]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/arp.c
[IPV6]: Fix leak added by udp connect dst caching fix.
[net-next-2.6.git] / net / ipv4 / arp.c
CommitLineData
1da177e4
LT
1/* linux/net/inet/arp.c
2 *
3 * Version: $Id: arp.c,v 1.99 2001/08/30 22:55:42 davem Exp $
4 *
5 * Copyright (C) 1994 by Florian La Roche
6 *
7 * This module implements the Address Resolution Protocol ARP (RFC 826),
8 * which is used to convert IP addresses (or in the future maybe other
9 * high-level addresses) into a low-level hardware address (like an Ethernet
10 * address).
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * Fixes:
18 * Alan Cox : Removed the Ethernet assumptions in
19 * Florian's code
20 * Alan Cox : Fixed some small errors in the ARP
21 * logic
22 * Alan Cox : Allow >4K in /proc
23 * Alan Cox : Make ARP add its own protocol entry
24 * Ross Martin : Rewrote arp_rcv() and arp_get_info()
25 * Stephen Henson : Add AX25 support to arp_get_info()
26 * Alan Cox : Drop data when a device is downed.
27 * Alan Cox : Use init_timer().
28 * Alan Cox : Double lock fixes.
29 * Martin Seine : Move the arphdr structure
30 * to if_arp.h for compatibility.
31 * with BSD based programs.
32 * Andrew Tridgell : Added ARP netmask code and
33 * re-arranged proxy handling.
34 * Alan Cox : Changed to use notifiers.
35 * Niibe Yutaka : Reply for this device or proxies only.
36 * Alan Cox : Don't proxy across hardware types!
37 * Jonathan Naylor : Added support for NET/ROM.
38 * Mike Shaver : RFC1122 checks.
39 * Jonathan Naylor : Only lookup the hardware address for
40 * the correct hardware type.
41 * Germano Caronni : Assorted subtle races.
42 * Craig Schlenter : Don't modify permanent entry
43 * during arp_rcv.
44 * Russ Nelson : Tidied up a few bits.
45 * Alexey Kuznetsov: Major changes to caching and behaviour,
46 * eg intelligent arp probing and
47 * generation
48 * of host down events.
49 * Alan Cox : Missing unlock in device events.
50 * Eckes : ARP ioctl control errors.
51 * Alexey Kuznetsov: Arp free fix.
52 * Manuel Rodriguez: Gratuitous ARP.
53 * Jonathan Layes : Added arpd support through kerneld
54 * message queue (960314)
55 * Mike Shaver : /proc/sys/net/ipv4/arp_* support
56 * Mike McLagan : Routing by source
57 * Stuart Cheshire : Metricom and grat arp fixes
58 * *** FOR 2.1 clean this up ***
59 * Lawrence V. Stefani: (08/12/96) Added FDDI support.
60 * Alan Cox : Took the AP1000 nasty FDDI hack and
61 * folded into the mainstream FDDI code.
62 * Ack spit, Linus how did you allow that
63 * one in...
64 * Jes Sorensen : Make FDDI work again in 2.1.x and
65 * clean up the APFDDI & gen. FDDI bits.
66 * Alexey Kuznetsov: new arp state machine;
67 * now it is in net/core/neighbour.c.
68 * Krzysztof Halasa: Added Frame Relay ARP support.
69 * Arnaldo C. Melo : convert /proc/net/arp to seq_file
70 * Shmulik Hen: Split arp_send to arp_create and
71 * arp_xmit so intermediate drivers like
72 * bonding can change the skb before
73 * sending (e.g. insert 8021q tag).
74 * Harald Welte : convert to make use of jenkins hash
75 */
76
77#include <linux/module.h>
78#include <linux/types.h>
79#include <linux/string.h>
80#include <linux/kernel.h>
81#include <linux/sched.h>
82#include <linux/config.h>
83#include <linux/socket.h>
84#include <linux/sockios.h>
85#include <linux/errno.h>
86#include <linux/in.h>
87#include <linux/mm.h>
88#include <linux/inet.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/fddidevice.h>
92#include <linux/if_arp.h>
93#include <linux/trdevice.h>
94#include <linux/skbuff.h>
95#include <linux/proc_fs.h>
96#include <linux/seq_file.h>
97#include <linux/stat.h>
98#include <linux/init.h>
99#include <linux/net.h>
100#include <linux/rcupdate.h>
101#include <linux/jhash.h>
102#ifdef CONFIG_SYSCTL
103#include <linux/sysctl.h>
104#endif
105
106#include <net/ip.h>
107#include <net/icmp.h>
108#include <net/route.h>
109#include <net/protocol.h>
110#include <net/tcp.h>
111#include <net/sock.h>
112#include <net/arp.h>
113#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
114#include <net/ax25.h>
115#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
116#include <net/netrom.h>
117#endif
118#endif
119#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
120#include <net/atmclip.h>
121struct neigh_table *clip_tbl_hook;
122#endif
123
124#include <asm/system.h>
125#include <asm/uaccess.h>
126
127#include <linux/netfilter_arp.h>
128
129/*
130 * Interface to generic neighbour cache.
131 */
132static u32 arp_hash(const void *pkey, const struct net_device *dev);
133static int arp_constructor(struct neighbour *neigh);
134static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
135static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
136static void parp_redo(struct sk_buff *skb);
137
138static struct neigh_ops arp_generic_ops = {
139 .family = AF_INET,
140 .solicit = arp_solicit,
141 .error_report = arp_error_report,
142 .output = neigh_resolve_output,
143 .connected_output = neigh_connected_output,
144 .hh_output = dev_queue_xmit,
145 .queue_xmit = dev_queue_xmit,
146};
147
148static struct neigh_ops arp_hh_ops = {
149 .family = AF_INET,
150 .solicit = arp_solicit,
151 .error_report = arp_error_report,
152 .output = neigh_resolve_output,
153 .connected_output = neigh_resolve_output,
154 .hh_output = dev_queue_xmit,
155 .queue_xmit = dev_queue_xmit,
156};
157
158static struct neigh_ops arp_direct_ops = {
159 .family = AF_INET,
160 .output = dev_queue_xmit,
161 .connected_output = dev_queue_xmit,
162 .hh_output = dev_queue_xmit,
163 .queue_xmit = dev_queue_xmit,
164};
165
166struct neigh_ops arp_broken_ops = {
167 .family = AF_INET,
168 .solicit = arp_solicit,
169 .error_report = arp_error_report,
170 .output = neigh_compat_output,
171 .connected_output = neigh_compat_output,
172 .hh_output = dev_queue_xmit,
173 .queue_xmit = dev_queue_xmit,
174};
175
176struct neigh_table arp_tbl = {
177 .family = AF_INET,
178 .entry_size = sizeof(struct neighbour) + 4,
179 .key_len = 4,
180 .hash = arp_hash,
181 .constructor = arp_constructor,
182 .proxy_redo = parp_redo,
183 .id = "arp_cache",
184 .parms = {
185 .tbl = &arp_tbl,
186 .base_reachable_time = 30 * HZ,
187 .retrans_time = 1 * HZ,
188 .gc_staletime = 60 * HZ,
189 .reachable_time = 30 * HZ,
190 .delay_probe_time = 5 * HZ,
191 .queue_len = 3,
192 .ucast_probes = 3,
193 .mcast_probes = 3,
194 .anycast_delay = 1 * HZ,
195 .proxy_delay = (8 * HZ) / 10,
196 .proxy_qlen = 64,
197 .locktime = 1 * HZ,
198 },
199 .gc_interval = 30 * HZ,
200 .gc_thresh1 = 128,
201 .gc_thresh2 = 512,
202 .gc_thresh3 = 1024,
203};
204
205int arp_mc_map(u32 addr, u8 *haddr, struct net_device *dev, int dir)
206{
207 switch (dev->type) {
208 case ARPHRD_ETHER:
209 case ARPHRD_FDDI:
210 case ARPHRD_IEEE802:
211 ip_eth_mc_map(addr, haddr);
212 return 0;
213 case ARPHRD_IEEE802_TR:
214 ip_tr_mc_map(addr, haddr);
215 return 0;
216 case ARPHRD_INFINIBAND:
217 ip_ib_mc_map(addr, haddr);
218 return 0;
219 default:
220 if (dir) {
221 memcpy(haddr, dev->broadcast, dev->addr_len);
222 return 0;
223 }
224 }
225 return -EINVAL;
226}
227
228
229static u32 arp_hash(const void *pkey, const struct net_device *dev)
230{
231 return jhash_2words(*(u32 *)pkey, dev->ifindex, arp_tbl.hash_rnd);
232}
233
234static int arp_constructor(struct neighbour *neigh)
235{
236 u32 addr = *(u32*)neigh->primary_key;
237 struct net_device *dev = neigh->dev;
238 struct in_device *in_dev;
239 struct neigh_parms *parms;
240
241 neigh->type = inet_addr_type(addr);
242
243 rcu_read_lock();
244 in_dev = rcu_dereference(__in_dev_get(dev));
245 if (in_dev == NULL) {
246 rcu_read_unlock();
247 return -EINVAL;
248 }
249
250 parms = in_dev->arp_parms;
251 __neigh_parms_put(neigh->parms);
252 neigh->parms = neigh_parms_clone(parms);
253 rcu_read_unlock();
254
255 if (dev->hard_header == NULL) {
256 neigh->nud_state = NUD_NOARP;
257 neigh->ops = &arp_direct_ops;
258 neigh->output = neigh->ops->queue_xmit;
259 } else {
260 /* Good devices (checked by reading texts, but only Ethernet is
261 tested)
262
263 ARPHRD_ETHER: (ethernet, apfddi)
264 ARPHRD_FDDI: (fddi)
265 ARPHRD_IEEE802: (tr)
266 ARPHRD_METRICOM: (strip)
267 ARPHRD_ARCNET:
268 etc. etc. etc.
269
270 ARPHRD_IPDDP will also work, if author repairs it.
271 I did not it, because this driver does not work even
272 in old paradigm.
273 */
274
275#if 1
276 /* So... these "amateur" devices are hopeless.
277 The only thing, that I can say now:
278 It is very sad that we need to keep ugly obsolete
279 code to make them happy.
280
281 They should be moved to more reasonable state, now
282 they use rebuild_header INSTEAD OF hard_start_xmit!!!
283 Besides that, they are sort of out of date
284 (a lot of redundant clones/copies, useless in 2.1),
285 I wonder why people believe that they work.
286 */
287 switch (dev->type) {
288 default:
289 break;
290 case ARPHRD_ROSE:
291#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
292 case ARPHRD_AX25:
293#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
294 case ARPHRD_NETROM:
295#endif
296 neigh->ops = &arp_broken_ops;
297 neigh->output = neigh->ops->output;
298 return 0;
299#endif
300 ;}
301#endif
302 if (neigh->type == RTN_MULTICAST) {
303 neigh->nud_state = NUD_NOARP;
304 arp_mc_map(addr, neigh->ha, dev, 1);
305 } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) {
306 neigh->nud_state = NUD_NOARP;
307 memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
308 } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) {
309 neigh->nud_state = NUD_NOARP;
310 memcpy(neigh->ha, dev->broadcast, dev->addr_len);
311 }
312 if (dev->hard_header_cache)
313 neigh->ops = &arp_hh_ops;
314 else
315 neigh->ops = &arp_generic_ops;
316 if (neigh->nud_state&NUD_VALID)
317 neigh->output = neigh->ops->connected_output;
318 else
319 neigh->output = neigh->ops->output;
320 }
321 return 0;
322}
323
324static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
325{
326 dst_link_failure(skb);
327 kfree_skb(skb);
328}
329
330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
331{
332 u32 saddr = 0;
333 u8 *dst_ha = NULL;
334 struct net_device *dev = neigh->dev;
335 u32 target = *(u32*)neigh->primary_key;
336 int probes = atomic_read(&neigh->probes);
337 struct in_device *in_dev = in_dev_get(dev);
338
339 if (!in_dev)
340 return;
341
342 switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
343 default:
344 case 0: /* By default announce any local IP */
345 if (skb && inet_addr_type(skb->nh.iph->saddr) == RTN_LOCAL)
346 saddr = skb->nh.iph->saddr;
347 break;
348 case 1: /* Restrict announcements of saddr in same subnet */
349 if (!skb)
350 break;
351 saddr = skb->nh.iph->saddr;
352 if (inet_addr_type(saddr) == RTN_LOCAL) {
353 /* saddr should be known to target */
354 if (inet_addr_onlink(in_dev, target, saddr))
355 break;
356 }
357 saddr = 0;
358 break;
359 case 2: /* Avoid secondary IPs, get a primary/preferred one */
360 break;
361 }
362
363 if (in_dev)
364 in_dev_put(in_dev);
365 if (!saddr)
366 saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
367
368 if ((probes -= neigh->parms->ucast_probes) < 0) {
369 if (!(neigh->nud_state&NUD_VALID))
370 printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n");
371 dst_ha = neigh->ha;
372 read_lock_bh(&neigh->lock);
373 } else if ((probes -= neigh->parms->app_probes) < 0) {
374#ifdef CONFIG_ARPD
375 neigh_app_ns(neigh);
376#endif
377 return;
378 }
379
380 arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
381 dst_ha, dev->dev_addr, NULL);
382 if (dst_ha)
383 read_unlock_bh(&neigh->lock);
384}
385
386static int arp_ignore(struct in_device *in_dev, struct net_device *dev,
387 u32 sip, u32 tip)
388{
389 int scope;
390
391 switch (IN_DEV_ARP_IGNORE(in_dev)) {
392 case 0: /* Reply, the tip is already validated */
393 return 0;
394 case 1: /* Reply only if tip is configured on the incoming interface */
395 sip = 0;
396 scope = RT_SCOPE_HOST;
397 break;
398 case 2: /*
399 * Reply only if tip is configured on the incoming interface
400 * and is in same subnet as sip
401 */
402 scope = RT_SCOPE_HOST;
403 break;
404 case 3: /* Do not reply for scope host addresses */
405 sip = 0;
406 scope = RT_SCOPE_LINK;
407 dev = NULL;
408 break;
409 case 4: /* Reserved */
410 case 5:
411 case 6:
412 case 7:
413 return 0;
414 case 8: /* Do not reply */
415 return 1;
416 default:
417 return 0;
418 }
419 return !inet_confirm_addr(dev, sip, tip, scope);
420}
421
422static int arp_filter(__u32 sip, __u32 tip, struct net_device *dev)
423{
424 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = sip,
425 .saddr = tip } } };
426 struct rtable *rt;
427 int flag = 0;
428 /*unsigned long now; */
429
430 if (ip_route_output_key(&rt, &fl) < 0)
431 return 1;
432 if (rt->u.dst.dev != dev) {
433 NET_INC_STATS_BH(LINUX_MIB_ARPFILTER);
434 flag = 1;
435 }
436 ip_rt_put(rt);
437 return flag;
438}
439
440/* OBSOLETE FUNCTIONS */
441
442/*
443 * Find an arp mapping in the cache. If not found, post a request.
444 *
445 * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
446 * even if it exists. It is supposed that skb->dev was mangled
447 * by a virtual device (eql, shaper). Nobody but broken devices
448 * is allowed to use this function, it is scheduled to be removed. --ANK
449 */
450
451static int arp_set_predefined(int addr_hint, unsigned char * haddr, u32 paddr, struct net_device * dev)
452{
453 switch (addr_hint) {
454 case RTN_LOCAL:
455 printk(KERN_DEBUG "ARP: arp called for own IP address\n");
456 memcpy(haddr, dev->dev_addr, dev->addr_len);
457 return 1;
458 case RTN_MULTICAST:
459 arp_mc_map(paddr, haddr, dev, 1);
460 return 1;
461 case RTN_BROADCAST:
462 memcpy(haddr, dev->broadcast, dev->addr_len);
463 return 1;
464 }
465 return 0;
466}
467
468
469int arp_find(unsigned char *haddr, struct sk_buff *skb)
470{
471 struct net_device *dev = skb->dev;
472 u32 paddr;
473 struct neighbour *n;
474
475 if (!skb->dst) {
476 printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
477 kfree_skb(skb);
478 return 1;
479 }
480
481 paddr = ((struct rtable*)skb->dst)->rt_gateway;
482
483 if (arp_set_predefined(inet_addr_type(paddr), haddr, paddr, dev))
484 return 0;
485
486 n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
487
488 if (n) {
489 n->used = jiffies;
490 if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) {
491 read_lock_bh(&n->lock);
492 memcpy(haddr, n->ha, dev->addr_len);
493 read_unlock_bh(&n->lock);
494 neigh_release(n);
495 return 0;
496 }
497 neigh_release(n);
498 } else
499 kfree_skb(skb);
500 return 1;
501}
502
503/* END OF OBSOLETE FUNCTIONS */
504
505int arp_bind_neighbour(struct dst_entry *dst)
506{
507 struct net_device *dev = dst->dev;
508 struct neighbour *n = dst->neighbour;
509
510 if (dev == NULL)
511 return -EINVAL;
512 if (n == NULL) {
513 u32 nexthop = ((struct rtable*)dst)->rt_gateway;
514 if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT))
515 nexthop = 0;
516 n = __neigh_lookup_errno(
517#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
518 dev->type == ARPHRD_ATM ? clip_tbl_hook :
519#endif
520 &arp_tbl, &nexthop, dev);
521 if (IS_ERR(n))
522 return PTR_ERR(n);
523 dst->neighbour = n;
524 }
525 return 0;
526}
527
528/*
529 * Check if we can use proxy ARP for this path
530 */
531
532static inline int arp_fwd_proxy(struct in_device *in_dev, struct rtable *rt)
533{
534 struct in_device *out_dev;
535 int imi, omi = -1;
536
537 if (!IN_DEV_PROXY_ARP(in_dev))
538 return 0;
539
540 if ((imi = IN_DEV_MEDIUM_ID(in_dev)) == 0)
541 return 1;
542 if (imi == -1)
543 return 0;
544
545 /* place to check for proxy_arp for routes */
546
547 if ((out_dev = in_dev_get(rt->u.dst.dev)) != NULL) {
548 omi = IN_DEV_MEDIUM_ID(out_dev);
549 in_dev_put(out_dev);
550 }
551 return (omi != imi && omi != -1);
552}
553
554/*
555 * Interface to link layer: send routine and receive handler.
556 */
557
558/*
559 * Create an arp packet. If (dest_hw == NULL), we create a broadcast
560 * message.
561 */
562struct sk_buff *arp_create(int type, int ptype, u32 dest_ip,
563 struct net_device *dev, u32 src_ip,
564 unsigned char *dest_hw, unsigned char *src_hw,
565 unsigned char *target_hw)
566{
567 struct sk_buff *skb;
568 struct arphdr *arp;
569 unsigned char *arp_ptr;
570
571 /*
572 * Allocate a buffer
573 */
574
575 skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4)
576 + LL_RESERVED_SPACE(dev), GFP_ATOMIC);
577 if (skb == NULL)
578 return NULL;
579
580 skb_reserve(skb, LL_RESERVED_SPACE(dev));
581 skb->nh.raw = skb->data;
582 arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4));
583 skb->dev = dev;
584 skb->protocol = htons(ETH_P_ARP);
585 if (src_hw == NULL)
586 src_hw = dev->dev_addr;
587 if (dest_hw == NULL)
588 dest_hw = dev->broadcast;
589
590 /*
591 * Fill the device header for the ARP frame
592 */
593 if (dev->hard_header &&
594 dev->hard_header(skb,dev,ptype,dest_hw,src_hw,skb->len) < 0)
595 goto out;
596
597 /*
598 * Fill out the arp protocol part.
599 *
600 * The arp hardware type should match the device type, except for FDDI,
601 * which (according to RFC 1390) should always equal 1 (Ethernet).
602 */
603 /*
604 * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
605 * DIX code for the protocol. Make these device structure fields.
606 */
607 switch (dev->type) {
608 default:
609 arp->ar_hrd = htons(dev->type);
610 arp->ar_pro = htons(ETH_P_IP);
611 break;
612
613#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
614 case ARPHRD_AX25:
615 arp->ar_hrd = htons(ARPHRD_AX25);
616 arp->ar_pro = htons(AX25_P_IP);
617 break;
618
619#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
620 case ARPHRD_NETROM:
621 arp->ar_hrd = htons(ARPHRD_NETROM);
622 arp->ar_pro = htons(AX25_P_IP);
623 break;
624#endif
625#endif
626
627#ifdef CONFIG_FDDI
628 case ARPHRD_FDDI:
629 arp->ar_hrd = htons(ARPHRD_ETHER);
630 arp->ar_pro = htons(ETH_P_IP);
631 break;
632#endif
633#ifdef CONFIG_TR
634 case ARPHRD_IEEE802_TR:
635 arp->ar_hrd = htons(ARPHRD_IEEE802);
636 arp->ar_pro = htons(ETH_P_IP);
637 break;
638#endif
639 }
640
641 arp->ar_hln = dev->addr_len;
642 arp->ar_pln = 4;
643 arp->ar_op = htons(type);
644
645 arp_ptr=(unsigned char *)(arp+1);
646
647 memcpy(arp_ptr, src_hw, dev->addr_len);
648 arp_ptr+=dev->addr_len;
649 memcpy(arp_ptr, &src_ip,4);
650 arp_ptr+=4;
651 if (target_hw != NULL)
652 memcpy(arp_ptr, target_hw, dev->addr_len);
653 else
654 memset(arp_ptr, 0, dev->addr_len);
655 arp_ptr+=dev->addr_len;
656 memcpy(arp_ptr, &dest_ip, 4);
657
658 return skb;
659
660out:
661 kfree_skb(skb);
662 return NULL;
663}
664
665/*
666 * Send an arp packet.
667 */
668void arp_xmit(struct sk_buff *skb)
669{
670 /* Send it off, maybe filter it using firewalling first. */
671 NF_HOOK(NF_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
672}
673
674/*
675 * Create and send an arp packet.
676 */
677void arp_send(int type, int ptype, u32 dest_ip,
678 struct net_device *dev, u32 src_ip,
679 unsigned char *dest_hw, unsigned char *src_hw,
680 unsigned char *target_hw)
681{
682 struct sk_buff *skb;
683
684 /*
685 * No arp on this interface.
686 */
687
688 if (dev->flags&IFF_NOARP)
689 return;
690
691 skb = arp_create(type, ptype, dest_ip, dev, src_ip,
692 dest_hw, src_hw, target_hw);
693 if (skb == NULL) {
694 return;
695 }
696
697 arp_xmit(skb);
698}
699
1da177e4
LT
700/*
701 * Process an arp request.
702 */
703
704static int arp_process(struct sk_buff *skb)
705{
706 struct net_device *dev = skb->dev;
707 struct in_device *in_dev = in_dev_get(dev);
708 struct arphdr *arp;
709 unsigned char *arp_ptr;
710 struct rtable *rt;
711 unsigned char *sha, *tha;
712 u32 sip, tip;
713 u16 dev_type = dev->type;
714 int addr_type;
715 struct neighbour *n;
716
717 /* arp_rcv below verifies the ARP header and verifies the device
718 * is ARP'able.
719 */
720
721 if (in_dev == NULL)
722 goto out;
723
724 arp = skb->nh.arph;
725
726 switch (dev_type) {
727 default:
728 if (arp->ar_pro != htons(ETH_P_IP) ||
729 htons(dev_type) != arp->ar_hrd)
730 goto out;
731 break;
732#ifdef CONFIG_NET_ETHERNET
733 case ARPHRD_ETHER:
734#endif
735#ifdef CONFIG_TR
736 case ARPHRD_IEEE802_TR:
737#endif
738#ifdef CONFIG_FDDI
739 case ARPHRD_FDDI:
740#endif
741#ifdef CONFIG_NET_FC
742 case ARPHRD_IEEE802:
743#endif
744#if defined(CONFIG_NET_ETHERNET) || defined(CONFIG_TR) || \
745 defined(CONFIG_FDDI) || defined(CONFIG_NET_FC)
746 /*
747 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
748 * devices, according to RFC 2625) devices will accept ARP
749 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
750 * This is the case also of FDDI, where the RFC 1390 says that
751 * FDDI devices should accept ARP hardware of (1) Ethernet,
752 * however, to be more robust, we'll accept both 1 (Ethernet)
753 * or 6 (IEEE 802.2)
754 */
755 if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
756 arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
757 arp->ar_pro != htons(ETH_P_IP))
758 goto out;
759 break;
760#endif
761#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
762 case ARPHRD_AX25:
763 if (arp->ar_pro != htons(AX25_P_IP) ||
764 arp->ar_hrd != htons(ARPHRD_AX25))
765 goto out;
766 break;
767#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
768 case ARPHRD_NETROM:
769 if (arp->ar_pro != htons(AX25_P_IP) ||
770 arp->ar_hrd != htons(ARPHRD_NETROM))
771 goto out;
772 break;
773#endif
774#endif
775 }
776
777 /* Understand only these message types */
778
779 if (arp->ar_op != htons(ARPOP_REPLY) &&
780 arp->ar_op != htons(ARPOP_REQUEST))
781 goto out;
782
783/*
784 * Extract fields
785 */
786 arp_ptr= (unsigned char *)(arp+1);
787 sha = arp_ptr;
788 arp_ptr += dev->addr_len;
789 memcpy(&sip, arp_ptr, 4);
790 arp_ptr += 4;
791 tha = arp_ptr;
792 arp_ptr += dev->addr_len;
793 memcpy(&tip, arp_ptr, 4);
794/*
795 * Check for bad requests for 127.x.x.x and requests for multicast
796 * addresses. If this is one such, delete it.
797 */
798 if (LOOPBACK(tip) || MULTICAST(tip))
799 goto out;
800
801/*
802 * Special case: We must set Frame Relay source Q.922 address
803 */
804 if (dev_type == ARPHRD_DLCI)
805 sha = dev->broadcast;
806
807/*
808 * Process entry. The idea here is we want to send a reply if it is a
809 * request for us or if it is a request for someone else that we hold
810 * a proxy for. We want to add an entry to our cache if it is a reply
811 * to us or if it is a request for our address.
812 * (The assumption for this last is that if someone is requesting our
813 * address, they are probably intending to talk to us, so it saves time
814 * if we cache their address. Their address is also probably not in
815 * our cache, since ours is not in their cache.)
816 *
817 * Putting this another way, we only care about replies if they are to
818 * us, in which case we add them to the cache. For requests, we care
819 * about those for us and those for our proxies. We reply to both,
820 * and in the case of requests for us we add the requester to the arp
821 * cache.
822 */
823
824 /* Special case: IPv4 duplicate address detection packet (RFC2131) */
825 if (sip == 0) {
826 if (arp->ar_op == htons(ARPOP_REQUEST) &&
827 inet_addr_type(tip) == RTN_LOCAL &&
828 !arp_ignore(in_dev,dev,sip,tip))
829 arp_send(ARPOP_REPLY,ETH_P_ARP,tip,dev,tip,sha,dev->dev_addr,dev->dev_addr);
830 goto out;
831 }
832
833 if (arp->ar_op == htons(ARPOP_REQUEST) &&
834 ip_route_input(skb, tip, sip, 0, dev) == 0) {
835
836 rt = (struct rtable*)skb->dst;
837 addr_type = rt->rt_type;
838
839 if (addr_type == RTN_LOCAL) {
840 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
841 if (n) {
842 int dont_send = 0;
843
844 if (!dont_send)
845 dont_send |= arp_ignore(in_dev,dev,sip,tip);
846 if (!dont_send && IN_DEV_ARPFILTER(in_dev))
847 dont_send |= arp_filter(sip,tip,dev);
848 if (!dont_send)
849 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
850
851 neigh_release(n);
852 }
853 goto out;
854 } else if (IN_DEV_FORWARD(in_dev)) {
855 if ((rt->rt_flags&RTCF_DNAT) ||
856 (addr_type == RTN_UNICAST && rt->u.dst.dev != dev &&
857 (arp_fwd_proxy(in_dev, rt) || pneigh_lookup(&arp_tbl, &tip, dev, 0)))) {
858 n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
859 if (n)
860 neigh_release(n);
861
a61bbcf2 862 if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
1da177e4
LT
863 skb->pkt_type == PACKET_HOST ||
864 in_dev->arp_parms->proxy_delay == 0) {
865 arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha);
866 } else {
867 pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb);
868 in_dev_put(in_dev);
869 return 0;
870 }
871 goto out;
872 }
873 }
874 }
875
876 /* Update our ARP tables */
877
878 n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
879
880#ifdef CONFIG_IP_ACCEPT_UNSOLICITED_ARP
881 /* Unsolicited ARP is not accepted by default.
882 It is possible, that this option should be enabled for some
883 devices (strip is candidate)
884 */
885 if (n == NULL &&
886 arp->ar_op == htons(ARPOP_REPLY) &&
887 inet_addr_type(sip) == RTN_UNICAST)
888 n = __neigh_lookup(&arp_tbl, &sip, dev, -1);
889#endif
890
891 if (n) {
892 int state = NUD_REACHABLE;
893 int override;
894
895 /* If several different ARP replies follows back-to-back,
896 use the FIRST one. It is possible, if several proxy
897 agents are active. Taking the first reply prevents
898 arp trashing and chooses the fastest router.
899 */
900 override = time_after(jiffies, n->updated + n->parms->locktime);
901
902 /* Broadcast replies and request packets
903 do not assert neighbour reachability.
904 */
905 if (arp->ar_op != htons(ARPOP_REPLY) ||
906 skb->pkt_type != PACKET_HOST)
907 state = NUD_STALE;
908 neigh_update(n, sha, state, override ? NEIGH_UPDATE_F_OVERRIDE : 0);
909 neigh_release(n);
910 }
911
912out:
913 if (in_dev)
914 in_dev_put(in_dev);
915 kfree_skb(skb);
916 return 0;
917}
918
444fc8fc
HX
919static void parp_redo(struct sk_buff *skb)
920{
921 arp_process(skb);
922}
923
1da177e4
LT
924
925/*
926 * Receive an arp request from the device layer.
927 */
928
f2ccd8fa 929int arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev)
1da177e4
LT
930{
931 struct arphdr *arp;
932
933 /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
934 if (!pskb_may_pull(skb, (sizeof(struct arphdr) +
935 (2 * dev->addr_len) +
936 (2 * sizeof(u32)))))
937 goto freeskb;
938
939 arp = skb->nh.arph;
940 if (arp->ar_hln != dev->addr_len ||
941 dev->flags & IFF_NOARP ||
942 skb->pkt_type == PACKET_OTHERHOST ||
943 skb->pkt_type == PACKET_LOOPBACK ||
944 arp->ar_pln != 4)
945 goto freeskb;
946
947 if ((skb = skb_share_check(skb, GFP_ATOMIC)) == NULL)
948 goto out_of_mem;
949
a61bbcf2
PM
950 memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
951
1da177e4
LT
952 return NF_HOOK(NF_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
953
954freeskb:
955 kfree_skb(skb);
956out_of_mem:
957 return 0;
958}
959
960/*
961 * User level interface (ioctl)
962 */
963
964/*
965 * Set (create) an ARP cache entry.
966 */
967
968static int arp_req_set(struct arpreq *r, struct net_device * dev)
969{
970 u32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
971 struct neighbour *neigh;
972 int err;
973
974 if (r->arp_flags&ATF_PUBL) {
975 u32 mask = ((struct sockaddr_in *) &r->arp_netmask)->sin_addr.s_addr;
976 if (mask && mask != 0xFFFFFFFF)
977 return -EINVAL;
978 if (!dev && (r->arp_flags & ATF_COM)) {
979 dev = dev_getbyhwaddr(r->arp_ha.sa_family, r->arp_ha.sa_data);
980 if (!dev)
981 return -ENODEV;
982 }
983 if (mask) {
984 if (pneigh_lookup(&arp_tbl, &ip, dev, 1) == NULL)
985 return -ENOBUFS;
986 return 0;
987 }
988 if (dev == NULL) {
989 ipv4_devconf.proxy_arp = 1;
990 return 0;
991 }
992 if (__in_dev_get(dev)) {
993 __in_dev_get(dev)->cnf.proxy_arp = 1;
994 return 0;
995 }
996 return -ENXIO;
997 }
998
999 if (r->arp_flags & ATF_PERM)
1000 r->arp_flags |= ATF_COM;
1001 if (dev == NULL) {
1002 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1003 .tos = RTO_ONLINK } } };
1004 struct rtable * rt;
1005 if ((err = ip_route_output_key(&rt, &fl)) != 0)
1006 return err;
1007 dev = rt->u.dst.dev;
1008 ip_rt_put(rt);
1009 if (!dev)
1010 return -EINVAL;
1011 }
1012 switch (dev->type) {
1013#ifdef CONFIG_FDDI
1014 case ARPHRD_FDDI:
1015 /*
1016 * According to RFC 1390, FDDI devices should accept ARP
1017 * hardware types of 1 (Ethernet). However, to be more
1018 * robust, we'll accept hardware types of either 1 (Ethernet)
1019 * or 6 (IEEE 802.2).
1020 */
1021 if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1022 r->arp_ha.sa_family != ARPHRD_ETHER &&
1023 r->arp_ha.sa_family != ARPHRD_IEEE802)
1024 return -EINVAL;
1025 break;
1026#endif
1027 default:
1028 if (r->arp_ha.sa_family != dev->type)
1029 return -EINVAL;
1030 break;
1031 }
1032
1033 neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1034 err = PTR_ERR(neigh);
1035 if (!IS_ERR(neigh)) {
1036 unsigned state = NUD_STALE;
1037 if (r->arp_flags & ATF_PERM)
1038 state = NUD_PERMANENT;
1039 err = neigh_update(neigh, (r->arp_flags&ATF_COM) ?
1040 r->arp_ha.sa_data : NULL, state,
1041 NEIGH_UPDATE_F_OVERRIDE|
1042 NEIGH_UPDATE_F_ADMIN);
1043 neigh_release(neigh);
1044 }
1045 return err;
1046}
1047
1048static unsigned arp_state_to_flags(struct neighbour *neigh)
1049{
1050 unsigned flags = 0;
1051 if (neigh->nud_state&NUD_PERMANENT)
1052 flags = ATF_PERM|ATF_COM;
1053 else if (neigh->nud_state&NUD_VALID)
1054 flags = ATF_COM;
1055 return flags;
1056}
1057
1058/*
1059 * Get an ARP cache entry.
1060 */
1061
1062static int arp_req_get(struct arpreq *r, struct net_device *dev)
1063{
1064 u32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1065 struct neighbour *neigh;
1066 int err = -ENXIO;
1067
1068 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1069 if (neigh) {
1070 read_lock_bh(&neigh->lock);
1071 memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1072 r->arp_flags = arp_state_to_flags(neigh);
1073 read_unlock_bh(&neigh->lock);
1074 r->arp_ha.sa_family = dev->type;
1075 strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1076 neigh_release(neigh);
1077 err = 0;
1078 }
1079 return err;
1080}
1081
1082static int arp_req_delete(struct arpreq *r, struct net_device * dev)
1083{
1084 int err;
1085 u32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1086 struct neighbour *neigh;
1087
1088 if (r->arp_flags & ATF_PUBL) {
1089 u32 mask =
1090 ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1091 if (mask == 0xFFFFFFFF)
1092 return pneigh_delete(&arp_tbl, &ip, dev);
1093 if (mask == 0) {
1094 if (dev == NULL) {
1095 ipv4_devconf.proxy_arp = 0;
1096 return 0;
1097 }
1098 if (__in_dev_get(dev)) {
1099 __in_dev_get(dev)->cnf.proxy_arp = 0;
1100 return 0;
1101 }
1102 return -ENXIO;
1103 }
1104 return -EINVAL;
1105 }
1106
1107 if (dev == NULL) {
1108 struct flowi fl = { .nl_u = { .ip4_u = { .daddr = ip,
1109 .tos = RTO_ONLINK } } };
1110 struct rtable * rt;
1111 if ((err = ip_route_output_key(&rt, &fl)) != 0)
1112 return err;
1113 dev = rt->u.dst.dev;
1114 ip_rt_put(rt);
1115 if (!dev)
1116 return -EINVAL;
1117 }
1118 err = -ENXIO;
1119 neigh = neigh_lookup(&arp_tbl, &ip, dev);
1120 if (neigh) {
1121 if (neigh->nud_state&~NUD_NOARP)
1122 err = neigh_update(neigh, NULL, NUD_FAILED,
1123 NEIGH_UPDATE_F_OVERRIDE|
1124 NEIGH_UPDATE_F_ADMIN);
1125 neigh_release(neigh);
1126 }
1127 return err;
1128}
1129
1130/*
1131 * Handle an ARP layer I/O control request.
1132 */
1133
1134int arp_ioctl(unsigned int cmd, void __user *arg)
1135{
1136 int err;
1137 struct arpreq r;
1138 struct net_device *dev = NULL;
1139
1140 switch (cmd) {
1141 case SIOCDARP:
1142 case SIOCSARP:
1143 if (!capable(CAP_NET_ADMIN))
1144 return -EPERM;
1145 case SIOCGARP:
1146 err = copy_from_user(&r, arg, sizeof(struct arpreq));
1147 if (err)
1148 return -EFAULT;
1149 break;
1150 default:
1151 return -EINVAL;
1152 }
1153
1154 if (r.arp_pa.sa_family != AF_INET)
1155 return -EPFNOSUPPORT;
1156
1157 if (!(r.arp_flags & ATF_PUBL) &&
1158 (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB)))
1159 return -EINVAL;
1160 if (!(r.arp_flags & ATF_NETMASK))
1161 ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1162 htonl(0xFFFFFFFFUL);
1163 rtnl_lock();
1164 if (r.arp_dev[0]) {
1165 err = -ENODEV;
1166 if ((dev = __dev_get_by_name(r.arp_dev)) == NULL)
1167 goto out;
1168
1169 /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1170 if (!r.arp_ha.sa_family)
1171 r.arp_ha.sa_family = dev->type;
1172 err = -EINVAL;
1173 if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1174 goto out;
1175 } else if (cmd == SIOCGARP) {
1176 err = -ENODEV;
1177 goto out;
1178 }
1179
1180 switch(cmd) {
1181 case SIOCDARP:
1182 err = arp_req_delete(&r, dev);
1183 break;
1184 case SIOCSARP:
1185 err = arp_req_set(&r, dev);
1186 break;
1187 case SIOCGARP:
1188 err = arp_req_get(&r, dev);
1189 if (!err && copy_to_user(arg, &r, sizeof(r)))
1190 err = -EFAULT;
1191 break;
1192 }
1193out:
1194 rtnl_unlock();
1195 return err;
1196}
1197
1198static int arp_netdev_event(struct notifier_block *this, unsigned long event, void *ptr)
1199{
1200 struct net_device *dev = ptr;
1201
1202 switch (event) {
1203 case NETDEV_CHANGEADDR:
1204 neigh_changeaddr(&arp_tbl, dev);
1205 rt_cache_flush(0);
1206 break;
1207 default:
1208 break;
1209 }
1210
1211 return NOTIFY_DONE;
1212}
1213
1214static struct notifier_block arp_netdev_notifier = {
1215 .notifier_call = arp_netdev_event,
1216};
1217
1218/* Note, that it is not on notifier chain.
1219 It is necessary, that this routine was called after route cache will be
1220 flushed.
1221 */
1222void arp_ifdown(struct net_device *dev)
1223{
1224 neigh_ifdown(&arp_tbl, dev);
1225}
1226
1227
1228/*
1229 * Called once on startup.
1230 */
1231
1232static struct packet_type arp_packet_type = {
1233 .type = __constant_htons(ETH_P_ARP),
1234 .func = arp_rcv,
1235};
1236
1237static int arp_proc_init(void);
1238
1239void __init arp_init(void)
1240{
1241 neigh_table_init(&arp_tbl);
1242
1243 dev_add_pack(&arp_packet_type);
1244 arp_proc_init();
1245#ifdef CONFIG_SYSCTL
1246 neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4,
1247 NET_IPV4_NEIGH, "ipv4", NULL, NULL);
1248#endif
1249 register_netdevice_notifier(&arp_netdev_notifier);
1250}
1251
1252#ifdef CONFIG_PROC_FS
1253#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1254
1255/* ------------------------------------------------------------------------ */
1256/*
1257 * ax25 -> ASCII conversion
1258 */
1259static char *ax2asc2(ax25_address *a, char *buf)
1260{
1261 char c, *s;
1262 int n;
1263
1264 for (n = 0, s = buf; n < 6; n++) {
1265 c = (a->ax25_call[n] >> 1) & 0x7F;
1266
1267 if (c != ' ') *s++ = c;
1268 }
1269
1270 *s++ = '-';
1271
1272 if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) {
1273 *s++ = '1';
1274 n -= 10;
1275 }
1276
1277 *s++ = n + '0';
1278 *s++ = '\0';
1279
1280 if (*buf == '\0' || *buf == '-')
1281 return "*";
1282
1283 return buf;
1284
1285}
1286#endif /* CONFIG_AX25 */
1287
1288#define HBUFFERLEN 30
1289
1290static void arp_format_neigh_entry(struct seq_file *seq,
1291 struct neighbour *n)
1292{
1293 char hbuffer[HBUFFERLEN];
1294 const char hexbuf[] = "0123456789ABCDEF";
1295 int k, j;
1296 char tbuf[16];
1297 struct net_device *dev = n->dev;
1298 int hatype = dev->type;
1299
1300 read_lock(&n->lock);
1301 /* Convert hardware address to XX:XX:XX:XX ... form. */
1302#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1303 if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1304 ax2asc2((ax25_address *)n->ha, hbuffer);
1305 else {
1306#endif
1307 for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1308 hbuffer[k++] = hexbuf[(n->ha[j] >> 4) & 15];
1309 hbuffer[k++] = hexbuf[n->ha[j] & 15];
1310 hbuffer[k++] = ':';
1311 }
1312 hbuffer[--k] = 0;
1313#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1314 }
1315#endif
1316 sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->primary_key));
1317 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1318 tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1319 read_unlock(&n->lock);
1320}
1321
1322static void arp_format_pneigh_entry(struct seq_file *seq,
1323 struct pneigh_entry *n)
1324{
1325 struct net_device *dev = n->dev;
1326 int hatype = dev ? dev->type : 0;
1327 char tbuf[16];
1328
1329 sprintf(tbuf, "%u.%u.%u.%u", NIPQUAD(*(u32*)n->key));
1330 seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
1331 tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1332 dev ? dev->name : "*");
1333}
1334
1335static int arp_seq_show(struct seq_file *seq, void *v)
1336{
1337 if (v == SEQ_START_TOKEN) {
1338 seq_puts(seq, "IP address HW type Flags "
1339 "HW address Mask Device\n");
1340 } else {
1341 struct neigh_seq_state *state = seq->private;
1342
1343 if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1344 arp_format_pneigh_entry(seq, v);
1345 else
1346 arp_format_neigh_entry(seq, v);
1347 }
1348
1349 return 0;
1350}
1351
1352static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1353{
1354 /* Don't want to confuse "arp -a" w/ magic entries,
1355 * so we tell the generic iterator to skip NUD_NOARP.
1356 */
1357 return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1358}
1359
1360/* ------------------------------------------------------------------------ */
1361
1362static struct seq_operations arp_seq_ops = {
1363 .start = arp_seq_start,
1364 .next = neigh_seq_next,
1365 .stop = neigh_seq_stop,
1366 .show = arp_seq_show,
1367};
1368
1369static int arp_seq_open(struct inode *inode, struct file *file)
1370{
1371 struct seq_file *seq;
1372 int rc = -ENOMEM;
1373 struct neigh_seq_state *s = kmalloc(sizeof(*s), GFP_KERNEL);
1374
1375 if (!s)
1376 goto out;
1377
1378 memset(s, 0, sizeof(*s));
1379 rc = seq_open(file, &arp_seq_ops);
1380 if (rc)
1381 goto out_kfree;
1382
1383 seq = file->private_data;
1384 seq->private = s;
1385out:
1386 return rc;
1387out_kfree:
1388 kfree(s);
1389 goto out;
1390}
1391
1392static struct file_operations arp_seq_fops = {
1393 .owner = THIS_MODULE,
1394 .open = arp_seq_open,
1395 .read = seq_read,
1396 .llseek = seq_lseek,
1397 .release = seq_release_private,
1398};
1399
1400static int __init arp_proc_init(void)
1401{
1402 if (!proc_net_fops_create("arp", S_IRUGO, &arp_seq_fops))
1403 return -ENOMEM;
1404 return 0;
1405}
1406
1407#else /* CONFIG_PROC_FS */
1408
1409static int __init arp_proc_init(void)
1410{
1411 return 0;
1412}
1413
1414#endif /* CONFIG_PROC_FS */
1415
1416EXPORT_SYMBOL(arp_broken_ops);
1417EXPORT_SYMBOL(arp_find);
1418EXPORT_SYMBOL(arp_rcv);
1419EXPORT_SYMBOL(arp_create);
1420EXPORT_SYMBOL(arp_xmit);
1421EXPORT_SYMBOL(arp_send);
1422EXPORT_SYMBOL(arp_tbl);
1423
1424#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
1425EXPORT_SYMBOL(clip_tbl_hook);
1426#endif