]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmscan.c
vmscan: evict use-once pages first
[net-next-2.6.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
a79311c1
RR
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
1da177e4 58 /* This context's GFP mask */
6daa0e28 59 gfp_t gfp_mask;
1da177e4
LT
60
61 int may_writepage;
62
a6dc60f8
JW
63 /* Can mapped pages be reclaimed? */
64 int may_unmap;
f1fd1067 65
2e2e4259
KM
66 /* Can pages be swapped as part of reclaim? */
67 int may_swap;
68
1da177e4
LT
69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 * In this context, it doesn't matter that we scan the
72 * whole list at once. */
73 int swap_cluster_max;
d6277db4
RW
74
75 int swappiness;
408d8544
NP
76
77 int all_unreclaimable;
5ad333eb
AW
78
79 int order;
66e1707b
BS
80
81 /* Which cgroup do we reclaim from */
82 struct mem_cgroup *mem_cgroup;
83
327c0e96
KH
84 /*
85 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 * are scanned.
87 */
88 nodemask_t *nodemask;
89
66e1707b
BS
90 /* Pluggable isolate pages callback */
91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 unsigned long *scanned, int order, int mode,
93 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 94 int active, int file);
1da177e4
LT
95};
96
1da177e4
LT
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
bd1e22b8 131long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
00f0b825 136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 137#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 138#else
e72e2bd6 139#define scanning_global_lru(sc) (1)
91a45470
KH
140#endif
141
6e901571
KM
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144{
e72e2bd6 145 if (!scanning_global_lru(sc))
3e2f41f1
KM
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
6e901571
KM
148 return &zone->reclaim_stat;
149}
150
c9f299d9
KM
151static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
152 enum lru_list lru)
153{
e72e2bd6 154 if (!scanning_global_lru(sc))
a3d8e054
KM
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
c9f299d9
KM
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
1da177e4
LT
161/*
162 * Add a shrinker callback to be called from the vm
163 */
8e1f936b 164void register_shrinker(struct shrinker *shrinker)
1da177e4 165{
8e1f936b
RR
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
1da177e4 170}
8e1f936b 171EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
172
173/*
174 * Remove one
175 */
8e1f936b 176void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
177{
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
1da177e4 181}
8e1f936b 182EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
183ff22b 193 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
b15e0905
AM
201 *
202 * Returns the number of slab objects which we shrunk.
1da177e4 203 */
69e05944
AM
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
1da177e4
LT
206{
207 struct shrinker *shrinker;
69e05944 208 unsigned long ret = 0;
1da177e4
LT
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 214 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
8e1f936b 219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
220
221 delta = (4 * scanned) / shrinker->seeks;
ea164d73 222 delta *= max_pass;
1da177e4
LT
223 do_div(delta, lru_pages + 1);
224 shrinker->nr += delta;
ea164d73 225 if (shrinker->nr < 0) {
88c3bd70
DR
226 printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 "delete nr=%ld\n",
228 shrinker->shrink, shrinker->nr);
ea164d73
AA
229 shrinker->nr = max_pass;
230 }
231
232 /*
233 * Avoid risking looping forever due to too large nr value:
234 * never try to free more than twice the estimate number of
235 * freeable entries.
236 */
237 if (shrinker->nr > max_pass * 2)
238 shrinker->nr = max_pass * 2;
1da177e4
LT
239
240 total_scan = shrinker->nr;
241 shrinker->nr = 0;
242
243 while (total_scan >= SHRINK_BATCH) {
244 long this_scan = SHRINK_BATCH;
245 int shrink_ret;
b15e0905 246 int nr_before;
1da177e4 247
8e1f936b
RR
248 nr_before = (*shrinker->shrink)(0, gfp_mask);
249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
250 if (shrink_ret == -1)
251 break;
b15e0905
AM
252 if (shrink_ret < nr_before)
253 ret += nr_before - shrink_ret;
f8891e5e 254 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
255 total_scan -= this_scan;
256
257 cond_resched();
258 }
259
260 shrinker->nr += total_scan;
261 }
262 up_read(&shrinker_rwsem);
b15e0905 263 return ret;
1da177e4
LT
264}
265
266/* Called without lock on whether page is mapped, so answer is unstable */
267static inline int page_mapping_inuse(struct page *page)
268{
269 struct address_space *mapping;
270
271 /* Page is in somebody's page tables. */
272 if (page_mapped(page))
273 return 1;
274
275 /* Be more reluctant to reclaim swapcache than pagecache */
276 if (PageSwapCache(page))
277 return 1;
278
279 mapping = page_mapping(page);
280 if (!mapping)
281 return 0;
282
283 /* File is mmap'd by somebody? */
284 return mapping_mapped(mapping);
285}
286
287static inline int is_page_cache_freeable(struct page *page)
288{
266cf658 289 return page_count(page) - !!page_has_private(page) == 2;
1da177e4
LT
290}
291
292static int may_write_to_queue(struct backing_dev_info *bdi)
293{
930d9152 294 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
295 return 1;
296 if (!bdi_write_congested(bdi))
297 return 1;
298 if (bdi == current->backing_dev_info)
299 return 1;
300 return 0;
301}
302
303/*
304 * We detected a synchronous write error writing a page out. Probably
305 * -ENOSPC. We need to propagate that into the address_space for a subsequent
306 * fsync(), msync() or close().
307 *
308 * The tricky part is that after writepage we cannot touch the mapping: nothing
309 * prevents it from being freed up. But we have a ref on the page and once
310 * that page is locked, the mapping is pinned.
311 *
312 * We're allowed to run sleeping lock_page() here because we know the caller has
313 * __GFP_FS.
314 */
315static void handle_write_error(struct address_space *mapping,
316 struct page *page, int error)
317{
318 lock_page(page);
3e9f45bd
GC
319 if (page_mapping(page) == mapping)
320 mapping_set_error(mapping, error);
1da177e4
LT
321 unlock_page(page);
322}
323
c661b078
AW
324/* Request for sync pageout. */
325enum pageout_io {
326 PAGEOUT_IO_ASYNC,
327 PAGEOUT_IO_SYNC,
328};
329
04e62a29
CL
330/* possible outcome of pageout() */
331typedef enum {
332 /* failed to write page out, page is locked */
333 PAGE_KEEP,
334 /* move page to the active list, page is locked */
335 PAGE_ACTIVATE,
336 /* page has been sent to the disk successfully, page is unlocked */
337 PAGE_SUCCESS,
338 /* page is clean and locked */
339 PAGE_CLEAN,
340} pageout_t;
341
1da177e4 342/*
1742f19f
AM
343 * pageout is called by shrink_page_list() for each dirty page.
344 * Calls ->writepage().
1da177e4 345 */
c661b078
AW
346static pageout_t pageout(struct page *page, struct address_space *mapping,
347 enum pageout_io sync_writeback)
1da177e4
LT
348{
349 /*
350 * If the page is dirty, only perform writeback if that write
351 * will be non-blocking. To prevent this allocation from being
352 * stalled by pagecache activity. But note that there may be
353 * stalls if we need to run get_block(). We could test
354 * PagePrivate for that.
355 *
356 * If this process is currently in generic_file_write() against
357 * this page's queue, we can perform writeback even if that
358 * will block.
359 *
360 * If the page is swapcache, write it back even if that would
361 * block, for some throttling. This happens by accident, because
362 * swap_backing_dev_info is bust: it doesn't reflect the
363 * congestion state of the swapdevs. Easy to fix, if needed.
364 * See swapfile.c:page_queue_congested().
365 */
366 if (!is_page_cache_freeable(page))
367 return PAGE_KEEP;
368 if (!mapping) {
369 /*
370 * Some data journaling orphaned pages can have
371 * page->mapping == NULL while being dirty with clean buffers.
372 */
266cf658 373 if (page_has_private(page)) {
1da177e4
LT
374 if (try_to_free_buffers(page)) {
375 ClearPageDirty(page);
d40cee24 376 printk("%s: orphaned page\n", __func__);
1da177e4
LT
377 return PAGE_CLEAN;
378 }
379 }
380 return PAGE_KEEP;
381 }
382 if (mapping->a_ops->writepage == NULL)
383 return PAGE_ACTIVATE;
384 if (!may_write_to_queue(mapping->backing_dev_info))
385 return PAGE_KEEP;
386
387 if (clear_page_dirty_for_io(page)) {
388 int res;
389 struct writeback_control wbc = {
390 .sync_mode = WB_SYNC_NONE,
391 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
392 .range_start = 0,
393 .range_end = LLONG_MAX,
1da177e4
LT
394 .nonblocking = 1,
395 .for_reclaim = 1,
396 };
397
398 SetPageReclaim(page);
399 res = mapping->a_ops->writepage(page, &wbc);
400 if (res < 0)
401 handle_write_error(mapping, page, res);
994fc28c 402 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
403 ClearPageReclaim(page);
404 return PAGE_ACTIVATE;
405 }
c661b078
AW
406
407 /*
408 * Wait on writeback if requested to. This happens when
409 * direct reclaiming a large contiguous area and the
410 * first attempt to free a range of pages fails.
411 */
412 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
413 wait_on_page_writeback(page);
414
1da177e4
LT
415 if (!PageWriteback(page)) {
416 /* synchronous write or broken a_ops? */
417 ClearPageReclaim(page);
418 }
e129b5c2 419 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
420 return PAGE_SUCCESS;
421 }
422
423 return PAGE_CLEAN;
424}
425
a649fd92 426/*
e286781d
NP
427 * Same as remove_mapping, but if the page is removed from the mapping, it
428 * gets returned with a refcount of 0.
a649fd92 429 */
e286781d 430static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 431{
28e4d965
NP
432 BUG_ON(!PageLocked(page));
433 BUG_ON(mapping != page_mapping(page));
49d2e9cc 434
19fd6231 435 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 436 /*
0fd0e6b0
NP
437 * The non racy check for a busy page.
438 *
439 * Must be careful with the order of the tests. When someone has
440 * a ref to the page, it may be possible that they dirty it then
441 * drop the reference. So if PageDirty is tested before page_count
442 * here, then the following race may occur:
443 *
444 * get_user_pages(&page);
445 * [user mapping goes away]
446 * write_to(page);
447 * !PageDirty(page) [good]
448 * SetPageDirty(page);
449 * put_page(page);
450 * !page_count(page) [good, discard it]
451 *
452 * [oops, our write_to data is lost]
453 *
454 * Reversing the order of the tests ensures such a situation cannot
455 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
456 * load is not satisfied before that of page->_count.
457 *
458 * Note that if SetPageDirty is always performed via set_page_dirty,
459 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 460 */
e286781d 461 if (!page_freeze_refs(page, 2))
49d2e9cc 462 goto cannot_free;
e286781d
NP
463 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
464 if (unlikely(PageDirty(page))) {
465 page_unfreeze_refs(page, 2);
49d2e9cc 466 goto cannot_free;
e286781d 467 }
49d2e9cc
CL
468
469 if (PageSwapCache(page)) {
470 swp_entry_t swap = { .val = page_private(page) };
471 __delete_from_swap_cache(page);
19fd6231 472 spin_unlock_irq(&mapping->tree_lock);
e767e056 473 mem_cgroup_uncharge_swapcache(page, swap);
49d2e9cc 474 swap_free(swap);
e286781d
NP
475 } else {
476 __remove_from_page_cache(page);
19fd6231 477 spin_unlock_irq(&mapping->tree_lock);
e767e056 478 mem_cgroup_uncharge_cache_page(page);
49d2e9cc
CL
479 }
480
49d2e9cc
CL
481 return 1;
482
483cannot_free:
19fd6231 484 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
485 return 0;
486}
487
e286781d
NP
488/*
489 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
490 * someone else has a ref on the page, abort and return 0. If it was
491 * successfully detached, return 1. Assumes the caller has a single ref on
492 * this page.
493 */
494int remove_mapping(struct address_space *mapping, struct page *page)
495{
496 if (__remove_mapping(mapping, page)) {
497 /*
498 * Unfreezing the refcount with 1 rather than 2 effectively
499 * drops the pagecache ref for us without requiring another
500 * atomic operation.
501 */
502 page_unfreeze_refs(page, 1);
503 return 1;
504 }
505 return 0;
506}
507
894bc310
LS
508/**
509 * putback_lru_page - put previously isolated page onto appropriate LRU list
510 * @page: page to be put back to appropriate lru list
511 *
512 * Add previously isolated @page to appropriate LRU list.
513 * Page may still be unevictable for other reasons.
514 *
515 * lru_lock must not be held, interrupts must be enabled.
516 */
517#ifdef CONFIG_UNEVICTABLE_LRU
518void putback_lru_page(struct page *page)
519{
520 int lru;
521 int active = !!TestClearPageActive(page);
bbfd28ee 522 int was_unevictable = PageUnevictable(page);
894bc310
LS
523
524 VM_BUG_ON(PageLRU(page));
525
526redo:
527 ClearPageUnevictable(page);
528
529 if (page_evictable(page, NULL)) {
530 /*
531 * For evictable pages, we can use the cache.
532 * In event of a race, worst case is we end up with an
533 * unevictable page on [in]active list.
534 * We know how to handle that.
535 */
536 lru = active + page_is_file_cache(page);
537 lru_cache_add_lru(page, lru);
538 } else {
539 /*
540 * Put unevictable pages directly on zone's unevictable
541 * list.
542 */
543 lru = LRU_UNEVICTABLE;
544 add_page_to_unevictable_list(page);
545 }
894bc310
LS
546
547 /*
548 * page's status can change while we move it among lru. If an evictable
549 * page is on unevictable list, it never be freed. To avoid that,
550 * check after we added it to the list, again.
551 */
552 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
553 if (!isolate_lru_page(page)) {
554 put_page(page);
555 goto redo;
556 }
557 /* This means someone else dropped this page from LRU
558 * So, it will be freed or putback to LRU again. There is
559 * nothing to do here.
560 */
561 }
562
bbfd28ee
LS
563 if (was_unevictable && lru != LRU_UNEVICTABLE)
564 count_vm_event(UNEVICTABLE_PGRESCUED);
565 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
566 count_vm_event(UNEVICTABLE_PGCULLED);
567
894bc310
LS
568 put_page(page); /* drop ref from isolate */
569}
570
571#else /* CONFIG_UNEVICTABLE_LRU */
572
573void putback_lru_page(struct page *page)
574{
575 int lru;
576 VM_BUG_ON(PageLRU(page));
577
578 lru = !!TestClearPageActive(page) + page_is_file_cache(page);
579 lru_cache_add_lru(page, lru);
894bc310
LS
580 put_page(page);
581}
582#endif /* CONFIG_UNEVICTABLE_LRU */
583
584
1da177e4 585/*
1742f19f 586 * shrink_page_list() returns the number of reclaimed pages
1da177e4 587 */
1742f19f 588static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
589 struct scan_control *sc,
590 enum pageout_io sync_writeback)
1da177e4
LT
591{
592 LIST_HEAD(ret_pages);
593 struct pagevec freed_pvec;
594 int pgactivate = 0;
05ff5137 595 unsigned long nr_reclaimed = 0;
1da177e4
LT
596
597 cond_resched();
598
599 pagevec_init(&freed_pvec, 1);
600 while (!list_empty(page_list)) {
601 struct address_space *mapping;
602 struct page *page;
603 int may_enter_fs;
604 int referenced;
605
606 cond_resched();
607
608 page = lru_to_page(page_list);
609 list_del(&page->lru);
610
529ae9aa 611 if (!trylock_page(page))
1da177e4
LT
612 goto keep;
613
725d704e 614 VM_BUG_ON(PageActive(page));
1da177e4
LT
615
616 sc->nr_scanned++;
80e43426 617
b291f000
NP
618 if (unlikely(!page_evictable(page, NULL)))
619 goto cull_mlocked;
894bc310 620
a6dc60f8 621 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
622 goto keep_locked;
623
1da177e4
LT
624 /* Double the slab pressure for mapped and swapcache pages */
625 if (page_mapped(page) || PageSwapCache(page))
626 sc->nr_scanned++;
627
c661b078
AW
628 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
629 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
630
631 if (PageWriteback(page)) {
632 /*
633 * Synchronous reclaim is performed in two passes,
634 * first an asynchronous pass over the list to
635 * start parallel writeback, and a second synchronous
636 * pass to wait for the IO to complete. Wait here
637 * for any page for which writeback has already
638 * started.
639 */
640 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
641 wait_on_page_writeback(page);
4dd4b920 642 else
c661b078
AW
643 goto keep_locked;
644 }
1da177e4 645
bed7161a 646 referenced = page_referenced(page, 1, sc->mem_cgroup);
1da177e4 647 /* In active use or really unfreeable? Activate it. */
5ad333eb
AW
648 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
649 referenced && page_mapping_inuse(page))
1da177e4
LT
650 goto activate_locked;
651
1da177e4
LT
652 /*
653 * Anonymous process memory has backing store?
654 * Try to allocate it some swap space here.
655 */
b291f000 656 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
657 if (!(sc->gfp_mask & __GFP_IO))
658 goto keep_locked;
ac47b003 659 if (!add_to_swap(page))
1da177e4 660 goto activate_locked;
63eb6b93 661 may_enter_fs = 1;
b291f000 662 }
1da177e4
LT
663
664 mapping = page_mapping(page);
1da177e4
LT
665
666 /*
667 * The page is mapped into the page tables of one or more
668 * processes. Try to unmap it here.
669 */
670 if (page_mapped(page) && mapping) {
a48d07af 671 switch (try_to_unmap(page, 0)) {
1da177e4
LT
672 case SWAP_FAIL:
673 goto activate_locked;
674 case SWAP_AGAIN:
675 goto keep_locked;
b291f000
NP
676 case SWAP_MLOCK:
677 goto cull_mlocked;
1da177e4
LT
678 case SWAP_SUCCESS:
679 ; /* try to free the page below */
680 }
681 }
682
683 if (PageDirty(page)) {
5ad333eb 684 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 685 goto keep_locked;
4dd4b920 686 if (!may_enter_fs)
1da177e4 687 goto keep_locked;
52a8363e 688 if (!sc->may_writepage)
1da177e4
LT
689 goto keep_locked;
690
691 /* Page is dirty, try to write it out here */
c661b078 692 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
693 case PAGE_KEEP:
694 goto keep_locked;
695 case PAGE_ACTIVATE:
696 goto activate_locked;
697 case PAGE_SUCCESS:
4dd4b920 698 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
699 goto keep;
700 /*
701 * A synchronous write - probably a ramdisk. Go
702 * ahead and try to reclaim the page.
703 */
529ae9aa 704 if (!trylock_page(page))
1da177e4
LT
705 goto keep;
706 if (PageDirty(page) || PageWriteback(page))
707 goto keep_locked;
708 mapping = page_mapping(page);
709 case PAGE_CLEAN:
710 ; /* try to free the page below */
711 }
712 }
713
714 /*
715 * If the page has buffers, try to free the buffer mappings
716 * associated with this page. If we succeed we try to free
717 * the page as well.
718 *
719 * We do this even if the page is PageDirty().
720 * try_to_release_page() does not perform I/O, but it is
721 * possible for a page to have PageDirty set, but it is actually
722 * clean (all its buffers are clean). This happens if the
723 * buffers were written out directly, with submit_bh(). ext3
894bc310 724 * will do this, as well as the blockdev mapping.
1da177e4
LT
725 * try_to_release_page() will discover that cleanness and will
726 * drop the buffers and mark the page clean - it can be freed.
727 *
728 * Rarely, pages can have buffers and no ->mapping. These are
729 * the pages which were not successfully invalidated in
730 * truncate_complete_page(). We try to drop those buffers here
731 * and if that worked, and the page is no longer mapped into
732 * process address space (page_count == 1) it can be freed.
733 * Otherwise, leave the page on the LRU so it is swappable.
734 */
266cf658 735 if (page_has_private(page)) {
1da177e4
LT
736 if (!try_to_release_page(page, sc->gfp_mask))
737 goto activate_locked;
e286781d
NP
738 if (!mapping && page_count(page) == 1) {
739 unlock_page(page);
740 if (put_page_testzero(page))
741 goto free_it;
742 else {
743 /*
744 * rare race with speculative reference.
745 * the speculative reference will free
746 * this page shortly, so we may
747 * increment nr_reclaimed here (and
748 * leave it off the LRU).
749 */
750 nr_reclaimed++;
751 continue;
752 }
753 }
1da177e4
LT
754 }
755
e286781d 756 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 757 goto keep_locked;
1da177e4 758
a978d6f5
NP
759 /*
760 * At this point, we have no other references and there is
761 * no way to pick any more up (removed from LRU, removed
762 * from pagecache). Can use non-atomic bitops now (and
763 * we obviously don't have to worry about waking up a process
764 * waiting on the page lock, because there are no references.
765 */
766 __clear_page_locked(page);
e286781d 767free_it:
05ff5137 768 nr_reclaimed++;
e286781d
NP
769 if (!pagevec_add(&freed_pvec, page)) {
770 __pagevec_free(&freed_pvec);
771 pagevec_reinit(&freed_pvec);
772 }
1da177e4
LT
773 continue;
774
b291f000 775cull_mlocked:
63d6c5ad
HD
776 if (PageSwapCache(page))
777 try_to_free_swap(page);
b291f000
NP
778 unlock_page(page);
779 putback_lru_page(page);
780 continue;
781
1da177e4 782activate_locked:
68a22394
RR
783 /* Not a candidate for swapping, so reclaim swap space. */
784 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 785 try_to_free_swap(page);
894bc310 786 VM_BUG_ON(PageActive(page));
1da177e4
LT
787 SetPageActive(page);
788 pgactivate++;
789keep_locked:
790 unlock_page(page);
791keep:
792 list_add(&page->lru, &ret_pages);
b291f000 793 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
794 }
795 list_splice(&ret_pages, page_list);
796 if (pagevec_count(&freed_pvec))
e286781d 797 __pagevec_free(&freed_pvec);
f8891e5e 798 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 799 return nr_reclaimed;
1da177e4
LT
800}
801
5ad333eb
AW
802/* LRU Isolation modes. */
803#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
804#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
805#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
806
807/*
808 * Attempt to remove the specified page from its LRU. Only take this page
809 * if it is of the appropriate PageActive status. Pages which are being
810 * freed elsewhere are also ignored.
811 *
812 * page: page to consider
813 * mode: one of the LRU isolation modes defined above
814 *
815 * returns 0 on success, -ve errno on failure.
816 */
4f98a2fe 817int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
818{
819 int ret = -EINVAL;
820
821 /* Only take pages on the LRU. */
822 if (!PageLRU(page))
823 return ret;
824
825 /*
826 * When checking the active state, we need to be sure we are
827 * dealing with comparible boolean values. Take the logical not
828 * of each.
829 */
830 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
831 return ret;
832
4f98a2fe
RR
833 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
834 return ret;
835
894bc310
LS
836 /*
837 * When this function is being called for lumpy reclaim, we
838 * initially look into all LRU pages, active, inactive and
839 * unevictable; only give shrink_page_list evictable pages.
840 */
841 if (PageUnevictable(page))
842 return ret;
843
5ad333eb 844 ret = -EBUSY;
08e552c6 845
5ad333eb
AW
846 if (likely(get_page_unless_zero(page))) {
847 /*
848 * Be careful not to clear PageLRU until after we're
849 * sure the page is not being freed elsewhere -- the
850 * page release code relies on it.
851 */
852 ClearPageLRU(page);
853 ret = 0;
08e552c6 854 mem_cgroup_del_lru(page);
5ad333eb
AW
855 }
856
857 return ret;
858}
859
1da177e4
LT
860/*
861 * zone->lru_lock is heavily contended. Some of the functions that
862 * shrink the lists perform better by taking out a batch of pages
863 * and working on them outside the LRU lock.
864 *
865 * For pagecache intensive workloads, this function is the hottest
866 * spot in the kernel (apart from copy_*_user functions).
867 *
868 * Appropriate locks must be held before calling this function.
869 *
870 * @nr_to_scan: The number of pages to look through on the list.
871 * @src: The LRU list to pull pages off.
872 * @dst: The temp list to put pages on to.
873 * @scanned: The number of pages that were scanned.
5ad333eb
AW
874 * @order: The caller's attempted allocation order
875 * @mode: One of the LRU isolation modes
4f98a2fe 876 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
877 *
878 * returns how many pages were moved onto *@dst.
879 */
69e05944
AM
880static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
881 struct list_head *src, struct list_head *dst,
4f98a2fe 882 unsigned long *scanned, int order, int mode, int file)
1da177e4 883{
69e05944 884 unsigned long nr_taken = 0;
c9b02d97 885 unsigned long scan;
1da177e4 886
c9b02d97 887 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
888 struct page *page;
889 unsigned long pfn;
890 unsigned long end_pfn;
891 unsigned long page_pfn;
892 int zone_id;
893
1da177e4
LT
894 page = lru_to_page(src);
895 prefetchw_prev_lru_page(page, src, flags);
896
725d704e 897 VM_BUG_ON(!PageLRU(page));
8d438f96 898
4f98a2fe 899 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
900 case 0:
901 list_move(&page->lru, dst);
7c8ee9a8 902 nr_taken++;
5ad333eb
AW
903 break;
904
905 case -EBUSY:
906 /* else it is being freed elsewhere */
907 list_move(&page->lru, src);
908 continue;
46453a6e 909
5ad333eb
AW
910 default:
911 BUG();
912 }
913
914 if (!order)
915 continue;
916
917 /*
918 * Attempt to take all pages in the order aligned region
919 * surrounding the tag page. Only take those pages of
920 * the same active state as that tag page. We may safely
921 * round the target page pfn down to the requested order
922 * as the mem_map is guarenteed valid out to MAX_ORDER,
923 * where that page is in a different zone we will detect
924 * it from its zone id and abort this block scan.
925 */
926 zone_id = page_zone_id(page);
927 page_pfn = page_to_pfn(page);
928 pfn = page_pfn & ~((1 << order) - 1);
929 end_pfn = pfn + (1 << order);
930 for (; pfn < end_pfn; pfn++) {
931 struct page *cursor_page;
932
933 /* The target page is in the block, ignore it. */
934 if (unlikely(pfn == page_pfn))
935 continue;
936
937 /* Avoid holes within the zone. */
938 if (unlikely(!pfn_valid_within(pfn)))
939 break;
940
941 cursor_page = pfn_to_page(pfn);
4f98a2fe 942
5ad333eb
AW
943 /* Check that we have not crossed a zone boundary. */
944 if (unlikely(page_zone_id(cursor_page) != zone_id))
945 continue;
4f98a2fe 946 switch (__isolate_lru_page(cursor_page, mode, file)) {
5ad333eb
AW
947 case 0:
948 list_move(&cursor_page->lru, dst);
949 nr_taken++;
950 scan++;
951 break;
952
953 case -EBUSY:
954 /* else it is being freed elsewhere */
955 list_move(&cursor_page->lru, src);
956 default:
894bc310 957 break; /* ! on LRU or wrong list */
5ad333eb
AW
958 }
959 }
1da177e4
LT
960 }
961
962 *scanned = scan;
963 return nr_taken;
964}
965
66e1707b
BS
966static unsigned long isolate_pages_global(unsigned long nr,
967 struct list_head *dst,
968 unsigned long *scanned, int order,
969 int mode, struct zone *z,
970 struct mem_cgroup *mem_cont,
4f98a2fe 971 int active, int file)
66e1707b 972{
4f98a2fe 973 int lru = LRU_BASE;
66e1707b 974 if (active)
4f98a2fe
RR
975 lru += LRU_ACTIVE;
976 if (file)
977 lru += LRU_FILE;
978 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
979 mode, !!file);
66e1707b
BS
980}
981
5ad333eb
AW
982/*
983 * clear_active_flags() is a helper for shrink_active_list(), clearing
984 * any active bits from the pages in the list.
985 */
4f98a2fe
RR
986static unsigned long clear_active_flags(struct list_head *page_list,
987 unsigned int *count)
5ad333eb
AW
988{
989 int nr_active = 0;
4f98a2fe 990 int lru;
5ad333eb
AW
991 struct page *page;
992
4f98a2fe
RR
993 list_for_each_entry(page, page_list, lru) {
994 lru = page_is_file_cache(page);
5ad333eb 995 if (PageActive(page)) {
4f98a2fe 996 lru += LRU_ACTIVE;
5ad333eb
AW
997 ClearPageActive(page);
998 nr_active++;
999 }
4f98a2fe
RR
1000 count[lru]++;
1001 }
5ad333eb
AW
1002
1003 return nr_active;
1004}
1005
62695a84
NP
1006/**
1007 * isolate_lru_page - tries to isolate a page from its LRU list
1008 * @page: page to isolate from its LRU list
1009 *
1010 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1011 * vmstat statistic corresponding to whatever LRU list the page was on.
1012 *
1013 * Returns 0 if the page was removed from an LRU list.
1014 * Returns -EBUSY if the page was not on an LRU list.
1015 *
1016 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1017 * the active list, it will have PageActive set. If it was found on
1018 * the unevictable list, it will have the PageUnevictable bit set. That flag
1019 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1020 *
1021 * The vmstat statistic corresponding to the list on which the page was
1022 * found will be decremented.
1023 *
1024 * Restrictions:
1025 * (1) Must be called with an elevated refcount on the page. This is a
1026 * fundamentnal difference from isolate_lru_pages (which is called
1027 * without a stable reference).
1028 * (2) the lru_lock must not be held.
1029 * (3) interrupts must be enabled.
1030 */
1031int isolate_lru_page(struct page *page)
1032{
1033 int ret = -EBUSY;
1034
1035 if (PageLRU(page)) {
1036 struct zone *zone = page_zone(page);
1037
1038 spin_lock_irq(&zone->lru_lock);
1039 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1040 int lru = page_lru(page);
62695a84
NP
1041 ret = 0;
1042 ClearPageLRU(page);
4f98a2fe 1043
4f98a2fe 1044 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1045 }
1046 spin_unlock_irq(&zone->lru_lock);
1047 }
1048 return ret;
1049}
1050
1da177e4 1051/*
1742f19f
AM
1052 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1053 * of reclaimed pages
1da177e4 1054 */
1742f19f 1055static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1056 struct zone *zone, struct scan_control *sc,
1057 int priority, int file)
1da177e4
LT
1058{
1059 LIST_HEAD(page_list);
1060 struct pagevec pvec;
69e05944 1061 unsigned long nr_scanned = 0;
05ff5137 1062 unsigned long nr_reclaimed = 0;
6e901571 1063 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
78dc583d
KM
1064 int lumpy_reclaim = 0;
1065
1066 /*
1067 * If we need a large contiguous chunk of memory, or have
1068 * trouble getting a small set of contiguous pages, we
1069 * will reclaim both active and inactive pages.
1070 *
1071 * We use the same threshold as pageout congestion_wait below.
1072 */
1073 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1074 lumpy_reclaim = 1;
1075 else if (sc->order && priority < DEF_PRIORITY - 2)
1076 lumpy_reclaim = 1;
1da177e4
LT
1077
1078 pagevec_init(&pvec, 1);
1079
1080 lru_add_drain();
1081 spin_lock_irq(&zone->lru_lock);
69e05944 1082 do {
1da177e4 1083 struct page *page;
69e05944
AM
1084 unsigned long nr_taken;
1085 unsigned long nr_scan;
1086 unsigned long nr_freed;
5ad333eb 1087 unsigned long nr_active;
4f98a2fe 1088 unsigned int count[NR_LRU_LISTS] = { 0, };
78dc583d 1089 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1da177e4 1090
66e1707b 1091 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
4f98a2fe
RR
1092 &page_list, &nr_scan, sc->order, mode,
1093 zone, sc->mem_cgroup, 0, file);
1094 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1095 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1096
4f98a2fe
RR
1097 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1098 -count[LRU_ACTIVE_FILE]);
1099 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1100 -count[LRU_INACTIVE_FILE]);
1101 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1102 -count[LRU_ACTIVE_ANON]);
1103 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1104 -count[LRU_INACTIVE_ANON]);
1105
e72e2bd6 1106 if (scanning_global_lru(sc))
1cfb419b 1107 zone->pages_scanned += nr_scan;
3e2f41f1
KM
1108
1109 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1110 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1111 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1112 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1113
1da177e4
LT
1114 spin_unlock_irq(&zone->lru_lock);
1115
69e05944 1116 nr_scanned += nr_scan;
c661b078
AW
1117 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1118
1119 /*
1120 * If we are direct reclaiming for contiguous pages and we do
1121 * not reclaim everything in the list, try again and wait
1122 * for IO to complete. This will stall high-order allocations
1123 * but that should be acceptable to the caller
1124 */
1125 if (nr_freed < nr_taken && !current_is_kswapd() &&
78dc583d 1126 lumpy_reclaim) {
c661b078
AW
1127 congestion_wait(WRITE, HZ/10);
1128
1129 /*
1130 * The attempt at page out may have made some
1131 * of the pages active, mark them inactive again.
1132 */
4f98a2fe 1133 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1134 count_vm_events(PGDEACTIVATE, nr_active);
1135
1136 nr_freed += shrink_page_list(&page_list, sc,
1137 PAGEOUT_IO_SYNC);
1138 }
1139
05ff5137 1140 nr_reclaimed += nr_freed;
a74609fa
NP
1141 local_irq_disable();
1142 if (current_is_kswapd()) {
f8891e5e
CL
1143 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1144 __count_vm_events(KSWAPD_STEAL, nr_freed);
e72e2bd6 1145 } else if (scanning_global_lru(sc))
f8891e5e 1146 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1cfb419b 1147
918d3f90 1148 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa 1149
fb8d14e1
WF
1150 if (nr_taken == 0)
1151 goto done;
1152
a74609fa 1153 spin_lock(&zone->lru_lock);
1da177e4
LT
1154 /*
1155 * Put back any unfreeable pages.
1156 */
1157 while (!list_empty(&page_list)) {
894bc310 1158 int lru;
1da177e4 1159 page = lru_to_page(&page_list);
725d704e 1160 VM_BUG_ON(PageLRU(page));
1da177e4 1161 list_del(&page->lru);
894bc310
LS
1162 if (unlikely(!page_evictable(page, NULL))) {
1163 spin_unlock_irq(&zone->lru_lock);
1164 putback_lru_page(page);
1165 spin_lock_irq(&zone->lru_lock);
1166 continue;
1167 }
1168 SetPageLRU(page);
1169 lru = page_lru(page);
1170 add_page_to_lru_list(zone, page, lru);
3e2f41f1 1171 if (PageActive(page)) {
4f98a2fe 1172 int file = !!page_is_file_cache(page);
6e901571 1173 reclaim_stat->recent_rotated[file]++;
4f98a2fe 1174 }
1da177e4
LT
1175 if (!pagevec_add(&pvec, page)) {
1176 spin_unlock_irq(&zone->lru_lock);
1177 __pagevec_release(&pvec);
1178 spin_lock_irq(&zone->lru_lock);
1179 }
1180 }
69e05944 1181 } while (nr_scanned < max_scan);
fb8d14e1 1182 spin_unlock(&zone->lru_lock);
1da177e4 1183done:
fb8d14e1 1184 local_irq_enable();
1da177e4 1185 pagevec_release(&pvec);
05ff5137 1186 return nr_reclaimed;
1da177e4
LT
1187}
1188
3bb1a852
MB
1189/*
1190 * We are about to scan this zone at a certain priority level. If that priority
1191 * level is smaller (ie: more urgent) than the previous priority, then note
1192 * that priority level within the zone. This is done so that when the next
1193 * process comes in to scan this zone, it will immediately start out at this
1194 * priority level rather than having to build up its own scanning priority.
1195 * Here, this priority affects only the reclaim-mapped threshold.
1196 */
1197static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1198{
1199 if (priority < zone->prev_priority)
1200 zone->prev_priority = priority;
1201}
1202
1da177e4
LT
1203/*
1204 * This moves pages from the active list to the inactive list.
1205 *
1206 * We move them the other way if the page is referenced by one or more
1207 * processes, from rmap.
1208 *
1209 * If the pages are mostly unmapped, the processing is fast and it is
1210 * appropriate to hold zone->lru_lock across the whole operation. But if
1211 * the pages are mapped, the processing is slow (page_referenced()) so we
1212 * should drop zone->lru_lock around each page. It's impossible to balance
1213 * this, so instead we remove the pages from the LRU while processing them.
1214 * It is safe to rely on PG_active against the non-LRU pages in here because
1215 * nobody will play with that bit on a non-LRU page.
1216 *
1217 * The downside is that we have to touch page->_count against each page.
1218 * But we had to alter page->flags anyway.
1219 */
1cfb419b
KH
1220
1221
1742f19f 1222static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1223 struct scan_control *sc, int priority, int file)
1da177e4 1224{
69e05944 1225 unsigned long pgmoved;
1da177e4 1226 int pgdeactivate = 0;
69e05944 1227 unsigned long pgscanned;
1da177e4 1228 LIST_HEAD(l_hold); /* The pages which were snipped off */
b69408e8 1229 LIST_HEAD(l_inactive);
1da177e4
LT
1230 struct page *page;
1231 struct pagevec pvec;
4f98a2fe 1232 enum lru_list lru;
6e901571 1233 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1da177e4
LT
1234
1235 lru_add_drain();
1236 spin_lock_irq(&zone->lru_lock);
66e1707b
BS
1237 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1238 ISOLATE_ACTIVE, zone,
4f98a2fe 1239 sc->mem_cgroup, 1, file);
1cfb419b
KH
1240 /*
1241 * zone->pages_scanned is used for detect zone's oom
1242 * mem_cgroup remembers nr_scan by itself.
1243 */
e72e2bd6 1244 if (scanning_global_lru(sc)) {
1cfb419b 1245 zone->pages_scanned += pgscanned;
4f98a2fe 1246 }
3e2f41f1 1247 reclaim_stat->recent_scanned[!!file] += pgmoved;
1cfb419b 1248
4f98a2fe
RR
1249 if (file)
1250 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1251 else
1252 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1da177e4
LT
1253 spin_unlock_irq(&zone->lru_lock);
1254
556adecb 1255 pgmoved = 0;
1da177e4
LT
1256 while (!list_empty(&l_hold)) {
1257 cond_resched();
1258 page = lru_to_page(&l_hold);
1259 list_del(&page->lru);
7e9cd484 1260
894bc310
LS
1261 if (unlikely(!page_evictable(page, NULL))) {
1262 putback_lru_page(page);
1263 continue;
1264 }
1265
7e9cd484
RR
1266 /* page_referenced clears PageReferenced */
1267 if (page_mapping_inuse(page) &&
1268 page_referenced(page, 0, sc->mem_cgroup))
1269 pgmoved++;
1270
1da177e4
LT
1271 list_add(&page->lru, &l_inactive);
1272 }
1273
b555749a
AM
1274 /*
1275 * Move the pages to the [file or anon] inactive list.
1276 */
1277 pagevec_init(&pvec, 1);
b555749a
AM
1278 lru = LRU_BASE + file * LRU_FILE;
1279
2a1dc509 1280 spin_lock_irq(&zone->lru_lock);
556adecb 1281 /*
7e9cd484
RR
1282 * Count referenced pages from currently used mappings as
1283 * rotated, even though they are moved to the inactive list.
1284 * This helps balance scan pressure between file and anonymous
1285 * pages in get_scan_ratio.
1286 */
3e2f41f1 1287 reclaim_stat->recent_rotated[!!file] += pgmoved;
556adecb 1288
1d885526 1289 pgmoved = 0;
1da177e4
LT
1290 while (!list_empty(&l_inactive)) {
1291 page = lru_to_page(&l_inactive);
1292 prefetchw_prev_lru_page(page, &l_inactive, flags);
725d704e 1293 VM_BUG_ON(PageLRU(page));
8d438f96 1294 SetPageLRU(page);
725d704e 1295 VM_BUG_ON(!PageActive(page));
4c84cacf
NP
1296 ClearPageActive(page);
1297
4f98a2fe 1298 list_move(&page->lru, &zone->lru[lru].list);
08e552c6 1299 mem_cgroup_add_lru_list(page, lru);
1da177e4
LT
1300 pgmoved++;
1301 if (!pagevec_add(&pvec, page)) {
4f98a2fe 1302 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1da177e4
LT
1303 spin_unlock_irq(&zone->lru_lock);
1304 pgdeactivate += pgmoved;
1305 pgmoved = 0;
1306 if (buffer_heads_over_limit)
1307 pagevec_strip(&pvec);
1308 __pagevec_release(&pvec);
1309 spin_lock_irq(&zone->lru_lock);
1310 }
1311 }
4f98a2fe 1312 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1da177e4 1313 pgdeactivate += pgmoved;
f8891e5e
CL
1314 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1315 __count_vm_events(PGDEACTIVATE, pgdeactivate);
1316 spin_unlock_irq(&zone->lru_lock);
2443462b
JW
1317 if (buffer_heads_over_limit)
1318 pagevec_strip(&pvec);
a74609fa 1319 pagevec_release(&pvec);
1da177e4
LT
1320}
1321
14797e23 1322static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1323{
1324 unsigned long active, inactive;
1325
1326 active = zone_page_state(zone, NR_ACTIVE_ANON);
1327 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1328
1329 if (inactive * zone->inactive_ratio < active)
1330 return 1;
1331
1332 return 0;
1333}
1334
14797e23
KM
1335/**
1336 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1337 * @zone: zone to check
1338 * @sc: scan control of this context
1339 *
1340 * Returns true if the zone does not have enough inactive anon pages,
1341 * meaning some active anon pages need to be deactivated.
1342 */
1343static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1344{
1345 int low;
1346
e72e2bd6 1347 if (scanning_global_lru(sc))
14797e23
KM
1348 low = inactive_anon_is_low_global(zone);
1349 else
c772be93 1350 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1351 return low;
1352}
1353
56e49d21
RR
1354static int inactive_file_is_low_global(struct zone *zone)
1355{
1356 unsigned long active, inactive;
1357
1358 active = zone_page_state(zone, NR_ACTIVE_FILE);
1359 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1360
1361 return (active > inactive);
1362}
1363
1364/**
1365 * inactive_file_is_low - check if file pages need to be deactivated
1366 * @zone: zone to check
1367 * @sc: scan control of this context
1368 *
1369 * When the system is doing streaming IO, memory pressure here
1370 * ensures that active file pages get deactivated, until more
1371 * than half of the file pages are on the inactive list.
1372 *
1373 * Once we get to that situation, protect the system's working
1374 * set from being evicted by disabling active file page aging.
1375 *
1376 * This uses a different ratio than the anonymous pages, because
1377 * the page cache uses a use-once replacement algorithm.
1378 */
1379static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1380{
1381 int low;
1382
1383 if (scanning_global_lru(sc))
1384 low = inactive_file_is_low_global(zone);
1385 else
1386 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1387 return low;
1388}
1389
4f98a2fe 1390static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1391 struct zone *zone, struct scan_control *sc, int priority)
1392{
4f98a2fe
RR
1393 int file = is_file_lru(lru);
1394
56e49d21 1395 if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
556adecb
RR
1396 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1397 return 0;
1398 }
1399
14797e23 1400 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
4f98a2fe 1401 shrink_active_list(nr_to_scan, zone, sc, priority, file);
b69408e8
CL
1402 return 0;
1403 }
33c120ed 1404 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1405}
1406
1407/*
1408 * Determine how aggressively the anon and file LRU lists should be
1409 * scanned. The relative value of each set of LRU lists is determined
1410 * by looking at the fraction of the pages scanned we did rotate back
1411 * onto the active list instead of evict.
1412 *
1413 * percent[0] specifies how much pressure to put on ram/swap backed
1414 * memory, while percent[1] determines pressure on the file LRUs.
1415 */
1416static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1417 unsigned long *percent)
1418{
1419 unsigned long anon, file, free;
1420 unsigned long anon_prio, file_prio;
1421 unsigned long ap, fp;
6e901571 1422 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
4f98a2fe 1423
4f98a2fe 1424 /* If we have no swap space, do not bother scanning anon pages. */
2e2e4259 1425 if (!sc->may_swap || (nr_swap_pages <= 0)) {
4f98a2fe
RR
1426 percent[0] = 0;
1427 percent[1] = 100;
1428 return;
1429 }
1430
c9f299d9
KM
1431 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1432 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1433 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1434 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1435
e72e2bd6 1436 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1437 free = zone_page_state(zone, NR_FREE_PAGES);
1438 /* If we have very few page cache pages,
1439 force-scan anon pages. */
41858966 1440 if (unlikely(file + free <= high_wmark_pages(zone))) {
eeee9a8c
KM
1441 percent[0] = 100;
1442 percent[1] = 0;
1443 return;
1444 }
4f98a2fe
RR
1445 }
1446
1447 /*
1448 * OK, so we have swap space and a fair amount of page cache
1449 * pages. We use the recently rotated / recently scanned
1450 * ratios to determine how valuable each cache is.
1451 *
1452 * Because workloads change over time (and to avoid overflow)
1453 * we keep these statistics as a floating average, which ends
1454 * up weighing recent references more than old ones.
1455 *
1456 * anon in [0], file in [1]
1457 */
6e901571 1458 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
4f98a2fe 1459 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1460 reclaim_stat->recent_scanned[0] /= 2;
1461 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1462 spin_unlock_irq(&zone->lru_lock);
1463 }
1464
6e901571 1465 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
4f98a2fe 1466 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1467 reclaim_stat->recent_scanned[1] /= 2;
1468 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1469 spin_unlock_irq(&zone->lru_lock);
1470 }
1471
1472 /*
1473 * With swappiness at 100, anonymous and file have the same priority.
1474 * This scanning priority is essentially the inverse of IO cost.
1475 */
1476 anon_prio = sc->swappiness;
1477 file_prio = 200 - sc->swappiness;
1478
1479 /*
00d8089c
RR
1480 * The amount of pressure on anon vs file pages is inversely
1481 * proportional to the fraction of recently scanned pages on
1482 * each list that were recently referenced and in active use.
4f98a2fe 1483 */
6e901571
KM
1484 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1485 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1486
6e901571
KM
1487 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1488 fp /= reclaim_stat->recent_rotated[1] + 1;
4f98a2fe
RR
1489
1490 /* Normalize to percentages */
1491 percent[0] = 100 * ap / (ap + fp + 1);
1492 percent[1] = 100 - percent[0];
b69408e8
CL
1493}
1494
4f98a2fe 1495
1da177e4
LT
1496/*
1497 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1498 */
a79311c1 1499static void shrink_zone(int priority, struct zone *zone,
05ff5137 1500 struct scan_control *sc)
1da177e4 1501{
b69408e8 1502 unsigned long nr[NR_LRU_LISTS];
8695949a 1503 unsigned long nr_to_scan;
4f98a2fe 1504 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1505 enum lru_list l;
01dbe5c9
KM
1506 unsigned long nr_reclaimed = sc->nr_reclaimed;
1507 unsigned long swap_cluster_max = sc->swap_cluster_max;
1da177e4 1508
4f98a2fe
RR
1509 get_scan_ratio(zone, sc, percent);
1510
894bc310 1511 for_each_evictable_lru(l) {
9439c1c9 1512 int file = is_file_lru(l);
8713e012 1513 unsigned long scan;
e0f79b8f 1514
f272b7bc 1515 scan = zone_nr_pages(zone, sc, l);
9439c1c9
KM
1516 if (priority) {
1517 scan >>= priority;
1518 scan = (scan * percent[file]) / 100;
1519 }
e72e2bd6 1520 if (scanning_global_lru(sc)) {
e0f79b8f 1521 zone->lru[l].nr_scan += scan;
b69408e8 1522 nr[l] = zone->lru[l].nr_scan;
01dbe5c9 1523 if (nr[l] >= swap_cluster_max)
b69408e8
CL
1524 zone->lru[l].nr_scan = 0;
1525 else
1526 nr[l] = 0;
9439c1c9
KM
1527 } else
1528 nr[l] = scan;
1cfb419b 1529 }
1da177e4 1530
556adecb
RR
1531 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1532 nr[LRU_INACTIVE_FILE]) {
894bc310 1533 for_each_evictable_lru(l) {
b69408e8 1534 if (nr[l]) {
01dbe5c9 1535 nr_to_scan = min(nr[l], swap_cluster_max);
b69408e8 1536 nr[l] -= nr_to_scan;
1da177e4 1537
01dbe5c9
KM
1538 nr_reclaimed += shrink_list(l, nr_to_scan,
1539 zone, sc, priority);
b69408e8 1540 }
1da177e4 1541 }
a79311c1
RR
1542 /*
1543 * On large memory systems, scan >> priority can become
1544 * really large. This is fine for the starting priority;
1545 * we want to put equal scanning pressure on each zone.
1546 * However, if the VM has a harder time of freeing pages,
1547 * with multiple processes reclaiming pages, the total
1548 * freeing target can get unreasonably large.
1549 */
01dbe5c9 1550 if (nr_reclaimed > swap_cluster_max &&
a79311c1
RR
1551 priority < DEF_PRIORITY && !current_is_kswapd())
1552 break;
1da177e4
LT
1553 }
1554
01dbe5c9
KM
1555 sc->nr_reclaimed = nr_reclaimed;
1556
556adecb
RR
1557 /*
1558 * Even if we did not try to evict anon pages at all, we want to
1559 * rebalance the anon lru active/inactive ratio.
1560 */
14797e23 1561 if (inactive_anon_is_low(zone, sc))
556adecb
RR
1562 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1563
232ea4d6 1564 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1565}
1566
1567/*
1568 * This is the direct reclaim path, for page-allocating processes. We only
1569 * try to reclaim pages from zones which will satisfy the caller's allocation
1570 * request.
1571 *
41858966
MG
1572 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1573 * Because:
1da177e4
LT
1574 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1575 * allocation or
41858966
MG
1576 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1577 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1578 * zone defense algorithm.
1da177e4 1579 *
1da177e4
LT
1580 * If a zone is deemed to be full of pinned pages then just give it a light
1581 * scan then give up on it.
1582 */
a79311c1 1583static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1584 struct scan_control *sc)
1da177e4 1585{
54a6eb5c 1586 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
dd1a239f 1587 struct zoneref *z;
54a6eb5c 1588 struct zone *zone;
1cfb419b 1589
408d8544 1590 sc->all_unreclaimable = 1;
327c0e96
KH
1591 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1592 sc->nodemask) {
f3fe6512 1593 if (!populated_zone(zone))
1da177e4 1594 continue;
1cfb419b
KH
1595 /*
1596 * Take care memory controller reclaiming has small influence
1597 * to global LRU.
1598 */
e72e2bd6 1599 if (scanning_global_lru(sc)) {
1cfb419b
KH
1600 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1601 continue;
1602 note_zone_scanning_priority(zone, priority);
1da177e4 1603
1cfb419b
KH
1604 if (zone_is_all_unreclaimable(zone) &&
1605 priority != DEF_PRIORITY)
1606 continue; /* Let kswapd poll it */
1607 sc->all_unreclaimable = 0;
1608 } else {
1609 /*
1610 * Ignore cpuset limitation here. We just want to reduce
1611 * # of used pages by us regardless of memory shortage.
1612 */
1613 sc->all_unreclaimable = 0;
1614 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1615 priority);
1616 }
408d8544 1617
a79311c1 1618 shrink_zone(priority, zone, sc);
1da177e4
LT
1619 }
1620}
4f98a2fe 1621
1da177e4
LT
1622/*
1623 * This is the main entry point to direct page reclaim.
1624 *
1625 * If a full scan of the inactive list fails to free enough memory then we
1626 * are "out of memory" and something needs to be killed.
1627 *
1628 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1629 * high - the zone may be full of dirty or under-writeback pages, which this
1630 * caller can't do much about. We kick pdflush and take explicit naps in the
1631 * hope that some of these pages can be written. But if the allocating task
1632 * holds filesystem locks which prevent writeout this might not work, and the
1633 * allocation attempt will fail.
a41f24ea
NA
1634 *
1635 * returns: 0, if no pages reclaimed
1636 * else, the number of pages reclaimed
1da177e4 1637 */
dac1d27b 1638static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1639 struct scan_control *sc)
1da177e4
LT
1640{
1641 int priority;
c700be3d 1642 unsigned long ret = 0;
69e05944 1643 unsigned long total_scanned = 0;
1da177e4 1644 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1645 unsigned long lru_pages = 0;
dd1a239f 1646 struct zoneref *z;
54a6eb5c 1647 struct zone *zone;
dd1a239f 1648 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1da177e4 1649
873b4771
KK
1650 delayacct_freepages_start();
1651
e72e2bd6 1652 if (scanning_global_lru(sc))
1cfb419b
KH
1653 count_vm_event(ALLOCSTALL);
1654 /*
1655 * mem_cgroup will not do shrink_slab.
1656 */
e72e2bd6 1657 if (scanning_global_lru(sc)) {
54a6eb5c 1658 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1659
1cfb419b
KH
1660 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1661 continue;
1da177e4 1662
4f98a2fe 1663 lru_pages += zone_lru_pages(zone);
1cfb419b 1664 }
1da177e4
LT
1665 }
1666
1667 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1668 sc->nr_scanned = 0;
f7b7fd8f
RR
1669 if (!priority)
1670 disable_swap_token();
a79311c1 1671 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1672 /*
1673 * Don't shrink slabs when reclaiming memory from
1674 * over limit cgroups
1675 */
e72e2bd6 1676 if (scanning_global_lru(sc)) {
dd1a239f 1677 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1678 if (reclaim_state) {
a79311c1 1679 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1680 reclaim_state->reclaimed_slab = 0;
1681 }
1da177e4 1682 }
66e1707b 1683 total_scanned += sc->nr_scanned;
a79311c1
RR
1684 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1685 ret = sc->nr_reclaimed;
1da177e4
LT
1686 goto out;
1687 }
1688
1689 /*
1690 * Try to write back as many pages as we just scanned. This
1691 * tends to cause slow streaming writers to write data to the
1692 * disk smoothly, at the dirtying rate, which is nice. But
1693 * that's undesirable in laptop mode, where we *want* lumpy
1694 * writeout. So in laptop mode, write out the whole world.
1695 */
66e1707b
BS
1696 if (total_scanned > sc->swap_cluster_max +
1697 sc->swap_cluster_max / 2) {
687a21ce 1698 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
66e1707b 1699 sc->may_writepage = 1;
1da177e4
LT
1700 }
1701
1702 /* Take a nap, wait for some writeback to complete */
4dd4b920 1703 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1704 congestion_wait(WRITE, HZ/10);
1da177e4 1705 }
87547ee9 1706 /* top priority shrink_zones still had more to do? don't OOM, then */
e72e2bd6 1707 if (!sc->all_unreclaimable && scanning_global_lru(sc))
a79311c1 1708 ret = sc->nr_reclaimed;
1da177e4 1709out:
3bb1a852
MB
1710 /*
1711 * Now that we've scanned all the zones at this priority level, note
1712 * that level within the zone so that the next thread which performs
1713 * scanning of this zone will immediately start out at this priority
1714 * level. This affects only the decision whether or not to bring
1715 * mapped pages onto the inactive list.
1716 */
1717 if (priority < 0)
1718 priority = 0;
1da177e4 1719
e72e2bd6 1720 if (scanning_global_lru(sc)) {
54a6eb5c 1721 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1722
1723 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1724 continue;
1725
1726 zone->prev_priority = priority;
1727 }
1728 } else
1729 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1730
873b4771
KK
1731 delayacct_freepages_end();
1732
1da177e4
LT
1733 return ret;
1734}
1735
dac1d27b 1736unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 1737 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b
BS
1738{
1739 struct scan_control sc = {
1740 .gfp_mask = gfp_mask,
1741 .may_writepage = !laptop_mode,
1742 .swap_cluster_max = SWAP_CLUSTER_MAX,
a6dc60f8 1743 .may_unmap = 1,
2e2e4259 1744 .may_swap = 1,
66e1707b
BS
1745 .swappiness = vm_swappiness,
1746 .order = order,
1747 .mem_cgroup = NULL,
1748 .isolate_pages = isolate_pages_global,
327c0e96 1749 .nodemask = nodemask,
66e1707b
BS
1750 };
1751
dd1a239f 1752 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1753}
1754
00f0b825 1755#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1756
e1a1cd59 1757unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
1758 gfp_t gfp_mask,
1759 bool noswap,
1760 unsigned int swappiness)
66e1707b
BS
1761{
1762 struct scan_control sc = {
66e1707b 1763 .may_writepage = !laptop_mode,
a6dc60f8 1764 .may_unmap = 1,
2e2e4259 1765 .may_swap = !noswap,
66e1707b 1766 .swap_cluster_max = SWAP_CLUSTER_MAX,
a7885eb8 1767 .swappiness = swappiness,
66e1707b
BS
1768 .order = 0,
1769 .mem_cgroup = mem_cont,
1770 .isolate_pages = mem_cgroup_isolate_pages,
327c0e96 1771 .nodemask = NULL, /* we don't care the placement */
66e1707b 1772 };
dac1d27b 1773 struct zonelist *zonelist;
66e1707b 1774
dd1a239f
MG
1775 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1776 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1777 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1778 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1779}
1780#endif
1781
1da177e4
LT
1782/*
1783 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 1784 * they are all at high_wmark_pages(zone).
1da177e4 1785 *
1da177e4
LT
1786 * Returns the number of pages which were actually freed.
1787 *
1788 * There is special handling here for zones which are full of pinned pages.
1789 * This can happen if the pages are all mlocked, or if they are all used by
1790 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1791 * What we do is to detect the case where all pages in the zone have been
1792 * scanned twice and there has been zero successful reclaim. Mark the zone as
1793 * dead and from now on, only perform a short scan. Basically we're polling
1794 * the zone for when the problem goes away.
1795 *
1796 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
1797 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1798 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1799 * lower zones regardless of the number of free pages in the lower zones. This
1800 * interoperates with the page allocator fallback scheme to ensure that aging
1801 * of pages is balanced across the zones.
1da177e4 1802 */
d6277db4 1803static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1804{
1da177e4
LT
1805 int all_zones_ok;
1806 int priority;
1807 int i;
69e05944 1808 unsigned long total_scanned;
1da177e4 1809 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1810 struct scan_control sc = {
1811 .gfp_mask = GFP_KERNEL,
a6dc60f8 1812 .may_unmap = 1,
2e2e4259 1813 .may_swap = 1,
d6277db4
RW
1814 .swap_cluster_max = SWAP_CLUSTER_MAX,
1815 .swappiness = vm_swappiness,
5ad333eb 1816 .order = order,
66e1707b
BS
1817 .mem_cgroup = NULL,
1818 .isolate_pages = isolate_pages_global,
179e9639 1819 };
3bb1a852
MB
1820 /*
1821 * temp_priority is used to remember the scanning priority at which
41858966
MG
1822 * this zone was successfully refilled to
1823 * free_pages == high_wmark_pages(zone).
3bb1a852
MB
1824 */
1825 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1826
1827loop_again:
1828 total_scanned = 0;
a79311c1 1829 sc.nr_reclaimed = 0;
c0bbbc73 1830 sc.may_writepage = !laptop_mode;
f8891e5e 1831 count_vm_event(PAGEOUTRUN);
1da177e4 1832
3bb1a852
MB
1833 for (i = 0; i < pgdat->nr_zones; i++)
1834 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1835
1836 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1837 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1838 unsigned long lru_pages = 0;
1839
f7b7fd8f
RR
1840 /* The swap token gets in the way of swapout... */
1841 if (!priority)
1842 disable_swap_token();
1843
1da177e4
LT
1844 all_zones_ok = 1;
1845
d6277db4
RW
1846 /*
1847 * Scan in the highmem->dma direction for the highest
1848 * zone which needs scanning
1849 */
1850 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1851 struct zone *zone = pgdat->node_zones + i;
1da177e4 1852
d6277db4
RW
1853 if (!populated_zone(zone))
1854 continue;
1da177e4 1855
e815af95
DR
1856 if (zone_is_all_unreclaimable(zone) &&
1857 priority != DEF_PRIORITY)
d6277db4 1858 continue;
1da177e4 1859
556adecb
RR
1860 /*
1861 * Do some background aging of the anon list, to give
1862 * pages a chance to be referenced before reclaiming.
1863 */
14797e23 1864 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
1865 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1866 &sc, priority, 0);
1867
41858966
MG
1868 if (!zone_watermark_ok(zone, order,
1869 high_wmark_pages(zone), 0, 0)) {
d6277db4 1870 end_zone = i;
e1dbeda6 1871 break;
1da177e4 1872 }
1da177e4 1873 }
e1dbeda6
AM
1874 if (i < 0)
1875 goto out;
1876
1da177e4
LT
1877 for (i = 0; i <= end_zone; i++) {
1878 struct zone *zone = pgdat->node_zones + i;
1879
4f98a2fe 1880 lru_pages += zone_lru_pages(zone);
1da177e4
LT
1881 }
1882
1883 /*
1884 * Now scan the zone in the dma->highmem direction, stopping
1885 * at the last zone which needs scanning.
1886 *
1887 * We do this because the page allocator works in the opposite
1888 * direction. This prevents the page allocator from allocating
1889 * pages behind kswapd's direction of progress, which would
1890 * cause too much scanning of the lower zones.
1891 */
1892 for (i = 0; i <= end_zone; i++) {
1893 struct zone *zone = pgdat->node_zones + i;
b15e0905 1894 int nr_slab;
1da177e4 1895
f3fe6512 1896 if (!populated_zone(zone))
1da177e4
LT
1897 continue;
1898
e815af95
DR
1899 if (zone_is_all_unreclaimable(zone) &&
1900 priority != DEF_PRIORITY)
1da177e4
LT
1901 continue;
1902
41858966
MG
1903 if (!zone_watermark_ok(zone, order,
1904 high_wmark_pages(zone), end_zone, 0))
d6277db4 1905 all_zones_ok = 0;
3bb1a852 1906 temp_priority[i] = priority;
1da177e4 1907 sc.nr_scanned = 0;
3bb1a852 1908 note_zone_scanning_priority(zone, priority);
32a4330d
RR
1909 /*
1910 * We put equal pressure on every zone, unless one
1911 * zone has way too many pages free already.
1912 */
41858966
MG
1913 if (!zone_watermark_ok(zone, order,
1914 8*high_wmark_pages(zone), end_zone, 0))
a79311c1 1915 shrink_zone(priority, zone, &sc);
1da177e4 1916 reclaim_state->reclaimed_slab = 0;
b15e0905
AM
1917 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1918 lru_pages);
a79311c1 1919 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 1920 total_scanned += sc.nr_scanned;
e815af95 1921 if (zone_is_all_unreclaimable(zone))
1da177e4 1922 continue;
b15e0905 1923 if (nr_slab == 0 && zone->pages_scanned >=
4f98a2fe 1924 (zone_lru_pages(zone) * 6))
e815af95
DR
1925 zone_set_flag(zone,
1926 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
1927 /*
1928 * If we've done a decent amount of scanning and
1929 * the reclaim ratio is low, start doing writepage
1930 * even in laptop mode
1931 */
1932 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 1933 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4
LT
1934 sc.may_writepage = 1;
1935 }
1da177e4
LT
1936 if (all_zones_ok)
1937 break; /* kswapd: all done */
1938 /*
1939 * OK, kswapd is getting into trouble. Take a nap, then take
1940 * another pass across the zones.
1941 */
4dd4b920 1942 if (total_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1943 congestion_wait(WRITE, HZ/10);
1da177e4
LT
1944
1945 /*
1946 * We do this so kswapd doesn't build up large priorities for
1947 * example when it is freeing in parallel with allocators. It
1948 * matches the direct reclaim path behaviour in terms of impact
1949 * on zone->*_priority.
1950 */
a79311c1 1951 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
1952 break;
1953 }
1954out:
3bb1a852
MB
1955 /*
1956 * Note within each zone the priority level at which this zone was
1957 * brought into a happy state. So that the next thread which scans this
1958 * zone will start out at that priority level.
1959 */
1da177e4
LT
1960 for (i = 0; i < pgdat->nr_zones; i++) {
1961 struct zone *zone = pgdat->node_zones + i;
1962
3bb1a852 1963 zone->prev_priority = temp_priority[i];
1da177e4
LT
1964 }
1965 if (!all_zones_ok) {
1966 cond_resched();
8357376d
RW
1967
1968 try_to_freeze();
1969
73ce02e9
KM
1970 /*
1971 * Fragmentation may mean that the system cannot be
1972 * rebalanced for high-order allocations in all zones.
1973 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1974 * it means the zones have been fully scanned and are still
1975 * not balanced. For high-order allocations, there is
1976 * little point trying all over again as kswapd may
1977 * infinite loop.
1978 *
1979 * Instead, recheck all watermarks at order-0 as they
1980 * are the most important. If watermarks are ok, kswapd will go
1981 * back to sleep. High-order users can still perform direct
1982 * reclaim if they wish.
1983 */
1984 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1985 order = sc.order = 0;
1986
1da177e4
LT
1987 goto loop_again;
1988 }
1989
a79311c1 1990 return sc.nr_reclaimed;
1da177e4
LT
1991}
1992
1993/*
1994 * The background pageout daemon, started as a kernel thread
4f98a2fe 1995 * from the init process.
1da177e4
LT
1996 *
1997 * This basically trickles out pages so that we have _some_
1998 * free memory available even if there is no other activity
1999 * that frees anything up. This is needed for things like routing
2000 * etc, where we otherwise might have all activity going on in
2001 * asynchronous contexts that cannot page things out.
2002 *
2003 * If there are applications that are active memory-allocators
2004 * (most normal use), this basically shouldn't matter.
2005 */
2006static int kswapd(void *p)
2007{
2008 unsigned long order;
2009 pg_data_t *pgdat = (pg_data_t*)p;
2010 struct task_struct *tsk = current;
2011 DEFINE_WAIT(wait);
2012 struct reclaim_state reclaim_state = {
2013 .reclaimed_slab = 0,
2014 };
a70f7302 2015 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2016
cf40bd16
NP
2017 lockdep_set_current_reclaim_state(GFP_KERNEL);
2018
174596a0 2019 if (!cpumask_empty(cpumask))
c5f59f08 2020 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2021 current->reclaim_state = &reclaim_state;
2022
2023 /*
2024 * Tell the memory management that we're a "memory allocator",
2025 * and that if we need more memory we should get access to it
2026 * regardless (see "__alloc_pages()"). "kswapd" should
2027 * never get caught in the normal page freeing logic.
2028 *
2029 * (Kswapd normally doesn't need memory anyway, but sometimes
2030 * you need a small amount of memory in order to be able to
2031 * page out something else, and this flag essentially protects
2032 * us from recursively trying to free more memory as we're
2033 * trying to free the first piece of memory in the first place).
2034 */
930d9152 2035 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2036 set_freezable();
1da177e4
LT
2037
2038 order = 0;
2039 for ( ; ; ) {
2040 unsigned long new_order;
3e1d1d28 2041
1da177e4
LT
2042 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2043 new_order = pgdat->kswapd_max_order;
2044 pgdat->kswapd_max_order = 0;
2045 if (order < new_order) {
2046 /*
2047 * Don't sleep if someone wants a larger 'order'
2048 * allocation
2049 */
2050 order = new_order;
2051 } else {
b1296cc4
RW
2052 if (!freezing(current))
2053 schedule();
2054
1da177e4
LT
2055 order = pgdat->kswapd_max_order;
2056 }
2057 finish_wait(&pgdat->kswapd_wait, &wait);
2058
b1296cc4
RW
2059 if (!try_to_freeze()) {
2060 /* We can speed up thawing tasks if we don't call
2061 * balance_pgdat after returning from the refrigerator
2062 */
2063 balance_pgdat(pgdat, order);
2064 }
1da177e4
LT
2065 }
2066 return 0;
2067}
2068
2069/*
2070 * A zone is low on free memory, so wake its kswapd task to service it.
2071 */
2072void wakeup_kswapd(struct zone *zone, int order)
2073{
2074 pg_data_t *pgdat;
2075
f3fe6512 2076 if (!populated_zone(zone))
1da177e4
LT
2077 return;
2078
2079 pgdat = zone->zone_pgdat;
41858966 2080 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
1da177e4
LT
2081 return;
2082 if (pgdat->kswapd_max_order < order)
2083 pgdat->kswapd_max_order = order;
02a0e53d 2084 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2085 return;
8d0986e2 2086 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2087 return;
8d0986e2 2088 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2089}
2090
4f98a2fe
RR
2091unsigned long global_lru_pages(void)
2092{
2093 return global_page_state(NR_ACTIVE_ANON)
2094 + global_page_state(NR_ACTIVE_FILE)
2095 + global_page_state(NR_INACTIVE_ANON)
2096 + global_page_state(NR_INACTIVE_FILE);
2097}
2098
c6f37f12 2099#ifdef CONFIG_HIBERNATION
1da177e4 2100/*
d6277db4 2101 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
d979677c 2102 * from LRU lists system-wide, for given pass and priority.
d6277db4
RW
2103 *
2104 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2105 */
d979677c 2106static void shrink_all_zones(unsigned long nr_pages, int prio,
e07aa05b 2107 int pass, struct scan_control *sc)
d6277db4
RW
2108{
2109 struct zone *zone;
d979677c 2110 unsigned long nr_reclaimed = 0;
d6277db4 2111
ee99c71c 2112 for_each_populated_zone(zone) {
0cb57258 2113 enum lru_list l;
d6277db4 2114
e815af95 2115 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
d6277db4
RW
2116 continue;
2117
894bc310 2118 for_each_evictable_lru(l) {
0cb57258
JW
2119 enum zone_stat_item ls = NR_LRU_BASE + l;
2120 unsigned long lru_pages = zone_page_state(zone, ls);
2121
894bc310 2122 /* For pass = 0, we don't shrink the active list */
0cb57258
JW
2123 if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2124 l == LRU_ACTIVE_FILE))
b69408e8
CL
2125 continue;
2126
0cb57258 2127 zone->lru[l].nr_scan += (lru_pages >> prio) + 1;
b69408e8 2128 if (zone->lru[l].nr_scan >= nr_pages || pass > 3) {
0cb57258
JW
2129 unsigned long nr_to_scan;
2130
b69408e8 2131 zone->lru[l].nr_scan = 0;
0cb57258 2132 nr_to_scan = min(nr_pages, lru_pages);
d979677c 2133 nr_reclaimed += shrink_list(l, nr_to_scan, zone,
b69408e8 2134 sc, prio);
d979677c 2135 if (nr_reclaimed >= nr_pages) {
a21e2553 2136 sc->nr_reclaimed += nr_reclaimed;
d979677c
MK
2137 return;
2138 }
d6277db4
RW
2139 }
2140 }
d6277db4 2141 }
a21e2553 2142 sc->nr_reclaimed += nr_reclaimed;
d6277db4
RW
2143}
2144
2145/*
2146 * Try to free `nr_pages' of memory, system-wide, and return the number of
2147 * freed pages.
2148 *
2149 * Rather than trying to age LRUs the aim is to preserve the overall
2150 * LRU order by reclaiming preferentially
2151 * inactive > active > active referenced > active mapped
1da177e4 2152 */
69e05944 2153unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 2154{
d6277db4 2155 unsigned long lru_pages, nr_slab;
d6277db4
RW
2156 int pass;
2157 struct reclaim_state reclaim_state;
d6277db4
RW
2158 struct scan_control sc = {
2159 .gfp_mask = GFP_KERNEL,
a6dc60f8 2160 .may_unmap = 0,
d6277db4 2161 .may_writepage = 1,
66e1707b 2162 .isolate_pages = isolate_pages_global,
a21e2553 2163 .nr_reclaimed = 0,
1da177e4
LT
2164 };
2165
2166 current->reclaim_state = &reclaim_state;
69e05944 2167
4f98a2fe 2168 lru_pages = global_lru_pages();
972d1a7b 2169 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
2170 /* If slab caches are huge, it's better to hit them first */
2171 while (nr_slab >= lru_pages) {
2172 reclaim_state.reclaimed_slab = 0;
2173 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2174 if (!reclaim_state.reclaimed_slab)
1da177e4 2175 break;
d6277db4 2176
d979677c
MK
2177 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2178 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2179 goto out;
2180
2181 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 2182 }
d6277db4
RW
2183
2184 /*
2185 * We try to shrink LRUs in 5 passes:
2186 * 0 = Reclaim from inactive_list only
2187 * 1 = Reclaim from active list but don't reclaim mapped
2188 * 2 = 2nd pass of type 1
2189 * 3 = Reclaim mapped (normal reclaim)
2190 * 4 = 2nd pass of type 3
2191 */
2192 for (pass = 0; pass < 5; pass++) {
2193 int prio;
2194
d6277db4 2195 /* Force reclaiming mapped pages in the passes #3 and #4 */
3049103d 2196 if (pass > 2)
a6dc60f8 2197 sc.may_unmap = 1;
d6277db4
RW
2198
2199 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
d979677c 2200 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
d6277db4 2201
d6277db4 2202 sc.nr_scanned = 0;
9786bf84 2203 sc.swap_cluster_max = nr_to_scan;
d979677c
MK
2204 shrink_all_zones(nr_to_scan, prio, pass, &sc);
2205 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2206 goto out;
2207
2208 reclaim_state.reclaimed_slab = 0;
76395d37 2209 shrink_slab(sc.nr_scanned, sc.gfp_mask,
4f98a2fe 2210 global_lru_pages());
d979677c
MK
2211 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2212 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2213 goto out;
2214
2215 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
3fcfab16 2216 congestion_wait(WRITE, HZ / 10);
d6277db4 2217 }
248a0301 2218 }
d6277db4
RW
2219
2220 /*
d979677c
MK
2221 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2222 * something in slab caches
d6277db4 2223 */
d979677c 2224 if (!sc.nr_reclaimed) {
d6277db4
RW
2225 do {
2226 reclaim_state.reclaimed_slab = 0;
4f98a2fe 2227 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
d979677c
MK
2228 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2229 } while (sc.nr_reclaimed < nr_pages &&
2230 reclaim_state.reclaimed_slab > 0);
76395d37 2231 }
d6277db4 2232
d979677c 2233
d6277db4 2234out:
1da177e4 2235 current->reclaim_state = NULL;
d6277db4 2236
d979677c 2237 return sc.nr_reclaimed;
1da177e4 2238}
c6f37f12 2239#endif /* CONFIG_HIBERNATION */
1da177e4 2240
1da177e4
LT
2241/* It's optimal to keep kswapds on the same CPUs as their memory, but
2242 not required for correctness. So if the last cpu in a node goes
2243 away, we get changed to run anywhere: as the first one comes back,
2244 restore their cpu bindings. */
9c7b216d 2245static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2246 unsigned long action, void *hcpu)
1da177e4 2247{
58c0a4a7 2248 int nid;
1da177e4 2249
8bb78442 2250 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2251 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2252 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2253 const struct cpumask *mask;
2254
2255 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2256
3e597945 2257 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2258 /* One of our CPUs online: restore mask */
c5f59f08 2259 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2260 }
2261 }
2262 return NOTIFY_OK;
2263}
1da177e4 2264
3218ae14
YG
2265/*
2266 * This kswapd start function will be called by init and node-hot-add.
2267 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2268 */
2269int kswapd_run(int nid)
2270{
2271 pg_data_t *pgdat = NODE_DATA(nid);
2272 int ret = 0;
2273
2274 if (pgdat->kswapd)
2275 return 0;
2276
2277 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2278 if (IS_ERR(pgdat->kswapd)) {
2279 /* failure at boot is fatal */
2280 BUG_ON(system_state == SYSTEM_BOOTING);
2281 printk("Failed to start kswapd on node %d\n",nid);
2282 ret = -1;
2283 }
2284 return ret;
2285}
2286
1da177e4
LT
2287static int __init kswapd_init(void)
2288{
3218ae14 2289 int nid;
69e05944 2290
1da177e4 2291 swap_setup();
9422ffba 2292 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2293 kswapd_run(nid);
1da177e4
LT
2294 hotcpu_notifier(cpu_callback, 0);
2295 return 0;
2296}
2297
2298module_init(kswapd_init)
9eeff239
CL
2299
2300#ifdef CONFIG_NUMA
2301/*
2302 * Zone reclaim mode
2303 *
2304 * If non-zero call zone_reclaim when the number of free pages falls below
2305 * the watermarks.
9eeff239
CL
2306 */
2307int zone_reclaim_mode __read_mostly;
2308
1b2ffb78 2309#define RECLAIM_OFF 0
7d03431c 2310#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2311#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2312#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2313
a92f7126
CL
2314/*
2315 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2316 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2317 * a zone.
2318 */
2319#define ZONE_RECLAIM_PRIORITY 4
2320
9614634f
CL
2321/*
2322 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2323 * occur.
2324 */
2325int sysctl_min_unmapped_ratio = 1;
2326
0ff38490
CL
2327/*
2328 * If the number of slab pages in a zone grows beyond this percentage then
2329 * slab reclaim needs to occur.
2330 */
2331int sysctl_min_slab_ratio = 5;
2332
9eeff239
CL
2333/*
2334 * Try to free up some pages from this zone through reclaim.
2335 */
179e9639 2336static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2337{
7fb2d46d 2338 /* Minimum pages needed in order to stay on node */
69e05944 2339 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2340 struct task_struct *p = current;
2341 struct reclaim_state reclaim_state;
8695949a 2342 int priority;
179e9639
AM
2343 struct scan_control sc = {
2344 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2345 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 2346 .may_swap = 1,
69e05944
AM
2347 .swap_cluster_max = max_t(unsigned long, nr_pages,
2348 SWAP_CLUSTER_MAX),
179e9639 2349 .gfp_mask = gfp_mask,
d6277db4 2350 .swappiness = vm_swappiness,
bd2f6199 2351 .order = order,
66e1707b 2352 .isolate_pages = isolate_pages_global,
179e9639 2353 };
83e33a47 2354 unsigned long slab_reclaimable;
9eeff239
CL
2355
2356 disable_swap_token();
9eeff239 2357 cond_resched();
d4f7796e
CL
2358 /*
2359 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2360 * and we also need to be able to write out pages for RECLAIM_WRITE
2361 * and RECLAIM_SWAP.
2362 */
2363 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2364 reclaim_state.reclaimed_slab = 0;
2365 p->reclaim_state = &reclaim_state;
c84db23c 2366
0ff38490
CL
2367 if (zone_page_state(zone, NR_FILE_PAGES) -
2368 zone_page_state(zone, NR_FILE_MAPPED) >
2369 zone->min_unmapped_pages) {
2370 /*
2371 * Free memory by calling shrink zone with increasing
2372 * priorities until we have enough memory freed.
2373 */
2374 priority = ZONE_RECLAIM_PRIORITY;
2375 do {
3bb1a852 2376 note_zone_scanning_priority(zone, priority);
a79311c1 2377 shrink_zone(priority, zone, &sc);
0ff38490 2378 priority--;
a79311c1 2379 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2380 }
c84db23c 2381
83e33a47
CL
2382 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2383 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2384 /*
7fb2d46d 2385 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2386 * many pages were freed in this zone. So we take the current
2387 * number of slab pages and shake the slab until it is reduced
2388 * by the same nr_pages that we used for reclaiming unmapped
2389 * pages.
2a16e3f4 2390 *
0ff38490
CL
2391 * Note that shrink_slab will free memory on all zones and may
2392 * take a long time.
2a16e3f4 2393 */
0ff38490 2394 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2395 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2396 slab_reclaimable - nr_pages)
0ff38490 2397 ;
83e33a47
CL
2398
2399 /*
2400 * Update nr_reclaimed by the number of slab pages we
2401 * reclaimed from this zone.
2402 */
a79311c1 2403 sc.nr_reclaimed += slab_reclaimable -
83e33a47 2404 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2405 }
2406
9eeff239 2407 p->reclaim_state = NULL;
d4f7796e 2408 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
a79311c1 2409 return sc.nr_reclaimed >= nr_pages;
9eeff239 2410}
179e9639
AM
2411
2412int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2413{
179e9639 2414 int node_id;
d773ed6b 2415 int ret;
179e9639
AM
2416
2417 /*
0ff38490
CL
2418 * Zone reclaim reclaims unmapped file backed pages and
2419 * slab pages if we are over the defined limits.
34aa1330 2420 *
9614634f
CL
2421 * A small portion of unmapped file backed pages is needed for
2422 * file I/O otherwise pages read by file I/O will be immediately
2423 * thrown out if the zone is overallocated. So we do not reclaim
2424 * if less than a specified percentage of the zone is used by
2425 * unmapped file backed pages.
179e9639 2426 */
34aa1330 2427 if (zone_page_state(zone, NR_FILE_PAGES) -
0ff38490
CL
2428 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2429 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2430 <= zone->min_slab_pages)
9614634f 2431 return 0;
179e9639 2432
d773ed6b
DR
2433 if (zone_is_all_unreclaimable(zone))
2434 return 0;
2435
179e9639 2436 /*
d773ed6b 2437 * Do not scan if the allocation should not be delayed.
179e9639 2438 */
d773ed6b 2439 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
179e9639
AM
2440 return 0;
2441
2442 /*
2443 * Only run zone reclaim on the local zone or on zones that do not
2444 * have associated processors. This will favor the local processor
2445 * over remote processors and spread off node memory allocations
2446 * as wide as possible.
2447 */
89fa3024 2448 node_id = zone_to_nid(zone);
37c0708d 2449 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
179e9639 2450 return 0;
d773ed6b
DR
2451
2452 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2453 return 0;
2454 ret = __zone_reclaim(zone, gfp_mask, order);
2455 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2456
2457 return ret;
179e9639 2458}
9eeff239 2459#endif
894bc310
LS
2460
2461#ifdef CONFIG_UNEVICTABLE_LRU
2462/*
2463 * page_evictable - test whether a page is evictable
2464 * @page: the page to test
2465 * @vma: the VMA in which the page is or will be mapped, may be NULL
2466 *
2467 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2468 * lists vs unevictable list. The vma argument is !NULL when called from the
2469 * fault path to determine how to instantate a new page.
894bc310
LS
2470 *
2471 * Reasons page might not be evictable:
ba9ddf49 2472 * (1) page's mapping marked unevictable
b291f000 2473 * (2) page is part of an mlocked VMA
ba9ddf49 2474 *
894bc310
LS
2475 */
2476int page_evictable(struct page *page, struct vm_area_struct *vma)
2477{
2478
ba9ddf49
LS
2479 if (mapping_unevictable(page_mapping(page)))
2480 return 0;
2481
b291f000
NP
2482 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2483 return 0;
894bc310
LS
2484
2485 return 1;
2486}
89e004ea
LS
2487
2488/**
2489 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2490 * @page: page to check evictability and move to appropriate lru list
2491 * @zone: zone page is in
2492 *
2493 * Checks a page for evictability and moves the page to the appropriate
2494 * zone lru list.
2495 *
2496 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2497 * have PageUnevictable set.
2498 */
2499static void check_move_unevictable_page(struct page *page, struct zone *zone)
2500{
2501 VM_BUG_ON(PageActive(page));
2502
2503retry:
2504 ClearPageUnevictable(page);
2505 if (page_evictable(page, NULL)) {
2506 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
af936a16 2507
89e004ea
LS
2508 __dec_zone_state(zone, NR_UNEVICTABLE);
2509 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2510 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2511 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2512 __count_vm_event(UNEVICTABLE_PGRESCUED);
2513 } else {
2514 /*
2515 * rotate unevictable list
2516 */
2517 SetPageUnevictable(page);
2518 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2519 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2520 if (page_evictable(page, NULL))
2521 goto retry;
2522 }
2523}
2524
2525/**
2526 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2527 * @mapping: struct address_space to scan for evictable pages
2528 *
2529 * Scan all pages in mapping. Check unevictable pages for
2530 * evictability and move them to the appropriate zone lru list.
2531 */
2532void scan_mapping_unevictable_pages(struct address_space *mapping)
2533{
2534 pgoff_t next = 0;
2535 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2536 PAGE_CACHE_SHIFT;
2537 struct zone *zone;
2538 struct pagevec pvec;
2539
2540 if (mapping->nrpages == 0)
2541 return;
2542
2543 pagevec_init(&pvec, 0);
2544 while (next < end &&
2545 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2546 int i;
2547 int pg_scanned = 0;
2548
2549 zone = NULL;
2550
2551 for (i = 0; i < pagevec_count(&pvec); i++) {
2552 struct page *page = pvec.pages[i];
2553 pgoff_t page_index = page->index;
2554 struct zone *pagezone = page_zone(page);
2555
2556 pg_scanned++;
2557 if (page_index > next)
2558 next = page_index;
2559 next++;
2560
2561 if (pagezone != zone) {
2562 if (zone)
2563 spin_unlock_irq(&zone->lru_lock);
2564 zone = pagezone;
2565 spin_lock_irq(&zone->lru_lock);
2566 }
2567
2568 if (PageLRU(page) && PageUnevictable(page))
2569 check_move_unevictable_page(page, zone);
2570 }
2571 if (zone)
2572 spin_unlock_irq(&zone->lru_lock);
2573 pagevec_release(&pvec);
2574
2575 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2576 }
2577
2578}
af936a16
LS
2579
2580/**
2581 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2582 * @zone - zone of which to scan the unevictable list
2583 *
2584 * Scan @zone's unevictable LRU lists to check for pages that have become
2585 * evictable. Move those that have to @zone's inactive list where they
2586 * become candidates for reclaim, unless shrink_inactive_zone() decides
2587 * to reactivate them. Pages that are still unevictable are rotated
2588 * back onto @zone's unevictable list.
2589 */
2590#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2591static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2592{
2593 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2594 unsigned long scan;
2595 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2596
2597 while (nr_to_scan > 0) {
2598 unsigned long batch_size = min(nr_to_scan,
2599 SCAN_UNEVICTABLE_BATCH_SIZE);
2600
2601 spin_lock_irq(&zone->lru_lock);
2602 for (scan = 0; scan < batch_size; scan++) {
2603 struct page *page = lru_to_page(l_unevictable);
2604
2605 if (!trylock_page(page))
2606 continue;
2607
2608 prefetchw_prev_lru_page(page, l_unevictable, flags);
2609
2610 if (likely(PageLRU(page) && PageUnevictable(page)))
2611 check_move_unevictable_page(page, zone);
2612
2613 unlock_page(page);
2614 }
2615 spin_unlock_irq(&zone->lru_lock);
2616
2617 nr_to_scan -= batch_size;
2618 }
2619}
2620
2621
2622/**
2623 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2624 *
2625 * A really big hammer: scan all zones' unevictable LRU lists to check for
2626 * pages that have become evictable. Move those back to the zones'
2627 * inactive list where they become candidates for reclaim.
2628 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2629 * and we add swap to the system. As such, it runs in the context of a task
2630 * that has possibly/probably made some previously unevictable pages
2631 * evictable.
2632 */
ff30153b 2633static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2634{
2635 struct zone *zone;
2636
2637 for_each_zone(zone) {
2638 scan_zone_unevictable_pages(zone);
2639 }
2640}
2641
2642/*
2643 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2644 * all nodes' unevictable lists for evictable pages
2645 */
2646unsigned long scan_unevictable_pages;
2647
2648int scan_unevictable_handler(struct ctl_table *table, int write,
2649 struct file *file, void __user *buffer,
2650 size_t *length, loff_t *ppos)
2651{
2652 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2653
2654 if (write && *(unsigned long *)table->data)
2655 scan_all_zones_unevictable_pages();
2656
2657 scan_unevictable_pages = 0;
2658 return 0;
2659}
2660
2661/*
2662 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2663 * a specified node's per zone unevictable lists for evictable pages.
2664 */
2665
2666static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2667 struct sysdev_attribute *attr,
2668 char *buf)
2669{
2670 return sprintf(buf, "0\n"); /* always zero; should fit... */
2671}
2672
2673static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2674 struct sysdev_attribute *attr,
2675 const char *buf, size_t count)
2676{
2677 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2678 struct zone *zone;
2679 unsigned long res;
2680 unsigned long req = strict_strtoul(buf, 10, &res);
2681
2682 if (!req)
2683 return 1; /* zero is no-op */
2684
2685 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2686 if (!populated_zone(zone))
2687 continue;
2688 scan_zone_unevictable_pages(zone);
2689 }
2690 return 1;
2691}
2692
2693
2694static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2695 read_scan_unevictable_node,
2696 write_scan_unevictable_node);
2697
2698int scan_unevictable_register_node(struct node *node)
2699{
2700 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2701}
2702
2703void scan_unevictable_unregister_node(struct node *node)
2704{
2705 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2706}
2707
894bc310 2708#endif