]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/timer.c
kernel/: convert cpu notifier to return encapsulate errno value
[net-next-2.6.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
cdd6c482 40#include <linux/perf_event.h>
eea08f32 41#include <linux/sched.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
2b022e3d
XG
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
ecea8d19
TG
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
1da177e4
LT
57/*
58 * per-CPU timer vector definitions:
59 */
1da177e4
LT
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
a6fa8e5a 67struct tvec {
1da177e4 68 struct list_head vec[TVN_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_root {
1da177e4 72 struct list_head vec[TVR_SIZE];
a6fa8e5a 73};
1da177e4 74
a6fa8e5a 75struct tvec_base {
3691c519
ON
76 spinlock_t lock;
77 struct timer_list *running_timer;
1da177e4 78 unsigned long timer_jiffies;
97fd9ed4 79 unsigned long next_timer;
a6fa8e5a
PM
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
6e453a67 85} ____cacheline_aligned;
1da177e4 86
a6fa8e5a 87struct tvec_base boot_tvec_bases;
3691c519 88EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 90
6e453a67 91/*
a6fa8e5a 92 * Note that all tvec_bases are 2 byte aligned and lower bit of
6e453a67
VP
93 * base in timer_list is guaranteed to be zero. Use the LSB for
94 * the new flag to indicate whether the timer is deferrable
95 */
96#define TBASE_DEFERRABLE_FLAG (0x1)
97
98/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 99static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 100{
e9910846 101 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
102}
103
a6fa8e5a 104static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 105{
a6fa8e5a 106 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
107}
108
109static inline void timer_set_deferrable(struct timer_list *timer)
110{
a6fa8e5a 111 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 112 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
113}
114
115static inline void
a6fa8e5a 116timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 117{
a6fa8e5a 118 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 119 tbase_get_deferrable(timer->base));
6e453a67
VP
120}
121
9c133c46
AS
122static unsigned long round_jiffies_common(unsigned long j, int cpu,
123 bool force_up)
4c36a5de
AV
124{
125 int rem;
126 unsigned long original = j;
127
128 /*
129 * We don't want all cpus firing their timers at once hitting the
130 * same lock or cachelines, so we skew each extra cpu with an extra
131 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
132 * already did this.
133 * The skew is done by adding 3*cpunr, then round, then subtract this
134 * extra offset again.
135 */
136 j += cpu * 3;
137
138 rem = j % HZ;
139
140 /*
141 * If the target jiffie is just after a whole second (which can happen
142 * due to delays of the timer irq, long irq off times etc etc) then
143 * we should round down to the whole second, not up. Use 1/4th second
144 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 145 * But never round down if @force_up is set.
4c36a5de 146 */
9c133c46 147 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
148 j = j - rem;
149 else /* round up */
150 j = j - rem + HZ;
151
152 /* now that we have rounded, subtract the extra skew again */
153 j -= cpu * 3;
154
155 if (j <= jiffies) /* rounding ate our timeout entirely; */
156 return original;
157 return j;
158}
9c133c46
AS
159
160/**
161 * __round_jiffies - function to round jiffies to a full second
162 * @j: the time in (absolute) jiffies that should be rounded
163 * @cpu: the processor number on which the timeout will happen
164 *
165 * __round_jiffies() rounds an absolute time in the future (in jiffies)
166 * up or down to (approximately) full seconds. This is useful for timers
167 * for which the exact time they fire does not matter too much, as long as
168 * they fire approximately every X seconds.
169 *
170 * By rounding these timers to whole seconds, all such timers will fire
171 * at the same time, rather than at various times spread out. The goal
172 * of this is to have the CPU wake up less, which saves power.
173 *
174 * The exact rounding is skewed for each processor to avoid all
175 * processors firing at the exact same time, which could lead
176 * to lock contention or spurious cache line bouncing.
177 *
178 * The return value is the rounded version of the @j parameter.
179 */
180unsigned long __round_jiffies(unsigned long j, int cpu)
181{
182 return round_jiffies_common(j, cpu, false);
183}
4c36a5de
AV
184EXPORT_SYMBOL_GPL(__round_jiffies);
185
186/**
187 * __round_jiffies_relative - function to round jiffies to a full second
188 * @j: the time in (relative) jiffies that should be rounded
189 * @cpu: the processor number on which the timeout will happen
190 *
72fd4a35 191 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
192 * up or down to (approximately) full seconds. This is useful for timers
193 * for which the exact time they fire does not matter too much, as long as
194 * they fire approximately every X seconds.
195 *
196 * By rounding these timers to whole seconds, all such timers will fire
197 * at the same time, rather than at various times spread out. The goal
198 * of this is to have the CPU wake up less, which saves power.
199 *
200 * The exact rounding is skewed for each processor to avoid all
201 * processors firing at the exact same time, which could lead
202 * to lock contention or spurious cache line bouncing.
203 *
72fd4a35 204 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
205 */
206unsigned long __round_jiffies_relative(unsigned long j, int cpu)
207{
9c133c46
AS
208 unsigned long j0 = jiffies;
209
210 /* Use j0 because jiffies might change while we run */
211 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
212}
213EXPORT_SYMBOL_GPL(__round_jiffies_relative);
214
215/**
216 * round_jiffies - function to round jiffies to a full second
217 * @j: the time in (absolute) jiffies that should be rounded
218 *
72fd4a35 219 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
220 * up or down to (approximately) full seconds. This is useful for timers
221 * for which the exact time they fire does not matter too much, as long as
222 * they fire approximately every X seconds.
223 *
224 * By rounding these timers to whole seconds, all such timers will fire
225 * at the same time, rather than at various times spread out. The goal
226 * of this is to have the CPU wake up less, which saves power.
227 *
72fd4a35 228 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
229 */
230unsigned long round_jiffies(unsigned long j)
231{
9c133c46 232 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
233}
234EXPORT_SYMBOL_GPL(round_jiffies);
235
236/**
237 * round_jiffies_relative - function to round jiffies to a full second
238 * @j: the time in (relative) jiffies that should be rounded
239 *
72fd4a35 240 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
241 * up or down to (approximately) full seconds. This is useful for timers
242 * for which the exact time they fire does not matter too much, as long as
243 * they fire approximately every X seconds.
244 *
245 * By rounding these timers to whole seconds, all such timers will fire
246 * at the same time, rather than at various times spread out. The goal
247 * of this is to have the CPU wake up less, which saves power.
248 *
72fd4a35 249 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
250 */
251unsigned long round_jiffies_relative(unsigned long j)
252{
253 return __round_jiffies_relative(j, raw_smp_processor_id());
254}
255EXPORT_SYMBOL_GPL(round_jiffies_relative);
256
9c133c46
AS
257/**
258 * __round_jiffies_up - function to round jiffies up to a full second
259 * @j: the time in (absolute) jiffies that should be rounded
260 * @cpu: the processor number on which the timeout will happen
261 *
262 * This is the same as __round_jiffies() except that it will never
263 * round down. This is useful for timeouts for which the exact time
264 * of firing does not matter too much, as long as they don't fire too
265 * early.
266 */
267unsigned long __round_jiffies_up(unsigned long j, int cpu)
268{
269 return round_jiffies_common(j, cpu, true);
270}
271EXPORT_SYMBOL_GPL(__round_jiffies_up);
272
273/**
274 * __round_jiffies_up_relative - function to round jiffies up to a full second
275 * @j: the time in (relative) jiffies that should be rounded
276 * @cpu: the processor number on which the timeout will happen
277 *
278 * This is the same as __round_jiffies_relative() except that it will never
279 * round down. This is useful for timeouts for which the exact time
280 * of firing does not matter too much, as long as they don't fire too
281 * early.
282 */
283unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
284{
285 unsigned long j0 = jiffies;
286
287 /* Use j0 because jiffies might change while we run */
288 return round_jiffies_common(j + j0, cpu, true) - j0;
289}
290EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
291
292/**
293 * round_jiffies_up - function to round jiffies up to a full second
294 * @j: the time in (absolute) jiffies that should be rounded
295 *
296 * This is the same as round_jiffies() except that it will never
297 * round down. This is useful for timeouts for which the exact time
298 * of firing does not matter too much, as long as they don't fire too
299 * early.
300 */
301unsigned long round_jiffies_up(unsigned long j)
302{
303 return round_jiffies_common(j, raw_smp_processor_id(), true);
304}
305EXPORT_SYMBOL_GPL(round_jiffies_up);
306
307/**
308 * round_jiffies_up_relative - function to round jiffies up to a full second
309 * @j: the time in (relative) jiffies that should be rounded
310 *
311 * This is the same as round_jiffies_relative() except that it will never
312 * round down. This is useful for timeouts for which the exact time
313 * of firing does not matter too much, as long as they don't fire too
314 * early.
315 */
316unsigned long round_jiffies_up_relative(unsigned long j)
317{
318 return __round_jiffies_up_relative(j, raw_smp_processor_id());
319}
320EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
321
3bbb9ec9
AV
322/**
323 * set_timer_slack - set the allowed slack for a timer
324 * @slack_hz: the amount of time (in jiffies) allowed for rounding
325 *
326 * Set the amount of time, in jiffies, that a certain timer has
327 * in terms of slack. By setting this value, the timer subsystem
328 * will schedule the actual timer somewhere between
329 * the time mod_timer() asks for, and that time plus the slack.
330 *
331 * By setting the slack to -1, a percentage of the delay is used
332 * instead.
333 */
334void set_timer_slack(struct timer_list *timer, int slack_hz)
335{
336 timer->slack = slack_hz;
337}
338EXPORT_SYMBOL_GPL(set_timer_slack);
339
4c36a5de 340
a6fa8e5a 341static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
342 struct timer_list *timer)
343{
344#ifdef CONFIG_SMP
3691c519 345 base->running_timer = timer;
1da177e4
LT
346#endif
347}
348
a6fa8e5a 349static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
350{
351 unsigned long expires = timer->expires;
352 unsigned long idx = expires - base->timer_jiffies;
353 struct list_head *vec;
354
355 if (idx < TVR_SIZE) {
356 int i = expires & TVR_MASK;
357 vec = base->tv1.vec + i;
358 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
359 int i = (expires >> TVR_BITS) & TVN_MASK;
360 vec = base->tv2.vec + i;
361 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
362 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
363 vec = base->tv3.vec + i;
364 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
365 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
366 vec = base->tv4.vec + i;
367 } else if ((signed long) idx < 0) {
368 /*
369 * Can happen if you add a timer with expires == jiffies,
370 * or you set a timer to go off in the past
371 */
372 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
373 } else {
374 int i;
375 /* If the timeout is larger than 0xffffffff on 64-bit
376 * architectures then we use the maximum timeout:
377 */
378 if (idx > 0xffffffffUL) {
379 idx = 0xffffffffUL;
380 expires = idx + base->timer_jiffies;
381 }
382 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
383 vec = base->tv5.vec + i;
384 }
385 /*
386 * Timers are FIFO:
387 */
388 list_add_tail(&timer->entry, vec);
389}
390
82f67cd9
IM
391#ifdef CONFIG_TIMER_STATS
392void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
393{
394 if (timer->start_site)
395 return;
396
397 timer->start_site = addr;
398 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
399 timer->start_pid = current->pid;
400}
c5c061b8
VP
401
402static void timer_stats_account_timer(struct timer_list *timer)
403{
404 unsigned int flag = 0;
405
507e1231
HC
406 if (likely(!timer->start_site))
407 return;
c5c061b8
VP
408 if (unlikely(tbase_get_deferrable(timer->base)))
409 flag |= TIMER_STATS_FLAG_DEFERRABLE;
410
411 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
412 timer->function, timer->start_comm, flag);
413}
414
415#else
416static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
417#endif
418
c6f3a97f
TG
419#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
420
421static struct debug_obj_descr timer_debug_descr;
422
423/*
424 * fixup_init is called when:
425 * - an active object is initialized
55c888d6 426 */
c6f3a97f
TG
427static int timer_fixup_init(void *addr, enum debug_obj_state state)
428{
429 struct timer_list *timer = addr;
430
431 switch (state) {
432 case ODEBUG_STATE_ACTIVE:
433 del_timer_sync(timer);
434 debug_object_init(timer, &timer_debug_descr);
435 return 1;
436 default:
437 return 0;
438 }
439}
440
441/*
442 * fixup_activate is called when:
443 * - an active object is activated
444 * - an unknown object is activated (might be a statically initialized object)
445 */
446static int timer_fixup_activate(void *addr, enum debug_obj_state state)
447{
448 struct timer_list *timer = addr;
449
450 switch (state) {
451
452 case ODEBUG_STATE_NOTAVAILABLE:
453 /*
454 * This is not really a fixup. The timer was
455 * statically initialized. We just make sure that it
456 * is tracked in the object tracker.
457 */
458 if (timer->entry.next == NULL &&
459 timer->entry.prev == TIMER_ENTRY_STATIC) {
460 debug_object_init(timer, &timer_debug_descr);
461 debug_object_activate(timer, &timer_debug_descr);
462 return 0;
463 } else {
464 WARN_ON_ONCE(1);
465 }
466 return 0;
467
468 case ODEBUG_STATE_ACTIVE:
469 WARN_ON(1);
470
471 default:
472 return 0;
473 }
474}
475
476/*
477 * fixup_free is called when:
478 * - an active object is freed
479 */
480static int timer_fixup_free(void *addr, enum debug_obj_state state)
481{
482 struct timer_list *timer = addr;
483
484 switch (state) {
485 case ODEBUG_STATE_ACTIVE:
486 del_timer_sync(timer);
487 debug_object_free(timer, &timer_debug_descr);
488 return 1;
489 default:
490 return 0;
491 }
492}
493
494static struct debug_obj_descr timer_debug_descr = {
495 .name = "timer_list",
496 .fixup_init = timer_fixup_init,
497 .fixup_activate = timer_fixup_activate,
498 .fixup_free = timer_fixup_free,
499};
500
501static inline void debug_timer_init(struct timer_list *timer)
502{
503 debug_object_init(timer, &timer_debug_descr);
504}
505
506static inline void debug_timer_activate(struct timer_list *timer)
507{
508 debug_object_activate(timer, &timer_debug_descr);
509}
510
511static inline void debug_timer_deactivate(struct timer_list *timer)
512{
513 debug_object_deactivate(timer, &timer_debug_descr);
514}
515
516static inline void debug_timer_free(struct timer_list *timer)
517{
518 debug_object_free(timer, &timer_debug_descr);
519}
520
6f2b9b9a
JB
521static void __init_timer(struct timer_list *timer,
522 const char *name,
523 struct lock_class_key *key);
c6f3a97f 524
6f2b9b9a
JB
525void init_timer_on_stack_key(struct timer_list *timer,
526 const char *name,
527 struct lock_class_key *key)
c6f3a97f
TG
528{
529 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 530 __init_timer(timer, name, key);
c6f3a97f 531}
6f2b9b9a 532EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
533
534void destroy_timer_on_stack(struct timer_list *timer)
535{
536 debug_object_free(timer, &timer_debug_descr);
537}
538EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
539
540#else
541static inline void debug_timer_init(struct timer_list *timer) { }
542static inline void debug_timer_activate(struct timer_list *timer) { }
543static inline void debug_timer_deactivate(struct timer_list *timer) { }
544#endif
545
2b022e3d
XG
546static inline void debug_init(struct timer_list *timer)
547{
548 debug_timer_init(timer);
549 trace_timer_init(timer);
550}
551
552static inline void
553debug_activate(struct timer_list *timer, unsigned long expires)
554{
555 debug_timer_activate(timer);
556 trace_timer_start(timer, expires);
557}
558
559static inline void debug_deactivate(struct timer_list *timer)
560{
561 debug_timer_deactivate(timer);
562 trace_timer_cancel(timer);
563}
564
6f2b9b9a
JB
565static void __init_timer(struct timer_list *timer,
566 const char *name,
567 struct lock_class_key *key)
55c888d6
ON
568{
569 timer->entry.next = NULL;
bfe5d834 570 timer->base = __raw_get_cpu_var(tvec_bases);
3bbb9ec9 571 timer->slack = -1;
82f67cd9
IM
572#ifdef CONFIG_TIMER_STATS
573 timer->start_site = NULL;
574 timer->start_pid = -1;
575 memset(timer->start_comm, 0, TASK_COMM_LEN);
576#endif
6f2b9b9a 577 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 578}
c6f3a97f
TG
579
580/**
633fe795 581 * init_timer_key - initialize a timer
c6f3a97f 582 * @timer: the timer to be initialized
633fe795
RD
583 * @name: name of the timer
584 * @key: lockdep class key of the fake lock used for tracking timer
585 * sync lock dependencies
c6f3a97f 586 *
633fe795 587 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
588 * other timer functions.
589 */
6f2b9b9a
JB
590void init_timer_key(struct timer_list *timer,
591 const char *name,
592 struct lock_class_key *key)
c6f3a97f 593{
2b022e3d 594 debug_init(timer);
6f2b9b9a 595 __init_timer(timer, name, key);
c6f3a97f 596}
6f2b9b9a 597EXPORT_SYMBOL(init_timer_key);
55c888d6 598
6f2b9b9a
JB
599void init_timer_deferrable_key(struct timer_list *timer,
600 const char *name,
601 struct lock_class_key *key)
6e453a67 602{
6f2b9b9a 603 init_timer_key(timer, name, key);
6e453a67
VP
604 timer_set_deferrable(timer);
605}
6f2b9b9a 606EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 607
55c888d6 608static inline void detach_timer(struct timer_list *timer,
82f67cd9 609 int clear_pending)
55c888d6
ON
610{
611 struct list_head *entry = &timer->entry;
612
2b022e3d 613 debug_deactivate(timer);
c6f3a97f 614
55c888d6
ON
615 __list_del(entry->prev, entry->next);
616 if (clear_pending)
617 entry->next = NULL;
618 entry->prev = LIST_POISON2;
619}
620
621/*
3691c519 622 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
623 * means that all timers which are tied to this base via timer->base are
624 * locked, and the base itself is locked too.
625 *
626 * So __run_timers/migrate_timers can safely modify all timers which could
627 * be found on ->tvX lists.
628 *
629 * When the timer's base is locked, and the timer removed from list, it is
630 * possible to set timer->base = NULL and drop the lock: the timer remains
631 * locked.
632 */
a6fa8e5a 633static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 634 unsigned long *flags)
89e7e374 635 __acquires(timer->base->lock)
55c888d6 636{
a6fa8e5a 637 struct tvec_base *base;
55c888d6
ON
638
639 for (;;) {
a6fa8e5a 640 struct tvec_base *prelock_base = timer->base;
6e453a67 641 base = tbase_get_base(prelock_base);
55c888d6
ON
642 if (likely(base != NULL)) {
643 spin_lock_irqsave(&base->lock, *flags);
6e453a67 644 if (likely(prelock_base == timer->base))
55c888d6
ON
645 return base;
646 /* The timer has migrated to another CPU */
647 spin_unlock_irqrestore(&base->lock, *flags);
648 }
649 cpu_relax();
650 }
651}
652
74019224 653static inline int
597d0275
AB
654__mod_timer(struct timer_list *timer, unsigned long expires,
655 bool pending_only, int pinned)
1da177e4 656{
a6fa8e5a 657 struct tvec_base *base, *new_base;
1da177e4 658 unsigned long flags;
eea08f32 659 int ret = 0 , cpu;
1da177e4 660
82f67cd9 661 timer_stats_timer_set_start_info(timer);
1da177e4 662 BUG_ON(!timer->function);
1da177e4 663
55c888d6
ON
664 base = lock_timer_base(timer, &flags);
665
666 if (timer_pending(timer)) {
667 detach_timer(timer, 0);
97fd9ed4
MS
668 if (timer->expires == base->next_timer &&
669 !tbase_get_deferrable(timer->base))
670 base->next_timer = base->timer_jiffies;
55c888d6 671 ret = 1;
74019224
IM
672 } else {
673 if (pending_only)
674 goto out_unlock;
55c888d6
ON
675 }
676
2b022e3d 677 debug_activate(timer, expires);
c6f3a97f 678
eea08f32
AB
679 cpu = smp_processor_id();
680
681#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
682 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
683 int preferred_cpu = get_nohz_load_balancer();
684
685 if (preferred_cpu >= 0)
686 cpu = preferred_cpu;
687 }
688#endif
689 new_base = per_cpu(tvec_bases, cpu);
690
3691c519 691 if (base != new_base) {
1da177e4 692 /*
55c888d6
ON
693 * We are trying to schedule the timer on the local CPU.
694 * However we can't change timer's base while it is running,
695 * otherwise del_timer_sync() can't detect that the timer's
696 * handler yet has not finished. This also guarantees that
697 * the timer is serialized wrt itself.
1da177e4 698 */
a2c348fe 699 if (likely(base->running_timer != timer)) {
55c888d6 700 /* See the comment in lock_timer_base() */
6e453a67 701 timer_set_base(timer, NULL);
55c888d6 702 spin_unlock(&base->lock);
a2c348fe
ON
703 base = new_base;
704 spin_lock(&base->lock);
6e453a67 705 timer_set_base(timer, base);
1da177e4
LT
706 }
707 }
708
1da177e4 709 timer->expires = expires;
97fd9ed4
MS
710 if (time_before(timer->expires, base->next_timer) &&
711 !tbase_get_deferrable(timer->base))
712 base->next_timer = timer->expires;
a2c348fe 713 internal_add_timer(base, timer);
74019224
IM
714
715out_unlock:
a2c348fe 716 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
717
718 return ret;
719}
720
2aae4a10 721/**
74019224
IM
722 * mod_timer_pending - modify a pending timer's timeout
723 * @timer: the pending timer to be modified
724 * @expires: new timeout in jiffies
1da177e4 725 *
74019224
IM
726 * mod_timer_pending() is the same for pending timers as mod_timer(),
727 * but will not re-activate and modify already deleted timers.
728 *
729 * It is useful for unserialized use of timers.
1da177e4 730 */
74019224 731int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 732{
597d0275 733 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 734}
74019224 735EXPORT_SYMBOL(mod_timer_pending);
1da177e4 736
3bbb9ec9
AV
737/*
738 * Decide where to put the timer while taking the slack into account
739 *
740 * Algorithm:
741 * 1) calculate the maximum (absolute) time
742 * 2) calculate the highest bit where the expires and new max are different
743 * 3) use this bit to make a mask
744 * 4) use the bitmask to round down the maximum time, so that all last
745 * bits are zeros
746 */
747static inline
748unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
749{
750 unsigned long expires_limit, mask;
751 int bit;
752
f00e047e 753 expires_limit = expires;
3bbb9ec9 754
f00e047e
JC
755 if (timer->slack > -1)
756 expires_limit = expires + timer->slack;
757 else if (time_after(expires, jiffies)) /* auto slack: use 0.4% */
3bbb9ec9
AV
758 expires_limit = expires + (expires - jiffies)/256;
759
760 mask = expires ^ expires_limit;
3bbb9ec9
AV
761 if (mask == 0)
762 return expires;
763
764 bit = find_last_bit(&mask, BITS_PER_LONG);
765
766 mask = (1 << bit) - 1;
767
768 expires_limit = expires_limit & ~(mask);
769
770 return expires_limit;
771}
772
2aae4a10 773/**
1da177e4
LT
774 * mod_timer - modify a timer's timeout
775 * @timer: the timer to be modified
2aae4a10 776 * @expires: new timeout in jiffies
1da177e4 777 *
72fd4a35 778 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
779 * active timer (if the timer is inactive it will be activated)
780 *
781 * mod_timer(timer, expires) is equivalent to:
782 *
783 * del_timer(timer); timer->expires = expires; add_timer(timer);
784 *
785 * Note that if there are multiple unserialized concurrent users of the
786 * same timer, then mod_timer() is the only safe way to modify the timeout,
787 * since add_timer() cannot modify an already running timer.
788 *
789 * The function returns whether it has modified a pending timer or not.
790 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
791 * active timer returns 1.)
792 */
793int mod_timer(struct timer_list *timer, unsigned long expires)
794{
1da177e4
LT
795 /*
796 * This is a common optimization triggered by the
797 * networking code - if the timer is re-modified
798 * to be the same thing then just return:
799 */
4841158b 800 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
801 return 1;
802
3bbb9ec9
AV
803 expires = apply_slack(timer, expires);
804
597d0275 805 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 806}
1da177e4
LT
807EXPORT_SYMBOL(mod_timer);
808
597d0275
AB
809/**
810 * mod_timer_pinned - modify a timer's timeout
811 * @timer: the timer to be modified
812 * @expires: new timeout in jiffies
813 *
814 * mod_timer_pinned() is a way to update the expire field of an
815 * active timer (if the timer is inactive it will be activated)
816 * and not allow the timer to be migrated to a different CPU.
817 *
818 * mod_timer_pinned(timer, expires) is equivalent to:
819 *
820 * del_timer(timer); timer->expires = expires; add_timer(timer);
821 */
822int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
823{
824 if (timer->expires == expires && timer_pending(timer))
825 return 1;
826
827 return __mod_timer(timer, expires, false, TIMER_PINNED);
828}
829EXPORT_SYMBOL(mod_timer_pinned);
830
74019224
IM
831/**
832 * add_timer - start a timer
833 * @timer: the timer to be added
834 *
835 * The kernel will do a ->function(->data) callback from the
836 * timer interrupt at the ->expires point in the future. The
837 * current time is 'jiffies'.
838 *
839 * The timer's ->expires, ->function (and if the handler uses it, ->data)
840 * fields must be set prior calling this function.
841 *
842 * Timers with an ->expires field in the past will be executed in the next
843 * timer tick.
844 */
845void add_timer(struct timer_list *timer)
846{
847 BUG_ON(timer_pending(timer));
848 mod_timer(timer, timer->expires);
849}
850EXPORT_SYMBOL(add_timer);
851
852/**
853 * add_timer_on - start a timer on a particular CPU
854 * @timer: the timer to be added
855 * @cpu: the CPU to start it on
856 *
857 * This is not very scalable on SMP. Double adds are not possible.
858 */
859void add_timer_on(struct timer_list *timer, int cpu)
860{
861 struct tvec_base *base = per_cpu(tvec_bases, cpu);
862 unsigned long flags;
863
864 timer_stats_timer_set_start_info(timer);
865 BUG_ON(timer_pending(timer) || !timer->function);
866 spin_lock_irqsave(&base->lock, flags);
867 timer_set_base(timer, base);
2b022e3d 868 debug_activate(timer, timer->expires);
97fd9ed4
MS
869 if (time_before(timer->expires, base->next_timer) &&
870 !tbase_get_deferrable(timer->base))
871 base->next_timer = timer->expires;
74019224
IM
872 internal_add_timer(base, timer);
873 /*
874 * Check whether the other CPU is idle and needs to be
875 * triggered to reevaluate the timer wheel when nohz is
876 * active. We are protected against the other CPU fiddling
877 * with the timer by holding the timer base lock. This also
878 * makes sure that a CPU on the way to idle can not evaluate
879 * the timer wheel.
880 */
881 wake_up_idle_cpu(cpu);
882 spin_unlock_irqrestore(&base->lock, flags);
883}
a9862e05 884EXPORT_SYMBOL_GPL(add_timer_on);
74019224 885
2aae4a10 886/**
1da177e4
LT
887 * del_timer - deactive a timer.
888 * @timer: the timer to be deactivated
889 *
890 * del_timer() deactivates a timer - this works on both active and inactive
891 * timers.
892 *
893 * The function returns whether it has deactivated a pending timer or not.
894 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
895 * active timer returns 1.)
896 */
897int del_timer(struct timer_list *timer)
898{
a6fa8e5a 899 struct tvec_base *base;
1da177e4 900 unsigned long flags;
55c888d6 901 int ret = 0;
1da177e4 902
82f67cd9 903 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
904 if (timer_pending(timer)) {
905 base = lock_timer_base(timer, &flags);
906 if (timer_pending(timer)) {
907 detach_timer(timer, 1);
97fd9ed4
MS
908 if (timer->expires == base->next_timer &&
909 !tbase_get_deferrable(timer->base))
910 base->next_timer = base->timer_jiffies;
55c888d6
ON
911 ret = 1;
912 }
1da177e4 913 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 914 }
1da177e4 915
55c888d6 916 return ret;
1da177e4 917}
1da177e4
LT
918EXPORT_SYMBOL(del_timer);
919
920#ifdef CONFIG_SMP
2aae4a10
REB
921/**
922 * try_to_del_timer_sync - Try to deactivate a timer
923 * @timer: timer do del
924 *
fd450b73
ON
925 * This function tries to deactivate a timer. Upon successful (ret >= 0)
926 * exit the timer is not queued and the handler is not running on any CPU.
927 *
928 * It must not be called from interrupt contexts.
929 */
930int try_to_del_timer_sync(struct timer_list *timer)
931{
a6fa8e5a 932 struct tvec_base *base;
fd450b73
ON
933 unsigned long flags;
934 int ret = -1;
935
936 base = lock_timer_base(timer, &flags);
937
938 if (base->running_timer == timer)
939 goto out;
940
829b6c1e 941 timer_stats_timer_clear_start_info(timer);
fd450b73
ON
942 ret = 0;
943 if (timer_pending(timer)) {
944 detach_timer(timer, 1);
97fd9ed4
MS
945 if (timer->expires == base->next_timer &&
946 !tbase_get_deferrable(timer->base))
947 base->next_timer = base->timer_jiffies;
fd450b73
ON
948 ret = 1;
949 }
950out:
951 spin_unlock_irqrestore(&base->lock, flags);
952
953 return ret;
954}
e19dff1f
DH
955EXPORT_SYMBOL(try_to_del_timer_sync);
956
2aae4a10 957/**
1da177e4
LT
958 * del_timer_sync - deactivate a timer and wait for the handler to finish.
959 * @timer: the timer to be deactivated
960 *
961 * This function only differs from del_timer() on SMP: besides deactivating
962 * the timer it also makes sure the handler has finished executing on other
963 * CPUs.
964 *
72fd4a35 965 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
966 * otherwise this function is meaningless. It must not be called from
967 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
968 * completion of the timer's handler. The timer's handler must not call
969 * add_timer_on(). Upon exit the timer is not queued and the handler is
970 * not running on any CPU.
1da177e4
LT
971 *
972 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
973 */
974int del_timer_sync(struct timer_list *timer)
975{
6f2b9b9a
JB
976#ifdef CONFIG_LOCKDEP
977 unsigned long flags;
978
979 local_irq_save(flags);
980 lock_map_acquire(&timer->lockdep_map);
981 lock_map_release(&timer->lockdep_map);
982 local_irq_restore(flags);
983#endif
984
fd450b73
ON
985 for (;;) {
986 int ret = try_to_del_timer_sync(timer);
987 if (ret >= 0)
988 return ret;
a0009652 989 cpu_relax();
fd450b73 990 }
1da177e4 991}
55c888d6 992EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
993#endif
994
a6fa8e5a 995static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
996{
997 /* cascade all the timers from tv up one level */
3439dd86
P
998 struct timer_list *timer, *tmp;
999 struct list_head tv_list;
1000
1001 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1002
1da177e4 1003 /*
3439dd86
P
1004 * We are removing _all_ timers from the list, so we
1005 * don't have to detach them individually.
1da177e4 1006 */
3439dd86 1007 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1008 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 1009 internal_add_timer(base, timer);
1da177e4 1010 }
1da177e4
LT
1011
1012 return index;
1013}
1014
576da126
TG
1015static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1016 unsigned long data)
1017{
1018 int preempt_count = preempt_count();
1019
1020#ifdef CONFIG_LOCKDEP
1021 /*
1022 * It is permissible to free the timer from inside the
1023 * function that is called from it, this we need to take into
1024 * account for lockdep too. To avoid bogus "held lock freed"
1025 * warnings as well as problems when looking into
1026 * timer->lockdep_map, make a copy and use that here.
1027 */
1028 struct lockdep_map lockdep_map = timer->lockdep_map;
1029#endif
1030 /*
1031 * Couple the lock chain with the lock chain at
1032 * del_timer_sync() by acquiring the lock_map around the fn()
1033 * call here and in del_timer_sync().
1034 */
1035 lock_map_acquire(&lockdep_map);
1036
1037 trace_timer_expire_entry(timer);
1038 fn(data);
1039 trace_timer_expire_exit(timer);
1040
1041 lock_map_release(&lockdep_map);
1042
1043 if (preempt_count != preempt_count()) {
802702e0
TG
1044 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1045 fn, preempt_count, preempt_count());
1046 /*
1047 * Restore the preempt count. That gives us a decent
1048 * chance to survive and extract information. If the
1049 * callback kept a lock held, bad luck, but not worse
1050 * than the BUG() we had.
1051 */
1052 preempt_count() = preempt_count;
576da126
TG
1053 }
1054}
1055
2aae4a10
REB
1056#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1057
1058/**
1da177e4
LT
1059 * __run_timers - run all expired timers (if any) on this CPU.
1060 * @base: the timer vector to be processed.
1061 *
1062 * This function cascades all vectors and executes all expired timer
1063 * vectors.
1064 */
a6fa8e5a 1065static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1066{
1067 struct timer_list *timer;
1068
3691c519 1069 spin_lock_irq(&base->lock);
1da177e4 1070 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1071 struct list_head work_list;
1da177e4 1072 struct list_head *head = &work_list;
6819457d 1073 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1074
1da177e4
LT
1075 /*
1076 * Cascade timers:
1077 */
1078 if (!index &&
1079 (!cascade(base, &base->tv2, INDEX(0))) &&
1080 (!cascade(base, &base->tv3, INDEX(1))) &&
1081 !cascade(base, &base->tv4, INDEX(2)))
1082 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1083 ++base->timer_jiffies;
1084 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1085 while (!list_empty(head)) {
1da177e4
LT
1086 void (*fn)(unsigned long);
1087 unsigned long data;
1088
b5e61818 1089 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1090 fn = timer->function;
1091 data = timer->data;
1da177e4 1092
82f67cd9
IM
1093 timer_stats_account_timer(timer);
1094
1da177e4 1095 set_running_timer(base, timer);
55c888d6 1096 detach_timer(timer, 1);
6f2b9b9a 1097
3691c519 1098 spin_unlock_irq(&base->lock);
576da126 1099 call_timer_fn(timer, fn, data);
3691c519 1100 spin_lock_irq(&base->lock);
1da177e4
LT
1101 }
1102 }
1103 set_running_timer(base, NULL);
3691c519 1104 spin_unlock_irq(&base->lock);
1da177e4
LT
1105}
1106
ee9c5785 1107#ifdef CONFIG_NO_HZ
1da177e4
LT
1108/*
1109 * Find out when the next timer event is due to happen. This
90cba64a
RD
1110 * is used on S/390 to stop all activity when a CPU is idle.
1111 * This function needs to be called with interrupts disabled.
1da177e4 1112 */
a6fa8e5a 1113static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1114{
1cfd6849 1115 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1116 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1117 int index, slot, array, found = 0;
1da177e4 1118 struct timer_list *nte;
a6fa8e5a 1119 struct tvec *varray[4];
1da177e4
LT
1120
1121 /* Look for timer events in tv1. */
1cfd6849 1122 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1123 do {
1cfd6849 1124 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1125 if (tbase_get_deferrable(nte->base))
1126 continue;
6e453a67 1127
1cfd6849 1128 found = 1;
1da177e4 1129 expires = nte->expires;
1cfd6849
TG
1130 /* Look at the cascade bucket(s)? */
1131 if (!index || slot < index)
1132 goto cascade;
1133 return expires;
1da177e4 1134 }
1cfd6849
TG
1135 slot = (slot + 1) & TVR_MASK;
1136 } while (slot != index);
1137
1138cascade:
1139 /* Calculate the next cascade event */
1140 if (index)
1141 timer_jiffies += TVR_SIZE - index;
1142 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1143
1144 /* Check tv2-tv5. */
1145 varray[0] = &base->tv2;
1146 varray[1] = &base->tv3;
1147 varray[2] = &base->tv4;
1148 varray[3] = &base->tv5;
1cfd6849
TG
1149
1150 for (array = 0; array < 4; array++) {
a6fa8e5a 1151 struct tvec *varp = varray[array];
1cfd6849
TG
1152
1153 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1154 do {
1cfd6849 1155 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1156 if (tbase_get_deferrable(nte->base))
1157 continue;
1158
1cfd6849 1159 found = 1;
1da177e4
LT
1160 if (time_before(nte->expires, expires))
1161 expires = nte->expires;
1cfd6849
TG
1162 }
1163 /*
1164 * Do we still search for the first timer or are
1165 * we looking up the cascade buckets ?
1166 */
1167 if (found) {
1168 /* Look at the cascade bucket(s)? */
1169 if (!index || slot < index)
1170 break;
1171 return expires;
1172 }
1173 slot = (slot + 1) & TVN_MASK;
1174 } while (slot != index);
1175
1176 if (index)
1177 timer_jiffies += TVN_SIZE - index;
1178 timer_jiffies >>= TVN_BITS;
1da177e4 1179 }
1cfd6849
TG
1180 return expires;
1181}
69239749 1182
1cfd6849
TG
1183/*
1184 * Check, if the next hrtimer event is before the next timer wheel
1185 * event:
1186 */
1187static unsigned long cmp_next_hrtimer_event(unsigned long now,
1188 unsigned long expires)
1189{
1190 ktime_t hr_delta = hrtimer_get_next_event();
1191 struct timespec tsdelta;
9501b6cf 1192 unsigned long delta;
1cfd6849
TG
1193
1194 if (hr_delta.tv64 == KTIME_MAX)
1195 return expires;
0662b713 1196
9501b6cf
TG
1197 /*
1198 * Expired timer available, let it expire in the next tick
1199 */
1200 if (hr_delta.tv64 <= 0)
1201 return now + 1;
69239749 1202
1cfd6849 1203 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1204 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1205
1206 /*
1207 * Limit the delta to the max value, which is checked in
1208 * tick_nohz_stop_sched_tick():
1209 */
1210 if (delta > NEXT_TIMER_MAX_DELTA)
1211 delta = NEXT_TIMER_MAX_DELTA;
1212
9501b6cf
TG
1213 /*
1214 * Take rounding errors in to account and make sure, that it
1215 * expires in the next tick. Otherwise we go into an endless
1216 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1217 * the timer softirq
1218 */
1219 if (delta < 1)
1220 delta = 1;
1221 now += delta;
1cfd6849
TG
1222 if (time_before(now, expires))
1223 return now;
1da177e4
LT
1224 return expires;
1225}
1cfd6849
TG
1226
1227/**
8dce39c2 1228 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1229 * @now: current time (in jiffies)
1cfd6849 1230 */
fd064b9b 1231unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1232{
a6fa8e5a 1233 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1234 unsigned long expires;
1cfd6849
TG
1235
1236 spin_lock(&base->lock);
97fd9ed4
MS
1237 if (time_before_eq(base->next_timer, base->timer_jiffies))
1238 base->next_timer = __next_timer_interrupt(base);
1239 expires = base->next_timer;
1cfd6849
TG
1240 spin_unlock(&base->lock);
1241
1242 if (time_before_eq(expires, now))
1243 return now;
1244
1245 return cmp_next_hrtimer_event(now, expires);
1246}
1da177e4
LT
1247#endif
1248
1da177e4 1249/*
5b4db0c2 1250 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1251 * process. user_tick is 1 if the tick is user time, 0 for system.
1252 */
1253void update_process_times(int user_tick)
1254{
1255 struct task_struct *p = current;
1256 int cpu = smp_processor_id();
1257
1258 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1259 account_process_tick(p, user_tick);
1da177e4 1260 run_local_timers();
a157229c 1261 rcu_check_callbacks(cpu, user_tick);
b845b517 1262 printk_tick();
fe432200 1263 perf_event_do_pending();
1da177e4 1264 scheduler_tick();
6819457d 1265 run_posix_cpu_timers(p);
1da177e4
LT
1266}
1267
1da177e4
LT
1268/*
1269 * This function runs timers and the timer-tq in bottom half context.
1270 */
1271static void run_timer_softirq(struct softirq_action *h)
1272{
a6fa8e5a 1273 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1274
d3d74453 1275 hrtimer_run_pending();
82f67cd9 1276
1da177e4
LT
1277 if (time_after_eq(jiffies, base->timer_jiffies))
1278 __run_timers(base);
1279}
1280
1281/*
1282 * Called by the local, per-CPU timer interrupt on SMP.
1283 */
1284void run_local_timers(void)
1285{
d3d74453 1286 hrtimer_run_queues();
1da177e4 1287 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1288 softlockup_tick();
1da177e4
LT
1289}
1290
1da177e4
LT
1291/*
1292 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1293 * without sampling the sequence number in xtime_lock.
1294 * jiffies is defined in the linker script...
1295 */
1296
3171a030 1297void do_timer(unsigned long ticks)
1da177e4 1298{
3171a030 1299 jiffies_64 += ticks;
dce48a84
TG
1300 update_wall_time();
1301 calc_global_load();
1da177e4
LT
1302}
1303
1304#ifdef __ARCH_WANT_SYS_ALARM
1305
1306/*
1307 * For backwards compatibility? This can be done in libc so Alpha
1308 * and all newer ports shouldn't need it.
1309 */
58fd3aa2 1310SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1311{
c08b8a49 1312 return alarm_setitimer(seconds);
1da177e4
LT
1313}
1314
1315#endif
1316
1317#ifndef __alpha__
1318
1319/*
1320 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1321 * should be moved into arch/i386 instead?
1322 */
1323
1324/**
1325 * sys_getpid - return the thread group id of the current process
1326 *
1327 * Note, despite the name, this returns the tgid not the pid. The tgid and
1328 * the pid are identical unless CLONE_THREAD was specified on clone() in
1329 * which case the tgid is the same in all threads of the same group.
1330 *
1331 * This is SMP safe as current->tgid does not change.
1332 */
58fd3aa2 1333SYSCALL_DEFINE0(getpid)
1da177e4 1334{
b488893a 1335 return task_tgid_vnr(current);
1da177e4
LT
1336}
1337
1338/*
6997a6fa
KK
1339 * Accessing ->real_parent is not SMP-safe, it could
1340 * change from under us. However, we can use a stale
1341 * value of ->real_parent under rcu_read_lock(), see
1342 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1343 */
dbf040d9 1344SYSCALL_DEFINE0(getppid)
1da177e4
LT
1345{
1346 int pid;
1da177e4 1347
6997a6fa 1348 rcu_read_lock();
6c5f3e7b 1349 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1350 rcu_read_unlock();
1da177e4 1351
1da177e4
LT
1352 return pid;
1353}
1354
dbf040d9 1355SYSCALL_DEFINE0(getuid)
1da177e4
LT
1356{
1357 /* Only we change this so SMP safe */
76aac0e9 1358 return current_uid();
1da177e4
LT
1359}
1360
dbf040d9 1361SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1362{
1363 /* Only we change this so SMP safe */
76aac0e9 1364 return current_euid();
1da177e4
LT
1365}
1366
dbf040d9 1367SYSCALL_DEFINE0(getgid)
1da177e4
LT
1368{
1369 /* Only we change this so SMP safe */
76aac0e9 1370 return current_gid();
1da177e4
LT
1371}
1372
dbf040d9 1373SYSCALL_DEFINE0(getegid)
1da177e4
LT
1374{
1375 /* Only we change this so SMP safe */
76aac0e9 1376 return current_egid();
1da177e4
LT
1377}
1378
1379#endif
1380
1381static void process_timeout(unsigned long __data)
1382{
36c8b586 1383 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1384}
1385
1386/**
1387 * schedule_timeout - sleep until timeout
1388 * @timeout: timeout value in jiffies
1389 *
1390 * Make the current task sleep until @timeout jiffies have
1391 * elapsed. The routine will return immediately unless
1392 * the current task state has been set (see set_current_state()).
1393 *
1394 * You can set the task state as follows -
1395 *
1396 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1397 * pass before the routine returns. The routine will return 0
1398 *
1399 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1400 * delivered to the current task. In this case the remaining time
1401 * in jiffies will be returned, or 0 if the timer expired in time
1402 *
1403 * The current task state is guaranteed to be TASK_RUNNING when this
1404 * routine returns.
1405 *
1406 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1407 * the CPU away without a bound on the timeout. In this case the return
1408 * value will be %MAX_SCHEDULE_TIMEOUT.
1409 *
1410 * In all cases the return value is guaranteed to be non-negative.
1411 */
7ad5b3a5 1412signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1413{
1414 struct timer_list timer;
1415 unsigned long expire;
1416
1417 switch (timeout)
1418 {
1419 case MAX_SCHEDULE_TIMEOUT:
1420 /*
1421 * These two special cases are useful to be comfortable
1422 * in the caller. Nothing more. We could take
1423 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1424 * but I' d like to return a valid offset (>=0) to allow
1425 * the caller to do everything it want with the retval.
1426 */
1427 schedule();
1428 goto out;
1429 default:
1430 /*
1431 * Another bit of PARANOID. Note that the retval will be
1432 * 0 since no piece of kernel is supposed to do a check
1433 * for a negative retval of schedule_timeout() (since it
1434 * should never happens anyway). You just have the printk()
1435 * that will tell you if something is gone wrong and where.
1436 */
5b149bcc 1437 if (timeout < 0) {
1da177e4 1438 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1439 "value %lx\n", timeout);
1440 dump_stack();
1da177e4
LT
1441 current->state = TASK_RUNNING;
1442 goto out;
1443 }
1444 }
1445
1446 expire = timeout + jiffies;
1447
c6f3a97f 1448 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1449 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1450 schedule();
1451 del_singleshot_timer_sync(&timer);
1452
c6f3a97f
TG
1453 /* Remove the timer from the object tracker */
1454 destroy_timer_on_stack(&timer);
1455
1da177e4
LT
1456 timeout = expire - jiffies;
1457
1458 out:
1459 return timeout < 0 ? 0 : timeout;
1460}
1da177e4
LT
1461EXPORT_SYMBOL(schedule_timeout);
1462
8a1c1757
AM
1463/*
1464 * We can use __set_current_state() here because schedule_timeout() calls
1465 * schedule() unconditionally.
1466 */
64ed93a2
NA
1467signed long __sched schedule_timeout_interruptible(signed long timeout)
1468{
a5a0d52c
AM
1469 __set_current_state(TASK_INTERRUPTIBLE);
1470 return schedule_timeout(timeout);
64ed93a2
NA
1471}
1472EXPORT_SYMBOL(schedule_timeout_interruptible);
1473
294d5cc2
MW
1474signed long __sched schedule_timeout_killable(signed long timeout)
1475{
1476 __set_current_state(TASK_KILLABLE);
1477 return schedule_timeout(timeout);
1478}
1479EXPORT_SYMBOL(schedule_timeout_killable);
1480
64ed93a2
NA
1481signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1482{
a5a0d52c
AM
1483 __set_current_state(TASK_UNINTERRUPTIBLE);
1484 return schedule_timeout(timeout);
64ed93a2
NA
1485}
1486EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1487
1da177e4 1488/* Thread ID - the internal kernel "pid" */
58fd3aa2 1489SYSCALL_DEFINE0(gettid)
1da177e4 1490{
b488893a 1491 return task_pid_vnr(current);
1da177e4
LT
1492}
1493
2aae4a10 1494/**
d4d23add 1495 * do_sysinfo - fill in sysinfo struct
2aae4a10 1496 * @info: pointer to buffer to fill
6819457d 1497 */
d4d23add 1498int do_sysinfo(struct sysinfo *info)
1da177e4 1499{
1da177e4
LT
1500 unsigned long mem_total, sav_total;
1501 unsigned int mem_unit, bitcount;
2d02494f 1502 struct timespec tp;
1da177e4 1503
d4d23add 1504 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1505
2d02494f
TG
1506 ktime_get_ts(&tp);
1507 monotonic_to_bootbased(&tp);
1508 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1509
2d02494f 1510 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1511
2d02494f 1512 info->procs = nr_threads;
1da177e4 1513
d4d23add
KM
1514 si_meminfo(info);
1515 si_swapinfo(info);
1da177e4
LT
1516
1517 /*
1518 * If the sum of all the available memory (i.e. ram + swap)
1519 * is less than can be stored in a 32 bit unsigned long then
1520 * we can be binary compatible with 2.2.x kernels. If not,
1521 * well, in that case 2.2.x was broken anyways...
1522 *
1523 * -Erik Andersen <andersee@debian.org>
1524 */
1525
d4d23add
KM
1526 mem_total = info->totalram + info->totalswap;
1527 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1528 goto out;
1529 bitcount = 0;
d4d23add 1530 mem_unit = info->mem_unit;
1da177e4
LT
1531 while (mem_unit > 1) {
1532 bitcount++;
1533 mem_unit >>= 1;
1534 sav_total = mem_total;
1535 mem_total <<= 1;
1536 if (mem_total < sav_total)
1537 goto out;
1538 }
1539
1540 /*
1541 * If mem_total did not overflow, multiply all memory values by
d4d23add 1542 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1543 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1544 * kernels...
1545 */
1546
d4d23add
KM
1547 info->mem_unit = 1;
1548 info->totalram <<= bitcount;
1549 info->freeram <<= bitcount;
1550 info->sharedram <<= bitcount;
1551 info->bufferram <<= bitcount;
1552 info->totalswap <<= bitcount;
1553 info->freeswap <<= bitcount;
1554 info->totalhigh <<= bitcount;
1555 info->freehigh <<= bitcount;
1556
1557out:
1558 return 0;
1559}
1560
1e7bfb21 1561SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1562{
1563 struct sysinfo val;
1564
1565 do_sysinfo(&val);
1da177e4 1566
1da177e4
LT
1567 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1568 return -EFAULT;
1569
1570 return 0;
1571}
1572
b4be6258 1573static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1574{
1575 int j;
a6fa8e5a 1576 struct tvec_base *base;
b4be6258 1577 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1578
ba6edfcd 1579 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1580 static char boot_done;
1581
a4a6198b 1582 if (boot_done) {
ba6edfcd
AM
1583 /*
1584 * The APs use this path later in boot
1585 */
94f6030c
CL
1586 base = kmalloc_node(sizeof(*base),
1587 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1588 cpu_to_node(cpu));
1589 if (!base)
1590 return -ENOMEM;
6e453a67
VP
1591
1592 /* Make sure that tvec_base is 2 byte aligned */
1593 if (tbase_get_deferrable(base)) {
1594 WARN_ON(1);
1595 kfree(base);
1596 return -ENOMEM;
1597 }
ba6edfcd 1598 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1599 } else {
ba6edfcd
AM
1600 /*
1601 * This is for the boot CPU - we use compile-time
1602 * static initialisation because per-cpu memory isn't
1603 * ready yet and because the memory allocators are not
1604 * initialised either.
1605 */
a4a6198b 1606 boot_done = 1;
ba6edfcd 1607 base = &boot_tvec_bases;
a4a6198b 1608 }
ba6edfcd
AM
1609 tvec_base_done[cpu] = 1;
1610 } else {
1611 base = per_cpu(tvec_bases, cpu);
a4a6198b 1612 }
ba6edfcd 1613
3691c519 1614 spin_lock_init(&base->lock);
d730e882 1615
1da177e4
LT
1616 for (j = 0; j < TVN_SIZE; j++) {
1617 INIT_LIST_HEAD(base->tv5.vec + j);
1618 INIT_LIST_HEAD(base->tv4.vec + j);
1619 INIT_LIST_HEAD(base->tv3.vec + j);
1620 INIT_LIST_HEAD(base->tv2.vec + j);
1621 }
1622 for (j = 0; j < TVR_SIZE; j++)
1623 INIT_LIST_HEAD(base->tv1.vec + j);
1624
1625 base->timer_jiffies = jiffies;
97fd9ed4 1626 base->next_timer = base->timer_jiffies;
a4a6198b 1627 return 0;
1da177e4
LT
1628}
1629
1630#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1631static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1632{
1633 struct timer_list *timer;
1634
1635 while (!list_empty(head)) {
b5e61818 1636 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1637 detach_timer(timer, 0);
6e453a67 1638 timer_set_base(timer, new_base);
97fd9ed4
MS
1639 if (time_before(timer->expires, new_base->next_timer) &&
1640 !tbase_get_deferrable(timer->base))
1641 new_base->next_timer = timer->expires;
1da177e4 1642 internal_add_timer(new_base, timer);
1da177e4 1643 }
1da177e4
LT
1644}
1645
48ccf3da 1646static void __cpuinit migrate_timers(int cpu)
1da177e4 1647{
a6fa8e5a
PM
1648 struct tvec_base *old_base;
1649 struct tvec_base *new_base;
1da177e4
LT
1650 int i;
1651
1652 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1653 old_base = per_cpu(tvec_bases, cpu);
1654 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1655 /*
1656 * The caller is globally serialized and nobody else
1657 * takes two locks at once, deadlock is not possible.
1658 */
1659 spin_lock_irq(&new_base->lock);
0d180406 1660 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1661
1662 BUG_ON(old_base->running_timer);
1da177e4 1663
1da177e4 1664 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1665 migrate_timer_list(new_base, old_base->tv1.vec + i);
1666 for (i = 0; i < TVN_SIZE; i++) {
1667 migrate_timer_list(new_base, old_base->tv2.vec + i);
1668 migrate_timer_list(new_base, old_base->tv3.vec + i);
1669 migrate_timer_list(new_base, old_base->tv4.vec + i);
1670 migrate_timer_list(new_base, old_base->tv5.vec + i);
1671 }
1672
0d180406 1673 spin_unlock(&old_base->lock);
d82f0b0f 1674 spin_unlock_irq(&new_base->lock);
1da177e4 1675 put_cpu_var(tvec_bases);
1da177e4
LT
1676}
1677#endif /* CONFIG_HOTPLUG_CPU */
1678
8c78f307 1679static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1680 unsigned long action, void *hcpu)
1681{
1682 long cpu = (long)hcpu;
80b5184c
AM
1683 int err;
1684
1da177e4
LT
1685 switch(action) {
1686 case CPU_UP_PREPARE:
8bb78442 1687 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1688 err = init_timers_cpu(cpu);
1689 if (err < 0)
1690 return notifier_from_errno(err);
1da177e4
LT
1691 break;
1692#ifdef CONFIG_HOTPLUG_CPU
1693 case CPU_DEAD:
8bb78442 1694 case CPU_DEAD_FROZEN:
1da177e4
LT
1695 migrate_timers(cpu);
1696 break;
1697#endif
1698 default:
1699 break;
1700 }
1701 return NOTIFY_OK;
1702}
1703
8c78f307 1704static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1705 .notifier_call = timer_cpu_notify,
1706};
1707
1708
1709void __init init_timers(void)
1710{
07dccf33 1711 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1712 (void *)(long)smp_processor_id());
07dccf33 1713
82f67cd9
IM
1714 init_timer_stats();
1715
07dccf33 1716 BUG_ON(err == NOTIFY_BAD);
1da177e4 1717 register_cpu_notifier(&timers_nb);
962cf36c 1718 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1719}
1720
1da177e4
LT
1721/**
1722 * msleep - sleep safely even with waitqueue interruptions
1723 * @msecs: Time in milliseconds to sleep for
1724 */
1725void msleep(unsigned int msecs)
1726{
1727 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1728
75bcc8c5
NA
1729 while (timeout)
1730 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1731}
1732
1733EXPORT_SYMBOL(msleep);
1734
1735/**
96ec3efd 1736 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1737 * @msecs: Time in milliseconds to sleep for
1738 */
1739unsigned long msleep_interruptible(unsigned int msecs)
1740{
1741 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1742
75bcc8c5
NA
1743 while (timeout && !signal_pending(current))
1744 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1745 return jiffies_to_msecs(timeout);
1746}
1747
1748EXPORT_SYMBOL(msleep_interruptible);