                                                             old_write_domain);
1585                 }
1586         }
1587 }
1588
1589 uint32_t
1590 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1591                  uint32_t flush_domains, struct intel_ring_buffer *ring)
1592 {
1593         drm_i915_private_t *dev_priv = dev->dev_private;
1594         struct drm_i915_file_private *i915_file_priv = NULL;
1595         struct drm_i915_gem_request *request;
1596         uint32_t seqno;
1597         int was_empty;
1598
1599         if (file_priv != NULL)
1600                 i915_file_priv = file_priv->driver_priv;
1601
1602         request = kzalloc(sizeof(*request), GFP_KERNEL);
1603         if (request == NULL)
1604                 return 0;
1605
1606         seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1607
1608         request->seqno = seqno;
1609         request->ring = ring;
1610         request->emitted_jiffies = jiffies;
1611         was_empty = list_empty(&ring->request_list);
1612         list_add_tail(&request->list, &ring->request_list);
1613
1614         if (i915_file_priv) {
1615                 list_add_tail(&request->client_list,
1616                               &i915_file_priv->mm.request_list);
1617         } else {
1618                 INIT_LIST_HEAD(&request->client_list);
1619         }
1620
1621         /* Associate any objects on the flushing list matching the write
1622          * domain we're flushing with our flush.
1623          */
1624         if (flush_domains != 0) 
1625                 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1626
1627         if (!dev_priv->mm.suspended) {
1628                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1629                 if (was_empty)
1630                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1631         }
1632         return seqno;
1633 }
1634
1635 /**
1636  * Command execution barrier
1637  *
1638  * Ensures that all commands in the ring are finished
1639  * before signalling the CPU
1640  */
1641 static uint32_t
1642 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1643 {
1644         uint32_t flush_domains = 0;
1645
1646         /* The sampler always gets flushed on i965 (sigh) */
1647         if (IS_I965G(dev))
1648                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1649
1650         ring->flush(dev, ring,
1651                         I915_GEM_DOMAIN_COMMAND, flush_domains);
1652         return flush_domains;
1653 }
1654
1655 /**
1656  * Moves buffers associated only with the given active seqno from the active
1657  * to inactive list, potentially freeing them.
1658  */
1659 static void
1660 i915_gem_retire_request(struct drm_device *dev,
1661                         struct drm_i915_gem_request *request)
1662 {
1663         drm_i915_private_t *dev_priv = dev->dev_private;
1664
1665         trace_i915_gem_request_retire(dev, request->seqno);
1666
1667         /* Move any buffers on the active list that are no longer referenced
1668          * by the ringbuffer to the flushing/inactive lists as appropriate.
1669          */
1670         spin_lock(&dev_priv->mm.active_list_lock);
1671         while (!list_empty(&request->ring->active_list)) {
1672                 struct drm_gem_object *obj;
1673                 struct drm_i915_gem_object *obj_priv;
1674
1675                 obj_priv = list_first_entry(&request->ring->active_list,
1676                                             struct drm_i915_gem_object,
1677                                             list);
1678                 obj = &obj_priv->base;
1679
1680                 /* If the seqno being retired doesn't match the oldest in the
1681                  * list, then the oldest in the list must still be newer than
1682                  * this seqno.
1683                  */
1684                 if (obj_priv->last_rendering_seqno != request->seqno)
1685                         goto out;
1686
1687 #if WATCH_LRU
1688                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1689                          __func__, request->seqno, obj);
1690 #endif
1691
1692                 if (obj->write_domain != 0)
1693                         i915_gem_object_move_to_flushing(obj);
1694                 else {
1695                         /* Take a reference on the object so it won't be
1696                          * freed while the spinlock is held.  The list
1697                          * protection for this spinlock is safe when breaking
1698                          * the lock like this since the next thing we do
1699                          * is just get the head of the list again.
1700                          */
1701                         drm_gem_object_reference(obj);
1702                         i915_gem_object_move_to_inactive(obj);
1703                         spin_unlock(&dev_priv->mm.active_list_lock);
1704                         drm_gem_object_unreference(obj);
1705                         spin_lock(&dev_priv->mm.active_list_lock);
1706                 }
1707         }
1708 out:
1709         spin_unlock(&dev_priv->mm.active_list_lock);
1710 }
1711
1712 /**
1713  * Returns true if seq1 is later than seq2.
1714  */
1715 bool
1716 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1717 {
1718         return (int32_t)(seq1 - seq2) >= 0;
1719 }
1720
1721 uint32_t
1722 i915_get_gem_seqno(struct drm_device *dev,
1723                    struct intel_ring_buffer *ring)
1724 {
1725         return ring->get_gem_seqno(dev, ring);
1726 }
1727
1728 /**
1729  * This function clears the request list as sequence numbers are passed.
1730  */
1731 static void
1732 i915_gem_retire_requests_ring(struct drm_device *dev,
1733                               struct intel_ring_buffer *ring)
1734 {
1735         drm_i915_private_t *dev_priv = dev->dev_private;
1736         uint32_t seqno;
1737
1738         if (!ring->status_page.page_addr
1739                         || list_empty(&ring->request_list))
1740                 return;
1741
1742         seqno = i915_get_gem_seqno(dev, ring);
1743
1744         while (!list_empty(&ring->request_list)) {
1745                 struct drm_i915_gem_request *request;
1746                 uint32_t retiring_seqno;
1747
1748                 request = list_first_entry(&ring->request_list,
1749                                            struct drm_i915_gem_request,
1750                                            list);
1751                 retiring_seqno = request->seqno;
1752
1753                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1754                     atomic_read(&dev_priv->mm.wedged)) {
1755                         i915_gem_retire_request(dev, request);
1756
1757                         list_del(&request->list);
1758                         list_del(&request->client_list);
1759                         kfree(request);
1760                 } else
1761                         break;
1762         }
1763
1764         if (unlikely (dev_priv->trace_irq_seqno &&
1765                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1766
1767                 ring->user_irq_put(dev, ring);
1768                 dev_priv->trace_irq_seqno = 0;
1769         }
1770 }
1771
1772 void
1773 i915_gem_retire_requests(struct drm_device *dev)
1774 {
1775         drm_i915_private_t *dev_priv = dev->dev_private;
1776
1777         if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1778             struct drm_i915_gem_object *obj_priv, *tmp;
1779
1780             /* We must be careful that during unbind() we do not
1781              * accidentally infinitely recurse into retire requests.
1782              * Currently:
1783              *   retire -> free -> unbind -> wait -> retire_ring
1784              */
1785             list_for_each_entry_safe(obj_priv, tmp,
1786                                      &dev_priv->mm.deferred_free_list,
1787                                      list)
1788                     i915_gem_free_object_tail(&obj_priv->base);
1789         }
1790
1791         i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
1792         if (HAS_BSD(dev))
1793                 i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
1794 }
1795
1796 void
1797 i915_gem_retire_work_handler(struct work_struct *work)
1798 {
1799         drm_i915_private_t *dev_priv;
1800         struct drm_device *dev;
1801
1802         dev_priv = container_of(work, drm_i915_private_t,
1803                                 mm.retire_work.work);
1804         dev = dev_priv->dev;
1805
1806         mutex_lock(&dev->struct_mutex);
1807         i915_gem_retire_requests(dev);
1808
1809         if (!dev_priv->mm.suspended &&
1810                 (!list_empty(&dev_priv->render_ring.request_list) ||
1811                         (HAS_BSD(dev) &&
1812                          !list_empty(&dev_priv->bsd_ring.request_list))))
1813                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1814         mutex_unlock(&dev->struct_mutex);
1815 }
1816
1817 int
1818 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1819                 int interruptible, struct intel_ring_buffer *ring)
1820 {
1821         drm_i915_private_t *dev_priv = dev->dev_private;
1822         u32 ier;
1823         int ret = 0;
1824
1825         BUG_ON(seqno == 0);
1826
1827         if (atomic_read(&dev_priv->mm.wedged))
1828                 return -EIO;
1829
1830         if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1831                 if (HAS_PCH_SPLIT(dev))
1832                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1833                 else
1834                         ier = I915_READ(IER);
1835                 if (!ier) {
1836                         DRM_ERROR("something (likely vbetool) disabled "
1837                                   "interrupts, re-enabling\n");
1838                         i915_driver_irq_preinstall(dev);
1839                         i915_driver_irq_postinstall(dev);
1840                 }
1841
1842                 trace_i915_gem_request_wait_begin(dev, seqno);
1843
1844                 ring->waiting_gem_seqno = seqno;
1845                 ring->user_irq_get(dev, ring);
1846                 if (interruptible)
1847                         ret = wait_event_interruptible(ring->irq_queue,
1848                                 i915_seqno_passed(
1849                                         ring->get_gem_seqno(dev, ring), seqno)
1850                                 || atomic_read(&dev_priv->mm.wedged));
1851                 else
1852                         wait_event(ring->irq_queue,
1853                                 i915_seqno_passed(
1854                                         ring->get_gem_seqno(dev, ring), seqno)
1855                                 || atomic_read(&dev_priv->mm.wedged));
1856
1857                 ring->user_irq_put(dev, ring);
1858                 ring->waiting_gem_seqno = 0;
1859
1860                 trace_i915_gem_request_wait_end(dev, seqno);
1861         }
1862         if (atomic_read(&dev_priv->mm.wedged))
1863                 ret = -EIO;
1864
1865         if (ret && ret != -ERESTARTSYS)
1866                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1867                           __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1868
1869         /* Directly dispatch request retiring.  While we have the work queue
1870          * to handle this, the waiter on a request often wants an associated
1871          * buffer to have made it to the inactive list, and we would need
1872          * a separate wait queue to handle that.
1873          */
1874         if (ret == 0)
1875                 i915_gem_retire_requests_ring(dev, ring);
1876
1877         return ret;
1878 }
1879
1880 /**
1881  * Waits for a sequence number to be signaled, and cleans up the
1882  * request and object lists appropriately for that event.
1883  */
1884 static int
1885 i915_wait_request(struct drm_device *dev, uint32_t seqno,
1886                 struct intel_ring_buffer *ring)
1887 {
1888         return i915_do_wait_request(dev, seqno, 1, ring);
1889 }
1890
1891 static void
1892 i915_gem_flush(struct drm_device *dev,
1893                uint32_t invalidate_domains,
1894                uint32_t flush_domains)
1895 {
1896         drm_i915_private_t *dev_priv = dev->dev_private;
1897         if (flush_domains & I915_GEM_DOMAIN_CPU)
1898                 drm_agp_chipset_flush(dev);
1899         dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1900                         invalidate_domains,
1901                         flush_domains);
1902
1903         if (HAS_BSD(dev))
1904                 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1905                                 invalidate_domains,
1906                                 flush_domains);
1907 }
1908
1909 /**
1910  * Ensures that all rendering to the object has completed and the object is
1911  * safe to unbind from the GTT or access from the CPU.
1912  */
1913 static int
1914 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1915 {
1916         struct drm_device *dev = obj->dev;
1917         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1918         int ret;
1919
1920         /* This function only exists to support waiting for existing rendering,
1921          * not for emitting required flushes.
1922          */
1923         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1924
1925         /* If there is rendering queued on the buffer being evicted, wait for
1926          * it.
1927          */
1928         if (obj_priv->active) {
1929 #if WATCH_BUF
1930                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1931                           __func__, obj, obj_priv->last_rendering_seqno);
1932 #endif
1933                 ret = i915_wait_request(dev,
1934                                 obj_priv->last_rendering_seqno, obj_priv->ring);
1935                 if (ret != 0)
1936                         return ret;
1937         }
1938
1939         return 0;
1940 }
1941
1942 /**
1943  * Unbinds an object from the GTT aperture.
1944  */
1945 int
1946 i915_gem_object_unbind(struct drm_gem_object *obj)
1947 {
1948         struct drm_device *dev = obj->dev;
1949         drm_i915_private_t *dev_priv = dev->dev_private;
1950         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1951         int ret = 0;
1952
1953 #if WATCH_BUF
1954         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1955         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1956 #endif
1957         if (obj_priv->gtt_space == NULL)
1958                 return 0;
1959
1960         if (obj_priv->pin_count != 0) {
1961                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1962                 return -EINVAL;
1963         }
1964
1965         /* blow away mappings if mapped through GTT */
1966         i915_gem_release_mmap(obj);
1967
1968         /* Move the object to the CPU domain to ensure that
1969          * any possible CPU writes while it's not in the GTT
1970          * are flushed when we go to remap it. This will
1971          * also ensure that all pending GPU writes are finished
1972          * before we unbind.
1973          */
1974         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1975         if (ret == -ERESTARTSYS)
1976                 return ret;
1977         /* Continue on if we fail due to EIO, the GPU is hung so we
1978          * should be safe and we need to cleanup or else we might
1979          * cause memory corruption through use-after-free.
1980          */
1981
1982         BUG_ON(obj_priv->active);
1983
1984         /* release the fence reg _after_ flushing */
1985         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1986                 i915_gem_clear_fence_reg(obj);
1987
1988         if (obj_priv->agp_mem != NULL) {
1989                 drm_unbind_agp(obj_priv->agp_mem);
1990                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1991                 obj_priv->agp_mem = NULL;
1992         }
1993
1994         i915_gem_object_put_pages(obj);
1995         BUG_ON(obj_priv->pages_refcount);
1996
1997         if (obj_priv->gtt_space) {
1998                 atomic_dec(&dev->gtt_count);
1999                 atomic_sub(obj->size, &dev->gtt_memory);
2000
2001                 drm_mm_put_block(obj_priv->gtt_space);
2002                 obj_priv->gtt_space = NULL;
2003         }
2004
2005         /* Remove ourselves from the LRU list if present. */
2006         spin_lock(&dev_priv->mm.active_list_lock);
2007         if (!list_empty(&obj_priv->list))
2008                 list_del_init(&obj_priv->list);
2009         spin_unlock(&dev_priv->mm.active_list_lock);
2010
2011         if (i915_gem_object_is_purgeable(obj_priv))
2012                 i915_gem_object_truncate(obj);
2013
2014         trace_i915_gem_object_unbind(obj);
2015
2016         return ret;
2017 }
2018
2019 int
2020 i915_gpu_idle(struct drm_device *dev)
2021 {
2022         drm_i915_private_t *dev_priv = dev->dev_private;
2023         bool lists_empty;
2024         uint32_t seqno1, seqno2;
2025         int ret;
2026
2027         spin_lock(&dev_priv->mm.active_list_lock);
2028         lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2029                        list_empty(&dev_priv->render_ring.active_list) &&
2030                        (!HAS_BSD(dev) ||
2031                         list_empty(&dev_priv->bsd_ring.active_list)));
2032         spin_unlock(&dev_priv->mm.active_list_lock);
2033
2034         if (lists_empty)
2035                 return 0;
2036
2037         /* Flush everything onto the inactive list. */
2038         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2039         seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2040                         &dev_priv->render_ring);
2041         if (seqno1 == 0)
2042                 return -ENOMEM;
2043         ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2044
2045         if (HAS_BSD(dev)) {
2046                 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2047                                 &dev_priv->bsd_ring);
2048                 if (seqno2 == 0)
2049                         return -ENOMEM;
2050
2051                 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2052                 if (ret)
2053                         return ret;
2054         }
2055
2056
2057         return ret;
2058 }
2059
2060 int
2061 i915_gem_object_get_pages(struct drm_gem_object *obj,
2062                           gfp_t gfpmask)
2063 {
2064         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2065         int page_count, i;
2066         struct address_space *mapping;
2067         struct inode *inode;
2068         struct page *page;
2069
2070         BUG_ON(obj_priv->pages_refcount
2071                         == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2072
2073         if (obj_priv->pages_refcount++ != 0)
2074                 return 0;
2075
2076         /* Get the list of pages out of our struct file.  They'll be pinned
2077          * at this point until we release them.
2078          */
2079         page_count = obj->size / PAGE_SIZE;
2080         BUG_ON(obj_priv->pages != NULL);
2081         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2082         if (obj_priv->pages == NULL) {
2083                 obj_priv->pages_refcount--;
2084                 return -ENOMEM;
2085         }
2086
2087         inode = obj->filp->f_path.dentry->d_inode;
2088         mapping = inode->i_mapping;
2089         for (i = 0; i < page_count; i++) {
2090                 page = read_cache_page_gfp(mapping, i,
2091                                            GFP_HIGHUSER |
2092                                            __GFP_COLD |
2093                                            __GFP_RECLAIMABLE |
2094                                            gfpmask);
2095                 if (IS_ERR(page))
2096                         goto err_pages;
2097
2098                 obj_priv->pages[i] = page;
2099         }
2100
2101         if (obj_priv->tiling_mode != I915_TILING_NONE)
2102                 i915_gem_object_do_bit_17_swizzle(obj);
2103
2104         return 0;
2105
2106 err_pages:
2107         while (i--)
2108                 page_cache_release(obj_priv->pages[i]);
2109
2110         drm_free_large(obj_priv->pages);
2111         obj_priv->pages = NULL;
2112         obj_priv->pages_refcount--;
2113         return PTR_ERR(page);
2114 }
2115
2116 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2117 {
2118         struct drm_gem_object *obj = reg->obj;
2119         struct drm_device *dev = obj->dev;
2120         drm_i915_private_t *dev_priv = dev->dev_private;
2121         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2122         int regnum = obj_priv->fence_reg;
2123         uint64_t val;
2124
2125         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2126                     0xfffff000) << 32;
2127         val |= obj_priv->gtt_offset & 0xfffff000;
2128         val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2129                 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2130
2131         if (obj_priv->tiling_mode == I915_TILING_Y)
2132                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2133         val |= I965_FENCE_REG_VALID;
2134
2135         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2136 }
2137
2138 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2139 {
2140         struct drm_gem_object *obj = reg->obj;
2141         struct drm_device *dev = obj->dev;
2142         drm_i915_private_t *dev_priv = dev->dev_private;
2143         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2144         int regnum = obj_priv->fence_reg;
2145         uint64_t val;
2146
2147         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2148                     0xfffff000) << 32;
2149         val |= obj_priv->gtt_offset & 0xfffff000;
2150         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2151         if (obj_priv->tiling_mode == I915_TILING_Y)
2152                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2153         val |= I965_FENCE_REG_VALID;
2154
2155         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2156 }
2157
2158 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2159 {
2160         struct drm_gem_object *obj = reg->obj;
2161         struct drm_device *dev = obj->dev;
2162         drm_i915_private_t *dev_priv = dev->dev_private;
2163         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2164         int regnum = obj_priv->fence_reg;
2165         int tile_width;
2166         uint32_t fence_reg, val;
2167         uint32_t pitch_val;
2168
2169         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2170             (obj_priv->gtt_offset & (obj->size - 1))) {
2171                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2172                      __func__, obj_priv->gtt_offset, obj->size);
2173                 return;
2174         }
2175
2176         if (obj_priv->tiling_mode == I915_TILING_Y &&
2177             HAS_128_BYTE_Y_TILING(dev))
2178                 tile_width = 128;
2179         else
2180                 tile_width = 512;
2181
2182         /* Note: pitch better be a power of two tile widths */
2183         pitch_val = obj_priv->stride / tile_width;
2184         pitch_val = ffs(pitch_val) - 1;
2185
2186         if (obj_priv->tiling_mode == I915_TILING_Y &&
2187             HAS_128_BYTE_Y_TILING(dev))
2188                 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2189         else
2190                 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2191
2192         val = obj_priv->gtt_offset;
2193         if (obj_priv->tiling_mode == I915_TILING_Y)
2194                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2195         val |= I915_FENCE_SIZE_BITS(obj->size);
2196         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2197         val |= I830_FENCE_REG_VALID;
2198
2199         if (regnum < 8)
2200                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2201         else
2202                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2203         I915_WRITE(fence_reg, val);
2204 }
2205
2206 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2207 {
2208         struct drm_gem_object *obj = reg->obj;
2209         struct drm_device *dev = obj->dev;
2210         drm_i915_private_t *dev_priv = dev->dev_private;
2211         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2212         int regnum = obj_priv->fence_reg;
2213         uint32_t val;
2214         uint32_t pitch_val;
2215         uint32_t fence_size_bits;
2216
2217         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2218             (obj_priv->gtt_offset & (obj->size - 1))) {
2219                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2220                      __func__, obj_priv->gtt_offset);
2221                 return;
2222         }
2223
2224         pitch_val = obj_priv->stride / 128;
2225         pitch_val = ffs(pitch_val) - 1;
2226         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2227
2228         val = obj_priv->gtt_offset;
2229         if (obj_priv->tiling_mode == I915_TILING_Y)
2230                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2231         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2232         WARN_ON(fence_size_bits & ~0x00000f00);
2233         val |= fence_size_bits;
2234         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2235         val |= I830_FENCE_REG_VALID;
2236
2237         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2238 }
2239
2240 static int i915_find_fence_reg(struct drm_device *dev)
2241 {
2242         struct drm_i915_fence_reg *reg = NULL;
2243         struct drm_i915_gem_object *obj_priv = NULL;
2244         struct drm_i915_private *dev_priv = dev->dev_private;
2245         struct drm_gem_object *obj = NULL;
2246         int i, avail, ret;
2247
2248         /* First try to find a free reg */
2249         avail = 0;
2250         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2251                 reg = &dev_priv->fence_regs[i];
2252                 if (!reg->obj)
2253                         return i;
2254
2255                 obj_priv = to_intel_bo(reg->obj);
2256                 if (!obj_priv->pin_count)
2257                     avail++;
2258         }
2259
2260         if (avail == 0)
2261                 return -ENOSPC;
2262
2263         /* None available, try to steal one or wait for a user to finish */
2264         i = I915_FENCE_REG_NONE;
2265         list_for_each_entry(reg, &dev_priv->mm.fence_list,
2266                             lru_list) {
2267                 obj = reg->obj;
2268                 obj_priv = to_intel_bo(obj);
2269
2270                 if (obj_priv->pin_count)
2271                         continue;
2272
2273                 /* found one! */
2274                 i = obj_priv->fence_reg;
2275                 break;
2276         }
2277
2278         BUG_ON(i == I915_FENCE_REG_NONE);
2279
2280         /* We only have a reference on obj from the active list. put_fence_reg
2281          * might drop that one, causing a use-after-free in it. So hold a
2282          * private reference to obj like the other callers of put_fence_reg
2283          * (set_tiling ioctl) do. */
2284         drm_gem_object_reference(obj);
2285         ret = i915_gem_object_put_fence_reg(obj);
2286         drm_gem_object_unreference(obj);
2287         if (ret != 0)
2288                 return ret;
2289
2290         return i;
2291 }
2292
2293 /**
2294  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2295  * @obj: object to map through a fence reg
2296  *
2297  * When mapping objects through the GTT, userspace wants to be able to write
2298  * to them without having to worry about swizzling if the object is tiled.
2299  *
2300  * This function walks the fence regs looking for a free one for @obj,
2301  * stealing one if it can't find any.
2302  *
2303  * It then sets up the reg based on the object's properties: address, pitch
2304  * and tiling format.
2305  */
2306 int
2307 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2308 {
2309         struct drm_device *dev = obj->dev;
2310         struct drm_i915_private *dev_priv = dev->dev_private;
2311         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2312         struct drm_i915_fence_reg *reg = NULL;
2313         int ret;
2314
2315         /* Just update our place in the LRU if our fence is getting used. */
2316         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2317                 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2318                 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2319                 return 0;
2320         }
2321
2322         switch (obj_priv->tiling_mode) {
2323         case I915_TILING_NONE:
2324                 WARN(1, "allocating a fence for non-tiled object?\n");
2325                 break;
2326         case I915_TILING_X:
2327                 if (!obj_priv->stride)
2328                         return -EINVAL;
2329                 WARN((obj_priv->stride & (512 - 1)),
2330                      "object 0x%08x is X tiled but has non-512B pitch\n",
2331                      obj_priv->gtt_offset);
2332                 break;
2333         case I915_TILING_Y:
2334                 if (!obj_priv->stride)
2335                         return -EINVAL;
2336                 WARN((obj_priv->stride & (128 - 1)),
2337                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2338                      obj_priv->gtt_offset);
2339                 break;
2340         }
2341
2342         ret = i915_find_fence_reg(dev);
2343         if (ret < 0)
2344                 return ret;
2345
2346         obj_priv->fence_reg = ret;
2347         reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2348         list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2349
2350         reg->obj = obj;
2351
2352         if (IS_GEN6(dev))
2353                 sandybridge_write_fence_reg(reg);
2354         else if (IS_I965G(dev))
2355                 i965_write_fence_reg(reg);
2356         else if (IS_I9XX(dev))
2357                 i915_write_fence_reg(reg);
2358         else
2359                 i830_write_fence_reg(reg);
2360
2361         trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2362                         obj_priv->tiling_mode);
2363
2364         return 0;
2365 }
2366
2367 /**
2368  * i915_gem_clear_fence_reg - clear out fence register info
2369  * @obj: object to clear
2370  *
2371  * Zeroes out the fence register itself and clears out the associated
2372  * data structures in dev_priv and obj_priv.
2373  */
2374 static void
2375 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2376 {
2377         struct drm_device *dev = obj->dev;
2378         drm_i915_private_t *dev_priv = dev->dev_private;
2379         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2380         struct drm_i915_fence_reg *reg =
2381                 &dev_priv->fence_regs[obj_priv->fence_reg];
2382
2383         if (IS_GEN6(dev)) {
2384                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2385                              (obj_priv->fence_reg * 8), 0);
2386         } else if (IS_I965G(dev)) {
2387                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2388         } else {
2389                 uint32_t fence_reg;
2390
2391                 if (obj_priv->fence_reg < 8)
2392                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2393                 else
2394                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2395                                                        8) * 4;
2396
2397                 I915_WRITE(fence_reg, 0);
2398         }
2399
2400         reg->obj = NULL;
2401         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2402         list_del_init(&reg->lru_list);
2403 }
2404
2405 /**
2406  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2407  * to the buffer to finish, and then resets the fence register.
2408  * @obj: tiled object holding a fence register.
2409  *
2410  * Zeroes out the fence register itself and clears out the associated
2411  * data structures in dev_priv and obj_priv.
2412  */
2413 int
2414 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2415 {
2416         struct drm_device *dev = obj->dev;
2417         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2418
2419         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2420                 return 0;
2421
2422         /* If we've changed tiling, GTT-mappings of the object
2423          * need to re-fault to ensure that the correct fence register
2424          * setup is in place.
2425          */
2426         i915_gem_release_mmap(obj);
2427
2428         /* On the i915, GPU access to tiled buffers is via a fence,
2429          * therefore we must wait for any outstanding access to complete
2430          * before clearing the fence.
2431          */
2432         if (!IS_I965G(dev)) {
2433                 int ret;
2434
2435                 ret = i915_gem_object_flush_gpu_write_domain(obj);
2436                 if (ret != 0)
2437                         return ret;
2438
2439                 ret = i915_gem_object_wait_rendering(obj);
2440                 if (ret != 0)
2441                         return ret;
2442         }
2443
2444         i915_gem_object_flush_gtt_write_domain(obj);
2445         i915_gem_clear_fence_reg (obj);
2446
2447         return 0;
2448 }
2449
2450 /**
2451  * Finds free space in the GTT aperture and binds the object there.
2452  */
2453 static int
2454 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2455 {
2456         struct drm_device *dev = obj->dev;
2457         drm_i915_private_t *dev_priv = dev->dev_private;
2458         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2459         struct drm_mm_node *free_space;
2460         gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2461         int ret;
2462
2463         if (obj_priv->madv != I915_MADV_WILLNEED) {
2464                 DRM_ERROR("Attempting to bind a purgeable object\n");
2465                 return -EINVAL;
2466         }
2467
2468         if (alignment == 0)
2469                 alignment = i915_gem_get_gtt_alignment(obj);
2470         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2471                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2472                 return -EINVAL;
2473         }
2474
2475         /* If the object is bigger than the entire aperture, reject it early
2476          * before evicting everything in a vain attempt to find space.
2477          */
2478         if (obj->size > dev->gtt_total) {
2479                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2480                 return -E2BIG;
2481         }
2482
2483  search_free:
2484         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2485                                         obj->size, alignment, 0);
2486         if (free_space != NULL) {
2487                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2488                                                        alignment);
2489                 if (obj_priv->gtt_space != NULL)
2490                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2491         }
2492         if (obj_priv->gtt_space == NULL) {
2493                 /* If the gtt is empty and we're still having trouble
2494                  * fitting our object in, we're out of memory.
2495                  */
2496 #if WATCH_LRU
2497                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2498 #endif
2499                 ret = i915_gem_evict_something(dev, obj->size, alignment);
2500                 if (ret)
2501                         return ret;
2502
2503                 goto search_free;
2504         }
2505
2506 #if WATCH_BUF
2507         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2508                  obj->size, obj_priv->gtt_offset);
2509 #endif
2510         ret = i915_gem_object_get_pages(obj, gfpmask);
2511         if (ret) {
2512                 drm_mm_put_block(obj_priv->gtt_space);
2513                 obj_priv->gtt_space = NULL;
2514
2515                 if (ret == -ENOMEM) {
2516                         /* first try to clear up some space from the GTT */
2517                         ret = i915_gem_evict_something(dev, obj->size,
2518                                                        alignment);
2519                         if (ret) {
2520                                 /* now try to shrink everyone else */
2521                                 if (gfpmask) {
2522                                         gfpmask = 0;
2523                                         goto search_free;
2524                                 }
2525
2526                                 return ret;
2527                         }
2528
2529                         goto search_free;
2530                 }
2531
2532                 return ret;
2533         }
2534
2535         /* Create an AGP memory structure pointing at our pages, and bind it
2536          * into the GTT.
2537          */
2538         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2539                                                obj_priv->pages,
2540                                                obj->size >> PAGE_SHIFT,
2541                                                obj_priv->gtt_offset,
2542                                                obj_priv->agp_type);
2543         if (obj_priv->agp_mem == NULL) {
2544                 i915_gem_object_put_pages(obj);
2545                 drm_mm_put_block(obj_priv->gtt_space);
2546                 obj_priv->gtt_space = NULL;
2547
2548                 ret = i915_gem_evict_something(dev, obj->size, alignment);
2549                 if (ret)
2550                         return ret;
2551
2552                 goto search_free;
2553         }
2554         atomic_inc(&dev->gtt_count);
2555         atomic_add(obj->size, &dev->gtt_memory);
2556
2557         /* keep track of bounds object by adding it to the inactive list */
2558         list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2559
2560         /* Assert that the object is not currently in any GPU domain. As it
2561          * wasn't in the GTT, there shouldn't be any way it could have been in
2562          * a GPU cache
2563          */
2564         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2565         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2566
2567         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2568
2569         return 0;
2570 }
2571
2572 void
2573 i915_gem_clflush_object(struct drm_gem_object *obj)
2574 {
2575         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
2576
2577         /* If we don't have a page list set up, then we're not pinned
2578          * to GPU, and we can ignore the cache flush because it'll happen
2579          * again at bind time.
2580          */
2581         if (obj_priv->pages == NULL)
2582                 return;
2583
2584         trace_i915_gem_object_clflush(obj);
2585
2586         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2587 }
2588
2589 /** Flushes any GPU write domain for the object if it's dirty. */
2590 static int
2591 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2592 {
2593         struct drm_device *dev = obj->dev;
2594         uint32_t old_write_domain;
2595         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2596
2597         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2598                 return 0;
2599
2600         /* Queue the GPU write cache flushing we need. */
2601         old_write_domain = obj->write_domain;
2602         i915_gem_flush(dev, 0, obj->write_domain);
2603         if (i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring) == 0)
2604                 return -ENOMEM;
2605
2606         trace_i915_gem_object_change_domain(obj,
2607                                             obj->read_domains,
2608                                             old_write_domain);
2609         return 0;
2610 }
2611
2612 /** Flushes the GTT write domain for the object if it's dirty. */
2613 static void
2614 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2615 {
2616         uint32_t old_write_domain;
2617
2618         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2619                 return;
2620
2621         /* No actual flushing is required for the GTT write domain.   Writes
2622          * to it immediately go to main memory as far as we know, so there's
2623          * no chipset flush.  It also doesn't land in render cache.
2624          */
2625         old_write_domain = obj->write_domain;
2626         obj->write_domain = 0;
2627
2628         trace_i915_gem_object_change_domain(obj,
2629                                             obj->read_domains,
2630                                             old_write_domain);
2631 }
2632
2633 /** Flushes the CPU write domain for the object if it's dirty. */
2634 static void
2635 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2636 {
2637         struct drm_device *dev = obj->dev;
2638         uint32_t old_write_domain;
2639
2640         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2641                 return;
2642
2643         i915_gem_clflush_object(obj);
2644         drm_agp_chipset_flush(dev);
2645         old_write_domain = obj->write_domain;
2646         obj->write_domain = 0;
2647
2648         trace_i915_gem_object_change_domain(obj,
2649                                             obj->read_domains,
2650                                             old_write_domain);
2651 }
2652
2653 int
2654 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2655 {
2656         int ret = 0;
2657
2658         switch (obj->write_domain) {
2659         case I915_GEM_DOMAIN_GTT:
2660                 i915_gem_object_flush_gtt_write_domain(obj);
2661                 break;
2662         case I915_GEM_DOMAIN_CPU:
2663                 i915_gem_object_flush_cpu_write_domain(obj);
2664                 break;
2665         default:
2666                 ret = i915_gem_object_flush_gpu_write_domain(obj);
2667                 break;
2668         }
2669
2670         return ret;
2671 }
2672
2673 /**
2674  * Moves a single object to the GTT read, and possibly write domain.
2675  *
2676  * This function returns when the move is complete, including waiting on
2677  * flushes to occur.
2678  */
2679 int
2680 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2681 {
2682         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2683         uint32_t old_write_domain, old_read_domains;
2684         int ret;
2685
2686         /* Not valid to be called on unbound objects. */
2687         if (obj_priv->gtt_space == NULL)
2688                 return -EINVAL;
2689
2690         ret = i915_gem_object_flush_gpu_write_domain(obj);
2691         if (ret != 0)
2692                 return ret;
2693
2694         /* Wait on any GPU rendering and flushing to occur. */
2695         ret = i915_gem_object_wait_rendering(obj);
2696         if (ret != 0)
2697                 return ret;
2698
2699         old_write_domain = obj->write_domain;
2700         old_read_domains = obj->read_domains;
2701
2702         /* If we're writing through the GTT domain, then CPU and GPU caches
2703          * will need to be invalidated at next use.
2704          */
2705         if (write)
2706                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2707
2708         i915_gem_object_flush_cpu_write_domain(obj);
2709
2710         /* It should now be out of any other write domains, and we can update
2711          * the domain values for our changes.
2712          */
2713         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2714         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2715         if (write) {
2716                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2717                 obj_priv->dirty = 1;
2718         }
2719
2720         trace_i915_gem_object_change_domain(obj,
2721                                             old_read_domains,
2722                                             old_write_domain);
2723
2724         return 0;
2725 }
2726
2727 /*
2728  * Prepare buffer for display plane. Use uninterruptible for possible flush
2729  * wait, as in modesetting process we're not supposed to be interrupted.
2730  */
2731 int
2732 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2733 {
2734         struct drm_device *dev = obj->dev;
2735         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2736         uint32_t old_write_domain, old_read_domains;
2737         int ret;
2738
2739         /* Not valid to be called on unbound objects. */
2740         if (obj_priv->gtt_space == NULL)
2741                 return -EINVAL;
2742
2743         ret = i915_gem_object_flush_gpu_write_domain(obj);
2744         if (ret)
2745                 return ret;
2746
2747         /* Wait on any GPU rendering and flushing to occur. */
2748         if (obj_priv->active) {
2749 #if WATCH_BUF
2750                 DRM_INFO("%s: object %p wait for seqno %08x\n",
2751                           __func__, obj, obj_priv->last_rendering_seqno);
2752 #endif
2753                 ret = i915_do_wait_request(dev,
2754                                 obj_priv->last_rendering_seqno,
2755                                 0,
2756                                 obj_priv->ring);
2757                 if (ret != 0)
2758                         return ret;
2759         }
2760
2761         i915_gem_object_flush_cpu_write_domain(obj);
2762
2763         old_write_domain = obj->write_domain;
2764         old_read_domains = obj->read_domains;
2765
2766         /* It should now be out of any other write domains, and we can update
2767          * the domain values for our changes.
2768          */
2769         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2770         obj->read_domains = I915_GEM_DOMAIN_GTT;
2771         obj->write_domain = I915_GEM_DOMAIN_GTT;
2772         obj_priv->dirty = 1;
2773
2774         trace_i915_gem_object_change_domain(obj,
2775                                             old_read_domains,
2776                                             old_write_domain);
2777
2778         return 0;
2779 }
2780
2781 /**
2782  * Moves a single object to the CPU read, and possibly write domain.
2783  *
2784  * This function returns when the move is complete, including waiting on
2785  * flushes to occur.
2786  */
2787 static int
2788 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2789 {
2790         uint32_t old_write_domain, old_read_domains;
2791         int ret;
2792
2793         ret = i915_gem_object_flush_gpu_write_domain(obj);
2794         if (ret)
2795                 return ret;
2796
2797         /* Wait on any GPU rendering and flushing to occur. */
2798         ret = i915_gem_object_wait_rendering(obj);
2799         if (ret != 0)
2800                 return ret;
2801
2802         i915_gem_object_flush_gtt_write_domain(obj);
2803
2804         /* If we have a partially-valid cache of the object in the CPU,
2805          * finish invalidating it and free the per-page flags.
2806          */
2807         i915_gem_object_set_to_full_cpu_read_domain(obj);
2808
2809         old_write_domain = obj->write_domain;
2810         old_read_domains = obj->read_domains;
2811
2812         /* Flush the CPU cache if it's still invalid. */
2813         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2814                 i915_gem_clflush_object(obj);
2815
2816                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2817         }
2818
2819         /* It should now be out of any other write domains, and we can update
2820          * the domain values for our changes.
2821          */
2822         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2823
2824         /* If we're writing through the CPU, then the GPU read domains will
2825          * need to be invalidated at next use.
2826          */
2827         if (write) {
2828                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2829                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2830         }
2831
2832         trace_i915_gem_object_change_domain(obj,
2833                                             old_read_domains,
2834                                             old_write_domain);
2835
2836         return 0;
2837 }
2838
2839 /*
2840  * Set the next domain for the specified object. This
2841  * may not actually perform the necessary flushing/invaliding though,
2842  * as that may want to be batched with other set_domain operations
2843  *
2844  * This is (we hope) the only really tricky part of gem. The goal
2845  * is fairly simple -- track which caches hold bits of the object
2846  * and make sure they remain coherent. A few concrete examples may
2847  * help to explain how it works. For shorthand, we use the notation
2848  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2849  * a pair of read and write domain masks.
2850  *
2851  * Case 1: the batch buffer
2852  *
2853  *      1. Allocated
2854  *      2. Written by CPU
2855  *      3. Mapped to GTT
2856  *      4. Read by GPU
2857  *      5. Unmapped from GTT
2858  *      6. Freed
2859  *
2860  *      Let's take these a step at a time
2861  *
2862  *      1. Allocated
2863  *              Pages allocated from the kernel may still have
2864  *              cache contents, so we set them to (CPU, CPU) always.
2865  *      2. Written by CPU (using pwrite)
2866  *              The pwrite function calls set_domain (CPU, CPU) and
2867  *              this function does nothing (as nothing changes)
2868  *      3. Mapped by GTT
2869  *              This function asserts that the object is not
2870  *              currently in any GPU-based read or write domains
2871  *      4. Read by GPU
2872  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2873  *              As write_domain is zero, this function adds in the
2874  *              current read domains (CPU+COMMAND, 0).
2875  *              flush_domains is set to CPU.
2876  *              invalidate_domains is set to COMMAND
2877  *              clflush is run to get data out of the CPU caches
2878  *              then i915_dev_set_domain calls i915_gem_flush to
2879  *              emit an MI_FLUSH and drm_agp_chipset_flush
2880  *      5. Unmapped from GTT
2881  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2882  *              flush_domains and invalidate_domains end up both zero
2883  *              so no flushing/invalidating happens
2884  *      6. Freed
2885  *              yay, done
2886  *
2887  * Case 2: The shared render buffer
2888  *
2889  *      1. Allocated
2890  *      2. Mapped to GTT
2891  *      3. Read/written by GPU
2892  *      4. set_domain to (CPU,CPU)
2893  *      5. Read/written by CPU
2894  *      6. Read/written by GPU
2895  *
2896  *      1. Allocated
2897  *              Same as last example, (CPU, CPU)
2898  *      2. Mapped to GTT
2899  *              Nothing changes (assertions find that it is not in the GPU)
2900  *      3. Read/written by GPU
2901  *              execbuffer calls set_domain (RENDER, RENDER)
2902  *              flush_domains gets CPU
2903  *              invalidate_domains gets GPU
2904  *              clflush (obj)
2905  *              MI_FLUSH and drm_agp_chipset_flush
2906  *      4. set_domain (CPU, CPU)
2907  *              flush_domains gets GPU
2908  *              invalidate_domains gets CPU
2909  *              wait_rendering (obj) to make sure all drawing is complete.
2910  *              This will include an MI_FLUSH to get the data from GPU
2911  *              to memory
2912  *              clflush (obj) to invalidate the CPU cache
2913  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2914  *      5. Read/written by CPU
2915  *              cache lines are loaded and dirtied
2916  *      6. Read written by GPU
2917  *              Same as last GPU access
2918  *
2919  * Case 3: The constant buffer
2920  *
2921  *      1. Allocated
2922  *      2. Written by CPU
2923  *      3. Read by GPU
2924  *      4. Updated (written) by CPU again
2925  *      5. Read by GPU
2926  *
2927  *      1. Allocated
2928  *              (CPU, CPU)
2929  *      2. Written by CPU
2930  *              (CPU, CPU)
2931  *      3. Read by GPU
2932  *              (CPU+RENDER, 0)
2933  *              flush_domains = CPU
2934  *              invalidate_domains = RENDER
2935  *              clflush (obj)
2936  *              MI_FLUSH
2937  *              drm_agp_chipset_flush
2938  *      4. Updated (written) by CPU again
2939  *              (CPU, CPU)
2940  *              flush_domains = 0 (no previous write domain)
2941  *              invalidate_domains = 0 (no new read domains)
2942  *      5. Read by GPU
2943  *              (CPU+RENDER, 0)
2944  *              flush_domains = CPU
2945  *              invalidate_domains = RENDER
2946  *              clflush (obj)
2947  *              MI_FLUSH
2948  *              drm_agp_chipset_flush
2949  */
2950 static void
2951 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2952 {
2953         struct drm_device               *dev = obj->dev;
2954         drm_i915_private_t              *dev_priv = dev->dev_private;
2955         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
2956         uint32_t                        invalidate_domains = 0;
2957         uint32_t                        flush_domains = 0;
2958         uint32_t                        old_read_domains;
2959
2960         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2961         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2962
2963         intel_mark_busy(dev, obj);
2964
2965 #if WATCH_BUF
2966         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2967                  __func__, obj,
2968                  obj->read_domains, obj->pending_read_domains,
2969                  obj->write_domain, obj->pending_write_domain);
2970 #endif
2971         /*
2972          * If the object isn't moving to a new write domain,
2973          * let the object stay in multiple read domains
2974          */
2975         if (obj->pending_write_domain == 0)
2976                 obj->pending_read_domains |= obj->read_domains;
2977         else
2978                 obj_priv->dirty = 1;
2979
2980         /*
2981          * Flush the current write domain if
2982          * the new read domains don't match. Invalidate
2983          * any read domains which differ from the old
2984          * write domain
2985          */
2986         if (obj->write_domain &&
2987             obj->write_domain != obj->pending_read_domains) {
2988                 flush_domains |= obj->write_domain;
2989                 invalidate_domains |=
2990                         obj->pending_read_domains & ~obj->write_domain;
2991         }
2992         /*
2993          * Invalidate any read caches which may have
2994          * stale data. That is, any new read domains.
2995          */
2996         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2997         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2998 #if WATCH_BUF
2999                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3000                          __func__, flush_domains, invalidate_domains);
3001 #endif
3002                 i915_gem_clflush_object(obj);
3003         }
3004
3005         old_read_domains = obj->read_domains;
3006
3007         /* The actual obj->write_domain will be updated with
3008          * pending_write_domain after we emit the accumulated flush for all
3009          * of our domain changes in execbuffers (which clears objects'
3010          * write_domains).  So if we have a current write domain that we
3011          * aren't changing, set pending_write_domain to that.
3012          */
3013         if (flush_domains == 0 && obj->pending_write_domain == 0)
3014                 obj->pending_write_domain = obj->write_domain;
3015         obj->read_domains = obj->pending_read_domains;
3016
3017         if (flush_domains & I915_GEM_GPU_DOMAINS) {
3018                 if (obj_priv->ring == &dev_priv->render_ring)
3019                         dev_priv->flush_rings |= FLUSH_RENDER_RING;
3020                 else if (obj_priv->ring == &dev_priv->bsd_ring)
3021                         dev_priv->flush_rings |= FLUSH_BSD_RING;
3022         }
3023
3024         dev->invalidate_domains |= invalidate_domains;
3025         dev->flush_domains |= flush_domains;
3026 #if WATCH_BUF
3027         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3028                  __func__,
3029                  obj->read_domains, obj->write_domain,
3030                  dev->invalidate_domains, dev->flush_domains);
3031 #endif
3032
3033         trace_i915_gem_object_change_domain(obj,
3034                                             old_read_domains,
3035                                             obj->write_domain);
3036 }
3037
3038 /**
3039  * Moves the object from a partially CPU read to a full one.
3040  *
3041  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3042  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3043  */
3044 static void
3045 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3046 {
3047         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3048
3049         if (!obj_priv->page_cpu_valid)
3050                 return;
3051
3052         /* If we're partially in the CPU read domain, finish moving it in.
3053          */
3054         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3055                 int i;
3056
3057                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3058                         if (obj_priv->page_cpu_valid[i])
3059                                 continue;
3060                         drm_clflush_pages(obj_priv->pages + i, 1);
3061                 }
3062         }
3063
3064         /* Free the page_cpu_valid mappings which are now stale, whether
3065          * or not we've got I915_GEM_DOMAIN_CPU.
3066          */
3067         kfree(obj_priv->page_cpu_valid);
3068         obj_priv->page_cpu_valid = NULL;
3069 }
3070
3071 /**
3072  * Set the CPU read domain on a range of the object.
3073  *
3074  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3075  * not entirely valid.  The page_cpu_valid member of the object flags which
3076  * pages have been flushed, and will be respected by
3077  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3078  * of the whole object.
3079  *
3080  * This function returns when the move is complete, including waiting on
3081  * flushes to occur.
3082  */
3083 static int
3084 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3085                                           uint64_t offset, uint64_t size)
3086 {
3087         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3088         uint32_t old_read_domains;
3089         int i, ret;
3090
3091         if (offset == 0 && size == obj->size)
3092                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3093
3094         ret = i915_gem_object_flush_gpu_write_domain(obj);
3095         if (ret)
3096                 return ret;
3097
3098         /* Wait on any GPU rendering and flushing to occur. */
3099         ret = i915_gem_object_wait_rendering(obj);
3100         if (ret != 0)
3101                 return ret;
3102         i915_gem_object_flush_gtt_write_domain(obj);
3103
3104         /* If we're already fully in the CPU read domain, we're done. */
3105         if (obj_priv->page_cpu_valid == NULL &&
3106             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3107                 return 0;
3108
3109         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3110          * newly adding I915_GEM_DOMAIN_CPU
3111          */
3112         if (obj_priv->page_cpu_valid == NULL) {
3113                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3114                                                    GFP_KERNEL);
3115                 if (obj_priv->page_cpu_valid == NULL)
3116                         return -ENOMEM;
3117         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3118                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3119
3120         /* Flush the cache on any pages that are still invalid from the CPU's
3121          * perspective.
3122          */
3123         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3124              i++) {
3125                 if (obj_priv->page_cpu_valid[i])
3126                         continue;
3127
3128                 drm_clflush_pages(obj_priv->pages + i, 1);
3129
3130                 obj_priv->page_cpu_valid[i] = 1;
3131         }
3132
3133         /* It should now be out of any other write domains, and we can update
3134          * the domain values for our changes.
3135          */
3136         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3137
3138         old_read_domains = obj->read_domains;
3139         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3140
3141         trace_i915_gem_object_change_domain(obj,
3142                                             old_read_domains,
3143                                             obj->write_domain);
3144
3145         return 0;
3146 }
3147
3148 /**
3149  * Pin an object to the GTT and evaluate the relocations landing in it.
3150  */
3151 static int
3152 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3153                                  struct drm_file *file_priv,
3154                                  struct drm_i915_gem_exec_object2 *entry,
3155                                  struct drm_i915_gem_relocation_entry *relocs)
3156 {
3157         struct drm_device *dev = obj->dev;
3158         drm_i915_private_t *dev_priv = dev->dev_private;
3159         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3160         int i, ret;
3161         void __iomem *reloc_page;
3162         bool need_fence;
3163
3164         need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3165                      obj_priv->tiling_mode != I915_TILING_NONE;
3166
3167         /* Check fence reg constraints and rebind if necessary */
3168         if (need_fence &&
3169             !i915_gem_object_fence_offset_ok(obj,
3170                                              obj_priv->tiling_mode)) {
3171                 ret = i915_gem_object_unbind(obj);
3172                 if (ret)
3173                         return ret;
3174         }
3175
3176         /* Choose the GTT offset for our buffer and put it there. */
3177         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3178         if (ret)
3179                 return ret;
3180
3181         /*
3182          * Pre-965 chips need a fence register set up in order to
3183          * properly handle blits to/from tiled surfaces.
3184          */
3185         if (need_fence) {
3186                 ret = i915_gem_object_get_fence_reg(obj);
3187                 if (ret != 0) {
3188                         i915_gem_object_unpin(obj);
3189                         return ret;
3190                 }
3191         }
3192
3193         entry->offset = obj_priv->gtt_offset;
3194
3195         /* Apply the relocations, using the GTT aperture to avoid cache
3196          * flushing requirements.
3197          */
3198         for (i = 0; i < entry->relocation_count; i++) {
3199                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3200                 struct drm_gem_object *target_obj;
3201                 struct drm_i915_gem_object *target_obj_priv;
3202                 uint32_t reloc_val, reloc_offset;
3203                 uint32_t __iomem *reloc_entry;
3204
3205                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3206                                                    reloc->target_handle);
3207                 if (target_obj == NULL) {
3208                         i915_gem_object_unpin(obj);
3209                         return -EBADF;
3210                 }
3211                 target_obj_priv = to_intel_bo(target_obj);
3212
3213 #if WATCH_RELOC
3214                 DRM_INFO("%s: obj %p offset %08x target %d "
3215                          "read %08x write %08x gtt %08x "
3216                          "presumed %08x delta %08x\n",
3217                          __func__,
3218                          obj,
3219                          (int) reloc->offset,
3220                          (int) reloc->target_handle,
3221                          (int) reloc->read_domains,
3222                          (int) reloc->write_domain,
3223                          (int) target_obj_priv->gtt_offset,
3224                          (int) reloc->presumed_offset,
3225                          reloc->delta);
3226 #endif
3227
3228                 /* The target buffer should have appeared before us in the
3229                  * exec_object list, so it should have a GTT space bound by now.
3230                  */
3231                 if (target_obj_priv->gtt_space == NULL) {
3232                         DRM_ERROR("No GTT space found for object %d\n",
3233                                   reloc->target_handle);
3234                         drm_gem_object_unreference(target_obj);
3235                         i915_gem_object_unpin(obj);
3236                         return -EINVAL;
3237                 }
3238
3239                 /* Validate that the target is in a valid r/w GPU domain */
3240                 if (reloc->write_domain & (reloc->write_domain - 1)) {
3241                         DRM_ERROR("reloc with multiple write domains: "
3242                                   "obj %p target %d offset %d "
3243                                   "read %08x write %08x",
3244                                   obj, reloc->target_handle,
3245                                   (int) reloc->offset,
3246                                   reloc->read_domains,
3247                                   reloc->write_domain);
3248                         return -EINVAL;
3249                 }
3250                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3251                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3252                         DRM_ERROR("reloc with read/write CPU domains: "
3253                                   "obj %p target %d offset %d "
3254                                   "read %08x write %08x",
3255                                   obj, reloc->target_handle,
3256                                   (int) reloc->offset,
3257                                   reloc->read_domains,
3258                                   reloc->write_domain);
3259                         drm_gem_object_unreference(target_obj);
3260                         i915_gem_object_unpin(obj);
3261                         return -EINVAL;
3262                 }
3263                 if (reloc->write_domain && target_obj->pending_write_domain &&
3264                     reloc->write_domain != target_obj->pending_write_domain) {
3265                         DRM_ERROR("Write domain conflict: "
3266                                   "obj %p target %d offset %d "
3267                                   "new %08x old %08x\n",
3268                                   obj, reloc->target_handle,
3269                                   (int) reloc->offset,
3270                                   reloc->write_domain,
3271                                   target_obj->pending_write_domain);
3272                         drm_gem_object_unreference(target_obj);
3273                         i915_gem_object_unpin(obj);
3274                         return -EINVAL;
3275                 }
3276
3277                 target_obj->pending_read_domains |= reloc->read_domains;
3278                 target_obj->pending_write_domain |= reloc->write_domain;
3279
3280                 /* If the relocation already has the right value in it, no
3281                  * more work needs to be done.
3282                  */
3283                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3284                         drm_gem_object_unreference(target_obj);
3285                         continue;
3286                 }
3287
3288                 /* Check that the relocation address is valid... */
3289                 if (reloc->offset > obj->size - 4) {
3290                         DRM_ERROR("Relocation beyond object bounds: "
3291                                   "obj %p target %d offset %d size %d.\n",
3292                                   obj, reloc->target_handle,
3293                                   (int) reloc->offset, (int) obj->size);
3294                         drm_gem_object_unreference(target_obj);
3295                         i915_gem_object_unpin(obj);
3296                         return -EINVAL;
3297                 }
3298                 if (reloc->offset & 3) {
3299                         DRM_ERROR("Relocation not 4-byte aligned: "
3300                                   "obj %p target %d offset %d.\n",
3301                                   obj, reloc->target_handle,
3302                                   (int) reloc->offset);
3303                         drm_gem_object_unreference(target_obj);
3304                         i915_gem_object_unpin(obj);
3305                         return -EINVAL;
3306                 }
3307
3308                 /* and points to somewhere within the target object. */
3309                 if (reloc->delta >= target_obj->size) {
3310                         DRM_ERROR("Relocation beyond target object bounds: "
3311                                   "obj %p target %d delta %d size %d.\n",
3312                                   obj, reloc->target_handle,
3313                                   (int) reloc->delta, (int) target_obj->size);
3314                         drm_gem_object_unreference(target_obj);
3315                         i915_gem_object_unpin(obj);
3316                         return -EINVAL;
3317                 }
3318
3319                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3320                 if (ret != 0) {
3321                         drm_gem_object_unreference(target_obj);
3322                         i915_gem_object_unpin(obj);
3323                         return -EINVAL;
3324                 }
3325
3326                 /* Map the page containing the relocation we're going to
3327                  * perform.
3328                  */
3329                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3330                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3331                                                       (reloc_offset &
3332                                                        ~(PAGE_SIZE - 1)),
3333                                                       KM_USER0);
3334                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3335                                                    (reloc_offset & (PAGE_SIZE - 1)));
3336                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3337
3338 #if WATCH_BUF
3339                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3340                           obj, (unsigned int) reloc->offset,
3341                           readl(reloc_entry), reloc_val);
3342 #endif
3343                 writel(reloc_val, reloc_entry);
3344                 io_mapping_unmap_atomic(reloc_page, KM_USER0);
3345
3346                 /* The updated presumed offset for this entry will be
3347                  * copied back out to the user.
3348                  */
3349                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3350
3351                 drm_gem_object_unreference(target_obj);
3352         }
3353
3354 #if WATCH_BUF
3355         if (0)
3356                 i915_gem_dump_object(obj, 128, __func__, ~0);
3357 #endif
3358         return 0;
3359 }
3360
3361 /* Throttle our rendering by waiting until the ring has completed our requests
3362  * emitted over 20 msec ago.
3363  *
3364  * Note that if we were to use the current jiffies each time around the loop,
3365  * we wouldn't escape the function with any frames outstanding if the time to
3366  * render a frame was over 20ms.
3367  *
3368  * This should get us reasonable parallelism between CPU and GPU but also
3369  * relatively low latency when blocking on a particular request to finish.
3370  */
3371 static int
3372 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3373 {
3374         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3375         int ret = 0;
3376         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3377
3378         mutex_lock(&dev->struct_mutex);
3379         while (!list_empty(&i915_file_priv->mm.request_list)) {
3380                 struct drm_i915_gem_request *request;
3381
3382                 request = list_first_entry(&i915_file_priv->mm.request_list,
3383                                            struct drm_i915_gem_request,
3384                                            client_list);
3385
3386                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3387                         break;
3388
3389                 ret = i915_wait_request(dev, request->seqno, request->ring);
3390                 if (ret != 0)
3391                         break;
3392         }
3393         mutex_unlock(&dev->struct_mutex);
3394
3395         return ret;
3396 }
3397
3398 static int
3399 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3400                               uint32_t buffer_count,
3401                               struct drm_i915_gem_relocation_entry **relocs)
3402 {
3403         uint32_t reloc_count = 0, reloc_index = 0, i;
3404         int ret;
3405
3406         *relocs = NULL;
3407         for (i = 0; i < buffer_count; i++) {
3408                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3409                         return -EINVAL;
3410                 reloc_count += exec_list[i].relocation_count;
3411         }
3412
3413         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3414         if (*relocs == NULL) {
3415                 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3416                 return -ENOMEM;
3417         }
3418
3419         for (i = 0; i < buffer_count; i++) {
3420                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3421
3422                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3423
3424                 ret = copy_from_user(&(*relocs)[reloc_index],
3425                                      user_relocs,
3426                                      exec_list[i].relocation_count *
3427                                      sizeof(**relocs));
3428                 if (ret != 0) {
3429                         drm_free_large(*relocs);
3430                         *relocs = NULL;
3431                         return -EFAULT;
3432                 }
3433
3434                 reloc_index += exec_list[i].relocation_count;
3435         }
3436
3437         return 0;
3438 }
3439
3440 static int
3441 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3442                             uint32_t buffer_count,
3443                             struct drm_i915_gem_relocation_entry *relocs)
3444 {
3445         uint32_t reloc_count = 0, i;
3446         int ret = 0;
3447
3448         if (relocs == NULL)
3449             return 0;
3450
3451         for (i = 0; i < buffer_count; i++) {
3452                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3453                 int unwritten;
3454
3455                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3456
3457                 unwritten = copy_to_user(user_relocs,
3458                                          &relocs[reloc_count],
3459                                          exec_list[i].relocation_count *
3460                                          sizeof(*relocs));
3461
3462                 if (unwritten) {
3463                         ret = -EFAULT;
3464                         goto err;
3465                 }
3466
3467                 reloc_count += exec_list[i].relocation_count;
3468         }
3469
3470 err:
3471         drm_free_large(relocs);
3472
3473         return ret;
3474 }
3475
3476 static int
3477 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3478                            uint64_t exec_offset)
3479 {
3480         uint32_t exec_start, exec_len;
3481
3482         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3483         exec_len = (uint32_t) exec->batch_len;
3484
3485         if ((exec_start | exec_len) & 0x7)
3486                 return -EINVAL;
3487
3488         if (!exec_start)
3489                 return -EINVAL;
3490
3491         return 0;
3492 }
3493
3494 static int
3495 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3496                                struct drm_gem_object **object_list,
3497                                int count)
3498 {
3499         drm_i915_private_t *dev_priv = dev->dev_private;
3500         struct drm_i915_gem_object *obj_priv;
3501         DEFINE_WAIT(wait);
3502         int i, ret = 0;
3503
3504         for (;;) {
3505                 prepare_to_wait(&dev_priv->pending_flip_queue,
3506                                 &wait, TASK_INTERRUPTIBLE);
3507                 for (i = 0; i < count; i++) {
3508                         obj_priv = to_intel_bo(object_list[i]);
3509                         if (atomic_read(&obj_priv->pending_flip) > 0)
3510                                 break;
3511                 }
3512                 if (i == count)
3513                         break;
3514
3515                 if (!signal_pending(current)) {
3516                         mutex_unlock(&dev->struct_mutex);
3517                         schedule();
3518                         mutex_lock(&dev->struct_mutex);
3519                         continue;
3520                 }
3521                 ret = -ERESTARTSYS;
3522                 break;
3523         }
3524         finish_wait(&dev_priv->pending_flip_queue, &wait);
3525
3526         return ret;
3527 }
3528
3529
3530 int
3531 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3532                        struct drm_file *file_priv,
3533                        struct drm_i915_gem_execbuffer2 *args,
3534                        struct drm_i915_gem_exec_object2 *exec_list)
3535 {
3536         drm_i915_private_t *dev_priv = dev->dev_private;
3537         struct drm_gem_object **object_list = NULL;
3538         struct drm_gem_object *batch_obj;
3539         struct drm_i915_gem_object *obj_priv;
3540         struct drm_clip_rect *cliprects = NULL;
3541         struct drm_i915_gem_relocation_entry *relocs = NULL;
3542         int ret = 0, ret2, i, pinned = 0;
3543         uint64_t exec_offset;
3544         uint32_t seqno, flush_domains, reloc_index;
3545         int pin_tries, flips;
3546
3547         struct intel_ring_buffer *ring = NULL;
3548
3549 #if WATCH_EXEC
3550         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3551                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3552 #endif
3553         if (args->flags & I915_EXEC_BSD) {
3554                 if (!HAS_BSD(dev)) {
3555                         DRM_ERROR("execbuf with wrong flag\n");
3556                         return -EINVAL;
3557                 }
3558                 ring = &dev_priv->bsd_ring;
3559         } else {
3560                 ring = &dev_priv->render_ring;
3561         }
3562
3563         if (args->buffer_count < 1) {
3564                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3565                 return -EINVAL;
3566         }
3567         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3568         if (object_list == NULL) {
3569                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3570                           args->buffer_count);
3571                 ret = -ENOMEM;
3572                 goto pre_mutex_err;
3573         }
3574
3575         if (args->num_cliprects != 0) {
3576                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3577                                     GFP_KERNEL);
3578                 if (cliprects == NULL) {
3579                         ret = -ENOMEM;
3580                         goto pre_mutex_err;
3581                 }
3582
3583                 ret = copy_from_user(cliprects,
3584                                      (struct drm_clip_rect __user *)
3585                                      (uintptr_t) args->cliprects_ptr,
3586                                      sizeof(*cliprects) * args->num_cliprects);
3587                 if (ret != 0) {
3588                         DRM_ERROR("copy %d cliprects failed: %d\n",
3589                                   args->num_cliprects, ret);
3590                         goto pre_mutex_err;
3591                 }
3592         }
3593
3594         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3595                                             &relocs);
3596         if (ret != 0)
3597                 goto pre_mutex_err;
3598
3599         mutex_lock(&dev->struct_mutex);
3600
3601         i915_verify_inactive(dev, __FILE__, __LINE__);
3602
3603         if (atomic_read(&dev_priv->mm.wedged)) {
3604                 mutex_unlock(&dev->struct_mutex);
3605                 ret = -EIO;
3606                 goto pre_mutex_err;
3607         }
3608
3609         if (dev_priv->mm.suspended) {
3610                 mutex_unlock(&dev->struct_mutex);
3611                 ret = -EBUSY;
3612                 goto pre_mutex_err;
3613         }
3614
3615         /* Look up object handles */
3616         flips = 0;
3617         for (i = 0; i < args->buffer_count; i++) {
3618                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3619                                                        exec_list[i].handle);
3620                 if (object_list[i] == NULL) {
3621                         DRM_ERROR("Invalid object handle %d at index %d\n",
3622                                    exec_list[i].handle, i);
3623                         /* prevent error path from reading uninitialized data */
3624                         args->buffer_count = i + 1;
3625                         ret = -EBADF;
3626                         goto err;
3627                 }
3628
3629                 obj_priv = to_intel_bo(object_list[i]);
3630                 if (obj_priv->in_execbuffer) {
3631                         DRM_ERROR("Object %p appears more than once in object list\n",
3632                                    object_list[i]);
3633                         /* prevent error path from reading uninitialized data */
3634                         args->buffer_count = i + 1;
3635                         ret = -EBADF;
3636                         goto err;
3637                 }
3638                 obj_priv->in_execbuffer = true;
3639                 flips += atomic_read(&obj_priv->pending_flip);
3640         }
3641
3642         if (flips > 0) {
3643                 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3644                                                      args->buffer_count);
3645                 if (ret)
3646                         goto err;
3647         }
3648
3649         /* Pin and relocate */
3650         for (pin_tries = 0; ; pin_tries++) {
3651                 ret = 0;
3652                 reloc_index = 0;
3653
3654                 for (i = 0; i < args->buffer_count; i++) {
3655                         object_list[i]->pending_read_domains = 0;
3656                         object_list[i]->pending_write_domain = 0;
3657                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3658                                                                file_priv,
3659                                                                &exec_list[i],
3660                                                                &relocs[reloc_index]);
3661                         if (ret)
3662                                 break;
3663                         pinned = i + 1;
3664                         reloc_index += exec_list[i].relocation_count;
3665                 }
3666                 /* success */
3667                 if (ret == 0)
3668                         break;
3669
3670                 /* error other than GTT full, or we've already tried again */
3671                 if (ret != -ENOSPC || pin_tries >= 1) {
3672                         if (ret != -ERESTARTSYS) {
3673                                 unsigned long long total_size = 0;
3674                                 int num_fences = 0;
3675                                 for (i = 0; i < args->buffer_count; i++) {
3676                                         obj_priv = to_intel_bo(object_list[i]);
3677
3678                                         total_size += object_list[i]->size;
3679                                         num_fences +=
3680                                                 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3681                                                 obj_priv->tiling_mode != I915_TILING_NONE;
3682                                 }
3683                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3684                                           pinned+1, args->buffer_count,
3685                                           total_size, num_fences,
3686                                           ret);
3687                                 DRM_ERROR("%d objects [%d pinned], "
3688                                           "%d object bytes [%d pinned], "
3689                                           "%d/%d gtt bytes\n",
3690                                           atomic_read(&dev->object_count),
3691                                           atomic_read(&dev->pin_count),
3692                                           atomic_read(&dev->object_memory),
3693                                           atomic_read(&dev->pin_memory),
3694                                           atomic_read(&dev->gtt_memory),
3695                                           dev->gtt_total);
3696                         }
3697                         goto err;
3698                 }
3699
3700                 /* unpin all of our buffers */
3701                 for (i = 0; i < pinned; i++)
3702                         i915_gem_object_unpin(object_list[i]);
3703                 pinned = 0;
3704
3705                 /* evict everyone we can from the aperture */
3706                 ret = i915_gem_evict_everything(dev);
3707                 if (ret && ret != -ENOSPC)
3708                         goto err;
3709         }
3710
3711         /* Set the pending read domains for the batch buffer to COMMAND */
3712         batch_obj = object_list[args->buffer_count-1];
3713         if (batch_obj->pending_write_domain) {
3714                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3715                 ret = -EINVAL;
3716                 goto err;
3717         }
3718         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3719
3720         /* Sanity check the batch buffer, prior to moving objects */
3721         exec_offset = exec_list[args->buffer_count - 1].offset;
3722         ret = i915_gem_check_execbuffer (args, exec_offset);
3723         if (ret != 0) {
3724                 DRM_ERROR("execbuf with invalid offset/length\n");
3725                 goto err;
3726         }
3727
3728         i915_verify_inactive(dev, __FILE__, __LINE__);
3729
3730         /* Zero the global flush/invalidate flags. These
3731          * will be modified as new domains are computed
3732          * for each object
3733          */
3734         dev->invalidate_domains = 0;
3735         dev->flush_domains = 0;
3736         dev_priv->flush_rings = 0;
3737
3738         for (i = 0; i < args->buffer_count; i++) {
3739                 struct drm_gem_object *obj = object_list[i];
3740
3741                 /* Compute new gpu domains and update invalidate/flush */
3742                 i915_gem_object_set_to_gpu_domain(obj);
3743         }
3744
3745         i915_verify_inactive(dev, __FILE__, __LINE__);
3746
3747         if (dev->invalidate_domains | dev->flush_domains) {
3748 #if WATCH_EXEC
3749                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3750                           __func__,
3751                          dev->invalidate_domains,
3752                          dev->flush_domains);
3753 #endif
3754                 i915_gem_flush(dev,
3755                                dev->invalidate_domains,
3756                                dev->flush_domains);
3757                 if (dev_priv->flush_rings & FLUSH_RENDER_RING)
3758                         (void)i915_add_request(dev, file_priv,
3759                                                dev->flush_domains,
3760                                                &dev_priv->render_ring);
3761                 if (dev_priv->flush_rings & FLUSH_BSD_RING)
3762                         (void)i915_add_request(dev, file_priv,
3763                                                dev->flush_domains,
3764                                                &dev_priv->bsd_ring);
3765         }
3766
3767         for (i = 0; i < args->buffer_count; i++) {
3768                 struct drm_gem_object *obj = object_list[i];
3769                 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3770                 uint32_t old_write_domain = obj->write_domain;
3771
3772                 obj->write_domain = obj->pending_write_domain;
3773                 if (obj->write_domain)
3774                         list_move_tail(&obj_priv->gpu_write_list,
3775                                        &dev_priv->mm.gpu_write_list);
3776                 else
3777                         list_del_init(&obj_priv->gpu_write_list);
3778
3779                 trace_i915_gem_object_change_domain(obj,
3780                                                     obj->read_domains,
3781                                                     old_write_domain);
3782         }
3783
3784         i915_verify_inactive(dev, __FILE__, __LINE__);
3785
3786 #if WATCH_COHERENCY
3787         for (i = 0; i < args->buffer_count; i++) {
3788                 i915_gem_object_check_coherency(object_list[i],
3789                                                 exec_list[i].handle);
3790         }
3791 #endif
3792
3793 #if WATCH_EXEC
3794         i915_gem_dump_object(batch_obj,
3795                               args->batch_len,
3796                               __func__,
3797                               ~0);
3798 #endif
3799
3800         /* Exec the batchbuffer */
3801         ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3802                         cliprects, exec_offset);
3803         if (ret) {
3804                 DRM_ERROR("dispatch failed %d\n", ret);
3805                 goto err;
3806         }
3807
3808         /*
3809          * Ensure that the commands in the batch buffer are
3810          * finished before the interrupt fires
3811          */
3812         flush_domains = i915_retire_commands(dev, ring);
3813
3814         i915_verify_inactive(dev, __FILE__, __LINE__);
3815
3816         /*
3817          * Get a seqno representing the execution of the current buffer,
3818          * which we can wait on.  We would like to mitigate these interrupts,
3819          * likely by only creating seqnos occasionally (so that we have
3820          * *some* interrupts representing completion of buffers that we can
3821          * wait on when trying to clear up gtt space).
3822          */
3823         seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3824         BUG_ON(seqno == 0);
3825         for (i = 0; i < args->buffer_count; i++) {
3826                 struct drm_gem_object *obj = object_list[i];
3827                 obj_priv = to_intel_bo(obj);
3828
3829                 i915_gem_object_move_to_active(obj, seqno, ring);
3830 #if WATCH_LRU
3831                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3832 #endif
3833         }
3834 #if WATCH_LRU
3835         i915_dump_lru(dev, __func__);
3836 #endif
3837
3838         i915_verify_inactive(dev, __FILE__, __LINE__);
3839
3840 err:
3841         for (i = 0; i < pinned; i++)
3842                 i915_gem_object_unpin(object_list[i]);
3843
3844         for (i = 0; i < args->buffer_count; i++) {
3845                 if (object_list[i]) {
3846                         obj_priv = to_intel_bo(object_list[i]);
3847                         obj_priv->in_execbuffer = false;
3848                 }
3849                 drm_gem_object_unreference(object_list[i]);
3850         }
3851
3852         mutex_unlock(&dev->struct_mutex);
3853
3854 pre_mutex_err:
3855         /* Copy the updated relocations out regardless of current error
3856          * state.  Failure to update the relocs would mean that the next
3857          * time userland calls execbuf, it would do so with presumed offset
3858          * state that didn't match the actual object state.
3859          */
3860         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3861                                            relocs);
3862         if (ret2 != 0) {
3863                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3864
3865                 if (ret == 0)
3866                         ret = ret2;
3867         }
3868
3869         drm_free_large(object_list);
3870         kfree(cliprects);
3871
3872         return ret;
3873 }
3874
3875 /*
3876  * Legacy execbuffer just creates an exec2 list from the original exec object
3877  * list array and passes it to the real function.
3878  */
3879 int
3880 i915_gem_execbuffer(struct drm_device *dev, void *data,
3881                     struct drm_file *file_priv)
3882 {
3883         struct drm_i915_gem_execbuffer *args = data;
3884         struct drm_i915_gem_execbuffer2 exec2;
3885         struct drm_i915_gem_exec_object *exec_list = NULL;
3886         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3887         int ret, i;
3888
3889 #if WATCH_EXEC
3890         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3891                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3892 #endif
3893
3894         if (args->buffer_count < 1) {
3895                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3896                 return -EINVAL;
3897         }
3898
3899         /* Copy in the exec list from userland */
3900         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3901         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3902         if (exec_list == NULL || exec2_list == NULL) {
3903                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3904                           args->buffer_count);
3905                 drm_free_large(exec_list);
3906                 drm_free_large(exec2_list);
3907                 return -ENOMEM;
3908         }
3909         ret = copy_from_user(exec_list,
3910                              (struct drm_i915_relocation_entry __user *)
3911                              (uintptr_t) args->buffers_ptr,
3912                              sizeof(*exec_list) * args->buffer_count);
3913         if (ret != 0) {
3914                 DRM_ERROR("copy %d exec entries failed %d\n",
3915                           args->buffer_count, ret);
3916                 drm_free_large(exec_list);
3917                 drm_free_large(exec2_list);
3918                 return -EFAULT;
3919         }
3920
3921         for (i = 0; i < args->buffer_count; i++) {
3922                 exec2_list[i].handle = exec_list[i].handle;
3923                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3924                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3925                 exec2_list[i].alignment = exec_list[i].alignment;
3926                 exec2_list[i].offset = exec_list[i].offset;
3927                 if (!IS_I965G(dev))
3928                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3929                 else
3930                         exec2_list[i].flags = 0;
3931         }
3932
3933         exec2.buffers_ptr = args->buffers_ptr;
3934         exec2.buffer_count = args->buffer_count;
3935         exec2.batch_start_offset = args->batch_start_offset;
3936         exec2.batch_len = args->batch_len;
3937         exec2.DR1 = args->DR1;
3938         exec2.DR4 = args->DR4;
3939         exec2.num_cliprects = args->num_cliprects;
3940         exec2.cliprects_ptr = args->cliprects_ptr;
3941         exec2.flags = I915_EXEC_RENDER;
3942
3943         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3944         if (!ret) {
3945                 /* Copy the new buffer offsets back to the user's exec list. */
3946                 for (i = 0; i < args->buffer_count; i++)
3947                         exec_list[i].offset = exec2_list[i].offset;
3948                 /* ... and back out to userspace */
3949                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3950                                    (uintptr_t) args->buffers_ptr,
3951                                    exec_list,
3952                                    sizeof(*exec_list) * args->buffer_count);
3953                 if (ret) {
3954                         ret = -EFAULT;
3955                         DRM_ERROR("failed to copy %d exec entries "
3956                                   "back to user (%d)\n",
3957                                   args->buffer_count, ret);
3958                 }
3959         }
3960
3961         drm_free_large(exec_list);
3962         drm_free_large(exec2_list);
3963         return ret;
3964 }
3965
3966 int
3967 i915_gem_execbuffer2(struct drm_device *dev, void *data,
3968                      struct drm_file *file_priv)
3969 {
3970         struct drm_i915_gem_execbuffer2 *args = data;
3971         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3972         int ret;
3973
3974 #if WATCH_EXEC
3975         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3976                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3977 #endif
3978
3979         if (args->buffer_count < 1) {
3980                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
3981                 return -EINVAL;
3982         }
3983
3984         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3985         if (exec2_list == NULL) {
3986                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3987                           args->buffer_count);
3988                 return -ENOMEM;
3989         }
3990         ret = copy_from_user(exec2_list,
3991                              (struct drm_i915_relocation_entry __user *)
3992                              (uintptr_t) args->buffers_ptr,
3993                              sizeof(*exec2_list) * args->buffer_count);
3994         if (ret != 0) {
3995                 DRM_ERROR("copy %d exec entries failed %d\n",
3996                           args->buffer_count, ret);
3997                 drm_free_large(exec2_list);
3998                 return -EFAULT;
3999         }
4000
4001         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4002         if (!ret) {
4003                 /* Copy the new buffer offsets back to the user's exec list. */
4004                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4005                                    (uintptr_t) args->buffers_ptr,
4006                                    exec2_list,
4007                                    sizeof(*exec2_list) * args->buffer_count);
4008                 if (ret) {
4009                         ret = -EFAULT;
4010                         DRM_ERROR("failed to copy %d exec entries "
4011                                   "back to user (%d)\n",
4012                                   args->buffer_count, ret);
4013                 }
4014         }
4015
4016         drm_free_large(exec2_list);
4017         return ret;
4018 }
4019
4020 int
4021 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4022 {
4023         struct drm_device *dev = obj->dev;
4024         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4025         int ret;
4026
4027         BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4028
4029         i915_verify_inactive(dev, __FILE__, __LINE__);
4030
4031         if (obj_priv->gtt_space != NULL) {
4032                 if (alignment == 0)
4033                         alignment = i915_gem_get_gtt_alignment(obj);
4034                 if (obj_priv->gtt_offset & (alignment - 1)) {
4035                         WARN(obj_priv->pin_count,
4036                              "bo is already pinned with incorrect alignment:"
4037                              " offset=%x, req.alignment=%x\n",
4038                              obj_priv->gtt_offset, alignment);
4039                         ret = i915_gem_object_unbind(obj);
4040                         if (ret)
4041                                 return ret;
4042                 }
4043         }
4044
4045         if (obj_priv->gtt_space == NULL) {
4046                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4047                 if (ret)
4048                         return ret;
4049         }
4050
4051         obj_priv->pin_count++;
4052
4053         /* If the object is not active and not pending a flush,
4054          * remove it from the inactive list
4055          */
4056         if (obj_priv->pin_count == 1) {
4057                 atomic_inc(&dev->pin_count);
4058                 atomic_add(obj->size, &dev->pin_memory);
4059                 if (!obj_priv->active &&
4060                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4061                         list_del_init(&obj_priv->list);
4062         }
4063         i915_verify_inactive(dev, __FILE__, __LINE__);
4064
4065         return 0;
4066 }
4067
4068 void
4069 i915_gem_object_unpin(struct drm_gem_object *obj)
4070 {
4071         struct drm_device *dev = obj->dev;
4072         drm_i915_private_t *dev_priv = dev->dev_private;
4073         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4074
4075         i915_verify_inactive(dev, __FILE__, __LINE__);
4076         obj_priv->pin_count--;
4077         BUG_ON(obj_priv->pin_count < 0);
4078         BUG_ON(obj_priv->gtt_space == NULL);
4079
4080         /* If the object is no longer pinned, and is
4081          * neither active nor being flushed, then stick it on
4082          * the inactive list
4083          */
4084         if (obj_priv->pin_count == 0) {
4085                 if (!obj_priv->active &&
4086                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4087                         list_move_tail(&obj_priv->list,
4088                                        &dev_priv->mm.inactive_list);
4089                 atomic_dec(&dev->pin_count);
4090                 atomic_sub(obj->size, &dev->pin_memory);
4091         }
4092         i915_verify_inactive(dev, __FILE__, __LINE__);
4093 }
4094
4095 int
4096 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4097                    struct drm_file *file_priv)
4098 {
4099         struct drm_i915_gem_pin *args = data;
4100         struct drm_gem_object *obj;
4101         struct drm_i915_gem_object *obj_priv;
4102         int ret;
4103
4104         mutex_lock(&dev->struct_mutex);
4105
4106         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4107         if (obj == NULL) {
4108                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4109                           args->handle);
4110                 mutex_unlock(&dev->struct_mutex);
4111                 return -EBADF;
4112         }
4113         obj_priv = to_intel_bo(obj);
4114
4115         if (obj_priv->madv != I915_MADV_WILLNEED) {
4116                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4117                 drm_gem_object_unreference(obj);
4118                 mutex_unlock(&dev->struct_mutex);
4119                 return -EINVAL;
4120         }
4121
4122         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4123                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4124                           args->handle);
4125                 drm_gem_object_unreference(obj);
4126                 mutex_unlock(&dev->struct_mutex);
4127                 return -EINVAL;
4128         }
4129
4130         obj_priv->user_pin_count++;
4131         obj_priv->pin_filp = file_priv;
4132         if (obj_priv->user_pin_count == 1) {
4133                 ret = i915_gem_object_pin(obj, args->alignment);
4134                 if (ret != 0) {
4135                         drm_gem_object_unreference(obj);
4136                         mutex_unlock(&dev->struct_mutex);
4137                         return ret;
4138                 }
4139         }
4140
4141         /* XXX - flush the CPU caches for pinned objects
4142          * as the X server doesn't manage domains yet
4143          */
4144         i915_gem_object_flush_cpu_write_domain(obj);
4145         args->offset = obj_priv->gtt_offset;
4146         drm_gem_object_unreference(obj);
4147         mutex_unlock(&dev->struct_mutex);
4148
4149         return 0;
4150 }
4151
4152 int
4153 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4154                      struct drm_file *file_priv)
4155 {
4156         struct drm_i915_gem_pin *args = data;
4157         struct drm_gem_object *obj;
4158         struct drm_i915_gem_object *obj_priv;
4159
4160         mutex_lock(&dev->struct_mutex);
4161
4162         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4163         if (obj == NULL) {
4164                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4165                           args->handle);
4166                 mutex_unlock(&dev->struct_mutex);
4167                 return -EBADF;
4168         }
4169
4170         obj_priv = to_intel_bo(obj);
4171         if (obj_priv->pin_filp != file_priv) {
4172                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4173                           args->handle);
4174                 drm_gem_object_unreference(obj);
4175                 mutex_unlock(&dev->struct_mutex);
4176                 return -EINVAL;
4177         }
4178         obj_priv->user_pin_count--;
4179         if (obj_priv->user_pin_count == 0) {
4180                 obj_priv->pin_filp = NULL;
4181                 i915_gem_object_unpin(obj);
4182         }
4183
4184         drm_gem_object_unreference(obj);
4185         mutex_unlock(&dev->struct_mutex);
4186         return 0;
4187 }
4188
4189 int
4190 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4191                     struct drm_file *file_priv)
4192 {
4193         struct drm_i915_gem_busy *args = data;
4194         struct drm_gem_object *obj;
4195         struct drm_i915_gem_object *obj_priv;
4196
4197         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4198         if (obj == NULL) {
4199                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4200                           args->handle);
4201                 return -EBADF;
4202         }
4203
4204         mutex_lock(&dev->struct_mutex);
4205
4206         /* Count all active objects as busy, even if they are currently not used
4207          * by the gpu. Users of this interface expect objects to eventually
4208          * become non-busy without any further actions, therefore emit any
4209          * necessary flushes here.
4210          */
4211         obj_priv = to_intel_bo(obj);
4212         args->busy = obj_priv->active;
4213         if (args->busy) {
4214                 /* Unconditionally flush objects, even when the gpu still uses this
4215                  * object. Userspace calling this function indicates that it wants to
4216                  * use this buffer rather sooner than later, so issuing the required
4217                  * flush earlier is beneficial.
4218                  */
4219                 if (obj->write_domain) {
4220                         i915_gem_flush(dev, 0, obj->write_domain);
4221                         (void)i915_add_request(dev, file_priv, obj->write_domain, obj_priv->ring);
4222                 }
4223
4224                 /* Update the active list for the hardware's current position.
4225                  * Otherwise this only updates on a delayed timer or when irqs
4226                  * are actually unmasked, and our working set ends up being
4227                  * larger than required.
4228                  */
4229                 i915_gem_retire_requests_ring(dev, obj_priv->ring);
4230
4231                 args->busy = obj_priv->active;
4232         }
4233
4234         drm_gem_object_unreference(obj);
4235         mutex_unlock(&dev->struct_mutex);
4236         return 0;
4237 }
4238
4239 int
4240 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4241                         struct drm_file *file_priv)
4242 {
4243     return i915_gem_ring_throttle(dev, file_priv);
4244 }
4245
4246 int
4247 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4248                        struct drm_file *file_priv)
4249 {
4250         struct drm_i915_gem_madvise *args = data;
4251         struct drm_gem_object *obj;
4252         struct drm_i915_gem_object *obj_priv;
4253
4254         switch (args->madv) {
4255         case I915_MADV_DONTNEED:
4256         case I915_MADV_WILLNEED:
4257             break;
4258         default:
4259             return -EINVAL;
4260         }
4261
4262         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4263         if (obj == NULL) {
4264                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4265                           args->handle);
4266                 return -EBADF;
4267         }
4268
4269         mutex_lock(&dev->struct_mutex);
4270         obj_priv = to_intel_bo(obj);
4271
4272         if (obj_priv->pin_count) {
4273                 drm_gem_object_unreference(obj);
4274                 mutex_unlock(&dev->struct_mutex);
4275
4276                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4277                 return -EINVAL;
4278         }
4279
4280         if (obj_priv->madv != __I915_MADV_PURGED)
4281                 obj_priv->madv = args->madv;
4282
4283         /* if the object is no longer bound, discard its backing storage */
4284         if (i915_gem_object_is_purgeable(obj_priv) &&
4285             obj_priv->gtt_space == NULL)
4286                 i915_gem_object_truncate(obj);
4287
4288         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4289
4290         drm_gem_object_unreference(obj);
4291         mutex_unlock(&dev->struct_mutex);
4292
4293         return 0;
4294 }
4295
4296 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4297                                               size_t size)
4298 {
4299         struct drm_i915_gem_object *obj;
4300
4301         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4302         if (obj == NULL)
4303                 return NULL;
4304
4305         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4306                 kfree(obj);
4307                 return NULL;
4308         }
4309
4310         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4311         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4312
4313         obj->agp_type = AGP_USER_MEMORY;
4314         obj->base.driver_private = NULL;
4315         obj->fence_reg = I915_FENCE_REG_NONE;
4316         INIT_LIST_HEAD(&obj->list);
4317         INIT_LIST_HEAD(&obj->gpu_write_list);
4318         obj->madv = I915_MADV_WILLNEED;
4319
4320         trace_i915_gem_object_create(&obj->base);
4321
4322         return &obj->base;
4323 }
4324
4325 int i915_gem_init_object(struct drm_gem_object *obj)
4326 {
4327         BUG();
4328
4329         return 0;
4330 }
4331
4332 static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4333 {
4334         struct drm_device *dev = obj->dev;
4335         drm_i915_private_t *dev_priv = dev->dev_private;
4336         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4337         int ret;
4338
4339         ret = i915_gem_object_unbind(obj);
4340         if (ret == -ERESTARTSYS) {
4341                 list_move(&obj_priv->list,
4342                           &dev_priv->mm.deferred_free_list);
4343                 return;
4344         }
4345
4346         if (obj_priv->mmap_offset)
4347                 i915_gem_free_mmap_offset(obj);
4348
4349         drm_gem_object_release(obj);
4350
4351         kfree(obj_priv->page_cpu_valid);
4352         kfree(obj_priv->bit_17);
4353         kfree(obj_priv);
4354 }
4355
4356 void i915_gem_free_object(struct drm_gem_object *obj)
4357 {
4358         struct drm_device *dev = obj->dev;
4359         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4360
4361         trace_i915_gem_object_destroy(obj);
4362
4363         while (obj_priv->pin_count > 0)
4364                 i915_gem_object_unpin(obj);
4365
4366         if (obj_priv->phys_obj)
4367                 i915_gem_detach_phys_object(dev, obj);
4368
4369         i915_gem_free_object_tail(obj);
4370 }
4371
4372 int
4373 i915_gem_idle(struct drm_device *dev)
4374 {
4375         drm_i915_private_t *dev_priv = dev->dev_private;
4376         int ret;
4377
4378         mutex_lock(&dev->struct_mutex);
4379
4380         if (dev_priv->mm.suspended ||
4381                         (dev_priv->render_ring.gem_object == NULL) ||
4382                         (HAS_BSD(dev) &&
4383                          dev_priv->bsd_ring.gem_object == NULL)) {
4384                 mutex_unlock(&dev->struct_mutex);
4385                 return 0;
4386         }
4387
4388         ret = i915_gpu_idle(dev);
4389         if (ret) {
4390                 mutex_unlock(&dev->struct_mutex);
4391                 return ret;
4392         }
4393
4394         /* Under UMS, be paranoid and evict. */
4395         if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4396                 ret = i915_gem_evict_inactive(dev);
4397                 if (ret) {
4398                         mutex_unlock(&dev->struct_mutex);
4399                         return ret;
4400                 }
4401         }
4402
4403         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4404          * We need to replace this with a semaphore, or something.
4405          * And not confound mm.suspended!
4406          */
4407         dev_priv->mm.suspended = 1;
4408         del_timer(&dev_priv->hangcheck_timer);
4409
4410         i915_kernel_lost_context(dev);
4411         i915_gem_cleanup_ringbuffer(dev);
4412
4413         mutex_unlock(&dev->struct_mutex);
4414
4415         /* Cancel the retire work handler, which should be idle now. */
4416         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4417
4418         return 0;
4419 }
4420
4421 /*
4422  * 965+ support PIPE_CONTROL commands, which provide finer grained control
4423  * over cache flushing.
4424  */
4425 static int
4426 i915_gem_init_pipe_control(struct drm_device *dev)
4427 {
4428         drm_i915_private_t *dev_priv = dev->dev_private;
4429         struct drm_gem_object *obj;
4430         struct drm_i915_gem_object *obj_priv;
4431         int ret;
4432
4433         obj = i915_gem_alloc_object(dev, 4096);
4434         if (obj == NULL) {
4435                 DRM_ERROR("Failed to allocate seqno page\n");
4436                 ret = -ENOMEM;
4437                 goto err;
4438         }
4439         obj_priv = to_intel_bo(obj);
4440         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4441
4442         ret = i915_gem_object_pin(obj, 4096);
4443         if (ret)
4444                 goto err_unref;
4445
4446         dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4447         dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
4448         if (dev_priv->seqno_page == NULL)
4449                 goto err_unpin;
4450
4451         dev_priv->seqno_obj = obj;
4452         memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4453
4454         return 0;
4455
4456 err_unpin:
4457         i915_gem_object_unpin(obj);
4458 err_unref:
4459         drm_gem_object_unreference(obj);
4460 err:
4461         return ret;
4462 }
4463
4464
4465 static void
4466 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4467 {
4468         drm_i915_private_t *dev_priv = dev->dev_private;
4469         struct drm_gem_object *obj;
4470         struct drm_i915_gem_object *obj_priv;
4471
4472         obj = dev_priv->seqno_obj;
4473         obj_priv = to_intel_bo(obj);
4474         kunmap(obj_priv->pages[0]);
4475         i915_gem_object_unpin(obj);
4476         drm_gem_object_unreference(obj);
4477         dev_priv->seqno_obj = NULL;
4478
4479         dev_priv->seqno_page = NULL;
4480 }
4481
4482 int
4483 i915_gem_init_ringbuffer(struct drm_device *dev)
4484 {
4485         drm_i915_private_t *dev_priv = dev->dev_private;
4486         int ret;
4487
4488         dev_priv->render_ring = render_ring;
4489
4490         if (!I915_NEED_GFX_HWS(dev)) {
4491                 dev_priv->render_ring.status_page.page_addr
4492                         = dev_priv->status_page_dmah->vaddr;
4493                 memset(dev_priv->render_ring.status_page.page_addr,
4494                                 0, PAGE_SIZE);
4495         }
4496
4497         if (HAS_PIPE_CONTROL(dev)) {
4498                 ret = i915_gem_init_pipe_control(dev);
4499                 if (ret)
4500                         return ret;
4501         }
4502
4503         ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4504         if (ret)
4505                 goto cleanup_pipe_control;
4506
4507         if (HAS_BSD(dev)) {
4508                 dev_priv->bsd_ring = bsd_ring;
4509                 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4510                 if (ret)
4511                         goto cleanup_render_ring;
4512         }
4513
4514         dev_priv->next_seqno = 1;
4515
4516         return 0;
4517
4518 cleanup_render_ring:
4519         intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4520 cleanup_pipe_control:
4521         if (HAS_PIPE_CONTROL(dev))
4522                 i915_gem_cleanup_pipe_control(dev);
4523         return ret;
4524 }
4525
4526 void
4527 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4528 {
4529         drm_i915_private_t *dev_priv = dev->dev_private;
4530
4531         intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4532         if (HAS_BSD(dev))
4533                 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4534         if (HAS_PIPE_CONTROL(dev))
4535                 i915_gem_cleanup_pipe_control(dev);
4536 }
4537
4538 int
4539 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4540                        struct drm_file *file_priv)
4541 {
4542         drm_i915_private_t *dev_priv = dev->dev_private;
4543         int ret;
4544
4545         if (drm_core_check_feature(dev, DRIVER_MODESET))
4546                 return 0;
4547
4548         if (atomic_read(&dev_priv->mm.wedged)) {
4549                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4550                 atomic_set(&dev_priv->mm.wedged, 0);
4551         }
4552
4553         mutex_lock(&dev->struct_mutex);
4554         dev_priv->mm.suspended = 0;
4555
4556         ret = i915_gem_init_ringbuffer(dev);
4557         if (ret != 0) {
4558                 mutex_unlock(&dev->struct_mutex);
4559                 return ret;
4560         }
4561
4562         spin_lock(&dev_priv->mm.active_list_lock);
4563         BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4564         BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4565         spin_unlock(&dev_priv->mm.active_list_lock);
4566
4567         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4568         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4569         BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4570         BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4571         mutex_unlock(&dev->struct_mutex);
4572
4573         ret = drm_irq_install(dev);
4574         if (ret)
4575                 goto cleanup_ringbuffer;
4576
4577         return 0;
4578
4579 cleanup_ringbuffer:
4580         mutex_lock(&dev->struct_mutex);
4581         i915_gem_cleanup_ringbuffer(dev);
4582         dev_priv->mm.suspended = 1;
4583         mutex_unlock(&dev->struct_mutex);
4584
4585         return ret;
4586 }
4587
4588 int
4589 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4590                        struct drm_file *file_priv)
4591 {
4592         if (drm_core_check_feature(dev, DRIVER_MODESET))
4593                 return 0;
4594
4595         drm_irq_uninstall(dev);
4596         return i915_gem_idle(dev);
4597 }
4598
4599 void
4600 i915_gem_lastclose(struct drm_device *dev)
4601 {
4602         int ret;
4603
4604         if (drm_core_check_feature(dev, DRIVER_MODESET))
4605                 return;
4606
4607         ret = i915_gem_idle(dev);
4608         if (ret)
4609                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4610 }
4611
4612 void
4613 i915_gem_load(struct drm_device *dev)
4614 {
4615         int i;
4616         drm_i915_private_t *dev_priv = dev->dev_private;
4617
4618         spin_lock_init(&dev_priv->mm.active_list_lock);
4619         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4620         INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4621         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4622         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4623         INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4624         INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4625         INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4626         if (HAS_BSD(dev)) {
4627                 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4628                 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4629         }
4630         for (i = 0; i < 16; i++)
4631                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4632         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4633                           i915_gem_retire_work_handler);
4634         spin_lock(&shrink_list_lock);
4635         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4636         spin_unlock(&shrink_list_lock);
4637
4638         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4639         if (IS_GEN3(dev)) {
4640                 u32 tmp = I915_READ(MI_ARB_STATE);
4641                 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
4642                         /* arb state is a masked write, so set bit + bit in mask */
4643                         tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
4644                         I915_WRITE(MI_ARB_STATE, tmp);
4645                 }
4646         }
4647
4648         /* Old X drivers will take 0-2 for front, back, depth buffers */
4649         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4650                 dev_priv->fence_reg_start = 3;
4651
4652         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4653                 dev_priv->num_fence_regs = 16;
4654         else
4655                 dev_priv->num_fence_regs = 8;
4656
4657         /* Initialize fence registers to zero */
4658         if (IS_I965G(dev)) {
4659                 for (i = 0; i < 16; i++)
4660                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4661         } else {
4662                 for (i = 0; i < 8; i++)
4663                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4664                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4665                         for (i = 0; i < 8; i++)
4666                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4667         }
4668         i915_gem_detect_bit_6_swizzle(dev);
4669         init_waitqueue_head(&dev_priv->pending_flip_queue);
4670 }
4671
4672 /*
4673  * Create a physically contiguous memory object for this object
4674  * e.g. for cursor + overlay regs
4675  */
4676 int i915_gem_init_phys_object(struct drm_device *dev,
4677                               int id, int size, int align)
4678 {
4679         drm_i915_private_t *dev_priv = dev->dev_private;
4680         struct drm_i915_gem_phys_object *phys_obj;
4681         int ret;
4682
4683         if (dev_priv->mm.phys_objs[id - 1] || !size)
4684                 return 0;
4685
4686         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4687         if (!phys_obj)
4688                 return -ENOMEM;
4689
4690         phys_obj->id = id;
4691
4692         phys_obj->handle = drm_pci_alloc(dev, size, align);
4693         if (!phys_obj->handle) {
4694                 ret = -ENOMEM;
4695                 goto kfree_obj;
4696         }
4697 #ifdef CONFIG_X86
4698         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4699 #endif
4700
4701         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4702
4703         return 0;
4704 kfree_obj:
4705         kfree(phys_obj);
4706         return ret;
4707 }
4708
4709 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4710 {
4711         drm_i915_private_t *dev_priv = dev->dev_private;
4712         struct drm_i915_gem_phys_object *phys_obj;
4713
4714         if (!dev_priv->mm.phys_objs[id - 1])
4715                 return;
4716
4717         phys_obj = dev_priv->mm.phys_objs[id - 1];
4718         if (phys_obj->cur_obj) {
4719                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4720         }
4721
4722 #ifdef CONFIG_X86
4723         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4724 #endif
4725         drm_pci_free(dev, phys_obj->handle);
4726         kfree(phys_obj);
4727         dev_priv->mm.phys_objs[id - 1] = NULL;
4728 }
4729
4730 void i915_gem_free_all_phys_object(struct drm_device *dev)
4731 {
4732         int i;
4733
4734         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4735                 i915_gem_free_phys_object(dev, i);
4736 }
4737
4738 void i915_gem_detach_phys_object(struct drm_device *dev,
4739                                  struct drm_gem_object *obj)
4740 {
4741         struct drm_i915_gem_object *obj_priv;
4742         int i;
4743         int ret;
4744         int page_count;
4745
4746         obj_priv = to_intel_bo(obj);
4747         if (!obj_priv->phys_obj)
4748                 return;
4749
4750         ret = i915_gem_object_get_pages(obj, 0);
4751         if (ret)
4752                 goto out;
4753
4754         page_count = obj->size / PAGE_SIZE;
4755
4756         for (i = 0; i < page_count; i++) {
4757                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4758                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4759
4760                 memcpy(dst, src, PAGE_SIZE);
4761                 kunmap_atomic(dst, KM_USER0);
4762         }
4763         drm_clflush_pages(obj_priv->pages, page_count);
4764         drm_agp_chipset_flush(dev);
4765
4766         i915_gem_object_put_pages(obj);
4767 out:
4768         obj_priv->phys_obj->cur_obj = NULL;
4769         obj_priv->phys_obj = NULL;
4770 }
4771
4772 int
4773 i915_gem_attach_phys_object(struct drm_device *dev,
4774                             struct drm_gem_object *obj,
4775                             int id,
4776                             int align)
4777 {
4778         drm_i915_private_t *dev_priv = dev->dev_private;
4779         struct drm_i915_gem_object *obj_priv;
4780         int ret = 0;
4781         int page_count;
4782         int i;
4783
4784         if (id > I915_MAX_PHYS_OBJECT)
4785                 return -EINVAL;
4786
4787         obj_priv = to_intel_bo(obj);
4788
4789         if (obj_priv->phys_obj) {
4790                 if (obj_priv->phys_obj->id == id)
4791                         return 0;
4792                 i915_gem_detach_phys_object(dev, obj);
4793         }
4794
4795         /* create a new object */
4796         if (!dev_priv->mm.phys_objs[id - 1]) {
4797                 ret = i915_gem_init_phys_object(dev, id,
4798                                                 obj->size, align);
4799                 if (ret) {
4800                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4801                         goto out;
4802                 }
4803         }
4804
4805         /* bind to the object */
4806         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4807         obj_priv->phys_obj->cur_obj = obj;
4808
4809         ret = i915_gem_object_get_pages(obj, 0);
4810         if (ret) {
4811                 DRM_ERROR("failed to get page list\n");
4812                 goto out;
4813         }
4814
4815         page_count = obj->size / PAGE_SIZE;
4816
4817         for (i = 0; i < page_count; i++) {
4818                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4819                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4820
4821                 memcpy(dst, src, PAGE_SIZE);
4822                 kunmap_atomic(src, KM_USER0);
4823         }
4824
4825         i915_gem_object_put_pages(obj);
4826
4827         return 0;
4828 out:
4829         return ret;
4830 }
4831
4832 static int
4833 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4834                      struct drm_i915_gem_pwrite *args,
4835                      struct drm_file *file_priv)
4836 {
4837         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4838         void *obj_addr;
4839         int ret;
4840         char __user *user_data;
4841
4842         user_data = (char __user *) (uintptr_t) args->data_ptr;
4843         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4844
4845         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4846         ret = copy_from_user(obj_addr, user_data, args->size);
4847         if (ret)
4848                 return -EFAULT;
4849
4850         drm_agp_chipset_flush(dev);
4851         return 0;
4852 }
4853
4854 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4855 {
4856         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4857
4858         /* Clean up our request list when the client is going away, so that
4859          * later retire_requests won't dereference our soon-to-be-gone
4860          * file_priv.
4861          */
4862         mutex_lock(&dev->struct_mutex);
4863         while (!list_empty(&i915_file_priv->mm.request_list))
4864                 list_del_init(i915_file_priv->mm.request_list.next);
4865         mutex_unlock(&dev->struct_mutex);
4866 }
4867
4868 static int
4869 i915_gpu_is_active(struct drm_device *dev)
4870 {
4871         drm_i915_private_t *dev_priv = dev->dev_private;
4872         int lists_empty;
4873
4874         spin_lock(&dev_priv->mm.active_list_lock);
4875         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4876                       list_empty(&dev_priv->render_ring.active_list);
4877         if (HAS_BSD(dev))
4878                 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4879         spin_unlock(&dev_priv->mm.active_list_lock);
4880
4881         return !lists_empty;
4882 }
4883
4884 static int
4885 i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
4886 {
4887         drm_i915_private_t *dev_priv, *next_dev;
4888         struct drm_i915_gem_object *obj_priv, *next_obj;
4889         int cnt = 0;
4890         int would_deadlock = 1;
4891
4892         /* "fast-path" to count number of available objects */
4893         if (nr_to_scan == 0) {
4894                 spin_lock(&shrink_list_lock);
4895                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4896                         struct drm_device *dev = dev_priv->dev;
4897
4898                         if (mutex_trylock(&dev->struct_mutex)) {
4899                                 list_for_each_entry(obj_priv,
4900                                                     &dev_priv->mm.inactive_list,
4901                                                     list)
4902                                         cnt++;
4903                                 mutex_unlock(&dev->struct_mutex);
4904                         }
4905                 }
4906                 spin_unlock(&shrink_list_lock);
4907
4908                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4909         }
4910
4911         spin_lock(&shrink_list_lock);
4912
4913 rescan:
4914         /* first scan for clean buffers */
4915         list_for_each_entry_safe(dev_priv, next_dev,
4916                                  &shrink_list, mm.shrink_list) {
4917                 struct drm_device *dev = dev_priv->dev;
4918
4919                 if (! mutex_trylock(&dev->struct_mutex))
4920                         continue;
4921
4922                 spin_unlock(&shrink_list_lock);
4923                 i915_gem_retire_requests(dev);
4924
4925                 list_for_each_entry_safe(obj_priv, next_obj,
4926                                          &dev_priv->mm.inactive_list,
4927                                          list) {
4928                         if (i915_gem_object_is_purgeable(obj_priv)) {
4929                                 i915_gem_object_unbind(&obj_priv->base);
4930                                 if (--nr_to_scan <= 0)
4931                                         break;
4932                         }
4933                 }
4934
4935                 spin_lock(&shrink_list_lock);
4936                 mutex_unlock(&dev->struct_mutex);
4937
4938                 would_deadlock = 0;
4939
4940                 if (nr_to_scan <= 0)
4941                         break;
4942         }
4943
4944         /* second pass, evict/count anything still on the inactive list */
4945         list_for_each_entry_safe(dev_priv, next_dev,
4946                                  &shrink_list, mm.shrink_list) {
4947                 struct drm_device *dev = dev_priv->dev;
4948
4949                 if (! mutex_trylock(&dev->struct_mutex))
4950                         continue;
4951
4952                 spin_unlock(&shrink_list_lock);
4953
4954                 list_for_each_entry_safe(obj_priv, next_obj,
4955                                          &dev_priv->mm.inactive_list,
4956                                          list) {
4957                         if (nr_to_scan > 0) {
4958                                 i915_gem_object_unbind(&obj_priv->base);
4959                                 nr_to_scan--;
4960                         } else
4961                                 cnt++;
4962                 }
4963
4964                 spin_lock(&shrink_list_lock);
4965                 mutex_unlock(&dev->struct_mutex);
4966
4967                 would_deadlock = 0;
4968         }
4969
4970         if (nr_to_scan) {
4971                 int active = 0;
4972
4973                 /*
4974                  * We are desperate for pages, so as a last resort, wait
4975                  * for the GPU to finish and discard whatever we can.
4976                  * This has a dramatic impact to reduce the number of
4977                  * OOM-killer events whilst running the GPU aggressively.
4978                  */
4979                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4980                         struct drm_device *dev = dev_priv->dev;
4981
4982                         if (!mutex_trylock(&dev->struct_mutex))
4983                                 continue;
4984
4985                         spin_unlock(&shrink_list_lock);
4986
4987                         if (i915_gpu_is_active(dev)) {
4988                                 i915_gpu_idle(dev);
4989                                 active++;
4990                         }
4991
4992                         spin_lock(&shrink_list_lock);
4993                         mutex_unlock(&dev->struct_mutex);
4994                 }
4995
4996                 if (active)
4997                         goto rescan;
4998         }
4999
5000         spin_unlock(&shrink_list_lock);
5001
5002         if (would_deadlock)
5003                 return -1;
5004         else if (cnt > 0)
5005                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5006         else
5007                 return 0;
5008 }
5009
5010 static struct shrinker shrinker = {
5011         .shrink = i915_gem_shrink,
5012         .seeks = DEFAULT_SEEKS,
5013 };
5014
5015 __init void
5016 i915_gem_shrinker_init(void)
5017 {
5018     register_shrinker(&shrinker);
5019 }
5020
5021 __exit void
5022 i915_gem_shrinker_exit(void)
5023 {
5024     unregister_shrinker(&shrinker);
5025 }