]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/udp.c
Linux-2.6.12-rc2
[net-next-2.6.git] / net / ipv4 / udp.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Version: $Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro, <bir7@leland.Stanford.Edu>
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
13 * Alan Cox, <Alan.Cox@linux.org>
14 * Hirokazu Takahashi, <taka@valinux.co.jp>
15 *
16 * Fixes:
17 * Alan Cox : verify_area() calls
18 * Alan Cox : stopped close while in use off icmp
19 * messages. Not a fix but a botch that
20 * for udp at least is 'valid'.
21 * Alan Cox : Fixed icmp handling properly
22 * Alan Cox : Correct error for oversized datagrams
23 * Alan Cox : Tidied select() semantics.
24 * Alan Cox : udp_err() fixed properly, also now
25 * select and read wake correctly on errors
26 * Alan Cox : udp_send verify_area moved to avoid mem leak
27 * Alan Cox : UDP can count its memory
28 * Alan Cox : send to an unknown connection causes
29 * an ECONNREFUSED off the icmp, but
30 * does NOT close.
31 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
32 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
33 * bug no longer crashes it.
34 * Fred Van Kempen : Net2e support for sk->broadcast.
35 * Alan Cox : Uses skb_free_datagram
36 * Alan Cox : Added get/set sockopt support.
37 * Alan Cox : Broadcasting without option set returns EACCES.
38 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
39 * Alan Cox : Use ip_tos and ip_ttl
40 * Alan Cox : SNMP Mibs
41 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
42 * Matt Dillon : UDP length checks.
43 * Alan Cox : Smarter af_inet used properly.
44 * Alan Cox : Use new kernel side addressing.
45 * Alan Cox : Incorrect return on truncated datagram receive.
46 * Arnt Gulbrandsen : New udp_send and stuff
47 * Alan Cox : Cache last socket
48 * Alan Cox : Route cache
49 * Jon Peatfield : Minor efficiency fix to sendto().
50 * Mike Shaver : RFC1122 checks.
51 * Alan Cox : Nonblocking error fix.
52 * Willy Konynenberg : Transparent proxying support.
53 * Mike McLagan : Routing by source
54 * David S. Miller : New socket lookup architecture.
55 * Last socket cache retained as it
56 * does have a high hit rate.
57 * Olaf Kirch : Don't linearise iovec on sendmsg.
58 * Andi Kleen : Some cleanups, cache destination entry
59 * for connect.
60 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
61 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
62 * return ENOTCONN for unconnected sockets (POSIX)
63 * Janos Farkas : don't deliver multi/broadcasts to a different
64 * bound-to-device socket
65 * Hirokazu Takahashi : HW checksumming for outgoing UDP
66 * datagrams.
67 * Hirokazu Takahashi : sendfile() on UDP works now.
68 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
69 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
70 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
71 * a single port at the same time.
72 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
73 *
74 *
75 * This program is free software; you can redistribute it and/or
76 * modify it under the terms of the GNU General Public License
77 * as published by the Free Software Foundation; either version
78 * 2 of the License, or (at your option) any later version.
79 */
80
81#include <asm/system.h>
82#include <asm/uaccess.h>
83#include <asm/ioctls.h>
84#include <linux/types.h>
85#include <linux/fcntl.h>
86#include <linux/module.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/in.h>
90#include <linux/errno.h>
91#include <linux/timer.h>
92#include <linux/mm.h>
93#include <linux/config.h>
94#include <linux/inet.h>
95#include <linux/ipv6.h>
96#include <linux/netdevice.h>
97#include <net/snmp.h>
98#include <net/tcp.h>
99#include <net/protocol.h>
100#include <linux/skbuff.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <net/sock.h>
104#include <net/udp.h>
105#include <net/icmp.h>
106#include <net/route.h>
107#include <net/inet_common.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110
111/*
112 * Snmp MIB for the UDP layer
113 */
114
115DEFINE_SNMP_STAT(struct udp_mib, udp_statistics);
116
117struct hlist_head udp_hash[UDP_HTABLE_SIZE];
118DEFINE_RWLOCK(udp_hash_lock);
119
120/* Shared by v4/v6 udp. */
121int udp_port_rover;
122
123static int udp_v4_get_port(struct sock *sk, unsigned short snum)
124{
125 struct hlist_node *node;
126 struct sock *sk2;
127 struct inet_sock *inet = inet_sk(sk);
128
129 write_lock_bh(&udp_hash_lock);
130 if (snum == 0) {
131 int best_size_so_far, best, result, i;
132
133 if (udp_port_rover > sysctl_local_port_range[1] ||
134 udp_port_rover < sysctl_local_port_range[0])
135 udp_port_rover = sysctl_local_port_range[0];
136 best_size_so_far = 32767;
137 best = result = udp_port_rover;
138 for (i = 0; i < UDP_HTABLE_SIZE; i++, result++) {
139 struct hlist_head *list;
140 int size;
141
142 list = &udp_hash[result & (UDP_HTABLE_SIZE - 1)];
143 if (hlist_empty(list)) {
144 if (result > sysctl_local_port_range[1])
145 result = sysctl_local_port_range[0] +
146 ((result - sysctl_local_port_range[0]) &
147 (UDP_HTABLE_SIZE - 1));
148 goto gotit;
149 }
150 size = 0;
151 sk_for_each(sk2, node, list)
152 if (++size >= best_size_so_far)
153 goto next;
154 best_size_so_far = size;
155 best = result;
156 next:;
157 }
158 result = best;
159 for(i = 0; i < (1 << 16) / UDP_HTABLE_SIZE; i++, result += UDP_HTABLE_SIZE) {
160 if (result > sysctl_local_port_range[1])
161 result = sysctl_local_port_range[0]
162 + ((result - sysctl_local_port_range[0]) &
163 (UDP_HTABLE_SIZE - 1));
164 if (!udp_lport_inuse(result))
165 break;
166 }
167 if (i >= (1 << 16) / UDP_HTABLE_SIZE)
168 goto fail;
169gotit:
170 udp_port_rover = snum = result;
171 } else {
172 sk_for_each(sk2, node,
173 &udp_hash[snum & (UDP_HTABLE_SIZE - 1)]) {
174 struct inet_sock *inet2 = inet_sk(sk2);
175
176 if (inet2->num == snum &&
177 sk2 != sk &&
178 !ipv6_only_sock(sk2) &&
179 (!sk2->sk_bound_dev_if ||
180 !sk->sk_bound_dev_if ||
181 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
182 (!inet2->rcv_saddr ||
183 !inet->rcv_saddr ||
184 inet2->rcv_saddr == inet->rcv_saddr) &&
185 (!sk2->sk_reuse || !sk->sk_reuse))
186 goto fail;
187 }
188 }
189 inet->num = snum;
190 if (sk_unhashed(sk)) {
191 struct hlist_head *h = &udp_hash[snum & (UDP_HTABLE_SIZE - 1)];
192
193 sk_add_node(sk, h);
194 sock_prot_inc_use(sk->sk_prot);
195 }
196 write_unlock_bh(&udp_hash_lock);
197 return 0;
198
199fail:
200 write_unlock_bh(&udp_hash_lock);
201 return 1;
202}
203
204static void udp_v4_hash(struct sock *sk)
205{
206 BUG();
207}
208
209static void udp_v4_unhash(struct sock *sk)
210{
211 write_lock_bh(&udp_hash_lock);
212 if (sk_del_node_init(sk)) {
213 inet_sk(sk)->num = 0;
214 sock_prot_dec_use(sk->sk_prot);
215 }
216 write_unlock_bh(&udp_hash_lock);
217}
218
219/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
220 * harder than this. -DaveM
221 */
222static struct sock *udp_v4_lookup_longway(u32 saddr, u16 sport,
223 u32 daddr, u16 dport, int dif)
224{
225 struct sock *sk, *result = NULL;
226 struct hlist_node *node;
227 unsigned short hnum = ntohs(dport);
228 int badness = -1;
229
230 sk_for_each(sk, node, &udp_hash[hnum & (UDP_HTABLE_SIZE - 1)]) {
231 struct inet_sock *inet = inet_sk(sk);
232
233 if (inet->num == hnum && !ipv6_only_sock(sk)) {
234 int score = (sk->sk_family == PF_INET ? 1 : 0);
235 if (inet->rcv_saddr) {
236 if (inet->rcv_saddr != daddr)
237 continue;
238 score+=2;
239 }
240 if (inet->daddr) {
241 if (inet->daddr != saddr)
242 continue;
243 score+=2;
244 }
245 if (inet->dport) {
246 if (inet->dport != sport)
247 continue;
248 score+=2;
249 }
250 if (sk->sk_bound_dev_if) {
251 if (sk->sk_bound_dev_if != dif)
252 continue;
253 score+=2;
254 }
255 if(score == 9) {
256 result = sk;
257 break;
258 } else if(score > badness) {
259 result = sk;
260 badness = score;
261 }
262 }
263 }
264 return result;
265}
266
267static __inline__ struct sock *udp_v4_lookup(u32 saddr, u16 sport,
268 u32 daddr, u16 dport, int dif)
269{
270 struct sock *sk;
271
272 read_lock(&udp_hash_lock);
273 sk = udp_v4_lookup_longway(saddr, sport, daddr, dport, dif);
274 if (sk)
275 sock_hold(sk);
276 read_unlock(&udp_hash_lock);
277 return sk;
278}
279
280static inline struct sock *udp_v4_mcast_next(struct sock *sk,
281 u16 loc_port, u32 loc_addr,
282 u16 rmt_port, u32 rmt_addr,
283 int dif)
284{
285 struct hlist_node *node;
286 struct sock *s = sk;
287 unsigned short hnum = ntohs(loc_port);
288
289 sk_for_each_from(s, node) {
290 struct inet_sock *inet = inet_sk(s);
291
292 if (inet->num != hnum ||
293 (inet->daddr && inet->daddr != rmt_addr) ||
294 (inet->dport != rmt_port && inet->dport) ||
295 (inet->rcv_saddr && inet->rcv_saddr != loc_addr) ||
296 ipv6_only_sock(s) ||
297 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
298 continue;
299 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
300 continue;
301 goto found;
302 }
303 s = NULL;
304found:
305 return s;
306}
307
308/*
309 * This routine is called by the ICMP module when it gets some
310 * sort of error condition. If err < 0 then the socket should
311 * be closed and the error returned to the user. If err > 0
312 * it's just the icmp type << 8 | icmp code.
313 * Header points to the ip header of the error packet. We move
314 * on past this. Then (as it used to claim before adjustment)
315 * header points to the first 8 bytes of the udp header. We need
316 * to find the appropriate port.
317 */
318
319void udp_err(struct sk_buff *skb, u32 info)
320{
321 struct inet_sock *inet;
322 struct iphdr *iph = (struct iphdr*)skb->data;
323 struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2));
324 int type = skb->h.icmph->type;
325 int code = skb->h.icmph->code;
326 struct sock *sk;
327 int harderr;
328 int err;
329
330 sk = udp_v4_lookup(iph->daddr, uh->dest, iph->saddr, uh->source, skb->dev->ifindex);
331 if (sk == NULL) {
332 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
333 return; /* No socket for error */
334 }
335
336 err = 0;
337 harderr = 0;
338 inet = inet_sk(sk);
339
340 switch (type) {
341 default:
342 case ICMP_TIME_EXCEEDED:
343 err = EHOSTUNREACH;
344 break;
345 case ICMP_SOURCE_QUENCH:
346 goto out;
347 case ICMP_PARAMETERPROB:
348 err = EPROTO;
349 harderr = 1;
350 break;
351 case ICMP_DEST_UNREACH:
352 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
353 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
354 err = EMSGSIZE;
355 harderr = 1;
356 break;
357 }
358 goto out;
359 }
360 err = EHOSTUNREACH;
361 if (code <= NR_ICMP_UNREACH) {
362 harderr = icmp_err_convert[code].fatal;
363 err = icmp_err_convert[code].errno;
364 }
365 break;
366 }
367
368 /*
369 * RFC1122: OK. Passes ICMP errors back to application, as per
370 * 4.1.3.3.
371 */
372 if (!inet->recverr) {
373 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
374 goto out;
375 } else {
376 ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1));
377 }
378 sk->sk_err = err;
379 sk->sk_error_report(sk);
380out:
381 sock_put(sk);
382}
383
384/*
385 * Throw away all pending data and cancel the corking. Socket is locked.
386 */
387static void udp_flush_pending_frames(struct sock *sk)
388{
389 struct udp_sock *up = udp_sk(sk);
390
391 if (up->pending) {
392 up->len = 0;
393 up->pending = 0;
394 ip_flush_pending_frames(sk);
395 }
396}
397
398/*
399 * Push out all pending data as one UDP datagram. Socket is locked.
400 */
401static int udp_push_pending_frames(struct sock *sk, struct udp_sock *up)
402{
403 struct inet_sock *inet = inet_sk(sk);
404 struct flowi *fl = &inet->cork.fl;
405 struct sk_buff *skb;
406 struct udphdr *uh;
407 int err = 0;
408
409 /* Grab the skbuff where UDP header space exists. */
410 if ((skb = skb_peek(&sk->sk_write_queue)) == NULL)
411 goto out;
412
413 /*
414 * Create a UDP header
415 */
416 uh = skb->h.uh;
417 uh->source = fl->fl_ip_sport;
418 uh->dest = fl->fl_ip_dport;
419 uh->len = htons(up->len);
420 uh->check = 0;
421
422 if (sk->sk_no_check == UDP_CSUM_NOXMIT) {
423 skb->ip_summed = CHECKSUM_NONE;
424 goto send;
425 }
426
427 if (skb_queue_len(&sk->sk_write_queue) == 1) {
428 /*
429 * Only one fragment on the socket.
430 */
431 if (skb->ip_summed == CHECKSUM_HW) {
432 skb->csum = offsetof(struct udphdr, check);
433 uh->check = ~csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst,
434 up->len, IPPROTO_UDP, 0);
435 } else {
436 skb->csum = csum_partial((char *)uh,
437 sizeof(struct udphdr), skb->csum);
438 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst,
439 up->len, IPPROTO_UDP, skb->csum);
440 if (uh->check == 0)
441 uh->check = -1;
442 }
443 } else {
444 unsigned int csum = 0;
445 /*
446 * HW-checksum won't work as there are two or more
447 * fragments on the socket so that all csums of sk_buffs
448 * should be together.
449 */
450 if (skb->ip_summed == CHECKSUM_HW) {
451 int offset = (unsigned char *)uh - skb->data;
452 skb->csum = skb_checksum(skb, offset, skb->len - offset, 0);
453
454 skb->ip_summed = CHECKSUM_NONE;
455 } else {
456 skb->csum = csum_partial((char *)uh,
457 sizeof(struct udphdr), skb->csum);
458 }
459
460 skb_queue_walk(&sk->sk_write_queue, skb) {
461 csum = csum_add(csum, skb->csum);
462 }
463 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst,
464 up->len, IPPROTO_UDP, csum);
465 if (uh->check == 0)
466 uh->check = -1;
467 }
468send:
469 err = ip_push_pending_frames(sk);
470out:
471 up->len = 0;
472 up->pending = 0;
473 return err;
474}
475
476
477static unsigned short udp_check(struct udphdr *uh, int len, unsigned long saddr, unsigned long daddr, unsigned long base)
478{
479 return(csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, base));
480}
481
482int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
483 size_t len)
484{
485 struct inet_sock *inet = inet_sk(sk);
486 struct udp_sock *up = udp_sk(sk);
487 int ulen = len;
488 struct ipcm_cookie ipc;
489 struct rtable *rt = NULL;
490 int free = 0;
491 int connected = 0;
492 u32 daddr, faddr, saddr;
493 u16 dport;
494 u8 tos;
495 int err;
496 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
497
498 if (len > 0xFFFF)
499 return -EMSGSIZE;
500
501 /*
502 * Check the flags.
503 */
504
505 if (msg->msg_flags&MSG_OOB) /* Mirror BSD error message compatibility */
506 return -EOPNOTSUPP;
507
508 ipc.opt = NULL;
509
510 if (up->pending) {
511 /*
512 * There are pending frames.
513 * The socket lock must be held while it's corked.
514 */
515 lock_sock(sk);
516 if (likely(up->pending)) {
517 if (unlikely(up->pending != AF_INET)) {
518 release_sock(sk);
519 return -EINVAL;
520 }
521 goto do_append_data;
522 }
523 release_sock(sk);
524 }
525 ulen += sizeof(struct udphdr);
526
527 /*
528 * Get and verify the address.
529 */
530 if (msg->msg_name) {
531 struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name;
532 if (msg->msg_namelen < sizeof(*usin))
533 return -EINVAL;
534 if (usin->sin_family != AF_INET) {
535 if (usin->sin_family != AF_UNSPEC)
536 return -EAFNOSUPPORT;
537 }
538
539 daddr = usin->sin_addr.s_addr;
540 dport = usin->sin_port;
541 if (dport == 0)
542 return -EINVAL;
543 } else {
544 if (sk->sk_state != TCP_ESTABLISHED)
545 return -EDESTADDRREQ;
546 daddr = inet->daddr;
547 dport = inet->dport;
548 /* Open fast path for connected socket.
549 Route will not be used, if at least one option is set.
550 */
551 connected = 1;
552 }
553 ipc.addr = inet->saddr;
554
555 ipc.oif = sk->sk_bound_dev_if;
556 if (msg->msg_controllen) {
557 err = ip_cmsg_send(msg, &ipc);
558 if (err)
559 return err;
560 if (ipc.opt)
561 free = 1;
562 connected = 0;
563 }
564 if (!ipc.opt)
565 ipc.opt = inet->opt;
566
567 saddr = ipc.addr;
568 ipc.addr = faddr = daddr;
569
570 if (ipc.opt && ipc.opt->srr) {
571 if (!daddr)
572 return -EINVAL;
573 faddr = ipc.opt->faddr;
574 connected = 0;
575 }
576 tos = RT_TOS(inet->tos);
577 if (sock_flag(sk, SOCK_LOCALROUTE) ||
578 (msg->msg_flags & MSG_DONTROUTE) ||
579 (ipc.opt && ipc.opt->is_strictroute)) {
580 tos |= RTO_ONLINK;
581 connected = 0;
582 }
583
584 if (MULTICAST(daddr)) {
585 if (!ipc.oif)
586 ipc.oif = inet->mc_index;
587 if (!saddr)
588 saddr = inet->mc_addr;
589 connected = 0;
590 }
591
592 if (connected)
593 rt = (struct rtable*)sk_dst_check(sk, 0);
594
595 if (rt == NULL) {
596 struct flowi fl = { .oif = ipc.oif,
597 .nl_u = { .ip4_u =
598 { .daddr = faddr,
599 .saddr = saddr,
600 .tos = tos } },
601 .proto = IPPROTO_UDP,
602 .uli_u = { .ports =
603 { .sport = inet->sport,
604 .dport = dport } } };
605 err = ip_route_output_flow(&rt, &fl, sk, !(msg->msg_flags&MSG_DONTWAIT));
606 if (err)
607 goto out;
608
609 err = -EACCES;
610 if ((rt->rt_flags & RTCF_BROADCAST) &&
611 !sock_flag(sk, SOCK_BROADCAST))
612 goto out;
613 if (connected)
614 sk_dst_set(sk, dst_clone(&rt->u.dst));
615 }
616
617 if (msg->msg_flags&MSG_CONFIRM)
618 goto do_confirm;
619back_from_confirm:
620
621 saddr = rt->rt_src;
622 if (!ipc.addr)
623 daddr = ipc.addr = rt->rt_dst;
624
625 lock_sock(sk);
626 if (unlikely(up->pending)) {
627 /* The socket is already corked while preparing it. */
628 /* ... which is an evident application bug. --ANK */
629 release_sock(sk);
630
631 NETDEBUG(if (net_ratelimit()) printk(KERN_DEBUG "udp cork app bug 2\n"));
632 err = -EINVAL;
633 goto out;
634 }
635 /*
636 * Now cork the socket to pend data.
637 */
638 inet->cork.fl.fl4_dst = daddr;
639 inet->cork.fl.fl_ip_dport = dport;
640 inet->cork.fl.fl4_src = saddr;
641 inet->cork.fl.fl_ip_sport = inet->sport;
642 up->pending = AF_INET;
643
644do_append_data:
645 up->len += ulen;
646 err = ip_append_data(sk, ip_generic_getfrag, msg->msg_iov, ulen,
647 sizeof(struct udphdr), &ipc, rt,
648 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
649 if (err)
650 udp_flush_pending_frames(sk);
651 else if (!corkreq)
652 err = udp_push_pending_frames(sk, up);
653 release_sock(sk);
654
655out:
656 ip_rt_put(rt);
657 if (free)
658 kfree(ipc.opt);
659 if (!err) {
660 UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS);
661 return len;
662 }
663 return err;
664
665do_confirm:
666 dst_confirm(&rt->u.dst);
667 if (!(msg->msg_flags&MSG_PROBE) || len)
668 goto back_from_confirm;
669 err = 0;
670 goto out;
671}
672
673static int udp_sendpage(struct sock *sk, struct page *page, int offset,
674 size_t size, int flags)
675{
676 struct udp_sock *up = udp_sk(sk);
677 int ret;
678
679 if (!up->pending) {
680 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
681
682 /* Call udp_sendmsg to specify destination address which
683 * sendpage interface can't pass.
684 * This will succeed only when the socket is connected.
685 */
686 ret = udp_sendmsg(NULL, sk, &msg, 0);
687 if (ret < 0)
688 return ret;
689 }
690
691 lock_sock(sk);
692
693 if (unlikely(!up->pending)) {
694 release_sock(sk);
695
696 NETDEBUG(if (net_ratelimit()) printk(KERN_DEBUG "udp cork app bug 3\n"));
697 return -EINVAL;
698 }
699
700 ret = ip_append_page(sk, page, offset, size, flags);
701 if (ret == -EOPNOTSUPP) {
702 release_sock(sk);
703 return sock_no_sendpage(sk->sk_socket, page, offset,
704 size, flags);
705 }
706 if (ret < 0) {
707 udp_flush_pending_frames(sk);
708 goto out;
709 }
710
711 up->len += size;
712 if (!(up->corkflag || (flags&MSG_MORE)))
713 ret = udp_push_pending_frames(sk, up);
714 if (!ret)
715 ret = size;
716out:
717 release_sock(sk);
718 return ret;
719}
720
721/*
722 * IOCTL requests applicable to the UDP protocol
723 */
724
725int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
726{
727 switch(cmd)
728 {
729 case SIOCOUTQ:
730 {
731 int amount = atomic_read(&sk->sk_wmem_alloc);
732 return put_user(amount, (int __user *)arg);
733 }
734
735 case SIOCINQ:
736 {
737 struct sk_buff *skb;
738 unsigned long amount;
739
740 amount = 0;
741 spin_lock_irq(&sk->sk_receive_queue.lock);
742 skb = skb_peek(&sk->sk_receive_queue);
743 if (skb != NULL) {
744 /*
745 * We will only return the amount
746 * of this packet since that is all
747 * that will be read.
748 */
749 amount = skb->len - sizeof(struct udphdr);
750 }
751 spin_unlock_irq(&sk->sk_receive_queue.lock);
752 return put_user(amount, (int __user *)arg);
753 }
754
755 default:
756 return -ENOIOCTLCMD;
757 }
758 return(0);
759}
760
761static __inline__ int __udp_checksum_complete(struct sk_buff *skb)
762{
763 return (unsigned short)csum_fold(skb_checksum(skb, 0, skb->len, skb->csum));
764}
765
766static __inline__ int udp_checksum_complete(struct sk_buff *skb)
767{
768 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
769 __udp_checksum_complete(skb);
770}
771
772/*
773 * This should be easy, if there is something there we
774 * return it, otherwise we block.
775 */
776
777static int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
778 size_t len, int noblock, int flags, int *addr_len)
779{
780 struct inet_sock *inet = inet_sk(sk);
781 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
782 struct sk_buff *skb;
783 int copied, err;
784
785 /*
786 * Check any passed addresses
787 */
788 if (addr_len)
789 *addr_len=sizeof(*sin);
790
791 if (flags & MSG_ERRQUEUE)
792 return ip_recv_error(sk, msg, len);
793
794try_again:
795 skb = skb_recv_datagram(sk, flags, noblock, &err);
796 if (!skb)
797 goto out;
798
799 copied = skb->len - sizeof(struct udphdr);
800 if (copied > len) {
801 copied = len;
802 msg->msg_flags |= MSG_TRUNC;
803 }
804
805 if (skb->ip_summed==CHECKSUM_UNNECESSARY) {
806 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov,
807 copied);
808 } else if (msg->msg_flags&MSG_TRUNC) {
809 if (__udp_checksum_complete(skb))
810 goto csum_copy_err;
811 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov,
812 copied);
813 } else {
814 err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov);
815
816 if (err == -EINVAL)
817 goto csum_copy_err;
818 }
819
820 if (err)
821 goto out_free;
822
823 sock_recv_timestamp(msg, sk, skb);
824
825 /* Copy the address. */
826 if (sin)
827 {
828 sin->sin_family = AF_INET;
829 sin->sin_port = skb->h.uh->source;
830 sin->sin_addr.s_addr = skb->nh.iph->saddr;
831 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
832 }
833 if (inet->cmsg_flags)
834 ip_cmsg_recv(msg, skb);
835
836 err = copied;
837 if (flags & MSG_TRUNC)
838 err = skb->len - sizeof(struct udphdr);
839
840out_free:
841 skb_free_datagram(sk, skb);
842out:
843 return err;
844
845csum_copy_err:
846 UDP_INC_STATS_BH(UDP_MIB_INERRORS);
847
848 /* Clear queue. */
849 if (flags&MSG_PEEK) {
850 int clear = 0;
851 spin_lock_irq(&sk->sk_receive_queue.lock);
852 if (skb == skb_peek(&sk->sk_receive_queue)) {
853 __skb_unlink(skb, &sk->sk_receive_queue);
854 clear = 1;
855 }
856 spin_unlock_irq(&sk->sk_receive_queue.lock);
857 if (clear)
858 kfree_skb(skb);
859 }
860
861 skb_free_datagram(sk, skb);
862
863 if (noblock)
864 return -EAGAIN;
865 goto try_again;
866}
867
868
869int udp_disconnect(struct sock *sk, int flags)
870{
871 struct inet_sock *inet = inet_sk(sk);
872 /*
873 * 1003.1g - break association.
874 */
875
876 sk->sk_state = TCP_CLOSE;
877 inet->daddr = 0;
878 inet->dport = 0;
879 sk->sk_bound_dev_if = 0;
880 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
881 inet_reset_saddr(sk);
882
883 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
884 sk->sk_prot->unhash(sk);
885 inet->sport = 0;
886 }
887 sk_dst_reset(sk);
888 return 0;
889}
890
891static void udp_close(struct sock *sk, long timeout)
892{
893 sk_common_release(sk);
894}
895
896/* return:
897 * 1 if the the UDP system should process it
898 * 0 if we should drop this packet
899 * -1 if it should get processed by xfrm4_rcv_encap
900 */
901static int udp_encap_rcv(struct sock * sk, struct sk_buff *skb)
902{
903#ifndef CONFIG_XFRM
904 return 1;
905#else
906 struct udp_sock *up = udp_sk(sk);
907 struct udphdr *uh = skb->h.uh;
908 struct iphdr *iph;
909 int iphlen, len;
910
911 __u8 *udpdata = (__u8 *)uh + sizeof(struct udphdr);
912 __u32 *udpdata32 = (__u32 *)udpdata;
913 __u16 encap_type = up->encap_type;
914
915 /* if we're overly short, let UDP handle it */
916 if (udpdata > skb->tail)
917 return 1;
918
919 /* if this is not encapsulated socket, then just return now */
920 if (!encap_type)
921 return 1;
922
923 len = skb->tail - udpdata;
924
925 switch (encap_type) {
926 default:
927 case UDP_ENCAP_ESPINUDP:
928 /* Check if this is a keepalive packet. If so, eat it. */
929 if (len == 1 && udpdata[0] == 0xff) {
930 return 0;
931 } else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0 ) {
932 /* ESP Packet without Non-ESP header */
933 len = sizeof(struct udphdr);
934 } else
935 /* Must be an IKE packet.. pass it through */
936 return 1;
937 break;
938 case UDP_ENCAP_ESPINUDP_NON_IKE:
939 /* Check if this is a keepalive packet. If so, eat it. */
940 if (len == 1 && udpdata[0] == 0xff) {
941 return 0;
942 } else if (len > 2 * sizeof(u32) + sizeof(struct ip_esp_hdr) &&
943 udpdata32[0] == 0 && udpdata32[1] == 0) {
944
945 /* ESP Packet with Non-IKE marker */
946 len = sizeof(struct udphdr) + 2 * sizeof(u32);
947 } else
948 /* Must be an IKE packet.. pass it through */
949 return 1;
950 break;
951 }
952
953 /* At this point we are sure that this is an ESPinUDP packet,
954 * so we need to remove 'len' bytes from the packet (the UDP
955 * header and optional ESP marker bytes) and then modify the
956 * protocol to ESP, and then call into the transform receiver.
957 */
958
959 /* Now we can update and verify the packet length... */
960 iph = skb->nh.iph;
961 iphlen = iph->ihl << 2;
962 iph->tot_len = htons(ntohs(iph->tot_len) - len);
963 if (skb->len < iphlen + len) {
964 /* packet is too small!?! */
965 return 0;
966 }
967
968 /* pull the data buffer up to the ESP header and set the
969 * transport header to point to ESP. Keep UDP on the stack
970 * for later.
971 */
972 skb->h.raw = skb_pull(skb, len);
973
974 /* modify the protocol (it's ESP!) */
975 iph->protocol = IPPROTO_ESP;
976
977 /* and let the caller know to send this into the ESP processor... */
978 return -1;
979#endif
980}
981
982/* returns:
983 * -1: error
984 * 0: success
985 * >0: "udp encap" protocol resubmission
986 *
987 * Note that in the success and error cases, the skb is assumed to
988 * have either been requeued or freed.
989 */
990static int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb)
991{
992 struct udp_sock *up = udp_sk(sk);
993
994 /*
995 * Charge it to the socket, dropping if the queue is full.
996 */
997 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
998 kfree_skb(skb);
999 return -1;
1000 }
1001
1002 if (up->encap_type) {
1003 /*
1004 * This is an encapsulation socket, so let's see if this is
1005 * an encapsulated packet.
1006 * If it's a keepalive packet, then just eat it.
1007 * If it's an encapsulateed packet, then pass it to the
1008 * IPsec xfrm input and return the response
1009 * appropriately. Otherwise, just fall through and
1010 * pass this up the UDP socket.
1011 */
1012 int ret;
1013
1014 ret = udp_encap_rcv(sk, skb);
1015 if (ret == 0) {
1016 /* Eat the packet .. */
1017 kfree_skb(skb);
1018 return 0;
1019 }
1020 if (ret < 0) {
1021 /* process the ESP packet */
1022 ret = xfrm4_rcv_encap(skb, up->encap_type);
1023 UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS);
1024 return -ret;
1025 }
1026 /* FALLTHROUGH -- it's a UDP Packet */
1027 }
1028
1029 if (sk->sk_filter && skb->ip_summed != CHECKSUM_UNNECESSARY) {
1030 if (__udp_checksum_complete(skb)) {
1031 UDP_INC_STATS_BH(UDP_MIB_INERRORS);
1032 kfree_skb(skb);
1033 return -1;
1034 }
1035 skb->ip_summed = CHECKSUM_UNNECESSARY;
1036 }
1037
1038 if (sock_queue_rcv_skb(sk,skb)<0) {
1039 UDP_INC_STATS_BH(UDP_MIB_INERRORS);
1040 kfree_skb(skb);
1041 return -1;
1042 }
1043 UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS);
1044 return 0;
1045}
1046
1047/*
1048 * Multicasts and broadcasts go to each listener.
1049 *
1050 * Note: called only from the BH handler context,
1051 * so we don't need to lock the hashes.
1052 */
1053static int udp_v4_mcast_deliver(struct sk_buff *skb, struct udphdr *uh,
1054 u32 saddr, u32 daddr)
1055{
1056 struct sock *sk;
1057 int dif;
1058
1059 read_lock(&udp_hash_lock);
1060 sk = sk_head(&udp_hash[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]);
1061 dif = skb->dev->ifindex;
1062 sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif);
1063 if (sk) {
1064 struct sock *sknext = NULL;
1065
1066 do {
1067 struct sk_buff *skb1 = skb;
1068
1069 sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr,
1070 uh->source, saddr, dif);
1071 if(sknext)
1072 skb1 = skb_clone(skb, GFP_ATOMIC);
1073
1074 if(skb1) {
1075 int ret = udp_queue_rcv_skb(sk, skb1);
1076 if (ret > 0)
1077 /* we should probably re-process instead
1078 * of dropping packets here. */
1079 kfree_skb(skb1);
1080 }
1081 sk = sknext;
1082 } while(sknext);
1083 } else
1084 kfree_skb(skb);
1085 read_unlock(&udp_hash_lock);
1086 return 0;
1087}
1088
1089/* Initialize UDP checksum. If exited with zero value (success),
1090 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1091 * Otherwise, csum completion requires chacksumming packet body,
1092 * including udp header and folding it to skb->csum.
1093 */
1094static int udp_checksum_init(struct sk_buff *skb, struct udphdr *uh,
1095 unsigned short ulen, u32 saddr, u32 daddr)
1096{
1097 if (uh->check == 0) {
1098 skb->ip_summed = CHECKSUM_UNNECESSARY;
1099 } else if (skb->ip_summed == CHECKSUM_HW) {
1100 skb->ip_summed = CHECKSUM_UNNECESSARY;
1101 if (!udp_check(uh, ulen, saddr, daddr, skb->csum))
1102 return 0;
1103 NETDEBUG(if (net_ratelimit()) printk(KERN_DEBUG "udp v4 hw csum failure.\n"));
1104 skb->ip_summed = CHECKSUM_NONE;
1105 }
1106 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
1107 skb->csum = csum_tcpudp_nofold(saddr, daddr, ulen, IPPROTO_UDP, 0);
1108 /* Probably, we should checksum udp header (it should be in cache
1109 * in any case) and data in tiny packets (< rx copybreak).
1110 */
1111 return 0;
1112}
1113
1114/*
1115 * All we need to do is get the socket, and then do a checksum.
1116 */
1117
1118int udp_rcv(struct sk_buff *skb)
1119{
1120 struct sock *sk;
1121 struct udphdr *uh;
1122 unsigned short ulen;
1123 struct rtable *rt = (struct rtable*)skb->dst;
1124 u32 saddr = skb->nh.iph->saddr;
1125 u32 daddr = skb->nh.iph->daddr;
1126 int len = skb->len;
1127
1128 /*
1129 * Validate the packet and the UDP length.
1130 */
1131 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1132 goto no_header;
1133
1134 uh = skb->h.uh;
1135
1136 ulen = ntohs(uh->len);
1137
1138 if (ulen > len || ulen < sizeof(*uh))
1139 goto short_packet;
1140
1141 if (pskb_trim(skb, ulen))
1142 goto short_packet;
1143
1144 if (udp_checksum_init(skb, uh, ulen, saddr, daddr) < 0)
1145 goto csum_error;
1146
1147 if(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1148 return udp_v4_mcast_deliver(skb, uh, saddr, daddr);
1149
1150 sk = udp_v4_lookup(saddr, uh->source, daddr, uh->dest, skb->dev->ifindex);
1151
1152 if (sk != NULL) {
1153 int ret = udp_queue_rcv_skb(sk, skb);
1154 sock_put(sk);
1155
1156 /* a return value > 0 means to resubmit the input, but
1157 * it it wants the return to be -protocol, or 0
1158 */
1159 if (ret > 0)
1160 return -ret;
1161 return 0;
1162 }
1163
1164 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1165 goto drop;
1166
1167 /* No socket. Drop packet silently, if checksum is wrong */
1168 if (udp_checksum_complete(skb))
1169 goto csum_error;
1170
1171 UDP_INC_STATS_BH(UDP_MIB_NOPORTS);
1172 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1173
1174 /*
1175 * Hmm. We got an UDP packet to a port to which we
1176 * don't wanna listen. Ignore it.
1177 */
1178 kfree_skb(skb);
1179 return(0);
1180
1181short_packet:
1182 NETDEBUG(if (net_ratelimit())
1183 printk(KERN_DEBUG "UDP: short packet: From %u.%u.%u.%u:%u %d/%d to %u.%u.%u.%u:%u\n",
1184 NIPQUAD(saddr),
1185 ntohs(uh->source),
1186 ulen,
1187 len,
1188 NIPQUAD(daddr),
1189 ntohs(uh->dest)));
1190no_header:
1191 UDP_INC_STATS_BH(UDP_MIB_INERRORS);
1192 kfree_skb(skb);
1193 return(0);
1194
1195csum_error:
1196 /*
1197 * RFC1122: OK. Discards the bad packet silently (as far as
1198 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1199 */
1200 NETDEBUG(if (net_ratelimit())
1201 printk(KERN_DEBUG "UDP: bad checksum. From %d.%d.%d.%d:%d to %d.%d.%d.%d:%d ulen %d\n",
1202 NIPQUAD(saddr),
1203 ntohs(uh->source),
1204 NIPQUAD(daddr),
1205 ntohs(uh->dest),
1206 ulen));
1207drop:
1208 UDP_INC_STATS_BH(UDP_MIB_INERRORS);
1209 kfree_skb(skb);
1210 return(0);
1211}
1212
1213static int udp_destroy_sock(struct sock *sk)
1214{
1215 lock_sock(sk);
1216 udp_flush_pending_frames(sk);
1217 release_sock(sk);
1218 return 0;
1219}
1220
1221/*
1222 * Socket option code for UDP
1223 */
1224static int udp_setsockopt(struct sock *sk, int level, int optname,
1225 char __user *optval, int optlen)
1226{
1227 struct udp_sock *up = udp_sk(sk);
1228 int val;
1229 int err = 0;
1230
1231 if (level != SOL_UDP)
1232 return ip_setsockopt(sk, level, optname, optval, optlen);
1233
1234 if(optlen<sizeof(int))
1235 return -EINVAL;
1236
1237 if (get_user(val, (int __user *)optval))
1238 return -EFAULT;
1239
1240 switch(optname) {
1241 case UDP_CORK:
1242 if (val != 0) {
1243 up->corkflag = 1;
1244 } else {
1245 up->corkflag = 0;
1246 lock_sock(sk);
1247 udp_push_pending_frames(sk, up);
1248 release_sock(sk);
1249 }
1250 break;
1251
1252 case UDP_ENCAP:
1253 switch (val) {
1254 case 0:
1255 case UDP_ENCAP_ESPINUDP:
1256 case UDP_ENCAP_ESPINUDP_NON_IKE:
1257 up->encap_type = val;
1258 break;
1259 default:
1260 err = -ENOPROTOOPT;
1261 break;
1262 }
1263 break;
1264
1265 default:
1266 err = -ENOPROTOOPT;
1267 break;
1268 };
1269
1270 return err;
1271}
1272
1273static int udp_getsockopt(struct sock *sk, int level, int optname,
1274 char __user *optval, int __user *optlen)
1275{
1276 struct udp_sock *up = udp_sk(sk);
1277 int val, len;
1278
1279 if (level != SOL_UDP)
1280 return ip_getsockopt(sk, level, optname, optval, optlen);
1281
1282 if(get_user(len,optlen))
1283 return -EFAULT;
1284
1285 len = min_t(unsigned int, len, sizeof(int));
1286
1287 if(len < 0)
1288 return -EINVAL;
1289
1290 switch(optname) {
1291 case UDP_CORK:
1292 val = up->corkflag;
1293 break;
1294
1295 case UDP_ENCAP:
1296 val = up->encap_type;
1297 break;
1298
1299 default:
1300 return -ENOPROTOOPT;
1301 };
1302
1303 if(put_user(len, optlen))
1304 return -EFAULT;
1305 if(copy_to_user(optval, &val,len))
1306 return -EFAULT;
1307 return 0;
1308}
1309
1310/**
1311 * udp_poll - wait for a UDP event.
1312 * @file - file struct
1313 * @sock - socket
1314 * @wait - poll table
1315 *
1316 * This is same as datagram poll, except for the special case of
1317 * blocking sockets. If application is using a blocking fd
1318 * and a packet with checksum error is in the queue;
1319 * then it could get return from select indicating data available
1320 * but then block when reading it. Add special case code
1321 * to work around these arguably broken applications.
1322 */
1323unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1324{
1325 unsigned int mask = datagram_poll(file, sock, wait);
1326 struct sock *sk = sock->sk;
1327
1328 /* Check for false positives due to checksum errors */
1329 if ( (mask & POLLRDNORM) &&
1330 !(file->f_flags & O_NONBLOCK) &&
1331 !(sk->sk_shutdown & RCV_SHUTDOWN)){
1332 struct sk_buff_head *rcvq = &sk->sk_receive_queue;
1333 struct sk_buff *skb;
1334
1335 spin_lock_irq(&rcvq->lock);
1336 while ((skb = skb_peek(rcvq)) != NULL) {
1337 if (udp_checksum_complete(skb)) {
1338 UDP_INC_STATS_BH(UDP_MIB_INERRORS);
1339 __skb_unlink(skb, rcvq);
1340 kfree_skb(skb);
1341 } else {
1342 skb->ip_summed = CHECKSUM_UNNECESSARY;
1343 break;
1344 }
1345 }
1346 spin_unlock_irq(&rcvq->lock);
1347
1348 /* nothing to see, move along */
1349 if (skb == NULL)
1350 mask &= ~(POLLIN | POLLRDNORM);
1351 }
1352
1353 return mask;
1354
1355}
1356
1357struct proto udp_prot = {
1358 .name = "UDP",
1359 .owner = THIS_MODULE,
1360 .close = udp_close,
1361 .connect = ip4_datagram_connect,
1362 .disconnect = udp_disconnect,
1363 .ioctl = udp_ioctl,
1364 .destroy = udp_destroy_sock,
1365 .setsockopt = udp_setsockopt,
1366 .getsockopt = udp_getsockopt,
1367 .sendmsg = udp_sendmsg,
1368 .recvmsg = udp_recvmsg,
1369 .sendpage = udp_sendpage,
1370 .backlog_rcv = udp_queue_rcv_skb,
1371 .hash = udp_v4_hash,
1372 .unhash = udp_v4_unhash,
1373 .get_port = udp_v4_get_port,
1374 .obj_size = sizeof(struct udp_sock),
1375};
1376
1377/* ------------------------------------------------------------------------ */
1378#ifdef CONFIG_PROC_FS
1379
1380static struct sock *udp_get_first(struct seq_file *seq)
1381{
1382 struct sock *sk;
1383 struct udp_iter_state *state = seq->private;
1384
1385 for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) {
1386 struct hlist_node *node;
1387 sk_for_each(sk, node, &udp_hash[state->bucket]) {
1388 if (sk->sk_family == state->family)
1389 goto found;
1390 }
1391 }
1392 sk = NULL;
1393found:
1394 return sk;
1395}
1396
1397static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
1398{
1399 struct udp_iter_state *state = seq->private;
1400
1401 do {
1402 sk = sk_next(sk);
1403try_again:
1404 ;
1405 } while (sk && sk->sk_family != state->family);
1406
1407 if (!sk && ++state->bucket < UDP_HTABLE_SIZE) {
1408 sk = sk_head(&udp_hash[state->bucket]);
1409 goto try_again;
1410 }
1411 return sk;
1412}
1413
1414static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
1415{
1416 struct sock *sk = udp_get_first(seq);
1417
1418 if (sk)
1419 while(pos && (sk = udp_get_next(seq, sk)) != NULL)
1420 --pos;
1421 return pos ? NULL : sk;
1422}
1423
1424static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
1425{
1426 read_lock(&udp_hash_lock);
1427 return *pos ? udp_get_idx(seq, *pos-1) : (void *)1;
1428}
1429
1430static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1431{
1432 struct sock *sk;
1433
1434 if (v == (void *)1)
1435 sk = udp_get_idx(seq, 0);
1436 else
1437 sk = udp_get_next(seq, v);
1438
1439 ++*pos;
1440 return sk;
1441}
1442
1443static void udp_seq_stop(struct seq_file *seq, void *v)
1444{
1445 read_unlock(&udp_hash_lock);
1446}
1447
1448static int udp_seq_open(struct inode *inode, struct file *file)
1449{
1450 struct udp_seq_afinfo *afinfo = PDE(inode)->data;
1451 struct seq_file *seq;
1452 int rc = -ENOMEM;
1453 struct udp_iter_state *s = kmalloc(sizeof(*s), GFP_KERNEL);
1454
1455 if (!s)
1456 goto out;
1457 memset(s, 0, sizeof(*s));
1458 s->family = afinfo->family;
1459 s->seq_ops.start = udp_seq_start;
1460 s->seq_ops.next = udp_seq_next;
1461 s->seq_ops.show = afinfo->seq_show;
1462 s->seq_ops.stop = udp_seq_stop;
1463
1464 rc = seq_open(file, &s->seq_ops);
1465 if (rc)
1466 goto out_kfree;
1467
1468 seq = file->private_data;
1469 seq->private = s;
1470out:
1471 return rc;
1472out_kfree:
1473 kfree(s);
1474 goto out;
1475}
1476
1477/* ------------------------------------------------------------------------ */
1478int udp_proc_register(struct udp_seq_afinfo *afinfo)
1479{
1480 struct proc_dir_entry *p;
1481 int rc = 0;
1482
1483 if (!afinfo)
1484 return -EINVAL;
1485 afinfo->seq_fops->owner = afinfo->owner;
1486 afinfo->seq_fops->open = udp_seq_open;
1487 afinfo->seq_fops->read = seq_read;
1488 afinfo->seq_fops->llseek = seq_lseek;
1489 afinfo->seq_fops->release = seq_release_private;
1490
1491 p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
1492 if (p)
1493 p->data = afinfo;
1494 else
1495 rc = -ENOMEM;
1496 return rc;
1497}
1498
1499void udp_proc_unregister(struct udp_seq_afinfo *afinfo)
1500{
1501 if (!afinfo)
1502 return;
1503 proc_net_remove(afinfo->name);
1504 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
1505}
1506
1507/* ------------------------------------------------------------------------ */
1508static void udp4_format_sock(struct sock *sp, char *tmpbuf, int bucket)
1509{
1510 struct inet_sock *inet = inet_sk(sp);
1511 unsigned int dest = inet->daddr;
1512 unsigned int src = inet->rcv_saddr;
1513 __u16 destp = ntohs(inet->dport);
1514 __u16 srcp = ntohs(inet->sport);
1515
1516 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
1517 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p",
1518 bucket, src, srcp, dest, destp, sp->sk_state,
1519 atomic_read(&sp->sk_wmem_alloc),
1520 atomic_read(&sp->sk_rmem_alloc),
1521 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp),
1522 atomic_read(&sp->sk_refcnt), sp);
1523}
1524
1525static int udp4_seq_show(struct seq_file *seq, void *v)
1526{
1527 if (v == SEQ_START_TOKEN)
1528 seq_printf(seq, "%-127s\n",
1529 " sl local_address rem_address st tx_queue "
1530 "rx_queue tr tm->when retrnsmt uid timeout "
1531 "inode");
1532 else {
1533 char tmpbuf[129];
1534 struct udp_iter_state *state = seq->private;
1535
1536 udp4_format_sock(v, tmpbuf, state->bucket);
1537 seq_printf(seq, "%-127s\n", tmpbuf);
1538 }
1539 return 0;
1540}
1541
1542/* ------------------------------------------------------------------------ */
1543static struct file_operations udp4_seq_fops;
1544static struct udp_seq_afinfo udp4_seq_afinfo = {
1545 .owner = THIS_MODULE,
1546 .name = "udp",
1547 .family = AF_INET,
1548 .seq_show = udp4_seq_show,
1549 .seq_fops = &udp4_seq_fops,
1550};
1551
1552int __init udp4_proc_init(void)
1553{
1554 return udp_proc_register(&udp4_seq_afinfo);
1555}
1556
1557void udp4_proc_exit(void)
1558{
1559 udp_proc_unregister(&udp4_seq_afinfo);
1560}
1561#endif /* CONFIG_PROC_FS */
1562
1563EXPORT_SYMBOL(udp_disconnect);
1564EXPORT_SYMBOL(udp_hash);
1565EXPORT_SYMBOL(udp_hash_lock);
1566EXPORT_SYMBOL(udp_ioctl);
1567EXPORT_SYMBOL(udp_port_rover);
1568EXPORT_SYMBOL(udp_prot);
1569EXPORT_SYMBOL(udp_sendmsg);
1570EXPORT_SYMBOL(udp_poll);
1571
1572#ifdef CONFIG_PROC_FS
1573EXPORT_SYMBOL(udp_proc_register);
1574EXPORT_SYMBOL(udp_proc_unregister);
1575#endif