]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: introduce intel_ring_buffer structure (V2)
[net-next-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42                                              int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44                                                      uint64_t offset,
45                                                      uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49                                            unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
52 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
53 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file_priv);
56
57 static LIST_HEAD(shrink_list);
58 static DEFINE_SPINLOCK(shrink_list_lock);
59
60 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
61                      unsigned long end)
62 {
63         drm_i915_private_t *dev_priv = dev->dev_private;
64
65         if (start >= end ||
66             (start & (PAGE_SIZE - 1)) != 0 ||
67             (end & (PAGE_SIZE - 1)) != 0) {
68                 return -EINVAL;
69         }
70
71         drm_mm_init(&dev_priv->mm.gtt_space, start,
72                     end - start);
73
74         dev->gtt_total = (uint32_t) (end - start);
75
76         return 0;
77 }
78
79 int
80 i915_gem_init_ioctl(struct drm_device *dev, void *data,
81                     struct drm_file *file_priv)
82 {
83         struct drm_i915_gem_init *args = data;
84         int ret;
85
86         mutex_lock(&dev->struct_mutex);
87         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
88         mutex_unlock(&dev->struct_mutex);
89
90         return ret;
91 }
92
93 int
94 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
95                             struct drm_file *file_priv)
96 {
97         struct drm_i915_gem_get_aperture *args = data;
98
99         if (!(dev->driver->driver_features & DRIVER_GEM))
100                 return -ENODEV;
101
102         args->aper_size = dev->gtt_total;
103         args->aper_available_size = (args->aper_size -
104                                      atomic_read(&dev->pin_memory));
105
106         return 0;
107 }
108
109
110 /**
111  * Creates a new mm object and returns a handle to it.
112  */
113 int
114 i915_gem_create_ioctl(struct drm_device *dev, void *data,
115                       struct drm_file *file_priv)
116 {
117         struct drm_i915_gem_create *args = data;
118         struct drm_gem_object *obj;
119         int ret;
120         u32 handle;
121
122         args->size = roundup(args->size, PAGE_SIZE);
123
124         /* Allocate the new object */
125         obj = i915_gem_alloc_object(dev, args->size);
126         if (obj == NULL)
127                 return -ENOMEM;
128
129         ret = drm_gem_handle_create(file_priv, obj, &handle);
130         drm_gem_object_handle_unreference_unlocked(obj);
131
132         if (ret)
133                 return ret;
134
135         args->handle = handle;
136
137         return 0;
138 }
139
140 static inline int
141 fast_shmem_read(struct page **pages,
142                 loff_t page_base, int page_offset,
143                 char __user *data,
144                 int length)
145 {
146         char __iomem *vaddr;
147         int unwritten;
148
149         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
150         if (vaddr == NULL)
151                 return -ENOMEM;
152         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
153         kunmap_atomic(vaddr, KM_USER0);
154
155         if (unwritten)
156                 return -EFAULT;
157
158         return 0;
159 }
160
161 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
162 {
163         drm_i915_private_t *dev_priv = obj->dev->dev_private;
164         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
165
166         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
167                 obj_priv->tiling_mode != I915_TILING_NONE;
168 }
169
170 static inline int
171 slow_shmem_copy(struct page *dst_page,
172                 int dst_offset,
173                 struct page *src_page,
174                 int src_offset,
175                 int length)
176 {
177         char *dst_vaddr, *src_vaddr;
178
179         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
180         if (dst_vaddr == NULL)
181                 return -ENOMEM;
182
183         src_vaddr = kmap_atomic(src_page, KM_USER1);
184         if (src_vaddr == NULL) {
185                 kunmap_atomic(dst_vaddr, KM_USER0);
186                 return -ENOMEM;
187         }
188
189         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
190
191         kunmap_atomic(src_vaddr, KM_USER1);
192         kunmap_atomic(dst_vaddr, KM_USER0);
193
194         return 0;
195 }
196
197 static inline int
198 slow_shmem_bit17_copy(struct page *gpu_page,
199                       int gpu_offset,
200                       struct page *cpu_page,
201                       int cpu_offset,
202                       int length,
203                       int is_read)
204 {
205         char *gpu_vaddr, *cpu_vaddr;
206
207         /* Use the unswizzled path if this page isn't affected. */
208         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
209                 if (is_read)
210                         return slow_shmem_copy(cpu_page, cpu_offset,
211                                                gpu_page, gpu_offset, length);
212                 else
213                         return slow_shmem_copy(gpu_page, gpu_offset,
214                                                cpu_page, cpu_offset, length);
215         }
216
217         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
218         if (gpu_vaddr == NULL)
219                 return -ENOMEM;
220
221         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
222         if (cpu_vaddr == NULL) {
223                 kunmap_atomic(gpu_vaddr, KM_USER0);
224                 return -ENOMEM;
225         }
226
227         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
228          * XORing with the other bits (A9 for Y, A9 and A10 for X)
229          */
230         while (length > 0) {
231                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
232                 int this_length = min(cacheline_end - gpu_offset, length);
233                 int swizzled_gpu_offset = gpu_offset ^ 64;
234
235                 if (is_read) {
236                         memcpy(cpu_vaddr + cpu_offset,
237                                gpu_vaddr + swizzled_gpu_offset,
238                                this_length);
239                 } else {
240                         memcpy(gpu_vaddr + swizzled_gpu_offset,
241                                cpu_vaddr + cpu_offset,
242                                this_length);
243                 }
244                 cpu_offset += this_length;
245                 gpu_offset += this_length;
246                 length -= this_length;
247         }
248
249         kunmap_atomic(cpu_vaddr, KM_USER1);
250         kunmap_atomic(gpu_vaddr, KM_USER0);
251
252         return 0;
253 }
254
255 /**
256  * This is the fast shmem pread path, which attempts to copy_from_user directly
257  * from the backing pages of the object to the user's address space.  On a
258  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
259  */
260 static int
261 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
262                           struct drm_i915_gem_pread *args,
263                           struct drm_file *file_priv)
264 {
265         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
266         ssize_t remain;
267         loff_t offset, page_base;
268         char __user *user_data;
269         int page_offset, page_length;
270         int ret;
271
272         user_data = (char __user *) (uintptr_t) args->data_ptr;
273         remain = args->size;
274
275         mutex_lock(&dev->struct_mutex);
276
277         ret = i915_gem_object_get_pages(obj, 0);
278         if (ret != 0)
279                 goto fail_unlock;
280
281         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
282                                                         args->size);
283         if (ret != 0)
284                 goto fail_put_pages;
285
286         obj_priv = to_intel_bo(obj);
287         offset = args->offset;
288
289         while (remain > 0) {
290                 /* Operation in this page
291                  *
292                  * page_base = page offset within aperture
293                  * page_offset = offset within page
294                  * page_length = bytes to copy for this page
295                  */
296                 page_base = (offset & ~(PAGE_SIZE-1));
297                 page_offset = offset & (PAGE_SIZE-1);
298                 page_length = remain;
299                 if ((page_offset + remain) > PAGE_SIZE)
300                         page_length = PAGE_SIZE - page_offset;
301
302                 ret = fast_shmem_read(obj_priv->pages,
303                                       page_base, page_offset,
304                                       user_data, page_length);
305                 if (ret)
306                         goto fail_put_pages;
307
308                 remain -= page_length;
309                 user_data += page_length;
310                 offset += page_length;
311         }
312
313 fail_put_pages:
314         i915_gem_object_put_pages(obj);
315 fail_unlock:
316         mutex_unlock(&dev->struct_mutex);
317
318         return ret;
319 }
320
321 static int
322 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
323 {
324         int ret;
325
326         ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
327
328         /* If we've insufficient memory to map in the pages, attempt
329          * to make some space by throwing out some old buffers.
330          */
331         if (ret == -ENOMEM) {
332                 struct drm_device *dev = obj->dev;
333
334                 ret = i915_gem_evict_something(dev, obj->size);
335                 if (ret)
336                         return ret;
337
338                 ret = i915_gem_object_get_pages(obj, 0);
339         }
340
341         return ret;
342 }
343
344 /**
345  * This is the fallback shmem pread path, which allocates temporary storage
346  * in kernel space to copy_to_user into outside of the struct_mutex, so we
347  * can copy out of the object's backing pages while holding the struct mutex
348  * and not take page faults.
349  */
350 static int
351 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
352                           struct drm_i915_gem_pread *args,
353                           struct drm_file *file_priv)
354 {
355         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
356         struct mm_struct *mm = current->mm;
357         struct page **user_pages;
358         ssize_t remain;
359         loff_t offset, pinned_pages, i;
360         loff_t first_data_page, last_data_page, num_pages;
361         int shmem_page_index, shmem_page_offset;
362         int data_page_index,  data_page_offset;
363         int page_length;
364         int ret;
365         uint64_t data_ptr = args->data_ptr;
366         int do_bit17_swizzling;
367
368         remain = args->size;
369
370         /* Pin the user pages containing the data.  We can't fault while
371          * holding the struct mutex, yet we want to hold it while
372          * dereferencing the user data.
373          */
374         first_data_page = data_ptr / PAGE_SIZE;
375         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
376         num_pages = last_data_page - first_data_page + 1;
377
378         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
379         if (user_pages == NULL)
380                 return -ENOMEM;
381
382         down_read(&mm->mmap_sem);
383         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
384                                       num_pages, 1, 0, user_pages, NULL);
385         up_read(&mm->mmap_sem);
386         if (pinned_pages < num_pages) {
387                 ret = -EFAULT;
388                 goto fail_put_user_pages;
389         }
390
391         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
392
393         mutex_lock(&dev->struct_mutex);
394
395         ret = i915_gem_object_get_pages_or_evict(obj);
396         if (ret)
397                 goto fail_unlock;
398
399         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
400                                                         args->size);
401         if (ret != 0)
402                 goto fail_put_pages;
403
404         obj_priv = to_intel_bo(obj);
405         offset = args->offset;
406
407         while (remain > 0) {
408                 /* Operation in this page
409                  *
410                  * shmem_page_index = page number within shmem file
411                  * shmem_page_offset = offset within page in shmem file
412                  * data_page_index = page number in get_user_pages return
413                  * data_page_offset = offset with data_page_index page.
414                  * page_length = bytes to copy for this page
415                  */
416                 shmem_page_index = offset / PAGE_SIZE;
417                 shmem_page_offset = offset & ~PAGE_MASK;
418                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
419                 data_page_offset = data_ptr & ~PAGE_MASK;
420
421                 page_length = remain;
422                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
423                         page_length = PAGE_SIZE - shmem_page_offset;
424                 if ((data_page_offset + page_length) > PAGE_SIZE)
425                         page_length = PAGE_SIZE - data_page_offset;
426
427                 if (do_bit17_swizzling) {
428                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
429                                                     shmem_page_offset,
430                                                     user_pages[data_page_index],
431                                                     data_page_offset,
432                                                     page_length,
433                                                     1);
434                 } else {
435                         ret = slow_shmem_copy(user_pages[data_page_index],
436                                               data_page_offset,
437                                               obj_priv->pages[shmem_page_index],
438                                               shmem_page_offset,
439                                               page_length);
440                 }
441                 if (ret)
442                         goto fail_put_pages;
443
444                 remain -= page_length;
445                 data_ptr += page_length;
446                 offset += page_length;
447         }
448
449 fail_put_pages:
450         i915_gem_object_put_pages(obj);
451 fail_unlock:
452         mutex_unlock(&dev->struct_mutex);
453 fail_put_user_pages:
454         for (i = 0; i < pinned_pages; i++) {
455                 SetPageDirty(user_pages[i]);
456                 page_cache_release(user_pages[i]);
457         }
458         drm_free_large(user_pages);
459
460         return ret;
461 }
462
463 /**
464  * Reads data from the object referenced by handle.
465  *
466  * On error, the contents of *data are undefined.
467  */
468 int
469 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
470                      struct drm_file *file_priv)
471 {
472         struct drm_i915_gem_pread *args = data;
473         struct drm_gem_object *obj;
474         struct drm_i915_gem_object *obj_priv;
475         int ret;
476
477         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
478         if (obj == NULL)
479                 return -EBADF;
480         obj_priv = to_intel_bo(obj);
481
482         /* Bounds check source.
483          *
484          * XXX: This could use review for overflow issues...
485          */
486         if (args->offset > obj->size || args->size > obj->size ||
487             args->offset + args->size > obj->size) {
488                 drm_gem_object_unreference_unlocked(obj);
489                 return -EINVAL;
490         }
491
492         if (i915_gem_object_needs_bit17_swizzle(obj)) {
493                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
494         } else {
495                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
496                 if (ret != 0)
497                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
498                                                         file_priv);
499         }
500
501         drm_gem_object_unreference_unlocked(obj);
502
503         return ret;
504 }
505
506 /* This is the fast write path which cannot handle
507  * page faults in the source data
508  */
509
510 static inline int
511 fast_user_write(struct io_mapping *mapping,
512                 loff_t page_base, int page_offset,
513                 char __user *user_data,
514                 int length)
515 {
516         char *vaddr_atomic;
517         unsigned long unwritten;
518
519         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
520         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
521                                                       user_data, length);
522         io_mapping_unmap_atomic(vaddr_atomic);
523         if (unwritten)
524                 return -EFAULT;
525         return 0;
526 }
527
528 /* Here's the write path which can sleep for
529  * page faults
530  */
531
532 static inline int
533 slow_kernel_write(struct io_mapping *mapping,
534                   loff_t gtt_base, int gtt_offset,
535                   struct page *user_page, int user_offset,
536                   int length)
537 {
538         char *src_vaddr, *dst_vaddr;
539         unsigned long unwritten;
540
541         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
542         src_vaddr = kmap_atomic(user_page, KM_USER1);
543         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
544                                                       src_vaddr + user_offset,
545                                                       length);
546         kunmap_atomic(src_vaddr, KM_USER1);
547         io_mapping_unmap_atomic(dst_vaddr);
548         if (unwritten)
549                 return -EFAULT;
550         return 0;
551 }
552
553 static inline int
554 fast_shmem_write(struct page **pages,
555                  loff_t page_base, int page_offset,
556                  char __user *data,
557                  int length)
558 {
559         char __iomem *vaddr;
560         unsigned long unwritten;
561
562         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
563         if (vaddr == NULL)
564                 return -ENOMEM;
565         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
566         kunmap_atomic(vaddr, KM_USER0);
567
568         if (unwritten)
569                 return -EFAULT;
570         return 0;
571 }
572
573 /**
574  * This is the fast pwrite path, where we copy the data directly from the
575  * user into the GTT, uncached.
576  */
577 static int
578 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
579                          struct drm_i915_gem_pwrite *args,
580                          struct drm_file *file_priv)
581 {
582         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
583         drm_i915_private_t *dev_priv = dev->dev_private;
584         ssize_t remain;
585         loff_t offset, page_base;
586         char __user *user_data;
587         int page_offset, page_length;
588         int ret;
589
590         user_data = (char __user *) (uintptr_t) args->data_ptr;
591         remain = args->size;
592         if (!access_ok(VERIFY_READ, user_data, remain))
593                 return -EFAULT;
594
595
596         mutex_lock(&dev->struct_mutex);
597         ret = i915_gem_object_pin(obj, 0);
598         if (ret) {
599                 mutex_unlock(&dev->struct_mutex);
600                 return ret;
601         }
602         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
603         if (ret)
604                 goto fail;
605
606         obj_priv = to_intel_bo(obj);
607         offset = obj_priv->gtt_offset + args->offset;
608
609         while (remain > 0) {
610                 /* Operation in this page
611                  *
612                  * page_base = page offset within aperture
613                  * page_offset = offset within page
614                  * page_length = bytes to copy for this page
615                  */
616                 page_base = (offset & ~(PAGE_SIZE-1));
617                 page_offset = offset & (PAGE_SIZE-1);
618                 page_length = remain;
619                 if ((page_offset + remain) > PAGE_SIZE)
620                         page_length = PAGE_SIZE - page_offset;
621
622                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
623                                        page_offset, user_data, page_length);
624
625                 /* If we get a fault while copying data, then (presumably) our
626                  * source page isn't available.  Return the error and we'll
627                  * retry in the slow path.
628                  */
629                 if (ret)
630                         goto fail;
631
632                 remain -= page_length;
633                 user_data += page_length;
634                 offset += page_length;
635         }
636
637 fail:
638         i915_gem_object_unpin(obj);
639         mutex_unlock(&dev->struct_mutex);
640
641         return ret;
642 }
643
644 /**
645  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
646  * the memory and maps it using kmap_atomic for copying.
647  *
648  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
649  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
650  */
651 static int
652 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
653                          struct drm_i915_gem_pwrite *args,
654                          struct drm_file *file_priv)
655 {
656         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
657         drm_i915_private_t *dev_priv = dev->dev_private;
658         ssize_t remain;
659         loff_t gtt_page_base, offset;
660         loff_t first_data_page, last_data_page, num_pages;
661         loff_t pinned_pages, i;
662         struct page **user_pages;
663         struct mm_struct *mm = current->mm;
664         int gtt_page_offset, data_page_offset, data_page_index, page_length;
665         int ret;
666         uint64_t data_ptr = args->data_ptr;
667
668         remain = args->size;
669
670         /* Pin the user pages containing the data.  We can't fault while
671          * holding the struct mutex, and all of the pwrite implementations
672          * want to hold it while dereferencing the user data.
673          */
674         first_data_page = data_ptr / PAGE_SIZE;
675         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
676         num_pages = last_data_page - first_data_page + 1;
677
678         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
679         if (user_pages == NULL)
680                 return -ENOMEM;
681
682         down_read(&mm->mmap_sem);
683         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
684                                       num_pages, 0, 0, user_pages, NULL);
685         up_read(&mm->mmap_sem);
686         if (pinned_pages < num_pages) {
687                 ret = -EFAULT;
688                 goto out_unpin_pages;
689         }
690
691         mutex_lock(&dev->struct_mutex);
692         ret = i915_gem_object_pin(obj, 0);
693         if (ret)
694                 goto out_unlock;
695
696         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
697         if (ret)
698                 goto out_unpin_object;
699
700         obj_priv = to_intel_bo(obj);
701         offset = obj_priv->gtt_offset + args->offset;
702
703         while (remain > 0) {
704                 /* Operation in this page
705                  *
706                  * gtt_page_base = page offset within aperture
707                  * gtt_page_offset = offset within page in aperture
708                  * data_page_index = page number in get_user_pages return
709                  * data_page_offset = offset with data_page_index page.
710                  * page_length = bytes to copy for this page
711                  */
712                 gtt_page_base = offset & PAGE_MASK;
713                 gtt_page_offset = offset & ~PAGE_MASK;
714                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
715                 data_page_offset = data_ptr & ~PAGE_MASK;
716
717                 page_length = remain;
718                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
719                         page_length = PAGE_SIZE - gtt_page_offset;
720                 if ((data_page_offset + page_length) > PAGE_SIZE)
721                         page_length = PAGE_SIZE - data_page_offset;
722
723                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
724                                         gtt_page_base, gtt_page_offset,
725                                         user_pages[data_page_index],
726                                         data_page_offset,
727                                         page_length);
728
729                 /* If we get a fault while copying data, then (presumably) our
730                  * source page isn't available.  Return the error and we'll
731                  * retry in the slow path.
732                  */
733                 if (ret)
734                         goto out_unpin_object;
735
736                 remain -= page_length;
737                 offset += page_length;
738                 data_ptr += page_length;
739         }
740
741 out_unpin_object:
742         i915_gem_object_unpin(obj);
743 out_unlock:
744         mutex_unlock(&dev->struct_mutex);
745 out_unpin_pages:
746         for (i = 0; i < pinned_pages; i++)
747                 page_cache_release(user_pages[i]);
748         drm_free_large(user_pages);
749
750         return ret;
751 }
752
753 /**
754  * This is the fast shmem pwrite path, which attempts to directly
755  * copy_from_user into the kmapped pages backing the object.
756  */
757 static int
758 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
759                            struct drm_i915_gem_pwrite *args,
760                            struct drm_file *file_priv)
761 {
762         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
763         ssize_t remain;
764         loff_t offset, page_base;
765         char __user *user_data;
766         int page_offset, page_length;
767         int ret;
768
769         user_data = (char __user *) (uintptr_t) args->data_ptr;
770         remain = args->size;
771
772         mutex_lock(&dev->struct_mutex);
773
774         ret = i915_gem_object_get_pages(obj, 0);
775         if (ret != 0)
776                 goto fail_unlock;
777
778         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
779         if (ret != 0)
780                 goto fail_put_pages;
781
782         obj_priv = to_intel_bo(obj);
783         offset = args->offset;
784         obj_priv->dirty = 1;
785
786         while (remain > 0) {
787                 /* Operation in this page
788                  *
789                  * page_base = page offset within aperture
790                  * page_offset = offset within page
791                  * page_length = bytes to copy for this page
792                  */
793                 page_base = (offset & ~(PAGE_SIZE-1));
794                 page_offset = offset & (PAGE_SIZE-1);
795                 page_length = remain;
796                 if ((page_offset + remain) > PAGE_SIZE)
797                         page_length = PAGE_SIZE - page_offset;
798
799                 ret = fast_shmem_write(obj_priv->pages,
800                                        page_base, page_offset,
801                                        user_data, page_length);
802                 if (ret)
803                         goto fail_put_pages;
804
805                 remain -= page_length;
806                 user_data += page_length;
807                 offset += page_length;
808         }
809
810 fail_put_pages:
811         i915_gem_object_put_pages(obj);
812 fail_unlock:
813         mutex_unlock(&dev->struct_mutex);
814
815         return ret;
816 }
817
818 /**
819  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
820  * the memory and maps it using kmap_atomic for copying.
821  *
822  * This avoids taking mmap_sem for faulting on the user's address while the
823  * struct_mutex is held.
824  */
825 static int
826 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
827                            struct drm_i915_gem_pwrite *args,
828                            struct drm_file *file_priv)
829 {
830         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
831         struct mm_struct *mm = current->mm;
832         struct page **user_pages;
833         ssize_t remain;
834         loff_t offset, pinned_pages, i;
835         loff_t first_data_page, last_data_page, num_pages;
836         int shmem_page_index, shmem_page_offset;
837         int data_page_index,  data_page_offset;
838         int page_length;
839         int ret;
840         uint64_t data_ptr = args->data_ptr;
841         int do_bit17_swizzling;
842
843         remain = args->size;
844
845         /* Pin the user pages containing the data.  We can't fault while
846          * holding the struct mutex, and all of the pwrite implementations
847          * want to hold it while dereferencing the user data.
848          */
849         first_data_page = data_ptr / PAGE_SIZE;
850         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
851         num_pages = last_data_page - first_data_page + 1;
852
853         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
854         if (user_pages == NULL)
855                 return -ENOMEM;
856
857         down_read(&mm->mmap_sem);
858         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
859                                       num_pages, 0, 0, user_pages, NULL);
860         up_read(&mm->mmap_sem);
861         if (pinned_pages < num_pages) {
862                 ret = -EFAULT;
863                 goto fail_put_user_pages;
864         }
865
866         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
867
868         mutex_lock(&dev->struct_mutex);
869
870         ret = i915_gem_object_get_pages_or_evict(obj);
871         if (ret)
872                 goto fail_unlock;
873
874         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
875         if (ret != 0)
876                 goto fail_put_pages;
877
878         obj_priv = to_intel_bo(obj);
879         offset = args->offset;
880         obj_priv->dirty = 1;
881
882         while (remain > 0) {
883                 /* Operation in this page
884                  *
885                  * shmem_page_index = page number within shmem file
886                  * shmem_page_offset = offset within page in shmem file
887                  * data_page_index = page number in get_user_pages return
888                  * data_page_offset = offset with data_page_index page.
889                  * page_length = bytes to copy for this page
890                  */
891                 shmem_page_index = offset / PAGE_SIZE;
892                 shmem_page_offset = offset & ~PAGE_MASK;
893                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
894                 data_page_offset = data_ptr & ~PAGE_MASK;
895
896                 page_length = remain;
897                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
898                         page_length = PAGE_SIZE - shmem_page_offset;
899                 if ((data_page_offset + page_length) > PAGE_SIZE)
900                         page_length = PAGE_SIZE - data_page_offset;
901
902                 if (do_bit17_swizzling) {
903                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
904                                                     shmem_page_offset,
905                                                     user_pages[data_page_index],
906                                                     data_page_offset,
907                                                     page_length,
908                                                     0);
909                 } else {
910                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
911                                               shmem_page_offset,
912                                               user_pages[data_page_index],
913                                               data_page_offset,
914                                               page_length);
915                 }
916                 if (ret)
917                         goto fail_put_pages;
918
919                 remain -= page_length;
920                 data_ptr += page_length;
921                 offset += page_length;
922         }
923
924 fail_put_pages:
925         i915_gem_object_put_pages(obj);
926 fail_unlock:
927         mutex_unlock(&dev->struct_mutex);
928 fail_put_user_pages:
929         for (i = 0; i < pinned_pages; i++)
930                 page_cache_release(user_pages[i]);
931         drm_free_large(user_pages);
932
933         return ret;
934 }
935
936 /**
937  * Writes data to the object referenced by handle.
938  *
939  * On error, the contents of the buffer that were to be modified are undefined.
940  */
941 int
942 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
943                       struct drm_file *file_priv)
944 {
945         struct drm_i915_gem_pwrite *args = data;
946         struct drm_gem_object *obj;
947         struct drm_i915_gem_object *obj_priv;
948         int ret = 0;
949
950         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
951         if (obj == NULL)
952                 return -EBADF;
953         obj_priv = to_intel_bo(obj);
954
955         /* Bounds check destination.
956          *
957          * XXX: This could use review for overflow issues...
958          */
959         if (args->offset > obj->size || args->size > obj->size ||
960             args->offset + args->size > obj->size) {
961                 drm_gem_object_unreference_unlocked(obj);
962                 return -EINVAL;
963         }
964
965         /* We can only do the GTT pwrite on untiled buffers, as otherwise
966          * it would end up going through the fenced access, and we'll get
967          * different detiling behavior between reading and writing.
968          * pread/pwrite currently are reading and writing from the CPU
969          * perspective, requiring manual detiling by the client.
970          */
971         if (obj_priv->phys_obj)
972                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
973         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
974                  dev->gtt_total != 0) {
975                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
976                 if (ret == -EFAULT) {
977                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
978                                                        file_priv);
979                 }
980         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
981                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
982         } else {
983                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
984                 if (ret == -EFAULT) {
985                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
986                                                          file_priv);
987                 }
988         }
989
990 #if WATCH_PWRITE
991         if (ret)
992                 DRM_INFO("pwrite failed %d\n", ret);
993 #endif
994
995         drm_gem_object_unreference_unlocked(obj);
996
997         return ret;
998 }
999
1000 /**
1001  * Called when user space prepares to use an object with the CPU, either
1002  * through the mmap ioctl's mapping or a GTT mapping.
1003  */
1004 int
1005 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1006                           struct drm_file *file_priv)
1007 {
1008         struct drm_i915_private *dev_priv = dev->dev_private;
1009         struct drm_i915_gem_set_domain *args = data;
1010         struct drm_gem_object *obj;
1011         struct drm_i915_gem_object *obj_priv;
1012         uint32_t read_domains = args->read_domains;
1013         uint32_t write_domain = args->write_domain;
1014         int ret;
1015
1016         if (!(dev->driver->driver_features & DRIVER_GEM))
1017                 return -ENODEV;
1018
1019         /* Only handle setting domains to types used by the CPU. */
1020         if (write_domain & I915_GEM_GPU_DOMAINS)
1021                 return -EINVAL;
1022
1023         if (read_domains & I915_GEM_GPU_DOMAINS)
1024                 return -EINVAL;
1025
1026         /* Having something in the write domain implies it's in the read
1027          * domain, and only that read domain.  Enforce that in the request.
1028          */
1029         if (write_domain != 0 && read_domains != write_domain)
1030                 return -EINVAL;
1031
1032         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1033         if (obj == NULL)
1034                 return -EBADF;
1035         obj_priv = to_intel_bo(obj);
1036
1037         mutex_lock(&dev->struct_mutex);
1038
1039         intel_mark_busy(dev, obj);
1040
1041 #if WATCH_BUF
1042         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1043                  obj, obj->size, read_domains, write_domain);
1044 #endif
1045         if (read_domains & I915_GEM_DOMAIN_GTT) {
1046                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1047
1048                 /* Update the LRU on the fence for the CPU access that's
1049                  * about to occur.
1050                  */
1051                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1052                         struct drm_i915_fence_reg *reg =
1053                                 &dev_priv->fence_regs[obj_priv->fence_reg];
1054                         list_move_tail(&reg->lru_list,
1055                                        &dev_priv->mm.fence_list);
1056                 }
1057
1058                 /* Silently promote "you're not bound, there was nothing to do"
1059                  * to success, since the client was just asking us to
1060                  * make sure everything was done.
1061                  */
1062                 if (ret == -EINVAL)
1063                         ret = 0;
1064         } else {
1065                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1066         }
1067
1068         drm_gem_object_unreference(obj);
1069         mutex_unlock(&dev->struct_mutex);
1070         return ret;
1071 }
1072
1073 /**
1074  * Called when user space has done writes to this buffer
1075  */
1076 int
1077 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1078                       struct drm_file *file_priv)
1079 {
1080         struct drm_i915_gem_sw_finish *args = data;
1081         struct drm_gem_object *obj;
1082         struct drm_i915_gem_object *obj_priv;
1083         int ret = 0;
1084
1085         if (!(dev->driver->driver_features & DRIVER_GEM))
1086                 return -ENODEV;
1087
1088         mutex_lock(&dev->struct_mutex);
1089         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1090         if (obj == NULL) {
1091                 mutex_unlock(&dev->struct_mutex);
1092                 return -EBADF;
1093         }
1094
1095 #if WATCH_BUF
1096         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1097                  __func__, args->handle, obj, obj->size);
1098 #endif
1099         obj_priv = to_intel_bo(obj);
1100
1101         /* Pinned buffers may be scanout, so flush the cache */
1102         if (obj_priv->pin_count)
1103                 i915_gem_object_flush_cpu_write_domain(obj);
1104
1105         drm_gem_object_unreference(obj);
1106         mutex_unlock(&dev->struct_mutex);
1107         return ret;
1108 }
1109
1110 /**
1111  * Maps the contents of an object, returning the address it is mapped
1112  * into.
1113  *
1114  * While the mapping holds a reference on the contents of the object, it doesn't
1115  * imply a ref on the object itself.
1116  */
1117 int
1118 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1119                    struct drm_file *file_priv)
1120 {
1121         struct drm_i915_gem_mmap *args = data;
1122         struct drm_gem_object *obj;
1123         loff_t offset;
1124         unsigned long addr;
1125
1126         if (!(dev->driver->driver_features & DRIVER_GEM))
1127                 return -ENODEV;
1128
1129         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1130         if (obj == NULL)
1131                 return -EBADF;
1132
1133         offset = args->offset;
1134
1135         down_write(&current->mm->mmap_sem);
1136         addr = do_mmap(obj->filp, 0, args->size,
1137                        PROT_READ | PROT_WRITE, MAP_SHARED,
1138                        args->offset);
1139         up_write(&current->mm->mmap_sem);
1140         drm_gem_object_unreference_unlocked(obj);
1141         if (IS_ERR((void *)addr))
1142                 return addr;
1143
1144         args->addr_ptr = (uint64_t) addr;
1145
1146         return 0;
1147 }
1148
1149 /**
1150  * i915_gem_fault - fault a page into the GTT
1151  * vma: VMA in question
1152  * vmf: fault info
1153  *
1154  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1155  * from userspace.  The fault handler takes care of binding the object to
1156  * the GTT (if needed), allocating and programming a fence register (again,
1157  * only if needed based on whether the old reg is still valid or the object
1158  * is tiled) and inserting a new PTE into the faulting process.
1159  *
1160  * Note that the faulting process may involve evicting existing objects
1161  * from the GTT and/or fence registers to make room.  So performance may
1162  * suffer if the GTT working set is large or there are few fence registers
1163  * left.
1164  */
1165 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1166 {
1167         struct drm_gem_object *obj = vma->vm_private_data;
1168         struct drm_device *dev = obj->dev;
1169         struct drm_i915_private *dev_priv = dev->dev_private;
1170         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1171         pgoff_t page_offset;
1172         unsigned long pfn;
1173         int ret = 0;
1174         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1175
1176         /* We don't use vmf->pgoff since that has the fake offset */
1177         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1178                 PAGE_SHIFT;
1179
1180         /* Now bind it into the GTT if needed */
1181         mutex_lock(&dev->struct_mutex);
1182         if (!obj_priv->gtt_space) {
1183                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1184                 if (ret)
1185                         goto unlock;
1186
1187                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1188
1189                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1190                 if (ret)
1191                         goto unlock;
1192         }
1193
1194         /* Need a new fence register? */
1195         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1196                 ret = i915_gem_object_get_fence_reg(obj);
1197                 if (ret)
1198                         goto unlock;
1199         }
1200
1201         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1202                 page_offset;
1203
1204         /* Finally, remap it using the new GTT offset */
1205         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1206 unlock:
1207         mutex_unlock(&dev->struct_mutex);
1208
1209         switch (ret) {
1210         case 0:
1211         case -ERESTARTSYS:
1212                 return VM_FAULT_NOPAGE;
1213         case -ENOMEM:
1214         case -EAGAIN:
1215                 return VM_FAULT_OOM;
1216         default:
1217                 return VM_FAULT_SIGBUS;
1218         }
1219 }
1220
1221 /**
1222  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1223  * @obj: obj in question
1224  *
1225  * GEM memory mapping works by handing back to userspace a fake mmap offset
1226  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1227  * up the object based on the offset and sets up the various memory mapping
1228  * structures.
1229  *
1230  * This routine allocates and attaches a fake offset for @obj.
1231  */
1232 static int
1233 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1234 {
1235         struct drm_device *dev = obj->dev;
1236         struct drm_gem_mm *mm = dev->mm_private;
1237         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1238         struct drm_map_list *list;
1239         struct drm_local_map *map;
1240         int ret = 0;
1241
1242         /* Set the object up for mmap'ing */
1243         list = &obj->map_list;
1244         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1245         if (!list->map)
1246                 return -ENOMEM;
1247
1248         map = list->map;
1249         map->type = _DRM_GEM;
1250         map->size = obj->size;
1251         map->handle = obj;
1252
1253         /* Get a DRM GEM mmap offset allocated... */
1254         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1255                                                     obj->size / PAGE_SIZE, 0, 0);
1256         if (!list->file_offset_node) {
1257                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1258                 ret = -ENOMEM;
1259                 goto out_free_list;
1260         }
1261
1262         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1263                                                   obj->size / PAGE_SIZE, 0);
1264         if (!list->file_offset_node) {
1265                 ret = -ENOMEM;
1266                 goto out_free_list;
1267         }
1268
1269         list->hash.key = list->file_offset_node->start;
1270         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1271                 DRM_ERROR("failed to add to map hash\n");
1272                 ret = -ENOMEM;
1273                 goto out_free_mm;
1274         }
1275
1276         /* By now we should be all set, any drm_mmap request on the offset
1277          * below will get to our mmap & fault handler */
1278         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1279
1280         return 0;
1281
1282 out_free_mm:
1283         drm_mm_put_block(list->file_offset_node);
1284 out_free_list:
1285         kfree(list->map);
1286
1287         return ret;
1288 }
1289
1290 /**
1291  * i915_gem_release_mmap - remove physical page mappings
1292  * @obj: obj in question
1293  *
1294  * Preserve the reservation of the mmapping with the DRM core code, but
1295  * relinquish ownership of the pages back to the system.
1296  *
1297  * It is vital that we remove the page mapping if we have mapped a tiled
1298  * object through the GTT and then lose the fence register due to
1299  * resource pressure. Similarly if the object has been moved out of the
1300  * aperture, than pages mapped into userspace must be revoked. Removing the
1301  * mapping will then trigger a page fault on the next user access, allowing
1302  * fixup by i915_gem_fault().
1303  */
1304 void
1305 i915_gem_release_mmap(struct drm_gem_object *obj)
1306 {
1307         struct drm_device *dev = obj->dev;
1308         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1309
1310         if (dev->dev_mapping)
1311                 unmap_mapping_range(dev->dev_mapping,
1312                                     obj_priv->mmap_offset, obj->size, 1);
1313 }
1314
1315 static void
1316 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1317 {
1318         struct drm_device *dev = obj->dev;
1319         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1320         struct drm_gem_mm *mm = dev->mm_private;
1321         struct drm_map_list *list;
1322
1323         list = &obj->map_list;
1324         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1325
1326         if (list->file_offset_node) {
1327                 drm_mm_put_block(list->file_offset_node);
1328                 list->file_offset_node = NULL;
1329         }
1330
1331         if (list->map) {
1332                 kfree(list->map);
1333                 list->map = NULL;
1334         }
1335
1336         obj_priv->mmap_offset = 0;
1337 }
1338
1339 /**
1340  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1341  * @obj: object to check
1342  *
1343  * Return the required GTT alignment for an object, taking into account
1344  * potential fence register mapping if needed.
1345  */
1346 static uint32_t
1347 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1348 {
1349         struct drm_device *dev = obj->dev;
1350         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1351         int start, i;
1352
1353         /*
1354          * Minimum alignment is 4k (GTT page size), but might be greater
1355          * if a fence register is needed for the object.
1356          */
1357         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1358                 return 4096;
1359
1360         /*
1361          * Previous chips need to be aligned to the size of the smallest
1362          * fence register that can contain the object.
1363          */
1364         if (IS_I9XX(dev))
1365                 start = 1024*1024;
1366         else
1367                 start = 512*1024;
1368
1369         for (i = start; i < obj->size; i <<= 1)
1370                 ;
1371
1372         return i;
1373 }
1374
1375 /**
1376  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1377  * @dev: DRM device
1378  * @data: GTT mapping ioctl data
1379  * @file_priv: GEM object info
1380  *
1381  * Simply returns the fake offset to userspace so it can mmap it.
1382  * The mmap call will end up in drm_gem_mmap(), which will set things
1383  * up so we can get faults in the handler above.
1384  *
1385  * The fault handler will take care of binding the object into the GTT
1386  * (since it may have been evicted to make room for something), allocating
1387  * a fence register, and mapping the appropriate aperture address into
1388  * userspace.
1389  */
1390 int
1391 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1392                         struct drm_file *file_priv)
1393 {
1394         struct drm_i915_gem_mmap_gtt *args = data;
1395         struct drm_i915_private *dev_priv = dev->dev_private;
1396         struct drm_gem_object *obj;
1397         struct drm_i915_gem_object *obj_priv;
1398         int ret;
1399
1400         if (!(dev->driver->driver_features & DRIVER_GEM))
1401                 return -ENODEV;
1402
1403         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1404         if (obj == NULL)
1405                 return -EBADF;
1406
1407         mutex_lock(&dev->struct_mutex);
1408
1409         obj_priv = to_intel_bo(obj);
1410
1411         if (obj_priv->madv != I915_MADV_WILLNEED) {
1412                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1413                 drm_gem_object_unreference(obj);
1414                 mutex_unlock(&dev->struct_mutex);
1415                 return -EINVAL;
1416         }
1417
1418
1419         if (!obj_priv->mmap_offset) {
1420                 ret = i915_gem_create_mmap_offset(obj);
1421                 if (ret) {
1422                         drm_gem_object_unreference(obj);
1423                         mutex_unlock(&dev->struct_mutex);
1424                         return ret;
1425                 }
1426         }
1427
1428         args->offset = obj_priv->mmap_offset;
1429
1430         /*
1431          * Pull it into the GTT so that we have a page list (makes the
1432          * initial fault faster and any subsequent flushing possible).
1433          */
1434         if (!obj_priv->agp_mem) {
1435                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1436                 if (ret) {
1437                         drm_gem_object_unreference(obj);
1438                         mutex_unlock(&dev->struct_mutex);
1439                         return ret;
1440                 }
1441                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1442         }
1443
1444         drm_gem_object_unreference(obj);
1445         mutex_unlock(&dev->struct_mutex);
1446
1447         return 0;
1448 }
1449
1450 void
1451 i915_gem_object_put_pages(struct drm_gem_object *obj)
1452 {
1453         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1454         int page_count = obj->size / PAGE_SIZE;
1455         int i;
1456
1457         BUG_ON(obj_priv->pages_refcount == 0);
1458         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1459
1460         if (--obj_priv->pages_refcount != 0)
1461                 return;
1462
1463         if (obj_priv->tiling_mode != I915_TILING_NONE)
1464                 i915_gem_object_save_bit_17_swizzle(obj);
1465
1466         if (obj_priv->madv == I915_MADV_DONTNEED)
1467                 obj_priv->dirty = 0;
1468
1469         for (i = 0; i < page_count; i++) {
1470                 if (obj_priv->dirty)
1471                         set_page_dirty(obj_priv->pages[i]);
1472
1473                 if (obj_priv->madv == I915_MADV_WILLNEED)
1474                         mark_page_accessed(obj_priv->pages[i]);
1475
1476                 page_cache_release(obj_priv->pages[i]);
1477         }
1478         obj_priv->dirty = 0;
1479
1480         drm_free_large(obj_priv->pages);
1481         obj_priv->pages = NULL;
1482 }
1483
1484 static void
1485 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1486 {
1487         struct drm_device *dev = obj->dev;
1488         drm_i915_private_t *dev_priv = dev->dev_private;
1489         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1490
1491         /* Add a reference if we're newly entering the active list. */
1492         if (!obj_priv->active) {
1493                 drm_gem_object_reference(obj);
1494                 obj_priv->active = 1;
1495         }
1496         /* Move from whatever list we were on to the tail of execution. */
1497         spin_lock(&dev_priv->mm.active_list_lock);
1498         list_move_tail(&obj_priv->list,
1499                        &dev_priv->mm.active_list);
1500         spin_unlock(&dev_priv->mm.active_list_lock);
1501         obj_priv->last_rendering_seqno = seqno;
1502 }
1503
1504 static void
1505 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1506 {
1507         struct drm_device *dev = obj->dev;
1508         drm_i915_private_t *dev_priv = dev->dev_private;
1509         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1510
1511         BUG_ON(!obj_priv->active);
1512         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1513         obj_priv->last_rendering_seqno = 0;
1514 }
1515
1516 /* Immediately discard the backing storage */
1517 static void
1518 i915_gem_object_truncate(struct drm_gem_object *obj)
1519 {
1520         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1521         struct inode *inode;
1522
1523         inode = obj->filp->f_path.dentry->d_inode;
1524         if (inode->i_op->truncate)
1525                 inode->i_op->truncate (inode);
1526
1527         obj_priv->madv = __I915_MADV_PURGED;
1528 }
1529
1530 static inline int
1531 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1532 {
1533         return obj_priv->madv == I915_MADV_DONTNEED;
1534 }
1535
1536 static void
1537 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1538 {
1539         struct drm_device *dev = obj->dev;
1540         drm_i915_private_t *dev_priv = dev->dev_private;
1541         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1542
1543         i915_verify_inactive(dev, __FILE__, __LINE__);
1544         if (obj_priv->pin_count != 0)
1545                 list_del_init(&obj_priv->list);
1546         else
1547                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1548
1549         BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1550
1551         obj_priv->last_rendering_seqno = 0;
1552         if (obj_priv->active) {
1553                 obj_priv->active = 0;
1554                 drm_gem_object_unreference(obj);
1555         }
1556         i915_verify_inactive(dev, __FILE__, __LINE__);
1557 }
1558
1559 static void
1560 i915_gem_process_flushing_list(struct drm_device *dev,
1561                                uint32_t flush_domains, uint32_t seqno)
1562 {
1563         drm_i915_private_t *dev_priv = dev->dev_private;
1564         struct drm_i915_gem_object *obj_priv, *next;
1565
1566         list_for_each_entry_safe(obj_priv, next,
1567                                  &dev_priv->mm.gpu_write_list,
1568                                  gpu_write_list) {
1569                 struct drm_gem_object *obj = &obj_priv->base;
1570
1571                 if ((obj->write_domain & flush_domains) ==
1572                     obj->write_domain) {
1573                         uint32_t old_write_domain = obj->write_domain;
1574
1575                         obj->write_domain = 0;
1576                         list_del_init(&obj_priv->gpu_write_list);
1577                         i915_gem_object_move_to_active(obj, seqno);
1578
1579                         /* update the fence lru list */
1580                         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1581                                 struct drm_i915_fence_reg *reg =
1582                                         &dev_priv->fence_regs[obj_priv->fence_reg];
1583                                 list_move_tail(&reg->lru_list,
1584                                                 &dev_priv->mm.fence_list);
1585                         }
1586
1587                         trace_i915_gem_object_change_domain(obj,
1588                                                             obj->read_domains,
1589                                                             old_write_domain);
1590                 }
1591         }
1592 }
1593
1594 uint32_t
1595 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1596                  uint32_t flush_domains)
1597 {
1598         drm_i915_private_t *dev_priv = dev->dev_private;
1599         struct drm_i915_file_private *i915_file_priv = NULL;
1600         struct drm_i915_gem_request *request;
1601         uint32_t seqno;
1602         int was_empty;
1603
1604         if (file_priv != NULL)
1605                 i915_file_priv = file_priv->driver_priv;
1606
1607         request = kzalloc(sizeof(*request), GFP_KERNEL);
1608         if (request == NULL)
1609                 return 0;
1610
1611         seqno = dev_priv->render_ring.add_request(dev, &dev_priv->render_ring,
1612                                                   file_priv, flush_domains);
1613
1614         DRM_DEBUG_DRIVER("%d\n", seqno);
1615
1616         request->seqno = seqno;
1617         request->emitted_jiffies = jiffies;
1618         was_empty = list_empty(&dev_priv->mm.request_list);
1619         list_add_tail(&request->list, &dev_priv->mm.request_list);
1620         if (i915_file_priv) {
1621                 list_add_tail(&request->client_list,
1622                               &i915_file_priv->mm.request_list);
1623         } else {
1624                 INIT_LIST_HEAD(&request->client_list);
1625         }
1626
1627         /* Associate any objects on the flushing list matching the write
1628          * domain we're flushing with our flush.
1629          */
1630         if (flush_domains != 0) 
1631                 i915_gem_process_flushing_list(dev, flush_domains, seqno);
1632
1633         if (!dev_priv->mm.suspended) {
1634                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1635                 if (was_empty)
1636                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1637         }
1638         return seqno;
1639 }
1640
1641 /**
1642  * Command execution barrier
1643  *
1644  * Ensures that all commands in the ring are finished
1645  * before signalling the CPU
1646  */
1647 static uint32_t
1648 i915_retire_commands(struct drm_device *dev)
1649 {
1650         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1651         uint32_t flush_domains = 0;
1652
1653         /* The sampler always gets flushed on i965 (sigh) */
1654         if (IS_I965G(dev))
1655                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1656         BEGIN_LP_RING(2);
1657         OUT_RING(cmd);
1658         OUT_RING(0); /* noop */
1659         ADVANCE_LP_RING();
1660         return flush_domains;
1661 }
1662
1663 /**
1664  * Moves buffers associated only with the given active seqno from the active
1665  * to inactive list, potentially freeing them.
1666  */
1667 static void
1668 i915_gem_retire_request(struct drm_device *dev,
1669                         struct drm_i915_gem_request *request)
1670 {
1671         drm_i915_private_t *dev_priv = dev->dev_private;
1672
1673         trace_i915_gem_request_retire(dev, request->seqno);
1674
1675         /* Move any buffers on the active list that are no longer referenced
1676          * by the ringbuffer to the flushing/inactive lists as appropriate.
1677          */
1678         spin_lock(&dev_priv->mm.active_list_lock);
1679         while (!list_empty(&dev_priv->mm.active_list)) {
1680                 struct drm_gem_object *obj;
1681                 struct drm_i915_gem_object *obj_priv;
1682
1683                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1684                                             struct drm_i915_gem_object,
1685                                             list);
1686                 obj = &obj_priv->base;
1687
1688                 /* If the seqno being retired doesn't match the oldest in the
1689                  * list, then the oldest in the list must still be newer than
1690                  * this seqno.
1691                  */
1692                 if (obj_priv->last_rendering_seqno != request->seqno)
1693                         goto out;
1694
1695 #if WATCH_LRU
1696                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1697                          __func__, request->seqno, obj);
1698 #endif
1699
1700                 if (obj->write_domain != 0)
1701                         i915_gem_object_move_to_flushing(obj);
1702                 else {
1703                         /* Take a reference on the object so it won't be
1704                          * freed while the spinlock is held.  The list
1705                          * protection for this spinlock is safe when breaking
1706                          * the lock like this since the next thing we do
1707                          * is just get the head of the list again.
1708                          */
1709                         drm_gem_object_reference(obj);
1710                         i915_gem_object_move_to_inactive(obj);
1711                         spin_unlock(&dev_priv->mm.active_list_lock);
1712                         drm_gem_object_unreference(obj);
1713                         spin_lock(&dev_priv->mm.active_list_lock);
1714                 }
1715         }
1716 out:
1717         spin_unlock(&dev_priv->mm.active_list_lock);
1718 }
1719
1720 /**
1721  * Returns true if seq1 is later than seq2.
1722  */
1723 bool
1724 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1725 {
1726         return (int32_t)(seq1 - seq2) >= 0;
1727 }
1728
1729 uint32_t
1730 i915_get_gem_seqno(struct drm_device *dev)
1731 {
1732         drm_i915_private_t *dev_priv = dev->dev_private;
1733
1734         if (HAS_PIPE_CONTROL(dev))
1735                 return ((volatile u32 *)(dev_priv->seqno_page))[0];
1736         else
1737                 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1738 }
1739
1740 /**
1741  * This function clears the request list as sequence numbers are passed.
1742  */
1743 void
1744 i915_gem_retire_requests(struct drm_device *dev)
1745 {
1746         drm_i915_private_t *dev_priv = dev->dev_private;
1747         uint32_t seqno;
1748
1749         struct intel_ring_buffer *ring = &(dev_priv->render_ring);
1750         if (!ring->status_page.page_addr
1751                         || list_empty(&dev_priv->mm.request_list))
1752                 return;
1753
1754         seqno = i915_get_gem_seqno(dev);
1755
1756         while (!list_empty(&dev_priv->mm.request_list)) {
1757                 struct drm_i915_gem_request *request;
1758                 uint32_t retiring_seqno;
1759
1760                 request = list_first_entry(&dev_priv->mm.request_list,
1761                                            struct drm_i915_gem_request,
1762                                            list);
1763                 retiring_seqno = request->seqno;
1764
1765                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1766                     atomic_read(&dev_priv->mm.wedged)) {
1767                         i915_gem_retire_request(dev, request);
1768
1769                         list_del(&request->list);
1770                         list_del(&request->client_list);
1771                         kfree(request);
1772                 } else
1773                         break;
1774         }
1775
1776         if (unlikely (dev_priv->trace_irq_seqno &&
1777                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1778
1779                 ring->user_irq_put(dev, ring);
1780                 dev_priv->trace_irq_seqno = 0;
1781         }
1782 }
1783
1784 void
1785 i915_gem_retire_work_handler(struct work_struct *work)
1786 {
1787         drm_i915_private_t *dev_priv;
1788         struct drm_device *dev;
1789
1790         dev_priv = container_of(work, drm_i915_private_t,
1791                                 mm.retire_work.work);
1792         dev = dev_priv->dev;
1793
1794         mutex_lock(&dev->struct_mutex);
1795         i915_gem_retire_requests(dev);
1796         if (!dev_priv->mm.suspended &&
1797             !list_empty(&dev_priv->mm.request_list))
1798                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1799         mutex_unlock(&dev->struct_mutex);
1800 }
1801
1802 int
1803 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1804 {
1805         drm_i915_private_t *dev_priv = dev->dev_private;
1806         u32 ier;
1807         int ret = 0;
1808
1809         struct intel_ring_buffer *ring = &dev_priv->render_ring;
1810         BUG_ON(seqno == 0);
1811
1812         if (atomic_read(&dev_priv->mm.wedged))
1813                 return -EIO;
1814
1815         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1816                 if (HAS_PCH_SPLIT(dev))
1817                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1818                 else
1819                         ier = I915_READ(IER);
1820                 if (!ier) {
1821                         DRM_ERROR("something (likely vbetool) disabled "
1822                                   "interrupts, re-enabling\n");
1823                         i915_driver_irq_preinstall(dev);
1824                         i915_driver_irq_postinstall(dev);
1825                 }
1826
1827                 trace_i915_gem_request_wait_begin(dev, seqno);
1828
1829                 dev_priv->mm.waiting_gem_seqno = seqno;
1830                 ring->user_irq_get(dev, ring);
1831                 if (interruptible)
1832                         ret = wait_event_interruptible(dev_priv->irq_queue,
1833                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1834                                 atomic_read(&dev_priv->mm.wedged));
1835                 else
1836                         wait_event(dev_priv->irq_queue,
1837                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1838                                 atomic_read(&dev_priv->mm.wedged));
1839
1840                 ring->user_irq_put(dev, ring);
1841                 dev_priv->mm.waiting_gem_seqno = 0;
1842
1843                 trace_i915_gem_request_wait_end(dev, seqno);
1844         }
1845         if (atomic_read(&dev_priv->mm.wedged))
1846                 ret = -EIO;
1847
1848         if (ret && ret != -ERESTARTSYS)
1849                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1850                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1851
1852         /* Directly dispatch request retiring.  While we have the work queue
1853          * to handle this, the waiter on a request often wants an associated
1854          * buffer to have made it to the inactive list, and we would need
1855          * a separate wait queue to handle that.
1856          */
1857         if (ret == 0)
1858                 i915_gem_retire_requests(dev);
1859
1860         return ret;
1861 }
1862
1863 /**
1864  * Waits for a sequence number to be signaled, and cleans up the
1865  * request and object lists appropriately for that event.
1866  */
1867 static int
1868 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1869 {
1870         return i915_do_wait_request(dev, seqno, 1);
1871 }
1872
1873
1874 static void
1875 i915_gem_flush(struct drm_device *dev,
1876                uint32_t invalidate_domains,
1877                uint32_t flush_domains)
1878 {
1879         drm_i915_private_t *dev_priv = dev->dev_private;
1880         if (flush_domains & I915_GEM_DOMAIN_CPU)
1881                 drm_agp_chipset_flush(dev);
1882         dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1883                         invalidate_domains,
1884                         flush_domains);
1885 }
1886
1887 /**
1888  * Ensures that all rendering to the object has completed and the object is
1889  * safe to unbind from the GTT or access from the CPU.
1890  */
1891 static int
1892 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1893 {
1894         struct drm_device *dev = obj->dev;
1895         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1896         int ret;
1897
1898         /* This function only exists to support waiting for existing rendering,
1899          * not for emitting required flushes.
1900          */
1901         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1902
1903         /* If there is rendering queued on the buffer being evicted, wait for
1904          * it.
1905          */
1906         if (obj_priv->active) {
1907 #if WATCH_BUF
1908                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1909                           __func__, obj, obj_priv->last_rendering_seqno);
1910 #endif
1911                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1912                 if (ret != 0)
1913                         return ret;
1914         }
1915
1916         return 0;
1917 }
1918
1919 /**
1920  * Unbinds an object from the GTT aperture.
1921  */
1922 int
1923 i915_gem_object_unbind(struct drm_gem_object *obj)
1924 {
1925         struct drm_device *dev = obj->dev;
1926         drm_i915_private_t *dev_priv = dev->dev_private;
1927         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1928         int ret = 0;
1929
1930 #if WATCH_BUF
1931         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1932         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1933 #endif
1934         if (obj_priv->gtt_space == NULL)
1935                 return 0;
1936
1937         if (obj_priv->pin_count != 0) {
1938                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1939                 return -EINVAL;
1940         }
1941
1942         /* blow away mappings if mapped through GTT */
1943         i915_gem_release_mmap(obj);
1944
1945         /* Move the object to the CPU domain to ensure that
1946          * any possible CPU writes while it's not in the GTT
1947          * are flushed when we go to remap it. This will
1948          * also ensure that all pending GPU writes are finished
1949          * before we unbind.
1950          */
1951         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1952         if (ret) {
1953                 if (ret != -ERESTARTSYS)
1954                         DRM_ERROR("set_domain failed: %d\n", ret);
1955                 return ret;
1956         }
1957
1958         BUG_ON(obj_priv->active);
1959
1960         /* release the fence reg _after_ flushing */
1961         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1962                 i915_gem_clear_fence_reg(obj);
1963
1964         if (obj_priv->agp_mem != NULL) {
1965                 drm_unbind_agp(obj_priv->agp_mem);
1966                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1967                 obj_priv->agp_mem = NULL;
1968         }
1969
1970         i915_gem_object_put_pages(obj);
1971         BUG_ON(obj_priv->pages_refcount);
1972
1973         if (obj_priv->gtt_space) {
1974                 atomic_dec(&dev->gtt_count);
1975                 atomic_sub(obj->size, &dev->gtt_memory);
1976
1977                 drm_mm_put_block(obj_priv->gtt_space);
1978                 obj_priv->gtt_space = NULL;
1979         }
1980
1981         /* Remove ourselves from the LRU list if present. */
1982         spin_lock(&dev_priv->mm.active_list_lock);
1983         if (!list_empty(&obj_priv->list))
1984                 list_del_init(&obj_priv->list);
1985         spin_unlock(&dev_priv->mm.active_list_lock);
1986
1987         if (i915_gem_object_is_purgeable(obj_priv))
1988                 i915_gem_object_truncate(obj);
1989
1990         trace_i915_gem_object_unbind(obj);
1991
1992         return 0;
1993 }
1994
1995 static struct drm_gem_object *
1996 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
1997 {
1998         drm_i915_private_t *dev_priv = dev->dev_private;
1999         struct drm_i915_gem_object *obj_priv;
2000         struct drm_gem_object *best = NULL;
2001         struct drm_gem_object *first = NULL;
2002
2003         /* Try to find the smallest clean object */
2004         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2005                 struct drm_gem_object *obj = &obj_priv->base;
2006                 if (obj->size >= min_size) {
2007                         if ((!obj_priv->dirty ||
2008                              i915_gem_object_is_purgeable(obj_priv)) &&
2009                             (!best || obj->size < best->size)) {
2010                                 best = obj;
2011                                 if (best->size == min_size)
2012                                         return best;
2013                         }
2014                         if (!first)
2015                             first = obj;
2016                 }
2017         }
2018
2019         return best ? best : first;
2020 }
2021
2022 static int
2023 i915_gpu_idle(struct drm_device *dev)
2024 {
2025         drm_i915_private_t *dev_priv = dev->dev_private;
2026         bool lists_empty;
2027         uint32_t seqno;
2028
2029         spin_lock(&dev_priv->mm.active_list_lock);
2030         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
2031                       list_empty(&dev_priv->mm.active_list);
2032         spin_unlock(&dev_priv->mm.active_list_lock);
2033
2034         if (lists_empty)
2035                 return 0;
2036
2037         /* Flush everything onto the inactive list. */
2038         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2039         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2040         if (seqno == 0)
2041                 return -ENOMEM;
2042
2043         return i915_wait_request(dev, seqno);
2044 }
2045
2046 static int
2047 i915_gem_evict_everything(struct drm_device *dev)
2048 {
2049         drm_i915_private_t *dev_priv = dev->dev_private;
2050         int ret;
2051         bool lists_empty;
2052
2053         spin_lock(&dev_priv->mm.active_list_lock);
2054         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2055                        list_empty(&dev_priv->mm.flushing_list) &&
2056                        list_empty(&dev_priv->mm.active_list));
2057         spin_unlock(&dev_priv->mm.active_list_lock);
2058
2059         if (lists_empty)
2060                 return -ENOSPC;
2061
2062         /* Flush everything (on to the inactive lists) and evict */
2063         ret = i915_gpu_idle(dev);
2064         if (ret)
2065                 return ret;
2066
2067         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2068
2069         ret = i915_gem_evict_from_inactive_list(dev);
2070         if (ret)
2071                 return ret;
2072
2073         spin_lock(&dev_priv->mm.active_list_lock);
2074         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2075                        list_empty(&dev_priv->mm.flushing_list) &&
2076                        list_empty(&dev_priv->mm.active_list));
2077         spin_unlock(&dev_priv->mm.active_list_lock);
2078         BUG_ON(!lists_empty);
2079
2080         return 0;
2081 }
2082
2083 static int
2084 i915_gem_evict_something(struct drm_device *dev, int min_size)
2085 {
2086         drm_i915_private_t *dev_priv = dev->dev_private;
2087         struct drm_gem_object *obj;
2088         int ret;
2089
2090         for (;;) {
2091                 i915_gem_retire_requests(dev);
2092
2093                 /* If there's an inactive buffer available now, grab it
2094                  * and be done.
2095                  */
2096                 obj = i915_gem_find_inactive_object(dev, min_size);
2097                 if (obj) {
2098                         struct drm_i915_gem_object *obj_priv;
2099
2100 #if WATCH_LRU
2101                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2102 #endif
2103                         obj_priv = to_intel_bo(obj);
2104                         BUG_ON(obj_priv->pin_count != 0);
2105                         BUG_ON(obj_priv->active);
2106
2107                         /* Wait on the rendering and unbind the buffer. */
2108                         return i915_gem_object_unbind(obj);
2109                 }
2110
2111                 /* If we didn't get anything, but the ring is still processing
2112                  * things, wait for the next to finish and hopefully leave us
2113                  * a buffer to evict.
2114                  */
2115                 if (!list_empty(&dev_priv->mm.request_list)) {
2116                         struct drm_i915_gem_request *request;
2117
2118                         request = list_first_entry(&dev_priv->mm.request_list,
2119                                                    struct drm_i915_gem_request,
2120                                                    list);
2121
2122                         ret = i915_wait_request(dev, request->seqno);
2123                         if (ret)
2124                                 return ret;
2125
2126                         continue;
2127                 }
2128
2129                 /* If we didn't have anything on the request list but there
2130                  * are buffers awaiting a flush, emit one and try again.
2131                  * When we wait on it, those buffers waiting for that flush
2132                  * will get moved to inactive.
2133                  */
2134                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2135                         struct drm_i915_gem_object *obj_priv;
2136
2137                         /* Find an object that we can immediately reuse */
2138                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2139                                 obj = &obj_priv->base;
2140                                 if (obj->size >= min_size)
2141                                         break;
2142
2143                                 obj = NULL;
2144                         }
2145
2146                         if (obj != NULL) {
2147                                 uint32_t seqno;
2148
2149                                 i915_gem_flush(dev,
2150                                                obj->write_domain,
2151                                                obj->write_domain);
2152                                 seqno = i915_add_request(dev, NULL, obj->write_domain);
2153                                 if (seqno == 0)
2154                                         return -ENOMEM;
2155                                 continue;
2156                         }
2157                 }
2158
2159                 /* If we didn't do any of the above, there's no single buffer
2160                  * large enough to swap out for the new one, so just evict
2161                  * everything and start again. (This should be rare.)
2162                  */
2163                 if (!list_empty (&dev_priv->mm.inactive_list))
2164                         return i915_gem_evict_from_inactive_list(dev);
2165                 else
2166                         return i915_gem_evict_everything(dev);
2167         }
2168 }
2169
2170 int
2171 i915_gem_object_get_pages(struct drm_gem_object *obj,
2172                           gfp_t gfpmask)
2173 {
2174         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2175         int page_count, i;
2176         struct address_space *mapping;
2177         struct inode *inode;
2178         struct page *page;
2179
2180         if (obj_priv->pages_refcount++ != 0)
2181                 return 0;
2182
2183         /* Get the list of pages out of our struct file.  They'll be pinned
2184          * at this point until we release them.
2185          */
2186         page_count = obj->size / PAGE_SIZE;
2187         BUG_ON(obj_priv->pages != NULL);
2188         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2189         if (obj_priv->pages == NULL) {
2190                 obj_priv->pages_refcount--;
2191                 return -ENOMEM;
2192         }
2193
2194         inode = obj->filp->f_path.dentry->d_inode;
2195         mapping = inode->i_mapping;
2196         for (i = 0; i < page_count; i++) {
2197                 page = read_cache_page_gfp(mapping, i,
2198                                            mapping_gfp_mask (mapping) |
2199                                            __GFP_COLD |
2200                                            gfpmask);
2201                 if (IS_ERR(page))
2202                         goto err_pages;
2203
2204                 obj_priv->pages[i] = page;
2205         }
2206
2207         if (obj_priv->tiling_mode != I915_TILING_NONE)
2208                 i915_gem_object_do_bit_17_swizzle(obj);
2209
2210         return 0;
2211
2212 err_pages:
2213         while (i--)
2214                 page_cache_release(obj_priv->pages[i]);
2215
2216         drm_free_large(obj_priv->pages);
2217         obj_priv->pages = NULL;
2218         obj_priv->pages_refcount--;
2219         return PTR_ERR(page);
2220 }
2221
2222 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2223 {
2224         struct drm_gem_object *obj = reg->obj;
2225         struct drm_device *dev = obj->dev;
2226         drm_i915_private_t *dev_priv = dev->dev_private;
2227         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2228         int regnum = obj_priv->fence_reg;
2229         uint64_t val;
2230
2231         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2232                     0xfffff000) << 32;
2233         val |= obj_priv->gtt_offset & 0xfffff000;
2234         val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2235                 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2236
2237         if (obj_priv->tiling_mode == I915_TILING_Y)
2238                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2239         val |= I965_FENCE_REG_VALID;
2240
2241         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2242 }
2243
2244 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2245 {
2246         struct drm_gem_object *obj = reg->obj;
2247         struct drm_device *dev = obj->dev;
2248         drm_i915_private_t *dev_priv = dev->dev_private;
2249         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2250         int regnum = obj_priv->fence_reg;
2251         uint64_t val;
2252
2253         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2254                     0xfffff000) << 32;
2255         val |= obj_priv->gtt_offset & 0xfffff000;
2256         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2257         if (obj_priv->tiling_mode == I915_TILING_Y)
2258                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2259         val |= I965_FENCE_REG_VALID;
2260
2261         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2262 }
2263
2264 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2265 {
2266         struct drm_gem_object *obj = reg->obj;
2267         struct drm_device *dev = obj->dev;
2268         drm_i915_private_t *dev_priv = dev->dev_private;
2269         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2270         int regnum = obj_priv->fence_reg;
2271         int tile_width;
2272         uint32_t fence_reg, val;
2273         uint32_t pitch_val;
2274
2275         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2276             (obj_priv->gtt_offset & (obj->size - 1))) {
2277                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2278                      __func__, obj_priv->gtt_offset, obj->size);
2279                 return;
2280         }
2281
2282         if (obj_priv->tiling_mode == I915_TILING_Y &&
2283             HAS_128_BYTE_Y_TILING(dev))
2284                 tile_width = 128;
2285         else
2286                 tile_width = 512;
2287
2288         /* Note: pitch better be a power of two tile widths */
2289         pitch_val = obj_priv->stride / tile_width;
2290         pitch_val = ffs(pitch_val) - 1;
2291
2292         if (obj_priv->tiling_mode == I915_TILING_Y &&
2293             HAS_128_BYTE_Y_TILING(dev))
2294                 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2295         else
2296                 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2297
2298         val = obj_priv->gtt_offset;
2299         if (obj_priv->tiling_mode == I915_TILING_Y)
2300                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2301         val |= I915_FENCE_SIZE_BITS(obj->size);
2302         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2303         val |= I830_FENCE_REG_VALID;
2304
2305         if (regnum < 8)
2306                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2307         else
2308                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2309         I915_WRITE(fence_reg, val);
2310 }
2311
2312 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2313 {
2314         struct drm_gem_object *obj = reg->obj;
2315         struct drm_device *dev = obj->dev;
2316         drm_i915_private_t *dev_priv = dev->dev_private;
2317         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2318         int regnum = obj_priv->fence_reg;
2319         uint32_t val;
2320         uint32_t pitch_val;
2321         uint32_t fence_size_bits;
2322
2323         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2324             (obj_priv->gtt_offset & (obj->size - 1))) {
2325                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2326                      __func__, obj_priv->gtt_offset);
2327                 return;
2328         }
2329
2330         pitch_val = obj_priv->stride / 128;
2331         pitch_val = ffs(pitch_val) - 1;
2332         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2333
2334         val = obj_priv->gtt_offset;
2335         if (obj_priv->tiling_mode == I915_TILING_Y)
2336                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2337         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2338         WARN_ON(fence_size_bits & ~0x00000f00);
2339         val |= fence_size_bits;
2340         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2341         val |= I830_FENCE_REG_VALID;
2342
2343         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2344 }
2345
2346 static int i915_find_fence_reg(struct drm_device *dev)
2347 {
2348         struct drm_i915_fence_reg *reg = NULL;
2349         struct drm_i915_gem_object *obj_priv = NULL;
2350         struct drm_i915_private *dev_priv = dev->dev_private;
2351         struct drm_gem_object *obj = NULL;
2352         int i, avail, ret;
2353
2354         /* First try to find a free reg */
2355         avail = 0;
2356         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2357                 reg = &dev_priv->fence_regs[i];
2358                 if (!reg->obj)
2359                         return i;
2360
2361                 obj_priv = to_intel_bo(reg->obj);
2362                 if (!obj_priv->pin_count)
2363                     avail++;
2364         }
2365
2366         if (avail == 0)
2367                 return -ENOSPC;
2368
2369         /* None available, try to steal one or wait for a user to finish */
2370         i = I915_FENCE_REG_NONE;
2371         list_for_each_entry(reg, &dev_priv->mm.fence_list,
2372                             lru_list) {
2373                 obj = reg->obj;
2374                 obj_priv = to_intel_bo(obj);
2375
2376                 if (obj_priv->pin_count)
2377                         continue;
2378
2379                 /* found one! */
2380                 i = obj_priv->fence_reg;
2381                 break;
2382         }
2383
2384         BUG_ON(i == I915_FENCE_REG_NONE);
2385
2386         /* We only have a reference on obj from the active list. put_fence_reg
2387          * might drop that one, causing a use-after-free in it. So hold a
2388          * private reference to obj like the other callers of put_fence_reg
2389          * (set_tiling ioctl) do. */
2390         drm_gem_object_reference(obj);
2391         ret = i915_gem_object_put_fence_reg(obj);
2392         drm_gem_object_unreference(obj);
2393         if (ret != 0)
2394                 return ret;
2395
2396         return i;
2397 }
2398
2399 /**
2400  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2401  * @obj: object to map through a fence reg
2402  *
2403  * When mapping objects through the GTT, userspace wants to be able to write
2404  * to them without having to worry about swizzling if the object is tiled.
2405  *
2406  * This function walks the fence regs looking for a free one for @obj,
2407  * stealing one if it can't find any.
2408  *
2409  * It then sets up the reg based on the object's properties: address, pitch
2410  * and tiling format.
2411  */
2412 int
2413 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2414 {
2415         struct drm_device *dev = obj->dev;
2416         struct drm_i915_private *dev_priv = dev->dev_private;
2417         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2418         struct drm_i915_fence_reg *reg = NULL;
2419         int ret;
2420
2421         /* Just update our place in the LRU if our fence is getting used. */
2422         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2423                 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2424                 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2425                 return 0;
2426         }
2427
2428         switch (obj_priv->tiling_mode) {
2429         case I915_TILING_NONE:
2430                 WARN(1, "allocating a fence for non-tiled object?\n");
2431                 break;
2432         case I915_TILING_X:
2433                 if (!obj_priv->stride)
2434                         return -EINVAL;
2435                 WARN((obj_priv->stride & (512 - 1)),
2436                      "object 0x%08x is X tiled but has non-512B pitch\n",
2437                      obj_priv->gtt_offset);
2438                 break;
2439         case I915_TILING_Y:
2440                 if (!obj_priv->stride)
2441                         return -EINVAL;
2442                 WARN((obj_priv->stride & (128 - 1)),
2443                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2444                      obj_priv->gtt_offset);
2445                 break;
2446         }
2447
2448         ret = i915_find_fence_reg(dev);
2449         if (ret < 0)
2450                 return ret;
2451
2452         obj_priv->fence_reg = ret;
2453         reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2454         list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2455
2456         reg->obj = obj;
2457
2458         if (IS_GEN6(dev))
2459                 sandybridge_write_fence_reg(reg);
2460         else if (IS_I965G(dev))
2461                 i965_write_fence_reg(reg);
2462         else if (IS_I9XX(dev))
2463                 i915_write_fence_reg(reg);
2464         else
2465                 i830_write_fence_reg(reg);
2466
2467         trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2468                         obj_priv->tiling_mode);
2469
2470         return 0;
2471 }
2472
2473 /**
2474  * i915_gem_clear_fence_reg - clear out fence register info
2475  * @obj: object to clear
2476  *
2477  * Zeroes out the fence register itself and clears out the associated
2478  * data structures in dev_priv and obj_priv.
2479  */
2480 static void
2481 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2482 {
2483         struct drm_device *dev = obj->dev;
2484         drm_i915_private_t *dev_priv = dev->dev_private;
2485         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2486         struct drm_i915_fence_reg *reg =
2487                 &dev_priv->fence_regs[obj_priv->fence_reg];
2488
2489         if (IS_GEN6(dev)) {
2490                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2491                              (obj_priv->fence_reg * 8), 0);
2492         } else if (IS_I965G(dev)) {
2493                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2494         } else {
2495                 uint32_t fence_reg;
2496
2497                 if (obj_priv->fence_reg < 8)
2498                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2499                 else
2500                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2501                                                        8) * 4;
2502
2503                 I915_WRITE(fence_reg, 0);
2504         }
2505
2506         reg->obj = NULL;
2507         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2508         list_del_init(&reg->lru_list);
2509 }
2510
2511 /**
2512  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2513  * to the buffer to finish, and then resets the fence register.
2514  * @obj: tiled object holding a fence register.
2515  *
2516  * Zeroes out the fence register itself and clears out the associated
2517  * data structures in dev_priv and obj_priv.
2518  */
2519 int
2520 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2521 {
2522         struct drm_device *dev = obj->dev;
2523         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2524
2525         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2526                 return 0;
2527
2528         /* If we've changed tiling, GTT-mappings of the object
2529          * need to re-fault to ensure that the correct fence register
2530          * setup is in place.
2531          */
2532         i915_gem_release_mmap(obj);
2533
2534         /* On the i915, GPU access to tiled buffers is via a fence,
2535          * therefore we must wait for any outstanding access to complete
2536          * before clearing the fence.
2537          */
2538         if (!IS_I965G(dev)) {
2539                 int ret;
2540
2541                 i915_gem_object_flush_gpu_write_domain(obj);
2542                 ret = i915_gem_object_wait_rendering(obj);
2543                 if (ret != 0)
2544                         return ret;
2545         }
2546
2547         i915_gem_object_flush_gtt_write_domain(obj);
2548         i915_gem_clear_fence_reg (obj);
2549
2550         return 0;
2551 }
2552
2553 /**
2554  * Finds free space in the GTT aperture and binds the object there.
2555  */
2556 static int
2557 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2558 {
2559         struct drm_device *dev = obj->dev;
2560         drm_i915_private_t *dev_priv = dev->dev_private;
2561         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2562         struct drm_mm_node *free_space;
2563         gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2564         int ret;
2565
2566         if (obj_priv->madv != I915_MADV_WILLNEED) {
2567                 DRM_ERROR("Attempting to bind a purgeable object\n");
2568                 return -EINVAL;
2569         }
2570
2571         if (alignment == 0)
2572                 alignment = i915_gem_get_gtt_alignment(obj);
2573         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2574                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2575                 return -EINVAL;
2576         }
2577
2578  search_free:
2579         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2580                                         obj->size, alignment, 0);
2581         if (free_space != NULL) {
2582                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2583                                                        alignment);
2584                 if (obj_priv->gtt_space != NULL) {
2585                         obj_priv->gtt_space->private = obj;
2586                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2587                 }
2588         }
2589         if (obj_priv->gtt_space == NULL) {
2590                 /* If the gtt is empty and we're still having trouble
2591                  * fitting our object in, we're out of memory.
2592                  */
2593 #if WATCH_LRU
2594                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2595 #endif
2596                 ret = i915_gem_evict_something(dev, obj->size);
2597                 if (ret)
2598                         return ret;
2599
2600                 goto search_free;
2601         }
2602
2603 #if WATCH_BUF
2604         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2605                  obj->size, obj_priv->gtt_offset);
2606 #endif
2607         ret = i915_gem_object_get_pages(obj, gfpmask);
2608         if (ret) {
2609                 drm_mm_put_block(obj_priv->gtt_space);
2610                 obj_priv->gtt_space = NULL;
2611
2612                 if (ret == -ENOMEM) {
2613                         /* first try to clear up some space from the GTT */
2614                         ret = i915_gem_evict_something(dev, obj->size);
2615                         if (ret) {
2616                                 /* now try to shrink everyone else */
2617                                 if (gfpmask) {
2618                                         gfpmask = 0;
2619                                         goto search_free;
2620                                 }
2621
2622                                 return ret;
2623                         }
2624
2625                         goto search_free;
2626                 }
2627
2628                 return ret;
2629         }
2630
2631         /* Create an AGP memory structure pointing at our pages, and bind it
2632          * into the GTT.
2633          */
2634         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2635                                                obj_priv->pages,
2636                                                obj->size >> PAGE_SHIFT,
2637                                                obj_priv->gtt_offset,
2638                                                obj_priv->agp_type);
2639         if (obj_priv->agp_mem == NULL) {
2640                 i915_gem_object_put_pages(obj);
2641                 drm_mm_put_block(obj_priv->gtt_space);
2642                 obj_priv->gtt_space = NULL;
2643
2644                 ret = i915_gem_evict_something(dev, obj->size);
2645                 if (ret)
2646                         return ret;
2647
2648                 goto search_free;
2649         }
2650         atomic_inc(&dev->gtt_count);
2651         atomic_add(obj->size, &dev->gtt_memory);
2652
2653         /* Assert that the object is not currently in any GPU domain. As it
2654          * wasn't in the GTT, there shouldn't be any way it could have been in
2655          * a GPU cache
2656          */
2657         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2658         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2659
2660         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2661
2662         return 0;
2663 }
2664
2665 void
2666 i915_gem_clflush_object(struct drm_gem_object *obj)
2667 {
2668         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
2669
2670         /* If we don't have a page list set up, then we're not pinned
2671          * to GPU, and we can ignore the cache flush because it'll happen
2672          * again at bind time.
2673          */
2674         if (obj_priv->pages == NULL)
2675                 return;
2676
2677         trace_i915_gem_object_clflush(obj);
2678
2679         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2680 }
2681
2682 /** Flushes any GPU write domain for the object if it's dirty. */
2683 static void
2684 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2685 {
2686         struct drm_device *dev = obj->dev;
2687         uint32_t old_write_domain;
2688
2689         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2690                 return;
2691
2692         /* Queue the GPU write cache flushing we need. */
2693         old_write_domain = obj->write_domain;
2694         i915_gem_flush(dev, 0, obj->write_domain);
2695         (void) i915_add_request(dev, NULL, obj->write_domain);
2696         BUG_ON(obj->write_domain);
2697
2698         trace_i915_gem_object_change_domain(obj,
2699                                             obj->read_domains,
2700                                             old_write_domain);
2701 }
2702
2703 /** Flushes the GTT write domain for the object if it's dirty. */
2704 static void
2705 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2706 {
2707         uint32_t old_write_domain;
2708
2709         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2710                 return;
2711
2712         /* No actual flushing is required for the GTT write domain.   Writes
2713          * to it immediately go to main memory as far as we know, so there's
2714          * no chipset flush.  It also doesn't land in render cache.
2715          */
2716         old_write_domain = obj->write_domain;
2717         obj->write_domain = 0;
2718
2719         trace_i915_gem_object_change_domain(obj,
2720                                             obj->read_domains,
2721                                             old_write_domain);
2722 }
2723
2724 /** Flushes the CPU write domain for the object if it's dirty. */
2725 static void
2726 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2727 {
2728         struct drm_device *dev = obj->dev;
2729         uint32_t old_write_domain;
2730
2731         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2732                 return;
2733
2734         i915_gem_clflush_object(obj);
2735         drm_agp_chipset_flush(dev);
2736         old_write_domain = obj->write_domain;
2737         obj->write_domain = 0;
2738
2739         trace_i915_gem_object_change_domain(obj,
2740                                             obj->read_domains,
2741                                             old_write_domain);
2742 }
2743
2744 void
2745 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2746 {
2747         switch (obj->write_domain) {
2748         case I915_GEM_DOMAIN_GTT:
2749                 i915_gem_object_flush_gtt_write_domain(obj);
2750                 break;
2751         case I915_GEM_DOMAIN_CPU:
2752                 i915_gem_object_flush_cpu_write_domain(obj);
2753                 break;
2754         default:
2755                 i915_gem_object_flush_gpu_write_domain(obj);
2756                 break;
2757         }
2758 }
2759
2760 /**
2761  * Moves a single object to the GTT read, and possibly write domain.
2762  *
2763  * This function returns when the move is complete, including waiting on
2764  * flushes to occur.
2765  */
2766 int
2767 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2768 {
2769         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2770         uint32_t old_write_domain, old_read_domains;
2771         int ret;
2772
2773         /* Not valid to be called on unbound objects. */
2774         if (obj_priv->gtt_space == NULL)
2775                 return -EINVAL;
2776
2777         i915_gem_object_flush_gpu_write_domain(obj);
2778         /* Wait on any GPU rendering and flushing to occur. */
2779         ret = i915_gem_object_wait_rendering(obj);
2780         if (ret != 0)
2781                 return ret;
2782
2783         old_write_domain = obj->write_domain;
2784         old_read_domains = obj->read_domains;
2785
2786         /* If we're writing through the GTT domain, then CPU and GPU caches
2787          * will need to be invalidated at next use.
2788          */
2789         if (write)
2790                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2791
2792         i915_gem_object_flush_cpu_write_domain(obj);
2793
2794         /* It should now be out of any other write domains, and we can update
2795          * the domain values for our changes.
2796          */
2797         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2798         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2799         if (write) {
2800                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2801                 obj_priv->dirty = 1;
2802         }
2803
2804         trace_i915_gem_object_change_domain(obj,
2805                                             old_read_domains,
2806                                             old_write_domain);
2807
2808         return 0;
2809 }
2810
2811 /*
2812  * Prepare buffer for display plane. Use uninterruptible for possible flush
2813  * wait, as in modesetting process we're not supposed to be interrupted.
2814  */
2815 int
2816 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2817 {
2818         struct drm_device *dev = obj->dev;
2819         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2820         uint32_t old_write_domain, old_read_domains;
2821         int ret;
2822
2823         /* Not valid to be called on unbound objects. */
2824         if (obj_priv->gtt_space == NULL)
2825                 return -EINVAL;
2826
2827         i915_gem_object_flush_gpu_write_domain(obj);
2828
2829         /* Wait on any GPU rendering and flushing to occur. */
2830         if (obj_priv->active) {
2831 #if WATCH_BUF
2832                 DRM_INFO("%s: object %p wait for seqno %08x\n",
2833                           __func__, obj, obj_priv->last_rendering_seqno);
2834 #endif
2835                 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2836                 if (ret != 0)
2837                         return ret;
2838         }
2839
2840         old_write_domain = obj->write_domain;
2841         old_read_domains = obj->read_domains;
2842
2843         obj->read_domains &= I915_GEM_DOMAIN_GTT;
2844
2845         i915_gem_object_flush_cpu_write_domain(obj);
2846
2847         /* It should now be out of any other write domains, and we can update
2848          * the domain values for our changes.
2849          */
2850         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2851         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2852         obj->write_domain = I915_GEM_DOMAIN_GTT;
2853         obj_priv->dirty = 1;
2854
2855         trace_i915_gem_object_change_domain(obj,
2856                                             old_read_domains,
2857                                             old_write_domain);
2858
2859         return 0;
2860 }
2861
2862 /**
2863  * Moves a single object to the CPU read, and possibly write domain.
2864  *
2865  * This function returns when the move is complete, including waiting on
2866  * flushes to occur.
2867  */
2868 static int
2869 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2870 {
2871         uint32_t old_write_domain, old_read_domains;
2872         int ret;
2873
2874         i915_gem_object_flush_gpu_write_domain(obj);
2875         /* Wait on any GPU rendering and flushing to occur. */
2876         ret = i915_gem_object_wait_rendering(obj);
2877         if (ret != 0)
2878                 return ret;
2879
2880         i915_gem_object_flush_gtt_write_domain(obj);
2881
2882         /* If we have a partially-valid cache of the object in the CPU,
2883          * finish invalidating it and free the per-page flags.
2884          */
2885         i915_gem_object_set_to_full_cpu_read_domain(obj);
2886
2887         old_write_domain = obj->write_domain;
2888         old_read_domains = obj->read_domains;
2889
2890         /* Flush the CPU cache if it's still invalid. */
2891         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2892                 i915_gem_clflush_object(obj);
2893
2894                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2895         }
2896
2897         /* It should now be out of any other write domains, and we can update
2898          * the domain values for our changes.
2899          */
2900         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2901
2902         /* If we're writing through the CPU, then the GPU read domains will
2903          * need to be invalidated at next use.
2904          */
2905         if (write) {
2906                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2907                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2908         }
2909
2910         trace_i915_gem_object_change_domain(obj,
2911                                             old_read_domains,
2912                                             old_write_domain);
2913
2914         return 0;
2915 }
2916
2917 /*
2918  * Set the next domain for the specified object. This
2919  * may not actually perform the necessary flushing/invaliding though,
2920  * as that may want to be batched with other set_domain operations
2921  *
2922  * This is (we hope) the only really tricky part of gem. The goal
2923  * is fairly simple -- track which caches hold bits of the object
2924  * and make sure they remain coherent. A few concrete examples may
2925  * help to explain how it works. For shorthand, we use the notation
2926  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2927  * a pair of read and write domain masks.
2928  *
2929  * Case 1: the batch buffer
2930  *
2931  *      1. Allocated
2932  *      2. Written by CPU
2933  *      3. Mapped to GTT
2934  *      4. Read by GPU
2935  *      5. Unmapped from GTT
2936  *      6. Freed
2937  *
2938  *      Let's take these a step at a time
2939  *
2940  *      1. Allocated
2941  *              Pages allocated from the kernel may still have
2942  *              cache contents, so we set them to (CPU, CPU) always.
2943  *      2. Written by CPU (using pwrite)
2944  *              The pwrite function calls set_domain (CPU, CPU) and
2945  *              this function does nothing (as nothing changes)
2946  *      3. Mapped by GTT
2947  *              This function asserts that the object is not
2948  *              currently in any GPU-based read or write domains
2949  *      4. Read by GPU
2950  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2951  *              As write_domain is zero, this function adds in the
2952  *              current read domains (CPU+COMMAND, 0).
2953  *              flush_domains is set to CPU.
2954  *              invalidate_domains is set to COMMAND
2955  *              clflush is run to get data out of the CPU caches
2956  *              then i915_dev_set_domain calls i915_gem_flush to
2957  *              emit an MI_FLUSH and drm_agp_chipset_flush
2958  *      5. Unmapped from GTT
2959  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2960  *              flush_domains and invalidate_domains end up both zero
2961  *              so no flushing/invalidating happens
2962  *      6. Freed
2963  *              yay, done
2964  *
2965  * Case 2: The shared render buffer
2966  *
2967  *      1. Allocated
2968  *      2. Mapped to GTT
2969  *      3. Read/written by GPU
2970  *      4. set_domain to (CPU,CPU)
2971  *      5. Read/written by CPU
2972  *      6. Read/written by GPU
2973  *
2974  *      1. Allocated
2975  *              Same as last example, (CPU, CPU)
2976  *      2. Mapped to GTT
2977  *              Nothing changes (assertions find that it is not in the GPU)
2978  *      3. Read/written by GPU
2979  *              execbuffer calls set_domain (RENDER, RENDER)
2980  *              flush_domains gets CPU
2981  *              invalidate_domains gets GPU
2982  *              clflush (obj)
2983  *              MI_FLUSH and drm_agp_chipset_flush
2984  *      4. set_domain (CPU, CPU)
2985  *              flush_domains gets GPU
2986  *              invalidate_domains gets CPU
2987  *              wait_rendering (obj) to make sure all drawing is complete.
2988  *              This will include an MI_FLUSH to get the data from GPU
2989  *              to memory
2990  *              clflush (obj) to invalidate the CPU cache
2991  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2992  *      5. Read/written by CPU
2993  *              cache lines are loaded and dirtied
2994  *      6. Read written by GPU
2995  *              Same as last GPU access
2996  *
2997  * Case 3: The constant buffer
2998  *
2999  *      1. Allocated
3000  *      2. Written by CPU
3001  *      3. Read by GPU
3002  *      4. Updated (written) by CPU again
3003  *      5. Read by GPU
3004  *
3005  *      1. Allocated
3006  *              (CPU, CPU)
3007  *      2. Written by CPU
3008  *              (CPU, CPU)
3009  *      3. Read by GPU
3010  *              (CPU+RENDER, 0)
3011  *              flush_domains = CPU
3012  *              invalidate_domains = RENDER
3013  *              clflush (obj)
3014  *              MI_FLUSH
3015  *              drm_agp_chipset_flush
3016  *      4. Updated (written) by CPU again
3017  *              (CPU, CPU)
3018  *              flush_domains = 0 (no previous write domain)
3019  *              invalidate_domains = 0 (no new read domains)
3020  *      5. Read by GPU
3021  *              (CPU+RENDER, 0)
3022  *              flush_domains = CPU
3023  *              invalidate_domains = RENDER
3024  *              clflush (obj)
3025  *              MI_FLUSH
3026  *              drm_agp_chipset_flush
3027  */
3028 static void
3029 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3030 {
3031         struct drm_device               *dev = obj->dev;
3032         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
3033         uint32_t                        invalidate_domains = 0;
3034         uint32_t                        flush_domains = 0;
3035         uint32_t                        old_read_domains;
3036
3037         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3038         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3039
3040         intel_mark_busy(dev, obj);
3041
3042 #if WATCH_BUF
3043         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3044                  __func__, obj,
3045                  obj->read_domains, obj->pending_read_domains,
3046                  obj->write_domain, obj->pending_write_domain);
3047 #endif
3048         /*
3049          * If the object isn't moving to a new write domain,
3050          * let the object stay in multiple read domains
3051          */
3052         if (obj->pending_write_domain == 0)
3053                 obj->pending_read_domains |= obj->read_domains;
3054         else
3055                 obj_priv->dirty = 1;
3056
3057         /*
3058          * Flush the current write domain if
3059          * the new read domains don't match. Invalidate
3060          * any read domains which differ from the old
3061          * write domain
3062          */
3063         if (obj->write_domain &&
3064             obj->write_domain != obj->pending_read_domains) {
3065                 flush_domains |= obj->write_domain;
3066                 invalidate_domains |=
3067                         obj->pending_read_domains & ~obj->write_domain;
3068         }
3069         /*
3070          * Invalidate any read caches which may have
3071          * stale data. That is, any new read domains.
3072          */
3073         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3074         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3075 #if WATCH_BUF
3076                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3077                          __func__, flush_domains, invalidate_domains);
3078 #endif
3079                 i915_gem_clflush_object(obj);
3080         }
3081
3082         old_read_domains = obj->read_domains;
3083
3084         /* The actual obj->write_domain will be updated with
3085          * pending_write_domain after we emit the accumulated flush for all
3086          * of our domain changes in execbuffers (which clears objects'
3087          * write_domains).  So if we have a current write domain that we
3088          * aren't changing, set pending_write_domain to that.
3089          */
3090         if (flush_domains == 0 && obj->pending_write_domain == 0)
3091                 obj->pending_write_domain = obj->write_domain;
3092         obj->read_domains = obj->pending_read_domains;
3093
3094         dev->invalidate_domains |= invalidate_domains;
3095         dev->flush_domains |= flush_domains;
3096 #if WATCH_BUF
3097         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3098                  __func__,
3099                  obj->read_domains, obj->write_domain,
3100                  dev->invalidate_domains, dev->flush_domains);
3101 #endif
3102
3103         trace_i915_gem_object_change_domain(obj,
3104                                             old_read_domains,
3105                                             obj->write_domain);
3106 }
3107
3108 /**
3109  * Moves the object from a partially CPU read to a full one.
3110  *
3111  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3112  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3113  */
3114 static void
3115 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3116 {
3117         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3118
3119         if (!obj_priv->page_cpu_valid)
3120                 return;
3121
3122         /* If we're partially in the CPU read domain, finish moving it in.
3123          */
3124         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3125                 int i;
3126
3127                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3128                         if (obj_priv->page_cpu_valid[i])
3129                                 continue;
3130                         drm_clflush_pages(obj_priv->pages + i, 1);
3131                 }
3132         }
3133
3134         /* Free the page_cpu_valid mappings which are now stale, whether
3135          * or not we've got I915_GEM_DOMAIN_CPU.
3136          */
3137         kfree(obj_priv->page_cpu_valid);
3138         obj_priv->page_cpu_valid = NULL;
3139 }
3140
3141 /**
3142  * Set the CPU read domain on a range of the object.
3143  *
3144  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3145  * not entirely valid.  The page_cpu_valid member of the object flags which
3146  * pages have been flushed, and will be respected by
3147  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3148  * of the whole object.
3149  *
3150  * This function returns when the move is complete, including waiting on
3151  * flushes to occur.
3152  */
3153 static int
3154 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3155                                           uint64_t offset, uint64_t size)
3156 {
3157         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3158         uint32_t old_read_domains;
3159         int i, ret;
3160
3161         if (offset == 0 && size == obj->size)
3162                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3163
3164         i915_gem_object_flush_gpu_write_domain(obj);
3165         /* Wait on any GPU rendering and flushing to occur. */
3166         ret = i915_gem_object_wait_rendering(obj);
3167         if (ret != 0)
3168                 return ret;
3169         i915_gem_object_flush_gtt_write_domain(obj);
3170
3171         /* If we're already fully in the CPU read domain, we're done. */
3172         if (obj_priv->page_cpu_valid == NULL &&
3173             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3174                 return 0;
3175
3176         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3177          * newly adding I915_GEM_DOMAIN_CPU
3178          */
3179         if (obj_priv->page_cpu_valid == NULL) {
3180                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3181                                                    GFP_KERNEL);
3182                 if (obj_priv->page_cpu_valid == NULL)
3183                         return -ENOMEM;
3184         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3185                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3186
3187         /* Flush the cache on any pages that are still invalid from the CPU's
3188          * perspective.
3189          */
3190         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3191              i++) {
3192                 if (obj_priv->page_cpu_valid[i])
3193                         continue;
3194
3195                 drm_clflush_pages(obj_priv->pages + i, 1);
3196
3197                 obj_priv->page_cpu_valid[i] = 1;
3198         }
3199
3200         /* It should now be out of any other write domains, and we can update
3201          * the domain values for our changes.
3202          */
3203         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3204
3205         old_read_domains = obj->read_domains;
3206         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3207
3208         trace_i915_gem_object_change_domain(obj,
3209                                             old_read_domains,
3210                                             obj->write_domain);
3211
3212         return 0;
3213 }
3214
3215 /**
3216  * Pin an object to the GTT and evaluate the relocations landing in it.
3217  */
3218 static int
3219 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3220                                  struct drm_file *file_priv,
3221                                  struct drm_i915_gem_exec_object2 *entry,
3222                                  struct drm_i915_gem_relocation_entry *relocs)
3223 {
3224         struct drm_device *dev = obj->dev;
3225         drm_i915_private_t *dev_priv = dev->dev_private;
3226         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3227         int i, ret;
3228         void __iomem *reloc_page;
3229         bool need_fence;
3230
3231         need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3232                      obj_priv->tiling_mode != I915_TILING_NONE;
3233
3234         /* Check fence reg constraints and rebind if necessary */
3235         if (need_fence && !i915_gem_object_fence_offset_ok(obj,
3236             obj_priv->tiling_mode))
3237                 i915_gem_object_unbind(obj);
3238
3239         /* Choose the GTT offset for our buffer and put it there. */
3240         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3241         if (ret)
3242                 return ret;
3243
3244         /*
3245          * Pre-965 chips need a fence register set up in order to
3246          * properly handle blits to/from tiled surfaces.
3247          */
3248         if (need_fence) {
3249                 ret = i915_gem_object_get_fence_reg(obj);
3250                 if (ret != 0) {
3251                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3252                                 DRM_ERROR("Failure to install fence: %d\n",
3253                                           ret);
3254                         i915_gem_object_unpin(obj);
3255                         return ret;
3256                 }
3257         }
3258
3259         entry->offset = obj_priv->gtt_offset;
3260
3261         /* Apply the relocations, using the GTT aperture to avoid cache
3262          * flushing requirements.
3263          */
3264         for (i = 0; i < entry->relocation_count; i++) {
3265                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3266                 struct drm_gem_object *target_obj;
3267                 struct drm_i915_gem_object *target_obj_priv;
3268                 uint32_t reloc_val, reloc_offset;
3269                 uint32_t __iomem *reloc_entry;
3270
3271                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3272                                                    reloc->target_handle);
3273                 if (target_obj == NULL) {
3274                         i915_gem_object_unpin(obj);
3275                         return -EBADF;
3276                 }
3277                 target_obj_priv = to_intel_bo(target_obj);
3278
3279 #if WATCH_RELOC
3280                 DRM_INFO("%s: obj %p offset %08x target %d "
3281                          "read %08x write %08x gtt %08x "
3282                          "presumed %08x delta %08x\n",
3283                          __func__,
3284                          obj,
3285                          (int) reloc->offset,
3286                          (int) reloc->target_handle,
3287                          (int) reloc->read_domains,
3288                          (int) reloc->write_domain,
3289                          (int) target_obj_priv->gtt_offset,
3290                          (int) reloc->presumed_offset,
3291                          reloc->delta);
3292 #endif
3293
3294                 /* The target buffer should have appeared before us in the
3295                  * exec_object list, so it should have a GTT space bound by now.
3296                  */
3297                 if (target_obj_priv->gtt_space == NULL) {
3298                         DRM_ERROR("No GTT space found for object %d\n",
3299                                   reloc->target_handle);
3300                         drm_gem_object_unreference(target_obj);
3301                         i915_gem_object_unpin(obj);
3302                         return -EINVAL;
3303                 }
3304
3305                 /* Validate that the target is in a valid r/w GPU domain */
3306                 if (reloc->write_domain & (reloc->write_domain - 1)) {
3307                         DRM_ERROR("reloc with multiple write domains: "
3308                                   "obj %p target %d offset %d "
3309                                   "read %08x write %08x",
3310                                   obj, reloc->target_handle,
3311                                   (int) reloc->offset,
3312                                   reloc->read_domains,
3313                                   reloc->write_domain);
3314                         return -EINVAL;
3315                 }
3316                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3317                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3318                         DRM_ERROR("reloc with read/write CPU domains: "
3319                                   "obj %p target %d offset %d "
3320                                   "read %08x write %08x",
3321                                   obj, reloc->target_handle,
3322                                   (int) reloc->offset,
3323                                   reloc->read_domains,
3324                                   reloc->write_domain);
3325                         drm_gem_object_unreference(target_obj);
3326                         i915_gem_object_unpin(obj);
3327                         return -EINVAL;
3328                 }
3329                 if (reloc->write_domain && target_obj->pending_write_domain &&
3330                     reloc->write_domain != target_obj->pending_write_domain) {
3331                         DRM_ERROR("Write domain conflict: "
3332                                   "obj %p target %d offset %d "
3333                                   "new %08x old %08x\n",
3334                                   obj, reloc->target_handle,
3335                                   (int) reloc->offset,
3336                                   reloc->write_domain,
3337                                   target_obj->pending_write_domain);
3338                         drm_gem_object_unreference(target_obj);
3339                         i915_gem_object_unpin(obj);
3340                         return -EINVAL;
3341                 }
3342
3343                 target_obj->pending_read_domains |= reloc->read_domains;
3344                 target_obj->pending_write_domain |= reloc->write_domain;
3345
3346                 /* If the relocation already has the right value in it, no
3347                  * more work needs to be done.
3348                  */
3349                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3350                         drm_gem_object_unreference(target_obj);
3351                         continue;
3352                 }
3353
3354                 /* Check that the relocation address is valid... */
3355                 if (reloc->offset > obj->size - 4) {
3356                         DRM_ERROR("Relocation beyond object bounds: "
3357                                   "obj %p target %d offset %d size %d.\n",
3358                                   obj, reloc->target_handle,
3359                                   (int) reloc->offset, (int) obj->size);
3360                         drm_gem_object_unreference(target_obj);
3361                         i915_gem_object_unpin(obj);
3362                         return -EINVAL;
3363                 }
3364                 if (reloc->offset & 3) {
3365                         DRM_ERROR("Relocation not 4-byte aligned: "
3366                                   "obj %p target %d offset %d.\n",
3367                                   obj, reloc->target_handle,
3368                                   (int) reloc->offset);
3369                         drm_gem_object_unreference(target_obj);
3370                         i915_gem_object_unpin(obj);
3371                         return -EINVAL;
3372                 }
3373
3374                 /* and points to somewhere within the target object. */
3375                 if (reloc->delta >= target_obj->size) {
3376                         DRM_ERROR("Relocation beyond target object bounds: "
3377                                   "obj %p target %d delta %d size %d.\n",
3378                                   obj, reloc->target_handle,
3379                                   (int) reloc->delta, (int) target_obj->size);
3380                         drm_gem_object_unreference(target_obj);
3381                         i915_gem_object_unpin(obj);
3382                         return -EINVAL;
3383                 }
3384
3385                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3386                 if (ret != 0) {
3387                         drm_gem_object_unreference(target_obj);
3388                         i915_gem_object_unpin(obj);
3389                         return -EINVAL;
3390                 }
3391
3392                 /* Map the page containing the relocation we're going to
3393                  * perform.
3394                  */
3395                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3396                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3397                                                       (reloc_offset &
3398                                                        ~(PAGE_SIZE - 1)));
3399                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3400                                                    (reloc_offset & (PAGE_SIZE - 1)));
3401                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3402
3403 #if WATCH_BUF
3404                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3405                           obj, (unsigned int) reloc->offset,
3406                           readl(reloc_entry), reloc_val);
3407 #endif
3408                 writel(reloc_val, reloc_entry);
3409                 io_mapping_unmap_atomic(reloc_page);
3410
3411                 /* The updated presumed offset for this entry will be
3412                  * copied back out to the user.
3413                  */
3414                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3415
3416                 drm_gem_object_unreference(target_obj);
3417         }
3418
3419 #if WATCH_BUF
3420         if (0)
3421                 i915_gem_dump_object(obj, 128, __func__, ~0);
3422 #endif
3423         return 0;
3424 }
3425
3426 /* Throttle our rendering by waiting until the ring has completed our requests
3427  * emitted over 20 msec ago.
3428  *
3429  * Note that if we were to use the current jiffies each time around the loop,
3430  * we wouldn't escape the function with any frames outstanding if the time to
3431  * render a frame was over 20ms.
3432  *
3433  * This should get us reasonable parallelism between CPU and GPU but also
3434  * relatively low latency when blocking on a particular request to finish.
3435  */
3436 static int
3437 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3438 {
3439         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3440         int ret = 0;
3441         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3442
3443         mutex_lock(&dev->struct_mutex);
3444         while (!list_empty(&i915_file_priv->mm.request_list)) {
3445                 struct drm_i915_gem_request *request;
3446
3447                 request = list_first_entry(&i915_file_priv->mm.request_list,
3448                                            struct drm_i915_gem_request,
3449                                            client_list);
3450
3451                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3452                         break;
3453
3454                 ret = i915_wait_request(dev, request->seqno);
3455                 if (ret != 0)
3456                         break;
3457         }
3458         mutex_unlock(&dev->struct_mutex);
3459
3460         return ret;
3461 }
3462
3463 static int
3464 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3465                               uint32_t buffer_count,
3466                               struct drm_i915_gem_relocation_entry **relocs)
3467 {
3468         uint32_t reloc_count = 0, reloc_index = 0, i;
3469         int ret;
3470
3471         *relocs = NULL;
3472         for (i = 0; i < buffer_count; i++) {
3473                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3474                         return -EINVAL;
3475                 reloc_count += exec_list[i].relocation_count;
3476         }
3477
3478         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3479         if (*relocs == NULL) {
3480                 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3481                 return -ENOMEM;
3482         }
3483
3484         for (i = 0; i < buffer_count; i++) {
3485                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3486
3487                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3488
3489                 ret = copy_from_user(&(*relocs)[reloc_index],
3490                                      user_relocs,
3491                                      exec_list[i].relocation_count *
3492                                      sizeof(**relocs));
3493                 if (ret != 0) {
3494                         drm_free_large(*relocs);
3495                         *relocs = NULL;
3496                         return -EFAULT;
3497                 }
3498
3499                 reloc_index += exec_list[i].relocation_count;
3500         }
3501
3502         return 0;
3503 }
3504
3505 static int
3506 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3507                             uint32_t buffer_count,
3508                             struct drm_i915_gem_relocation_entry *relocs)
3509 {
3510         uint32_t reloc_count = 0, i;
3511         int ret = 0;
3512
3513         if (relocs == NULL)
3514             return 0;
3515
3516         for (i = 0; i < buffer_count; i++) {
3517                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3518                 int unwritten;
3519
3520                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3521
3522                 unwritten = copy_to_user(user_relocs,
3523                                          &relocs[reloc_count],
3524                                          exec_list[i].relocation_count *
3525                                          sizeof(*relocs));
3526
3527                 if (unwritten) {
3528                         ret = -EFAULT;
3529                         goto err;
3530                 }
3531
3532                 reloc_count += exec_list[i].relocation_count;
3533         }
3534
3535 err:
3536         drm_free_large(relocs);
3537
3538         return ret;
3539 }
3540
3541 static int
3542 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3543                            uint64_t exec_offset)
3544 {
3545         uint32_t exec_start, exec_len;
3546
3547         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3548         exec_len = (uint32_t) exec->batch_len;
3549
3550         if ((exec_start | exec_len) & 0x7)
3551                 return -EINVAL;
3552
3553         if (!exec_start)
3554                 return -EINVAL;
3555
3556         return 0;
3557 }
3558
3559 static int
3560 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3561                                struct drm_gem_object **object_list,
3562                                int count)
3563 {
3564         drm_i915_private_t *dev_priv = dev->dev_private;
3565         struct drm_i915_gem_object *obj_priv;
3566         DEFINE_WAIT(wait);
3567         int i, ret = 0;
3568
3569         for (;;) {
3570                 prepare_to_wait(&dev_priv->pending_flip_queue,
3571                                 &wait, TASK_INTERRUPTIBLE);
3572                 for (i = 0; i < count; i++) {
3573                         obj_priv = to_intel_bo(object_list[i]);
3574                         if (atomic_read(&obj_priv->pending_flip) > 0)
3575                                 break;
3576                 }
3577                 if (i == count)
3578                         break;
3579
3580                 if (!signal_pending(current)) {
3581                         mutex_unlock(&dev->struct_mutex);
3582                         schedule();
3583                         mutex_lock(&dev->struct_mutex);
3584                         continue;
3585                 }
3586                 ret = -ERESTARTSYS;
3587                 break;
3588         }
3589         finish_wait(&dev_priv->pending_flip_queue, &wait);
3590
3591         return ret;
3592 }
3593
3594 int
3595 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3596                        struct drm_file *file_priv,
3597                        struct drm_i915_gem_execbuffer2 *args,
3598                        struct drm_i915_gem_exec_object2 *exec_list)
3599 {
3600         drm_i915_private_t *dev_priv = dev->dev_private;
3601         struct drm_gem_object **object_list = NULL;
3602         struct drm_gem_object *batch_obj;
3603         struct drm_i915_gem_object *obj_priv;
3604         struct drm_clip_rect *cliprects = NULL;
3605         struct drm_i915_gem_relocation_entry *relocs = NULL;
3606         int ret = 0, ret2, i, pinned = 0;
3607         uint64_t exec_offset;
3608         uint32_t seqno, flush_domains, reloc_index;
3609         int pin_tries, flips;
3610
3611 #if WATCH_EXEC
3612         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3613                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3614 #endif
3615
3616         if (args->buffer_count < 1) {
3617                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3618                 return -EINVAL;
3619         }
3620         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3621         if (object_list == NULL) {
3622                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3623                           args->buffer_count);
3624                 ret = -ENOMEM;
3625                 goto pre_mutex_err;
3626         }
3627
3628         if (args->num_cliprects != 0) {
3629                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3630                                     GFP_KERNEL);
3631                 if (cliprects == NULL) {
3632                         ret = -ENOMEM;
3633                         goto pre_mutex_err;
3634                 }
3635
3636                 ret = copy_from_user(cliprects,
3637                                      (struct drm_clip_rect __user *)
3638                                      (uintptr_t) args->cliprects_ptr,
3639                                      sizeof(*cliprects) * args->num_cliprects);
3640                 if (ret != 0) {
3641                         DRM_ERROR("copy %d cliprects failed: %d\n",
3642                                   args->num_cliprects, ret);
3643                         goto pre_mutex_err;
3644                 }
3645         }
3646
3647         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3648                                             &relocs);
3649         if (ret != 0)
3650                 goto pre_mutex_err;
3651
3652         mutex_lock(&dev->struct_mutex);
3653
3654         i915_verify_inactive(dev, __FILE__, __LINE__);
3655
3656         if (atomic_read(&dev_priv->mm.wedged)) {
3657                 mutex_unlock(&dev->struct_mutex);
3658                 ret = -EIO;
3659                 goto pre_mutex_err;
3660         }
3661
3662         if (dev_priv->mm.suspended) {
3663                 mutex_unlock(&dev->struct_mutex);
3664                 ret = -EBUSY;
3665                 goto pre_mutex_err;
3666         }
3667
3668         /* Look up object handles */
3669         flips = 0;
3670         for (i = 0; i < args->buffer_count; i++) {
3671                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3672                                                        exec_list[i].handle);
3673                 if (object_list[i] == NULL) {
3674                         DRM_ERROR("Invalid object handle %d at index %d\n",
3675                                    exec_list[i].handle, i);
3676                         /* prevent error path from reading uninitialized data */
3677                         args->buffer_count = i + 1;
3678                         ret = -EBADF;
3679                         goto err;
3680                 }
3681
3682                 obj_priv = to_intel_bo(object_list[i]);
3683                 if (obj_priv->in_execbuffer) {
3684                         DRM_ERROR("Object %p appears more than once in object list\n",
3685                                    object_list[i]);
3686                         /* prevent error path from reading uninitialized data */
3687                         args->buffer_count = i + 1;
3688                         ret = -EBADF;
3689                         goto err;
3690                 }
3691                 obj_priv->in_execbuffer = true;
3692                 flips += atomic_read(&obj_priv->pending_flip);
3693         }
3694
3695         if (flips > 0) {
3696                 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3697                                                      args->buffer_count);
3698                 if (ret)
3699                         goto err;
3700         }
3701
3702         /* Pin and relocate */
3703         for (pin_tries = 0; ; pin_tries++) {
3704                 ret = 0;
3705                 reloc_index = 0;
3706
3707                 for (i = 0; i < args->buffer_count; i++) {
3708                         object_list[i]->pending_read_domains = 0;
3709                         object_list[i]->pending_write_domain = 0;
3710                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3711                                                                file_priv,
3712                                                                &exec_list[i],
3713                                                                &relocs[reloc_index]);
3714                         if (ret)
3715                                 break;
3716                         pinned = i + 1;
3717                         reloc_index += exec_list[i].relocation_count;
3718                 }
3719                 /* success */
3720                 if (ret == 0)
3721                         break;
3722
3723                 /* error other than GTT full, or we've already tried again */
3724                 if (ret != -ENOSPC || pin_tries >= 1) {
3725                         if (ret != -ERESTARTSYS) {
3726                                 unsigned long long total_size = 0;
3727                                 for (i = 0; i < args->buffer_count; i++)
3728                                         total_size += object_list[i]->size;
3729                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3730                                           pinned+1, args->buffer_count,
3731                                           total_size, ret);
3732                                 DRM_ERROR("%d objects [%d pinned], "
3733                                           "%d object bytes [%d pinned], "
3734                                           "%d/%d gtt bytes\n",
3735                                           atomic_read(&dev->object_count),
3736                                           atomic_read(&dev->pin_count),
3737                                           atomic_read(&dev->object_memory),
3738                                           atomic_read(&dev->pin_memory),
3739                                           atomic_read(&dev->gtt_memory),
3740                                           dev->gtt_total);
3741                         }
3742                         goto err;
3743                 }
3744
3745                 /* unpin all of our buffers */
3746                 for (i = 0; i < pinned; i++)
3747                         i915_gem_object_unpin(object_list[i]);
3748                 pinned = 0;
3749
3750                 /* evict everyone we can from the aperture */
3751                 ret = i915_gem_evict_everything(dev);
3752                 if (ret && ret != -ENOSPC)
3753                         goto err;
3754         }
3755
3756         /* Set the pending read domains for the batch buffer to COMMAND */
3757         batch_obj = object_list[args->buffer_count-1];
3758         if (batch_obj->pending_write_domain) {
3759                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3760                 ret = -EINVAL;
3761                 goto err;
3762         }
3763         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3764
3765         /* Sanity check the batch buffer, prior to moving objects */
3766         exec_offset = exec_list[args->buffer_count - 1].offset;
3767         ret = i915_gem_check_execbuffer (args, exec_offset);
3768         if (ret != 0) {
3769                 DRM_ERROR("execbuf with invalid offset/length\n");
3770                 goto err;
3771         }
3772
3773         i915_verify_inactive(dev, __FILE__, __LINE__);
3774
3775         /* Zero the global flush/invalidate flags. These
3776          * will be modified as new domains are computed
3777          * for each object
3778          */
3779         dev->invalidate_domains = 0;
3780         dev->flush_domains = 0;
3781
3782         for (i = 0; i < args->buffer_count; i++) {
3783                 struct drm_gem_object *obj = object_list[i];
3784
3785                 /* Compute new gpu domains and update invalidate/flush */
3786                 i915_gem_object_set_to_gpu_domain(obj);
3787         }
3788
3789         i915_verify_inactive(dev, __FILE__, __LINE__);
3790
3791         if (dev->invalidate_domains | dev->flush_domains) {
3792 #if WATCH_EXEC
3793                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3794                           __func__,
3795                          dev->invalidate_domains,
3796                          dev->flush_domains);
3797 #endif
3798                 i915_gem_flush(dev,
3799                                dev->invalidate_domains,
3800                                dev->flush_domains);
3801                 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
3802                         (void)i915_add_request(dev, file_priv,
3803                                                dev->flush_domains);
3804         }
3805
3806         for (i = 0; i < args->buffer_count; i++) {
3807                 struct drm_gem_object *obj = object_list[i];
3808                 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3809                 uint32_t old_write_domain = obj->write_domain;
3810
3811                 obj->write_domain = obj->pending_write_domain;
3812                 if (obj->write_domain)
3813                         list_move_tail(&obj_priv->gpu_write_list,
3814                                        &dev_priv->mm.gpu_write_list);
3815                 else
3816                         list_del_init(&obj_priv->gpu_write_list);
3817
3818                 trace_i915_gem_object_change_domain(obj,
3819                                                     obj->read_domains,
3820                                                     old_write_domain);
3821         }
3822
3823         i915_verify_inactive(dev, __FILE__, __LINE__);
3824
3825 #if WATCH_COHERENCY
3826         for (i = 0; i < args->buffer_count; i++) {
3827                 i915_gem_object_check_coherency(object_list[i],
3828                                                 exec_list[i].handle);
3829         }
3830 #endif
3831
3832 #if WATCH_EXEC
3833         i915_gem_dump_object(batch_obj,
3834                               args->batch_len,
3835                               __func__,
3836                               ~0);
3837 #endif
3838
3839         /* Exec the batchbuffer */
3840         ret = dev_priv->render_ring.dispatch_gem_execbuffer(dev,
3841                                                             &dev_priv->render_ring,
3842                                                             args,
3843                                                             cliprects,
3844                                                             exec_offset);
3845         if (ret) {
3846                 DRM_ERROR("dispatch failed %d\n", ret);
3847                 goto err;
3848         }
3849
3850         /*
3851          * Ensure that the commands in the batch buffer are
3852          * finished before the interrupt fires
3853          */
3854         flush_domains = i915_retire_commands(dev);
3855
3856         i915_verify_inactive(dev, __FILE__, __LINE__);
3857
3858         /*
3859          * Get a seqno representing the execution of the current buffer,
3860          * which we can wait on.  We would like to mitigate these interrupts,
3861          * likely by only creating seqnos occasionally (so that we have
3862          * *some* interrupts representing completion of buffers that we can
3863          * wait on when trying to clear up gtt space).
3864          */
3865         seqno = i915_add_request(dev, file_priv, flush_domains);
3866         BUG_ON(seqno == 0);
3867         for (i = 0; i < args->buffer_count; i++) {
3868                 struct drm_gem_object *obj = object_list[i];
3869
3870                 i915_gem_object_move_to_active(obj, seqno);
3871 #if WATCH_LRU
3872                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3873 #endif
3874         }
3875 #if WATCH_LRU
3876         i915_dump_lru(dev, __func__);
3877 #endif
3878
3879         i915_verify_inactive(dev, __FILE__, __LINE__);
3880
3881 err:
3882         for (i = 0; i < pinned; i++)
3883                 i915_gem_object_unpin(object_list[i]);
3884
3885         for (i = 0; i < args->buffer_count; i++) {
3886                 if (object_list[i]) {
3887                         obj_priv = to_intel_bo(object_list[i]);
3888                         obj_priv->in_execbuffer = false;
3889                 }
3890                 drm_gem_object_unreference(object_list[i]);
3891         }
3892
3893         mutex_unlock(&dev->struct_mutex);
3894
3895 pre_mutex_err:
3896         /* Copy the updated relocations out regardless of current error
3897          * state.  Failure to update the relocs would mean that the next
3898          * time userland calls execbuf, it would do so with presumed offset
3899          * state that didn't match the actual object state.
3900          */
3901         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3902                                            relocs);
3903         if (ret2 != 0) {
3904                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3905
3906                 if (ret == 0)
3907                         ret = ret2;
3908         }
3909
3910         drm_free_large(object_list);
3911         kfree(cliprects);
3912
3913         return ret;
3914 }
3915
3916 /*
3917  * Legacy execbuffer just creates an exec2 list from the original exec object
3918  * list array and passes it to the real function.
3919  */
3920 int
3921 i915_gem_execbuffer(struct drm_device *dev, void *data,
3922                     struct drm_file *file_priv)
3923 {
3924         struct drm_i915_gem_execbuffer *args = data;
3925         struct drm_i915_gem_execbuffer2 exec2;
3926         struct drm_i915_gem_exec_object *exec_list = NULL;
3927         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3928         int ret, i;
3929
3930 #if WATCH_EXEC
3931         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3932                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3933 #endif
3934
3935         if (args->buffer_count < 1) {
3936                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3937                 return -EINVAL;
3938         }
3939
3940         /* Copy in the exec list from userland */
3941         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3942         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
3943         if (exec_list == NULL || exec2_list == NULL) {
3944                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
3945                           args->buffer_count);
3946                 drm_free_large(exec_list);
3947                 drm_free_large(exec2_list);
3948                 return -ENOMEM;
3949         }
3950         ret = copy_from_user(exec_list,
3951                              (struct drm_i915_relocation_entry __user *)
3952                              (uintptr_t) args->buffers_ptr,
3953                              sizeof(*exec_list) * args->buffer_count);
3954         if (ret != 0) {
3955                 DRM_ERROR("copy %d exec entries failed %d\n",
3956                           args->buffer_count, ret);
3957                 drm_free_large(exec_list);
3958                 drm_free_large(exec2_list);
3959                 return -EFAULT;
3960         }
3961
3962         for (i = 0; i < args->buffer_count; i++) {
3963                 exec2_list[i].handle = exec_list[i].handle;
3964                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
3965                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3966                 exec2_list[i].alignment = exec_list[i].alignment;
3967                 exec2_list[i].offset = exec_list[i].offset;
3968                 if (!IS_I965G(dev))
3969                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3970                 else
3971                         exec2_list[i].flags = 0;
3972         }
3973
3974         exec2.buffers_ptr = args->buffers_ptr;
3975         exec2.buffer_count = args->buffer_count;
3976         exec2.batch_start_offset = args->batch_start_offset;
3977         exec2.batch_len = args->batch_len;
3978         exec2.DR1 = args->DR1;
3979         exec2.DR4 = args->DR4;
3980         exec2.num_cliprects = args->num_cliprects;
3981         exec2.cliprects_ptr = args->cliprects_ptr;
3982         exec2.flags = 0;
3983
3984         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
3985         if (!ret) {
3986                 /* Copy the new buffer offsets back to the user's exec list. */
3987                 for (i = 0; i < args->buffer_count; i++)
3988                         exec_list[i].offset = exec2_list[i].offset;
3989                 /* ... and back out to userspace */
3990                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3991                                    (uintptr_t) args->buffers_ptr,
3992                                    exec_list,
3993                                    sizeof(*exec_list) * args->buffer_count);
3994                 if (ret) {
3995                         ret = -EFAULT;
3996                         DRM_ERROR("failed to copy %d exec entries "
3997                                   "back to user (%d)\n",
3998                                   args->buffer_count, ret);
3999                 }
4000         }
4001
4002         drm_free_large(exec_list);
4003         drm_free_large(exec2_list);
4004         return ret;
4005 }
4006
4007 int
4008 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4009                      struct drm_file *file_priv)
4010 {
4011         struct drm_i915_gem_execbuffer2 *args = data;
4012         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4013         int ret;
4014
4015 #if WATCH_EXEC
4016         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4017                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4018 #endif
4019
4020         if (args->buffer_count < 1) {
4021                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4022                 return -EINVAL;
4023         }
4024
4025         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4026         if (exec2_list == NULL) {
4027                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4028                           args->buffer_count);
4029                 return -ENOMEM;
4030         }
4031         ret = copy_from_user(exec2_list,
4032                              (struct drm_i915_relocation_entry __user *)
4033                              (uintptr_t) args->buffers_ptr,
4034                              sizeof(*exec2_list) * args->buffer_count);
4035         if (ret != 0) {
4036                 DRM_ERROR("copy %d exec entries failed %d\n",
4037                           args->buffer_count, ret);
4038                 drm_free_large(exec2_list);
4039                 return -EFAULT;
4040         }
4041
4042         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4043         if (!ret) {
4044                 /* Copy the new buffer offsets back to the user's exec list. */
4045                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4046                                    (uintptr_t) args->buffers_ptr,
4047                                    exec2_list,
4048                                    sizeof(*exec2_list) * args->buffer_count);
4049                 if (ret) {
4050                         ret = -EFAULT;
4051                         DRM_ERROR("failed to copy %d exec entries "
4052                                   "back to user (%d)\n",
4053                                   args->buffer_count, ret);
4054                 }
4055         }
4056
4057         drm_free_large(exec2_list);
4058         return ret;
4059 }
4060
4061 int
4062 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4063 {
4064         struct drm_device *dev = obj->dev;
4065         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4066         int ret;
4067
4068         i915_verify_inactive(dev, __FILE__, __LINE__);
4069         if (obj_priv->gtt_space == NULL) {
4070                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4071                 if (ret)
4072                         return ret;
4073         }
4074
4075         obj_priv->pin_count++;
4076
4077         /* If the object is not active and not pending a flush,
4078          * remove it from the inactive list
4079          */
4080         if (obj_priv->pin_count == 1) {
4081                 atomic_inc(&dev->pin_count);
4082                 atomic_add(obj->size, &dev->pin_memory);
4083                 if (!obj_priv->active &&
4084                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4085                     !list_empty(&obj_priv->list))
4086                         list_del_init(&obj_priv->list);
4087         }
4088         i915_verify_inactive(dev, __FILE__, __LINE__);
4089
4090         return 0;
4091 }
4092
4093 void
4094 i915_gem_object_unpin(struct drm_gem_object *obj)
4095 {
4096         struct drm_device *dev = obj->dev;
4097         drm_i915_private_t *dev_priv = dev->dev_private;
4098         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4099
4100         i915_verify_inactive(dev, __FILE__, __LINE__);
4101         obj_priv->pin_count--;
4102         BUG_ON(obj_priv->pin_count < 0);
4103         BUG_ON(obj_priv->gtt_space == NULL);
4104
4105         /* If the object is no longer pinned, and is
4106          * neither active nor being flushed, then stick it on
4107          * the inactive list
4108          */
4109         if (obj_priv->pin_count == 0) {
4110                 if (!obj_priv->active &&
4111                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4112                         list_move_tail(&obj_priv->list,
4113                                        &dev_priv->mm.inactive_list);
4114                 atomic_dec(&dev->pin_count);
4115                 atomic_sub(obj->size, &dev->pin_memory);
4116         }
4117         i915_verify_inactive(dev, __FILE__, __LINE__);
4118 }
4119
4120 int
4121 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4122                    struct drm_file *file_priv)
4123 {
4124         struct drm_i915_gem_pin *args = data;
4125         struct drm_gem_object *obj;
4126         struct drm_i915_gem_object *obj_priv;
4127         int ret;
4128
4129         mutex_lock(&dev->struct_mutex);
4130
4131         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4132         if (obj == NULL) {
4133                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4134                           args->handle);
4135                 mutex_unlock(&dev->struct_mutex);
4136                 return -EBADF;
4137         }
4138         obj_priv = to_intel_bo(obj);
4139
4140         if (obj_priv->madv != I915_MADV_WILLNEED) {
4141                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4142                 drm_gem_object_unreference(obj);
4143                 mutex_unlock(&dev->struct_mutex);
4144                 return -EINVAL;
4145         }
4146
4147         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4148                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4149                           args->handle);
4150                 drm_gem_object_unreference(obj);
4151                 mutex_unlock(&dev->struct_mutex);
4152                 return -EINVAL;
4153         }
4154
4155         obj_priv->user_pin_count++;
4156         obj_priv->pin_filp = file_priv;
4157         if (obj_priv->user_pin_count == 1) {
4158                 ret = i915_gem_object_pin(obj, args->alignment);
4159                 if (ret != 0) {
4160                         drm_gem_object_unreference(obj);
4161                         mutex_unlock(&dev->struct_mutex);
4162                         return ret;
4163                 }
4164         }
4165
4166         /* XXX - flush the CPU caches for pinned objects
4167          * as the X server doesn't manage domains yet
4168          */
4169         i915_gem_object_flush_cpu_write_domain(obj);
4170         args->offset = obj_priv->gtt_offset;
4171         drm_gem_object_unreference(obj);
4172         mutex_unlock(&dev->struct_mutex);
4173
4174         return 0;
4175 }
4176
4177 int
4178 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4179                      struct drm_file *file_priv)
4180 {
4181         struct drm_i915_gem_pin *args = data;
4182         struct drm_gem_object *obj;
4183         struct drm_i915_gem_object *obj_priv;
4184
4185         mutex_lock(&dev->struct_mutex);
4186
4187         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4188         if (obj == NULL) {
4189                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4190                           args->handle);
4191                 mutex_unlock(&dev->struct_mutex);
4192                 return -EBADF;
4193         }
4194
4195         obj_priv = to_intel_bo(obj);
4196         if (obj_priv->pin_filp != file_priv) {
4197                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4198                           args->handle);
4199                 drm_gem_object_unreference(obj);
4200                 mutex_unlock(&dev->struct_mutex);
4201                 return -EINVAL;
4202         }
4203         obj_priv->user_pin_count--;
4204         if (obj_priv->user_pin_count == 0) {
4205                 obj_priv->pin_filp = NULL;
4206                 i915_gem_object_unpin(obj);
4207         }
4208
4209         drm_gem_object_unreference(obj);
4210         mutex_unlock(&dev->struct_mutex);
4211         return 0;
4212 }
4213
4214 int
4215 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4216                     struct drm_file *file_priv)
4217 {
4218         struct drm_i915_gem_busy *args = data;
4219         struct drm_gem_object *obj;
4220         struct drm_i915_gem_object *obj_priv;
4221
4222         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4223         if (obj == NULL) {
4224                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4225                           args->handle);
4226                 return -EBADF;
4227         }
4228
4229         mutex_lock(&dev->struct_mutex);
4230         /* Update the active list for the hardware's current position.
4231          * Otherwise this only updates on a delayed timer or when irqs are
4232          * actually unmasked, and our working set ends up being larger than
4233          * required.
4234          */
4235         i915_gem_retire_requests(dev);
4236
4237         obj_priv = to_intel_bo(obj);
4238         /* Don't count being on the flushing list against the object being
4239          * done.  Otherwise, a buffer left on the flushing list but not getting
4240          * flushed (because nobody's flushing that domain) won't ever return
4241          * unbusy and get reused by libdrm's bo cache.  The other expected
4242          * consumer of this interface, OpenGL's occlusion queries, also specs
4243          * that the objects get unbusy "eventually" without any interference.
4244          */
4245         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4246
4247         drm_gem_object_unreference(obj);
4248         mutex_unlock(&dev->struct_mutex);
4249         return 0;
4250 }
4251
4252 int
4253 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4254                         struct drm_file *file_priv)
4255 {
4256     return i915_gem_ring_throttle(dev, file_priv);
4257 }
4258
4259 int
4260 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4261                        struct drm_file *file_priv)
4262 {
4263         struct drm_i915_gem_madvise *args = data;
4264         struct drm_gem_object *obj;
4265         struct drm_i915_gem_object *obj_priv;
4266
4267         switch (args->madv) {
4268         case I915_MADV_DONTNEED:
4269         case I915_MADV_WILLNEED:
4270             break;
4271         default:
4272             return -EINVAL;
4273         }
4274
4275         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4276         if (obj == NULL) {
4277                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4278                           args->handle);
4279                 return -EBADF;
4280         }
4281
4282         mutex_lock(&dev->struct_mutex);
4283         obj_priv = to_intel_bo(obj);
4284
4285         if (obj_priv->pin_count) {
4286                 drm_gem_object_unreference(obj);
4287                 mutex_unlock(&dev->struct_mutex);
4288
4289                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4290                 return -EINVAL;
4291         }
4292
4293         if (obj_priv->madv != __I915_MADV_PURGED)
4294                 obj_priv->madv = args->madv;
4295
4296         /* if the object is no longer bound, discard its backing storage */
4297         if (i915_gem_object_is_purgeable(obj_priv) &&
4298             obj_priv->gtt_space == NULL)
4299                 i915_gem_object_truncate(obj);
4300
4301         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4302
4303         drm_gem_object_unreference(obj);
4304         mutex_unlock(&dev->struct_mutex);
4305
4306         return 0;
4307 }
4308
4309 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4310                                               size_t size)
4311 {
4312         struct drm_i915_gem_object *obj;
4313
4314         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4315         if (obj == NULL)
4316                 return NULL;
4317
4318         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4319                 kfree(obj);
4320                 return NULL;
4321         }
4322
4323         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4324         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4325
4326         obj->agp_type = AGP_USER_MEMORY;
4327         obj->base.driver_private = NULL;
4328         obj->fence_reg = I915_FENCE_REG_NONE;
4329         INIT_LIST_HEAD(&obj->list);
4330         INIT_LIST_HEAD(&obj->gpu_write_list);
4331         obj->madv = I915_MADV_WILLNEED;
4332
4333         trace_i915_gem_object_create(&obj->base);
4334
4335         return &obj->base;
4336 }
4337
4338 int i915_gem_init_object(struct drm_gem_object *obj)
4339 {
4340         BUG();
4341
4342         return 0;
4343 }
4344
4345 void i915_gem_free_object(struct drm_gem_object *obj)
4346 {
4347         struct drm_device *dev = obj->dev;
4348         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4349
4350         trace_i915_gem_object_destroy(obj);
4351
4352         while (obj_priv->pin_count > 0)
4353                 i915_gem_object_unpin(obj);
4354
4355         if (obj_priv->phys_obj)
4356                 i915_gem_detach_phys_object(dev, obj);
4357
4358         i915_gem_object_unbind(obj);
4359
4360         if (obj_priv->mmap_offset)
4361                 i915_gem_free_mmap_offset(obj);
4362
4363         drm_gem_object_release(obj);
4364
4365         kfree(obj_priv->page_cpu_valid);
4366         kfree(obj_priv->bit_17);
4367         kfree(obj_priv);
4368 }
4369
4370 /** Unbinds all inactive objects. */
4371 static int
4372 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4373 {
4374         drm_i915_private_t *dev_priv = dev->dev_private;
4375
4376         while (!list_empty(&dev_priv->mm.inactive_list)) {
4377                 struct drm_gem_object *obj;
4378                 int ret;
4379
4380                 obj = &list_first_entry(&dev_priv->mm.inactive_list,
4381                                         struct drm_i915_gem_object,
4382                                         list)->base;
4383
4384                 ret = i915_gem_object_unbind(obj);
4385                 if (ret != 0) {
4386                         DRM_ERROR("Error unbinding object: %d\n", ret);
4387                         return ret;
4388                 }
4389         }
4390
4391         return 0;
4392 }
4393
4394 int
4395 i915_gem_idle(struct drm_device *dev)
4396 {
4397         drm_i915_private_t *dev_priv = dev->dev_private;
4398         int ret;
4399
4400         mutex_lock(&dev->struct_mutex);
4401
4402         if (dev_priv->mm.suspended ||
4403                         dev_priv->render_ring.gem_object == NULL) {
4404                 mutex_unlock(&dev->struct_mutex);
4405                 return 0;
4406         }
4407
4408         ret = i915_gpu_idle(dev);
4409         if (ret) {
4410                 mutex_unlock(&dev->struct_mutex);
4411                 return ret;
4412         }
4413
4414         /* Under UMS, be paranoid and evict. */
4415         if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4416                 ret = i915_gem_evict_from_inactive_list(dev);
4417                 if (ret) {
4418                         mutex_unlock(&dev->struct_mutex);
4419                         return ret;
4420                 }
4421         }
4422
4423         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4424          * We need to replace this with a semaphore, or something.
4425          * And not confound mm.suspended!
4426          */
4427         dev_priv->mm.suspended = 1;
4428         del_timer(&dev_priv->hangcheck_timer);
4429
4430         i915_kernel_lost_context(dev);
4431         i915_gem_cleanup_ringbuffer(dev);
4432
4433         mutex_unlock(&dev->struct_mutex);
4434
4435         /* Cancel the retire work handler, which should be idle now. */
4436         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4437
4438         return 0;
4439 }
4440
4441 /*
4442  * 965+ support PIPE_CONTROL commands, which provide finer grained control
4443  * over cache flushing.
4444  */
4445 static int
4446 i915_gem_init_pipe_control(struct drm_device *dev)
4447 {
4448         drm_i915_private_t *dev_priv = dev->dev_private;
4449         struct drm_gem_object *obj;
4450         struct drm_i915_gem_object *obj_priv;
4451         int ret;
4452
4453         obj = i915_gem_alloc_object(dev, 4096);
4454         if (obj == NULL) {
4455                 DRM_ERROR("Failed to allocate seqno page\n");
4456                 ret = -ENOMEM;
4457                 goto err;
4458         }
4459         obj_priv = to_intel_bo(obj);
4460         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4461
4462         ret = i915_gem_object_pin(obj, 4096);
4463         if (ret)
4464                 goto err_unref;
4465
4466         dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4467         dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
4468         if (dev_priv->seqno_page == NULL)
4469                 goto err_unpin;
4470
4471         dev_priv->seqno_obj = obj;
4472         memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4473
4474         return 0;
4475
4476 err_unpin:
4477         i915_gem_object_unpin(obj);
4478 err_unref:
4479         drm_gem_object_unreference(obj);
4480 err:
4481         return ret;
4482 }
4483
4484
4485 static void
4486 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4487 {
4488         drm_i915_private_t *dev_priv = dev->dev_private;
4489         struct drm_gem_object *obj;
4490         struct drm_i915_gem_object *obj_priv;
4491
4492         obj = dev_priv->seqno_obj;
4493         obj_priv = to_intel_bo(obj);
4494         kunmap(obj_priv->pages[0]);
4495         i915_gem_object_unpin(obj);
4496         drm_gem_object_unreference(obj);
4497         dev_priv->seqno_obj = NULL;
4498
4499         dev_priv->seqno_page = NULL;
4500 }
4501
4502 int
4503 i915_gem_init_ringbuffer(struct drm_device *dev)
4504 {
4505         drm_i915_private_t *dev_priv = dev->dev_private;
4506         int ret;
4507         dev_priv->render_ring = render_ring;
4508         if (!I915_NEED_GFX_HWS(dev)) {
4509                 dev_priv->render_ring.status_page.page_addr
4510                         = dev_priv->status_page_dmah->vaddr;
4511                 memset(dev_priv->render_ring.status_page.page_addr,
4512                                 0, PAGE_SIZE);
4513         }
4514         if (HAS_PIPE_CONTROL(dev)) {
4515                 ret = i915_gem_init_pipe_control(dev);
4516                 if (ret)
4517                         return ret;
4518         }
4519         ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4520         return ret;
4521 }
4522
4523 void
4524 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4525 {
4526         drm_i915_private_t *dev_priv = dev->dev_private;
4527
4528         intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4529         if (HAS_PIPE_CONTROL(dev))
4530                 i915_gem_cleanup_pipe_control(dev);
4531 }
4532
4533 int
4534 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4535                        struct drm_file *file_priv)
4536 {
4537         drm_i915_private_t *dev_priv = dev->dev_private;
4538         int ret;
4539
4540         if (drm_core_check_feature(dev, DRIVER_MODESET))
4541                 return 0;
4542
4543         if (atomic_read(&dev_priv->mm.wedged)) {
4544                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4545                 atomic_set(&dev_priv->mm.wedged, 0);
4546         }
4547
4548         mutex_lock(&dev->struct_mutex);
4549         dev_priv->mm.suspended = 0;
4550
4551         ret = i915_gem_init_ringbuffer(dev);
4552         if (ret != 0) {
4553                 mutex_unlock(&dev->struct_mutex);
4554                 return ret;
4555         }
4556
4557         spin_lock(&dev_priv->mm.active_list_lock);
4558         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4559         spin_unlock(&dev_priv->mm.active_list_lock);
4560
4561         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4562         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4563         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4564         mutex_unlock(&dev->struct_mutex);
4565
4566         drm_irq_install(dev);
4567
4568         return 0;
4569 }
4570
4571 int
4572 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4573                        struct drm_file *file_priv)
4574 {
4575         if (drm_core_check_feature(dev, DRIVER_MODESET))
4576                 return 0;
4577
4578         drm_irq_uninstall(dev);
4579         return i915_gem_idle(dev);
4580 }
4581
4582 void
4583 i915_gem_lastclose(struct drm_device *dev)
4584 {
4585         int ret;
4586
4587         if (drm_core_check_feature(dev, DRIVER_MODESET))
4588                 return;
4589
4590         ret = i915_gem_idle(dev);
4591         if (ret)
4592                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4593 }
4594
4595 void
4596 i915_gem_load(struct drm_device *dev)
4597 {
4598         int i;
4599         drm_i915_private_t *dev_priv = dev->dev_private;
4600
4601         spin_lock_init(&dev_priv->mm.active_list_lock);
4602         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4603         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4604         INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4605         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4606         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4607         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4608         for (i = 0; i < 16; i++)
4609                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4610         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4611                           i915_gem_retire_work_handler);
4612         dev_priv->mm.next_gem_seqno = 1;
4613
4614         spin_lock(&shrink_list_lock);
4615         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4616         spin_unlock(&shrink_list_lock);
4617
4618         /* Old X drivers will take 0-2 for front, back, depth buffers */
4619         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4620                 dev_priv->fence_reg_start = 3;
4621
4622         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4623                 dev_priv->num_fence_regs = 16;
4624         else
4625                 dev_priv->num_fence_regs = 8;
4626
4627         /* Initialize fence registers to zero */
4628         if (IS_I965G(dev)) {
4629                 for (i = 0; i < 16; i++)
4630                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4631         } else {
4632                 for (i = 0; i < 8; i++)
4633                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4634                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4635                         for (i = 0; i < 8; i++)
4636                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4637         }
4638         i915_gem_detect_bit_6_swizzle(dev);
4639         init_waitqueue_head(&dev_priv->pending_flip_queue);
4640 }
4641
4642 /*
4643  * Create a physically contiguous memory object for this object
4644  * e.g. for cursor + overlay regs
4645  */
4646 int i915_gem_init_phys_object(struct drm_device *dev,
4647                               int id, int size)
4648 {
4649         drm_i915_private_t *dev_priv = dev->dev_private;
4650         struct drm_i915_gem_phys_object *phys_obj;
4651         int ret;
4652
4653         if (dev_priv->mm.phys_objs[id - 1] || !size)
4654                 return 0;
4655
4656         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4657         if (!phys_obj)
4658                 return -ENOMEM;
4659
4660         phys_obj->id = id;
4661
4662         phys_obj->handle = drm_pci_alloc(dev, size, 0);
4663         if (!phys_obj->handle) {
4664                 ret = -ENOMEM;
4665                 goto kfree_obj;
4666         }
4667 #ifdef CONFIG_X86
4668         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4669 #endif
4670
4671         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4672
4673         return 0;
4674 kfree_obj:
4675         kfree(phys_obj);
4676         return ret;
4677 }
4678
4679 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4680 {
4681         drm_i915_private_t *dev_priv = dev->dev_private;
4682         struct drm_i915_gem_phys_object *phys_obj;
4683
4684         if (!dev_priv->mm.phys_objs[id - 1])
4685                 return;
4686
4687         phys_obj = dev_priv->mm.phys_objs[id - 1];
4688         if (phys_obj->cur_obj) {
4689                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4690         }
4691
4692 #ifdef CONFIG_X86
4693         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4694 #endif
4695         drm_pci_free(dev, phys_obj->handle);
4696         kfree(phys_obj);
4697         dev_priv->mm.phys_objs[id - 1] = NULL;
4698 }
4699
4700 void i915_gem_free_all_phys_object(struct drm_device *dev)
4701 {
4702         int i;
4703
4704         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4705                 i915_gem_free_phys_object(dev, i);
4706 }
4707
4708 void i915_gem_detach_phys_object(struct drm_device *dev,
4709                                  struct drm_gem_object *obj)
4710 {
4711         struct drm_i915_gem_object *obj_priv;
4712         int i;
4713         int ret;
4714         int page_count;
4715
4716         obj_priv = to_intel_bo(obj);
4717         if (!obj_priv->phys_obj)
4718                 return;
4719
4720         ret = i915_gem_object_get_pages(obj, 0);
4721         if (ret)
4722                 goto out;
4723
4724         page_count = obj->size / PAGE_SIZE;
4725
4726         for (i = 0; i < page_count; i++) {
4727                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4728                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4729
4730                 memcpy(dst, src, PAGE_SIZE);
4731                 kunmap_atomic(dst, KM_USER0);
4732         }
4733         drm_clflush_pages(obj_priv->pages, page_count);
4734         drm_agp_chipset_flush(dev);
4735
4736         i915_gem_object_put_pages(obj);
4737 out:
4738         obj_priv->phys_obj->cur_obj = NULL;
4739         obj_priv->phys_obj = NULL;
4740 }
4741
4742 int
4743 i915_gem_attach_phys_object(struct drm_device *dev,
4744                             struct drm_gem_object *obj, int id)
4745 {
4746         drm_i915_private_t *dev_priv = dev->dev_private;
4747         struct drm_i915_gem_object *obj_priv;
4748         int ret = 0;
4749         int page_count;
4750         int i;
4751
4752         if (id > I915_MAX_PHYS_OBJECT)
4753                 return -EINVAL;
4754
4755         obj_priv = to_intel_bo(obj);
4756
4757         if (obj_priv->phys_obj) {
4758                 if (obj_priv->phys_obj->id == id)
4759                         return 0;
4760                 i915_gem_detach_phys_object(dev, obj);
4761         }
4762
4763
4764         /* create a new object */
4765         if (!dev_priv->mm.phys_objs[id - 1]) {
4766                 ret = i915_gem_init_phys_object(dev, id,
4767                                                 obj->size);
4768                 if (ret) {
4769                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4770                         goto out;
4771                 }
4772         }
4773
4774         /* bind to the object */
4775         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4776         obj_priv->phys_obj->cur_obj = obj;
4777
4778         ret = i915_gem_object_get_pages(obj, 0);
4779         if (ret) {
4780                 DRM_ERROR("failed to get page list\n");
4781                 goto out;
4782         }
4783
4784         page_count = obj->size / PAGE_SIZE;
4785
4786         for (i = 0; i < page_count; i++) {
4787                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4788                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4789
4790                 memcpy(dst, src, PAGE_SIZE);
4791                 kunmap_atomic(src, KM_USER0);
4792         }
4793
4794         i915_gem_object_put_pages(obj);
4795
4796         return 0;
4797 out:
4798         return ret;
4799 }
4800
4801 static int
4802 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4803                      struct drm_i915_gem_pwrite *args,
4804                      struct drm_file *file_priv)
4805 {
4806         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4807         void *obj_addr;
4808         int ret;
4809         char __user *user_data;
4810
4811         user_data = (char __user *) (uintptr_t) args->data_ptr;
4812         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4813
4814         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4815         ret = copy_from_user(obj_addr, user_data, args->size);
4816         if (ret)
4817                 return -EFAULT;
4818
4819         drm_agp_chipset_flush(dev);
4820         return 0;
4821 }
4822
4823 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4824 {
4825         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4826
4827         /* Clean up our request list when the client is going away, so that
4828          * later retire_requests won't dereference our soon-to-be-gone
4829          * file_priv.
4830          */
4831         mutex_lock(&dev->struct_mutex);
4832         while (!list_empty(&i915_file_priv->mm.request_list))
4833                 list_del_init(i915_file_priv->mm.request_list.next);
4834         mutex_unlock(&dev->struct_mutex);
4835 }
4836
4837 static int
4838 i915_gpu_is_active(struct drm_device *dev)
4839 {
4840         drm_i915_private_t *dev_priv = dev->dev_private;
4841         int lists_empty;
4842
4843         spin_lock(&dev_priv->mm.active_list_lock);
4844         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4845                       list_empty(&dev_priv->mm.active_list);
4846         spin_unlock(&dev_priv->mm.active_list_lock);
4847
4848         return !lists_empty;
4849 }
4850
4851 static int
4852 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4853 {
4854         drm_i915_private_t *dev_priv, *next_dev;
4855         struct drm_i915_gem_object *obj_priv, *next_obj;
4856         int cnt = 0;
4857         int would_deadlock = 1;
4858
4859         /* "fast-path" to count number of available objects */
4860         if (nr_to_scan == 0) {
4861                 spin_lock(&shrink_list_lock);
4862                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4863                         struct drm_device *dev = dev_priv->dev;
4864
4865                         if (mutex_trylock(&dev->struct_mutex)) {
4866                                 list_for_each_entry(obj_priv,
4867                                                     &dev_priv->mm.inactive_list,
4868                                                     list)
4869                                         cnt++;
4870                                 mutex_unlock(&dev->struct_mutex);
4871                         }
4872                 }
4873                 spin_unlock(&shrink_list_lock);
4874
4875                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4876         }
4877
4878         spin_lock(&shrink_list_lock);
4879
4880 rescan:
4881         /* first scan for clean buffers */
4882         list_for_each_entry_safe(dev_priv, next_dev,
4883                                  &shrink_list, mm.shrink_list) {
4884                 struct drm_device *dev = dev_priv->dev;
4885
4886                 if (! mutex_trylock(&dev->struct_mutex))
4887                         continue;
4888
4889                 spin_unlock(&shrink_list_lock);
4890
4891                 i915_gem_retire_requests(dev);
4892
4893                 list_for_each_entry_safe(obj_priv, next_obj,
4894                                          &dev_priv->mm.inactive_list,
4895                                          list) {
4896                         if (i915_gem_object_is_purgeable(obj_priv)) {
4897                                 i915_gem_object_unbind(&obj_priv->base);
4898                                 if (--nr_to_scan <= 0)
4899                                         break;
4900                         }
4901                 }
4902
4903                 spin_lock(&shrink_list_lock);
4904                 mutex_unlock(&dev->struct_mutex);
4905
4906                 would_deadlock = 0;
4907
4908                 if (nr_to_scan <= 0)
4909                         break;
4910         }
4911
4912         /* second pass, evict/count anything still on the inactive list */
4913         list_for_each_entry_safe(dev_priv, next_dev,
4914                                  &shrink_list, mm.shrink_list) {
4915                 struct drm_device *dev = dev_priv->dev;
4916
4917                 if (! mutex_trylock(&dev->struct_mutex))
4918                         continue;
4919
4920                 spin_unlock(&shrink_list_lock);
4921
4922                 list_for_each_entry_safe(obj_priv, next_obj,
4923                                          &dev_priv->mm.inactive_list,
4924                                          list) {
4925                         if (nr_to_scan > 0) {
4926                                 i915_gem_object_unbind(&obj_priv->base);
4927                                 nr_to_scan--;
4928                         } else
4929                                 cnt++;
4930                 }
4931
4932                 spin_lock(&shrink_list_lock);
4933                 mutex_unlock(&dev->struct_mutex);
4934
4935                 would_deadlock = 0;
4936         }
4937
4938         if (nr_to_scan) {
4939                 int active = 0;
4940
4941                 /*
4942                  * We are desperate for pages, so as a last resort, wait
4943                  * for the GPU to finish and discard whatever we can.
4944                  * This has a dramatic impact to reduce the number of
4945                  * OOM-killer events whilst running the GPU aggressively.
4946                  */
4947                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4948                         struct drm_device *dev = dev_priv->dev;
4949
4950                         if (!mutex_trylock(&dev->struct_mutex))
4951                                 continue;
4952
4953                         spin_unlock(&shrink_list_lock);
4954
4955                         if (i915_gpu_is_active(dev)) {
4956                                 i915_gpu_idle(dev);
4957                                 active++;
4958                         }
4959
4960                         spin_lock(&shrink_list_lock);
4961                         mutex_unlock(&dev->struct_mutex);
4962                 }
4963
4964                 if (active)
4965                         goto rescan;
4966         }
4967
4968         spin_unlock(&shrink_list_lock);
4969
4970         if (would_deadlock)
4971                 return -1;
4972         else if (cnt > 0)
4973                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4974         else
4975                 return 0;
4976 }
4977
4978 static struct shrinker shrinker = {
4979         .shrink = i915_gem_shrink,
4980         .seeks = DEFAULT_SEEKS,
4981 };
4982
4983 __init void
4984 i915_gem_shrinker_init(void)
4985 {
4986     register_shrinker(&shrinker);
4987 }
4988
4989 __exit void
4990 i915_gem_shrinker_exit(void)
4991 {
4992     unregister_shrinker(&shrinker);
4993 }