]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmscan.c
mm: use rlimit helpers
[net-next-2.6.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
a79311c1
RR
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
22fba335
KM
58 /* How many pages shrink_list() should reclaim */
59 unsigned long nr_to_reclaim;
60
7b51755c
KM
61 unsigned long hibernation_mode;
62
1da177e4 63 /* This context's GFP mask */
6daa0e28 64 gfp_t gfp_mask;
1da177e4
LT
65
66 int may_writepage;
67
a6dc60f8
JW
68 /* Can mapped pages be reclaimed? */
69 int may_unmap;
f1fd1067 70
2e2e4259
KM
71 /* Can pages be swapped as part of reclaim? */
72 int may_swap;
73
d6277db4 74 int swappiness;
408d8544
NP
75
76 int all_unreclaimable;
5ad333eb
AW
77
78 int order;
66e1707b
BS
79
80 /* Which cgroup do we reclaim from */
81 struct mem_cgroup *mem_cgroup;
82
327c0e96
KH
83 /*
84 * Nodemask of nodes allowed by the caller. If NULL, all nodes
85 * are scanned.
86 */
87 nodemask_t *nodemask;
88
66e1707b
BS
89 /* Pluggable isolate pages callback */
90 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
91 unsigned long *scanned, int order, int mode,
92 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 93 int active, int file);
1da177e4
LT
94};
95
1da177e4
LT
96#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
97
98#ifdef ARCH_HAS_PREFETCH
99#define prefetch_prev_lru_page(_page, _base, _field) \
100 do { \
101 if ((_page)->lru.prev != _base) { \
102 struct page *prev; \
103 \
104 prev = lru_to_page(&(_page->lru)); \
105 prefetch(&prev->_field); \
106 } \
107 } while (0)
108#else
109#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
110#endif
111
112#ifdef ARCH_HAS_PREFETCHW
113#define prefetchw_prev_lru_page(_page, _base, _field) \
114 do { \
115 if ((_page)->lru.prev != _base) { \
116 struct page *prev; \
117 \
118 prev = lru_to_page(&(_page->lru)); \
119 prefetchw(&prev->_field); \
120 } \
121 } while (0)
122#else
123#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
124#endif
125
126/*
127 * From 0 .. 100. Higher means more swappy.
128 */
129int vm_swappiness = 60;
bd1e22b8 130long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
131
132static LIST_HEAD(shrinker_list);
133static DECLARE_RWSEM(shrinker_rwsem);
134
00f0b825 135#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 136#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 137#else
e72e2bd6 138#define scanning_global_lru(sc) (1)
91a45470
KH
139#endif
140
6e901571
KM
141static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
142 struct scan_control *sc)
143{
e72e2bd6 144 if (!scanning_global_lru(sc))
3e2f41f1
KM
145 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
146
6e901571
KM
147 return &zone->reclaim_stat;
148}
149
0b217676
VL
150static unsigned long zone_nr_lru_pages(struct zone *zone,
151 struct scan_control *sc, enum lru_list lru)
c9f299d9 152{
e72e2bd6 153 if (!scanning_global_lru(sc))
a3d8e054
KM
154 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
155
c9f299d9
KM
156 return zone_page_state(zone, NR_LRU_BASE + lru);
157}
158
159
1da177e4
LT
160/*
161 * Add a shrinker callback to be called from the vm
162 */
8e1f936b 163void register_shrinker(struct shrinker *shrinker)
1da177e4 164{
8e1f936b
RR
165 shrinker->nr = 0;
166 down_write(&shrinker_rwsem);
167 list_add_tail(&shrinker->list, &shrinker_list);
168 up_write(&shrinker_rwsem);
1da177e4 169}
8e1f936b 170EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
171
172/*
173 * Remove one
174 */
8e1f936b 175void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
176{
177 down_write(&shrinker_rwsem);
178 list_del(&shrinker->list);
179 up_write(&shrinker_rwsem);
1da177e4 180}
8e1f936b 181EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
182
183#define SHRINK_BATCH 128
184/*
185 * Call the shrink functions to age shrinkable caches
186 *
187 * Here we assume it costs one seek to replace a lru page and that it also
188 * takes a seek to recreate a cache object. With this in mind we age equal
189 * percentages of the lru and ageable caches. This should balance the seeks
190 * generated by these structures.
191 *
183ff22b 192 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
193 * slab to avoid swapping.
194 *
195 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
196 *
197 * `lru_pages' represents the number of on-LRU pages in all the zones which
198 * are eligible for the caller's allocation attempt. It is used for balancing
199 * slab reclaim versus page reclaim.
b15e0905
AM
200 *
201 * Returns the number of slab objects which we shrunk.
1da177e4 202 */
69e05944
AM
203unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
204 unsigned long lru_pages)
1da177e4
LT
205{
206 struct shrinker *shrinker;
69e05944 207 unsigned long ret = 0;
1da177e4
LT
208
209 if (scanned == 0)
210 scanned = SWAP_CLUSTER_MAX;
211
212 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 213 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
214
215 list_for_each_entry(shrinker, &shrinker_list, list) {
216 unsigned long long delta;
217 unsigned long total_scan;
8e1f936b 218 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
219
220 delta = (4 * scanned) / shrinker->seeks;
ea164d73 221 delta *= max_pass;
1da177e4
LT
222 do_div(delta, lru_pages + 1);
223 shrinker->nr += delta;
ea164d73 224 if (shrinker->nr < 0) {
88c3bd70
DR
225 printk(KERN_ERR "shrink_slab: %pF negative objects to "
226 "delete nr=%ld\n",
227 shrinker->shrink, shrinker->nr);
ea164d73
AA
228 shrinker->nr = max_pass;
229 }
230
231 /*
232 * Avoid risking looping forever due to too large nr value:
233 * never try to free more than twice the estimate number of
234 * freeable entries.
235 */
236 if (shrinker->nr > max_pass * 2)
237 shrinker->nr = max_pass * 2;
1da177e4
LT
238
239 total_scan = shrinker->nr;
240 shrinker->nr = 0;
241
242 while (total_scan >= SHRINK_BATCH) {
243 long this_scan = SHRINK_BATCH;
244 int shrink_ret;
b15e0905 245 int nr_before;
1da177e4 246
8e1f936b
RR
247 nr_before = (*shrinker->shrink)(0, gfp_mask);
248 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
249 if (shrink_ret == -1)
250 break;
b15e0905
AM
251 if (shrink_ret < nr_before)
252 ret += nr_before - shrink_ret;
f8891e5e 253 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
254 total_scan -= this_scan;
255
256 cond_resched();
257 }
258
259 shrinker->nr += total_scan;
260 }
261 up_read(&shrinker_rwsem);
b15e0905 262 return ret;
1da177e4
LT
263}
264
265/* Called without lock on whether page is mapped, so answer is unstable */
266static inline int page_mapping_inuse(struct page *page)
267{
268 struct address_space *mapping;
269
270 /* Page is in somebody's page tables. */
271 if (page_mapped(page))
272 return 1;
273
274 /* Be more reluctant to reclaim swapcache than pagecache */
275 if (PageSwapCache(page))
276 return 1;
277
278 mapping = page_mapping(page);
279 if (!mapping)
280 return 0;
281
282 /* File is mmap'd by somebody? */
283 return mapping_mapped(mapping);
284}
285
286static inline int is_page_cache_freeable(struct page *page)
287{
ceddc3a5
JW
288 /*
289 * A freeable page cache page is referenced only by the caller
290 * that isolated the page, the page cache radix tree and
291 * optional buffer heads at page->private.
292 */
edcf4748 293 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
294}
295
296static int may_write_to_queue(struct backing_dev_info *bdi)
297{
930d9152 298 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
299 return 1;
300 if (!bdi_write_congested(bdi))
301 return 1;
302 if (bdi == current->backing_dev_info)
303 return 1;
304 return 0;
305}
306
307/*
308 * We detected a synchronous write error writing a page out. Probably
309 * -ENOSPC. We need to propagate that into the address_space for a subsequent
310 * fsync(), msync() or close().
311 *
312 * The tricky part is that after writepage we cannot touch the mapping: nothing
313 * prevents it from being freed up. But we have a ref on the page and once
314 * that page is locked, the mapping is pinned.
315 *
316 * We're allowed to run sleeping lock_page() here because we know the caller has
317 * __GFP_FS.
318 */
319static void handle_write_error(struct address_space *mapping,
320 struct page *page, int error)
321{
322 lock_page(page);
3e9f45bd
GC
323 if (page_mapping(page) == mapping)
324 mapping_set_error(mapping, error);
1da177e4
LT
325 unlock_page(page);
326}
327
c661b078
AW
328/* Request for sync pageout. */
329enum pageout_io {
330 PAGEOUT_IO_ASYNC,
331 PAGEOUT_IO_SYNC,
332};
333
04e62a29
CL
334/* possible outcome of pageout() */
335typedef enum {
336 /* failed to write page out, page is locked */
337 PAGE_KEEP,
338 /* move page to the active list, page is locked */
339 PAGE_ACTIVATE,
340 /* page has been sent to the disk successfully, page is unlocked */
341 PAGE_SUCCESS,
342 /* page is clean and locked */
343 PAGE_CLEAN,
344} pageout_t;
345
1da177e4 346/*
1742f19f
AM
347 * pageout is called by shrink_page_list() for each dirty page.
348 * Calls ->writepage().
1da177e4 349 */
c661b078
AW
350static pageout_t pageout(struct page *page, struct address_space *mapping,
351 enum pageout_io sync_writeback)
1da177e4
LT
352{
353 /*
354 * If the page is dirty, only perform writeback if that write
355 * will be non-blocking. To prevent this allocation from being
356 * stalled by pagecache activity. But note that there may be
357 * stalls if we need to run get_block(). We could test
358 * PagePrivate for that.
359 *
6aceb53b 360 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
361 * this page's queue, we can perform writeback even if that
362 * will block.
363 *
364 * If the page is swapcache, write it back even if that would
365 * block, for some throttling. This happens by accident, because
366 * swap_backing_dev_info is bust: it doesn't reflect the
367 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
368 */
369 if (!is_page_cache_freeable(page))
370 return PAGE_KEEP;
371 if (!mapping) {
372 /*
373 * Some data journaling orphaned pages can have
374 * page->mapping == NULL while being dirty with clean buffers.
375 */
266cf658 376 if (page_has_private(page)) {
1da177e4
LT
377 if (try_to_free_buffers(page)) {
378 ClearPageDirty(page);
d40cee24 379 printk("%s: orphaned page\n", __func__);
1da177e4
LT
380 return PAGE_CLEAN;
381 }
382 }
383 return PAGE_KEEP;
384 }
385 if (mapping->a_ops->writepage == NULL)
386 return PAGE_ACTIVATE;
387 if (!may_write_to_queue(mapping->backing_dev_info))
388 return PAGE_KEEP;
389
390 if (clear_page_dirty_for_io(page)) {
391 int res;
392 struct writeback_control wbc = {
393 .sync_mode = WB_SYNC_NONE,
394 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
395 .range_start = 0,
396 .range_end = LLONG_MAX,
1da177e4
LT
397 .nonblocking = 1,
398 .for_reclaim = 1,
399 };
400
401 SetPageReclaim(page);
402 res = mapping->a_ops->writepage(page, &wbc);
403 if (res < 0)
404 handle_write_error(mapping, page, res);
994fc28c 405 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
406 ClearPageReclaim(page);
407 return PAGE_ACTIVATE;
408 }
c661b078
AW
409
410 /*
411 * Wait on writeback if requested to. This happens when
412 * direct reclaiming a large contiguous area and the
413 * first attempt to free a range of pages fails.
414 */
415 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
416 wait_on_page_writeback(page);
417
1da177e4
LT
418 if (!PageWriteback(page)) {
419 /* synchronous write or broken a_ops? */
420 ClearPageReclaim(page);
421 }
e129b5c2 422 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
423 return PAGE_SUCCESS;
424 }
425
426 return PAGE_CLEAN;
427}
428
a649fd92 429/*
e286781d
NP
430 * Same as remove_mapping, but if the page is removed from the mapping, it
431 * gets returned with a refcount of 0.
a649fd92 432 */
e286781d 433static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 434{
28e4d965
NP
435 BUG_ON(!PageLocked(page));
436 BUG_ON(mapping != page_mapping(page));
49d2e9cc 437
19fd6231 438 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 439 /*
0fd0e6b0
NP
440 * The non racy check for a busy page.
441 *
442 * Must be careful with the order of the tests. When someone has
443 * a ref to the page, it may be possible that they dirty it then
444 * drop the reference. So if PageDirty is tested before page_count
445 * here, then the following race may occur:
446 *
447 * get_user_pages(&page);
448 * [user mapping goes away]
449 * write_to(page);
450 * !PageDirty(page) [good]
451 * SetPageDirty(page);
452 * put_page(page);
453 * !page_count(page) [good, discard it]
454 *
455 * [oops, our write_to data is lost]
456 *
457 * Reversing the order of the tests ensures such a situation cannot
458 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
459 * load is not satisfied before that of page->_count.
460 *
461 * Note that if SetPageDirty is always performed via set_page_dirty,
462 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 463 */
e286781d 464 if (!page_freeze_refs(page, 2))
49d2e9cc 465 goto cannot_free;
e286781d
NP
466 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
467 if (unlikely(PageDirty(page))) {
468 page_unfreeze_refs(page, 2);
49d2e9cc 469 goto cannot_free;
e286781d 470 }
49d2e9cc
CL
471
472 if (PageSwapCache(page)) {
473 swp_entry_t swap = { .val = page_private(page) };
474 __delete_from_swap_cache(page);
19fd6231 475 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 476 swapcache_free(swap, page);
e286781d
NP
477 } else {
478 __remove_from_page_cache(page);
19fd6231 479 spin_unlock_irq(&mapping->tree_lock);
e767e056 480 mem_cgroup_uncharge_cache_page(page);
49d2e9cc
CL
481 }
482
49d2e9cc
CL
483 return 1;
484
485cannot_free:
19fd6231 486 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
487 return 0;
488}
489
e286781d
NP
490/*
491 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
492 * someone else has a ref on the page, abort and return 0. If it was
493 * successfully detached, return 1. Assumes the caller has a single ref on
494 * this page.
495 */
496int remove_mapping(struct address_space *mapping, struct page *page)
497{
498 if (__remove_mapping(mapping, page)) {
499 /*
500 * Unfreezing the refcount with 1 rather than 2 effectively
501 * drops the pagecache ref for us without requiring another
502 * atomic operation.
503 */
504 page_unfreeze_refs(page, 1);
505 return 1;
506 }
507 return 0;
508}
509
894bc310
LS
510/**
511 * putback_lru_page - put previously isolated page onto appropriate LRU list
512 * @page: page to be put back to appropriate lru list
513 *
514 * Add previously isolated @page to appropriate LRU list.
515 * Page may still be unevictable for other reasons.
516 *
517 * lru_lock must not be held, interrupts must be enabled.
518 */
894bc310
LS
519void putback_lru_page(struct page *page)
520{
521 int lru;
522 int active = !!TestClearPageActive(page);
bbfd28ee 523 int was_unevictable = PageUnevictable(page);
894bc310
LS
524
525 VM_BUG_ON(PageLRU(page));
526
527redo:
528 ClearPageUnevictable(page);
529
530 if (page_evictable(page, NULL)) {
531 /*
532 * For evictable pages, we can use the cache.
533 * In event of a race, worst case is we end up with an
534 * unevictable page on [in]active list.
535 * We know how to handle that.
536 */
401a8e1c 537 lru = active + page_lru_base_type(page);
894bc310
LS
538 lru_cache_add_lru(page, lru);
539 } else {
540 /*
541 * Put unevictable pages directly on zone's unevictable
542 * list.
543 */
544 lru = LRU_UNEVICTABLE;
545 add_page_to_unevictable_list(page);
6a7b9548
JW
546 /*
547 * When racing with an mlock clearing (page is
548 * unlocked), make sure that if the other thread does
549 * not observe our setting of PG_lru and fails
550 * isolation, we see PG_mlocked cleared below and move
551 * the page back to the evictable list.
552 *
553 * The other side is TestClearPageMlocked().
554 */
555 smp_mb();
894bc310 556 }
894bc310
LS
557
558 /*
559 * page's status can change while we move it among lru. If an evictable
560 * page is on unevictable list, it never be freed. To avoid that,
561 * check after we added it to the list, again.
562 */
563 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
564 if (!isolate_lru_page(page)) {
565 put_page(page);
566 goto redo;
567 }
568 /* This means someone else dropped this page from LRU
569 * So, it will be freed or putback to LRU again. There is
570 * nothing to do here.
571 */
572 }
573
bbfd28ee
LS
574 if (was_unevictable && lru != LRU_UNEVICTABLE)
575 count_vm_event(UNEVICTABLE_PGRESCUED);
576 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
577 count_vm_event(UNEVICTABLE_PGCULLED);
578
894bc310
LS
579 put_page(page); /* drop ref from isolate */
580}
581
1da177e4 582/*
1742f19f 583 * shrink_page_list() returns the number of reclaimed pages
1da177e4 584 */
1742f19f 585static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
586 struct scan_control *sc,
587 enum pageout_io sync_writeback)
1da177e4
LT
588{
589 LIST_HEAD(ret_pages);
590 struct pagevec freed_pvec;
591 int pgactivate = 0;
05ff5137 592 unsigned long nr_reclaimed = 0;
6fe6b7e3 593 unsigned long vm_flags;
1da177e4
LT
594
595 cond_resched();
596
597 pagevec_init(&freed_pvec, 1);
598 while (!list_empty(page_list)) {
599 struct address_space *mapping;
600 struct page *page;
601 int may_enter_fs;
602 int referenced;
603
604 cond_resched();
605
606 page = lru_to_page(page_list);
607 list_del(&page->lru);
608
529ae9aa 609 if (!trylock_page(page))
1da177e4
LT
610 goto keep;
611
725d704e 612 VM_BUG_ON(PageActive(page));
1da177e4
LT
613
614 sc->nr_scanned++;
80e43426 615
b291f000
NP
616 if (unlikely(!page_evictable(page, NULL)))
617 goto cull_mlocked;
894bc310 618
a6dc60f8 619 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
620 goto keep_locked;
621
1da177e4
LT
622 /* Double the slab pressure for mapped and swapcache pages */
623 if (page_mapped(page) || PageSwapCache(page))
624 sc->nr_scanned++;
625
c661b078
AW
626 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
627 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
628
629 if (PageWriteback(page)) {
630 /*
631 * Synchronous reclaim is performed in two passes,
632 * first an asynchronous pass over the list to
633 * start parallel writeback, and a second synchronous
634 * pass to wait for the IO to complete. Wait here
635 * for any page for which writeback has already
636 * started.
637 */
638 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
639 wait_on_page_writeback(page);
4dd4b920 640 else
c661b078
AW
641 goto keep_locked;
642 }
1da177e4 643
6fe6b7e3
WF
644 referenced = page_referenced(page, 1,
645 sc->mem_cgroup, &vm_flags);
03ef83af
MK
646 /*
647 * In active use or really unfreeable? Activate it.
648 * If page which have PG_mlocked lost isoltation race,
649 * try_to_unmap moves it to unevictable list
650 */
5ad333eb 651 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
03ef83af
MK
652 referenced && page_mapping_inuse(page)
653 && !(vm_flags & VM_LOCKED))
1da177e4
LT
654 goto activate_locked;
655
1da177e4
LT
656 /*
657 * Anonymous process memory has backing store?
658 * Try to allocate it some swap space here.
659 */
b291f000 660 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
661 if (!(sc->gfp_mask & __GFP_IO))
662 goto keep_locked;
ac47b003 663 if (!add_to_swap(page))
1da177e4 664 goto activate_locked;
63eb6b93 665 may_enter_fs = 1;
b291f000 666 }
1da177e4
LT
667
668 mapping = page_mapping(page);
1da177e4
LT
669
670 /*
671 * The page is mapped into the page tables of one or more
672 * processes. Try to unmap it here.
673 */
674 if (page_mapped(page) && mapping) {
14fa31b8 675 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
676 case SWAP_FAIL:
677 goto activate_locked;
678 case SWAP_AGAIN:
679 goto keep_locked;
b291f000
NP
680 case SWAP_MLOCK:
681 goto cull_mlocked;
1da177e4
LT
682 case SWAP_SUCCESS:
683 ; /* try to free the page below */
684 }
685 }
686
687 if (PageDirty(page)) {
5ad333eb 688 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 689 goto keep_locked;
4dd4b920 690 if (!may_enter_fs)
1da177e4 691 goto keep_locked;
52a8363e 692 if (!sc->may_writepage)
1da177e4
LT
693 goto keep_locked;
694
695 /* Page is dirty, try to write it out here */
c661b078 696 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
697 case PAGE_KEEP:
698 goto keep_locked;
699 case PAGE_ACTIVATE:
700 goto activate_locked;
701 case PAGE_SUCCESS:
4dd4b920 702 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
703 goto keep;
704 /*
705 * A synchronous write - probably a ramdisk. Go
706 * ahead and try to reclaim the page.
707 */
529ae9aa 708 if (!trylock_page(page))
1da177e4
LT
709 goto keep;
710 if (PageDirty(page) || PageWriteback(page))
711 goto keep_locked;
712 mapping = page_mapping(page);
713 case PAGE_CLEAN:
714 ; /* try to free the page below */
715 }
716 }
717
718 /*
719 * If the page has buffers, try to free the buffer mappings
720 * associated with this page. If we succeed we try to free
721 * the page as well.
722 *
723 * We do this even if the page is PageDirty().
724 * try_to_release_page() does not perform I/O, but it is
725 * possible for a page to have PageDirty set, but it is actually
726 * clean (all its buffers are clean). This happens if the
727 * buffers were written out directly, with submit_bh(). ext3
894bc310 728 * will do this, as well as the blockdev mapping.
1da177e4
LT
729 * try_to_release_page() will discover that cleanness and will
730 * drop the buffers and mark the page clean - it can be freed.
731 *
732 * Rarely, pages can have buffers and no ->mapping. These are
733 * the pages which were not successfully invalidated in
734 * truncate_complete_page(). We try to drop those buffers here
735 * and if that worked, and the page is no longer mapped into
736 * process address space (page_count == 1) it can be freed.
737 * Otherwise, leave the page on the LRU so it is swappable.
738 */
266cf658 739 if (page_has_private(page)) {
1da177e4
LT
740 if (!try_to_release_page(page, sc->gfp_mask))
741 goto activate_locked;
e286781d
NP
742 if (!mapping && page_count(page) == 1) {
743 unlock_page(page);
744 if (put_page_testzero(page))
745 goto free_it;
746 else {
747 /*
748 * rare race with speculative reference.
749 * the speculative reference will free
750 * this page shortly, so we may
751 * increment nr_reclaimed here (and
752 * leave it off the LRU).
753 */
754 nr_reclaimed++;
755 continue;
756 }
757 }
1da177e4
LT
758 }
759
e286781d 760 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 761 goto keep_locked;
1da177e4 762
a978d6f5
NP
763 /*
764 * At this point, we have no other references and there is
765 * no way to pick any more up (removed from LRU, removed
766 * from pagecache). Can use non-atomic bitops now (and
767 * we obviously don't have to worry about waking up a process
768 * waiting on the page lock, because there are no references.
769 */
770 __clear_page_locked(page);
e286781d 771free_it:
05ff5137 772 nr_reclaimed++;
e286781d
NP
773 if (!pagevec_add(&freed_pvec, page)) {
774 __pagevec_free(&freed_pvec);
775 pagevec_reinit(&freed_pvec);
776 }
1da177e4
LT
777 continue;
778
b291f000 779cull_mlocked:
63d6c5ad
HD
780 if (PageSwapCache(page))
781 try_to_free_swap(page);
b291f000
NP
782 unlock_page(page);
783 putback_lru_page(page);
784 continue;
785
1da177e4 786activate_locked:
68a22394
RR
787 /* Not a candidate for swapping, so reclaim swap space. */
788 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 789 try_to_free_swap(page);
894bc310 790 VM_BUG_ON(PageActive(page));
1da177e4
LT
791 SetPageActive(page);
792 pgactivate++;
793keep_locked:
794 unlock_page(page);
795keep:
796 list_add(&page->lru, &ret_pages);
b291f000 797 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
798 }
799 list_splice(&ret_pages, page_list);
800 if (pagevec_count(&freed_pvec))
e286781d 801 __pagevec_free(&freed_pvec);
f8891e5e 802 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 803 return nr_reclaimed;
1da177e4
LT
804}
805
5ad333eb
AW
806/* LRU Isolation modes. */
807#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
808#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
809#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
810
811/*
812 * Attempt to remove the specified page from its LRU. Only take this page
813 * if it is of the appropriate PageActive status. Pages which are being
814 * freed elsewhere are also ignored.
815 *
816 * page: page to consider
817 * mode: one of the LRU isolation modes defined above
818 *
819 * returns 0 on success, -ve errno on failure.
820 */
4f98a2fe 821int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
822{
823 int ret = -EINVAL;
824
825 /* Only take pages on the LRU. */
826 if (!PageLRU(page))
827 return ret;
828
829 /*
830 * When checking the active state, we need to be sure we are
831 * dealing with comparible boolean values. Take the logical not
832 * of each.
833 */
834 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
835 return ret;
836
6c0b1351 837 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
4f98a2fe
RR
838 return ret;
839
894bc310
LS
840 /*
841 * When this function is being called for lumpy reclaim, we
842 * initially look into all LRU pages, active, inactive and
843 * unevictable; only give shrink_page_list evictable pages.
844 */
845 if (PageUnevictable(page))
846 return ret;
847
5ad333eb 848 ret = -EBUSY;
08e552c6 849
5ad333eb
AW
850 if (likely(get_page_unless_zero(page))) {
851 /*
852 * Be careful not to clear PageLRU until after we're
853 * sure the page is not being freed elsewhere -- the
854 * page release code relies on it.
855 */
856 ClearPageLRU(page);
857 ret = 0;
858 }
859
860 return ret;
861}
862
1da177e4
LT
863/*
864 * zone->lru_lock is heavily contended. Some of the functions that
865 * shrink the lists perform better by taking out a batch of pages
866 * and working on them outside the LRU lock.
867 *
868 * For pagecache intensive workloads, this function is the hottest
869 * spot in the kernel (apart from copy_*_user functions).
870 *
871 * Appropriate locks must be held before calling this function.
872 *
873 * @nr_to_scan: The number of pages to look through on the list.
874 * @src: The LRU list to pull pages off.
875 * @dst: The temp list to put pages on to.
876 * @scanned: The number of pages that were scanned.
5ad333eb
AW
877 * @order: The caller's attempted allocation order
878 * @mode: One of the LRU isolation modes
4f98a2fe 879 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
880 *
881 * returns how many pages were moved onto *@dst.
882 */
69e05944
AM
883static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
884 struct list_head *src, struct list_head *dst,
4f98a2fe 885 unsigned long *scanned, int order, int mode, int file)
1da177e4 886{
69e05944 887 unsigned long nr_taken = 0;
c9b02d97 888 unsigned long scan;
1da177e4 889
c9b02d97 890 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
891 struct page *page;
892 unsigned long pfn;
893 unsigned long end_pfn;
894 unsigned long page_pfn;
895 int zone_id;
896
1da177e4
LT
897 page = lru_to_page(src);
898 prefetchw_prev_lru_page(page, src, flags);
899
725d704e 900 VM_BUG_ON(!PageLRU(page));
8d438f96 901
4f98a2fe 902 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
903 case 0:
904 list_move(&page->lru, dst);
2ffebca6 905 mem_cgroup_del_lru(page);
7c8ee9a8 906 nr_taken++;
5ad333eb
AW
907 break;
908
909 case -EBUSY:
910 /* else it is being freed elsewhere */
911 list_move(&page->lru, src);
2ffebca6 912 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 913 continue;
46453a6e 914
5ad333eb
AW
915 default:
916 BUG();
917 }
918
919 if (!order)
920 continue;
921
922 /*
923 * Attempt to take all pages in the order aligned region
924 * surrounding the tag page. Only take those pages of
925 * the same active state as that tag page. We may safely
926 * round the target page pfn down to the requested order
927 * as the mem_map is guarenteed valid out to MAX_ORDER,
928 * where that page is in a different zone we will detect
929 * it from its zone id and abort this block scan.
930 */
931 zone_id = page_zone_id(page);
932 page_pfn = page_to_pfn(page);
933 pfn = page_pfn & ~((1 << order) - 1);
934 end_pfn = pfn + (1 << order);
935 for (; pfn < end_pfn; pfn++) {
936 struct page *cursor_page;
937
938 /* The target page is in the block, ignore it. */
939 if (unlikely(pfn == page_pfn))
940 continue;
941
942 /* Avoid holes within the zone. */
943 if (unlikely(!pfn_valid_within(pfn)))
944 break;
945
946 cursor_page = pfn_to_page(pfn);
4f98a2fe 947
5ad333eb
AW
948 /* Check that we have not crossed a zone boundary. */
949 if (unlikely(page_zone_id(cursor_page) != zone_id))
950 continue;
de2e7567
MK
951
952 /*
953 * If we don't have enough swap space, reclaiming of
954 * anon page which don't already have a swap slot is
955 * pointless.
956 */
957 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
958 !PageSwapCache(cursor_page))
959 continue;
960
ee993b13 961 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 962 list_move(&cursor_page->lru, dst);
cb4cbcf6 963 mem_cgroup_del_lru(cursor_page);
5ad333eb
AW
964 nr_taken++;
965 scan++;
5ad333eb
AW
966 }
967 }
1da177e4
LT
968 }
969
970 *scanned = scan;
971 return nr_taken;
972}
973
66e1707b
BS
974static unsigned long isolate_pages_global(unsigned long nr,
975 struct list_head *dst,
976 unsigned long *scanned, int order,
977 int mode, struct zone *z,
978 struct mem_cgroup *mem_cont,
4f98a2fe 979 int active, int file)
66e1707b 980{
4f98a2fe 981 int lru = LRU_BASE;
66e1707b 982 if (active)
4f98a2fe
RR
983 lru += LRU_ACTIVE;
984 if (file)
985 lru += LRU_FILE;
986 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 987 mode, file);
66e1707b
BS
988}
989
5ad333eb
AW
990/*
991 * clear_active_flags() is a helper for shrink_active_list(), clearing
992 * any active bits from the pages in the list.
993 */
4f98a2fe
RR
994static unsigned long clear_active_flags(struct list_head *page_list,
995 unsigned int *count)
5ad333eb
AW
996{
997 int nr_active = 0;
4f98a2fe 998 int lru;
5ad333eb
AW
999 struct page *page;
1000
4f98a2fe 1001 list_for_each_entry(page, page_list, lru) {
401a8e1c 1002 lru = page_lru_base_type(page);
5ad333eb 1003 if (PageActive(page)) {
4f98a2fe 1004 lru += LRU_ACTIVE;
5ad333eb
AW
1005 ClearPageActive(page);
1006 nr_active++;
1007 }
4f98a2fe
RR
1008 count[lru]++;
1009 }
5ad333eb
AW
1010
1011 return nr_active;
1012}
1013
62695a84
NP
1014/**
1015 * isolate_lru_page - tries to isolate a page from its LRU list
1016 * @page: page to isolate from its LRU list
1017 *
1018 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1019 * vmstat statistic corresponding to whatever LRU list the page was on.
1020 *
1021 * Returns 0 if the page was removed from an LRU list.
1022 * Returns -EBUSY if the page was not on an LRU list.
1023 *
1024 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1025 * the active list, it will have PageActive set. If it was found on
1026 * the unevictable list, it will have the PageUnevictable bit set. That flag
1027 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1028 *
1029 * The vmstat statistic corresponding to the list on which the page was
1030 * found will be decremented.
1031 *
1032 * Restrictions:
1033 * (1) Must be called with an elevated refcount on the page. This is a
1034 * fundamentnal difference from isolate_lru_pages (which is called
1035 * without a stable reference).
1036 * (2) the lru_lock must not be held.
1037 * (3) interrupts must be enabled.
1038 */
1039int isolate_lru_page(struct page *page)
1040{
1041 int ret = -EBUSY;
1042
1043 if (PageLRU(page)) {
1044 struct zone *zone = page_zone(page);
1045
1046 spin_lock_irq(&zone->lru_lock);
1047 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1048 int lru = page_lru(page);
62695a84
NP
1049 ret = 0;
1050 ClearPageLRU(page);
4f98a2fe 1051
4f98a2fe 1052 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1053 }
1054 spin_unlock_irq(&zone->lru_lock);
1055 }
1056 return ret;
1057}
1058
35cd7815
RR
1059/*
1060 * Are there way too many processes in the direct reclaim path already?
1061 */
1062static int too_many_isolated(struct zone *zone, int file,
1063 struct scan_control *sc)
1064{
1065 unsigned long inactive, isolated;
1066
1067 if (current_is_kswapd())
1068 return 0;
1069
1070 if (!scanning_global_lru(sc))
1071 return 0;
1072
1073 if (file) {
1074 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1075 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1076 } else {
1077 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1078 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1079 }
1080
1081 return isolated > inactive;
1082}
1083
1da177e4 1084/*
1742f19f
AM
1085 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1086 * of reclaimed pages
1da177e4 1087 */
1742f19f 1088static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1089 struct zone *zone, struct scan_control *sc,
1090 int priority, int file)
1da177e4
LT
1091{
1092 LIST_HEAD(page_list);
1093 struct pagevec pvec;
69e05944 1094 unsigned long nr_scanned = 0;
05ff5137 1095 unsigned long nr_reclaimed = 0;
6e901571 1096 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
78dc583d
KM
1097 int lumpy_reclaim = 0;
1098
35cd7815 1099 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1100 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1101
1102 /* We are about to die and free our memory. Return now. */
1103 if (fatal_signal_pending(current))
1104 return SWAP_CLUSTER_MAX;
1105 }
1106
78dc583d
KM
1107 /*
1108 * If we need a large contiguous chunk of memory, or have
1109 * trouble getting a small set of contiguous pages, we
1110 * will reclaim both active and inactive pages.
1111 *
1112 * We use the same threshold as pageout congestion_wait below.
1113 */
1114 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1115 lumpy_reclaim = 1;
1116 else if (sc->order && priority < DEF_PRIORITY - 2)
1117 lumpy_reclaim = 1;
1da177e4
LT
1118
1119 pagevec_init(&pvec, 1);
1120
1121 lru_add_drain();
1122 spin_lock_irq(&zone->lru_lock);
69e05944 1123 do {
1da177e4 1124 struct page *page;
69e05944
AM
1125 unsigned long nr_taken;
1126 unsigned long nr_scan;
1127 unsigned long nr_freed;
5ad333eb 1128 unsigned long nr_active;
4f98a2fe 1129 unsigned int count[NR_LRU_LISTS] = { 0, };
78dc583d 1130 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
a731286d
KM
1131 unsigned long nr_anon;
1132 unsigned long nr_file;
1da177e4 1133
ece74b2e 1134 nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
4f98a2fe
RR
1135 &page_list, &nr_scan, sc->order, mode,
1136 zone, sc->mem_cgroup, 0, file);
b35ea17b
KM
1137
1138 if (scanning_global_lru(sc)) {
1139 zone->pages_scanned += nr_scan;
1140 if (current_is_kswapd())
1141 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1142 nr_scan);
1143 else
1144 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1145 nr_scan);
1146 }
1147
1148 if (nr_taken == 0)
1149 goto done;
1150
4f98a2fe 1151 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1152 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1153
4f98a2fe
RR
1154 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1155 -count[LRU_ACTIVE_FILE]);
1156 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1157 -count[LRU_INACTIVE_FILE]);
1158 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1159 -count[LRU_ACTIVE_ANON]);
1160 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1161 -count[LRU_INACTIVE_ANON]);
1162
a731286d
KM
1163 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1164 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1165 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1166 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
3e2f41f1 1167
62c0c2f1
HS
1168 reclaim_stat->recent_scanned[0] += nr_anon;
1169 reclaim_stat->recent_scanned[1] += nr_file;
3e2f41f1 1170
1da177e4
LT
1171 spin_unlock_irq(&zone->lru_lock);
1172
69e05944 1173 nr_scanned += nr_scan;
c661b078
AW
1174 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1175
1176 /*
1177 * If we are direct reclaiming for contiguous pages and we do
1178 * not reclaim everything in the list, try again and wait
1179 * for IO to complete. This will stall high-order allocations
1180 * but that should be acceptable to the caller
1181 */
1182 if (nr_freed < nr_taken && !current_is_kswapd() &&
78dc583d 1183 lumpy_reclaim) {
8aa7e847 1184 congestion_wait(BLK_RW_ASYNC, HZ/10);
c661b078
AW
1185
1186 /*
1187 * The attempt at page out may have made some
1188 * of the pages active, mark them inactive again.
1189 */
4f98a2fe 1190 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1191 count_vm_events(PGDEACTIVATE, nr_active);
1192
1193 nr_freed += shrink_page_list(&page_list, sc,
1194 PAGEOUT_IO_SYNC);
1195 }
1196
05ff5137 1197 nr_reclaimed += nr_freed;
b35ea17b 1198
a74609fa 1199 local_irq_disable();
b35ea17b 1200 if (current_is_kswapd())
f8891e5e 1201 __count_vm_events(KSWAPD_STEAL, nr_freed);
918d3f90 1202 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa
NP
1203
1204 spin_lock(&zone->lru_lock);
1da177e4
LT
1205 /*
1206 * Put back any unfreeable pages.
1207 */
1208 while (!list_empty(&page_list)) {
894bc310 1209 int lru;
1da177e4 1210 page = lru_to_page(&page_list);
725d704e 1211 VM_BUG_ON(PageLRU(page));
1da177e4 1212 list_del(&page->lru);
894bc310
LS
1213 if (unlikely(!page_evictable(page, NULL))) {
1214 spin_unlock_irq(&zone->lru_lock);
1215 putback_lru_page(page);
1216 spin_lock_irq(&zone->lru_lock);
1217 continue;
1218 }
1219 SetPageLRU(page);
1220 lru = page_lru(page);
1221 add_page_to_lru_list(zone, page, lru);
74a1c48f 1222 if (is_active_lru(lru)) {
b7c46d15 1223 int file = is_file_lru(lru);
6e901571 1224 reclaim_stat->recent_rotated[file]++;
4f98a2fe 1225 }
1da177e4
LT
1226 if (!pagevec_add(&pvec, page)) {
1227 spin_unlock_irq(&zone->lru_lock);
1228 __pagevec_release(&pvec);
1229 spin_lock_irq(&zone->lru_lock);
1230 }
1231 }
a731286d
KM
1232 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1233 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1234
69e05944 1235 } while (nr_scanned < max_scan);
b35ea17b 1236
1da177e4 1237done:
b35ea17b 1238 spin_unlock_irq(&zone->lru_lock);
1da177e4 1239 pagevec_release(&pvec);
05ff5137 1240 return nr_reclaimed;
1da177e4
LT
1241}
1242
3bb1a852
MB
1243/*
1244 * We are about to scan this zone at a certain priority level. If that priority
1245 * level is smaller (ie: more urgent) than the previous priority, then note
1246 * that priority level within the zone. This is done so that when the next
1247 * process comes in to scan this zone, it will immediately start out at this
1248 * priority level rather than having to build up its own scanning priority.
1249 * Here, this priority affects only the reclaim-mapped threshold.
1250 */
1251static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1252{
1253 if (priority < zone->prev_priority)
1254 zone->prev_priority = priority;
1255}
1256
1da177e4
LT
1257/*
1258 * This moves pages from the active list to the inactive list.
1259 *
1260 * We move them the other way if the page is referenced by one or more
1261 * processes, from rmap.
1262 *
1263 * If the pages are mostly unmapped, the processing is fast and it is
1264 * appropriate to hold zone->lru_lock across the whole operation. But if
1265 * the pages are mapped, the processing is slow (page_referenced()) so we
1266 * should drop zone->lru_lock around each page. It's impossible to balance
1267 * this, so instead we remove the pages from the LRU while processing them.
1268 * It is safe to rely on PG_active against the non-LRU pages in here because
1269 * nobody will play with that bit on a non-LRU page.
1270 *
1271 * The downside is that we have to touch page->_count against each page.
1272 * But we had to alter page->flags anyway.
1273 */
1cfb419b 1274
3eb4140f
WF
1275static void move_active_pages_to_lru(struct zone *zone,
1276 struct list_head *list,
1277 enum lru_list lru)
1278{
1279 unsigned long pgmoved = 0;
1280 struct pagevec pvec;
1281 struct page *page;
1282
1283 pagevec_init(&pvec, 1);
1284
1285 while (!list_empty(list)) {
1286 page = lru_to_page(list);
3eb4140f
WF
1287
1288 VM_BUG_ON(PageLRU(page));
1289 SetPageLRU(page);
1290
3eb4140f
WF
1291 list_move(&page->lru, &zone->lru[lru].list);
1292 mem_cgroup_add_lru_list(page, lru);
1293 pgmoved++;
1294
1295 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1296 spin_unlock_irq(&zone->lru_lock);
1297 if (buffer_heads_over_limit)
1298 pagevec_strip(&pvec);
1299 __pagevec_release(&pvec);
1300 spin_lock_irq(&zone->lru_lock);
1301 }
1302 }
1303 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1304 if (!is_active_lru(lru))
1305 __count_vm_events(PGDEACTIVATE, pgmoved);
1306}
1cfb419b 1307
1742f19f 1308static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1309 struct scan_control *sc, int priority, int file)
1da177e4 1310{
44c241f1 1311 unsigned long nr_taken;
69e05944 1312 unsigned long pgscanned;
6fe6b7e3 1313 unsigned long vm_flags;
1da177e4 1314 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1315 LIST_HEAD(l_active);
b69408e8 1316 LIST_HEAD(l_inactive);
1da177e4 1317 struct page *page;
6e901571 1318 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1319 unsigned long nr_rotated = 0;
1da177e4
LT
1320
1321 lru_add_drain();
1322 spin_lock_irq(&zone->lru_lock);
44c241f1 1323 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
66e1707b 1324 ISOLATE_ACTIVE, zone,
4f98a2fe 1325 sc->mem_cgroup, 1, file);
1cfb419b
KH
1326 /*
1327 * zone->pages_scanned is used for detect zone's oom
1328 * mem_cgroup remembers nr_scan by itself.
1329 */
e72e2bd6 1330 if (scanning_global_lru(sc)) {
1cfb419b 1331 zone->pages_scanned += pgscanned;
4f98a2fe 1332 }
b7c46d15 1333 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1334
3eb4140f 1335 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1336 if (file)
44c241f1 1337 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1338 else
44c241f1 1339 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1340 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1341 spin_unlock_irq(&zone->lru_lock);
1342
1da177e4
LT
1343 while (!list_empty(&l_hold)) {
1344 cond_resched();
1345 page = lru_to_page(&l_hold);
1346 list_del(&page->lru);
7e9cd484 1347
894bc310
LS
1348 if (unlikely(!page_evictable(page, NULL))) {
1349 putback_lru_page(page);
1350 continue;
1351 }
1352
7e9cd484
RR
1353 /* page_referenced clears PageReferenced */
1354 if (page_mapping_inuse(page) &&
8cab4754 1355 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
44c241f1 1356 nr_rotated++;
8cab4754
WF
1357 /*
1358 * Identify referenced, file-backed active pages and
1359 * give them one more trip around the active list. So
1360 * that executable code get better chances to stay in
1361 * memory under moderate memory pressure. Anon pages
1362 * are not likely to be evicted by use-once streaming
1363 * IO, plus JVM can create lots of anon VM_EXEC pages,
1364 * so we ignore them here.
1365 */
41e20983 1366 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1367 list_add(&page->lru, &l_active);
1368 continue;
1369 }
1370 }
7e9cd484 1371
5205e56e 1372 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1373 list_add(&page->lru, &l_inactive);
1374 }
1375
b555749a 1376 /*
8cab4754 1377 * Move pages back to the lru list.
b555749a 1378 */
2a1dc509 1379 spin_lock_irq(&zone->lru_lock);
556adecb 1380 /*
8cab4754
WF
1381 * Count referenced pages from currently used mappings as rotated,
1382 * even though only some of them are actually re-activated. This
1383 * helps balance scan pressure between file and anonymous pages in
1384 * get_scan_ratio.
7e9cd484 1385 */
b7c46d15 1386 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1387
3eb4140f
WF
1388 move_active_pages_to_lru(zone, &l_active,
1389 LRU_ACTIVE + file * LRU_FILE);
1390 move_active_pages_to_lru(zone, &l_inactive,
1391 LRU_BASE + file * LRU_FILE);
a731286d 1392 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1393 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1394}
1395
14797e23 1396static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1397{
1398 unsigned long active, inactive;
1399
1400 active = zone_page_state(zone, NR_ACTIVE_ANON);
1401 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1402
1403 if (inactive * zone->inactive_ratio < active)
1404 return 1;
1405
1406 return 0;
1407}
1408
14797e23
KM
1409/**
1410 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1411 * @zone: zone to check
1412 * @sc: scan control of this context
1413 *
1414 * Returns true if the zone does not have enough inactive anon pages,
1415 * meaning some active anon pages need to be deactivated.
1416 */
1417static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1418{
1419 int low;
1420
e72e2bd6 1421 if (scanning_global_lru(sc))
14797e23
KM
1422 low = inactive_anon_is_low_global(zone);
1423 else
c772be93 1424 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1425 return low;
1426}
1427
56e49d21
RR
1428static int inactive_file_is_low_global(struct zone *zone)
1429{
1430 unsigned long active, inactive;
1431
1432 active = zone_page_state(zone, NR_ACTIVE_FILE);
1433 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1434
1435 return (active > inactive);
1436}
1437
1438/**
1439 * inactive_file_is_low - check if file pages need to be deactivated
1440 * @zone: zone to check
1441 * @sc: scan control of this context
1442 *
1443 * When the system is doing streaming IO, memory pressure here
1444 * ensures that active file pages get deactivated, until more
1445 * than half of the file pages are on the inactive list.
1446 *
1447 * Once we get to that situation, protect the system's working
1448 * set from being evicted by disabling active file page aging.
1449 *
1450 * This uses a different ratio than the anonymous pages, because
1451 * the page cache uses a use-once replacement algorithm.
1452 */
1453static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1454{
1455 int low;
1456
1457 if (scanning_global_lru(sc))
1458 low = inactive_file_is_low_global(zone);
1459 else
1460 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1461 return low;
1462}
1463
b39415b2
RR
1464static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1465 int file)
1466{
1467 if (file)
1468 return inactive_file_is_low(zone, sc);
1469 else
1470 return inactive_anon_is_low(zone, sc);
1471}
1472
4f98a2fe 1473static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1474 struct zone *zone, struct scan_control *sc, int priority)
1475{
4f98a2fe
RR
1476 int file = is_file_lru(lru);
1477
b39415b2
RR
1478 if (is_active_lru(lru)) {
1479 if (inactive_list_is_low(zone, sc, file))
1480 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1481 return 0;
1482 }
1483
33c120ed 1484 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1485}
1486
1487/*
1488 * Determine how aggressively the anon and file LRU lists should be
1489 * scanned. The relative value of each set of LRU lists is determined
1490 * by looking at the fraction of the pages scanned we did rotate back
1491 * onto the active list instead of evict.
1492 *
1493 * percent[0] specifies how much pressure to put on ram/swap backed
1494 * memory, while percent[1] determines pressure on the file LRUs.
1495 */
1496static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1497 unsigned long *percent)
1498{
1499 unsigned long anon, file, free;
1500 unsigned long anon_prio, file_prio;
1501 unsigned long ap, fp;
6e901571 1502 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
4f98a2fe 1503
0b217676
VL
1504 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1505 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1506 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1507 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1508
e72e2bd6 1509 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1510 free = zone_page_state(zone, NR_FREE_PAGES);
1511 /* If we have very few page cache pages,
1512 force-scan anon pages. */
41858966 1513 if (unlikely(file + free <= high_wmark_pages(zone))) {
eeee9a8c
KM
1514 percent[0] = 100;
1515 percent[1] = 0;
1516 return;
1517 }
4f98a2fe
RR
1518 }
1519
1520 /*
1521 * OK, so we have swap space and a fair amount of page cache
1522 * pages. We use the recently rotated / recently scanned
1523 * ratios to determine how valuable each cache is.
1524 *
1525 * Because workloads change over time (and to avoid overflow)
1526 * we keep these statistics as a floating average, which ends
1527 * up weighing recent references more than old ones.
1528 *
1529 * anon in [0], file in [1]
1530 */
6e901571 1531 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
4f98a2fe 1532 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1533 reclaim_stat->recent_scanned[0] /= 2;
1534 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1535 spin_unlock_irq(&zone->lru_lock);
1536 }
1537
6e901571 1538 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
4f98a2fe 1539 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1540 reclaim_stat->recent_scanned[1] /= 2;
1541 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1542 spin_unlock_irq(&zone->lru_lock);
1543 }
1544
1545 /*
1546 * With swappiness at 100, anonymous and file have the same priority.
1547 * This scanning priority is essentially the inverse of IO cost.
1548 */
1549 anon_prio = sc->swappiness;
1550 file_prio = 200 - sc->swappiness;
1551
1552 /*
00d8089c
RR
1553 * The amount of pressure on anon vs file pages is inversely
1554 * proportional to the fraction of recently scanned pages on
1555 * each list that were recently referenced and in active use.
4f98a2fe 1556 */
6e901571
KM
1557 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1558 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1559
6e901571
KM
1560 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1561 fp /= reclaim_stat->recent_rotated[1] + 1;
4f98a2fe
RR
1562
1563 /* Normalize to percentages */
1564 percent[0] = 100 * ap / (ap + fp + 1);
1565 percent[1] = 100 - percent[0];
b69408e8
CL
1566}
1567
6e08a369
WF
1568/*
1569 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1570 * until we collected @swap_cluster_max pages to scan.
1571 */
1572static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
ece74b2e 1573 unsigned long *nr_saved_scan)
6e08a369
WF
1574{
1575 unsigned long nr;
1576
1577 *nr_saved_scan += nr_to_scan;
1578 nr = *nr_saved_scan;
1579
ece74b2e 1580 if (nr >= SWAP_CLUSTER_MAX)
6e08a369
WF
1581 *nr_saved_scan = 0;
1582 else
1583 nr = 0;
1584
1585 return nr;
1586}
4f98a2fe 1587
1da177e4
LT
1588/*
1589 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1590 */
a79311c1 1591static void shrink_zone(int priority, struct zone *zone,
05ff5137 1592 struct scan_control *sc)
1da177e4 1593{
b69408e8 1594 unsigned long nr[NR_LRU_LISTS];
8695949a 1595 unsigned long nr_to_scan;
4f98a2fe 1596 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1597 enum lru_list l;
01dbe5c9 1598 unsigned long nr_reclaimed = sc->nr_reclaimed;
22fba335 1599 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
f8629631 1600 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
9198e96c 1601 int noswap = 0;
1da177e4 1602
9198e96c
DN
1603 /* If we have no swap space, do not bother scanning anon pages. */
1604 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1605 noswap = 1;
1606 percent[0] = 0;
1607 percent[1] = 100;
1608 } else
1609 get_scan_ratio(zone, sc, percent);
4f98a2fe 1610
894bc310 1611 for_each_evictable_lru(l) {
9439c1c9 1612 int file = is_file_lru(l);
8713e012 1613 unsigned long scan;
e0f79b8f 1614
0b217676 1615 scan = zone_nr_lru_pages(zone, sc, l);
9198e96c 1616 if (priority || noswap) {
9439c1c9
KM
1617 scan >>= priority;
1618 scan = (scan * percent[file]) / 100;
1619 }
f8629631 1620 nr[l] = nr_scan_try_batch(scan,
ece74b2e 1621 &reclaim_stat->nr_saved_scan[l]);
1cfb419b 1622 }
1da177e4 1623
556adecb
RR
1624 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1625 nr[LRU_INACTIVE_FILE]) {
894bc310 1626 for_each_evictable_lru(l) {
b69408e8 1627 if (nr[l]) {
ece74b2e
KM
1628 nr_to_scan = min_t(unsigned long,
1629 nr[l], SWAP_CLUSTER_MAX);
b69408e8 1630 nr[l] -= nr_to_scan;
1da177e4 1631
01dbe5c9
KM
1632 nr_reclaimed += shrink_list(l, nr_to_scan,
1633 zone, sc, priority);
b69408e8 1634 }
1da177e4 1635 }
a79311c1
RR
1636 /*
1637 * On large memory systems, scan >> priority can become
1638 * really large. This is fine for the starting priority;
1639 * we want to put equal scanning pressure on each zone.
1640 * However, if the VM has a harder time of freeing pages,
1641 * with multiple processes reclaiming pages, the total
1642 * freeing target can get unreasonably large.
1643 */
338fde90 1644 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 1645 break;
1da177e4
LT
1646 }
1647
01dbe5c9
KM
1648 sc->nr_reclaimed = nr_reclaimed;
1649
556adecb
RR
1650 /*
1651 * Even if we did not try to evict anon pages at all, we want to
1652 * rebalance the anon lru active/inactive ratio.
1653 */
69c85481 1654 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
556adecb
RR
1655 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1656
232ea4d6 1657 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1658}
1659
1660/*
1661 * This is the direct reclaim path, for page-allocating processes. We only
1662 * try to reclaim pages from zones which will satisfy the caller's allocation
1663 * request.
1664 *
41858966
MG
1665 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1666 * Because:
1da177e4
LT
1667 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1668 * allocation or
41858966
MG
1669 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1670 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1671 * zone defense algorithm.
1da177e4 1672 *
1da177e4
LT
1673 * If a zone is deemed to be full of pinned pages then just give it a light
1674 * scan then give up on it.
1675 */
a79311c1 1676static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1677 struct scan_control *sc)
1da177e4 1678{
54a6eb5c 1679 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
dd1a239f 1680 struct zoneref *z;
54a6eb5c 1681 struct zone *zone;
1cfb419b 1682
408d8544 1683 sc->all_unreclaimable = 1;
327c0e96
KH
1684 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1685 sc->nodemask) {
f3fe6512 1686 if (!populated_zone(zone))
1da177e4 1687 continue;
1cfb419b
KH
1688 /*
1689 * Take care memory controller reclaiming has small influence
1690 * to global LRU.
1691 */
e72e2bd6 1692 if (scanning_global_lru(sc)) {
1cfb419b
KH
1693 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1694 continue;
1695 note_zone_scanning_priority(zone, priority);
1da177e4 1696
1cfb419b
KH
1697 if (zone_is_all_unreclaimable(zone) &&
1698 priority != DEF_PRIORITY)
1699 continue; /* Let kswapd poll it */
1700 sc->all_unreclaimable = 0;
1701 } else {
1702 /*
1703 * Ignore cpuset limitation here. We just want to reduce
1704 * # of used pages by us regardless of memory shortage.
1705 */
1706 sc->all_unreclaimable = 0;
1707 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1708 priority);
1709 }
408d8544 1710
a79311c1 1711 shrink_zone(priority, zone, sc);
1da177e4
LT
1712 }
1713}
4f98a2fe 1714
1da177e4
LT
1715/*
1716 * This is the main entry point to direct page reclaim.
1717 *
1718 * If a full scan of the inactive list fails to free enough memory then we
1719 * are "out of memory" and something needs to be killed.
1720 *
1721 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1722 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
1723 * caller can't do much about. We kick the writeback threads and take explicit
1724 * naps in the hope that some of these pages can be written. But if the
1725 * allocating task holds filesystem locks which prevent writeout this might not
1726 * work, and the allocation attempt will fail.
a41f24ea
NA
1727 *
1728 * returns: 0, if no pages reclaimed
1729 * else, the number of pages reclaimed
1da177e4 1730 */
dac1d27b 1731static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1732 struct scan_control *sc)
1da177e4
LT
1733{
1734 int priority;
c700be3d 1735 unsigned long ret = 0;
69e05944 1736 unsigned long total_scanned = 0;
1da177e4 1737 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1738 unsigned long lru_pages = 0;
dd1a239f 1739 struct zoneref *z;
54a6eb5c 1740 struct zone *zone;
dd1a239f 1741 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
22fba335 1742 unsigned long writeback_threshold;
1da177e4 1743
873b4771
KK
1744 delayacct_freepages_start();
1745
e72e2bd6 1746 if (scanning_global_lru(sc))
1cfb419b
KH
1747 count_vm_event(ALLOCSTALL);
1748 /*
1749 * mem_cgroup will not do shrink_slab.
1750 */
e72e2bd6 1751 if (scanning_global_lru(sc)) {
54a6eb5c 1752 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1753
1cfb419b
KH
1754 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1755 continue;
1da177e4 1756
adea02a1 1757 lru_pages += zone_reclaimable_pages(zone);
1cfb419b 1758 }
1da177e4
LT
1759 }
1760
1761 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1762 sc->nr_scanned = 0;
f7b7fd8f
RR
1763 if (!priority)
1764 disable_swap_token();
a79311c1 1765 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1766 /*
1767 * Don't shrink slabs when reclaiming memory from
1768 * over limit cgroups
1769 */
e72e2bd6 1770 if (scanning_global_lru(sc)) {
dd1a239f 1771 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1772 if (reclaim_state) {
a79311c1 1773 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1774 reclaim_state->reclaimed_slab = 0;
1775 }
1da177e4 1776 }
66e1707b 1777 total_scanned += sc->nr_scanned;
22fba335 1778 if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
a79311c1 1779 ret = sc->nr_reclaimed;
1da177e4
LT
1780 goto out;
1781 }
1782
1783 /*
1784 * Try to write back as many pages as we just scanned. This
1785 * tends to cause slow streaming writers to write data to the
1786 * disk smoothly, at the dirtying rate, which is nice. But
1787 * that's undesirable in laptop mode, where we *want* lumpy
1788 * writeout. So in laptop mode, write out the whole world.
1789 */
22fba335
KM
1790 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1791 if (total_scanned > writeback_threshold) {
03ba3782 1792 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 1793 sc->may_writepage = 1;
1da177e4
LT
1794 }
1795
1796 /* Take a nap, wait for some writeback to complete */
7b51755c
KM
1797 if (!sc->hibernation_mode && sc->nr_scanned &&
1798 priority < DEF_PRIORITY - 2)
8aa7e847 1799 congestion_wait(BLK_RW_ASYNC, HZ/10);
1da177e4 1800 }
87547ee9 1801 /* top priority shrink_zones still had more to do? don't OOM, then */
e72e2bd6 1802 if (!sc->all_unreclaimable && scanning_global_lru(sc))
a79311c1 1803 ret = sc->nr_reclaimed;
1da177e4 1804out:
3bb1a852
MB
1805 /*
1806 * Now that we've scanned all the zones at this priority level, note
1807 * that level within the zone so that the next thread which performs
1808 * scanning of this zone will immediately start out at this priority
1809 * level. This affects only the decision whether or not to bring
1810 * mapped pages onto the inactive list.
1811 */
1812 if (priority < 0)
1813 priority = 0;
1da177e4 1814
e72e2bd6 1815 if (scanning_global_lru(sc)) {
54a6eb5c 1816 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1817
1818 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1819 continue;
1820
1821 zone->prev_priority = priority;
1822 }
1823 } else
1824 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1825
873b4771
KK
1826 delayacct_freepages_end();
1827
1da177e4
LT
1828 return ret;
1829}
1830
dac1d27b 1831unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 1832 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b
BS
1833{
1834 struct scan_control sc = {
1835 .gfp_mask = gfp_mask,
1836 .may_writepage = !laptop_mode,
22fba335 1837 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 1838 .may_unmap = 1,
2e2e4259 1839 .may_swap = 1,
66e1707b
BS
1840 .swappiness = vm_swappiness,
1841 .order = order,
1842 .mem_cgroup = NULL,
1843 .isolate_pages = isolate_pages_global,
327c0e96 1844 .nodemask = nodemask,
66e1707b
BS
1845 };
1846
dd1a239f 1847 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1848}
1849
00f0b825 1850#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1851
4e416953
BS
1852unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1853 gfp_t gfp_mask, bool noswap,
1854 unsigned int swappiness,
1855 struct zone *zone, int nid)
1856{
1857 struct scan_control sc = {
1858 .may_writepage = !laptop_mode,
1859 .may_unmap = 1,
1860 .may_swap = !noswap,
4e416953
BS
1861 .swappiness = swappiness,
1862 .order = 0,
1863 .mem_cgroup = mem,
1864 .isolate_pages = mem_cgroup_isolate_pages,
1865 };
1866 nodemask_t nm = nodemask_of_node(nid);
1867
1868 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1869 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1870 sc.nodemask = &nm;
1871 sc.nr_reclaimed = 0;
1872 sc.nr_scanned = 0;
1873 /*
1874 * NOTE: Although we can get the priority field, using it
1875 * here is not a good idea, since it limits the pages we can scan.
1876 * if we don't reclaim here, the shrink_zone from balance_pgdat
1877 * will pick up pages from other mem cgroup's as well. We hack
1878 * the priority and make it zero.
1879 */
1880 shrink_zone(0, zone, &sc);
1881 return sc.nr_reclaimed;
1882}
1883
e1a1cd59 1884unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
1885 gfp_t gfp_mask,
1886 bool noswap,
1887 unsigned int swappiness)
66e1707b 1888{
4e416953 1889 struct zonelist *zonelist;
66e1707b 1890 struct scan_control sc = {
66e1707b 1891 .may_writepage = !laptop_mode,
a6dc60f8 1892 .may_unmap = 1,
2e2e4259 1893 .may_swap = !noswap,
22fba335 1894 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a7885eb8 1895 .swappiness = swappiness,
66e1707b
BS
1896 .order = 0,
1897 .mem_cgroup = mem_cont,
1898 .isolate_pages = mem_cgroup_isolate_pages,
327c0e96 1899 .nodemask = NULL, /* we don't care the placement */
66e1707b 1900 };
66e1707b 1901
dd1a239f
MG
1902 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1903 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1904 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1905 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1906}
1907#endif
1908
f50de2d3 1909/* is kswapd sleeping prematurely? */
bb3ab596 1910static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
f50de2d3 1911{
bb3ab596 1912 int i;
f50de2d3
MG
1913
1914 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1915 if (remaining)
1916 return 1;
1917
1918 /* If after HZ/10, a zone is below the high mark, it's premature */
bb3ab596
KM
1919 for (i = 0; i < pgdat->nr_zones; i++) {
1920 struct zone *zone = pgdat->node_zones + i;
1921
1922 if (!populated_zone(zone))
1923 continue;
1924
de3fab39
KM
1925 if (zone_is_all_unreclaimable(zone))
1926 continue;
1927
f50de2d3
MG
1928 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1929 0, 0))
1930 return 1;
bb3ab596 1931 }
f50de2d3
MG
1932
1933 return 0;
1934}
1935
1da177e4
LT
1936/*
1937 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 1938 * they are all at high_wmark_pages(zone).
1da177e4 1939 *
1da177e4
LT
1940 * Returns the number of pages which were actually freed.
1941 *
1942 * There is special handling here for zones which are full of pinned pages.
1943 * This can happen if the pages are all mlocked, or if they are all used by
1944 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1945 * What we do is to detect the case where all pages in the zone have been
1946 * scanned twice and there has been zero successful reclaim. Mark the zone as
1947 * dead and from now on, only perform a short scan. Basically we're polling
1948 * the zone for when the problem goes away.
1949 *
1950 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
1951 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1952 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1953 * lower zones regardless of the number of free pages in the lower zones. This
1954 * interoperates with the page allocator fallback scheme to ensure that aging
1955 * of pages is balanced across the zones.
1da177e4 1956 */
d6277db4 1957static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1958{
1da177e4
LT
1959 int all_zones_ok;
1960 int priority;
1961 int i;
69e05944 1962 unsigned long total_scanned;
1da177e4 1963 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1964 struct scan_control sc = {
1965 .gfp_mask = GFP_KERNEL,
a6dc60f8 1966 .may_unmap = 1,
2e2e4259 1967 .may_swap = 1,
22fba335
KM
1968 /*
1969 * kswapd doesn't want to be bailed out while reclaim. because
1970 * we want to put equal scanning pressure on each zone.
1971 */
1972 .nr_to_reclaim = ULONG_MAX,
d6277db4 1973 .swappiness = vm_swappiness,
5ad333eb 1974 .order = order,
66e1707b
BS
1975 .mem_cgroup = NULL,
1976 .isolate_pages = isolate_pages_global,
179e9639 1977 };
3bb1a852
MB
1978 /*
1979 * temp_priority is used to remember the scanning priority at which
41858966
MG
1980 * this zone was successfully refilled to
1981 * free_pages == high_wmark_pages(zone).
3bb1a852
MB
1982 */
1983 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1984
1985loop_again:
1986 total_scanned = 0;
a79311c1 1987 sc.nr_reclaimed = 0;
c0bbbc73 1988 sc.may_writepage = !laptop_mode;
f8891e5e 1989 count_vm_event(PAGEOUTRUN);
1da177e4 1990
3bb1a852
MB
1991 for (i = 0; i < pgdat->nr_zones; i++)
1992 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1993
1994 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1995 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1996 unsigned long lru_pages = 0;
bb3ab596 1997 int has_under_min_watermark_zone = 0;
1da177e4 1998
f7b7fd8f
RR
1999 /* The swap token gets in the way of swapout... */
2000 if (!priority)
2001 disable_swap_token();
2002
1da177e4
LT
2003 all_zones_ok = 1;
2004
d6277db4
RW
2005 /*
2006 * Scan in the highmem->dma direction for the highest
2007 * zone which needs scanning
2008 */
2009 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2010 struct zone *zone = pgdat->node_zones + i;
1da177e4 2011
d6277db4
RW
2012 if (!populated_zone(zone))
2013 continue;
1da177e4 2014
e815af95
DR
2015 if (zone_is_all_unreclaimable(zone) &&
2016 priority != DEF_PRIORITY)
d6277db4 2017 continue;
1da177e4 2018
556adecb
RR
2019 /*
2020 * Do some background aging of the anon list, to give
2021 * pages a chance to be referenced before reclaiming.
2022 */
14797e23 2023 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2024 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2025 &sc, priority, 0);
2026
41858966
MG
2027 if (!zone_watermark_ok(zone, order,
2028 high_wmark_pages(zone), 0, 0)) {
d6277db4 2029 end_zone = i;
e1dbeda6 2030 break;
1da177e4 2031 }
1da177e4 2032 }
e1dbeda6
AM
2033 if (i < 0)
2034 goto out;
2035
1da177e4
LT
2036 for (i = 0; i <= end_zone; i++) {
2037 struct zone *zone = pgdat->node_zones + i;
2038
adea02a1 2039 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2040 }
2041
2042 /*
2043 * Now scan the zone in the dma->highmem direction, stopping
2044 * at the last zone which needs scanning.
2045 *
2046 * We do this because the page allocator works in the opposite
2047 * direction. This prevents the page allocator from allocating
2048 * pages behind kswapd's direction of progress, which would
2049 * cause too much scanning of the lower zones.
2050 */
2051 for (i = 0; i <= end_zone; i++) {
2052 struct zone *zone = pgdat->node_zones + i;
b15e0905 2053 int nr_slab;
4e416953 2054 int nid, zid;
1da177e4 2055
f3fe6512 2056 if (!populated_zone(zone))
1da177e4
LT
2057 continue;
2058
e815af95
DR
2059 if (zone_is_all_unreclaimable(zone) &&
2060 priority != DEF_PRIORITY)
1da177e4
LT
2061 continue;
2062
41858966
MG
2063 if (!zone_watermark_ok(zone, order,
2064 high_wmark_pages(zone), end_zone, 0))
d6277db4 2065 all_zones_ok = 0;
3bb1a852 2066 temp_priority[i] = priority;
1da177e4 2067 sc.nr_scanned = 0;
3bb1a852 2068 note_zone_scanning_priority(zone, priority);
4e416953
BS
2069
2070 nid = pgdat->node_id;
2071 zid = zone_idx(zone);
2072 /*
2073 * Call soft limit reclaim before calling shrink_zone.
2074 * For now we ignore the return value
2075 */
2076 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2077 nid, zid);
32a4330d
RR
2078 /*
2079 * We put equal pressure on every zone, unless one
2080 * zone has way too many pages free already.
2081 */
41858966
MG
2082 if (!zone_watermark_ok(zone, order,
2083 8*high_wmark_pages(zone), end_zone, 0))
a79311c1 2084 shrink_zone(priority, zone, &sc);
1da177e4 2085 reclaim_state->reclaimed_slab = 0;
b15e0905
AM
2086 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2087 lru_pages);
a79311c1 2088 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 2089 total_scanned += sc.nr_scanned;
e815af95 2090 if (zone_is_all_unreclaimable(zone))
1da177e4 2091 continue;
b15e0905 2092 if (nr_slab == 0 && zone->pages_scanned >=
adea02a1 2093 (zone_reclaimable_pages(zone) * 6))
e815af95
DR
2094 zone_set_flag(zone,
2095 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
2096 /*
2097 * If we've done a decent amount of scanning and
2098 * the reclaim ratio is low, start doing writepage
2099 * even in laptop mode
2100 */
2101 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2102 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2103 sc.may_writepage = 1;
bb3ab596
KM
2104
2105 /*
2106 * We are still under min water mark. it mean we have
2107 * GFP_ATOMIC allocation failure risk. Hurry up!
2108 */
2109 if (!zone_watermark_ok(zone, order, min_wmark_pages(zone),
2110 end_zone, 0))
2111 has_under_min_watermark_zone = 1;
2112
1da177e4 2113 }
1da177e4
LT
2114 if (all_zones_ok)
2115 break; /* kswapd: all done */
2116 /*
2117 * OK, kswapd is getting into trouble. Take a nap, then take
2118 * another pass across the zones.
2119 */
bb3ab596
KM
2120 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2121 if (has_under_min_watermark_zone)
2122 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2123 else
2124 congestion_wait(BLK_RW_ASYNC, HZ/10);
2125 }
1da177e4
LT
2126
2127 /*
2128 * We do this so kswapd doesn't build up large priorities for
2129 * example when it is freeing in parallel with allocators. It
2130 * matches the direct reclaim path behaviour in terms of impact
2131 * on zone->*_priority.
2132 */
a79311c1 2133 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2134 break;
2135 }
2136out:
3bb1a852
MB
2137 /*
2138 * Note within each zone the priority level at which this zone was
2139 * brought into a happy state. So that the next thread which scans this
2140 * zone will start out at that priority level.
2141 */
1da177e4
LT
2142 for (i = 0; i < pgdat->nr_zones; i++) {
2143 struct zone *zone = pgdat->node_zones + i;
2144
3bb1a852 2145 zone->prev_priority = temp_priority[i];
1da177e4
LT
2146 }
2147 if (!all_zones_ok) {
2148 cond_resched();
8357376d
RW
2149
2150 try_to_freeze();
2151
73ce02e9
KM
2152 /*
2153 * Fragmentation may mean that the system cannot be
2154 * rebalanced for high-order allocations in all zones.
2155 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2156 * it means the zones have been fully scanned and are still
2157 * not balanced. For high-order allocations, there is
2158 * little point trying all over again as kswapd may
2159 * infinite loop.
2160 *
2161 * Instead, recheck all watermarks at order-0 as they
2162 * are the most important. If watermarks are ok, kswapd will go
2163 * back to sleep. High-order users can still perform direct
2164 * reclaim if they wish.
2165 */
2166 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2167 order = sc.order = 0;
2168
1da177e4
LT
2169 goto loop_again;
2170 }
2171
a79311c1 2172 return sc.nr_reclaimed;
1da177e4
LT
2173}
2174
2175/*
2176 * The background pageout daemon, started as a kernel thread
4f98a2fe 2177 * from the init process.
1da177e4
LT
2178 *
2179 * This basically trickles out pages so that we have _some_
2180 * free memory available even if there is no other activity
2181 * that frees anything up. This is needed for things like routing
2182 * etc, where we otherwise might have all activity going on in
2183 * asynchronous contexts that cannot page things out.
2184 *
2185 * If there are applications that are active memory-allocators
2186 * (most normal use), this basically shouldn't matter.
2187 */
2188static int kswapd(void *p)
2189{
2190 unsigned long order;
2191 pg_data_t *pgdat = (pg_data_t*)p;
2192 struct task_struct *tsk = current;
2193 DEFINE_WAIT(wait);
2194 struct reclaim_state reclaim_state = {
2195 .reclaimed_slab = 0,
2196 };
a70f7302 2197 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2198
cf40bd16
NP
2199 lockdep_set_current_reclaim_state(GFP_KERNEL);
2200
174596a0 2201 if (!cpumask_empty(cpumask))
c5f59f08 2202 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2203 current->reclaim_state = &reclaim_state;
2204
2205 /*
2206 * Tell the memory management that we're a "memory allocator",
2207 * and that if we need more memory we should get access to it
2208 * regardless (see "__alloc_pages()"). "kswapd" should
2209 * never get caught in the normal page freeing logic.
2210 *
2211 * (Kswapd normally doesn't need memory anyway, but sometimes
2212 * you need a small amount of memory in order to be able to
2213 * page out something else, and this flag essentially protects
2214 * us from recursively trying to free more memory as we're
2215 * trying to free the first piece of memory in the first place).
2216 */
930d9152 2217 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2218 set_freezable();
1da177e4
LT
2219
2220 order = 0;
2221 for ( ; ; ) {
2222 unsigned long new_order;
8fe23e05 2223 int ret;
3e1d1d28 2224
1da177e4
LT
2225 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2226 new_order = pgdat->kswapd_max_order;
2227 pgdat->kswapd_max_order = 0;
2228 if (order < new_order) {
2229 /*
2230 * Don't sleep if someone wants a larger 'order'
2231 * allocation
2232 */
2233 order = new_order;
2234 } else {
f50de2d3
MG
2235 if (!freezing(current) && !kthread_should_stop()) {
2236 long remaining = 0;
2237
2238 /* Try to sleep for a short interval */
bb3ab596 2239 if (!sleeping_prematurely(pgdat, order, remaining)) {
f50de2d3
MG
2240 remaining = schedule_timeout(HZ/10);
2241 finish_wait(&pgdat->kswapd_wait, &wait);
2242 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2243 }
2244
2245 /*
2246 * After a short sleep, check if it was a
2247 * premature sleep. If not, then go fully
2248 * to sleep until explicitly woken up
2249 */
bb3ab596 2250 if (!sleeping_prematurely(pgdat, order, remaining))
f50de2d3
MG
2251 schedule();
2252 else {
2253 if (remaining)
bb3ab596 2254 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
f50de2d3 2255 else
bb3ab596 2256 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
f50de2d3
MG
2257 }
2258 }
b1296cc4 2259
1da177e4
LT
2260 order = pgdat->kswapd_max_order;
2261 }
2262 finish_wait(&pgdat->kswapd_wait, &wait);
2263
8fe23e05
DR
2264 ret = try_to_freeze();
2265 if (kthread_should_stop())
2266 break;
2267
2268 /*
2269 * We can speed up thawing tasks if we don't call balance_pgdat
2270 * after returning from the refrigerator
2271 */
2272 if (!ret)
b1296cc4 2273 balance_pgdat(pgdat, order);
1da177e4
LT
2274 }
2275 return 0;
2276}
2277
2278/*
2279 * A zone is low on free memory, so wake its kswapd task to service it.
2280 */
2281void wakeup_kswapd(struct zone *zone, int order)
2282{
2283 pg_data_t *pgdat;
2284
f3fe6512 2285 if (!populated_zone(zone))
1da177e4
LT
2286 return;
2287
2288 pgdat = zone->zone_pgdat;
41858966 2289 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
1da177e4
LT
2290 return;
2291 if (pgdat->kswapd_max_order < order)
2292 pgdat->kswapd_max_order = order;
02a0e53d 2293 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2294 return;
8d0986e2 2295 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2296 return;
8d0986e2 2297 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2298}
2299
adea02a1
WF
2300/*
2301 * The reclaimable count would be mostly accurate.
2302 * The less reclaimable pages may be
2303 * - mlocked pages, which will be moved to unevictable list when encountered
2304 * - mapped pages, which may require several travels to be reclaimed
2305 * - dirty pages, which is not "instantly" reclaimable
2306 */
2307unsigned long global_reclaimable_pages(void)
4f98a2fe 2308{
adea02a1
WF
2309 int nr;
2310
2311 nr = global_page_state(NR_ACTIVE_FILE) +
2312 global_page_state(NR_INACTIVE_FILE);
2313
2314 if (nr_swap_pages > 0)
2315 nr += global_page_state(NR_ACTIVE_ANON) +
2316 global_page_state(NR_INACTIVE_ANON);
2317
2318 return nr;
2319}
2320
2321unsigned long zone_reclaimable_pages(struct zone *zone)
2322{
2323 int nr;
2324
2325 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2326 zone_page_state(zone, NR_INACTIVE_FILE);
2327
2328 if (nr_swap_pages > 0)
2329 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2330 zone_page_state(zone, NR_INACTIVE_ANON);
2331
2332 return nr;
4f98a2fe
RR
2333}
2334
c6f37f12 2335#ifdef CONFIG_HIBERNATION
1da177e4 2336/*
7b51755c 2337 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2338 * freed pages.
2339 *
2340 * Rather than trying to age LRUs the aim is to preserve the overall
2341 * LRU order by reclaiming preferentially
2342 * inactive > active > active referenced > active mapped
1da177e4 2343 */
7b51755c 2344unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2345{
d6277db4 2346 struct reclaim_state reclaim_state;
d6277db4 2347 struct scan_control sc = {
7b51755c
KM
2348 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2349 .may_swap = 1,
2350 .may_unmap = 1,
d6277db4 2351 .may_writepage = 1,
7b51755c
KM
2352 .nr_to_reclaim = nr_to_reclaim,
2353 .hibernation_mode = 1,
2354 .swappiness = vm_swappiness,
2355 .order = 0,
66e1707b 2356 .isolate_pages = isolate_pages_global,
1da177e4 2357 };
7b51755c
KM
2358 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2359 struct task_struct *p = current;
2360 unsigned long nr_reclaimed;
1da177e4 2361
7b51755c
KM
2362 p->flags |= PF_MEMALLOC;
2363 lockdep_set_current_reclaim_state(sc.gfp_mask);
2364 reclaim_state.reclaimed_slab = 0;
2365 p->reclaim_state = &reclaim_state;
d6277db4 2366
7b51755c 2367 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 2368
7b51755c
KM
2369 p->reclaim_state = NULL;
2370 lockdep_clear_current_reclaim_state();
2371 p->flags &= ~PF_MEMALLOC;
d6277db4 2372
7b51755c 2373 return nr_reclaimed;
1da177e4 2374}
c6f37f12 2375#endif /* CONFIG_HIBERNATION */
1da177e4 2376
1da177e4
LT
2377/* It's optimal to keep kswapds on the same CPUs as their memory, but
2378 not required for correctness. So if the last cpu in a node goes
2379 away, we get changed to run anywhere: as the first one comes back,
2380 restore their cpu bindings. */
9c7b216d 2381static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2382 unsigned long action, void *hcpu)
1da177e4 2383{
58c0a4a7 2384 int nid;
1da177e4 2385
8bb78442 2386 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2387 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2388 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2389 const struct cpumask *mask;
2390
2391 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2392
3e597945 2393 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2394 /* One of our CPUs online: restore mask */
c5f59f08 2395 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2396 }
2397 }
2398 return NOTIFY_OK;
2399}
1da177e4 2400
3218ae14
YG
2401/*
2402 * This kswapd start function will be called by init and node-hot-add.
2403 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2404 */
2405int kswapd_run(int nid)
2406{
2407 pg_data_t *pgdat = NODE_DATA(nid);
2408 int ret = 0;
2409
2410 if (pgdat->kswapd)
2411 return 0;
2412
2413 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2414 if (IS_ERR(pgdat->kswapd)) {
2415 /* failure at boot is fatal */
2416 BUG_ON(system_state == SYSTEM_BOOTING);
2417 printk("Failed to start kswapd on node %d\n",nid);
2418 ret = -1;
2419 }
2420 return ret;
2421}
2422
8fe23e05
DR
2423/*
2424 * Called by memory hotplug when all memory in a node is offlined.
2425 */
2426void kswapd_stop(int nid)
2427{
2428 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2429
2430 if (kswapd)
2431 kthread_stop(kswapd);
2432}
2433
1da177e4
LT
2434static int __init kswapd_init(void)
2435{
3218ae14 2436 int nid;
69e05944 2437
1da177e4 2438 swap_setup();
9422ffba 2439 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2440 kswapd_run(nid);
1da177e4
LT
2441 hotcpu_notifier(cpu_callback, 0);
2442 return 0;
2443}
2444
2445module_init(kswapd_init)
9eeff239
CL
2446
2447#ifdef CONFIG_NUMA
2448/*
2449 * Zone reclaim mode
2450 *
2451 * If non-zero call zone_reclaim when the number of free pages falls below
2452 * the watermarks.
9eeff239
CL
2453 */
2454int zone_reclaim_mode __read_mostly;
2455
1b2ffb78 2456#define RECLAIM_OFF 0
7d03431c 2457#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2458#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2459#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2460
a92f7126
CL
2461/*
2462 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2463 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2464 * a zone.
2465 */
2466#define ZONE_RECLAIM_PRIORITY 4
2467
9614634f
CL
2468/*
2469 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2470 * occur.
2471 */
2472int sysctl_min_unmapped_ratio = 1;
2473
0ff38490
CL
2474/*
2475 * If the number of slab pages in a zone grows beyond this percentage then
2476 * slab reclaim needs to occur.
2477 */
2478int sysctl_min_slab_ratio = 5;
2479
90afa5de
MG
2480static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2481{
2482 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2483 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2484 zone_page_state(zone, NR_ACTIVE_FILE);
2485
2486 /*
2487 * It's possible for there to be more file mapped pages than
2488 * accounted for by the pages on the file LRU lists because
2489 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2490 */
2491 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2492}
2493
2494/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2495static long zone_pagecache_reclaimable(struct zone *zone)
2496{
2497 long nr_pagecache_reclaimable;
2498 long delta = 0;
2499
2500 /*
2501 * If RECLAIM_SWAP is set, then all file pages are considered
2502 * potentially reclaimable. Otherwise, we have to worry about
2503 * pages like swapcache and zone_unmapped_file_pages() provides
2504 * a better estimate
2505 */
2506 if (zone_reclaim_mode & RECLAIM_SWAP)
2507 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2508 else
2509 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2510
2511 /* If we can't clean pages, remove dirty pages from consideration */
2512 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2513 delta += zone_page_state(zone, NR_FILE_DIRTY);
2514
2515 /* Watch for any possible underflows due to delta */
2516 if (unlikely(delta > nr_pagecache_reclaimable))
2517 delta = nr_pagecache_reclaimable;
2518
2519 return nr_pagecache_reclaimable - delta;
2520}
2521
9eeff239
CL
2522/*
2523 * Try to free up some pages from this zone through reclaim.
2524 */
179e9639 2525static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2526{
7fb2d46d 2527 /* Minimum pages needed in order to stay on node */
69e05944 2528 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2529 struct task_struct *p = current;
2530 struct reclaim_state reclaim_state;
8695949a 2531 int priority;
179e9639
AM
2532 struct scan_control sc = {
2533 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2534 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 2535 .may_swap = 1,
22fba335
KM
2536 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2537 SWAP_CLUSTER_MAX),
179e9639 2538 .gfp_mask = gfp_mask,
d6277db4 2539 .swappiness = vm_swappiness,
bd2f6199 2540 .order = order,
66e1707b 2541 .isolate_pages = isolate_pages_global,
179e9639 2542 };
83e33a47 2543 unsigned long slab_reclaimable;
9eeff239
CL
2544
2545 disable_swap_token();
9eeff239 2546 cond_resched();
d4f7796e
CL
2547 /*
2548 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2549 * and we also need to be able to write out pages for RECLAIM_WRITE
2550 * and RECLAIM_SWAP.
2551 */
2552 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2553 reclaim_state.reclaimed_slab = 0;
2554 p->reclaim_state = &reclaim_state;
c84db23c 2555
90afa5de 2556 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
2557 /*
2558 * Free memory by calling shrink zone with increasing
2559 * priorities until we have enough memory freed.
2560 */
2561 priority = ZONE_RECLAIM_PRIORITY;
2562 do {
3bb1a852 2563 note_zone_scanning_priority(zone, priority);
a79311c1 2564 shrink_zone(priority, zone, &sc);
0ff38490 2565 priority--;
a79311c1 2566 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2567 }
c84db23c 2568
83e33a47
CL
2569 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2570 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2571 /*
7fb2d46d 2572 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2573 * many pages were freed in this zone. So we take the current
2574 * number of slab pages and shake the slab until it is reduced
2575 * by the same nr_pages that we used for reclaiming unmapped
2576 * pages.
2a16e3f4 2577 *
0ff38490
CL
2578 * Note that shrink_slab will free memory on all zones and may
2579 * take a long time.
2a16e3f4 2580 */
0ff38490 2581 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2582 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2583 slab_reclaimable - nr_pages)
0ff38490 2584 ;
83e33a47
CL
2585
2586 /*
2587 * Update nr_reclaimed by the number of slab pages we
2588 * reclaimed from this zone.
2589 */
a79311c1 2590 sc.nr_reclaimed += slab_reclaimable -
83e33a47 2591 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2592 }
2593
9eeff239 2594 p->reclaim_state = NULL;
d4f7796e 2595 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
a79311c1 2596 return sc.nr_reclaimed >= nr_pages;
9eeff239 2597}
179e9639
AM
2598
2599int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2600{
179e9639 2601 int node_id;
d773ed6b 2602 int ret;
179e9639
AM
2603
2604 /*
0ff38490
CL
2605 * Zone reclaim reclaims unmapped file backed pages and
2606 * slab pages if we are over the defined limits.
34aa1330 2607 *
9614634f
CL
2608 * A small portion of unmapped file backed pages is needed for
2609 * file I/O otherwise pages read by file I/O will be immediately
2610 * thrown out if the zone is overallocated. So we do not reclaim
2611 * if less than a specified percentage of the zone is used by
2612 * unmapped file backed pages.
179e9639 2613 */
90afa5de
MG
2614 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2615 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 2616 return ZONE_RECLAIM_FULL;
179e9639 2617
d773ed6b 2618 if (zone_is_all_unreclaimable(zone))
fa5e084e 2619 return ZONE_RECLAIM_FULL;
d773ed6b 2620
179e9639 2621 /*
d773ed6b 2622 * Do not scan if the allocation should not be delayed.
179e9639 2623 */
d773ed6b 2624 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 2625 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
2626
2627 /*
2628 * Only run zone reclaim on the local zone or on zones that do not
2629 * have associated processors. This will favor the local processor
2630 * over remote processors and spread off node memory allocations
2631 * as wide as possible.
2632 */
89fa3024 2633 node_id = zone_to_nid(zone);
37c0708d 2634 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 2635 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
2636
2637 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
2638 return ZONE_RECLAIM_NOSCAN;
2639
d773ed6b
DR
2640 ret = __zone_reclaim(zone, gfp_mask, order);
2641 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2642
24cf7251
MG
2643 if (!ret)
2644 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2645
d773ed6b 2646 return ret;
179e9639 2647}
9eeff239 2648#endif
894bc310 2649
894bc310
LS
2650/*
2651 * page_evictable - test whether a page is evictable
2652 * @page: the page to test
2653 * @vma: the VMA in which the page is or will be mapped, may be NULL
2654 *
2655 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2656 * lists vs unevictable list. The vma argument is !NULL when called from the
2657 * fault path to determine how to instantate a new page.
894bc310
LS
2658 *
2659 * Reasons page might not be evictable:
ba9ddf49 2660 * (1) page's mapping marked unevictable
b291f000 2661 * (2) page is part of an mlocked VMA
ba9ddf49 2662 *
894bc310
LS
2663 */
2664int page_evictable(struct page *page, struct vm_area_struct *vma)
2665{
2666
ba9ddf49
LS
2667 if (mapping_unevictable(page_mapping(page)))
2668 return 0;
2669
b291f000
NP
2670 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2671 return 0;
894bc310
LS
2672
2673 return 1;
2674}
89e004ea
LS
2675
2676/**
2677 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2678 * @page: page to check evictability and move to appropriate lru list
2679 * @zone: zone page is in
2680 *
2681 * Checks a page for evictability and moves the page to the appropriate
2682 * zone lru list.
2683 *
2684 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2685 * have PageUnevictable set.
2686 */
2687static void check_move_unevictable_page(struct page *page, struct zone *zone)
2688{
2689 VM_BUG_ON(PageActive(page));
2690
2691retry:
2692 ClearPageUnevictable(page);
2693 if (page_evictable(page, NULL)) {
401a8e1c 2694 enum lru_list l = page_lru_base_type(page);
af936a16 2695
89e004ea
LS
2696 __dec_zone_state(zone, NR_UNEVICTABLE);
2697 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2698 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2699 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2700 __count_vm_event(UNEVICTABLE_PGRESCUED);
2701 } else {
2702 /*
2703 * rotate unevictable list
2704 */
2705 SetPageUnevictable(page);
2706 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2707 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2708 if (page_evictable(page, NULL))
2709 goto retry;
2710 }
2711}
2712
2713/**
2714 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2715 * @mapping: struct address_space to scan for evictable pages
2716 *
2717 * Scan all pages in mapping. Check unevictable pages for
2718 * evictability and move them to the appropriate zone lru list.
2719 */
2720void scan_mapping_unevictable_pages(struct address_space *mapping)
2721{
2722 pgoff_t next = 0;
2723 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2724 PAGE_CACHE_SHIFT;
2725 struct zone *zone;
2726 struct pagevec pvec;
2727
2728 if (mapping->nrpages == 0)
2729 return;
2730
2731 pagevec_init(&pvec, 0);
2732 while (next < end &&
2733 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2734 int i;
2735 int pg_scanned = 0;
2736
2737 zone = NULL;
2738
2739 for (i = 0; i < pagevec_count(&pvec); i++) {
2740 struct page *page = pvec.pages[i];
2741 pgoff_t page_index = page->index;
2742 struct zone *pagezone = page_zone(page);
2743
2744 pg_scanned++;
2745 if (page_index > next)
2746 next = page_index;
2747 next++;
2748
2749 if (pagezone != zone) {
2750 if (zone)
2751 spin_unlock_irq(&zone->lru_lock);
2752 zone = pagezone;
2753 spin_lock_irq(&zone->lru_lock);
2754 }
2755
2756 if (PageLRU(page) && PageUnevictable(page))
2757 check_move_unevictable_page(page, zone);
2758 }
2759 if (zone)
2760 spin_unlock_irq(&zone->lru_lock);
2761 pagevec_release(&pvec);
2762
2763 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2764 }
2765
2766}
af936a16
LS
2767
2768/**
2769 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2770 * @zone - zone of which to scan the unevictable list
2771 *
2772 * Scan @zone's unevictable LRU lists to check for pages that have become
2773 * evictable. Move those that have to @zone's inactive list where they
2774 * become candidates for reclaim, unless shrink_inactive_zone() decides
2775 * to reactivate them. Pages that are still unevictable are rotated
2776 * back onto @zone's unevictable list.
2777 */
2778#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2779static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2780{
2781 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2782 unsigned long scan;
2783 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2784
2785 while (nr_to_scan > 0) {
2786 unsigned long batch_size = min(nr_to_scan,
2787 SCAN_UNEVICTABLE_BATCH_SIZE);
2788
2789 spin_lock_irq(&zone->lru_lock);
2790 for (scan = 0; scan < batch_size; scan++) {
2791 struct page *page = lru_to_page(l_unevictable);
2792
2793 if (!trylock_page(page))
2794 continue;
2795
2796 prefetchw_prev_lru_page(page, l_unevictable, flags);
2797
2798 if (likely(PageLRU(page) && PageUnevictable(page)))
2799 check_move_unevictable_page(page, zone);
2800
2801 unlock_page(page);
2802 }
2803 spin_unlock_irq(&zone->lru_lock);
2804
2805 nr_to_scan -= batch_size;
2806 }
2807}
2808
2809
2810/**
2811 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2812 *
2813 * A really big hammer: scan all zones' unevictable LRU lists to check for
2814 * pages that have become evictable. Move those back to the zones'
2815 * inactive list where they become candidates for reclaim.
2816 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2817 * and we add swap to the system. As such, it runs in the context of a task
2818 * that has possibly/probably made some previously unevictable pages
2819 * evictable.
2820 */
ff30153b 2821static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2822{
2823 struct zone *zone;
2824
2825 for_each_zone(zone) {
2826 scan_zone_unevictable_pages(zone);
2827 }
2828}
2829
2830/*
2831 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2832 * all nodes' unevictable lists for evictable pages
2833 */
2834unsigned long scan_unevictable_pages;
2835
2836int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 2837 void __user *buffer,
af936a16
LS
2838 size_t *length, loff_t *ppos)
2839{
8d65af78 2840 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
2841
2842 if (write && *(unsigned long *)table->data)
2843 scan_all_zones_unevictable_pages();
2844
2845 scan_unevictable_pages = 0;
2846 return 0;
2847}
2848
2849/*
2850 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2851 * a specified node's per zone unevictable lists for evictable pages.
2852 */
2853
2854static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2855 struct sysdev_attribute *attr,
2856 char *buf)
2857{
2858 return sprintf(buf, "0\n"); /* always zero; should fit... */
2859}
2860
2861static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2862 struct sysdev_attribute *attr,
2863 const char *buf, size_t count)
2864{
2865 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2866 struct zone *zone;
2867 unsigned long res;
2868 unsigned long req = strict_strtoul(buf, 10, &res);
2869
2870 if (!req)
2871 return 1; /* zero is no-op */
2872
2873 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2874 if (!populated_zone(zone))
2875 continue;
2876 scan_zone_unevictable_pages(zone);
2877 }
2878 return 1;
2879}
2880
2881
2882static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2883 read_scan_unevictable_node,
2884 write_scan_unevictable_node);
2885
2886int scan_unevictable_register_node(struct node *node)
2887{
2888 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2889}
2890
2891void scan_unevictable_unregister_node(struct node *node)
2892{
2893 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2894}
2895