]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/udp.c
rose: improving AX25 routing frames via ROSE network
[net-next-2.6.git] / net / ipv4 / udp.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
02c30a84 8 * Authors: Ross Biro
1da177e4
LT
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
e905a9ed
YH
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
1da177e4
LT
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
e905a9ed 57 * for connect.
1da177e4
LT
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
342f0234 71 * James Chapman : Add L2TP encapsulation type.
1da177e4
LT
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
e905a9ed 79
1da177e4
LT
80#include <asm/system.h>
81#include <asm/uaccess.h>
82#include <asm/ioctls.h>
95766fff 83#include <linux/bootmem.h>
1da177e4
LT
84#include <linux/types.h>
85#include <linux/fcntl.h>
86#include <linux/module.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
14c85021 89#include <linux/igmp.h>
1da177e4
LT
90#include <linux/in.h>
91#include <linux/errno.h>
92#include <linux/timer.h>
93#include <linux/mm.h>
1da177e4 94#include <linux/inet.h>
1da177e4 95#include <linux/netdevice.h>
c752f073 96#include <net/tcp_states.h>
1da177e4
LT
97#include <linux/skbuff.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
457c4cbc 100#include <net/net_namespace.h>
1da177e4
LT
101#include <net/icmp.h>
102#include <net/route.h>
1da177e4
LT
103#include <net/checksum.h>
104#include <net/xfrm.h>
ba4e58ec 105#include "udp_impl.h"
1da177e4
LT
106
107/*
108 * Snmp MIB for the UDP layer
109 */
110
ba89966c 111DEFINE_SNMP_STAT(struct udp_mib, udp_statistics) __read_mostly;
1781f7f5 112EXPORT_SYMBOL(udp_statistics);
1da177e4 113
9055e051
HX
114DEFINE_SNMP_STAT(struct udp_mib, udp_stats_in6) __read_mostly;
115EXPORT_SYMBOL(udp_stats_in6);
116
1da177e4
LT
117struct hlist_head udp_hash[UDP_HTABLE_SIZE];
118DEFINE_RWLOCK(udp_hash_lock);
119
95766fff
HA
120int sysctl_udp_mem[3] __read_mostly;
121int sysctl_udp_rmem_min __read_mostly;
122int sysctl_udp_wmem_min __read_mostly;
123
124EXPORT_SYMBOL(sysctl_udp_mem);
125EXPORT_SYMBOL(sysctl_udp_rmem_min);
126EXPORT_SYMBOL(sysctl_udp_wmem_min);
127
128atomic_t udp_memory_allocated;
129EXPORT_SYMBOL(udp_memory_allocated);
130
fa4d3c62 131static inline int __udp_lib_lport_inuse(struct net *net, __u16 num,
32c1da70 132 const struct hlist_head udptable[])
1da177e4 133{
25030a7f 134 struct sock *sk;
1da177e4 135 struct hlist_node *node;
25030a7f 136
19c7578f 137 sk_for_each(sk, node, &udptable[udp_hashfn(net, num)])
878628fb 138 if (net_eq(sock_net(sk), net) && sk->sk_hash == num)
25030a7f
GR
139 return 1;
140 return 0;
141}
142
143/**
6ba5a3c5 144 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
25030a7f
GR
145 *
146 * @sk: socket struct in question
147 * @snum: port number to look up
df2bc459 148 * @saddr_comp: AF-dependent comparison of bound local IP addresses
25030a7f 149 */
6ba5a3c5 150int udp_lib_get_port(struct sock *sk, unsigned short snum,
df2bc459
DM
151 int (*saddr_comp)(const struct sock *sk1,
152 const struct sock *sk2 ) )
25030a7f 153{
6ba5a3c5 154 struct hlist_head *udptable = sk->sk_prot->h.udp_hash;
25030a7f
GR
155 struct hlist_node *node;
156 struct hlist_head *head;
1da177e4 157 struct sock *sk2;
25030a7f 158 int error = 1;
3b1e0a65 159 struct net *net = sock_net(sk);
1da177e4
LT
160
161 write_lock_bh(&udp_hash_lock);
32c1da70
SH
162
163 if (!snum) {
a25de534 164 int i, low, high, remaining;
32c1da70
SH
165 unsigned rover, best, best_size_so_far;
166
227b60f5 167 inet_get_local_port_range(&low, &high);
a25de534 168 remaining = (high - low) + 1;
227b60f5 169
32c1da70 170 best_size_so_far = UINT_MAX;
a25de534 171 best = rover = net_random() % remaining + low;
32c1da70
SH
172
173 /* 1st pass: look for empty (or shortest) hash chain */
174 for (i = 0; i < UDP_HTABLE_SIZE; i++) {
175 int size = 0;
176
19c7578f 177 head = &udptable[udp_hashfn(net, rover)];
32c1da70 178 if (hlist_empty(head))
1da177e4 179 goto gotit;
32c1da70 180
5c668704
DM
181 sk_for_each(sk2, node, head) {
182 if (++size >= best_size_so_far)
183 goto next;
184 }
185 best_size_so_far = size;
32c1da70 186 best = rover;
5c668704 187 next:
32c1da70
SH
188 /* fold back if end of range */
189 if (++rover > high)
190 rover = low + ((rover - low)
191 & (UDP_HTABLE_SIZE - 1));
192
193
1da177e4 194 }
32c1da70
SH
195
196 /* 2nd pass: find hole in shortest hash chain */
197 rover = best;
198 for (i = 0; i < (1 << 16) / UDP_HTABLE_SIZE; i++) {
fa4d3c62 199 if (! __udp_lib_lport_inuse(net, rover, udptable))
32c1da70
SH
200 goto gotit;
201 rover += UDP_HTABLE_SIZE;
202 if (rover > high)
203 rover = low + ((rover - low)
204 & (UDP_HTABLE_SIZE - 1));
1da177e4 205 }
32c1da70
SH
206
207
208 /* All ports in use! */
209 goto fail;
210
1da177e4 211gotit:
32c1da70 212 snum = rover;
1da177e4 213 } else {
19c7578f 214 head = &udptable[udp_hashfn(net, snum)];
25030a7f
GR
215
216 sk_for_each(sk2, node, head)
df2bc459
DM
217 if (sk2->sk_hash == snum &&
218 sk2 != sk &&
878628fb 219 net_eq(sock_net(sk2), net) &&
df2bc459
DM
220 (!sk2->sk_reuse || !sk->sk_reuse) &&
221 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if
222 || sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
223 (*saddr_comp)(sk, sk2) )
1da177e4 224 goto fail;
1da177e4 225 }
32c1da70 226
25030a7f 227 inet_sk(sk)->num = snum;
df2bc459 228 sk->sk_hash = snum;
1da177e4 229 if (sk_unhashed(sk)) {
19c7578f 230 head = &udptable[udp_hashfn(net, snum)];
25030a7f 231 sk_add_node(sk, head);
c29a0bc4 232 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
1da177e4 233 }
25030a7f 234 error = 0;
1da177e4
LT
235fail:
236 write_unlock_bh(&udp_hash_lock);
25030a7f
GR
237 return error;
238}
239
6ba5a3c5 240static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
db8dac20
DM
241{
242 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
243
244 return ( !ipv6_only_sock(sk2) &&
245 (!inet1->rcv_saddr || !inet2->rcv_saddr ||
246 inet1->rcv_saddr == inet2->rcv_saddr ));
247}
248
6ba5a3c5 249int udp_v4_get_port(struct sock *sk, unsigned short snum)
db8dac20 250{
6ba5a3c5 251 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal);
db8dac20
DM
252}
253
254/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
255 * harder than this. -DaveM
256 */
257static struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
258 __be16 sport, __be32 daddr, __be16 dport,
259 int dif, struct hlist_head udptable[])
260{
261 struct sock *sk, *result = NULL;
262 struct hlist_node *node;
263 unsigned short hnum = ntohs(dport);
264 int badness = -1;
265
266 read_lock(&udp_hash_lock);
19c7578f 267 sk_for_each(sk, node, &udptable[udp_hashfn(net, hnum)]) {
db8dac20
DM
268 struct inet_sock *inet = inet_sk(sk);
269
878628fb 270 if (net_eq(sock_net(sk), net) && sk->sk_hash == hnum &&
db8dac20
DM
271 !ipv6_only_sock(sk)) {
272 int score = (sk->sk_family == PF_INET ? 1 : 0);
273 if (inet->rcv_saddr) {
274 if (inet->rcv_saddr != daddr)
275 continue;
276 score+=2;
277 }
278 if (inet->daddr) {
279 if (inet->daddr != saddr)
280 continue;
281 score+=2;
282 }
283 if (inet->dport) {
284 if (inet->dport != sport)
285 continue;
286 score+=2;
287 }
288 if (sk->sk_bound_dev_if) {
289 if (sk->sk_bound_dev_if != dif)
290 continue;
291 score+=2;
292 }
293 if (score == 9) {
294 result = sk;
295 break;
296 } else if (score > badness) {
297 result = sk;
298 badness = score;
299 }
300 }
301 }
302 if (result)
303 sock_hold(result);
304 read_unlock(&udp_hash_lock);
305 return result;
306}
307
308static inline struct sock *udp_v4_mcast_next(struct sock *sk,
309 __be16 loc_port, __be32 loc_addr,
310 __be16 rmt_port, __be32 rmt_addr,
311 int dif)
312{
313 struct hlist_node *node;
314 struct sock *s = sk;
315 unsigned short hnum = ntohs(loc_port);
316
317 sk_for_each_from(s, node) {
318 struct inet_sock *inet = inet_sk(s);
319
320 if (s->sk_hash != hnum ||
321 (inet->daddr && inet->daddr != rmt_addr) ||
322 (inet->dport != rmt_port && inet->dport) ||
323 (inet->rcv_saddr && inet->rcv_saddr != loc_addr) ||
324 ipv6_only_sock(s) ||
325 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
326 continue;
327 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
328 continue;
329 goto found;
330 }
331 s = NULL;
332found:
333 return s;
334}
335
336/*
337 * This routine is called by the ICMP module when it gets some
338 * sort of error condition. If err < 0 then the socket should
339 * be closed and the error returned to the user. If err > 0
340 * it's just the icmp type << 8 | icmp code.
341 * Header points to the ip header of the error packet. We move
342 * on past this. Then (as it used to claim before adjustment)
343 * header points to the first 8 bytes of the udp header. We need
344 * to find the appropriate port.
345 */
346
347void __udp4_lib_err(struct sk_buff *skb, u32 info, struct hlist_head udptable[])
348{
349 struct inet_sock *inet;
350 struct iphdr *iph = (struct iphdr*)skb->data;
351 struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
352 const int type = icmp_hdr(skb)->type;
353 const int code = icmp_hdr(skb)->code;
354 struct sock *sk;
355 int harderr;
356 int err;
357
c346dca1 358 sk = __udp4_lib_lookup(dev_net(skb->dev), iph->daddr, uh->dest,
db8dac20
DM
359 iph->saddr, uh->source, skb->dev->ifindex, udptable);
360 if (sk == NULL) {
361 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
362 return; /* No socket for error */
363 }
364
365 err = 0;
366 harderr = 0;
367 inet = inet_sk(sk);
368
369 switch (type) {
370 default:
371 case ICMP_TIME_EXCEEDED:
372 err = EHOSTUNREACH;
373 break;
374 case ICMP_SOURCE_QUENCH:
375 goto out;
376 case ICMP_PARAMETERPROB:
377 err = EPROTO;
378 harderr = 1;
379 break;
380 case ICMP_DEST_UNREACH:
381 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
382 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
383 err = EMSGSIZE;
384 harderr = 1;
385 break;
386 }
387 goto out;
388 }
389 err = EHOSTUNREACH;
390 if (code <= NR_ICMP_UNREACH) {
391 harderr = icmp_err_convert[code].fatal;
392 err = icmp_err_convert[code].errno;
393 }
394 break;
395 }
396
397 /*
398 * RFC1122: OK. Passes ICMP errors back to application, as per
399 * 4.1.3.3.
400 */
401 if (!inet->recverr) {
402 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
403 goto out;
404 } else {
405 ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
406 }
407 sk->sk_err = err;
408 sk->sk_error_report(sk);
409out:
410 sock_put(sk);
411}
412
413void udp_err(struct sk_buff *skb, u32 info)
414{
415 __udp4_lib_err(skb, info, udp_hash);
416}
417
418/*
419 * Throw away all pending data and cancel the corking. Socket is locked.
420 */
36d926b9 421void udp_flush_pending_frames(struct sock *sk)
db8dac20
DM
422{
423 struct udp_sock *up = udp_sk(sk);
424
425 if (up->pending) {
426 up->len = 0;
427 up->pending = 0;
428 ip_flush_pending_frames(sk);
429 }
430}
36d926b9 431EXPORT_SYMBOL(udp_flush_pending_frames);
db8dac20
DM
432
433/**
434 * udp4_hwcsum_outgoing - handle outgoing HW checksumming
435 * @sk: socket we are sending on
436 * @skb: sk_buff containing the filled-in UDP header
437 * (checksum field must be zeroed out)
438 */
439static void udp4_hwcsum_outgoing(struct sock *sk, struct sk_buff *skb,
440 __be32 src, __be32 dst, int len )
441{
442 unsigned int offset;
443 struct udphdr *uh = udp_hdr(skb);
444 __wsum csum = 0;
445
446 if (skb_queue_len(&sk->sk_write_queue) == 1) {
447 /*
448 * Only one fragment on the socket.
449 */
450 skb->csum_start = skb_transport_header(skb) - skb->head;
451 skb->csum_offset = offsetof(struct udphdr, check);
452 uh->check = ~csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, 0);
453 } else {
454 /*
455 * HW-checksum won't work as there are two or more
456 * fragments on the socket so that all csums of sk_buffs
457 * should be together
458 */
459 offset = skb_transport_offset(skb);
460 skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
461
462 skb->ip_summed = CHECKSUM_NONE;
463
464 skb_queue_walk(&sk->sk_write_queue, skb) {
465 csum = csum_add(csum, skb->csum);
466 }
467
468 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
469 if (uh->check == 0)
470 uh->check = CSUM_MANGLED_0;
471 }
472}
473
474/*
475 * Push out all pending data as one UDP datagram. Socket is locked.
476 */
477static int udp_push_pending_frames(struct sock *sk)
478{
479 struct udp_sock *up = udp_sk(sk);
480 struct inet_sock *inet = inet_sk(sk);
481 struct flowi *fl = &inet->cork.fl;
482 struct sk_buff *skb;
483 struct udphdr *uh;
484 int err = 0;
485 int is_udplite = IS_UDPLITE(sk);
486 __wsum csum = 0;
487
488 /* Grab the skbuff where UDP header space exists. */
489 if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
490 goto out;
491
492 /*
493 * Create a UDP header
494 */
495 uh = udp_hdr(skb);
496 uh->source = fl->fl_ip_sport;
497 uh->dest = fl->fl_ip_dport;
498 uh->len = htons(up->len);
499 uh->check = 0;
500
501 if (is_udplite) /* UDP-Lite */
502 csum = udplite_csum_outgoing(sk, skb);
503
504 else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
505
506 skb->ip_summed = CHECKSUM_NONE;
507 goto send;
508
509 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
510
511 udp4_hwcsum_outgoing(sk, skb, fl->fl4_src,fl->fl4_dst, up->len);
512 goto send;
513
514 } else /* `normal' UDP */
515 csum = udp_csum_outgoing(sk, skb);
516
517 /* add protocol-dependent pseudo-header */
518 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, up->len,
519 sk->sk_protocol, csum );
520 if (uh->check == 0)
521 uh->check = CSUM_MANGLED_0;
522
523send:
524 err = ip_push_pending_frames(sk);
525out:
526 up->len = 0;
527 up->pending = 0;
528 if (!err)
529 UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS, is_udplite);
530 return err;
531}
532
533int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
534 size_t len)
535{
536 struct inet_sock *inet = inet_sk(sk);
537 struct udp_sock *up = udp_sk(sk);
538 int ulen = len;
539 struct ipcm_cookie ipc;
540 struct rtable *rt = NULL;
541 int free = 0;
542 int connected = 0;
543 __be32 daddr, faddr, saddr;
544 __be16 dport;
545 u8 tos;
546 int err, is_udplite = IS_UDPLITE(sk);
547 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
548 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
549
550 if (len > 0xFFFF)
551 return -EMSGSIZE;
552
553 /*
554 * Check the flags.
555 */
556
557 if (msg->msg_flags&MSG_OOB) /* Mirror BSD error message compatibility */
558 return -EOPNOTSUPP;
559
560 ipc.opt = NULL;
561
562 if (up->pending) {
563 /*
564 * There are pending frames.
565 * The socket lock must be held while it's corked.
566 */
567 lock_sock(sk);
568 if (likely(up->pending)) {
569 if (unlikely(up->pending != AF_INET)) {
570 release_sock(sk);
571 return -EINVAL;
572 }
573 goto do_append_data;
574 }
575 release_sock(sk);
576 }
577 ulen += sizeof(struct udphdr);
578
579 /*
580 * Get and verify the address.
581 */
582 if (msg->msg_name) {
583 struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
584 if (msg->msg_namelen < sizeof(*usin))
585 return -EINVAL;
586 if (usin->sin_family != AF_INET) {
587 if (usin->sin_family != AF_UNSPEC)
588 return -EAFNOSUPPORT;
589 }
590
591 daddr = usin->sin_addr.s_addr;
592 dport = usin->sin_port;
593 if (dport == 0)
594 return -EINVAL;
595 } else {
596 if (sk->sk_state != TCP_ESTABLISHED)
597 return -EDESTADDRREQ;
598 daddr = inet->daddr;
599 dport = inet->dport;
600 /* Open fast path for connected socket.
601 Route will not be used, if at least one option is set.
602 */
603 connected = 1;
604 }
605 ipc.addr = inet->saddr;
606
607 ipc.oif = sk->sk_bound_dev_if;
608 if (msg->msg_controllen) {
3b1e0a65 609 err = ip_cmsg_send(sock_net(sk), msg, &ipc);
db8dac20
DM
610 if (err)
611 return err;
612 if (ipc.opt)
613 free = 1;
614 connected = 0;
615 }
616 if (!ipc.opt)
617 ipc.opt = inet->opt;
618
619 saddr = ipc.addr;
620 ipc.addr = faddr = daddr;
621
622 if (ipc.opt && ipc.opt->srr) {
623 if (!daddr)
624 return -EINVAL;
625 faddr = ipc.opt->faddr;
626 connected = 0;
627 }
628 tos = RT_TOS(inet->tos);
629 if (sock_flag(sk, SOCK_LOCALROUTE) ||
630 (msg->msg_flags & MSG_DONTROUTE) ||
631 (ipc.opt && ipc.opt->is_strictroute)) {
632 tos |= RTO_ONLINK;
633 connected = 0;
634 }
635
636 if (ipv4_is_multicast(daddr)) {
637 if (!ipc.oif)
638 ipc.oif = inet->mc_index;
639 if (!saddr)
640 saddr = inet->mc_addr;
641 connected = 0;
642 }
643
644 if (connected)
645 rt = (struct rtable*)sk_dst_check(sk, 0);
646
647 if (rt == NULL) {
648 struct flowi fl = { .oif = ipc.oif,
649 .nl_u = { .ip4_u =
650 { .daddr = faddr,
651 .saddr = saddr,
652 .tos = tos } },
653 .proto = sk->sk_protocol,
654 .uli_u = { .ports =
655 { .sport = inet->sport,
656 .dport = dport } } };
657 security_sk_classify_flow(sk, &fl);
3b1e0a65 658 err = ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 1);
db8dac20
DM
659 if (err) {
660 if (err == -ENETUNREACH)
661 IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
662 goto out;
663 }
664
665 err = -EACCES;
666 if ((rt->rt_flags & RTCF_BROADCAST) &&
667 !sock_flag(sk, SOCK_BROADCAST))
668 goto out;
669 if (connected)
670 sk_dst_set(sk, dst_clone(&rt->u.dst));
671 }
672
673 if (msg->msg_flags&MSG_CONFIRM)
674 goto do_confirm;
675back_from_confirm:
676
677 saddr = rt->rt_src;
678 if (!ipc.addr)
679 daddr = ipc.addr = rt->rt_dst;
680
681 lock_sock(sk);
682 if (unlikely(up->pending)) {
683 /* The socket is already corked while preparing it. */
684 /* ... which is an evident application bug. --ANK */
685 release_sock(sk);
686
687 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 2\n");
688 err = -EINVAL;
689 goto out;
690 }
691 /*
692 * Now cork the socket to pend data.
693 */
694 inet->cork.fl.fl4_dst = daddr;
695 inet->cork.fl.fl_ip_dport = dport;
696 inet->cork.fl.fl4_src = saddr;
697 inet->cork.fl.fl_ip_sport = inet->sport;
698 up->pending = AF_INET;
699
700do_append_data:
701 up->len += ulen;
702 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
703 err = ip_append_data(sk, getfrag, msg->msg_iov, ulen,
704 sizeof(struct udphdr), &ipc, rt,
705 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
706 if (err)
707 udp_flush_pending_frames(sk);
708 else if (!corkreq)
709 err = udp_push_pending_frames(sk);
710 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
711 up->pending = 0;
712 release_sock(sk);
713
714out:
715 ip_rt_put(rt);
716 if (free)
717 kfree(ipc.opt);
718 if (!err)
719 return len;
720 /*
721 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
722 * ENOBUFS might not be good (it's not tunable per se), but otherwise
723 * we don't have a good statistic (IpOutDiscards but it can be too many
724 * things). We could add another new stat but at least for now that
725 * seems like overkill.
726 */
727 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
728 UDP_INC_STATS_USER(UDP_MIB_SNDBUFERRORS, is_udplite);
729 }
730 return err;
731
732do_confirm:
733 dst_confirm(&rt->u.dst);
734 if (!(msg->msg_flags&MSG_PROBE) || len)
735 goto back_from_confirm;
736 err = 0;
737 goto out;
738}
739
740int udp_sendpage(struct sock *sk, struct page *page, int offset,
741 size_t size, int flags)
742{
743 struct udp_sock *up = udp_sk(sk);
744 int ret;
745
746 if (!up->pending) {
747 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
748
749 /* Call udp_sendmsg to specify destination address which
750 * sendpage interface can't pass.
751 * This will succeed only when the socket is connected.
752 */
753 ret = udp_sendmsg(NULL, sk, &msg, 0);
754 if (ret < 0)
755 return ret;
756 }
757
758 lock_sock(sk);
759
760 if (unlikely(!up->pending)) {
761 release_sock(sk);
762
763 LIMIT_NETDEBUG(KERN_DEBUG "udp cork app bug 3\n");
764 return -EINVAL;
765 }
766
767 ret = ip_append_page(sk, page, offset, size, flags);
768 if (ret == -EOPNOTSUPP) {
769 release_sock(sk);
770 return sock_no_sendpage(sk->sk_socket, page, offset,
771 size, flags);
772 }
773 if (ret < 0) {
774 udp_flush_pending_frames(sk);
775 goto out;
776 }
777
778 up->len += size;
779 if (!(up->corkflag || (flags&MSG_MORE)))
780 ret = udp_push_pending_frames(sk);
781 if (!ret)
782 ret = size;
783out:
784 release_sock(sk);
785 return ret;
786}
787
1da177e4
LT
788/*
789 * IOCTL requests applicable to the UDP protocol
790 */
e905a9ed 791
1da177e4
LT
792int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
793{
6516c655
SH
794 switch (cmd) {
795 case SIOCOUTQ:
1da177e4 796 {
6516c655
SH
797 int amount = atomic_read(&sk->sk_wmem_alloc);
798 return put_user(amount, (int __user *)arg);
799 }
1da177e4 800
6516c655
SH
801 case SIOCINQ:
802 {
803 struct sk_buff *skb;
804 unsigned long amount;
805
806 amount = 0;
807 spin_lock_bh(&sk->sk_receive_queue.lock);
808 skb = skb_peek(&sk->sk_receive_queue);
809 if (skb != NULL) {
810 /*
811 * We will only return the amount
812 * of this packet since that is all
813 * that will be read.
814 */
815 amount = skb->len - sizeof(struct udphdr);
1da177e4 816 }
6516c655
SH
817 spin_unlock_bh(&sk->sk_receive_queue.lock);
818 return put_user(amount, (int __user *)arg);
819 }
1da177e4 820
6516c655
SH
821 default:
822 return -ENOIOCTLCMD;
1da177e4 823 }
6516c655
SH
824
825 return 0;
1da177e4
LT
826}
827
db8dac20
DM
828/*
829 * This should be easy, if there is something there we
830 * return it, otherwise we block.
831 */
832
833int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
834 size_t len, int noblock, int flags, int *addr_len)
835{
836 struct inet_sock *inet = inet_sk(sk);
837 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
838 struct sk_buff *skb;
839 unsigned int ulen, copied;
840 int peeked;
841 int err;
842 int is_udplite = IS_UDPLITE(sk);
843
844 /*
845 * Check any passed addresses
846 */
847 if (addr_len)
848 *addr_len=sizeof(*sin);
849
850 if (flags & MSG_ERRQUEUE)
851 return ip_recv_error(sk, msg, len);
852
853try_again:
854 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
855 &peeked, &err);
856 if (!skb)
857 goto out;
858
859 ulen = skb->len - sizeof(struct udphdr);
860 copied = len;
861 if (copied > ulen)
862 copied = ulen;
863 else if (copied < ulen)
864 msg->msg_flags |= MSG_TRUNC;
865
866 /*
867 * If checksum is needed at all, try to do it while copying the
868 * data. If the data is truncated, or if we only want a partial
869 * coverage checksum (UDP-Lite), do it before the copy.
870 */
871
872 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
873 if (udp_lib_checksum_complete(skb))
874 goto csum_copy_err;
875 }
876
877 if (skb_csum_unnecessary(skb))
878 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
879 msg->msg_iov, copied );
880 else {
881 err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
882
883 if (err == -EINVAL)
884 goto csum_copy_err;
885 }
886
887 if (err)
888 goto out_free;
889
890 if (!peeked)
891 UDP_INC_STATS_USER(UDP_MIB_INDATAGRAMS, is_udplite);
892
893 sock_recv_timestamp(msg, sk, skb);
894
895 /* Copy the address. */
896 if (sin)
897 {
898 sin->sin_family = AF_INET;
899 sin->sin_port = udp_hdr(skb)->source;
900 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
901 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
902 }
903 if (inet->cmsg_flags)
904 ip_cmsg_recv(msg, skb);
905
906 err = copied;
907 if (flags & MSG_TRUNC)
908 err = ulen;
909
910out_free:
911 lock_sock(sk);
912 skb_free_datagram(sk, skb);
913 release_sock(sk);
914out:
915 return err;
916
917csum_copy_err:
918 lock_sock(sk);
919 if (!skb_kill_datagram(sk, skb, flags))
920 UDP_INC_STATS_USER(UDP_MIB_INERRORS, is_udplite);
921 release_sock(sk);
922
923 if (noblock)
924 return -EAGAIN;
925 goto try_again;
926}
927
928
1da177e4
LT
929int udp_disconnect(struct sock *sk, int flags)
930{
931 struct inet_sock *inet = inet_sk(sk);
932 /*
933 * 1003.1g - break association.
934 */
e905a9ed 935
1da177e4
LT
936 sk->sk_state = TCP_CLOSE;
937 inet->daddr = 0;
938 inet->dport = 0;
939 sk->sk_bound_dev_if = 0;
940 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
941 inet_reset_saddr(sk);
942
943 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
944 sk->sk_prot->unhash(sk);
945 inet->sport = 0;
946 }
947 sk_dst_reset(sk);
948 return 0;
949}
950
db8dac20
DM
951/* returns:
952 * -1: error
953 * 0: success
954 * >0: "udp encap" protocol resubmission
955 *
956 * Note that in the success and error cases, the skb is assumed to
957 * have either been requeued or freed.
958 */
959int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
960{
961 struct udp_sock *up = udp_sk(sk);
962 int rc;
963 int is_udplite = IS_UDPLITE(sk);
964
965 /*
966 * Charge it to the socket, dropping if the queue is full.
967 */
968 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
969 goto drop;
970 nf_reset(skb);
971
972 if (up->encap_type) {
973 /*
974 * This is an encapsulation socket so pass the skb to
975 * the socket's udp_encap_rcv() hook. Otherwise, just
976 * fall through and pass this up the UDP socket.
977 * up->encap_rcv() returns the following value:
978 * =0 if skb was successfully passed to the encap
979 * handler or was discarded by it.
980 * >0 if skb should be passed on to UDP.
981 * <0 if skb should be resubmitted as proto -N
982 */
983
984 /* if we're overly short, let UDP handle it */
985 if (skb->len > sizeof(struct udphdr) &&
986 up->encap_rcv != NULL) {
987 int ret;
988
989 ret = (*up->encap_rcv)(sk, skb);
990 if (ret <= 0) {
991 UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS,
992 is_udplite);
993 return -ret;
994 }
995 }
996
997 /* FALLTHROUGH -- it's a UDP Packet */
998 }
999
1000 /*
1001 * UDP-Lite specific tests, ignored on UDP sockets
1002 */
1003 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1004
1005 /*
1006 * MIB statistics other than incrementing the error count are
1007 * disabled for the following two types of errors: these depend
1008 * on the application settings, not on the functioning of the
1009 * protocol stack as such.
1010 *
1011 * RFC 3828 here recommends (sec 3.3): "There should also be a
1012 * way ... to ... at least let the receiving application block
1013 * delivery of packets with coverage values less than a value
1014 * provided by the application."
1015 */
1016 if (up->pcrlen == 0) { /* full coverage was set */
1017 LIMIT_NETDEBUG(KERN_WARNING "UDPLITE: partial coverage "
1018 "%d while full coverage %d requested\n",
1019 UDP_SKB_CB(skb)->cscov, skb->len);
1020 goto drop;
1021 }
1022 /* The next case involves violating the min. coverage requested
1023 * by the receiver. This is subtle: if receiver wants x and x is
1024 * greater than the buffersize/MTU then receiver will complain
1025 * that it wants x while sender emits packets of smaller size y.
1026 * Therefore the above ...()->partial_cov statement is essential.
1027 */
1028 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1029 LIMIT_NETDEBUG(KERN_WARNING
1030 "UDPLITE: coverage %d too small, need min %d\n",
1031 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1032 goto drop;
1033 }
1034 }
1035
1036 if (sk->sk_filter) {
1037 if (udp_lib_checksum_complete(skb))
1038 goto drop;
1039 }
1040
1041 if ((rc = sock_queue_rcv_skb(sk,skb)) < 0) {
1042 /* Note that an ENOMEM error is charged twice */
1043 if (rc == -ENOMEM)
1044 UDP_INC_STATS_BH(UDP_MIB_RCVBUFERRORS, is_udplite);
1045 goto drop;
1046 }
1047
1048 return 0;
1049
1050drop:
1051 UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_udplite);
1052 kfree_skb(skb);
1053 return -1;
1054}
1055
1056/*
1057 * Multicasts and broadcasts go to each listener.
1058 *
1059 * Note: called only from the BH handler context,
1060 * so we don't need to lock the hashes.
1061 */
e3163493 1062static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
db8dac20
DM
1063 struct udphdr *uh,
1064 __be32 saddr, __be32 daddr,
1065 struct hlist_head udptable[])
1066{
1067 struct sock *sk;
1068 int dif;
1069
1070 read_lock(&udp_hash_lock);
19c7578f 1071 sk = sk_head(&udptable[udp_hashfn(net, ntohs(uh->dest))]);
db8dac20
DM
1072 dif = skb->dev->ifindex;
1073 sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
1074 if (sk) {
1075 struct sock *sknext = NULL;
1076
1077 do {
1078 struct sk_buff *skb1 = skb;
1079
1080 sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
1081 uh->source, saddr, dif);
1082 if (sknext)
1083 skb1 = skb_clone(skb, GFP_ATOMIC);
1084
1085 if (skb1) {
1086 int ret = 0;
1087
1088 bh_lock_sock_nested(sk);
1089 if (!sock_owned_by_user(sk))
1090 ret = udp_queue_rcv_skb(sk, skb1);
1091 else
1092 sk_add_backlog(sk, skb1);
1093 bh_unlock_sock(sk);
1094
1095 if (ret > 0)
1096 /* we should probably re-process instead
1097 * of dropping packets here. */
1098 kfree_skb(skb1);
1099 }
1100 sk = sknext;
1101 } while (sknext);
1102 } else
1103 kfree_skb(skb);
1104 read_unlock(&udp_hash_lock);
1105 return 0;
1106}
1107
1108/* Initialize UDP checksum. If exited with zero value (success),
1109 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1110 * Otherwise, csum completion requires chacksumming packet body,
1111 * including udp header and folding it to skb->csum.
1112 */
1113static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1114 int proto)
1115{
1116 const struct iphdr *iph;
1117 int err;
1118
1119 UDP_SKB_CB(skb)->partial_cov = 0;
1120 UDP_SKB_CB(skb)->cscov = skb->len;
1121
1122 if (proto == IPPROTO_UDPLITE) {
1123 err = udplite_checksum_init(skb, uh);
1124 if (err)
1125 return err;
1126 }
1127
1128 iph = ip_hdr(skb);
1129 if (uh->check == 0) {
1130 skb->ip_summed = CHECKSUM_UNNECESSARY;
1131 } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1132 if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1133 proto, skb->csum))
1134 skb->ip_summed = CHECKSUM_UNNECESSARY;
1135 }
1136 if (!skb_csum_unnecessary(skb))
1137 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1138 skb->len, proto, 0);
1139 /* Probably, we should checksum udp header (it should be in cache
1140 * in any case) and data in tiny packets (< rx copybreak).
1141 */
1142
1143 return 0;
1144}
1145
1146/*
1147 * All we need to do is get the socket, and then do a checksum.
1148 */
1149
1150int __udp4_lib_rcv(struct sk_buff *skb, struct hlist_head udptable[],
1151 int proto)
1152{
1153 struct sock *sk;
1154 struct udphdr *uh = udp_hdr(skb);
1155 unsigned short ulen;
1156 struct rtable *rt = (struct rtable*)skb->dst;
1157 __be32 saddr = ip_hdr(skb)->saddr;
1158 __be32 daddr = ip_hdr(skb)->daddr;
e3163493 1159 struct net *net;
db8dac20
DM
1160
1161 /*
1162 * Validate the packet.
1163 */
1164 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1165 goto drop; /* No space for header. */
1166
1167 ulen = ntohs(uh->len);
1168 if (ulen > skb->len)
1169 goto short_packet;
1170
1171 if (proto == IPPROTO_UDP) {
1172 /* UDP validates ulen. */
1173 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1174 goto short_packet;
1175 uh = udp_hdr(skb);
1176 }
1177
1178 if (udp4_csum_init(skb, uh, proto))
1179 goto csum_error;
1180
e3163493 1181 net = dev_net(skb->dev);
db8dac20 1182 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
e3163493
PE
1183 return __udp4_lib_mcast_deliver(net, skb, uh,
1184 saddr, daddr, udptable);
db8dac20 1185
e3163493 1186 sk = __udp4_lib_lookup(net, saddr, uh->source, daddr,
db8dac20
DM
1187 uh->dest, inet_iif(skb), udptable);
1188
1189 if (sk != NULL) {
1190 int ret = 0;
1191 bh_lock_sock_nested(sk);
1192 if (!sock_owned_by_user(sk))
1193 ret = udp_queue_rcv_skb(sk, skb);
1194 else
1195 sk_add_backlog(sk, skb);
1196 bh_unlock_sock(sk);
1197 sock_put(sk);
1198
1199 /* a return value > 0 means to resubmit the input, but
1200 * it wants the return to be -protocol, or 0
1201 */
1202 if (ret > 0)
1203 return -ret;
1204 return 0;
1205 }
1206
1207 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1208 goto drop;
1209 nf_reset(skb);
1210
1211 /* No socket. Drop packet silently, if checksum is wrong */
1212 if (udp_lib_checksum_complete(skb))
1213 goto csum_error;
1214
1215 UDP_INC_STATS_BH(UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1216 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1217
1218 /*
1219 * Hmm. We got an UDP packet to a port to which we
1220 * don't wanna listen. Ignore it.
1221 */
1222 kfree_skb(skb);
1223 return 0;
1224
1225short_packet:
a7d632b6 1226 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From " NIPQUAD_FMT ":%u %d/%d to " NIPQUAD_FMT ":%u\n",
db8dac20
DM
1227 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1228 NIPQUAD(saddr),
1229 ntohs(uh->source),
1230 ulen,
1231 skb->len,
1232 NIPQUAD(daddr),
1233 ntohs(uh->dest));
1234 goto drop;
1235
1236csum_error:
1237 /*
1238 * RFC1122: OK. Discards the bad packet silently (as far as
1239 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1240 */
a7d632b6 1241 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From " NIPQUAD_FMT ":%u to " NIPQUAD_FMT ":%u ulen %d\n",
db8dac20
DM
1242 proto == IPPROTO_UDPLITE ? "-Lite" : "",
1243 NIPQUAD(saddr),
1244 ntohs(uh->source),
1245 NIPQUAD(daddr),
1246 ntohs(uh->dest),
1247 ulen);
1248drop:
1249 UDP_INC_STATS_BH(UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1250 kfree_skb(skb);
1251 return 0;
1252}
1253
1254int udp_rcv(struct sk_buff *skb)
1255{
1256 return __udp4_lib_rcv(skb, udp_hash, IPPROTO_UDP);
1257}
1258
7d06b2e0 1259void udp_destroy_sock(struct sock *sk)
db8dac20
DM
1260{
1261 lock_sock(sk);
1262 udp_flush_pending_frames(sk);
1263 release_sock(sk);
db8dac20
DM
1264}
1265
1da177e4
LT
1266/*
1267 * Socket option code for UDP
1268 */
4c0a6cb0
GR
1269int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1270 char __user *optval, int optlen,
1271 int (*push_pending_frames)(struct sock *))
1da177e4
LT
1272{
1273 struct udp_sock *up = udp_sk(sk);
1274 int val;
1275 int err = 0;
b2bf1e26 1276 int is_udplite = IS_UDPLITE(sk);
1da177e4 1277
6516c655 1278 if (optlen<sizeof(int))
1da177e4
LT
1279 return -EINVAL;
1280
1281 if (get_user(val, (int __user *)optval))
1282 return -EFAULT;
1283
6516c655 1284 switch (optname) {
1da177e4
LT
1285 case UDP_CORK:
1286 if (val != 0) {
1287 up->corkflag = 1;
1288 } else {
1289 up->corkflag = 0;
1290 lock_sock(sk);
4c0a6cb0 1291 (*push_pending_frames)(sk);
1da177e4
LT
1292 release_sock(sk);
1293 }
1294 break;
e905a9ed 1295
1da177e4
LT
1296 case UDP_ENCAP:
1297 switch (val) {
1298 case 0:
1299 case UDP_ENCAP_ESPINUDP:
1300 case UDP_ENCAP_ESPINUDP_NON_IKE:
067b207b
JC
1301 up->encap_rcv = xfrm4_udp_encap_rcv;
1302 /* FALLTHROUGH */
342f0234 1303 case UDP_ENCAP_L2TPINUDP:
1da177e4
LT
1304 up->encap_type = val;
1305 break;
1306 default:
1307 err = -ENOPROTOOPT;
1308 break;
1309 }
1310 break;
1311
ba4e58ec
GR
1312 /*
1313 * UDP-Lite's partial checksum coverage (RFC 3828).
1314 */
1315 /* The sender sets actual checksum coverage length via this option.
1316 * The case coverage > packet length is handled by send module. */
1317 case UDPLITE_SEND_CSCOV:
b2bf1e26 1318 if (!is_udplite) /* Disable the option on UDP sockets */
ba4e58ec
GR
1319 return -ENOPROTOOPT;
1320 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1321 val = 8;
1322 up->pcslen = val;
1323 up->pcflag |= UDPLITE_SEND_CC;
1324 break;
1325
e905a9ed
YH
1326 /* The receiver specifies a minimum checksum coverage value. To make
1327 * sense, this should be set to at least 8 (as done below). If zero is
ba4e58ec
GR
1328 * used, this again means full checksum coverage. */
1329 case UDPLITE_RECV_CSCOV:
b2bf1e26 1330 if (!is_udplite) /* Disable the option on UDP sockets */
ba4e58ec
GR
1331 return -ENOPROTOOPT;
1332 if (val != 0 && val < 8) /* Avoid silly minimal values. */
1333 val = 8;
1334 up->pcrlen = val;
1335 up->pcflag |= UDPLITE_RECV_CC;
1336 break;
1337
1da177e4
LT
1338 default:
1339 err = -ENOPROTOOPT;
1340 break;
6516c655 1341 }
1da177e4
LT
1342
1343 return err;
1344}
1345
db8dac20
DM
1346int udp_setsockopt(struct sock *sk, int level, int optname,
1347 char __user *optval, int optlen)
1348{
1349 if (level == SOL_UDP || level == SOL_UDPLITE)
1350 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1351 udp_push_pending_frames);
1352 return ip_setsockopt(sk, level, optname, optval, optlen);
1353}
1354
1355#ifdef CONFIG_COMPAT
1356int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1357 char __user *optval, int optlen)
1358{
1359 if (level == SOL_UDP || level == SOL_UDPLITE)
1360 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1361 udp_push_pending_frames);
1362 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1363}
1364#endif
1365
4c0a6cb0
GR
1366int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1367 char __user *optval, int __user *optlen)
1da177e4
LT
1368{
1369 struct udp_sock *up = udp_sk(sk);
1370 int val, len;
1371
6516c655 1372 if (get_user(len,optlen))
1da177e4
LT
1373 return -EFAULT;
1374
1375 len = min_t(unsigned int, len, sizeof(int));
e905a9ed 1376
6516c655 1377 if (len < 0)
1da177e4
LT
1378 return -EINVAL;
1379
6516c655 1380 switch (optname) {
1da177e4
LT
1381 case UDP_CORK:
1382 val = up->corkflag;
1383 break;
1384
1385 case UDP_ENCAP:
1386 val = up->encap_type;
1387 break;
1388
ba4e58ec
GR
1389 /* The following two cannot be changed on UDP sockets, the return is
1390 * always 0 (which corresponds to the full checksum coverage of UDP). */
1391 case UDPLITE_SEND_CSCOV:
1392 val = up->pcslen;
1393 break;
1394
1395 case UDPLITE_RECV_CSCOV:
1396 val = up->pcrlen;
1397 break;
1398
1da177e4
LT
1399 default:
1400 return -ENOPROTOOPT;
6516c655 1401 }
1da177e4 1402
6516c655 1403 if (put_user(len, optlen))
e905a9ed 1404 return -EFAULT;
6516c655 1405 if (copy_to_user(optval, &val,len))
1da177e4 1406 return -EFAULT;
e905a9ed 1407 return 0;
1da177e4
LT
1408}
1409
db8dac20
DM
1410int udp_getsockopt(struct sock *sk, int level, int optname,
1411 char __user *optval, int __user *optlen)
1412{
1413 if (level == SOL_UDP || level == SOL_UDPLITE)
1414 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1415 return ip_getsockopt(sk, level, optname, optval, optlen);
1416}
1417
1418#ifdef CONFIG_COMPAT
1419int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1420 char __user *optval, int __user *optlen)
1421{
1422 if (level == SOL_UDP || level == SOL_UDPLITE)
1423 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1424 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1425}
1426#endif
1da177e4
LT
1427/**
1428 * udp_poll - wait for a UDP event.
1429 * @file - file struct
1430 * @sock - socket
1431 * @wait - poll table
1432 *
e905a9ed 1433 * This is same as datagram poll, except for the special case of
1da177e4
LT
1434 * blocking sockets. If application is using a blocking fd
1435 * and a packet with checksum error is in the queue;
1436 * then it could get return from select indicating data available
1437 * but then block when reading it. Add special case code
1438 * to work around these arguably broken applications.
1439 */
1440unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1441{
1442 unsigned int mask = datagram_poll(file, sock, wait);
1443 struct sock *sk = sock->sk;
ba4e58ec
GR
1444 int is_lite = IS_UDPLITE(sk);
1445
1da177e4
LT
1446 /* Check for false positives due to checksum errors */
1447 if ( (mask & POLLRDNORM) &&
1448 !(file->f_flags & O_NONBLOCK) &&
1449 !(sk->sk_shutdown & RCV_SHUTDOWN)){
1450 struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1451 struct sk_buff *skb;
1452
208d8984 1453 spin_lock_bh(&rcvq->lock);
759e5d00
HX
1454 while ((skb = skb_peek(rcvq)) != NULL &&
1455 udp_lib_checksum_complete(skb)) {
1456 UDP_INC_STATS_BH(UDP_MIB_INERRORS, is_lite);
1457 __skb_unlink(skb, rcvq);
1458 kfree_skb(skb);
1da177e4 1459 }
208d8984 1460 spin_unlock_bh(&rcvq->lock);
1da177e4
LT
1461
1462 /* nothing to see, move along */
1463 if (skb == NULL)
1464 mask &= ~(POLLIN | POLLRDNORM);
1465 }
1466
1467 return mask;
e905a9ed 1468
1da177e4
LT
1469}
1470
db8dac20
DM
1471struct proto udp_prot = {
1472 .name = "UDP",
1473 .owner = THIS_MODULE,
1474 .close = udp_lib_close,
1475 .connect = ip4_datagram_connect,
1476 .disconnect = udp_disconnect,
1477 .ioctl = udp_ioctl,
1478 .destroy = udp_destroy_sock,
1479 .setsockopt = udp_setsockopt,
1480 .getsockopt = udp_getsockopt,
1481 .sendmsg = udp_sendmsg,
1482 .recvmsg = udp_recvmsg,
1483 .sendpage = udp_sendpage,
1484 .backlog_rcv = udp_queue_rcv_skb,
1485 .hash = udp_lib_hash,
1486 .unhash = udp_lib_unhash,
1487 .get_port = udp_v4_get_port,
1488 .memory_allocated = &udp_memory_allocated,
1489 .sysctl_mem = sysctl_udp_mem,
1490 .sysctl_wmem = &sysctl_udp_wmem_min,
1491 .sysctl_rmem = &sysctl_udp_rmem_min,
1492 .obj_size = sizeof(struct udp_sock),
6ba5a3c5 1493 .h.udp_hash = udp_hash,
db8dac20
DM
1494#ifdef CONFIG_COMPAT
1495 .compat_setsockopt = compat_udp_setsockopt,
1496 .compat_getsockopt = compat_udp_getsockopt,
1497#endif
db8dac20 1498};
1da177e4
LT
1499
1500/* ------------------------------------------------------------------------ */
1501#ifdef CONFIG_PROC_FS
1502
1503static struct sock *udp_get_first(struct seq_file *seq)
1504{
1505 struct sock *sk;
1506 struct udp_iter_state *state = seq->private;
6f191efe 1507 struct net *net = seq_file_net(seq);
1da177e4
LT
1508
1509 for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1510 struct hlist_node *node;
ba4e58ec 1511 sk_for_each(sk, node, state->hashtable + state->bucket) {
878628fb 1512 if (!net_eq(sock_net(sk), net))
a91275ef 1513 continue;
1da177e4
LT
1514 if (sk->sk_family == state->family)
1515 goto found;
1516 }
1517 }
1518 sk = NULL;
1519found:
1520 return sk;
1521}
1522
1523static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1524{
1525 struct udp_iter_state *state = seq->private;
6f191efe 1526 struct net *net = seq_file_net(seq);
1da177e4
LT
1527
1528 do {
1529 sk = sk_next(sk);
1530try_again:
1531 ;
878628fb 1532 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
1da177e4
LT
1533
1534 if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
ba4e58ec 1535 sk = sk_head(state->hashtable + state->bucket);
1da177e4
LT
1536 goto try_again;
1537 }
1538 return sk;
1539}
1540
1541static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1542{
1543 struct sock *sk = udp_get_first(seq);
1544
1545 if (sk)
6516c655 1546 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
1da177e4
LT
1547 --pos;
1548 return pos ? NULL : sk;
1549}
1550
1551static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
9a429c49 1552 __acquires(udp_hash_lock)
1da177e4
LT
1553{
1554 read_lock(&udp_hash_lock);
b50660f1 1555 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
1da177e4
LT
1556}
1557
1558static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1559{
1560 struct sock *sk;
1561
b50660f1 1562 if (v == SEQ_START_TOKEN)
1da177e4
LT
1563 sk = udp_get_idx(seq, 0);
1564 else
1565 sk = udp_get_next(seq, v);
1566
1567 ++*pos;
1568 return sk;
1569}
1570
1571static void udp_seq_stop(struct seq_file *seq, void *v)
9a429c49 1572 __releases(udp_hash_lock)
1da177e4
LT
1573{
1574 read_unlock(&udp_hash_lock);
1575}
1576
1577static int udp_seq_open(struct inode *inode, struct file *file)
1578{
1579 struct udp_seq_afinfo *afinfo = PDE(inode)->data;
a2be75c1
DL
1580 struct udp_iter_state *s;
1581 int err;
a91275ef 1582
a2be75c1
DL
1583 err = seq_open_net(inode, file, &afinfo->seq_ops,
1584 sizeof(struct udp_iter_state));
1585 if (err < 0)
1586 return err;
a91275ef 1587
a2be75c1 1588 s = ((struct seq_file *)file->private_data)->private;
1da177e4 1589 s->family = afinfo->family;
ba4e58ec 1590 s->hashtable = afinfo->hashtable;
a2be75c1 1591 return err;
a91275ef
DL
1592}
1593
1da177e4 1594/* ------------------------------------------------------------------------ */
0c96d8c5 1595int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
1da177e4
LT
1596{
1597 struct proc_dir_entry *p;
1598 int rc = 0;
1599
3ba9441b
DL
1600 afinfo->seq_fops.open = udp_seq_open;
1601 afinfo->seq_fops.read = seq_read;
1602 afinfo->seq_fops.llseek = seq_lseek;
1603 afinfo->seq_fops.release = seq_release_net;
1da177e4 1604
dda61925
DL
1605 afinfo->seq_ops.start = udp_seq_start;
1606 afinfo->seq_ops.next = udp_seq_next;
1607 afinfo->seq_ops.stop = udp_seq_stop;
1608
84841c3c
DL
1609 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
1610 &afinfo->seq_fops, afinfo);
1611 if (!p)
1da177e4
LT
1612 rc = -ENOMEM;
1613 return rc;
1614}
1615
0c96d8c5 1616void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
1da177e4 1617{
0c96d8c5 1618 proc_net_remove(net, afinfo->name);
1da177e4 1619}
db8dac20
DM
1620
1621/* ------------------------------------------------------------------------ */
5e659e4c
PE
1622static void udp4_format_sock(struct sock *sp, struct seq_file *f,
1623 int bucket, int *len)
db8dac20
DM
1624{
1625 struct inet_sock *inet = inet_sk(sp);
1626 __be32 dest = inet->daddr;
1627 __be32 src = inet->rcv_saddr;
1628 __u16 destp = ntohs(inet->dport);
1629 __u16 srcp = ntohs(inet->sport);
1630
5e659e4c
PE
1631 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
1632 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p%n",
db8dac20
DM
1633 bucket, src, srcp, dest, destp, sp->sk_state,
1634 atomic_read(&sp->sk_wmem_alloc),
1635 atomic_read(&sp->sk_rmem_alloc),
1636 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
5e659e4c 1637 atomic_read(&sp->sk_refcnt), sp, len);
db8dac20
DM
1638}
1639
1640int udp4_seq_show(struct seq_file *seq, void *v)
1641{
1642 if (v == SEQ_START_TOKEN)
1643 seq_printf(seq, "%-127s\n",
1644 " sl local_address rem_address st tx_queue "
1645 "rx_queue tr tm->when retrnsmt uid timeout "
1646 "inode");
1647 else {
db8dac20 1648 struct udp_iter_state *state = seq->private;
5e659e4c 1649 int len;
db8dac20 1650
5e659e4c
PE
1651 udp4_format_sock(v, seq, state->bucket, &len);
1652 seq_printf(seq, "%*s\n", 127 - len ,"");
db8dac20
DM
1653 }
1654 return 0;
1655}
1656
1657/* ------------------------------------------------------------------------ */
db8dac20 1658static struct udp_seq_afinfo udp4_seq_afinfo = {
db8dac20
DM
1659 .name = "udp",
1660 .family = AF_INET,
1661 .hashtable = udp_hash,
4ad96d39
DL
1662 .seq_fops = {
1663 .owner = THIS_MODULE,
1664 },
dda61925
DL
1665 .seq_ops = {
1666 .show = udp4_seq_show,
1667 },
db8dac20
DM
1668};
1669
15439feb
PE
1670static int udp4_proc_init_net(struct net *net)
1671{
1672 return udp_proc_register(net, &udp4_seq_afinfo);
1673}
1674
1675static void udp4_proc_exit_net(struct net *net)
1676{
1677 udp_proc_unregister(net, &udp4_seq_afinfo);
1678}
1679
1680static struct pernet_operations udp4_net_ops = {
1681 .init = udp4_proc_init_net,
1682 .exit = udp4_proc_exit_net,
1683};
1684
db8dac20
DM
1685int __init udp4_proc_init(void)
1686{
15439feb 1687 return register_pernet_subsys(&udp4_net_ops);
db8dac20
DM
1688}
1689
1690void udp4_proc_exit(void)
1691{
15439feb 1692 unregister_pernet_subsys(&udp4_net_ops);
db8dac20 1693}
1da177e4
LT
1694#endif /* CONFIG_PROC_FS */
1695
95766fff
HA
1696void __init udp_init(void)
1697{
1698 unsigned long limit;
1699
1700 /* Set the pressure threshold up by the same strategy of TCP. It is a
1701 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
1702 * toward zero with the amount of memory, with a floor of 128 pages.
1703 */
1704 limit = min(nr_all_pages, 1UL<<(28-PAGE_SHIFT)) >> (20-PAGE_SHIFT);
1705 limit = (limit * (nr_all_pages >> (20-PAGE_SHIFT))) >> (PAGE_SHIFT-11);
1706 limit = max(limit, 128UL);
1707 sysctl_udp_mem[0] = limit / 4 * 3;
1708 sysctl_udp_mem[1] = limit;
1709 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
1710
1711 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
1712 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
1713}
1714
1da177e4
LT
1715EXPORT_SYMBOL(udp_disconnect);
1716EXPORT_SYMBOL(udp_hash);
1717EXPORT_SYMBOL(udp_hash_lock);
1718EXPORT_SYMBOL(udp_ioctl);
db8dac20
DM
1719EXPORT_SYMBOL(udp_prot);
1720EXPORT_SYMBOL(udp_sendmsg);
4c0a6cb0
GR
1721EXPORT_SYMBOL(udp_lib_getsockopt);
1722EXPORT_SYMBOL(udp_lib_setsockopt);
1da177e4 1723EXPORT_SYMBOL(udp_poll);
6ba5a3c5 1724EXPORT_SYMBOL(udp_lib_get_port);
1da177e4
LT
1725
1726#ifdef CONFIG_PROC_FS
1727EXPORT_SYMBOL(udp_proc_register);
1728EXPORT_SYMBOL(udp_proc_unregister);
1729#endif