]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/arp.c
[NET]: Wrap hard_header_parse
[net-next-2.6.git] / net / ipv4 / arp.c
CommitLineData
f30c2269 1/* linux/net/ipv4/arp.c
1da177e4
LT
2 *
3 * Version: $Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
4 *
5 * Copyright (C) 1994 by Florian La Roche
6 *
7 * This module implements the Address Resolution Protocol ARP (RFC 826),
8 * which is used to convert IP addresses (or in the future maybe other
9 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * address).
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * Fixes:
e905a9ed 18 * Alan Cox : Removed the Ethernet assumptions in
1da177e4 19 * Florian's code
e905a9ed 20 * Alan Cox : Fixed some small errors in the ARP
1da177e4
LT
21 * logic
22 * Alan Cox : Allow >4K in /proc
23 * Alan Cox : Make ARP add its own protocol entry
24 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
25 * Stephen Henson : Add AX25 support to arp_get_info()
26 * Alan Cox : Drop data when a device is downed.
27 * Alan Cox : Use init_timer().
28 * Alan Cox : Double lock fixes.
29 * Martin Seine : Move the arphdr structure
30 * to if_arp.h for compatibility.
31 * with BSD based programs.
32 * Andrew Tridgell : Added ARP netmask code and
33 * re-arranged proxy handling.
34 * Alan Cox : Changed to use notifiers.
35 * Niibe Yutaka : Reply for this device or proxies only.
36 * Alan Cox : Don't proxy across hardware types!
37 * Jonathan Naylor : Added support for NET/ROM.
38 * Mike Shaver : RFC1122 checks.
39 * Jonathan Naylor : Only lookup the hardware address for
40 * the correct hardware type.
41 * Germano Caronni : Assorted subtle races.
e905a9ed 42 * Craig Schlenter : Don't modify permanent entry
1da177e4
LT
43 * during arp_rcv.
44 * Russ Nelson : Tidied up a few bits.
45 * Alexey Kuznetsov: Major changes to caching and behaviour,
e905a9ed 46 * eg intelligent arp probing and
1da177e4
LT
47 * generation
48 * of host down events.
49 * Alan Cox : Missing unlock in device events.
50 * Eckes : ARP ioctl control errors.
51 * Alexey Kuznetsov: Arp free fix.
52 * Manuel Rodriguez: Gratuitous ARP.
e905a9ed 53 * Jonathan Layes : Added arpd support through kerneld
1da177e4
LT
54 * message queue (960314)
55 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
56 * Mike McLagan : Routing by source
57 * Stuart Cheshire : Metricom and grat arp fixes
58 * *** FOR 2.1 clean this up ***
59 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
60 * Alan Cox : Took the AP1000 nasty FDDI hack and
61 * folded into the mainstream FDDI code.
62 * Ack spit, Linus how did you allow that
63 * one in...
64 * Jes Sorensen : Make FDDI work again in 2.1.x and
65 * clean up the APFDDI & gen. FDDI bits.
66 * Alexey Kuznetsov: new arp state machine;
67 * now it is in net/core/neighbour.c.
68 * Krzysztof Halasa: Added Frame Relay ARP support.
69 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
70 * Shmulik Hen: Split arp_send to arp_create and
71 * arp_xmit so intermediate drivers like
72 * bonding can change the skb before
73 * sending (e.g. insert 8021q tag).
74 * Harald Welte : convert to make use of jenkins hash
75 */
76
77#include <linux/module.h>
78#include <linux/types.h>
79#include <linux/string.h>
80#include <linux/kernel.h>
4fc268d2 81#include <linux/capability.h>
1da177e4
LT
82#include <linux/socket.h>
83#include <linux/sockios.h>
84#include <linux/errno.h>
85#include <linux/in.h>
86#include <linux/mm.h>
87#include <linux/inet.h>
14c85021 88#include <linux/inetdevice.h>
1da177e4
LT
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/fddidevice.h>
92#include <linux/if_arp.h>
93#include <linux/trdevice.h>
94#include <linux/skbuff.h>
95#include <linux/proc_fs.h>
96#include <linux/seq_file.h>
97#include <linux/stat.h>
98#include <linux/init.h>
99#include <linux/net.h>
100#include <linux/rcupdate.h>
101#include <linux/jhash.h>
102#ifdef CONFIG_SYSCTL
103#include <linux/sysctl.h>
104#endif
105
457c4cbc 106#include <net/net_namespace.h>
1da177e4
LT
107#include <net/ip.h>
108#include <net/icmp.h>
109#include <net/route.h>
110#include <net/protocol.h>
111#include <net/tcp.h>
112#include <net/sock.h>
113#include <net/arp.h>
114#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
115#include <net/ax25.h>
116#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
117#include <net/netrom.h>
118#endif
119#endif
120#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
121#include <net/atmclip.h>
122struct neigh_table *clip_tbl_hook;
123#endif
124
125#include <asm/system.h>
126#include <asm/uaccess.h>
127
128#include <linux/netfilter_arp.h>
129
130/*
131 * Interface to generic neighbour cache.
132 */
133static u32 arp_hash(const void *pkey, const struct net_device *dev);
134static int arp_constructor(struct neighbour *neigh);
135static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
136static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
137static void parp_redo(struct sk_buff *skb);
138
139static struct neigh_ops arp_generic_ops = {
140 .family = AF_INET,
141 .solicit = arp_solicit,
142 .error_report = arp_error_report,
143 .output = neigh_resolve_output,
144 .connected_output = neigh_connected_output,
145 .hh_output = dev_queue_xmit,
146 .queue_xmit = dev_queue_xmit,
147};
148
149static struct neigh_ops arp_hh_ops = {
150 .family = AF_INET,
151 .solicit = arp_solicit,
152 .error_report = arp_error_report,
153 .output = neigh_resolve_output,
154 .connected_output = neigh_resolve_output,
155 .hh_output = dev_queue_xmit,
156 .queue_xmit = dev_queue_xmit,
157};
158
159static struct neigh_ops arp_direct_ops = {
160 .family = AF_INET,
161 .output = dev_queue_xmit,
162 .connected_output = dev_queue_xmit,
163 .hh_output = dev_queue_xmit,
164 .queue_xmit = dev_queue_xmit,
165};
166
167struct neigh_ops arp_broken_ops = {
168 .family = AF_INET,
169 .solicit = arp_solicit,
170 .error_report = arp_error_report,
171 .output = neigh_compat_output,
172 .connected_output = neigh_compat_output,
173 .hh_output = dev_queue_xmit,
174 .queue_xmit = dev_queue_xmit,
175};
176
177struct neigh_table arp_tbl = {
178 .family = AF_INET,
179 .entry_size = sizeof(struct neighbour) + 4,
180 .key_len = 4,
181 .hash = arp_hash,
182 .constructor = arp_constructor,
183 .proxy_redo = parp_redo,
184 .id = "arp_cache",
185 .parms = {
186 .tbl = &arp_tbl,
187 .base_reachable_time = 30 * HZ,
188 .retrans_time = 1 * HZ,
189 .gc_staletime = 60 * HZ,
190 .reachable_time = 30 * HZ,
191 .delay_probe_time = 5 * HZ,
192 .queue_len = 3,
193 .ucast_probes = 3,
194 .mcast_probes = 3,
195 .anycast_delay = 1 * HZ,
196 .proxy_delay = (8 * HZ) / 10,
197 .proxy_qlen = 64,
198 .locktime = 1 * HZ,
199 },
200 .gc_interval = 30 * HZ,
201 .gc_thresh1 = 128,
202 .gc_thresh2 = 512,
203 .gc_thresh3 = 1024,
204};
205
714e85be 206int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
1da177e4
LT
207{
208 switch (dev->type) {
209 case ARPHRD_ETHER:
210 case ARPHRD_FDDI:
211 case ARPHRD_IEEE802:
212 ip_eth_mc_map(addr, haddr);
e905a9ed 213 return 0;
1da177e4
LT
214 case ARPHRD_IEEE802_TR:
215 ip_tr_mc_map(addr, haddr);
216 return 0;
217 case ARPHRD_INFINIBAND:
218 ip_ib_mc_map(addr, haddr);
219 return 0;
220 default:
221 if (dir) {
222 memcpy(haddr, dev->broadcast, dev->addr_len);
223 return 0;
224 }
225 }
226 return -EINVAL;
227}
228
229
230static u32 arp_hash(const void *pkey, const struct net_device *dev)
231{
232 return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
233}
234
235static int arp_constructor(struct neighbour *neigh)
236{
fd683222 237 __be32 addr = *(__be32*)neigh->primary_key;
1da177e4
LT
238 struct net_device *dev = neigh->dev;
239 struct in_device *in_dev;
240 struct neigh_parms *parms;
241
242 neigh->type = inet_addr_type(addr);
243
244 rcu_read_lock();
e5ed6399 245 in_dev = __in_dev_get_rcu(dev);
1da177e4
LT
246 if (in_dev == NULL) {
247 rcu_read_unlock();
248 return -EINVAL;
249 }
250
251 parms = in_dev->arp_parms;
252 __neigh_parms_put(neigh->parms);
253 neigh->parms = neigh_parms_clone(parms);
254 rcu_read_unlock();
255
256 if (dev->hard_header == NULL) {
257 neigh->nud_state = NUD_NOARP;
258 neigh->ops = &arp_direct_ops;
259 neigh->output = neigh->ops->queue_xmit;
260 } else {
261 /* Good devices (checked by reading texts, but only Ethernet is
262 tested)
263
264 ARPHRD_ETHER: (ethernet, apfddi)
265 ARPHRD_FDDI: (fddi)
266 ARPHRD_IEEE802: (tr)
267 ARPHRD_METRICOM: (strip)
268 ARPHRD_ARCNET:
269 etc. etc. etc.
270
271 ARPHRD_IPDDP will also work, if author repairs it.
272 I did not it, because this driver does not work even
273 in old paradigm.
274 */
275
276#if 1
277 /* So... these "amateur" devices are hopeless.
278 The only thing, that I can say now:
279 It is very sad that we need to keep ugly obsolete
280 code to make them happy.
281
282 They should be moved to more reasonable state, now
283 they use rebuild_header INSTEAD OF hard_start_xmit!!!
284 Besides that, they are sort of out of date
285 (a lot of redundant clones/copies, useless in 2.1),
286 I wonder why people believe that they work.
287 */
288 switch (dev->type) {
289 default:
290 break;
e905a9ed 291 case ARPHRD_ROSE:
1da177e4
LT
292#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
293 case ARPHRD_AX25:
294#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
295 case ARPHRD_NETROM:
296#endif
297 neigh->ops = &arp_broken_ops;
298 neigh->output = neigh->ops->output;
299 return 0;
300#endif
301 ;}
302#endif
303 if (neigh->type == RTN_MULTICAST) {
304 neigh->nud_state = NUD_NOARP;
305 arp_mc_map(addr, neigh->ha, dev, 1);
306 } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
307 neigh->nud_state = NUD_NOARP;
308 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
309 } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
310 neigh->nud_state = NUD_NOARP;
311 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
312 }
313 if (dev->hard_header_cache)
314 neigh->ops = &arp_hh_ops;
315 else
316 neigh->ops = &arp_generic_ops;
317 if (neigh->nud_state&NUD_VALID)
318 neigh->output = neigh->ops->connected_output;
319 else
320 neigh->output = neigh->ops->output;
321 }
322 return 0;
323}
324
325static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
326{
327 dst_link_failure(skb);
328 kfree_skb(skb);
329}
330
331static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
332{
a61ced5d 333 __be32 saddr = 0;
1da177e4
LT
334 u8 *dst_ha = NULL;
335 struct net_device *dev = neigh->dev;
a61ced5d 336 __be32 target = *(__be32*)neigh->primary_key;
1da177e4
LT
337 int probes = atomic_read(&neigh->probes);
338 struct in_device *in_dev = in_dev_get(dev);
339
340 if (!in_dev)
341 return;
342
343 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
344 default:
345 case 0: /* By default announce any local IP */
eddc9ec5
ACM
346 if (skb && inet_addr_type(ip_hdr(skb)->saddr) == RTN_LOCAL)
347 saddr = ip_hdr(skb)->saddr;
1da177e4
LT
348 break;
349 case 1: /* Restrict announcements of saddr in same subnet */
350 if (!skb)
351 break;
eddc9ec5 352 saddr = ip_hdr(skb)->saddr;
1da177e4
LT
353 if (inet_addr_type(saddr) == RTN_LOCAL) {
354 /* saddr should be known to target */
355 if (inet_addr_onlink(in_dev, target, saddr))
356 break;
357 }
358 saddr = 0;
359 break;
360 case 2: /* Avoid secondary IPs, get a primary/preferred one */
361 break;
362 }
363
364 if (in_dev)
365 in_dev_put(in_dev);
366 if (!saddr)
367 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
368
369 if ((probes -= neigh->parms->ucast_probes) < 0) {
370 if (!(neigh->nud_state&NUD_VALID))
371 printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
372 dst_ha = neigh->ha;
373 read_lock_bh(&neigh->lock);
374 } else if ((probes -= neigh->parms->app_probes) < 0) {
375#ifdef CONFIG_ARPD
376 neigh_app_ns(neigh);
377#endif
378 return;
379 }
380
381 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
382 dst_ha, dev->dev_addr, NULL);
383 if (dst_ha)
384 read_unlock_bh(&neigh->lock);
385}
386
387static int arp_ignore(struct in_device *in_dev, struct net_device *dev,
ed9bad06 388 __be32 sip, __be32 tip)
1da177e4
LT
389{
390 int scope;
391
392 switch (IN_DEV_ARP_IGNORE(in_dev)) {
393 case 0: /* Reply, the tip is already validated */
394 return 0;
395 case 1: /* Reply only if tip is configured on the incoming interface */
396 sip = 0;
397 scope = RT_SCOPE_HOST;
398 break;
399 case 2: /*
400 * Reply only if tip is configured on the incoming interface
401 * and is in same subnet as sip
402 */
403 scope = RT_SCOPE_HOST;
404 break;
405 case 3: /* Do not reply for scope host addresses */
406 sip = 0;
407 scope = RT_SCOPE_LINK;
408 dev = NULL;
409 break;
410 case 4: /* Reserved */
411 case 5:
412 case 6:
413 case 7:
414 return 0;
415 case 8: /* Do not reply */
416 return 1;
417 default:
418 return 0;
419 }
420 return !inet_confirm_addr(dev, sip, tip, scope);
421}
422
ed9bad06 423static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
1da177e4
LT
424{
425 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
426 .saddr = tip } } };
427 struct rtable *rt;
e905a9ed 428 int flag = 0;
1da177e4
LT
429 /*unsigned long now; */
430
e905a9ed 431 if (ip_route_output_key(&rt, &fl) < 0)
1da177e4 432 return 1;
e905a9ed 433 if (rt->u.dst.dev != dev) {
1da177e4
LT
434 NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
435 flag = 1;
e905a9ed
YH
436 }
437 ip_rt_put(rt);
438 return flag;
439}
1da177e4
LT
440
441/* OBSOLETE FUNCTIONS */
442
443/*
444 * Find an arp mapping in the cache. If not found, post a request.
445 *
446 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
447 * even if it exists. It is supposed that skb->dev was mangled
448 * by a virtual device (eql, shaper). Nobody but broken devices
449 * is allowed to use this function, it is scheduled to be removed. --ANK
450 */
451
ed9bad06 452static int arp_set_predefined(int addr_hint, unsigned char * haddr, __be32 paddr, struct net_device * dev)
1da177e4
LT
453{
454 switch (addr_hint) {
455 case RTN_LOCAL:
456 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
457 memcpy(haddr, dev->dev_addr, dev->addr_len);
458 return 1;
459 case RTN_MULTICAST:
460 arp_mc_map(paddr, haddr, dev, 1);
461 return 1;
462 case RTN_BROADCAST:
463 memcpy(haddr, dev->broadcast, dev->addr_len);
464 return 1;
465 }
466 return 0;
467}
468
469
470int arp_find(unsigned char *haddr, struct sk_buff *skb)
471{
472 struct net_device *dev = skb->dev;
fd683222 473 __be32 paddr;
1da177e4
LT
474 struct neighbour *n;
475
476 if (!skb->dst) {
477 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
478 kfree_skb(skb);
479 return 1;
480 }
481
482 paddr = ((struct rtable*)skb->dst)->rt_gateway;
483
484 if (arp_set_predefined(inet_addr_type(paddr), haddr, paddr, dev))
485 return 0;
486
487 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
488
489 if (n) {
490 n->used = jiffies;
491 if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
492 read_lock_bh(&n->lock);
e905a9ed 493 memcpy(haddr, n->ha, dev->addr_len);
1da177e4
LT
494 read_unlock_bh(&n->lock);
495 neigh_release(n);
496 return 0;
497 }
498 neigh_release(n);
499 } else
500 kfree_skb(skb);
501 return 1;
502}
503
504/* END OF OBSOLETE FUNCTIONS */
505
506int arp_bind_neighbour(struct dst_entry *dst)
507{
508 struct net_device *dev = dst->dev;
509 struct neighbour *n = dst->neighbour;
510
511 if (dev == NULL)
512 return -EINVAL;
513 if (n == NULL) {
ed9bad06 514 __be32 nexthop = ((struct rtable*)dst)->rt_gateway;
1da177e4
LT
515 if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
516 nexthop = 0;
517 n = __neigh_lookup_errno(
518#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
519 dev->type == ARPHRD_ATM ? clip_tbl_hook :
520#endif
521 &arp_tbl, &nexthop, dev);
522 if (IS_ERR(n))
523 return PTR_ERR(n);
524 dst->neighbour = n;
525 }
526 return 0;
527}
528
529/*
530 * Check if we can use proxy ARP for this path
531 */
532
533static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
534{
535 struct in_device *out_dev;
536 int imi, omi = -1;
537
538 if (!IN_DEV_PROXY_ARP(in_dev))
539 return 0;
540
541 if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
542 return 1;
543 if (imi == -1)
544 return 0;
545
546 /* place to check for proxy_arp for routes */
547
548 if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
549 omi = IN_DEV_MEDIUM_ID(out_dev);
550 in_dev_put(out_dev);
551 }
552 return (omi != imi && omi != -1);
553}
554
555/*
556 * Interface to link layer: send routine and receive handler.
557 */
558
559/*
560 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
561 * message.
562 */
ed9bad06
AV
563struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
564 struct net_device *dev, __be32 src_ip,
1da177e4
LT
565 unsigned char *dest_hw, unsigned char *src_hw,
566 unsigned char *target_hw)
567{
568 struct sk_buff *skb;
569 struct arphdr *arp;
570 unsigned char *arp_ptr;
571
572 /*
573 * Allocate a buffer
574 */
e905a9ed 575
1da177e4
LT
576 skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
577 + LL_RESERVED_SPACE(dev), GFP_ATOMIC);
578 if (skb == NULL)
579 return NULL;
580
581 skb_reserve(skb, LL_RESERVED_SPACE(dev));
c1d2bbe1 582 skb_reset_network_header(skb);
1da177e4
LT
583 arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
584 skb->dev = dev;
585 skb->protocol = htons(ETH_P_ARP);
586 if (src_hw == NULL)
587 src_hw = dev->dev_addr;
588 if (dest_hw == NULL)
589 dest_hw = dev->broadcast;
590
591 /*
592 * Fill the device header for the ARP frame
593 */
0c4e8581 594 if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
1da177e4
LT
595 goto out;
596
597 /*
598 * Fill out the arp protocol part.
599 *
600 * The arp hardware type should match the device type, except for FDDI,
601 * which (according to RFC 1390) should always equal 1 (Ethernet).
602 */
603 /*
604 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
605 * DIX code for the protocol. Make these device structure fields.
606 */
607 switch (dev->type) {
608 default:
609 arp->ar_hrd = htons(dev->type);
610 arp->ar_pro = htons(ETH_P_IP);
611 break;
612
613#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
614 case ARPHRD_AX25:
615 arp->ar_hrd = htons(ARPHRD_AX25);
616 arp->ar_pro = htons(AX25_P_IP);
617 break;
618
619#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
620 case ARPHRD_NETROM:
621 arp->ar_hrd = htons(ARPHRD_NETROM);
622 arp->ar_pro = htons(AX25_P_IP);
623 break;
624#endif
625#endif
626
627#ifdef CONFIG_FDDI
628 case ARPHRD_FDDI:
629 arp->ar_hrd = htons(ARPHRD_ETHER);
630 arp->ar_pro = htons(ETH_P_IP);
631 break;
632#endif
633#ifdef CONFIG_TR
634 case ARPHRD_IEEE802_TR:
635 arp->ar_hrd = htons(ARPHRD_IEEE802);
636 arp->ar_pro = htons(ETH_P_IP);
637 break;
638#endif
639 }
640
641 arp->ar_hln = dev->addr_len;
642 arp->ar_pln = 4;
643 arp->ar_op = htons(type);
644
645 arp_ptr=(unsigned char *)(arp+1);
646
647 memcpy(arp_ptr, src_hw, dev->addr_len);
648 arp_ptr+=dev->addr_len;
649 memcpy(arp_ptr, &src_ip,4);
650 arp_ptr+=4;
651 if (target_hw != NULL)
652 memcpy(arp_ptr, target_hw, dev->addr_len);
653 else
654 memset(arp_ptr, 0, dev->addr_len);
655 arp_ptr+=dev->addr_len;
656 memcpy(arp_ptr, &dest_ip, 4);
657
658 return skb;
659
660out:
661 kfree_skb(skb);
662 return NULL;
663}
664
665/*
666 * Send an arp packet.
667 */
668void arp_xmit(struct sk_buff *skb)
669{
670 /* Send it off, maybe filter it using firewalling first. */
671 NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
672}
673
674/*
675 * Create and send an arp packet.
676 */
ed9bad06
AV
677void arp_send(int type, int ptype, __be32 dest_ip,
678 struct net_device *dev, __be32 src_ip,
1da177e4
LT
679 unsigned char *dest_hw, unsigned char *src_hw,
680 unsigned char *target_hw)
681{
682 struct sk_buff *skb;
683
684 /*
685 * No arp on this interface.
686 */
e905a9ed 687
1da177e4
LT
688 if (dev->flags&IFF_NOARP)
689 return;
690
691 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
692 dest_hw, src_hw, target_hw);
693 if (skb == NULL) {
694 return;
695 }
696
697 arp_xmit(skb);
698}
699
1da177e4
LT
700/*
701 * Process an arp request.
702 */
703
704static int arp_process(struct sk_buff *skb)
705{
706 struct net_device *dev = skb->dev;
707 struct in_device *in_dev = in_dev_get(dev);
708 struct arphdr *arp;
709 unsigned char *arp_ptr;
710 struct rtable *rt;
711 unsigned char *sha, *tha;
9e12bb22 712 __be32 sip, tip;
1da177e4
LT
713 u16 dev_type = dev->type;
714 int addr_type;
715 struct neighbour *n;
716
717 /* arp_rcv below verifies the ARP header and verifies the device
718 * is ARP'able.
719 */
720
721 if (in_dev == NULL)
722 goto out;
723
d0a92be0 724 arp = arp_hdr(skb);
1da177e4
LT
725
726 switch (dev_type) {
e905a9ed 727 default:
1da177e4
LT
728 if (arp->ar_pro != htons(ETH_P_IP) ||
729 htons(dev_type) != arp->ar_hrd)
730 goto out;
731 break;
732#ifdef CONFIG_NET_ETHERNET
733 case ARPHRD_ETHER:
734#endif
735#ifdef CONFIG_TR
736 case ARPHRD_IEEE802_TR:
737#endif
738#ifdef CONFIG_FDDI
739 case ARPHRD_FDDI:
740#endif
741#ifdef CONFIG_NET_FC
742 case ARPHRD_IEEE802:
743#endif
744#if defined(CONFIG_NET_ETHERNET) || defined(CONFIG_TR) || \
745 defined(CONFIG_FDDI) || defined(CONFIG_NET_FC)
746 /*
747 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
748 * devices, according to RFC 2625) devices will accept ARP
749 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
750 * This is the case also of FDDI, where the RFC 1390 says that
751 * FDDI devices should accept ARP hardware of (1) Ethernet,
752 * however, to be more robust, we'll accept both 1 (Ethernet)
753 * or 6 (IEEE 802.2)
754 */
755 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
756 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
757 arp->ar_pro != htons(ETH_P_IP))
758 goto out;
759 break;
760#endif
761#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
762 case ARPHRD_AX25:
763 if (arp->ar_pro != htons(AX25_P_IP) ||
764 arp->ar_hrd != htons(ARPHRD_AX25))
765 goto out;
766 break;
767#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
768 case ARPHRD_NETROM:
769 if (arp->ar_pro != htons(AX25_P_IP) ||
770 arp->ar_hrd != htons(ARPHRD_NETROM))
771 goto out;
772 break;
773#endif
774#endif
775 }
776
777 /* Understand only these message types */
778
779 if (arp->ar_op != htons(ARPOP_REPLY) &&
780 arp->ar_op != htons(ARPOP_REQUEST))
781 goto out;
782
783/*
784 * Extract fields
785 */
786 arp_ptr= (unsigned char *)(arp+1);
787 sha = arp_ptr;
788 arp_ptr += dev->addr_len;
789 memcpy(&sip, arp_ptr, 4);
790 arp_ptr += 4;
791 tha = arp_ptr;
792 arp_ptr += dev->addr_len;
793 memcpy(&tip, arp_ptr, 4);
e905a9ed 794/*
1da177e4
LT
795 * Check for bad requests for 127.x.x.x and requests for multicast
796 * addresses. If this is one such, delete it.
797 */
798 if (LOOPBACK(tip) || MULTICAST(tip))
799 goto out;
800
801/*
802 * Special case: We must set Frame Relay source Q.922 address
803 */
804 if (dev_type == ARPHRD_DLCI)
805 sha = dev->broadcast;
806
807/*
808 * Process entry. The idea here is we want to send a reply if it is a
809 * request for us or if it is a request for someone else that we hold
810 * a proxy for. We want to add an entry to our cache if it is a reply
e905a9ed
YH
811 * to us or if it is a request for our address.
812 * (The assumption for this last is that if someone is requesting our
813 * address, they are probably intending to talk to us, so it saves time
814 * if we cache their address. Their address is also probably not in
1da177e4 815 * our cache, since ours is not in their cache.)
e905a9ed 816 *
1da177e4
LT
817 * Putting this another way, we only care about replies if they are to
818 * us, in which case we add them to the cache. For requests, we care
819 * about those for us and those for our proxies. We reply to both,
e905a9ed 820 * and in the case of requests for us we add the requester to the arp
1da177e4
LT
821 * cache.
822 */
823
824 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
825 if (sip == 0) {
826 if (arp->ar_op == htons(ARPOP_REQUEST) &&
827 inet_addr_type(tip) == RTN_LOCAL &&
828 !arp_ignore(in_dev,dev,sip,tip))
829 arp_send(ARPOP_REPLY,ETH_P_ARP,tip,dev,tip,sha,dev->dev_addr,dev->dev_addr);
830 goto out;
831 }
832
833 if (arp->ar_op == htons(ARPOP_REQUEST) &&
834 ip_route_input(skb, tip, sip, 0, dev) == 0) {
835
836 rt = (struct rtable*)skb->dst;
837 addr_type = rt->rt_type;
838
839 if (addr_type == RTN_LOCAL) {
840 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
841 if (n) {
842 int dont_send = 0;
843
844 if (!dont_send)
845 dont_send |= arp_ignore(in_dev,dev,sip,tip);
846 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
e905a9ed 847 dont_send |= arp_filter(sip,tip,dev);
1da177e4
LT
848 if (!dont_send)
849 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
850
851 neigh_release(n);
852 }
853 goto out;
854 } else if (IN_DEV_FORWARD(in_dev)) {
855 if ((rt->rt_flags&RTCF_DNAT) ||
856 (addr_type == RTN_UNICAST && rt->u.dst.dev != dev &&
857 (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &tip, dev, 0)))) {
858 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
859 if (n)
860 neigh_release(n);
861
e905a9ed 862 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
1da177e4
LT
863 skb->pkt_type == PACKET_HOST ||
864 in_dev->arp_parms->proxy_delay == 0) {
865 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
866 } else {
867 pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
868 in_dev_put(in_dev);
869 return 0;
870 }
871 goto out;
872 }
873 }
874 }
875
876 /* Update our ARP tables */
877
878 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
879
42f811b8 880 if (IPV4_DEVCONF_ALL(ARP_ACCEPT)) {
abd596a4
NH
881 /* Unsolicited ARP is not accepted by default.
882 It is possible, that this option should be enabled for some
883 devices (strip is candidate)
884 */
885 if (n == NULL &&
886 arp->ar_op == htons(ARPOP_REPLY) &&
887 inet_addr_type(sip) == RTN_UNICAST)
1b1ac759 888 n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
abd596a4 889 }
1da177e4
LT
890
891 if (n) {
892 int state = NUD_REACHABLE;
893 int override;
894
895 /* If several different ARP replies follows back-to-back,
896 use the FIRST one. It is possible, if several proxy
897 agents are active. Taking the first reply prevents
898 arp trashing and chooses the fastest router.
899 */
900 override = time_after(jiffies, n->updated + n->parms->locktime);
901
902 /* Broadcast replies and request packets
903 do not assert neighbour reachability.
904 */
905 if (arp->ar_op != htons(ARPOP_REPLY) ||
906 skb->pkt_type != PACKET_HOST)
907 state = NUD_STALE;
908 neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
909 neigh_release(n);
910 }
911
912out:
913 if (in_dev)
914 in_dev_put(in_dev);
915 kfree_skb(skb);
916 return 0;
917}
918
444fc8fc
HX
919static void parp_redo(struct sk_buff *skb)
920{
921 arp_process(skb);
922}
923
1da177e4
LT
924
925/*
926 * Receive an arp request from the device layer.
927 */
928
6c97e72a
AB
929static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
930 struct packet_type *pt, struct net_device *orig_dev)
1da177e4
LT
931{
932 struct arphdr *arp;
933
e730c155
EB
934 if (dev->nd_net != &init_net)
935 goto freeskb;
936
1da177e4
LT
937 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
938 if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
939 (2 * dev->addr_len) +
940 (2 * sizeof(u32)))))
941 goto freeskb;
942
d0a92be0 943 arp = arp_hdr(skb);
1da177e4
LT
944 if (arp->ar_hln != dev->addr_len ||
945 dev->flags & IFF_NOARP ||
946 skb->pkt_type == PACKET_OTHERHOST ||
947 skb->pkt_type == PACKET_LOOPBACK ||
948 arp->ar_pln != 4)
949 goto freeskb;
950
951 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
952 goto out_of_mem;
953
a61bbcf2
PM
954 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
955
1da177e4
LT
956 return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
957
958freeskb:
959 kfree_skb(skb);
960out_of_mem:
961 return 0;
962}
963
964/*
965 * User level interface (ioctl)
966 */
967
968/*
969 * Set (create) an ARP cache entry.
970 */
971
972static int arp_req_set(struct arpreq *r, struct net_device * dev)
973{
ed9bad06 974 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1da177e4
LT
975 struct neighbour *neigh;
976 int err;
977
978 if (r->arp_flags&ATF_PUBL) {
ed9bad06
AV
979 __be32 mask = ((struct sockaddr_in *) &r->arp_netmask)->sin_addr.s_addr;
980 if (mask && mask != htonl(0xFFFFFFFF))
1da177e4
LT
981 return -EINVAL;
982 if (!dev && (r->arp_flags & ATF_COM)) {
881d966b 983 dev = dev_getbyhwaddr(&init_net, r->arp_ha.sa_family, r->arp_ha.sa_data);
1da177e4
LT
984 if (!dev)
985 return -ENODEV;
986 }
987 if (mask) {
988 if (pneigh_lookup(&arp_tbl, &ip, dev, 1) == NULL)
989 return -ENOBUFS;
990 return 0;
991 }
992 if (dev == NULL) {
42f811b8 993 IPV4_DEVCONF_ALL(PROXY_ARP) = 1;
1da177e4
LT
994 return 0;
995 }
e5ed6399 996 if (__in_dev_get_rtnl(dev)) {
42f811b8 997 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, 1);
1da177e4
LT
998 return 0;
999 }
1000 return -ENXIO;
1001 }
1002
1003 if (r->arp_flags & ATF_PERM)
1004 r->arp_flags |= ATF_COM;
1005 if (dev == NULL) {
1006 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1007 .tos = RTO_ONLINK } } };
1008 struct rtable * rt;
1009 if ((err = ip_route_output_key(&rt, &fl)) != 0)
1010 return err;
1011 dev = rt->u.dst.dev;
1012 ip_rt_put(rt);
1013 if (!dev)
1014 return -EINVAL;
1015 }
1016 switch (dev->type) {
1017#ifdef CONFIG_FDDI
1018 case ARPHRD_FDDI:
1019 /*
1020 * According to RFC 1390, FDDI devices should accept ARP
1021 * hardware types of 1 (Ethernet). However, to be more
1022 * robust, we'll accept hardware types of either 1 (Ethernet)
1023 * or 6 (IEEE 802.2).
1024 */
1025 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1026 r->arp_ha.sa_family != ARPHRD_ETHER &&
1027 r->arp_ha.sa_family != ARPHRD_IEEE802)
1028 return -EINVAL;
1029 break;
1030#endif
1031 default:
1032 if (r->arp_ha.sa_family != dev->type)
1033 return -EINVAL;
1034 break;
1035 }
1036
1037 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1038 err = PTR_ERR(neigh);
1039 if (!IS_ERR(neigh)) {
1040 unsigned state = NUD_STALE;
1041 if (r->arp_flags & ATF_PERM)
1042 state = NUD_PERMANENT;
1043 err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
e905a9ed 1044 r->arp_ha.sa_data : NULL, state,
1da177e4
LT
1045 NEIGH_UPDATE_F_OVERRIDE|
1046 NEIGH_UPDATE_F_ADMIN);
1047 neigh_release(neigh);
1048 }
1049 return err;
1050}
1051
1052static unsigned arp_state_to_flags(struct neighbour *neigh)
1053{
1054 unsigned flags = 0;
1055 if (neigh->nud_state&NUD_PERMANENT)
1056 flags = ATF_PERM|ATF_COM;
1057 else if (neigh->nud_state&NUD_VALID)
1058 flags = ATF_COM;
1059 return flags;
1060}
1061
1062/*
1063 * Get an ARP cache entry.
1064 */
1065
1066static int arp_req_get(struct arpreq *r, struct net_device *dev)
1067{
ed9bad06 1068 __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1da177e4
LT
1069 struct neighbour *neigh;
1070 int err = -ENXIO;
1071
1072 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1073 if (neigh) {
1074 read_lock_bh(&neigh->lock);
1075 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1076 r->arp_flags = arp_state_to_flags(neigh);
1077 read_unlock_bh(&neigh->lock);
1078 r->arp_ha.sa_family = dev->type;
1079 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1080 neigh_release(neigh);
1081 err = 0;
1082 }
1083 return err;
1084}
1085
1086static int arp_req_delete(struct arpreq *r, struct net_device * dev)
1087{
1088 int err;
ed9bad06 1089 __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1da177e4
LT
1090 struct neighbour *neigh;
1091
1092 if (r->arp_flags & ATF_PUBL) {
ed9bad06 1093 __be32 mask =
1da177e4 1094 ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
ed9bad06 1095 if (mask == htonl(0xFFFFFFFF))
1da177e4
LT
1096 return pneigh_delete(&arp_tbl, &ip, dev);
1097 if (mask == 0) {
1098 if (dev == NULL) {
42f811b8 1099 IPV4_DEVCONF_ALL(PROXY_ARP) = 0;
1da177e4
LT
1100 return 0;
1101 }
e5ed6399 1102 if (__in_dev_get_rtnl(dev)) {
42f811b8
HX
1103 IN_DEV_CONF_SET(__in_dev_get_rtnl(dev),
1104 PROXY_ARP, 0);
1da177e4
LT
1105 return 0;
1106 }
1107 return -ENXIO;
1108 }
1109 return -EINVAL;
1110 }
1111
1112 if (dev == NULL) {
1113 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1114 .tos = RTO_ONLINK } } };
1115 struct rtable * rt;
1116 if ((err = ip_route_output_key(&rt, &fl)) != 0)
1117 return err;
1118 dev = rt->u.dst.dev;
1119 ip_rt_put(rt);
1120 if (!dev)
1121 return -EINVAL;
1122 }
1123 err = -ENXIO;
1124 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1125 if (neigh) {
1126 if (neigh->nud_state&~NUD_NOARP)
e905a9ed 1127 err = neigh_update(neigh, NULL, NUD_FAILED,
1da177e4
LT
1128 NEIGH_UPDATE_F_OVERRIDE|
1129 NEIGH_UPDATE_F_ADMIN);
1130 neigh_release(neigh);
1131 }
1132 return err;
1133}
1134
1135/*
1136 * Handle an ARP layer I/O control request.
1137 */
1138
1139int arp_ioctl(unsigned int cmd, void __user *arg)
1140{
1141 int err;
1142 struct arpreq r;
1143 struct net_device *dev = NULL;
1144
1145 switch (cmd) {
1146 case SIOCDARP:
1147 case SIOCSARP:
1148 if (!capable(CAP_NET_ADMIN))
1149 return -EPERM;
1150 case SIOCGARP:
1151 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1152 if (err)
1153 return -EFAULT;
1154 break;
1155 default:
1156 return -EINVAL;
1157 }
1158
1159 if (r.arp_pa.sa_family != AF_INET)
1160 return -EPFNOSUPPORT;
1161
1162 if (!(r.arp_flags & ATF_PUBL) &&
1163 (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1164 return -EINVAL;
1165 if (!(r.arp_flags & ATF_NETMASK))
1166 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1167 htonl(0xFFFFFFFFUL);
1168 rtnl_lock();
1169 if (r.arp_dev[0]) {
1170 err = -ENODEV;
881d966b 1171 if ((dev = __dev_get_by_name(&init_net, r.arp_dev)) == NULL)
1da177e4
LT
1172 goto out;
1173
1174 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1175 if (!r.arp_ha.sa_family)
1176 r.arp_ha.sa_family = dev->type;
1177 err = -EINVAL;
1178 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1179 goto out;
1180 } else if (cmd == SIOCGARP) {
1181 err = -ENODEV;
1182 goto out;
1183 }
1184
132adf54 1185 switch (cmd) {
1da177e4 1186 case SIOCDARP:
e905a9ed 1187 err = arp_req_delete(&r, dev);
1da177e4
LT
1188 break;
1189 case SIOCSARP:
1190 err = arp_req_set(&r, dev);
1191 break;
1192 case SIOCGARP:
1193 err = arp_req_get(&r, dev);
1194 if (!err && copy_to_user(arg, &r, sizeof(r)))
1195 err = -EFAULT;
1196 break;
1197 }
1198out:
1199 rtnl_unlock();
1200 return err;
1201}
1202
1203static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1204{
1205 struct net_device *dev = ptr;
1206
e9dc8653
EB
1207 if (dev->nd_net != &init_net)
1208 return NOTIFY_DONE;
1209
1da177e4
LT
1210 switch (event) {
1211 case NETDEV_CHANGEADDR:
1212 neigh_changeaddr(&arp_tbl, dev);
1213 rt_cache_flush(0);
1214 break;
1215 default:
1216 break;
1217 }
1218
1219 return NOTIFY_DONE;
1220}
1221
1222static struct notifier_block arp_netdev_notifier = {
1223 .notifier_call = arp_netdev_event,
1224};
1225
1226/* Note, that it is not on notifier chain.
1227 It is necessary, that this routine was called after route cache will be
1228 flushed.
1229 */
1230void arp_ifdown(struct net_device *dev)
1231{
1232 neigh_ifdown(&arp_tbl, dev);
1233}
1234
1235
1236/*
1237 * Called once on startup.
1238 */
1239
1240static struct packet_type arp_packet_type = {
1241 .type = __constant_htons(ETH_P_ARP),
1242 .func = arp_rcv,
1243};
1244
1245static int arp_proc_init(void);
1246
1247void __init arp_init(void)
1248{
1249 neigh_table_init(&arp_tbl);
1250
1251 dev_add_pack(&arp_packet_type);
1252 arp_proc_init();
1253#ifdef CONFIG_SYSCTL
1254 neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1255 NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1256#endif
1257 register_netdevice_notifier(&arp_netdev_notifier);
1258}
1259
1260#ifdef CONFIG_PROC_FS
1261#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1262
1263/* ------------------------------------------------------------------------ */
1264/*
1265 * ax25 -> ASCII conversion
1266 */
1267static char *ax2asc2(ax25_address *a, char *buf)
1268{
1269 char c, *s;
1270 int n;
1271
1272 for (n = 0, s = buf; n < 6; n++) {
1273 c = (a->ax25_call[n] >> 1) & 0x7F;
1274
1275 if (c != ' ') *s++ = c;
1276 }
e905a9ed 1277
1da177e4
LT
1278 *s++ = '-';
1279
1280 if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1281 *s++ = '1';
1282 n -= 10;
1283 }
e905a9ed 1284
1da177e4
LT
1285 *s++ = n + '0';
1286 *s++ = '\0';
1287
1288 if (*buf == '\0' || *buf == '-')
1289 return "*";
1290
1291 return buf;
1292
1293}
1294#endif /* CONFIG_AX25 */
1295
1296#define HBUFFERLEN 30
1297
1298static void arp_format_neigh_entry(struct seq_file *seq,
1299 struct neighbour *n)
1300{
1301 char hbuffer[HBUFFERLEN];
1302 const char hexbuf[] = "0123456789ABCDEF";
1303 int k, j;
1304 char tbuf[16];
1305 struct net_device *dev = n->dev;
1306 int hatype = dev->type;
1307
1308 read_lock(&n->lock);
1309 /* Convert hardware address to XX:XX:XX:XX ... form. */
1310#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1311 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1312 ax2asc2((ax25_address *)n->ha, hbuffer);
1313 else {
1314#endif
1315 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1316 hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1317 hbuffer[k++] = hexbuf[n->ha[j] & 15];
1318 hbuffer[k++] = ':';
1319 }
1320 hbuffer[--k] = 0;
1321#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1322 }
1323#endif
1324 sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1325 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1326 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1327 read_unlock(&n->lock);
1328}
1329
1330static void arp_format_pneigh_entry(struct seq_file *seq,
1331 struct pneigh_entry *n)
1332{
1333 struct net_device *dev = n->dev;
1334 int hatype = dev ? dev->type : 0;
1335 char tbuf[16];
1336
1337 sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1338 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1339 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1340 dev ? dev->name : "*");
1341}
1342
1343static int arp_seq_show(struct seq_file *seq, void *v)
1344{
1345 if (v == SEQ_START_TOKEN) {
1346 seq_puts(seq, "IP address HW type Flags "
1347 "HW address Mask Device\n");
1348 } else {
1349 struct neigh_seq_state *state = seq->private;
1350
1351 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1352 arp_format_pneigh_entry(seq, v);
1353 else
1354 arp_format_neigh_entry(seq, v);
1355 }
1356
1357 return 0;
1358}
1359
1360static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1361{
1362 /* Don't want to confuse "arp -a" w/ magic entries,
1363 * so we tell the generic iterator to skip NUD_NOARP.
1364 */
1365 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1366}
1367
1368/* ------------------------------------------------------------------------ */
1369
f690808e 1370static const struct seq_operations arp_seq_ops = {
1da177e4
LT
1371 .start = arp_seq_start,
1372 .next = neigh_seq_next,
1373 .stop = neigh_seq_stop,
1374 .show = arp_seq_show,
1375};
1376
1377static int arp_seq_open(struct inode *inode, struct file *file)
1378{
1379 struct seq_file *seq;
1380 int rc = -ENOMEM;
0da974f4 1381 struct neigh_seq_state *s = kzalloc(sizeof(*s), GFP_KERNEL);
e905a9ed 1382
1da177e4
LT
1383 if (!s)
1384 goto out;
1385
1da177e4
LT
1386 rc = seq_open(file, &arp_seq_ops);
1387 if (rc)
1388 goto out_kfree;
1389
1390 seq = file->private_data;
1391 seq->private = s;
1392out:
1393 return rc;
1394out_kfree:
1395 kfree(s);
1396 goto out;
1397}
1398
9a32144e 1399static const struct file_operations arp_seq_fops = {
1da177e4
LT
1400 .owner = THIS_MODULE,
1401 .open = arp_seq_open,
1402 .read = seq_read,
1403 .llseek = seq_lseek,
1404 .release = seq_release_private,
1405};
1406
1407static int __init arp_proc_init(void)
1408{
457c4cbc 1409 if (!proc_net_fops_create(&init_net, "arp", S_IRUGO, &arp_seq_fops))
1da177e4
LT
1410 return -ENOMEM;
1411 return 0;
1412}
1413
1414#else /* CONFIG_PROC_FS */
1415
1416static int __init arp_proc_init(void)
1417{
1418 return 0;
1419}
1420
1421#endif /* CONFIG_PROC_FS */
1422
1423EXPORT_SYMBOL(arp_broken_ops);
1424EXPORT_SYMBOL(arp_find);
1da177e4
LT
1425EXPORT_SYMBOL(arp_create);
1426EXPORT_SYMBOL(arp_xmit);
1427EXPORT_SYMBOL(arp_send);
1428EXPORT_SYMBOL(arp_tbl);
1429
1430#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1431EXPORT_SYMBOL(clip_tbl_hook);
1432#endif