]> bbs.cooldavid.org Git - net-next-2.6.git/blame - security/security.c
security/selinux: Add missing "space"
[net-next-2.6.git] / security / security.c
CommitLineData
1da177e4
LT
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
c59ede7b 14#include <linux/capability.h>
1da177e4
LT
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
1da177e4
LT
18#include <linux/security.h>
19
1da177e4
LT
20
21/* things that live in dummy.c */
22extern struct security_operations dummy_security_ops;
23extern void security_fixup_ops(struct security_operations *ops);
24
25struct security_operations *security_ops; /* Initialized to NULL */
ed032189 26unsigned long mmap_min_addr; /* 0 means no protection */
1da177e4
LT
27
28static inline int verify(struct security_operations *ops)
29{
30 /* verify the security_operations structure exists */
31 if (!ops)
32 return -EINVAL;
33 security_fixup_ops(ops);
34 return 0;
35}
36
37static void __init do_security_initcalls(void)
38{
39 initcall_t *call;
40 call = __security_initcall_start;
41 while (call < __security_initcall_end) {
42 (*call) ();
43 call++;
44 }
45}
46
47/**
48 * security_init - initializes the security framework
49 *
50 * This should be called early in the kernel initialization sequence.
51 */
52int __init security_init(void)
53{
20510f2f 54 printk(KERN_INFO "Security Framework initialized\n");
1da177e4
LT
55
56 if (verify(&dummy_security_ops)) {
57 printk(KERN_ERR "%s could not verify "
58 "dummy_security_ops structure.\n", __FUNCTION__);
59 return -EIO;
60 }
61
62 security_ops = &dummy_security_ops;
63 do_security_initcalls();
64
65 return 0;
66}
67
68/**
69 * register_security - registers a security framework with the kernel
70 * @ops: a pointer to the struct security_options that is to be registered
71 *
72 * This function is to allow a security module to register itself with the
73 * kernel security subsystem. Some rudimentary checking is done on the @ops
cbfee345 74 * value passed to this function.
1da177e4
LT
75 *
76 * If there is already a security module registered with the kernel,
77 * an error will be returned. Otherwise 0 is returned on success.
78 */
79int register_security(struct security_operations *ops)
80{
81 if (verify(ops)) {
82 printk(KERN_DEBUG "%s could not verify "
83 "security_operations structure.\n", __FUNCTION__);
84 return -EINVAL;
85 }
86
87 if (security_ops != &dummy_security_ops)
88 return -EAGAIN;
89
90 security_ops = ops;
91
92 return 0;
93}
94
1da177e4
LT
95/**
96 * mod_reg_security - allows security modules to be "stacked"
97 * @name: a pointer to a string with the name of the security_options to be registered
98 * @ops: a pointer to the struct security_options that is to be registered
99 *
100 * This function allows security modules to be stacked if the currently loaded
101 * security module allows this to happen. It passes the @name and @ops to the
102 * register_security function of the currently loaded security module.
103 *
104 * The return value depends on the currently loaded security module, with 0 as
105 * success.
106 */
107int mod_reg_security(const char *name, struct security_operations *ops)
108{
109 if (verify(ops)) {
110 printk(KERN_INFO "%s could not verify "
111 "security operations.\n", __FUNCTION__);
112 return -EINVAL;
113 }
114
115 if (ops == security_ops) {
116 printk(KERN_INFO "%s security operations "
117 "already registered.\n", __FUNCTION__);
118 return -EINVAL;
119 }
120
121 return security_ops->register_security(name, ops);
122}
123
20510f2f
JM
124/* Security operations */
125
126int security_ptrace(struct task_struct *parent, struct task_struct *child)
127{
128 return security_ops->ptrace(parent, child);
129}
130
131int security_capget(struct task_struct *target,
132 kernel_cap_t *effective,
133 kernel_cap_t *inheritable,
134 kernel_cap_t *permitted)
135{
136 return security_ops->capget(target, effective, inheritable, permitted);
137}
138
139int security_capset_check(struct task_struct *target,
140 kernel_cap_t *effective,
141 kernel_cap_t *inheritable,
142 kernel_cap_t *permitted)
143{
144 return security_ops->capset_check(target, effective, inheritable, permitted);
145}
146
147void security_capset_set(struct task_struct *target,
148 kernel_cap_t *effective,
149 kernel_cap_t *inheritable,
150 kernel_cap_t *permitted)
151{
152 security_ops->capset_set(target, effective, inheritable, permitted);
153}
154
155int security_capable(struct task_struct *tsk, int cap)
156{
157 return security_ops->capable(tsk, cap);
158}
159
160int security_acct(struct file *file)
161{
162 return security_ops->acct(file);
163}
164
165int security_sysctl(struct ctl_table *table, int op)
166{
167 return security_ops->sysctl(table, op);
168}
169
170int security_quotactl(int cmds, int type, int id, struct super_block *sb)
171{
172 return security_ops->quotactl(cmds, type, id, sb);
173}
174
175int security_quota_on(struct dentry *dentry)
176{
177 return security_ops->quota_on(dentry);
178}
179
180int security_syslog(int type)
181{
182 return security_ops->syslog(type);
183}
184
185int security_settime(struct timespec *ts, struct timezone *tz)
186{
187 return security_ops->settime(ts, tz);
188}
189
190int security_vm_enough_memory(long pages)
191{
192 return security_ops->vm_enough_memory(current->mm, pages);
193}
194
195int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
196{
197 return security_ops->vm_enough_memory(mm, pages);
198}
199
200int security_bprm_alloc(struct linux_binprm *bprm)
201{
202 return security_ops->bprm_alloc_security(bprm);
203}
204
205void security_bprm_free(struct linux_binprm *bprm)
206{
207 security_ops->bprm_free_security(bprm);
208}
209
210void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
211{
212 security_ops->bprm_apply_creds(bprm, unsafe);
213}
214
215void security_bprm_post_apply_creds(struct linux_binprm *bprm)
216{
217 security_ops->bprm_post_apply_creds(bprm);
218}
219
220int security_bprm_set(struct linux_binprm *bprm)
221{
222 return security_ops->bprm_set_security(bprm);
223}
224
225int security_bprm_check(struct linux_binprm *bprm)
226{
227 return security_ops->bprm_check_security(bprm);
228}
229
230int security_bprm_secureexec(struct linux_binprm *bprm)
231{
232 return security_ops->bprm_secureexec(bprm);
233}
234
235int security_sb_alloc(struct super_block *sb)
236{
237 return security_ops->sb_alloc_security(sb);
238}
239
240void security_sb_free(struct super_block *sb)
241{
242 security_ops->sb_free_security(sb);
243}
244
245int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
246{
247 return security_ops->sb_copy_data(type, orig, copy);
248}
249
250int security_sb_kern_mount(struct super_block *sb, void *data)
251{
252 return security_ops->sb_kern_mount(sb, data);
253}
254
255int security_sb_statfs(struct dentry *dentry)
256{
257 return security_ops->sb_statfs(dentry);
258}
259
260int security_sb_mount(char *dev_name, struct nameidata *nd,
261 char *type, unsigned long flags, void *data)
262{
263 return security_ops->sb_mount(dev_name, nd, type, flags, data);
264}
265
266int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
267{
268 return security_ops->sb_check_sb(mnt, nd);
269}
270
271int security_sb_umount(struct vfsmount *mnt, int flags)
272{
273 return security_ops->sb_umount(mnt, flags);
274}
275
276void security_sb_umount_close(struct vfsmount *mnt)
277{
278 security_ops->sb_umount_close(mnt);
279}
280
281void security_sb_umount_busy(struct vfsmount *mnt)
282{
283 security_ops->sb_umount_busy(mnt);
284}
285
286void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
287{
288 security_ops->sb_post_remount(mnt, flags, data);
289}
290
291void security_sb_post_mountroot(void)
292{
293 security_ops->sb_post_mountroot();
294}
295
296void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
297{
298 security_ops->sb_post_addmount(mnt, mountpoint_nd);
299}
300
301int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
302{
303 return security_ops->sb_pivotroot(old_nd, new_nd);
304}
305
306void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
307{
308 security_ops->sb_post_pivotroot(old_nd, new_nd);
309}
310
311int security_inode_alloc(struct inode *inode)
312{
313 inode->i_security = NULL;
314 return security_ops->inode_alloc_security(inode);
315}
316
317void security_inode_free(struct inode *inode)
318{
319 security_ops->inode_free_security(inode);
320}
321
322int security_inode_init_security(struct inode *inode, struct inode *dir,
323 char **name, void **value, size_t *len)
324{
325 if (unlikely(IS_PRIVATE(inode)))
326 return -EOPNOTSUPP;
327 return security_ops->inode_init_security(inode, dir, name, value, len);
328}
329EXPORT_SYMBOL(security_inode_init_security);
330
331int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
332{
333 if (unlikely(IS_PRIVATE(dir)))
334 return 0;
335 return security_ops->inode_create(dir, dentry, mode);
336}
337
338int security_inode_link(struct dentry *old_dentry, struct inode *dir,
339 struct dentry *new_dentry)
340{
341 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
342 return 0;
343 return security_ops->inode_link(old_dentry, dir, new_dentry);
344}
345
346int security_inode_unlink(struct inode *dir, struct dentry *dentry)
347{
348 if (unlikely(IS_PRIVATE(dentry->d_inode)))
349 return 0;
350 return security_ops->inode_unlink(dir, dentry);
351}
352
353int security_inode_symlink(struct inode *dir, struct dentry *dentry,
354 const char *old_name)
355{
356 if (unlikely(IS_PRIVATE(dir)))
357 return 0;
358 return security_ops->inode_symlink(dir, dentry, old_name);
359}
360
361int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
362{
363 if (unlikely(IS_PRIVATE(dir)))
364 return 0;
365 return security_ops->inode_mkdir(dir, dentry, mode);
366}
367
368int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
369{
370 if (unlikely(IS_PRIVATE(dentry->d_inode)))
371 return 0;
372 return security_ops->inode_rmdir(dir, dentry);
373}
374
375int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
376{
377 if (unlikely(IS_PRIVATE(dir)))
378 return 0;
379 return security_ops->inode_mknod(dir, dentry, mode, dev);
380}
381
382int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
383 struct inode *new_dir, struct dentry *new_dentry)
384{
385 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
386 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
387 return 0;
388 return security_ops->inode_rename(old_dir, old_dentry,
389 new_dir, new_dentry);
390}
391
392int security_inode_readlink(struct dentry *dentry)
393{
394 if (unlikely(IS_PRIVATE(dentry->d_inode)))
395 return 0;
396 return security_ops->inode_readlink(dentry);
397}
398
399int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
400{
401 if (unlikely(IS_PRIVATE(dentry->d_inode)))
402 return 0;
403 return security_ops->inode_follow_link(dentry, nd);
404}
405
406int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
407{
408 if (unlikely(IS_PRIVATE(inode)))
409 return 0;
410 return security_ops->inode_permission(inode, mask, nd);
411}
412
413int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
414{
415 if (unlikely(IS_PRIVATE(dentry->d_inode)))
416 return 0;
417 return security_ops->inode_setattr(dentry, attr);
418}
419
420int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
421{
422 if (unlikely(IS_PRIVATE(dentry->d_inode)))
423 return 0;
424 return security_ops->inode_getattr(mnt, dentry);
425}
426
427void security_inode_delete(struct inode *inode)
428{
429 if (unlikely(IS_PRIVATE(inode)))
430 return;
431 security_ops->inode_delete(inode);
432}
433
434int security_inode_setxattr(struct dentry *dentry, char *name,
435 void *value, size_t size, int flags)
436{
437 if (unlikely(IS_PRIVATE(dentry->d_inode)))
438 return 0;
439 return security_ops->inode_setxattr(dentry, name, value, size, flags);
440}
441
442void security_inode_post_setxattr(struct dentry *dentry, char *name,
443 void *value, size_t size, int flags)
444{
445 if (unlikely(IS_PRIVATE(dentry->d_inode)))
446 return;
447 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
448}
449
450int security_inode_getxattr(struct dentry *dentry, char *name)
451{
452 if (unlikely(IS_PRIVATE(dentry->d_inode)))
453 return 0;
454 return security_ops->inode_getxattr(dentry, name);
455}
456
457int security_inode_listxattr(struct dentry *dentry)
458{
459 if (unlikely(IS_PRIVATE(dentry->d_inode)))
460 return 0;
461 return security_ops->inode_listxattr(dentry);
462}
463
464int security_inode_removexattr(struct dentry *dentry, char *name)
465{
466 if (unlikely(IS_PRIVATE(dentry->d_inode)))
467 return 0;
468 return security_ops->inode_removexattr(dentry, name);
469}
470
b5376771
SH
471int security_inode_need_killpriv(struct dentry *dentry)
472{
473 return security_ops->inode_need_killpriv(dentry);
474}
475
476int security_inode_killpriv(struct dentry *dentry)
477{
478 return security_ops->inode_killpriv(dentry);
479}
480
20510f2f
JM
481int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
482{
483 if (unlikely(IS_PRIVATE(inode)))
484 return 0;
485 return security_ops->inode_getsecurity(inode, name, buffer, size, err);
486}
487
488int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
489{
490 if (unlikely(IS_PRIVATE(inode)))
491 return 0;
492 return security_ops->inode_setsecurity(inode, name, value, size, flags);
493}
494
495int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
496{
497 if (unlikely(IS_PRIVATE(inode)))
498 return 0;
499 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
500}
501
502int security_file_permission(struct file *file, int mask)
503{
504 return security_ops->file_permission(file, mask);
505}
506
507int security_file_alloc(struct file *file)
508{
509 return security_ops->file_alloc_security(file);
510}
511
512void security_file_free(struct file *file)
513{
514 security_ops->file_free_security(file);
515}
516
517int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
518{
519 return security_ops->file_ioctl(file, cmd, arg);
520}
521
522int security_file_mmap(struct file *file, unsigned long reqprot,
523 unsigned long prot, unsigned long flags,
524 unsigned long addr, unsigned long addr_only)
525{
526 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
527}
528
529int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
530 unsigned long prot)
531{
532 return security_ops->file_mprotect(vma, reqprot, prot);
533}
534
535int security_file_lock(struct file *file, unsigned int cmd)
536{
537 return security_ops->file_lock(file, cmd);
538}
539
540int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
541{
542 return security_ops->file_fcntl(file, cmd, arg);
543}
544
545int security_file_set_fowner(struct file *file)
546{
547 return security_ops->file_set_fowner(file);
548}
549
550int security_file_send_sigiotask(struct task_struct *tsk,
551 struct fown_struct *fown, int sig)
552{
553 return security_ops->file_send_sigiotask(tsk, fown, sig);
554}
555
556int security_file_receive(struct file *file)
557{
558 return security_ops->file_receive(file);
559}
560
561int security_dentry_open(struct file *file)
562{
563 return security_ops->dentry_open(file);
564}
565
566int security_task_create(unsigned long clone_flags)
567{
568 return security_ops->task_create(clone_flags);
569}
570
571int security_task_alloc(struct task_struct *p)
572{
573 return security_ops->task_alloc_security(p);
574}
575
576void security_task_free(struct task_struct *p)
577{
578 security_ops->task_free_security(p);
579}
580
581int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
582{
583 return security_ops->task_setuid(id0, id1, id2, flags);
584}
585
586int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
587 uid_t old_suid, int flags)
588{
589 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
590}
591
592int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
593{
594 return security_ops->task_setgid(id0, id1, id2, flags);
595}
596
597int security_task_setpgid(struct task_struct *p, pid_t pgid)
598{
599 return security_ops->task_setpgid(p, pgid);
600}
601
602int security_task_getpgid(struct task_struct *p)
603{
604 return security_ops->task_getpgid(p);
605}
606
607int security_task_getsid(struct task_struct *p)
608{
609 return security_ops->task_getsid(p);
610}
611
612void security_task_getsecid(struct task_struct *p, u32 *secid)
613{
614 security_ops->task_getsecid(p, secid);
615}
616EXPORT_SYMBOL(security_task_getsecid);
617
618int security_task_setgroups(struct group_info *group_info)
619{
620 return security_ops->task_setgroups(group_info);
621}
622
623int security_task_setnice(struct task_struct *p, int nice)
624{
625 return security_ops->task_setnice(p, nice);
626}
627
628int security_task_setioprio(struct task_struct *p, int ioprio)
629{
630 return security_ops->task_setioprio(p, ioprio);
631}
632
633int security_task_getioprio(struct task_struct *p)
634{
635 return security_ops->task_getioprio(p);
636}
637
638int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
639{
640 return security_ops->task_setrlimit(resource, new_rlim);
641}
642
643int security_task_setscheduler(struct task_struct *p,
644 int policy, struct sched_param *lp)
645{
646 return security_ops->task_setscheduler(p, policy, lp);
647}
648
649int security_task_getscheduler(struct task_struct *p)
650{
651 return security_ops->task_getscheduler(p);
652}
653
654int security_task_movememory(struct task_struct *p)
655{
656 return security_ops->task_movememory(p);
657}
658
659int security_task_kill(struct task_struct *p, struct siginfo *info,
660 int sig, u32 secid)
661{
662 return security_ops->task_kill(p, info, sig, secid);
663}
664
665int security_task_wait(struct task_struct *p)
666{
667 return security_ops->task_wait(p);
668}
669
670int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
671 unsigned long arg4, unsigned long arg5)
672{
673 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
674}
675
676void security_task_reparent_to_init(struct task_struct *p)
677{
678 security_ops->task_reparent_to_init(p);
679}
680
681void security_task_to_inode(struct task_struct *p, struct inode *inode)
682{
683 security_ops->task_to_inode(p, inode);
684}
685
686int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
687{
688 return security_ops->ipc_permission(ipcp, flag);
689}
690
691int security_msg_msg_alloc(struct msg_msg *msg)
692{
693 return security_ops->msg_msg_alloc_security(msg);
694}
695
696void security_msg_msg_free(struct msg_msg *msg)
697{
698 security_ops->msg_msg_free_security(msg);
699}
700
701int security_msg_queue_alloc(struct msg_queue *msq)
702{
703 return security_ops->msg_queue_alloc_security(msq);
704}
705
706void security_msg_queue_free(struct msg_queue *msq)
707{
708 security_ops->msg_queue_free_security(msq);
709}
710
711int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
712{
713 return security_ops->msg_queue_associate(msq, msqflg);
714}
715
716int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
717{
718 return security_ops->msg_queue_msgctl(msq, cmd);
719}
720
721int security_msg_queue_msgsnd(struct msg_queue *msq,
722 struct msg_msg *msg, int msqflg)
723{
724 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
725}
726
727int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
728 struct task_struct *target, long type, int mode)
729{
730 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
731}
732
733int security_shm_alloc(struct shmid_kernel *shp)
734{
735 return security_ops->shm_alloc_security(shp);
736}
737
738void security_shm_free(struct shmid_kernel *shp)
739{
740 security_ops->shm_free_security(shp);
741}
742
743int security_shm_associate(struct shmid_kernel *shp, int shmflg)
744{
745 return security_ops->shm_associate(shp, shmflg);
746}
747
748int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
749{
750 return security_ops->shm_shmctl(shp, cmd);
751}
752
753int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
754{
755 return security_ops->shm_shmat(shp, shmaddr, shmflg);
756}
757
758int security_sem_alloc(struct sem_array *sma)
759{
760 return security_ops->sem_alloc_security(sma);
761}
762
763void security_sem_free(struct sem_array *sma)
764{
765 security_ops->sem_free_security(sma);
766}
767
768int security_sem_associate(struct sem_array *sma, int semflg)
769{
770 return security_ops->sem_associate(sma, semflg);
771}
772
773int security_sem_semctl(struct sem_array *sma, int cmd)
774{
775 return security_ops->sem_semctl(sma, cmd);
776}
777
778int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
779 unsigned nsops, int alter)
780{
781 return security_ops->sem_semop(sma, sops, nsops, alter);
782}
783
784void security_d_instantiate(struct dentry *dentry, struct inode *inode)
785{
786 if (unlikely(inode && IS_PRIVATE(inode)))
787 return;
788 security_ops->d_instantiate(dentry, inode);
789}
790EXPORT_SYMBOL(security_d_instantiate);
791
792int security_getprocattr(struct task_struct *p, char *name, char **value)
793{
794 return security_ops->getprocattr(p, name, value);
795}
796
797int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
798{
799 return security_ops->setprocattr(p, name, value, size);
800}
801
802int security_netlink_send(struct sock *sk, struct sk_buff *skb)
803{
804 return security_ops->netlink_send(sk, skb);
805}
20510f2f
JM
806
807int security_netlink_recv(struct sk_buff *skb, int cap)
808{
809 return security_ops->netlink_recv(skb, cap);
810}
811EXPORT_SYMBOL(security_netlink_recv);
812
813int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
814{
815 return security_ops->secid_to_secctx(secid, secdata, seclen);
816}
817EXPORT_SYMBOL(security_secid_to_secctx);
818
819void security_release_secctx(char *secdata, u32 seclen)
820{
821 return security_ops->release_secctx(secdata, seclen);
822}
823EXPORT_SYMBOL(security_release_secctx);
824
825#ifdef CONFIG_SECURITY_NETWORK
826
827int security_unix_stream_connect(struct socket *sock, struct socket *other,
828 struct sock *newsk)
829{
830 return security_ops->unix_stream_connect(sock, other, newsk);
831}
832EXPORT_SYMBOL(security_unix_stream_connect);
833
834int security_unix_may_send(struct socket *sock, struct socket *other)
835{
836 return security_ops->unix_may_send(sock, other);
837}
838EXPORT_SYMBOL(security_unix_may_send);
839
840int security_socket_create(int family, int type, int protocol, int kern)
841{
842 return security_ops->socket_create(family, type, protocol, kern);
843}
844
845int security_socket_post_create(struct socket *sock, int family,
846 int type, int protocol, int kern)
847{
848 return security_ops->socket_post_create(sock, family, type,
849 protocol, kern);
850}
851
852int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
853{
854 return security_ops->socket_bind(sock, address, addrlen);
855}
856
857int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
858{
859 return security_ops->socket_connect(sock, address, addrlen);
860}
861
862int security_socket_listen(struct socket *sock, int backlog)
863{
864 return security_ops->socket_listen(sock, backlog);
865}
866
867int security_socket_accept(struct socket *sock, struct socket *newsock)
868{
869 return security_ops->socket_accept(sock, newsock);
870}
871
872void security_socket_post_accept(struct socket *sock, struct socket *newsock)
873{
874 security_ops->socket_post_accept(sock, newsock);
875}
876
877int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
878{
879 return security_ops->socket_sendmsg(sock, msg, size);
880}
881
882int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
883 int size, int flags)
884{
885 return security_ops->socket_recvmsg(sock, msg, size, flags);
886}
887
888int security_socket_getsockname(struct socket *sock)
889{
890 return security_ops->socket_getsockname(sock);
891}
892
893int security_socket_getpeername(struct socket *sock)
894{
895 return security_ops->socket_getpeername(sock);
896}
897
898int security_socket_getsockopt(struct socket *sock, int level, int optname)
899{
900 return security_ops->socket_getsockopt(sock, level, optname);
901}
902
903int security_socket_setsockopt(struct socket *sock, int level, int optname)
904{
905 return security_ops->socket_setsockopt(sock, level, optname);
906}
907
908int security_socket_shutdown(struct socket *sock, int how)
909{
910 return security_ops->socket_shutdown(sock, how);
911}
912
913int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
914{
915 return security_ops->socket_sock_rcv_skb(sk, skb);
916}
917EXPORT_SYMBOL(security_sock_rcv_skb);
918
919int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
920 int __user *optlen, unsigned len)
921{
922 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
923}
924
925int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
926{
927 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
928}
929EXPORT_SYMBOL(security_socket_getpeersec_dgram);
930
931int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
932{
933 return security_ops->sk_alloc_security(sk, family, priority);
934}
935
936void security_sk_free(struct sock *sk)
937{
938 return security_ops->sk_free_security(sk);
939}
940
941void security_sk_clone(const struct sock *sk, struct sock *newsk)
942{
943 return security_ops->sk_clone_security(sk, newsk);
944}
945
946void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
947{
948 security_ops->sk_getsecid(sk, &fl->secid);
949}
950EXPORT_SYMBOL(security_sk_classify_flow);
951
952void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
953{
954 security_ops->req_classify_flow(req, fl);
955}
956EXPORT_SYMBOL(security_req_classify_flow);
957
958void security_sock_graft(struct sock *sk, struct socket *parent)
959{
960 security_ops->sock_graft(sk, parent);
961}
962EXPORT_SYMBOL(security_sock_graft);
963
964int security_inet_conn_request(struct sock *sk,
965 struct sk_buff *skb, struct request_sock *req)
966{
967 return security_ops->inet_conn_request(sk, skb, req);
968}
969EXPORT_SYMBOL(security_inet_conn_request);
970
971void security_inet_csk_clone(struct sock *newsk,
972 const struct request_sock *req)
973{
974 security_ops->inet_csk_clone(newsk, req);
975}
976
977void security_inet_conn_established(struct sock *sk,
978 struct sk_buff *skb)
979{
980 security_ops->inet_conn_established(sk, skb);
981}
982
983#endif /* CONFIG_SECURITY_NETWORK */
984
985#ifdef CONFIG_SECURITY_NETWORK_XFRM
986
987int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
988{
989 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
990}
991EXPORT_SYMBOL(security_xfrm_policy_alloc);
992
993int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
994{
995 return security_ops->xfrm_policy_clone_security(old, new);
996}
997
998void security_xfrm_policy_free(struct xfrm_policy *xp)
999{
1000 security_ops->xfrm_policy_free_security(xp);
1001}
1002EXPORT_SYMBOL(security_xfrm_policy_free);
1003
1004int security_xfrm_policy_delete(struct xfrm_policy *xp)
1005{
1006 return security_ops->xfrm_policy_delete_security(xp);
1007}
1008
1009int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1010{
1011 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1012}
1013EXPORT_SYMBOL(security_xfrm_state_alloc);
1014
1015int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1016 struct xfrm_sec_ctx *polsec, u32 secid)
1017{
1018 if (!polsec)
1019 return 0;
1020 /*
1021 * We want the context to be taken from secid which is usually
1022 * from the sock.
1023 */
1024 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1025}
1026
1027int security_xfrm_state_delete(struct xfrm_state *x)
1028{
1029 return security_ops->xfrm_state_delete_security(x);
1030}
1031EXPORT_SYMBOL(security_xfrm_state_delete);
1032
1033void security_xfrm_state_free(struct xfrm_state *x)
1034{
1035 security_ops->xfrm_state_free_security(x);
1036}
1037
1038int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
1039{
1040 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
1041}
1042
1043int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1044 struct xfrm_policy *xp, struct flowi *fl)
1045{
1046 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1047}
1048
1049int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1050{
1051 return security_ops->xfrm_decode_session(skb, secid, 1);
1052}
1053
1054void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1055{
1056 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1057
1058 BUG_ON(rc);
1059}
1060EXPORT_SYMBOL(security_skb_classify_flow);
1061
1062#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1063
1064#ifdef CONFIG_KEYS
1065
1066int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1067{
1068 return security_ops->key_alloc(key, tsk, flags);
1069}
1070
1071void security_key_free(struct key *key)
1072{
1073 security_ops->key_free(key);
1074}
1075
1076int security_key_permission(key_ref_t key_ref,
1077 struct task_struct *context, key_perm_t perm)
1078{
1079 return security_ops->key_permission(key_ref, context, perm);
1080}
1081
1082#endif /* CONFIG_KEYS */