]> bbs.cooldavid.org Git - net-next-2.6.git/blame - security/security.c
Security: Introduce security= boot parameter
[net-next-2.6.git] / security / security.c
CommitLineData
1da177e4
LT
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
c59ede7b 14#include <linux/capability.h>
1da177e4
LT
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
1da177e4
LT
18#include <linux/security.h>
19
076c54c5
AD
20/* Boot-time LSM user choice */
21static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
1da177e4
LT
22
23/* things that live in dummy.c */
24extern struct security_operations dummy_security_ops;
25extern void security_fixup_ops(struct security_operations *ops);
26
27struct security_operations *security_ops; /* Initialized to NULL */
a5ecbcb8
EP
28
29/* amount of vm to protect from userspace access */
30unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
1da177e4
LT
31
32static inline int verify(struct security_operations *ops)
33{
34 /* verify the security_operations structure exists */
35 if (!ops)
36 return -EINVAL;
37 security_fixup_ops(ops);
38 return 0;
39}
40
41static void __init do_security_initcalls(void)
42{
43 initcall_t *call;
44 call = __security_initcall_start;
45 while (call < __security_initcall_end) {
46 (*call) ();
47 call++;
48 }
49}
50
51/**
52 * security_init - initializes the security framework
53 *
54 * This should be called early in the kernel initialization sequence.
55 */
56int __init security_init(void)
57{
20510f2f 58 printk(KERN_INFO "Security Framework initialized\n");
1da177e4
LT
59
60 if (verify(&dummy_security_ops)) {
61 printk(KERN_ERR "%s could not verify "
dd6f953a 62 "dummy_security_ops structure.\n", __func__);
1da177e4
LT
63 return -EIO;
64 }
65
66 security_ops = &dummy_security_ops;
67 do_security_initcalls();
68
69 return 0;
70}
71
076c54c5
AD
72/* Save user chosen LSM */
73static int __init choose_lsm(char *str)
74{
75 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
76 return 1;
77}
78__setup("security=", choose_lsm);
79
80/**
81 * security_module_enable - Load given security module on boot ?
82 * @ops: a pointer to the struct security_operations that is to be checked.
83 *
84 * Each LSM must pass this method before registering its own operations
85 * to avoid security registration races. This method may also be used
86 * to check if your LSM is currently loaded.
87 *
88 * Return true if:
89 * -The passed LSM is the one chosen by user at boot time,
90 * -or user didsn't specify a specific LSM and we're the first to ask
91 * for registeration permissoin,
92 * -or the passed LSM is currently loaded.
93 * Otherwise, return false.
94 */
95int __init security_module_enable(struct security_operations *ops)
96{
97 if (!*chosen_lsm)
98 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
99 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
100 return 0;
101
102 return 1;
103}
104
1da177e4
LT
105/**
106 * register_security - registers a security framework with the kernel
107 * @ops: a pointer to the struct security_options that is to be registered
108 *
109 * This function is to allow a security module to register itself with the
110 * kernel security subsystem. Some rudimentary checking is done on the @ops
076c54c5
AD
111 * value passed to this function. You'll need to check first if your LSM
112 * is allowed to register its @ops by calling security_module_enable(@ops).
1da177e4
LT
113 *
114 * If there is already a security module registered with the kernel,
115 * an error will be returned. Otherwise 0 is returned on success.
116 */
117int register_security(struct security_operations *ops)
118{
119 if (verify(ops)) {
120 printk(KERN_DEBUG "%s could not verify "
dd6f953a 121 "security_operations structure.\n", __func__);
1da177e4
LT
122 return -EINVAL;
123 }
124
125 if (security_ops != &dummy_security_ops)
126 return -EAGAIN;
127
128 security_ops = ops;
129
130 return 0;
131}
132
1da177e4
LT
133/**
134 * mod_reg_security - allows security modules to be "stacked"
135 * @name: a pointer to a string with the name of the security_options to be registered
136 * @ops: a pointer to the struct security_options that is to be registered
137 *
138 * This function allows security modules to be stacked if the currently loaded
139 * security module allows this to happen. It passes the @name and @ops to the
140 * register_security function of the currently loaded security module.
141 *
142 * The return value depends on the currently loaded security module, with 0 as
143 * success.
144 */
145int mod_reg_security(const char *name, struct security_operations *ops)
146{
147 if (verify(ops)) {
148 printk(KERN_INFO "%s could not verify "
dd6f953a 149 "security operations.\n", __func__);
1da177e4
LT
150 return -EINVAL;
151 }
152
153 if (ops == security_ops) {
154 printk(KERN_INFO "%s security operations "
dd6f953a 155 "already registered.\n", __func__);
1da177e4
LT
156 return -EINVAL;
157 }
158
159 return security_ops->register_security(name, ops);
160}
161
20510f2f
JM
162/* Security operations */
163
164int security_ptrace(struct task_struct *parent, struct task_struct *child)
165{
166 return security_ops->ptrace(parent, child);
167}
168
169int security_capget(struct task_struct *target,
170 kernel_cap_t *effective,
171 kernel_cap_t *inheritable,
172 kernel_cap_t *permitted)
173{
174 return security_ops->capget(target, effective, inheritable, permitted);
175}
176
177int security_capset_check(struct task_struct *target,
178 kernel_cap_t *effective,
179 kernel_cap_t *inheritable,
180 kernel_cap_t *permitted)
181{
182 return security_ops->capset_check(target, effective, inheritable, permitted);
183}
184
185void security_capset_set(struct task_struct *target,
186 kernel_cap_t *effective,
187 kernel_cap_t *inheritable,
188 kernel_cap_t *permitted)
189{
190 security_ops->capset_set(target, effective, inheritable, permitted);
191}
192
193int security_capable(struct task_struct *tsk, int cap)
194{
195 return security_ops->capable(tsk, cap);
196}
197
198int security_acct(struct file *file)
199{
200 return security_ops->acct(file);
201}
202
203int security_sysctl(struct ctl_table *table, int op)
204{
205 return security_ops->sysctl(table, op);
206}
207
208int security_quotactl(int cmds, int type, int id, struct super_block *sb)
209{
210 return security_ops->quotactl(cmds, type, id, sb);
211}
212
213int security_quota_on(struct dentry *dentry)
214{
215 return security_ops->quota_on(dentry);
216}
217
218int security_syslog(int type)
219{
220 return security_ops->syslog(type);
221}
222
223int security_settime(struct timespec *ts, struct timezone *tz)
224{
225 return security_ops->settime(ts, tz);
226}
227
228int security_vm_enough_memory(long pages)
229{
230 return security_ops->vm_enough_memory(current->mm, pages);
231}
232
233int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
234{
235 return security_ops->vm_enough_memory(mm, pages);
236}
237
238int security_bprm_alloc(struct linux_binprm *bprm)
239{
240 return security_ops->bprm_alloc_security(bprm);
241}
242
243void security_bprm_free(struct linux_binprm *bprm)
244{
245 security_ops->bprm_free_security(bprm);
246}
247
248void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
249{
250 security_ops->bprm_apply_creds(bprm, unsafe);
251}
252
253void security_bprm_post_apply_creds(struct linux_binprm *bprm)
254{
255 security_ops->bprm_post_apply_creds(bprm);
256}
257
258int security_bprm_set(struct linux_binprm *bprm)
259{
260 return security_ops->bprm_set_security(bprm);
261}
262
263int security_bprm_check(struct linux_binprm *bprm)
264{
265 return security_ops->bprm_check_security(bprm);
266}
267
268int security_bprm_secureexec(struct linux_binprm *bprm)
269{
270 return security_ops->bprm_secureexec(bprm);
271}
272
273int security_sb_alloc(struct super_block *sb)
274{
275 return security_ops->sb_alloc_security(sb);
276}
277
278void security_sb_free(struct super_block *sb)
279{
280 security_ops->sb_free_security(sb);
281}
282
e0007529 283int security_sb_copy_data(char *orig, char *copy)
20510f2f 284{
e0007529 285 return security_ops->sb_copy_data(orig, copy);
20510f2f 286}
e0007529 287EXPORT_SYMBOL(security_sb_copy_data);
20510f2f
JM
288
289int security_sb_kern_mount(struct super_block *sb, void *data)
290{
291 return security_ops->sb_kern_mount(sb, data);
292}
293
294int security_sb_statfs(struct dentry *dentry)
295{
296 return security_ops->sb_statfs(dentry);
297}
298
299int security_sb_mount(char *dev_name, struct nameidata *nd,
300 char *type, unsigned long flags, void *data)
301{
302 return security_ops->sb_mount(dev_name, nd, type, flags, data);
303}
304
305int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
306{
307 return security_ops->sb_check_sb(mnt, nd);
308}
309
310int security_sb_umount(struct vfsmount *mnt, int flags)
311{
312 return security_ops->sb_umount(mnt, flags);
313}
314
315void security_sb_umount_close(struct vfsmount *mnt)
316{
317 security_ops->sb_umount_close(mnt);
318}
319
320void security_sb_umount_busy(struct vfsmount *mnt)
321{
322 security_ops->sb_umount_busy(mnt);
323}
324
325void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
326{
327 security_ops->sb_post_remount(mnt, flags, data);
328}
329
20510f2f
JM
330void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
331{
332 security_ops->sb_post_addmount(mnt, mountpoint_nd);
333}
334
335int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
336{
337 return security_ops->sb_pivotroot(old_nd, new_nd);
338}
339
340void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
341{
342 security_ops->sb_post_pivotroot(old_nd, new_nd);
343}
344
c9180a57 345int security_sb_get_mnt_opts(const struct super_block *sb,
e0007529 346 struct security_mnt_opts *opts)
c9180a57 347{
e0007529 348 return security_ops->sb_get_mnt_opts(sb, opts);
c9180a57
EP
349}
350
351int security_sb_set_mnt_opts(struct super_block *sb,
e0007529 352 struct security_mnt_opts *opts)
c9180a57 353{
e0007529 354 return security_ops->sb_set_mnt_opts(sb, opts);
c9180a57 355}
e0007529 356EXPORT_SYMBOL(security_sb_set_mnt_opts);
c9180a57
EP
357
358void security_sb_clone_mnt_opts(const struct super_block *oldsb,
359 struct super_block *newsb)
360{
361 security_ops->sb_clone_mnt_opts(oldsb, newsb);
362}
e0007529
EP
363EXPORT_SYMBOL(security_sb_clone_mnt_opts);
364
365int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
366{
367 return security_ops->sb_parse_opts_str(options, opts);
368}
369EXPORT_SYMBOL(security_sb_parse_opts_str);
c9180a57 370
20510f2f
JM
371int security_inode_alloc(struct inode *inode)
372{
373 inode->i_security = NULL;
374 return security_ops->inode_alloc_security(inode);
375}
376
377void security_inode_free(struct inode *inode)
378{
379 security_ops->inode_free_security(inode);
380}
381
382int security_inode_init_security(struct inode *inode, struct inode *dir,
383 char **name, void **value, size_t *len)
384{
385 if (unlikely(IS_PRIVATE(inode)))
386 return -EOPNOTSUPP;
387 return security_ops->inode_init_security(inode, dir, name, value, len);
388}
389EXPORT_SYMBOL(security_inode_init_security);
390
391int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
392{
393 if (unlikely(IS_PRIVATE(dir)))
394 return 0;
395 return security_ops->inode_create(dir, dentry, mode);
396}
397
398int security_inode_link(struct dentry *old_dentry, struct inode *dir,
399 struct dentry *new_dentry)
400{
401 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
402 return 0;
403 return security_ops->inode_link(old_dentry, dir, new_dentry);
404}
405
406int security_inode_unlink(struct inode *dir, struct dentry *dentry)
407{
408 if (unlikely(IS_PRIVATE(dentry->d_inode)))
409 return 0;
410 return security_ops->inode_unlink(dir, dentry);
411}
412
413int security_inode_symlink(struct inode *dir, struct dentry *dentry,
414 const char *old_name)
415{
416 if (unlikely(IS_PRIVATE(dir)))
417 return 0;
418 return security_ops->inode_symlink(dir, dentry, old_name);
419}
420
421int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
422{
423 if (unlikely(IS_PRIVATE(dir)))
424 return 0;
425 return security_ops->inode_mkdir(dir, dentry, mode);
426}
427
428int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
429{
430 if (unlikely(IS_PRIVATE(dentry->d_inode)))
431 return 0;
432 return security_ops->inode_rmdir(dir, dentry);
433}
434
435int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
436{
437 if (unlikely(IS_PRIVATE(dir)))
438 return 0;
439 return security_ops->inode_mknod(dir, dentry, mode, dev);
440}
441
442int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
443 struct inode *new_dir, struct dentry *new_dentry)
444{
445 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
446 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
447 return 0;
448 return security_ops->inode_rename(old_dir, old_dentry,
449 new_dir, new_dentry);
450}
451
452int security_inode_readlink(struct dentry *dentry)
453{
454 if (unlikely(IS_PRIVATE(dentry->d_inode)))
455 return 0;
456 return security_ops->inode_readlink(dentry);
457}
458
459int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
460{
461 if (unlikely(IS_PRIVATE(dentry->d_inode)))
462 return 0;
463 return security_ops->inode_follow_link(dentry, nd);
464}
465
466int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
467{
468 if (unlikely(IS_PRIVATE(inode)))
469 return 0;
470 return security_ops->inode_permission(inode, mask, nd);
471}
472
473int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
474{
475 if (unlikely(IS_PRIVATE(dentry->d_inode)))
476 return 0;
477 return security_ops->inode_setattr(dentry, attr);
478}
479
480int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
481{
482 if (unlikely(IS_PRIVATE(dentry->d_inode)))
483 return 0;
484 return security_ops->inode_getattr(mnt, dentry);
485}
486
487void security_inode_delete(struct inode *inode)
488{
489 if (unlikely(IS_PRIVATE(inode)))
490 return;
491 security_ops->inode_delete(inode);
492}
493
494int security_inode_setxattr(struct dentry *dentry, char *name,
495 void *value, size_t size, int flags)
496{
497 if (unlikely(IS_PRIVATE(dentry->d_inode)))
498 return 0;
499 return security_ops->inode_setxattr(dentry, name, value, size, flags);
500}
501
502void security_inode_post_setxattr(struct dentry *dentry, char *name,
503 void *value, size_t size, int flags)
504{
505 if (unlikely(IS_PRIVATE(dentry->d_inode)))
506 return;
507 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
508}
509
510int security_inode_getxattr(struct dentry *dentry, char *name)
511{
512 if (unlikely(IS_PRIVATE(dentry->d_inode)))
513 return 0;
514 return security_ops->inode_getxattr(dentry, name);
515}
516
517int security_inode_listxattr(struct dentry *dentry)
518{
519 if (unlikely(IS_PRIVATE(dentry->d_inode)))
520 return 0;
521 return security_ops->inode_listxattr(dentry);
522}
523
524int security_inode_removexattr(struct dentry *dentry, char *name)
525{
526 if (unlikely(IS_PRIVATE(dentry->d_inode)))
527 return 0;
528 return security_ops->inode_removexattr(dentry, name);
529}
530
b5376771
SH
531int security_inode_need_killpriv(struct dentry *dentry)
532{
533 return security_ops->inode_need_killpriv(dentry);
534}
535
536int security_inode_killpriv(struct dentry *dentry)
537{
538 return security_ops->inode_killpriv(dentry);
539}
540
42492594 541int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
20510f2f
JM
542{
543 if (unlikely(IS_PRIVATE(inode)))
544 return 0;
42492594 545 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
20510f2f
JM
546}
547
548int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
549{
550 if (unlikely(IS_PRIVATE(inode)))
551 return 0;
552 return security_ops->inode_setsecurity(inode, name, value, size, flags);
553}
554
555int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
556{
557 if (unlikely(IS_PRIVATE(inode)))
558 return 0;
559 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
560}
561
8a076191
AD
562void security_inode_getsecid(const struct inode *inode, u32 *secid)
563{
564 security_ops->inode_getsecid(inode, secid);
565}
566
20510f2f
JM
567int security_file_permission(struct file *file, int mask)
568{
569 return security_ops->file_permission(file, mask);
570}
571
572int security_file_alloc(struct file *file)
573{
574 return security_ops->file_alloc_security(file);
575}
576
577void security_file_free(struct file *file)
578{
579 security_ops->file_free_security(file);
580}
581
582int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
583{
584 return security_ops->file_ioctl(file, cmd, arg);
585}
586
587int security_file_mmap(struct file *file, unsigned long reqprot,
588 unsigned long prot, unsigned long flags,
589 unsigned long addr, unsigned long addr_only)
590{
591 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
592}
593
594int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
595 unsigned long prot)
596{
597 return security_ops->file_mprotect(vma, reqprot, prot);
598}
599
600int security_file_lock(struct file *file, unsigned int cmd)
601{
602 return security_ops->file_lock(file, cmd);
603}
604
605int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
606{
607 return security_ops->file_fcntl(file, cmd, arg);
608}
609
610int security_file_set_fowner(struct file *file)
611{
612 return security_ops->file_set_fowner(file);
613}
614
615int security_file_send_sigiotask(struct task_struct *tsk,
616 struct fown_struct *fown, int sig)
617{
618 return security_ops->file_send_sigiotask(tsk, fown, sig);
619}
620
621int security_file_receive(struct file *file)
622{
623 return security_ops->file_receive(file);
624}
625
626int security_dentry_open(struct file *file)
627{
628 return security_ops->dentry_open(file);
629}
630
631int security_task_create(unsigned long clone_flags)
632{
633 return security_ops->task_create(clone_flags);
634}
635
636int security_task_alloc(struct task_struct *p)
637{
638 return security_ops->task_alloc_security(p);
639}
640
641void security_task_free(struct task_struct *p)
642{
643 security_ops->task_free_security(p);
644}
645
646int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
647{
648 return security_ops->task_setuid(id0, id1, id2, flags);
649}
650
651int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
652 uid_t old_suid, int flags)
653{
654 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
655}
656
657int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
658{
659 return security_ops->task_setgid(id0, id1, id2, flags);
660}
661
662int security_task_setpgid(struct task_struct *p, pid_t pgid)
663{
664 return security_ops->task_setpgid(p, pgid);
665}
666
667int security_task_getpgid(struct task_struct *p)
668{
669 return security_ops->task_getpgid(p);
670}
671
672int security_task_getsid(struct task_struct *p)
673{
674 return security_ops->task_getsid(p);
675}
676
677void security_task_getsecid(struct task_struct *p, u32 *secid)
678{
679 security_ops->task_getsecid(p, secid);
680}
681EXPORT_SYMBOL(security_task_getsecid);
682
683int security_task_setgroups(struct group_info *group_info)
684{
685 return security_ops->task_setgroups(group_info);
686}
687
688int security_task_setnice(struct task_struct *p, int nice)
689{
690 return security_ops->task_setnice(p, nice);
691}
692
693int security_task_setioprio(struct task_struct *p, int ioprio)
694{
695 return security_ops->task_setioprio(p, ioprio);
696}
697
698int security_task_getioprio(struct task_struct *p)
699{
700 return security_ops->task_getioprio(p);
701}
702
703int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
704{
705 return security_ops->task_setrlimit(resource, new_rlim);
706}
707
708int security_task_setscheduler(struct task_struct *p,
709 int policy, struct sched_param *lp)
710{
711 return security_ops->task_setscheduler(p, policy, lp);
712}
713
714int security_task_getscheduler(struct task_struct *p)
715{
716 return security_ops->task_getscheduler(p);
717}
718
719int security_task_movememory(struct task_struct *p)
720{
721 return security_ops->task_movememory(p);
722}
723
724int security_task_kill(struct task_struct *p, struct siginfo *info,
725 int sig, u32 secid)
726{
727 return security_ops->task_kill(p, info, sig, secid);
728}
729
730int security_task_wait(struct task_struct *p)
731{
732 return security_ops->task_wait(p);
733}
734
735int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
736 unsigned long arg4, unsigned long arg5)
737{
738 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
739}
740
741void security_task_reparent_to_init(struct task_struct *p)
742{
743 security_ops->task_reparent_to_init(p);
744}
745
746void security_task_to_inode(struct task_struct *p, struct inode *inode)
747{
748 security_ops->task_to_inode(p, inode);
749}
750
751int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
752{
753 return security_ops->ipc_permission(ipcp, flag);
754}
755
8a076191
AD
756void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
757{
758 security_ops->ipc_getsecid(ipcp, secid);
759}
760
20510f2f
JM
761int security_msg_msg_alloc(struct msg_msg *msg)
762{
763 return security_ops->msg_msg_alloc_security(msg);
764}
765
766void security_msg_msg_free(struct msg_msg *msg)
767{
768 security_ops->msg_msg_free_security(msg);
769}
770
771int security_msg_queue_alloc(struct msg_queue *msq)
772{
773 return security_ops->msg_queue_alloc_security(msq);
774}
775
776void security_msg_queue_free(struct msg_queue *msq)
777{
778 security_ops->msg_queue_free_security(msq);
779}
780
781int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
782{
783 return security_ops->msg_queue_associate(msq, msqflg);
784}
785
786int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
787{
788 return security_ops->msg_queue_msgctl(msq, cmd);
789}
790
791int security_msg_queue_msgsnd(struct msg_queue *msq,
792 struct msg_msg *msg, int msqflg)
793{
794 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
795}
796
797int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
798 struct task_struct *target, long type, int mode)
799{
800 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
801}
802
803int security_shm_alloc(struct shmid_kernel *shp)
804{
805 return security_ops->shm_alloc_security(shp);
806}
807
808void security_shm_free(struct shmid_kernel *shp)
809{
810 security_ops->shm_free_security(shp);
811}
812
813int security_shm_associate(struct shmid_kernel *shp, int shmflg)
814{
815 return security_ops->shm_associate(shp, shmflg);
816}
817
818int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
819{
820 return security_ops->shm_shmctl(shp, cmd);
821}
822
823int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
824{
825 return security_ops->shm_shmat(shp, shmaddr, shmflg);
826}
827
828int security_sem_alloc(struct sem_array *sma)
829{
830 return security_ops->sem_alloc_security(sma);
831}
832
833void security_sem_free(struct sem_array *sma)
834{
835 security_ops->sem_free_security(sma);
836}
837
838int security_sem_associate(struct sem_array *sma, int semflg)
839{
840 return security_ops->sem_associate(sma, semflg);
841}
842
843int security_sem_semctl(struct sem_array *sma, int cmd)
844{
845 return security_ops->sem_semctl(sma, cmd);
846}
847
848int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
849 unsigned nsops, int alter)
850{
851 return security_ops->sem_semop(sma, sops, nsops, alter);
852}
853
854void security_d_instantiate(struct dentry *dentry, struct inode *inode)
855{
856 if (unlikely(inode && IS_PRIVATE(inode)))
857 return;
858 security_ops->d_instantiate(dentry, inode);
859}
860EXPORT_SYMBOL(security_d_instantiate);
861
862int security_getprocattr(struct task_struct *p, char *name, char **value)
863{
864 return security_ops->getprocattr(p, name, value);
865}
866
867int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
868{
869 return security_ops->setprocattr(p, name, value, size);
870}
871
872int security_netlink_send(struct sock *sk, struct sk_buff *skb)
873{
874 return security_ops->netlink_send(sk, skb);
875}
20510f2f
JM
876
877int security_netlink_recv(struct sk_buff *skb, int cap)
878{
879 return security_ops->netlink_recv(skb, cap);
880}
881EXPORT_SYMBOL(security_netlink_recv);
882
883int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
884{
885 return security_ops->secid_to_secctx(secid, secdata, seclen);
886}
887EXPORT_SYMBOL(security_secid_to_secctx);
888
63cb3449
DH
889int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
890{
891 return security_ops->secctx_to_secid(secdata, seclen, secid);
892}
893EXPORT_SYMBOL(security_secctx_to_secid);
894
20510f2f
JM
895void security_release_secctx(char *secdata, u32 seclen)
896{
897 return security_ops->release_secctx(secdata, seclen);
898}
899EXPORT_SYMBOL(security_release_secctx);
900
901#ifdef CONFIG_SECURITY_NETWORK
902
903int security_unix_stream_connect(struct socket *sock, struct socket *other,
904 struct sock *newsk)
905{
906 return security_ops->unix_stream_connect(sock, other, newsk);
907}
908EXPORT_SYMBOL(security_unix_stream_connect);
909
910int security_unix_may_send(struct socket *sock, struct socket *other)
911{
912 return security_ops->unix_may_send(sock, other);
913}
914EXPORT_SYMBOL(security_unix_may_send);
915
916int security_socket_create(int family, int type, int protocol, int kern)
917{
918 return security_ops->socket_create(family, type, protocol, kern);
919}
920
921int security_socket_post_create(struct socket *sock, int family,
922 int type, int protocol, int kern)
923{
924 return security_ops->socket_post_create(sock, family, type,
925 protocol, kern);
926}
927
928int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
929{
930 return security_ops->socket_bind(sock, address, addrlen);
931}
932
933int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
934{
935 return security_ops->socket_connect(sock, address, addrlen);
936}
937
938int security_socket_listen(struct socket *sock, int backlog)
939{
940 return security_ops->socket_listen(sock, backlog);
941}
942
943int security_socket_accept(struct socket *sock, struct socket *newsock)
944{
945 return security_ops->socket_accept(sock, newsock);
946}
947
948void security_socket_post_accept(struct socket *sock, struct socket *newsock)
949{
950 security_ops->socket_post_accept(sock, newsock);
951}
952
953int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
954{
955 return security_ops->socket_sendmsg(sock, msg, size);
956}
957
958int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
959 int size, int flags)
960{
961 return security_ops->socket_recvmsg(sock, msg, size, flags);
962}
963
964int security_socket_getsockname(struct socket *sock)
965{
966 return security_ops->socket_getsockname(sock);
967}
968
969int security_socket_getpeername(struct socket *sock)
970{
971 return security_ops->socket_getpeername(sock);
972}
973
974int security_socket_getsockopt(struct socket *sock, int level, int optname)
975{
976 return security_ops->socket_getsockopt(sock, level, optname);
977}
978
979int security_socket_setsockopt(struct socket *sock, int level, int optname)
980{
981 return security_ops->socket_setsockopt(sock, level, optname);
982}
983
984int security_socket_shutdown(struct socket *sock, int how)
985{
986 return security_ops->socket_shutdown(sock, how);
987}
988
989int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
990{
991 return security_ops->socket_sock_rcv_skb(sk, skb);
992}
993EXPORT_SYMBOL(security_sock_rcv_skb);
994
995int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
996 int __user *optlen, unsigned len)
997{
998 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
999}
1000
1001int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1002{
1003 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1004}
1005EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1006
1007int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1008{
1009 return security_ops->sk_alloc_security(sk, family, priority);
1010}
1011
1012void security_sk_free(struct sock *sk)
1013{
1014 return security_ops->sk_free_security(sk);
1015}
1016
1017void security_sk_clone(const struct sock *sk, struct sock *newsk)
1018{
1019 return security_ops->sk_clone_security(sk, newsk);
1020}
1021
1022void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1023{
1024 security_ops->sk_getsecid(sk, &fl->secid);
1025}
1026EXPORT_SYMBOL(security_sk_classify_flow);
1027
1028void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1029{
1030 security_ops->req_classify_flow(req, fl);
1031}
1032EXPORT_SYMBOL(security_req_classify_flow);
1033
1034void security_sock_graft(struct sock *sk, struct socket *parent)
1035{
1036 security_ops->sock_graft(sk, parent);
1037}
1038EXPORT_SYMBOL(security_sock_graft);
1039
1040int security_inet_conn_request(struct sock *sk,
1041 struct sk_buff *skb, struct request_sock *req)
1042{
1043 return security_ops->inet_conn_request(sk, skb, req);
1044}
1045EXPORT_SYMBOL(security_inet_conn_request);
1046
1047void security_inet_csk_clone(struct sock *newsk,
1048 const struct request_sock *req)
1049{
1050 security_ops->inet_csk_clone(newsk, req);
1051}
1052
1053void security_inet_conn_established(struct sock *sk,
1054 struct sk_buff *skb)
1055{
1056 security_ops->inet_conn_established(sk, skb);
1057}
1058
1059#endif /* CONFIG_SECURITY_NETWORK */
1060
1061#ifdef CONFIG_SECURITY_NETWORK_XFRM
1062
1063int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
1064{
1065 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
1066}
1067EXPORT_SYMBOL(security_xfrm_policy_alloc);
1068
1069int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
1070{
1071 return security_ops->xfrm_policy_clone_security(old, new);
1072}
1073
1074void security_xfrm_policy_free(struct xfrm_policy *xp)
1075{
1076 security_ops->xfrm_policy_free_security(xp);
1077}
1078EXPORT_SYMBOL(security_xfrm_policy_free);
1079
1080int security_xfrm_policy_delete(struct xfrm_policy *xp)
1081{
1082 return security_ops->xfrm_policy_delete_security(xp);
1083}
1084
1085int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1086{
1087 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1088}
1089EXPORT_SYMBOL(security_xfrm_state_alloc);
1090
1091int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1092 struct xfrm_sec_ctx *polsec, u32 secid)
1093{
1094 if (!polsec)
1095 return 0;
1096 /*
1097 * We want the context to be taken from secid which is usually
1098 * from the sock.
1099 */
1100 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1101}
1102
1103int security_xfrm_state_delete(struct xfrm_state *x)
1104{
1105 return security_ops->xfrm_state_delete_security(x);
1106}
1107EXPORT_SYMBOL(security_xfrm_state_delete);
1108
1109void security_xfrm_state_free(struct xfrm_state *x)
1110{
1111 security_ops->xfrm_state_free_security(x);
1112}
1113
1114int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
1115{
1116 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
1117}
1118
1119int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1120 struct xfrm_policy *xp, struct flowi *fl)
1121{
1122 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1123}
1124
1125int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1126{
1127 return security_ops->xfrm_decode_session(skb, secid, 1);
1128}
1129
1130void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1131{
1132 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1133
1134 BUG_ON(rc);
1135}
1136EXPORT_SYMBOL(security_skb_classify_flow);
1137
1138#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1139
1140#ifdef CONFIG_KEYS
1141
1142int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1143{
1144 return security_ops->key_alloc(key, tsk, flags);
1145}
1146
1147void security_key_free(struct key *key)
1148{
1149 security_ops->key_free(key);
1150}
1151
1152int security_key_permission(key_ref_t key_ref,
1153 struct task_struct *context, key_perm_t perm)
1154{
1155 return security_ops->key_permission(key_ref, context, perm);
1156}
1157
1158#endif /* CONFIG_KEYS */
03d37d25
AD
1159
1160#ifdef CONFIG_AUDIT
1161
1162int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1163{
1164 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1165}
1166
1167int security_audit_rule_known(struct audit_krule *krule)
1168{
1169 return security_ops->audit_rule_known(krule);
1170}
1171
1172void security_audit_rule_free(void *lsmrule)
1173{
1174 security_ops->audit_rule_free(lsmrule);
1175}
1176
1177int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1178 struct audit_context *actx)
1179{
1180 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1181}
1182
1183#endif /* CONFIG_AUDIT */