]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/timer.c
[PATCH] NTP shift_right cleanup
[net-next-2.6.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, kernel timekeeping, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
29#include <linux/notifier.h>
30#include <linux/thread_info.h>
31#include <linux/time.h>
32#include <linux/jiffies.h>
33#include <linux/posix-timers.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
36
37#include <asm/uaccess.h>
38#include <asm/unistd.h>
39#include <asm/div64.h>
40#include <asm/timex.h>
41#include <asm/io.h>
42
43#ifdef CONFIG_TIME_INTERPOLATION
44static void time_interpolator_update(long delta_nsec);
45#else
46#define time_interpolator_update(x)
47#endif
48
49/*
50 * per-CPU timer vector definitions:
51 */
52
53#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
54#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
55#define TVN_SIZE (1 << TVN_BITS)
56#define TVR_SIZE (1 << TVR_BITS)
57#define TVN_MASK (TVN_SIZE - 1)
58#define TVR_MASK (TVR_SIZE - 1)
59
55c888d6
ON
60struct timer_base_s {
61 spinlock_t lock;
62 struct timer_list *running_timer;
63};
64
1da177e4
LT
65typedef struct tvec_s {
66 struct list_head vec[TVN_SIZE];
67} tvec_t;
68
69typedef struct tvec_root_s {
70 struct list_head vec[TVR_SIZE];
71} tvec_root_t;
72
73struct tvec_t_base_s {
55c888d6 74 struct timer_base_s t_base;
1da177e4 75 unsigned long timer_jiffies;
1da177e4
LT
76 tvec_root_t tv1;
77 tvec_t tv2;
78 tvec_t tv3;
79 tvec_t tv4;
80 tvec_t tv5;
81} ____cacheline_aligned_in_smp;
82
83typedef struct tvec_t_base_s tvec_base_t;
55c888d6 84static DEFINE_PER_CPU(tvec_base_t, tvec_bases);
1da177e4
LT
85
86static inline void set_running_timer(tvec_base_t *base,
87 struct timer_list *timer)
88{
89#ifdef CONFIG_SMP
55c888d6 90 base->t_base.running_timer = timer;
1da177e4
LT
91#endif
92}
93
1da177e4
LT
94static void check_timer_failed(struct timer_list *timer)
95{
96 static int whine_count;
97 if (whine_count < 16) {
98 whine_count++;
99 printk("Uninitialised timer!\n");
100 printk("This is just a warning. Your computer is OK\n");
101 printk("function=0x%p, data=0x%lx\n",
102 timer->function, timer->data);
103 dump_stack();
104 }
105 /*
106 * Now fix it up
107 */
1da177e4
LT
108 timer->magic = TIMER_MAGIC;
109}
110
111static inline void check_timer(struct timer_list *timer)
112{
113 if (timer->magic != TIMER_MAGIC)
114 check_timer_failed(timer);
115}
116
117
118static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
119{
120 unsigned long expires = timer->expires;
121 unsigned long idx = expires - base->timer_jiffies;
122 struct list_head *vec;
123
124 if (idx < TVR_SIZE) {
125 int i = expires & TVR_MASK;
126 vec = base->tv1.vec + i;
127 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
128 int i = (expires >> TVR_BITS) & TVN_MASK;
129 vec = base->tv2.vec + i;
130 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
131 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
132 vec = base->tv3.vec + i;
133 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
134 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
135 vec = base->tv4.vec + i;
136 } else if ((signed long) idx < 0) {
137 /*
138 * Can happen if you add a timer with expires == jiffies,
139 * or you set a timer to go off in the past
140 */
141 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
142 } else {
143 int i;
144 /* If the timeout is larger than 0xffffffff on 64-bit
145 * architectures then we use the maximum timeout:
146 */
147 if (idx > 0xffffffffUL) {
148 idx = 0xffffffffUL;
149 expires = idx + base->timer_jiffies;
150 }
151 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
152 vec = base->tv5.vec + i;
153 }
154 /*
155 * Timers are FIFO:
156 */
157 list_add_tail(&timer->entry, vec);
158}
159
55c888d6
ON
160typedef struct timer_base_s timer_base_t;
161/*
162 * Used by TIMER_INITIALIZER, we can't use per_cpu(tvec_bases)
163 * at compile time, and we need timer->base to lock the timer.
164 */
165timer_base_t __init_timer_base
166 ____cacheline_aligned_in_smp = { .lock = SPIN_LOCK_UNLOCKED };
167EXPORT_SYMBOL(__init_timer_base);
168
169/***
170 * init_timer - initialize a timer.
171 * @timer: the timer to be initialized
172 *
173 * init_timer() must be done to a timer prior calling *any* of the
174 * other timer functions.
175 */
176void fastcall init_timer(struct timer_list *timer)
177{
178 timer->entry.next = NULL;
179 timer->base = &per_cpu(tvec_bases, raw_smp_processor_id()).t_base;
180 timer->magic = TIMER_MAGIC;
181}
182EXPORT_SYMBOL(init_timer);
183
184static inline void detach_timer(struct timer_list *timer,
185 int clear_pending)
186{
187 struct list_head *entry = &timer->entry;
188
189 __list_del(entry->prev, entry->next);
190 if (clear_pending)
191 entry->next = NULL;
192 entry->prev = LIST_POISON2;
193}
194
195/*
196 * We are using hashed locking: holding per_cpu(tvec_bases).t_base.lock
197 * means that all timers which are tied to this base via timer->base are
198 * locked, and the base itself is locked too.
199 *
200 * So __run_timers/migrate_timers can safely modify all timers which could
201 * be found on ->tvX lists.
202 *
203 * When the timer's base is locked, and the timer removed from list, it is
204 * possible to set timer->base = NULL and drop the lock: the timer remains
205 * locked.
206 */
207static timer_base_t *lock_timer_base(struct timer_list *timer,
208 unsigned long *flags)
209{
210 timer_base_t *base;
211
212 for (;;) {
213 base = timer->base;
214 if (likely(base != NULL)) {
215 spin_lock_irqsave(&base->lock, *flags);
216 if (likely(base == timer->base))
217 return base;
218 /* The timer has migrated to another CPU */
219 spin_unlock_irqrestore(&base->lock, *flags);
220 }
221 cpu_relax();
222 }
223}
224
1da177e4
LT
225int __mod_timer(struct timer_list *timer, unsigned long expires)
226{
55c888d6
ON
227 timer_base_t *base;
228 tvec_base_t *new_base;
1da177e4
LT
229 unsigned long flags;
230 int ret = 0;
231
232 BUG_ON(!timer->function);
1da177e4
LT
233 check_timer(timer);
234
55c888d6
ON
235 base = lock_timer_base(timer, &flags);
236
237 if (timer_pending(timer)) {
238 detach_timer(timer, 0);
239 ret = 1;
240 }
241
1da177e4 242 new_base = &__get_cpu_var(tvec_bases);
1da177e4 243
55c888d6 244 if (base != &new_base->t_base) {
1da177e4 245 /*
55c888d6
ON
246 * We are trying to schedule the timer on the local CPU.
247 * However we can't change timer's base while it is running,
248 * otherwise del_timer_sync() can't detect that the timer's
249 * handler yet has not finished. This also guarantees that
250 * the timer is serialized wrt itself.
1da177e4 251 */
55c888d6
ON
252 if (unlikely(base->running_timer == timer)) {
253 /* The timer remains on a former base */
254 new_base = container_of(base, tvec_base_t, t_base);
255 } else {
256 /* See the comment in lock_timer_base() */
257 timer->base = NULL;
258 spin_unlock(&base->lock);
259 spin_lock(&new_base->t_base.lock);
260 timer->base = &new_base->t_base;
1da177e4
LT
261 }
262 }
263
1da177e4
LT
264 timer->expires = expires;
265 internal_add_timer(new_base, timer);
55c888d6 266 spin_unlock_irqrestore(&new_base->t_base.lock, flags);
1da177e4
LT
267
268 return ret;
269}
270
271EXPORT_SYMBOL(__mod_timer);
272
273/***
274 * add_timer_on - start a timer on a particular CPU
275 * @timer: the timer to be added
276 * @cpu: the CPU to start it on
277 *
278 * This is not very scalable on SMP. Double adds are not possible.
279 */
280void add_timer_on(struct timer_list *timer, int cpu)
281{
282 tvec_base_t *base = &per_cpu(tvec_bases, cpu);
283 unsigned long flags;
55c888d6 284
1da177e4
LT
285 BUG_ON(timer_pending(timer) || !timer->function);
286
287 check_timer(timer);
288
55c888d6
ON
289 spin_lock_irqsave(&base->t_base.lock, flags);
290 timer->base = &base->t_base;
1da177e4 291 internal_add_timer(base, timer);
55c888d6 292 spin_unlock_irqrestore(&base->t_base.lock, flags);
1da177e4
LT
293}
294
295
296/***
297 * mod_timer - modify a timer's timeout
298 * @timer: the timer to be modified
299 *
300 * mod_timer is a more efficient way to update the expire field of an
301 * active timer (if the timer is inactive it will be activated)
302 *
303 * mod_timer(timer, expires) is equivalent to:
304 *
305 * del_timer(timer); timer->expires = expires; add_timer(timer);
306 *
307 * Note that if there are multiple unserialized concurrent users of the
308 * same timer, then mod_timer() is the only safe way to modify the timeout,
309 * since add_timer() cannot modify an already running timer.
310 *
311 * The function returns whether it has modified a pending timer or not.
312 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
313 * active timer returns 1.)
314 */
315int mod_timer(struct timer_list *timer, unsigned long expires)
316{
317 BUG_ON(!timer->function);
318
319 check_timer(timer);
320
321 /*
322 * This is a common optimization triggered by the
323 * networking code - if the timer is re-modified
324 * to be the same thing then just return:
325 */
326 if (timer->expires == expires && timer_pending(timer))
327 return 1;
328
329 return __mod_timer(timer, expires);
330}
331
332EXPORT_SYMBOL(mod_timer);
333
334/***
335 * del_timer - deactive a timer.
336 * @timer: the timer to be deactivated
337 *
338 * del_timer() deactivates a timer - this works on both active and inactive
339 * timers.
340 *
341 * The function returns whether it has deactivated a pending timer or not.
342 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
343 * active timer returns 1.)
344 */
345int del_timer(struct timer_list *timer)
346{
55c888d6 347 timer_base_t *base;
1da177e4 348 unsigned long flags;
55c888d6 349 int ret = 0;
1da177e4
LT
350
351 check_timer(timer);
352
55c888d6
ON
353 if (timer_pending(timer)) {
354 base = lock_timer_base(timer, &flags);
355 if (timer_pending(timer)) {
356 detach_timer(timer, 1);
357 ret = 1;
358 }
1da177e4 359 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 360 }
1da177e4 361
55c888d6 362 return ret;
1da177e4
LT
363}
364
365EXPORT_SYMBOL(del_timer);
366
367#ifdef CONFIG_SMP
fd450b73
ON
368/*
369 * This function tries to deactivate a timer. Upon successful (ret >= 0)
370 * exit the timer is not queued and the handler is not running on any CPU.
371 *
372 * It must not be called from interrupt contexts.
373 */
374int try_to_del_timer_sync(struct timer_list *timer)
375{
376 timer_base_t *base;
377 unsigned long flags;
378 int ret = -1;
379
380 base = lock_timer_base(timer, &flags);
381
382 if (base->running_timer == timer)
383 goto out;
384
385 ret = 0;
386 if (timer_pending(timer)) {
387 detach_timer(timer, 1);
388 ret = 1;
389 }
390out:
391 spin_unlock_irqrestore(&base->lock, flags);
392
393 return ret;
394}
395
1da177e4
LT
396/***
397 * del_timer_sync - deactivate a timer and wait for the handler to finish.
398 * @timer: the timer to be deactivated
399 *
400 * This function only differs from del_timer() on SMP: besides deactivating
401 * the timer it also makes sure the handler has finished executing on other
402 * CPUs.
403 *
404 * Synchronization rules: callers must prevent restarting of the timer,
405 * otherwise this function is meaningless. It must not be called from
406 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
407 * completion of the timer's handler. The timer's handler must not call
408 * add_timer_on(). Upon exit the timer is not queued and the handler is
409 * not running on any CPU.
1da177e4
LT
410 *
411 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
412 */
413int del_timer_sync(struct timer_list *timer)
414{
1da177e4
LT
415 check_timer(timer);
416
fd450b73
ON
417 for (;;) {
418 int ret = try_to_del_timer_sync(timer);
419 if (ret >= 0)
420 return ret;
421 }
1da177e4 422}
1da177e4 423
55c888d6 424EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
425#endif
426
427static int cascade(tvec_base_t *base, tvec_t *tv, int index)
428{
429 /* cascade all the timers from tv up one level */
430 struct list_head *head, *curr;
431
432 head = tv->vec + index;
433 curr = head->next;
434 /*
435 * We are removing _all_ timers from the list, so we don't have to
436 * detach them individually, just clear the list afterwards.
437 */
438 while (curr != head) {
439 struct timer_list *tmp;
440
441 tmp = list_entry(curr, struct timer_list, entry);
55c888d6 442 BUG_ON(tmp->base != &base->t_base);
1da177e4
LT
443 curr = curr->next;
444 internal_add_timer(base, tmp);
445 }
446 INIT_LIST_HEAD(head);
447
448 return index;
449}
450
451/***
452 * __run_timers - run all expired timers (if any) on this CPU.
453 * @base: the timer vector to be processed.
454 *
455 * This function cascades all vectors and executes all expired timer
456 * vectors.
457 */
458#define INDEX(N) (base->timer_jiffies >> (TVR_BITS + N * TVN_BITS)) & TVN_MASK
459
460static inline void __run_timers(tvec_base_t *base)
461{
462 struct timer_list *timer;
463
55c888d6 464 spin_lock_irq(&base->t_base.lock);
1da177e4
LT
465 while (time_after_eq(jiffies, base->timer_jiffies)) {
466 struct list_head work_list = LIST_HEAD_INIT(work_list);
467 struct list_head *head = &work_list;
468 int index = base->timer_jiffies & TVR_MASK;
469
470 /*
471 * Cascade timers:
472 */
473 if (!index &&
474 (!cascade(base, &base->tv2, INDEX(0))) &&
475 (!cascade(base, &base->tv3, INDEX(1))) &&
476 !cascade(base, &base->tv4, INDEX(2)))
477 cascade(base, &base->tv5, INDEX(3));
478 ++base->timer_jiffies;
479 list_splice_init(base->tv1.vec + index, &work_list);
55c888d6 480 while (!list_empty(head)) {
1da177e4
LT
481 void (*fn)(unsigned long);
482 unsigned long data;
483
484 timer = list_entry(head->next,struct timer_list,entry);
485 fn = timer->function;
486 data = timer->data;
487
1da177e4 488 set_running_timer(base, timer);
55c888d6
ON
489 detach_timer(timer, 1);
490 spin_unlock_irq(&base->t_base.lock);
1da177e4 491 {
be5b4fbd 492 int preempt_count = preempt_count();
1da177e4
LT
493 fn(data);
494 if (preempt_count != preempt_count()) {
be5b4fbd
JJ
495 printk(KERN_WARNING "huh, entered %p "
496 "with preempt_count %08x, exited"
497 " with %08x?\n",
498 fn, preempt_count,
499 preempt_count());
1da177e4
LT
500 BUG();
501 }
502 }
55c888d6 503 spin_lock_irq(&base->t_base.lock);
1da177e4
LT
504 }
505 }
506 set_running_timer(base, NULL);
55c888d6 507 spin_unlock_irq(&base->t_base.lock);
1da177e4
LT
508}
509
510#ifdef CONFIG_NO_IDLE_HZ
511/*
512 * Find out when the next timer event is due to happen. This
513 * is used on S/390 to stop all activity when a cpus is idle.
514 * This functions needs to be called disabled.
515 */
516unsigned long next_timer_interrupt(void)
517{
518 tvec_base_t *base;
519 struct list_head *list;
520 struct timer_list *nte;
521 unsigned long expires;
522 tvec_t *varray[4];
523 int i, j;
524
525 base = &__get_cpu_var(tvec_bases);
55c888d6 526 spin_lock(&base->t_base.lock);
1da177e4
LT
527 expires = base->timer_jiffies + (LONG_MAX >> 1);
528 list = 0;
529
530 /* Look for timer events in tv1. */
531 j = base->timer_jiffies & TVR_MASK;
532 do {
533 list_for_each_entry(nte, base->tv1.vec + j, entry) {
534 expires = nte->expires;
535 if (j < (base->timer_jiffies & TVR_MASK))
536 list = base->tv2.vec + (INDEX(0));
537 goto found;
538 }
539 j = (j + 1) & TVR_MASK;
540 } while (j != (base->timer_jiffies & TVR_MASK));
541
542 /* Check tv2-tv5. */
543 varray[0] = &base->tv2;
544 varray[1] = &base->tv3;
545 varray[2] = &base->tv4;
546 varray[3] = &base->tv5;
547 for (i = 0; i < 4; i++) {
548 j = INDEX(i);
549 do {
550 if (list_empty(varray[i]->vec + j)) {
551 j = (j + 1) & TVN_MASK;
552 continue;
553 }
554 list_for_each_entry(nte, varray[i]->vec + j, entry)
555 if (time_before(nte->expires, expires))
556 expires = nte->expires;
557 if (j < (INDEX(i)) && i < 3)
558 list = varray[i + 1]->vec + (INDEX(i + 1));
559 goto found;
560 } while (j != (INDEX(i)));
561 }
562found:
563 if (list) {
564 /*
565 * The search wrapped. We need to look at the next list
566 * from next tv element that would cascade into tv element
567 * where we found the timer element.
568 */
569 list_for_each_entry(nte, list, entry) {
570 if (time_before(nte->expires, expires))
571 expires = nte->expires;
572 }
573 }
55c888d6 574 spin_unlock(&base->t_base.lock);
1da177e4
LT
575 return expires;
576}
577#endif
578
579/******************************************************************/
580
581/*
582 * Timekeeping variables
583 */
584unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
585unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */
586
587/*
588 * The current time
589 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
590 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
591 * at zero at system boot time, so wall_to_monotonic will be negative,
592 * however, we will ALWAYS keep the tv_nsec part positive so we can use
593 * the usual normalization.
594 */
595struct timespec xtime __attribute__ ((aligned (16)));
596struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
597
598EXPORT_SYMBOL(xtime);
599
600/* Don't completely fail for HZ > 500. */
601int tickadj = 500/HZ ? : 1; /* microsecs */
602
603
604/*
605 * phase-lock loop variables
606 */
607/* TIME_ERROR prevents overwriting the CMOS clock */
608int time_state = TIME_OK; /* clock synchronization status */
609int time_status = STA_UNSYNC; /* clock status bits */
610long time_offset; /* time adjustment (us) */
611long time_constant = 2; /* pll time constant */
612long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */
613long time_precision = 1; /* clock precision (us) */
614long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
615long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
616static long time_phase; /* phase offset (scaled us) */
617long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC;
618 /* frequency offset (scaled ppm)*/
619static long time_adj; /* tick adjust (scaled 1 / HZ) */
620long time_reftime; /* time at last adjustment (s) */
621long time_adjust;
622long time_next_adjust;
623
624/*
625 * this routine handles the overflow of the microsecond field
626 *
627 * The tricky bits of code to handle the accurate clock support
628 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
629 * They were originally developed for SUN and DEC kernels.
630 * All the kudos should go to Dave for this stuff.
631 *
632 */
633static void second_overflow(void)
634{
635 long ltemp;
636
637 /* Bump the maxerror field */
638 time_maxerror += time_tolerance >> SHIFT_USEC;
639 if ( time_maxerror > NTP_PHASE_LIMIT ) {
640 time_maxerror = NTP_PHASE_LIMIT;
641 time_status |= STA_UNSYNC;
642 }
643
644 /*
645 * Leap second processing. If in leap-insert state at
646 * the end of the day, the system clock is set back one
647 * second; if in leap-delete state, the system clock is
648 * set ahead one second. The microtime() routine or
649 * external clock driver will insure that reported time
650 * is always monotonic. The ugly divides should be
651 * replaced.
652 */
653 switch (time_state) {
654
655 case TIME_OK:
656 if (time_status & STA_INS)
657 time_state = TIME_INS;
658 else if (time_status & STA_DEL)
659 time_state = TIME_DEL;
660 break;
661
662 case TIME_INS:
663 if (xtime.tv_sec % 86400 == 0) {
664 xtime.tv_sec--;
665 wall_to_monotonic.tv_sec++;
666 /* The timer interpolator will make time change gradually instead
667 * of an immediate jump by one second.
668 */
669 time_interpolator_update(-NSEC_PER_SEC);
670 time_state = TIME_OOP;
671 clock_was_set();
672 printk(KERN_NOTICE "Clock: inserting leap second 23:59:60 UTC\n");
673 }
674 break;
675
676 case TIME_DEL:
677 if ((xtime.tv_sec + 1) % 86400 == 0) {
678 xtime.tv_sec++;
679 wall_to_monotonic.tv_sec--;
680 /* Use of time interpolator for a gradual change of time */
681 time_interpolator_update(NSEC_PER_SEC);
682 time_state = TIME_WAIT;
683 clock_was_set();
684 printk(KERN_NOTICE "Clock: deleting leap second 23:59:59 UTC\n");
685 }
686 break;
687
688 case TIME_OOP:
689 time_state = TIME_WAIT;
690 break;
691
692 case TIME_WAIT:
693 if (!(time_status & (STA_INS | STA_DEL)))
694 time_state = TIME_OK;
695 }
696
697 /*
698 * Compute the phase adjustment for the next second. In
699 * PLL mode, the offset is reduced by a fixed factor
700 * times the time constant. In FLL mode the offset is
701 * used directly. In either mode, the maximum phase
702 * adjustment for each second is clamped so as to spread
703 * the adjustment over not more than the number of
704 * seconds between updates.
705 */
1da177e4
LT
706 ltemp = time_offset;
707 if (!(time_status & STA_FLL))
1bb34a41
JS
708 ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
709 ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
710 ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
1da177e4
LT
711 time_offset -= ltemp;
712 time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
1da177e4
LT
713
714 /*
715 * Compute the frequency estimate and additional phase
716 * adjustment due to frequency error for the next
717 * second. When the PPS signal is engaged, gnaw on the
718 * watchdog counter and update the frequency computed by
719 * the pll and the PPS signal.
720 */
721 pps_valid++;
722 if (pps_valid == PPS_VALID) { /* PPS signal lost */
723 pps_jitter = MAXTIME;
724 pps_stabil = MAXFREQ;
725 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
726 STA_PPSWANDER | STA_PPSERROR);
727 }
728 ltemp = time_freq + pps_freq;
1bb34a41 729 time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
1da177e4
LT
730
731#if HZ == 100
732 /* Compensate for (HZ==100) != (1 << SHIFT_HZ).
733 * Add 25% and 3.125% to get 128.125; => only 0.125% error (p. 14)
734 */
1bb34a41 735 time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
1da177e4 736#endif
4b8f573b
YH
737#if HZ == 250
738 /* Compensate for (HZ==250) != (1 << SHIFT_HZ).
739 * Add 1.5625% and 0.78125% to get 255.85938; => only 0.05% error (p. 14)
740 */
1bb34a41 741 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
4b8f573b 742#endif
1da177e4
LT
743#if HZ == 1000
744 /* Compensate for (HZ==1000) != (1 << SHIFT_HZ).
745 * Add 1.5625% and 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
746 */
1bb34a41 747 time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
1da177e4
LT
748#endif
749}
750
751/* in the NTP reference this is called "hardclock()" */
752static void update_wall_time_one_tick(void)
753{
754 long time_adjust_step, delta_nsec;
755
756 if ( (time_adjust_step = time_adjust) != 0 ) {
757 /* We are doing an adjtime thing.
758 *
759 * Prepare time_adjust_step to be within bounds.
760 * Note that a positive time_adjust means we want the clock
761 * to run faster.
762 *
763 * Limit the amount of the step to be in the range
764 * -tickadj .. +tickadj
765 */
1bb34a41
JS
766 time_adjust_step = min(time_adjust_step, (long)tickadj);
767 time_adjust_step = max(time_adjust_step, (long)-tickadj);
1da177e4
LT
768
769 /* Reduce by this step the amount of time left */
770 time_adjust -= time_adjust_step;
771 }
772 delta_nsec = tick_nsec + time_adjust_step * 1000;
773 /*
774 * Advance the phase, once it gets to one microsecond, then
775 * advance the tick more.
776 */
777 time_phase += time_adj;
1bb34a41
JS
778 if ((time_phase >= FINENSEC) || (time_phase <= -FINENSEC)) {
779 long ltemp = shift_right(time_phase, (SHIFT_SCALE - 10));
1da177e4
LT
780 time_phase -= ltemp << (SHIFT_SCALE - 10);
781 delta_nsec += ltemp;
782 }
783 xtime.tv_nsec += delta_nsec;
784 time_interpolator_update(delta_nsec);
785
786 /* Changes by adjtime() do not take effect till next tick. */
787 if (time_next_adjust != 0) {
788 time_adjust = time_next_adjust;
789 time_next_adjust = 0;
790 }
791}
792
793/*
794 * Using a loop looks inefficient, but "ticks" is
795 * usually just one (we shouldn't be losing ticks,
796 * we're doing this this way mainly for interrupt
797 * latency reasons, not because we think we'll
798 * have lots of lost timer ticks
799 */
800static void update_wall_time(unsigned long ticks)
801{
802 do {
803 ticks--;
804 update_wall_time_one_tick();
805 if (xtime.tv_nsec >= 1000000000) {
806 xtime.tv_nsec -= 1000000000;
807 xtime.tv_sec++;
808 second_overflow();
809 }
810 } while (ticks);
811}
812
813/*
814 * Called from the timer interrupt handler to charge one tick to the current
815 * process. user_tick is 1 if the tick is user time, 0 for system.
816 */
817void update_process_times(int user_tick)
818{
819 struct task_struct *p = current;
820 int cpu = smp_processor_id();
821
822 /* Note: this timer irq context must be accounted for as well. */
823 if (user_tick)
824 account_user_time(p, jiffies_to_cputime(1));
825 else
826 account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
827 run_local_timers();
828 if (rcu_pending(cpu))
829 rcu_check_callbacks(cpu, user_tick);
830 scheduler_tick();
831 run_posix_cpu_timers(p);
832}
833
834/*
835 * Nr of active tasks - counted in fixed-point numbers
836 */
837static unsigned long count_active_tasks(void)
838{
839 return (nr_running() + nr_uninterruptible()) * FIXED_1;
840}
841
842/*
843 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
844 * imply that avenrun[] is the standard name for this kind of thing.
845 * Nothing else seems to be standardized: the fractional size etc
846 * all seem to differ on different machines.
847 *
848 * Requires xtime_lock to access.
849 */
850unsigned long avenrun[3];
851
852EXPORT_SYMBOL(avenrun);
853
854/*
855 * calc_load - given tick count, update the avenrun load estimates.
856 * This is called while holding a write_lock on xtime_lock.
857 */
858static inline void calc_load(unsigned long ticks)
859{
860 unsigned long active_tasks; /* fixed-point */
861 static int count = LOAD_FREQ;
862
863 count -= ticks;
864 if (count < 0) {
865 count += LOAD_FREQ;
866 active_tasks = count_active_tasks();
867 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
868 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
869 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
870 }
871}
872
873/* jiffies at the most recent update of wall time */
874unsigned long wall_jiffies = INITIAL_JIFFIES;
875
876/*
877 * This read-write spinlock protects us from races in SMP while
878 * playing with xtime and avenrun.
879 */
880#ifndef ARCH_HAVE_XTIME_LOCK
881seqlock_t xtime_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
882
883EXPORT_SYMBOL(xtime_lock);
884#endif
885
886/*
887 * This function runs timers and the timer-tq in bottom half context.
888 */
889static void run_timer_softirq(struct softirq_action *h)
890{
891 tvec_base_t *base = &__get_cpu_var(tvec_bases);
892
893 if (time_after_eq(jiffies, base->timer_jiffies))
894 __run_timers(base);
895}
896
897/*
898 * Called by the local, per-CPU timer interrupt on SMP.
899 */
900void run_local_timers(void)
901{
902 raise_softirq(TIMER_SOFTIRQ);
903}
904
905/*
906 * Called by the timer interrupt. xtime_lock must already be taken
907 * by the timer IRQ!
908 */
909static inline void update_times(void)
910{
911 unsigned long ticks;
912
913 ticks = jiffies - wall_jiffies;
914 if (ticks) {
915 wall_jiffies += ticks;
916 update_wall_time(ticks);
917 }
918 calc_load(ticks);
919}
920
921/*
922 * The 64-bit jiffies value is not atomic - you MUST NOT read it
923 * without sampling the sequence number in xtime_lock.
924 * jiffies is defined in the linker script...
925 */
926
927void do_timer(struct pt_regs *regs)
928{
929 jiffies_64++;
930 update_times();
8446f1d3 931 softlockup_tick(regs);
1da177e4
LT
932}
933
934#ifdef __ARCH_WANT_SYS_ALARM
935
936/*
937 * For backwards compatibility? This can be done in libc so Alpha
938 * and all newer ports shouldn't need it.
939 */
940asmlinkage unsigned long sys_alarm(unsigned int seconds)
941{
942 struct itimerval it_new, it_old;
943 unsigned int oldalarm;
944
945 it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0;
946 it_new.it_value.tv_sec = seconds;
947 it_new.it_value.tv_usec = 0;
948 do_setitimer(ITIMER_REAL, &it_new, &it_old);
949 oldalarm = it_old.it_value.tv_sec;
950 /* ehhh.. We can't return 0 if we have an alarm pending.. */
951 /* And we'd better return too much than too little anyway */
952 if ((!oldalarm && it_old.it_value.tv_usec) || it_old.it_value.tv_usec >= 500000)
953 oldalarm++;
954 return oldalarm;
955}
956
957#endif
958
959#ifndef __alpha__
960
961/*
962 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
963 * should be moved into arch/i386 instead?
964 */
965
966/**
967 * sys_getpid - return the thread group id of the current process
968 *
969 * Note, despite the name, this returns the tgid not the pid. The tgid and
970 * the pid are identical unless CLONE_THREAD was specified on clone() in
971 * which case the tgid is the same in all threads of the same group.
972 *
973 * This is SMP safe as current->tgid does not change.
974 */
975asmlinkage long sys_getpid(void)
976{
977 return current->tgid;
978}
979
980/*
981 * Accessing ->group_leader->real_parent is not SMP-safe, it could
982 * change from under us. However, rather than getting any lock
983 * we can use an optimistic algorithm: get the parent
984 * pid, and go back and check that the parent is still
985 * the same. If it has changed (which is extremely unlikely
986 * indeed), we just try again..
987 *
988 * NOTE! This depends on the fact that even if we _do_
989 * get an old value of "parent", we can happily dereference
990 * the pointer (it was and remains a dereferencable kernel pointer
991 * no matter what): we just can't necessarily trust the result
992 * until we know that the parent pointer is valid.
993 *
994 * NOTE2: ->group_leader never changes from under us.
995 */
996asmlinkage long sys_getppid(void)
997{
998 int pid;
999 struct task_struct *me = current;
1000 struct task_struct *parent;
1001
1002 parent = me->group_leader->real_parent;
1003 for (;;) {
1004 pid = parent->tgid;
4c5640cb 1005#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1da177e4
LT
1006{
1007 struct task_struct *old = parent;
1008
1009 /*
1010 * Make sure we read the pid before re-reading the
1011 * parent pointer:
1012 */
d59dd462 1013 smp_rmb();
1da177e4
LT
1014 parent = me->group_leader->real_parent;
1015 if (old != parent)
1016 continue;
1017}
1018#endif
1019 break;
1020 }
1021 return pid;
1022}
1023
1024asmlinkage long sys_getuid(void)
1025{
1026 /* Only we change this so SMP safe */
1027 return current->uid;
1028}
1029
1030asmlinkage long sys_geteuid(void)
1031{
1032 /* Only we change this so SMP safe */
1033 return current->euid;
1034}
1035
1036asmlinkage long sys_getgid(void)
1037{
1038 /* Only we change this so SMP safe */
1039 return current->gid;
1040}
1041
1042asmlinkage long sys_getegid(void)
1043{
1044 /* Only we change this so SMP safe */
1045 return current->egid;
1046}
1047
1048#endif
1049
1050static void process_timeout(unsigned long __data)
1051{
1052 wake_up_process((task_t *)__data);
1053}
1054
1055/**
1056 * schedule_timeout - sleep until timeout
1057 * @timeout: timeout value in jiffies
1058 *
1059 * Make the current task sleep until @timeout jiffies have
1060 * elapsed. The routine will return immediately unless
1061 * the current task state has been set (see set_current_state()).
1062 *
1063 * You can set the task state as follows -
1064 *
1065 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1066 * pass before the routine returns. The routine will return 0
1067 *
1068 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1069 * delivered to the current task. In this case the remaining time
1070 * in jiffies will be returned, or 0 if the timer expired in time
1071 *
1072 * The current task state is guaranteed to be TASK_RUNNING when this
1073 * routine returns.
1074 *
1075 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1076 * the CPU away without a bound on the timeout. In this case the return
1077 * value will be %MAX_SCHEDULE_TIMEOUT.
1078 *
1079 * In all cases the return value is guaranteed to be non-negative.
1080 */
1081fastcall signed long __sched schedule_timeout(signed long timeout)
1082{
1083 struct timer_list timer;
1084 unsigned long expire;
1085
1086 switch (timeout)
1087 {
1088 case MAX_SCHEDULE_TIMEOUT:
1089 /*
1090 * These two special cases are useful to be comfortable
1091 * in the caller. Nothing more. We could take
1092 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1093 * but I' d like to return a valid offset (>=0) to allow
1094 * the caller to do everything it want with the retval.
1095 */
1096 schedule();
1097 goto out;
1098 default:
1099 /*
1100 * Another bit of PARANOID. Note that the retval will be
1101 * 0 since no piece of kernel is supposed to do a check
1102 * for a negative retval of schedule_timeout() (since it
1103 * should never happens anyway). You just have the printk()
1104 * that will tell you if something is gone wrong and where.
1105 */
1106 if (timeout < 0)
1107 {
1108 printk(KERN_ERR "schedule_timeout: wrong timeout "
1109 "value %lx from %p\n", timeout,
1110 __builtin_return_address(0));
1111 current->state = TASK_RUNNING;
1112 goto out;
1113 }
1114 }
1115
1116 expire = timeout + jiffies;
1117
a8db2db1
ON
1118 setup_timer(&timer, process_timeout, (unsigned long)current);
1119 __mod_timer(&timer, expire);
1da177e4
LT
1120 schedule();
1121 del_singleshot_timer_sync(&timer);
1122
1123 timeout = expire - jiffies;
1124
1125 out:
1126 return timeout < 0 ? 0 : timeout;
1127}
1da177e4
LT
1128EXPORT_SYMBOL(schedule_timeout);
1129
8a1c1757
AM
1130/*
1131 * We can use __set_current_state() here because schedule_timeout() calls
1132 * schedule() unconditionally.
1133 */
64ed93a2
NA
1134signed long __sched schedule_timeout_interruptible(signed long timeout)
1135{
8a1c1757 1136 __set_current_state(TASK_INTERRUPTIBLE);
64ed93a2
NA
1137 return schedule_timeout(timeout);
1138}
1139EXPORT_SYMBOL(schedule_timeout_interruptible);
1140
1141signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1142{
8a1c1757 1143 __set_current_state(TASK_UNINTERRUPTIBLE);
64ed93a2
NA
1144 return schedule_timeout(timeout);
1145}
1146EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1147
1da177e4
LT
1148/* Thread ID - the internal kernel "pid" */
1149asmlinkage long sys_gettid(void)
1150{
1151 return current->pid;
1152}
1153
1154static long __sched nanosleep_restart(struct restart_block *restart)
1155{
1156 unsigned long expire = restart->arg0, now = jiffies;
1157 struct timespec __user *rmtp = (struct timespec __user *) restart->arg1;
1158 long ret;
1159
1160 /* Did it expire while we handled signals? */
1161 if (!time_after(expire, now))
1162 return 0;
1163
75bcc8c5 1164 expire = schedule_timeout_interruptible(expire - now);
1da177e4
LT
1165
1166 ret = 0;
1167 if (expire) {
1168 struct timespec t;
1169 jiffies_to_timespec(expire, &t);
1170
1171 ret = -ERESTART_RESTARTBLOCK;
1172 if (rmtp && copy_to_user(rmtp, &t, sizeof(t)))
1173 ret = -EFAULT;
1174 /* The 'restart' block is already filled in */
1175 }
1176 return ret;
1177}
1178
1179asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1180{
1181 struct timespec t;
1182 unsigned long expire;
1183 long ret;
1184
1185 if (copy_from_user(&t, rqtp, sizeof(t)))
1186 return -EFAULT;
1187
1188 if ((t.tv_nsec >= 1000000000L) || (t.tv_nsec < 0) || (t.tv_sec < 0))
1189 return -EINVAL;
1190
1191 expire = timespec_to_jiffies(&t) + (t.tv_sec || t.tv_nsec);
75bcc8c5 1192 expire = schedule_timeout_interruptible(expire);
1da177e4
LT
1193
1194 ret = 0;
1195 if (expire) {
1196 struct restart_block *restart;
1197 jiffies_to_timespec(expire, &t);
1198 if (rmtp && copy_to_user(rmtp, &t, sizeof(t)))
1199 return -EFAULT;
1200
1201 restart = &current_thread_info()->restart_block;
1202 restart->fn = nanosleep_restart;
1203 restart->arg0 = jiffies + expire;
1204 restart->arg1 = (unsigned long) rmtp;
1205 ret = -ERESTART_RESTARTBLOCK;
1206 }
1207 return ret;
1208}
1209
1210/*
1211 * sys_sysinfo - fill in sysinfo struct
1212 */
1213asmlinkage long sys_sysinfo(struct sysinfo __user *info)
1214{
1215 struct sysinfo val;
1216 unsigned long mem_total, sav_total;
1217 unsigned int mem_unit, bitcount;
1218 unsigned long seq;
1219
1220 memset((char *)&val, 0, sizeof(struct sysinfo));
1221
1222 do {
1223 struct timespec tp;
1224 seq = read_seqbegin(&xtime_lock);
1225
1226 /*
1227 * This is annoying. The below is the same thing
1228 * posix_get_clock_monotonic() does, but it wants to
1229 * take the lock which we want to cover the loads stuff
1230 * too.
1231 */
1232
1233 getnstimeofday(&tp);
1234 tp.tv_sec += wall_to_monotonic.tv_sec;
1235 tp.tv_nsec += wall_to_monotonic.tv_nsec;
1236 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1237 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1238 tp.tv_sec++;
1239 }
1240 val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1241
1242 val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1243 val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1244 val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1245
1246 val.procs = nr_threads;
1247 } while (read_seqretry(&xtime_lock, seq));
1248
1249 si_meminfo(&val);
1250 si_swapinfo(&val);
1251
1252 /*
1253 * If the sum of all the available memory (i.e. ram + swap)
1254 * is less than can be stored in a 32 bit unsigned long then
1255 * we can be binary compatible with 2.2.x kernels. If not,
1256 * well, in that case 2.2.x was broken anyways...
1257 *
1258 * -Erik Andersen <andersee@debian.org>
1259 */
1260
1261 mem_total = val.totalram + val.totalswap;
1262 if (mem_total < val.totalram || mem_total < val.totalswap)
1263 goto out;
1264 bitcount = 0;
1265 mem_unit = val.mem_unit;
1266 while (mem_unit > 1) {
1267 bitcount++;
1268 mem_unit >>= 1;
1269 sav_total = mem_total;
1270 mem_total <<= 1;
1271 if (mem_total < sav_total)
1272 goto out;
1273 }
1274
1275 /*
1276 * If mem_total did not overflow, multiply all memory values by
1277 * val.mem_unit and set it to 1. This leaves things compatible
1278 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1279 * kernels...
1280 */
1281
1282 val.mem_unit = 1;
1283 val.totalram <<= bitcount;
1284 val.freeram <<= bitcount;
1285 val.sharedram <<= bitcount;
1286 val.bufferram <<= bitcount;
1287 val.totalswap <<= bitcount;
1288 val.freeswap <<= bitcount;
1289 val.totalhigh <<= bitcount;
1290 val.freehigh <<= bitcount;
1291
1292 out:
1293 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1294 return -EFAULT;
1295
1296 return 0;
1297}
1298
1299static void __devinit init_timers_cpu(int cpu)
1300{
1301 int j;
1302 tvec_base_t *base;
55c888d6 1303
1da177e4 1304 base = &per_cpu(tvec_bases, cpu);
55c888d6 1305 spin_lock_init(&base->t_base.lock);
1da177e4
LT
1306 for (j = 0; j < TVN_SIZE; j++) {
1307 INIT_LIST_HEAD(base->tv5.vec + j);
1308 INIT_LIST_HEAD(base->tv4.vec + j);
1309 INIT_LIST_HEAD(base->tv3.vec + j);
1310 INIT_LIST_HEAD(base->tv2.vec + j);
1311 }
1312 for (j = 0; j < TVR_SIZE; j++)
1313 INIT_LIST_HEAD(base->tv1.vec + j);
1314
1315 base->timer_jiffies = jiffies;
1316}
1317
1318#ifdef CONFIG_HOTPLUG_CPU
55c888d6 1319static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
1da177e4
LT
1320{
1321 struct timer_list *timer;
1322
1323 while (!list_empty(head)) {
1324 timer = list_entry(head->next, struct timer_list, entry);
55c888d6
ON
1325 detach_timer(timer, 0);
1326 timer->base = &new_base->t_base;
1da177e4 1327 internal_add_timer(new_base, timer);
1da177e4 1328 }
1da177e4
LT
1329}
1330
1331static void __devinit migrate_timers(int cpu)
1332{
1333 tvec_base_t *old_base;
1334 tvec_base_t *new_base;
1335 int i;
1336
1337 BUG_ON(cpu_online(cpu));
1338 old_base = &per_cpu(tvec_bases, cpu);
1339 new_base = &get_cpu_var(tvec_bases);
1340
1341 local_irq_disable();
55c888d6
ON
1342 spin_lock(&new_base->t_base.lock);
1343 spin_lock(&old_base->t_base.lock);
1da177e4 1344
55c888d6 1345 if (old_base->t_base.running_timer)
1da177e4
LT
1346 BUG();
1347 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1348 migrate_timer_list(new_base, old_base->tv1.vec + i);
1349 for (i = 0; i < TVN_SIZE; i++) {
1350 migrate_timer_list(new_base, old_base->tv2.vec + i);
1351 migrate_timer_list(new_base, old_base->tv3.vec + i);
1352 migrate_timer_list(new_base, old_base->tv4.vec + i);
1353 migrate_timer_list(new_base, old_base->tv5.vec + i);
1354 }
1355
1356 spin_unlock(&old_base->t_base.lock);
1357 spin_unlock(&new_base->t_base.lock);
1da177e4
LT
1358 local_irq_enable();
1359 put_cpu_var(tvec_bases);
1da177e4
LT
1360}
1361#endif /* CONFIG_HOTPLUG_CPU */
1362
1363static int __devinit timer_cpu_notify(struct notifier_block *self,
1364 unsigned long action, void *hcpu)
1365{
1366 long cpu = (long)hcpu;
1367 switch(action) {
1368 case CPU_UP_PREPARE:
1369 init_timers_cpu(cpu);
1370 break;
1371#ifdef CONFIG_HOTPLUG_CPU
1372 case CPU_DEAD:
1373 migrate_timers(cpu);
1374 break;
1375#endif
1376 default:
1377 break;
1378 }
1379 return NOTIFY_OK;
1380}
1381
1382static struct notifier_block __devinitdata timers_nb = {
1383 .notifier_call = timer_cpu_notify,
1384};
1385
1386
1387void __init init_timers(void)
1388{
1389 timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1390 (void *)(long)smp_processor_id());
1391 register_cpu_notifier(&timers_nb);
1392 open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
1393}
1394
1395#ifdef CONFIG_TIME_INTERPOLATION
1396
1397struct time_interpolator *time_interpolator;
1398static struct time_interpolator *time_interpolator_list;
1399static DEFINE_SPINLOCK(time_interpolator_lock);
1400
1401static inline u64 time_interpolator_get_cycles(unsigned int src)
1402{
1403 unsigned long (*x)(void);
1404
1405 switch (src)
1406 {
1407 case TIME_SOURCE_FUNCTION:
1408 x = time_interpolator->addr;
1409 return x();
1410
1411 case TIME_SOURCE_MMIO64 :
1412 return readq((void __iomem *) time_interpolator->addr);
1413
1414 case TIME_SOURCE_MMIO32 :
1415 return readl((void __iomem *) time_interpolator->addr);
1416
1417 default: return get_cycles();
1418 }
1419}
1420
486d46ae 1421static inline u64 time_interpolator_get_counter(int writelock)
1da177e4
LT
1422{
1423 unsigned int src = time_interpolator->source;
1424
1425 if (time_interpolator->jitter)
1426 {
1427 u64 lcycle;
1428 u64 now;
1429
1430 do {
1431 lcycle = time_interpolator->last_cycle;
1432 now = time_interpolator_get_cycles(src);
1433 if (lcycle && time_after(lcycle, now))
1434 return lcycle;
486d46ae
AW
1435
1436 /* When holding the xtime write lock, there's no need
1437 * to add the overhead of the cmpxchg. Readers are
1438 * force to retry until the write lock is released.
1439 */
1440 if (writelock) {
1441 time_interpolator->last_cycle = now;
1442 return now;
1443 }
1da177e4
LT
1444 /* Keep track of the last timer value returned. The use of cmpxchg here
1445 * will cause contention in an SMP environment.
1446 */
1447 } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle));
1448 return now;
1449 }
1450 else
1451 return time_interpolator_get_cycles(src);
1452}
1453
1454void time_interpolator_reset(void)
1455{
1456 time_interpolator->offset = 0;
486d46ae 1457 time_interpolator->last_counter = time_interpolator_get_counter(1);
1da177e4
LT
1458}
1459
1460#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift)
1461
1462unsigned long time_interpolator_get_offset(void)
1463{
1464 /* If we do not have a time interpolator set up then just return zero */
1465 if (!time_interpolator)
1466 return 0;
1467
1468 return time_interpolator->offset +
486d46ae 1469 GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator);
1da177e4
LT
1470}
1471
1472#define INTERPOLATOR_ADJUST 65536
1473#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
1474
1475static void time_interpolator_update(long delta_nsec)
1476{
1477 u64 counter;
1478 unsigned long offset;
1479
1480 /* If there is no time interpolator set up then do nothing */
1481 if (!time_interpolator)
1482 return;
1483
1484 /* The interpolator compensates for late ticks by accumulating
1485 * the late time in time_interpolator->offset. A tick earlier than
1486 * expected will lead to a reset of the offset and a corresponding
1487 * jump of the clock forward. Again this only works if the
1488 * interpolator clock is running slightly slower than the regular clock
1489 * and the tuning logic insures that.
1490 */
1491
486d46ae 1492 counter = time_interpolator_get_counter(1);
1da177e4
LT
1493 offset = time_interpolator->offset + GET_TI_NSECS(counter, time_interpolator);
1494
1495 if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
1496 time_interpolator->offset = offset - delta_nsec;
1497 else {
1498 time_interpolator->skips++;
1499 time_interpolator->ns_skipped += delta_nsec - offset;
1500 time_interpolator->offset = 0;
1501 }
1502 time_interpolator->last_counter = counter;
1503
1504 /* Tuning logic for time interpolator invoked every minute or so.
1505 * Decrease interpolator clock speed if no skips occurred and an offset is carried.
1506 * Increase interpolator clock speed if we skip too much time.
1507 */
1508 if (jiffies % INTERPOLATOR_ADJUST == 0)
1509 {
1510 if (time_interpolator->skips == 0 && time_interpolator->offset > TICK_NSEC)
1511 time_interpolator->nsec_per_cyc--;
1512 if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0)
1513 time_interpolator->nsec_per_cyc++;
1514 time_interpolator->skips = 0;
1515 time_interpolator->ns_skipped = 0;
1516 }
1517}
1518
1519static inline int
1520is_better_time_interpolator(struct time_interpolator *new)
1521{
1522 if (!time_interpolator)
1523 return 1;
1524 return new->frequency > 2*time_interpolator->frequency ||
1525 (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
1526}
1527
1528void
1529register_time_interpolator(struct time_interpolator *ti)
1530{
1531 unsigned long flags;
1532
1533 /* Sanity check */
1534 if (ti->frequency == 0 || ti->mask == 0)
1535 BUG();
1536
1537 ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
1538 spin_lock(&time_interpolator_lock);
1539 write_seqlock_irqsave(&xtime_lock, flags);
1540 if (is_better_time_interpolator(ti)) {
1541 time_interpolator = ti;
1542 time_interpolator_reset();
1543 }
1544 write_sequnlock_irqrestore(&xtime_lock, flags);
1545
1546 ti->next = time_interpolator_list;
1547 time_interpolator_list = ti;
1548 spin_unlock(&time_interpolator_lock);
1549}
1550
1551void
1552unregister_time_interpolator(struct time_interpolator *ti)
1553{
1554 struct time_interpolator *curr, **prev;
1555 unsigned long flags;
1556
1557 spin_lock(&time_interpolator_lock);
1558 prev = &time_interpolator_list;
1559 for (curr = *prev; curr; curr = curr->next) {
1560 if (curr == ti) {
1561 *prev = curr->next;
1562 break;
1563 }
1564 prev = &curr->next;
1565 }
1566
1567 write_seqlock_irqsave(&xtime_lock, flags);
1568 if (ti == time_interpolator) {
1569 /* we lost the best time-interpolator: */
1570 time_interpolator = NULL;
1571 /* find the next-best interpolator */
1572 for (curr = time_interpolator_list; curr; curr = curr->next)
1573 if (is_better_time_interpolator(curr))
1574 time_interpolator = curr;
1575 time_interpolator_reset();
1576 }
1577 write_sequnlock_irqrestore(&xtime_lock, flags);
1578 spin_unlock(&time_interpolator_lock);
1579}
1580#endif /* CONFIG_TIME_INTERPOLATION */
1581
1582/**
1583 * msleep - sleep safely even with waitqueue interruptions
1584 * @msecs: Time in milliseconds to sleep for
1585 */
1586void msleep(unsigned int msecs)
1587{
1588 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1589
75bcc8c5
NA
1590 while (timeout)
1591 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1592}
1593
1594EXPORT_SYMBOL(msleep);
1595
1596/**
96ec3efd 1597 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1598 * @msecs: Time in milliseconds to sleep for
1599 */
1600unsigned long msleep_interruptible(unsigned int msecs)
1601{
1602 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1603
75bcc8c5
NA
1604 while (timeout && !signal_pending(current))
1605 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1606 return jiffies_to_msecs(timeout);
1607}
1608
1609EXPORT_SYMBOL(msleep_interruptible);