]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/futex.c
futex: Change 3rd arg of fetch_robust_entry() to unsigned int*
[net-next-2.6.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9adef58b 58#include <linux/module.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62
4732efbe 63#include <asm/futex.h>
1da177e4 64
c87e2837
IM
65#include "rtmutex_common.h"
66
a0c1e907
TG
67int __read_mostly futex_cmpxchg_enabled;
68
1da177e4
LT
69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
c87e2837
IM
71/*
72 * Priority Inheritance state:
73 */
74struct futex_pi_state {
75 /*
76 * list of 'owned' pi_state instances - these have to be
77 * cleaned up in do_exit() if the task exits prematurely:
78 */
79 struct list_head list;
80
81 /*
82 * The PI object:
83 */
84 struct rt_mutex pi_mutex;
85
86 struct task_struct *owner;
87 atomic_t refcount;
88
89 union futex_key key;
90};
91
d8d88fbb
DH
92/**
93 * struct futex_q - The hashed futex queue entry, one per waiting task
94 * @task: the task waiting on the futex
95 * @lock_ptr: the hash bucket lock
96 * @key: the key the futex is hashed on
97 * @pi_state: optional priority inheritance state
98 * @rt_waiter: rt_waiter storage for use with requeue_pi
99 * @requeue_pi_key: the requeue_pi target futex key
100 * @bitset: bitset for the optional bitmasked wakeup
101 *
102 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
103 * we can wake only the relevant ones (hashed queues may be shared).
104 *
105 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 106 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4 107 * The order of wakup is always to make the first condition true, then
d8d88fbb
DH
108 * the second.
109 *
110 * PI futexes are typically woken before they are removed from the hash list via
111 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
112 */
113struct futex_q {
ec92d082 114 struct plist_node list;
1da177e4 115
d8d88fbb 116 struct task_struct *task;
1da177e4 117 spinlock_t *lock_ptr;
1da177e4 118 union futex_key key;
c87e2837 119 struct futex_pi_state *pi_state;
52400ba9 120 struct rt_mutex_waiter *rt_waiter;
84bc4af5 121 union futex_key *requeue_pi_key;
cd689985 122 u32 bitset;
1da177e4
LT
123};
124
125/*
b2d0994b
DH
126 * Hash buckets are shared by all the futex_keys that hash to the same
127 * location. Each key may have multiple futex_q structures, one for each task
128 * waiting on a futex.
1da177e4
LT
129 */
130struct futex_hash_bucket {
ec92d082
PP
131 spinlock_t lock;
132 struct plist_head chain;
1da177e4
LT
133};
134
135static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
136
1da177e4
LT
137/*
138 * We hash on the keys returned from get_futex_key (see below).
139 */
140static struct futex_hash_bucket *hash_futex(union futex_key *key)
141{
142 u32 hash = jhash2((u32*)&key->both.word,
143 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144 key->both.offset);
145 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
146}
147
148/*
149 * Return 1 if two futex_keys are equal, 0 otherwise.
150 */
151static inline int match_futex(union futex_key *key1, union futex_key *key2)
152{
2bc87203
DH
153 return (key1 && key2
154 && key1->both.word == key2->both.word
1da177e4
LT
155 && key1->both.ptr == key2->both.ptr
156 && key1->both.offset == key2->both.offset);
157}
158
38d47c1b
PZ
159/*
160 * Take a reference to the resource addressed by a key.
161 * Can be called while holding spinlocks.
162 *
163 */
164static void get_futex_key_refs(union futex_key *key)
165{
166 if (!key->both.ptr)
167 return;
168
169 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
170 case FUT_OFF_INODE:
171 atomic_inc(&key->shared.inode->i_count);
172 break;
173 case FUT_OFF_MMSHARED:
174 atomic_inc(&key->private.mm->mm_count);
175 break;
176 }
177}
178
179/*
180 * Drop a reference to the resource addressed by a key.
181 * The hash bucket spinlock must not be held.
182 */
183static void drop_futex_key_refs(union futex_key *key)
184{
90621c40
DH
185 if (!key->both.ptr) {
186 /* If we're here then we tried to put a key we failed to get */
187 WARN_ON_ONCE(1);
38d47c1b 188 return;
90621c40 189 }
38d47c1b
PZ
190
191 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
192 case FUT_OFF_INODE:
193 iput(key->shared.inode);
194 break;
195 case FUT_OFF_MMSHARED:
196 mmdrop(key->private.mm);
197 break;
198 }
199}
200
34f01cc1 201/**
d96ee56c
DH
202 * get_futex_key() - Get parameters which are the keys for a futex
203 * @uaddr: virtual address of the futex
204 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
205 * @key: address where result is stored.
34f01cc1
ED
206 *
207 * Returns a negative error code or 0
208 * The key words are stored in *key on success.
1da177e4 209 *
f3a43f3f 210 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
211 * offset_within_page). For private mappings, it's (uaddr, current->mm).
212 * We can usually work out the index without swapping in the page.
213 *
b2d0994b 214 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 215 */
64d1304a 216static int
7485d0d3 217get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
1da177e4 218{
e2970f2f 219 unsigned long address = (unsigned long)uaddr;
1da177e4 220 struct mm_struct *mm = current->mm;
1da177e4
LT
221 struct page *page;
222 int err;
223
224 /*
225 * The futex address must be "naturally" aligned.
226 */
e2970f2f 227 key->both.offset = address % PAGE_SIZE;
34f01cc1 228 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 229 return -EINVAL;
e2970f2f 230 address -= key->both.offset;
1da177e4 231
34f01cc1
ED
232 /*
233 * PROCESS_PRIVATE futexes are fast.
234 * As the mm cannot disappear under us and the 'key' only needs
235 * virtual address, we dont even have to find the underlying vma.
236 * Note : We do have to check 'uaddr' is a valid user address,
237 * but access_ok() should be faster than find_vma()
238 */
239 if (!fshared) {
7485d0d3 240 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
34f01cc1
ED
241 return -EFAULT;
242 key->private.mm = mm;
243 key->private.address = address;
42569c39 244 get_futex_key_refs(key);
34f01cc1
ED
245 return 0;
246 }
1da177e4 247
38d47c1b 248again:
7485d0d3 249 err = get_user_pages_fast(address, 1, 1, &page);
38d47c1b
PZ
250 if (err < 0)
251 return err;
252
ce2ae53b 253 page = compound_head(page);
38d47c1b
PZ
254 lock_page(page);
255 if (!page->mapping) {
256 unlock_page(page);
257 put_page(page);
258 goto again;
259 }
1da177e4
LT
260
261 /*
262 * Private mappings are handled in a simple way.
263 *
264 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
265 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 266 * the object not the particular process.
1da177e4 267 */
38d47c1b
PZ
268 if (PageAnon(page)) {
269 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 270 key->private.mm = mm;
e2970f2f 271 key->private.address = address;
38d47c1b
PZ
272 } else {
273 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
274 key->shared.inode = page->mapping->host;
275 key->shared.pgoff = page->index;
1da177e4
LT
276 }
277
38d47c1b 278 get_futex_key_refs(key);
1da177e4 279
38d47c1b
PZ
280 unlock_page(page);
281 put_page(page);
282 return 0;
1da177e4
LT
283}
284
38d47c1b 285static inline
c2f9f201 286void put_futex_key(int fshared, union futex_key *key)
1da177e4 287{
38d47c1b 288 drop_futex_key_refs(key);
1da177e4
LT
289}
290
d96ee56c
DH
291/**
292 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
293 * @uaddr: pointer to faulting user space address
294 *
295 * Slow path to fixup the fault we just took in the atomic write
296 * access to @uaddr.
297 *
298 * We have no generic implementation of a non destructive write to the
299 * user address. We know that we faulted in the atomic pagefault
300 * disabled section so we can as well avoid the #PF overhead by
301 * calling get_user_pages() right away.
302 */
303static int fault_in_user_writeable(u32 __user *uaddr)
304{
722d0172
AK
305 struct mm_struct *mm = current->mm;
306 int ret;
307
308 down_read(&mm->mmap_sem);
309 ret = get_user_pages(current, mm, (unsigned long)uaddr,
310 1, 1, 0, NULL, NULL);
311 up_read(&mm->mmap_sem);
312
d0725992
TG
313 return ret < 0 ? ret : 0;
314}
315
4b1c486b
DH
316/**
317 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
318 * @hb: the hash bucket the futex_q's reside in
319 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
320 *
321 * Must be called with the hb lock held.
322 */
323static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
324 union futex_key *key)
325{
326 struct futex_q *this;
327
328 plist_for_each_entry(this, &hb->chain, list) {
329 if (match_futex(&this->key, key))
330 return this;
331 }
332 return NULL;
333}
334
36cf3b5c
TG
335static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
336{
337 u32 curval;
338
339 pagefault_disable();
340 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
341 pagefault_enable();
342
343 return curval;
344}
345
346static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
347{
348 int ret;
349
a866374a 350 pagefault_disable();
e2970f2f 351 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 352 pagefault_enable();
1da177e4
LT
353
354 return ret ? -EFAULT : 0;
355}
356
c87e2837
IM
357
358/*
359 * PI code:
360 */
361static int refill_pi_state_cache(void)
362{
363 struct futex_pi_state *pi_state;
364
365 if (likely(current->pi_state_cache))
366 return 0;
367
4668edc3 368 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
369
370 if (!pi_state)
371 return -ENOMEM;
372
c87e2837
IM
373 INIT_LIST_HEAD(&pi_state->list);
374 /* pi_mutex gets initialized later */
375 pi_state->owner = NULL;
376 atomic_set(&pi_state->refcount, 1);
38d47c1b 377 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
378
379 current->pi_state_cache = pi_state;
380
381 return 0;
382}
383
384static struct futex_pi_state * alloc_pi_state(void)
385{
386 struct futex_pi_state *pi_state = current->pi_state_cache;
387
388 WARN_ON(!pi_state);
389 current->pi_state_cache = NULL;
390
391 return pi_state;
392}
393
394static void free_pi_state(struct futex_pi_state *pi_state)
395{
396 if (!atomic_dec_and_test(&pi_state->refcount))
397 return;
398
399 /*
400 * If pi_state->owner is NULL, the owner is most probably dying
401 * and has cleaned up the pi_state already
402 */
403 if (pi_state->owner) {
1d615482 404 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 405 list_del_init(&pi_state->list);
1d615482 406 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
407
408 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
409 }
410
411 if (current->pi_state_cache)
412 kfree(pi_state);
413 else {
414 /*
415 * pi_state->list is already empty.
416 * clear pi_state->owner.
417 * refcount is at 0 - put it back to 1.
418 */
419 pi_state->owner = NULL;
420 atomic_set(&pi_state->refcount, 1);
421 current->pi_state_cache = pi_state;
422 }
423}
424
425/*
426 * Look up the task based on what TID userspace gave us.
427 * We dont trust it.
428 */
429static struct task_struct * futex_find_get_task(pid_t pid)
430{
431 struct task_struct *p;
432
d359b549 433 rcu_read_lock();
228ebcbe 434 p = find_task_by_vpid(pid);
7a0ea09a
MH
435 if (p)
436 get_task_struct(p);
a06381fe 437
d359b549 438 rcu_read_unlock();
c87e2837
IM
439
440 return p;
441}
442
443/*
444 * This task is holding PI mutexes at exit time => bad.
445 * Kernel cleans up PI-state, but userspace is likely hosed.
446 * (Robust-futex cleanup is separate and might save the day for userspace.)
447 */
448void exit_pi_state_list(struct task_struct *curr)
449{
c87e2837
IM
450 struct list_head *next, *head = &curr->pi_state_list;
451 struct futex_pi_state *pi_state;
627371d7 452 struct futex_hash_bucket *hb;
38d47c1b 453 union futex_key key = FUTEX_KEY_INIT;
c87e2837 454
a0c1e907
TG
455 if (!futex_cmpxchg_enabled)
456 return;
c87e2837
IM
457 /*
458 * We are a ZOMBIE and nobody can enqueue itself on
459 * pi_state_list anymore, but we have to be careful
627371d7 460 * versus waiters unqueueing themselves:
c87e2837 461 */
1d615482 462 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
463 while (!list_empty(head)) {
464
465 next = head->next;
466 pi_state = list_entry(next, struct futex_pi_state, list);
467 key = pi_state->key;
627371d7 468 hb = hash_futex(&key);
1d615482 469 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 470
c87e2837
IM
471 spin_lock(&hb->lock);
472
1d615482 473 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
474 /*
475 * We dropped the pi-lock, so re-check whether this
476 * task still owns the PI-state:
477 */
c87e2837
IM
478 if (head->next != next) {
479 spin_unlock(&hb->lock);
480 continue;
481 }
482
c87e2837 483 WARN_ON(pi_state->owner != curr);
627371d7
IM
484 WARN_ON(list_empty(&pi_state->list));
485 list_del_init(&pi_state->list);
c87e2837 486 pi_state->owner = NULL;
1d615482 487 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
488
489 rt_mutex_unlock(&pi_state->pi_mutex);
490
491 spin_unlock(&hb->lock);
492
1d615482 493 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 494 }
1d615482 495 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
496}
497
498static int
d0aa7a70
PP
499lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
500 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
501{
502 struct futex_pi_state *pi_state = NULL;
503 struct futex_q *this, *next;
ec92d082 504 struct plist_head *head;
c87e2837 505 struct task_struct *p;
778e9a9c 506 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
507
508 head = &hb->chain;
509
ec92d082 510 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 511 if (match_futex(&this->key, key)) {
c87e2837
IM
512 /*
513 * Another waiter already exists - bump up
514 * the refcount and return its pi_state:
515 */
516 pi_state = this->pi_state;
06a9ec29
TG
517 /*
518 * Userspace might have messed up non PI and PI futexes
519 */
520 if (unlikely(!pi_state))
521 return -EINVAL;
522
627371d7 523 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a
TG
524
525 /*
526 * When pi_state->owner is NULL then the owner died
527 * and another waiter is on the fly. pi_state->owner
528 * is fixed up by the task which acquires
529 * pi_state->rt_mutex.
530 *
531 * We do not check for pid == 0 which can happen when
532 * the owner died and robust_list_exit() cleared the
533 * TID.
534 */
535 if (pid && pi_state->owner) {
536 /*
537 * Bail out if user space manipulated the
538 * futex value.
539 */
540 if (pid != task_pid_vnr(pi_state->owner))
541 return -EINVAL;
542 }
627371d7 543
c87e2837 544 atomic_inc(&pi_state->refcount);
d0aa7a70 545 *ps = pi_state;
c87e2837
IM
546
547 return 0;
548 }
549 }
550
551 /*
e3f2ddea 552 * We are the first waiter - try to look up the real owner and attach
778e9a9c 553 * the new pi_state to it, but bail out when TID = 0
c87e2837 554 */
778e9a9c 555 if (!pid)
e3f2ddea 556 return -ESRCH;
c87e2837 557 p = futex_find_get_task(pid);
7a0ea09a
MH
558 if (!p)
559 return -ESRCH;
778e9a9c
AK
560
561 /*
562 * We need to look at the task state flags to figure out,
563 * whether the task is exiting. To protect against the do_exit
564 * change of the task flags, we do this protected by
565 * p->pi_lock:
566 */
1d615482 567 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
568 if (unlikely(p->flags & PF_EXITING)) {
569 /*
570 * The task is on the way out. When PF_EXITPIDONE is
571 * set, we know that the task has finished the
572 * cleanup:
573 */
574 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
575
1d615482 576 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
577 put_task_struct(p);
578 return ret;
579 }
c87e2837
IM
580
581 pi_state = alloc_pi_state();
582
583 /*
584 * Initialize the pi_mutex in locked state and make 'p'
585 * the owner of it:
586 */
587 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
588
589 /* Store the key for possible exit cleanups: */
d0aa7a70 590 pi_state->key = *key;
c87e2837 591
627371d7 592 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
593 list_add(&pi_state->list, &p->pi_state_list);
594 pi_state->owner = p;
1d615482 595 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
596
597 put_task_struct(p);
598
d0aa7a70 599 *ps = pi_state;
c87e2837
IM
600
601 return 0;
602}
603
1a52084d 604/**
d96ee56c 605 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
606 * @uaddr: the pi futex user address
607 * @hb: the pi futex hash bucket
608 * @key: the futex key associated with uaddr and hb
609 * @ps: the pi_state pointer where we store the result of the
610 * lookup
611 * @task: the task to perform the atomic lock work for. This will
612 * be "current" except in the case of requeue pi.
613 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d
DH
614 *
615 * Returns:
616 * 0 - ready to wait
617 * 1 - acquired the lock
618 * <0 - error
619 *
620 * The hb->lock and futex_key refs shall be held by the caller.
621 */
622static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
623 union futex_key *key,
624 struct futex_pi_state **ps,
bab5bc9e 625 struct task_struct *task, int set_waiters)
1a52084d
DH
626{
627 int lock_taken, ret, ownerdied = 0;
628 u32 uval, newval, curval;
629
630retry:
631 ret = lock_taken = 0;
632
633 /*
634 * To avoid races, we attempt to take the lock here again
635 * (by doing a 0 -> TID atomic cmpxchg), while holding all
636 * the locks. It will most likely not succeed.
637 */
638 newval = task_pid_vnr(task);
bab5bc9e
DH
639 if (set_waiters)
640 newval |= FUTEX_WAITERS;
1a52084d
DH
641
642 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
643
644 if (unlikely(curval == -EFAULT))
645 return -EFAULT;
646
647 /*
648 * Detect deadlocks.
649 */
650 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
651 return -EDEADLK;
652
653 /*
654 * Surprise - we got the lock. Just return to userspace:
655 */
656 if (unlikely(!curval))
657 return 1;
658
659 uval = curval;
660
661 /*
662 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
663 * to wake at the next unlock.
664 */
665 newval = curval | FUTEX_WAITERS;
666
667 /*
668 * There are two cases, where a futex might have no owner (the
669 * owner TID is 0): OWNER_DIED. We take over the futex in this
670 * case. We also do an unconditional take over, when the owner
671 * of the futex died.
672 *
673 * This is safe as we are protected by the hash bucket lock !
674 */
675 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
676 /* Keep the OWNER_DIED bit */
677 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
678 ownerdied = 0;
679 lock_taken = 1;
680 }
681
682 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
683
684 if (unlikely(curval == -EFAULT))
685 return -EFAULT;
686 if (unlikely(curval != uval))
687 goto retry;
688
689 /*
690 * We took the lock due to owner died take over.
691 */
692 if (unlikely(lock_taken))
693 return 1;
694
695 /*
696 * We dont have the lock. Look up the PI state (or create it if
697 * we are the first waiter):
698 */
699 ret = lookup_pi_state(uval, hb, key, ps);
700
701 if (unlikely(ret)) {
702 switch (ret) {
703 case -ESRCH:
704 /*
705 * No owner found for this futex. Check if the
706 * OWNER_DIED bit is set to figure out whether
707 * this is a robust futex or not.
708 */
709 if (get_futex_value_locked(&curval, uaddr))
710 return -EFAULT;
711
712 /*
713 * We simply start over in case of a robust
714 * futex. The code above will take the futex
715 * and return happy.
716 */
717 if (curval & FUTEX_OWNER_DIED) {
718 ownerdied = 1;
719 goto retry;
720 }
721 default:
722 break;
723 }
724 }
725
726 return ret;
727}
728
1da177e4
LT
729/*
730 * The hash bucket lock must be held when this is called.
731 * Afterwards, the futex_q must not be accessed.
732 */
733static void wake_futex(struct futex_q *q)
734{
f1a11e05
TG
735 struct task_struct *p = q->task;
736
1da177e4 737 /*
f1a11e05
TG
738 * We set q->lock_ptr = NULL _before_ we wake up the task. If
739 * a non futex wake up happens on another CPU then the task
740 * might exit and p would dereference a non existing task
741 * struct. Prevent this by holding a reference on p across the
742 * wake up.
1da177e4 743 */
f1a11e05
TG
744 get_task_struct(p);
745
746 plist_del(&q->list, &q->list.plist);
1da177e4 747 /*
f1a11e05
TG
748 * The waiting task can free the futex_q as soon as
749 * q->lock_ptr = NULL is written, without taking any locks. A
750 * memory barrier is required here to prevent the following
751 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 752 */
ccdea2f8 753 smp_wmb();
1da177e4 754 q->lock_ptr = NULL;
f1a11e05
TG
755
756 wake_up_state(p, TASK_NORMAL);
757 put_task_struct(p);
1da177e4
LT
758}
759
c87e2837
IM
760static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
761{
762 struct task_struct *new_owner;
763 struct futex_pi_state *pi_state = this->pi_state;
764 u32 curval, newval;
765
766 if (!pi_state)
767 return -EINVAL;
768
51246bfd
TG
769 /*
770 * If current does not own the pi_state then the futex is
771 * inconsistent and user space fiddled with the futex value.
772 */
773 if (pi_state->owner != current)
774 return -EINVAL;
775
d209d74d 776 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
777 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
778
779 /*
780 * This happens when we have stolen the lock and the original
781 * pending owner did not enqueue itself back on the rt_mutex.
782 * Thats not a tragedy. We know that way, that a lock waiter
783 * is on the fly. We make the futex_q waiter the pending owner.
784 */
785 if (!new_owner)
786 new_owner = this->task;
787
788 /*
789 * We pass it to the next owner. (The WAITERS bit is always
790 * kept enabled while there is PI state around. We must also
791 * preserve the owner died bit.)
792 */
e3f2ddea 793 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
794 int ret = 0;
795
b488893a 796 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 797
36cf3b5c 798 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 799
e3f2ddea 800 if (curval == -EFAULT)
778e9a9c 801 ret = -EFAULT;
cde898fa 802 else if (curval != uval)
778e9a9c
AK
803 ret = -EINVAL;
804 if (ret) {
d209d74d 805 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
806 return ret;
807 }
e3f2ddea 808 }
c87e2837 809
1d615482 810 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
811 WARN_ON(list_empty(&pi_state->list));
812 list_del_init(&pi_state->list);
1d615482 813 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 814
1d615482 815 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 816 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
817 list_add(&pi_state->list, &new_owner->pi_state_list);
818 pi_state->owner = new_owner;
1d615482 819 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 820
d209d74d 821 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
822 rt_mutex_unlock(&pi_state->pi_mutex);
823
824 return 0;
825}
826
827static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
828{
829 u32 oldval;
830
831 /*
832 * There is no waiter, so we unlock the futex. The owner died
833 * bit has not to be preserved here. We are the owner:
834 */
36cf3b5c 835 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
836
837 if (oldval == -EFAULT)
838 return oldval;
839 if (oldval != uval)
840 return -EAGAIN;
841
842 return 0;
843}
844
8b8f319f
IM
845/*
846 * Express the locking dependencies for lockdep:
847 */
848static inline void
849double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
850{
851 if (hb1 <= hb2) {
852 spin_lock(&hb1->lock);
853 if (hb1 < hb2)
854 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
855 } else { /* hb1 > hb2 */
856 spin_lock(&hb2->lock);
857 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
858 }
859}
860
5eb3dc62
DH
861static inline void
862double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
863{
f061d351 864 spin_unlock(&hb1->lock);
88f502fe
IM
865 if (hb1 != hb2)
866 spin_unlock(&hb2->lock);
5eb3dc62
DH
867}
868
1da177e4 869/*
b2d0994b 870 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 871 */
c2f9f201 872static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
1da177e4 873{
e2970f2f 874 struct futex_hash_bucket *hb;
1da177e4 875 struct futex_q *this, *next;
ec92d082 876 struct plist_head *head;
38d47c1b 877 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
878 int ret;
879
cd689985
TG
880 if (!bitset)
881 return -EINVAL;
882
7485d0d3 883 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
884 if (unlikely(ret != 0))
885 goto out;
886
e2970f2f
IM
887 hb = hash_futex(&key);
888 spin_lock(&hb->lock);
889 head = &hb->chain;
1da177e4 890
ec92d082 891 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 892 if (match_futex (&this->key, &key)) {
52400ba9 893 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
894 ret = -EINVAL;
895 break;
896 }
cd689985
TG
897
898 /* Check if one of the bits is set in both bitsets */
899 if (!(this->bitset & bitset))
900 continue;
901
1da177e4
LT
902 wake_futex(this);
903 if (++ret >= nr_wake)
904 break;
905 }
906 }
907
e2970f2f 908 spin_unlock(&hb->lock);
38d47c1b 909 put_futex_key(fshared, &key);
42d35d48 910out:
1da177e4
LT
911 return ret;
912}
913
4732efbe
JJ
914/*
915 * Wake up all waiters hashed on the physical page that is mapped
916 * to this virtual address:
917 */
e2970f2f 918static int
c2f9f201 919futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 920 int nr_wake, int nr_wake2, int op)
4732efbe 921{
38d47c1b 922 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 923 struct futex_hash_bucket *hb1, *hb2;
ec92d082 924 struct plist_head *head;
4732efbe 925 struct futex_q *this, *next;
e4dc5b7a 926 int ret, op_ret;
4732efbe 927
e4dc5b7a 928retry:
7485d0d3 929 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
930 if (unlikely(ret != 0))
931 goto out;
7485d0d3 932 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe 933 if (unlikely(ret != 0))
42d35d48 934 goto out_put_key1;
4732efbe 935
e2970f2f
IM
936 hb1 = hash_futex(&key1);
937 hb2 = hash_futex(&key2);
4732efbe 938
e4dc5b7a 939retry_private:
eaaea803 940 double_lock_hb(hb1, hb2);
e2970f2f 941 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 942 if (unlikely(op_ret < 0)) {
4732efbe 943
5eb3dc62 944 double_unlock_hb(hb1, hb2);
4732efbe 945
7ee1dd3f 946#ifndef CONFIG_MMU
e2970f2f
IM
947 /*
948 * we don't get EFAULT from MMU faults if we don't have an MMU,
949 * but we might get them from range checking
950 */
7ee1dd3f 951 ret = op_ret;
42d35d48 952 goto out_put_keys;
7ee1dd3f
DH
953#endif
954
796f8d9b
DG
955 if (unlikely(op_ret != -EFAULT)) {
956 ret = op_ret;
42d35d48 957 goto out_put_keys;
796f8d9b
DG
958 }
959
d0725992 960 ret = fault_in_user_writeable(uaddr2);
4732efbe 961 if (ret)
de87fcc1 962 goto out_put_keys;
4732efbe 963
e4dc5b7a
DH
964 if (!fshared)
965 goto retry_private;
966
de87fcc1
DH
967 put_futex_key(fshared, &key2);
968 put_futex_key(fshared, &key1);
e4dc5b7a 969 goto retry;
4732efbe
JJ
970 }
971
e2970f2f 972 head = &hb1->chain;
4732efbe 973
ec92d082 974 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
975 if (match_futex (&this->key, &key1)) {
976 wake_futex(this);
977 if (++ret >= nr_wake)
978 break;
979 }
980 }
981
982 if (op_ret > 0) {
e2970f2f 983 head = &hb2->chain;
4732efbe
JJ
984
985 op_ret = 0;
ec92d082 986 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
987 if (match_futex (&this->key, &key2)) {
988 wake_futex(this);
989 if (++op_ret >= nr_wake2)
990 break;
991 }
992 }
993 ret += op_ret;
994 }
995
5eb3dc62 996 double_unlock_hb(hb1, hb2);
42d35d48 997out_put_keys:
38d47c1b 998 put_futex_key(fshared, &key2);
42d35d48 999out_put_key1:
38d47c1b 1000 put_futex_key(fshared, &key1);
42d35d48 1001out:
4732efbe
JJ
1002 return ret;
1003}
1004
9121e478
DH
1005/**
1006 * requeue_futex() - Requeue a futex_q from one hb to another
1007 * @q: the futex_q to requeue
1008 * @hb1: the source hash_bucket
1009 * @hb2: the target hash_bucket
1010 * @key2: the new key for the requeued futex_q
1011 */
1012static inline
1013void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1014 struct futex_hash_bucket *hb2, union futex_key *key2)
1015{
1016
1017 /*
1018 * If key1 and key2 hash to the same bucket, no need to
1019 * requeue.
1020 */
1021 if (likely(&hb1->chain != &hb2->chain)) {
1022 plist_del(&q->list, &hb1->chain);
1023 plist_add(&q->list, &hb2->chain);
1024 q->lock_ptr = &hb2->lock;
1025#ifdef CONFIG_DEBUG_PI_LIST
a2672459 1026 q->list.plist.spinlock = &hb2->lock;
9121e478
DH
1027#endif
1028 }
1029 get_futex_key_refs(key2);
1030 q->key = *key2;
1031}
1032
52400ba9
DH
1033/**
1034 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1035 * @q: the futex_q
1036 * @key: the key of the requeue target futex
1037 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1038 *
1039 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1040 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1041 * to the requeue target futex so the waiter can detect the wakeup on the right
1042 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1043 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1044 * to protect access to the pi_state to fixup the owner later. Must be called
1045 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1046 */
1047static inline
beda2c7e
DH
1048void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1049 struct futex_hash_bucket *hb)
52400ba9 1050{
52400ba9
DH
1051 get_futex_key_refs(key);
1052 q->key = *key;
1053
1054 WARN_ON(plist_node_empty(&q->list));
1055 plist_del(&q->list, &q->list.plist);
1056
1057 WARN_ON(!q->rt_waiter);
1058 q->rt_waiter = NULL;
1059
beda2c7e
DH
1060 q->lock_ptr = &hb->lock;
1061#ifdef CONFIG_DEBUG_PI_LIST
a2672459 1062 q->list.plist.spinlock = &hb->lock;
beda2c7e
DH
1063#endif
1064
f1a11e05 1065 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1066}
1067
1068/**
1069 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1070 * @pifutex: the user address of the to futex
1071 * @hb1: the from futex hash bucket, must be locked by the caller
1072 * @hb2: the to futex hash bucket, must be locked by the caller
1073 * @key1: the from futex key
1074 * @key2: the to futex key
1075 * @ps: address to store the pi_state pointer
1076 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1077 *
1078 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1079 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1080 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1081 * hb1 and hb2 must be held by the caller.
52400ba9
DH
1082 *
1083 * Returns:
1084 * 0 - failed to acquire the lock atomicly
1085 * 1 - acquired the lock
1086 * <0 - error
1087 */
1088static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1089 struct futex_hash_bucket *hb1,
1090 struct futex_hash_bucket *hb2,
1091 union futex_key *key1, union futex_key *key2,
bab5bc9e 1092 struct futex_pi_state **ps, int set_waiters)
52400ba9 1093{
bab5bc9e 1094 struct futex_q *top_waiter = NULL;
52400ba9
DH
1095 u32 curval;
1096 int ret;
1097
1098 if (get_futex_value_locked(&curval, pifutex))
1099 return -EFAULT;
1100
bab5bc9e
DH
1101 /*
1102 * Find the top_waiter and determine if there are additional waiters.
1103 * If the caller intends to requeue more than 1 waiter to pifutex,
1104 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1105 * as we have means to handle the possible fault. If not, don't set
1106 * the bit unecessarily as it will force the subsequent unlock to enter
1107 * the kernel.
1108 */
52400ba9
DH
1109 top_waiter = futex_top_waiter(hb1, key1);
1110
1111 /* There are no waiters, nothing for us to do. */
1112 if (!top_waiter)
1113 return 0;
1114
84bc4af5
DH
1115 /* Ensure we requeue to the expected futex. */
1116 if (!match_futex(top_waiter->requeue_pi_key, key2))
1117 return -EINVAL;
1118
52400ba9 1119 /*
bab5bc9e
DH
1120 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1121 * the contended case or if set_waiters is 1. The pi_state is returned
1122 * in ps in contended cases.
52400ba9 1123 */
bab5bc9e
DH
1124 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1125 set_waiters);
52400ba9 1126 if (ret == 1)
beda2c7e 1127 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1128
1129 return ret;
1130}
1131
1132/**
1133 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1134 * uaddr1: source futex user address
1135 * uaddr2: target futex user address
1136 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1137 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1138 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1139 * pi futex (pi to pi requeue is not supported)
1140 *
1141 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1142 * uaddr2 atomically on behalf of the top waiter.
1143 *
1144 * Returns:
1145 * >=0 - on success, the number of tasks requeued or woken
1146 * <0 - on error
1da177e4 1147 */
c2f9f201 1148static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
52400ba9
DH
1149 int nr_wake, int nr_requeue, u32 *cmpval,
1150 int requeue_pi)
1da177e4 1151{
38d47c1b 1152 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1153 int drop_count = 0, task_count = 0, ret;
1154 struct futex_pi_state *pi_state = NULL;
e2970f2f 1155 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1156 struct plist_head *head1;
1da177e4 1157 struct futex_q *this, *next;
52400ba9
DH
1158 u32 curval2;
1159
1160 if (requeue_pi) {
1161 /*
1162 * requeue_pi requires a pi_state, try to allocate it now
1163 * without any locks in case it fails.
1164 */
1165 if (refill_pi_state_cache())
1166 return -ENOMEM;
1167 /*
1168 * requeue_pi must wake as many tasks as it can, up to nr_wake
1169 * + nr_requeue, since it acquires the rt_mutex prior to
1170 * returning to userspace, so as to not leave the rt_mutex with
1171 * waiters and no owner. However, second and third wake-ups
1172 * cannot be predicted as they involve race conditions with the
1173 * first wake and a fault while looking up the pi_state. Both
1174 * pthread_cond_signal() and pthread_cond_broadcast() should
1175 * use nr_wake=1.
1176 */
1177 if (nr_wake != 1)
1178 return -EINVAL;
1179 }
1da177e4 1180
42d35d48 1181retry:
52400ba9
DH
1182 if (pi_state != NULL) {
1183 /*
1184 * We will have to lookup the pi_state again, so free this one
1185 * to keep the accounting correct.
1186 */
1187 free_pi_state(pi_state);
1188 pi_state = NULL;
1189 }
1190
7485d0d3 1191 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
1192 if (unlikely(ret != 0))
1193 goto out;
7485d0d3 1194 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4 1195 if (unlikely(ret != 0))
42d35d48 1196 goto out_put_key1;
1da177e4 1197
e2970f2f
IM
1198 hb1 = hash_futex(&key1);
1199 hb2 = hash_futex(&key2);
1da177e4 1200
e4dc5b7a 1201retry_private:
8b8f319f 1202 double_lock_hb(hb1, hb2);
1da177e4 1203
e2970f2f
IM
1204 if (likely(cmpval != NULL)) {
1205 u32 curval;
1da177e4 1206
e2970f2f 1207 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1208
1209 if (unlikely(ret)) {
5eb3dc62 1210 double_unlock_hb(hb1, hb2);
1da177e4 1211
e2970f2f 1212 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1213 if (ret)
1214 goto out_put_keys;
1da177e4 1215
e4dc5b7a
DH
1216 if (!fshared)
1217 goto retry_private;
1da177e4 1218
e4dc5b7a
DH
1219 put_futex_key(fshared, &key2);
1220 put_futex_key(fshared, &key1);
1221 goto retry;
1da177e4 1222 }
e2970f2f 1223 if (curval != *cmpval) {
1da177e4
LT
1224 ret = -EAGAIN;
1225 goto out_unlock;
1226 }
1227 }
1228
52400ba9 1229 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1230 /*
1231 * Attempt to acquire uaddr2 and wake the top waiter. If we
1232 * intend to requeue waiters, force setting the FUTEX_WAITERS
1233 * bit. We force this here where we are able to easily handle
1234 * faults rather in the requeue loop below.
1235 */
52400ba9 1236 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1237 &key2, &pi_state, nr_requeue);
52400ba9
DH
1238
1239 /*
1240 * At this point the top_waiter has either taken uaddr2 or is
1241 * waiting on it. If the former, then the pi_state will not
1242 * exist yet, look it up one more time to ensure we have a
1243 * reference to it.
1244 */
1245 if (ret == 1) {
1246 WARN_ON(pi_state);
89061d3d 1247 drop_count++;
52400ba9
DH
1248 task_count++;
1249 ret = get_futex_value_locked(&curval2, uaddr2);
1250 if (!ret)
1251 ret = lookup_pi_state(curval2, hb2, &key2,
1252 &pi_state);
1253 }
1254
1255 switch (ret) {
1256 case 0:
1257 break;
1258 case -EFAULT:
1259 double_unlock_hb(hb1, hb2);
1260 put_futex_key(fshared, &key2);
1261 put_futex_key(fshared, &key1);
d0725992 1262 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1263 if (!ret)
1264 goto retry;
1265 goto out;
1266 case -EAGAIN:
1267 /* The owner was exiting, try again. */
1268 double_unlock_hb(hb1, hb2);
1269 put_futex_key(fshared, &key2);
1270 put_futex_key(fshared, &key1);
1271 cond_resched();
1272 goto retry;
1273 default:
1274 goto out_unlock;
1275 }
1276 }
1277
e2970f2f 1278 head1 = &hb1->chain;
ec92d082 1279 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1280 if (task_count - nr_wake >= nr_requeue)
1281 break;
1282
1283 if (!match_futex(&this->key, &key1))
1da177e4 1284 continue;
52400ba9 1285
392741e0
DH
1286 /*
1287 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1288 * be paired with each other and no other futex ops.
1289 */
1290 if ((requeue_pi && !this->rt_waiter) ||
1291 (!requeue_pi && this->rt_waiter)) {
1292 ret = -EINVAL;
1293 break;
1294 }
52400ba9
DH
1295
1296 /*
1297 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1298 * lock, we already woke the top_waiter. If not, it will be
1299 * woken by futex_unlock_pi().
1300 */
1301 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1302 wake_futex(this);
52400ba9
DH
1303 continue;
1304 }
1da177e4 1305
84bc4af5
DH
1306 /* Ensure we requeue to the expected futex for requeue_pi. */
1307 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1308 ret = -EINVAL;
1309 break;
1310 }
1311
52400ba9
DH
1312 /*
1313 * Requeue nr_requeue waiters and possibly one more in the case
1314 * of requeue_pi if we couldn't acquire the lock atomically.
1315 */
1316 if (requeue_pi) {
1317 /* Prepare the waiter to take the rt_mutex. */
1318 atomic_inc(&pi_state->refcount);
1319 this->pi_state = pi_state;
1320 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1321 this->rt_waiter,
1322 this->task, 1);
1323 if (ret == 1) {
1324 /* We got the lock. */
beda2c7e 1325 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1326 drop_count++;
52400ba9
DH
1327 continue;
1328 } else if (ret) {
1329 /* -EDEADLK */
1330 this->pi_state = NULL;
1331 free_pi_state(pi_state);
1332 goto out_unlock;
1333 }
1da177e4 1334 }
52400ba9
DH
1335 requeue_futex(this, hb1, hb2, &key2);
1336 drop_count++;
1da177e4
LT
1337 }
1338
1339out_unlock:
5eb3dc62 1340 double_unlock_hb(hb1, hb2);
1da177e4 1341
cd84a42f
DH
1342 /*
1343 * drop_futex_key_refs() must be called outside the spinlocks. During
1344 * the requeue we moved futex_q's from the hash bucket at key1 to the
1345 * one at key2 and updated their key pointer. We no longer need to
1346 * hold the references to key1.
1347 */
1da177e4 1348 while (--drop_count >= 0)
9adef58b 1349 drop_futex_key_refs(&key1);
1da177e4 1350
42d35d48 1351out_put_keys:
38d47c1b 1352 put_futex_key(fshared, &key2);
42d35d48 1353out_put_key1:
38d47c1b 1354 put_futex_key(fshared, &key1);
42d35d48 1355out:
52400ba9
DH
1356 if (pi_state != NULL)
1357 free_pi_state(pi_state);
1358 return ret ? ret : task_count;
1da177e4
LT
1359}
1360
1361/* The key must be already stored in q->key. */
82af7aca 1362static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 1363{
e2970f2f 1364 struct futex_hash_bucket *hb;
1da177e4 1365
9adef58b 1366 get_futex_key_refs(&q->key);
e2970f2f
IM
1367 hb = hash_futex(&q->key);
1368 q->lock_ptr = &hb->lock;
1da177e4 1369
e2970f2f
IM
1370 spin_lock(&hb->lock);
1371 return hb;
1da177e4
LT
1372}
1373
d40d65c8
DH
1374static inline void
1375queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1376{
1377 spin_unlock(&hb->lock);
1378 drop_futex_key_refs(&q->key);
1379}
1380
1381/**
1382 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1383 * @q: The futex_q to enqueue
1384 * @hb: The destination hash bucket
1385 *
1386 * The hb->lock must be held by the caller, and is released here. A call to
1387 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1388 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1389 * or nothing if the unqueue is done as part of the wake process and the unqueue
1390 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1391 * an example).
1392 */
82af7aca 1393static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1394{
ec92d082
PP
1395 int prio;
1396
1397 /*
1398 * The priority used to register this element is
1399 * - either the real thread-priority for the real-time threads
1400 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1401 * - or MAX_RT_PRIO for non-RT threads.
1402 * Thus, all RT-threads are woken first in priority order, and
1403 * the others are woken last, in FIFO order.
1404 */
1405 prio = min(current->normal_prio, MAX_RT_PRIO);
1406
1407 plist_node_init(&q->list, prio);
1408#ifdef CONFIG_DEBUG_PI_LIST
a2672459 1409 q->list.plist.spinlock = &hb->lock;
ec92d082
PP
1410#endif
1411 plist_add(&q->list, &hb->chain);
c87e2837 1412 q->task = current;
e2970f2f 1413 spin_unlock(&hb->lock);
1da177e4
LT
1414}
1415
d40d65c8
DH
1416/**
1417 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1418 * @q: The futex_q to unqueue
1419 *
1420 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1421 * be paired with exactly one earlier call to queue_me().
1422 *
1423 * Returns:
1424 * 1 - if the futex_q was still queued (and we removed unqueued it)
1425 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1426 */
1da177e4
LT
1427static int unqueue_me(struct futex_q *q)
1428{
1da177e4 1429 spinlock_t *lock_ptr;
e2970f2f 1430 int ret = 0;
1da177e4
LT
1431
1432 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1433retry:
1da177e4 1434 lock_ptr = q->lock_ptr;
e91467ec 1435 barrier();
c80544dc 1436 if (lock_ptr != NULL) {
1da177e4
LT
1437 spin_lock(lock_ptr);
1438 /*
1439 * q->lock_ptr can change between reading it and
1440 * spin_lock(), causing us to take the wrong lock. This
1441 * corrects the race condition.
1442 *
1443 * Reasoning goes like this: if we have the wrong lock,
1444 * q->lock_ptr must have changed (maybe several times)
1445 * between reading it and the spin_lock(). It can
1446 * change again after the spin_lock() but only if it was
1447 * already changed before the spin_lock(). It cannot,
1448 * however, change back to the original value. Therefore
1449 * we can detect whether we acquired the correct lock.
1450 */
1451 if (unlikely(lock_ptr != q->lock_ptr)) {
1452 spin_unlock(lock_ptr);
1453 goto retry;
1454 }
ec92d082
PP
1455 WARN_ON(plist_node_empty(&q->list));
1456 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1457
1458 BUG_ON(q->pi_state);
1459
1da177e4
LT
1460 spin_unlock(lock_ptr);
1461 ret = 1;
1462 }
1463
9adef58b 1464 drop_futex_key_refs(&q->key);
1da177e4
LT
1465 return ret;
1466}
1467
c87e2837
IM
1468/*
1469 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1470 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1471 * and dropped here.
c87e2837 1472 */
d0aa7a70 1473static void unqueue_me_pi(struct futex_q *q)
c87e2837 1474{
ec92d082
PP
1475 WARN_ON(plist_node_empty(&q->list));
1476 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1477
1478 BUG_ON(!q->pi_state);
1479 free_pi_state(q->pi_state);
1480 q->pi_state = NULL;
1481
d0aa7a70 1482 spin_unlock(q->lock_ptr);
c87e2837 1483
9adef58b 1484 drop_futex_key_refs(&q->key);
c87e2837
IM
1485}
1486
d0aa7a70 1487/*
cdf71a10 1488 * Fixup the pi_state owner with the new owner.
d0aa7a70 1489 *
778e9a9c
AK
1490 * Must be called with hash bucket lock held and mm->sem held for non
1491 * private futexes.
d0aa7a70 1492 */
778e9a9c 1493static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c2f9f201 1494 struct task_struct *newowner, int fshared)
d0aa7a70 1495{
cdf71a10 1496 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1497 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1498 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1499 u32 uval, curval, newval;
e4dc5b7a 1500 int ret;
d0aa7a70
PP
1501
1502 /* Owner died? */
1b7558e4
TG
1503 if (!pi_state->owner)
1504 newtid |= FUTEX_OWNER_DIED;
1505
1506 /*
1507 * We are here either because we stole the rtmutex from the
1508 * pending owner or we are the pending owner which failed to
1509 * get the rtmutex. We have to replace the pending owner TID
1510 * in the user space variable. This must be atomic as we have
1511 * to preserve the owner died bit here.
1512 *
b2d0994b
DH
1513 * Note: We write the user space value _before_ changing the pi_state
1514 * because we can fault here. Imagine swapped out pages or a fork
1515 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1516 *
1517 * Modifying pi_state _before_ the user space value would
1518 * leave the pi_state in an inconsistent state when we fault
1519 * here, because we need to drop the hash bucket lock to
1520 * handle the fault. This might be observed in the PID check
1521 * in lookup_pi_state.
1522 */
1523retry:
1524 if (get_futex_value_locked(&uval, uaddr))
1525 goto handle_fault;
1526
1527 while (1) {
1528 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1529
1530 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1531
1532 if (curval == -EFAULT)
1533 goto handle_fault;
1534 if (curval == uval)
1535 break;
1536 uval = curval;
1537 }
1538
1539 /*
1540 * We fixed up user space. Now we need to fix the pi_state
1541 * itself.
1542 */
d0aa7a70 1543 if (pi_state->owner != NULL) {
1d615482 1544 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1545 WARN_ON(list_empty(&pi_state->list));
1546 list_del_init(&pi_state->list);
1d615482 1547 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1548 }
d0aa7a70 1549
cdf71a10 1550 pi_state->owner = newowner;
d0aa7a70 1551
1d615482 1552 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1553 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1554 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1555 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1556 return 0;
d0aa7a70 1557
d0aa7a70 1558 /*
1b7558e4
TG
1559 * To handle the page fault we need to drop the hash bucket
1560 * lock here. That gives the other task (either the pending
1561 * owner itself or the task which stole the rtmutex) the
1562 * chance to try the fixup of the pi_state. So once we are
1563 * back from handling the fault we need to check the pi_state
1564 * after reacquiring the hash bucket lock and before trying to
1565 * do another fixup. When the fixup has been done already we
1566 * simply return.
d0aa7a70 1567 */
1b7558e4
TG
1568handle_fault:
1569 spin_unlock(q->lock_ptr);
778e9a9c 1570
d0725992 1571 ret = fault_in_user_writeable(uaddr);
778e9a9c 1572
1b7558e4 1573 spin_lock(q->lock_ptr);
778e9a9c 1574
1b7558e4
TG
1575 /*
1576 * Check if someone else fixed it for us:
1577 */
1578 if (pi_state->owner != oldowner)
1579 return 0;
1580
1581 if (ret)
1582 return ret;
1583
1584 goto retry;
d0aa7a70
PP
1585}
1586
34f01cc1
ED
1587/*
1588 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1589 * we encode in the 'flags' shared capability
34f01cc1 1590 */
1acdac10
TG
1591#define FLAGS_SHARED 0x01
1592#define FLAGS_CLOCKRT 0x02
a72188d8 1593#define FLAGS_HAS_TIMEOUT 0x04
34f01cc1 1594
72c1bbf3 1595static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1596
dd973998
DH
1597/**
1598 * fixup_owner() - Post lock pi_state and corner case management
1599 * @uaddr: user address of the futex
1600 * @fshared: whether the futex is shared (1) or not (0)
1601 * @q: futex_q (contains pi_state and access to the rt_mutex)
1602 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1603 *
1604 * After attempting to lock an rt_mutex, this function is called to cleanup
1605 * the pi_state owner as well as handle race conditions that may allow us to
1606 * acquire the lock. Must be called with the hb lock held.
1607 *
1608 * Returns:
1609 * 1 - success, lock taken
1610 * 0 - success, lock not taken
1611 * <0 - on error (-EFAULT)
1612 */
1613static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1614 int locked)
1615{
1616 struct task_struct *owner;
1617 int ret = 0;
1618
1619 if (locked) {
1620 /*
1621 * Got the lock. We might not be the anticipated owner if we
1622 * did a lock-steal - fix up the PI-state in that case:
1623 */
1624 if (q->pi_state->owner != current)
1625 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1626 goto out;
1627 }
1628
1629 /*
1630 * Catch the rare case, where the lock was released when we were on the
1631 * way back before we locked the hash bucket.
1632 */
1633 if (q->pi_state->owner == current) {
1634 /*
1635 * Try to get the rt_mutex now. This might fail as some other
1636 * task acquired the rt_mutex after we removed ourself from the
1637 * rt_mutex waiters list.
1638 */
1639 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1640 locked = 1;
1641 goto out;
1642 }
1643
1644 /*
1645 * pi_state is incorrect, some other task did a lock steal and
1646 * we returned due to timeout or signal without taking the
1647 * rt_mutex. Too late. We can access the rt_mutex_owner without
1648 * locking, as the other task is now blocked on the hash bucket
1649 * lock. Fix the state up.
1650 */
1651 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1652 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1653 goto out;
1654 }
1655
1656 /*
1657 * Paranoia check. If we did not take the lock, then we should not be
1658 * the owner, nor the pending owner, of the rt_mutex.
1659 */
1660 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1661 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1662 "pi-state %p\n", ret,
1663 q->pi_state->pi_mutex.owner,
1664 q->pi_state->owner);
1665
1666out:
1667 return ret ? ret : locked;
1668}
1669
ca5f9524
DH
1670/**
1671 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1672 * @hb: the futex hash bucket, must be locked by the caller
1673 * @q: the futex_q to queue up on
1674 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1675 */
1676static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1677 struct hrtimer_sleeper *timeout)
ca5f9524 1678{
9beba3c5
DH
1679 /*
1680 * The task state is guaranteed to be set before another task can
1681 * wake it. set_current_state() is implemented using set_mb() and
1682 * queue_me() calls spin_unlock() upon completion, both serializing
1683 * access to the hash list and forcing another memory barrier.
1684 */
f1a11e05 1685 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1686 queue_me(q, hb);
ca5f9524
DH
1687
1688 /* Arm the timer */
1689 if (timeout) {
1690 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1691 if (!hrtimer_active(&timeout->timer))
1692 timeout->task = NULL;
1693 }
1694
1695 /*
0729e196
DH
1696 * If we have been removed from the hash list, then another task
1697 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1698 */
1699 if (likely(!plist_node_empty(&q->list))) {
1700 /*
1701 * If the timer has already expired, current will already be
1702 * flagged for rescheduling. Only call schedule if there
1703 * is no timeout, or if it has yet to expire.
1704 */
1705 if (!timeout || timeout->task)
1706 schedule();
1707 }
1708 __set_current_state(TASK_RUNNING);
1709}
1710
f801073f
DH
1711/**
1712 * futex_wait_setup() - Prepare to wait on a futex
1713 * @uaddr: the futex userspace address
1714 * @val: the expected value
1715 * @fshared: whether the futex is shared (1) or not (0)
1716 * @q: the associated futex_q
1717 * @hb: storage for hash_bucket pointer to be returned to caller
1718 *
1719 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1720 * compare it with the expected value. Handle atomic faults internally.
1721 * Return with the hb lock held and a q.key reference on success, and unlocked
1722 * with no q.key reference on failure.
1723 *
1724 * Returns:
1725 * 0 - uaddr contains val and hb has been locked
1726 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1727 */
1728static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1729 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1730{
e2970f2f
IM
1731 u32 uval;
1732 int ret;
1da177e4 1733
1da177e4 1734 /*
b2d0994b 1735 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1736 * Order is important:
1737 *
1738 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1739 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1740 *
1741 * The basic logical guarantee of a futex is that it blocks ONLY
1742 * if cond(var) is known to be true at the time of blocking, for
1743 * any cond. If we queued after testing *uaddr, that would open
1744 * a race condition where we could block indefinitely with
1745 * cond(var) false, which would violate the guarantee.
1746 *
1747 * A consequence is that futex_wait() can return zero and absorb
1748 * a wakeup when *uaddr != val on entry to the syscall. This is
1749 * rare, but normal.
1da177e4 1750 */
f801073f
DH
1751retry:
1752 q->key = FUTEX_KEY_INIT;
7485d0d3 1753 ret = get_futex_key(uaddr, fshared, &q->key);
f801073f 1754 if (unlikely(ret != 0))
a5a2a0c7 1755 return ret;
f801073f
DH
1756
1757retry_private:
1758 *hb = queue_lock(q);
1759
e2970f2f 1760 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1761
f801073f
DH
1762 if (ret) {
1763 queue_unlock(q, *hb);
1da177e4 1764
e2970f2f 1765 ret = get_user(uval, uaddr);
e4dc5b7a 1766 if (ret)
f801073f 1767 goto out;
1da177e4 1768
e4dc5b7a
DH
1769 if (!fshared)
1770 goto retry_private;
1771
f801073f 1772 put_futex_key(fshared, &q->key);
e4dc5b7a 1773 goto retry;
1da177e4 1774 }
ca5f9524 1775
f801073f
DH
1776 if (uval != val) {
1777 queue_unlock(q, *hb);
1778 ret = -EWOULDBLOCK;
2fff78c7 1779 }
1da177e4 1780
f801073f
DH
1781out:
1782 if (ret)
1783 put_futex_key(fshared, &q->key);
1784 return ret;
1785}
1786
1787static int futex_wait(u32 __user *uaddr, int fshared,
1788 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1789{
1790 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1791 struct restart_block *restart;
1792 struct futex_hash_bucket *hb;
1793 struct futex_q q;
1794 int ret;
1795
1796 if (!bitset)
1797 return -EINVAL;
1798
1799 q.pi_state = NULL;
1800 q.bitset = bitset;
52400ba9 1801 q.rt_waiter = NULL;
84bc4af5 1802 q.requeue_pi_key = NULL;
f801073f
DH
1803
1804 if (abs_time) {
1805 to = &timeout;
1806
1807 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1808 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1809 hrtimer_init_sleeper(to, current);
1810 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1811 current->timer_slack_ns);
1812 }
1813
d58e6576 1814retry:
f801073f
DH
1815 /* Prepare to wait on uaddr. */
1816 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1817 if (ret)
1818 goto out;
1819
ca5f9524 1820 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1821 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1822
1823 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1824 ret = 0;
1da177e4 1825 if (!unqueue_me(&q))
2fff78c7
PZ
1826 goto out_put_key;
1827 ret = -ETIMEDOUT;
ca5f9524 1828 if (to && !to->task)
2fff78c7 1829 goto out_put_key;
72c1bbf3 1830
e2970f2f 1831 /*
d58e6576
TG
1832 * We expect signal_pending(current), but we might be the
1833 * victim of a spurious wakeup as well.
e2970f2f 1834 */
d58e6576
TG
1835 if (!signal_pending(current)) {
1836 put_futex_key(fshared, &q.key);
1837 goto retry;
1838 }
1839
2fff78c7 1840 ret = -ERESTARTSYS;
c19384b5 1841 if (!abs_time)
2fff78c7 1842 goto out_put_key;
1da177e4 1843
2fff78c7
PZ
1844 restart = &current_thread_info()->restart_block;
1845 restart->fn = futex_wait_restart;
1846 restart->futex.uaddr = (u32 *)uaddr;
1847 restart->futex.val = val;
1848 restart->futex.time = abs_time->tv64;
1849 restart->futex.bitset = bitset;
a72188d8 1850 restart->futex.flags = FLAGS_HAS_TIMEOUT;
2fff78c7
PZ
1851
1852 if (fshared)
1853 restart->futex.flags |= FLAGS_SHARED;
1854 if (clockrt)
1855 restart->futex.flags |= FLAGS_CLOCKRT;
42d35d48 1856
2fff78c7
PZ
1857 ret = -ERESTART_RESTARTBLOCK;
1858
1859out_put_key:
1860 put_futex_key(fshared, &q.key);
42d35d48 1861out:
ca5f9524
DH
1862 if (to) {
1863 hrtimer_cancel(&to->timer);
1864 destroy_hrtimer_on_stack(&to->timer);
1865 }
c87e2837
IM
1866 return ret;
1867}
1868
72c1bbf3
NP
1869
1870static long futex_wait_restart(struct restart_block *restart)
1871{
ce6bd420 1872 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
c2f9f201 1873 int fshared = 0;
a72188d8 1874 ktime_t t, *tp = NULL;
72c1bbf3 1875
a72188d8
DH
1876 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1877 t.tv64 = restart->futex.time;
1878 tp = &t;
1879 }
72c1bbf3 1880 restart->fn = do_no_restart_syscall;
ce6bd420 1881 if (restart->futex.flags & FLAGS_SHARED)
c2f9f201 1882 fshared = 1;
a72188d8 1883 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1acdac10
TG
1884 restart->futex.bitset,
1885 restart->futex.flags & FLAGS_CLOCKRT);
72c1bbf3
NP
1886}
1887
1888
c87e2837
IM
1889/*
1890 * Userspace tried a 0 -> TID atomic transition of the futex value
1891 * and failed. The kernel side here does the whole locking operation:
1892 * if there are waiters then it will block, it does PI, etc. (Due to
1893 * races the kernel might see a 0 value of the futex too.)
1894 */
c2f9f201 1895static int futex_lock_pi(u32 __user *uaddr, int fshared,
34f01cc1 1896 int detect, ktime_t *time, int trylock)
c87e2837 1897{
c5780e97 1898 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1899 struct futex_hash_bucket *hb;
c87e2837 1900 struct futex_q q;
dd973998 1901 int res, ret;
c87e2837
IM
1902
1903 if (refill_pi_state_cache())
1904 return -ENOMEM;
1905
c19384b5 1906 if (time) {
c5780e97 1907 to = &timeout;
237fc6e7
TG
1908 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1909 HRTIMER_MODE_ABS);
c5780e97 1910 hrtimer_init_sleeper(to, current);
cc584b21 1911 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1912 }
1913
c87e2837 1914 q.pi_state = NULL;
52400ba9 1915 q.rt_waiter = NULL;
84bc4af5 1916 q.requeue_pi_key = NULL;
42d35d48 1917retry:
38d47c1b 1918 q.key = FUTEX_KEY_INIT;
7485d0d3 1919 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837 1920 if (unlikely(ret != 0))
42d35d48 1921 goto out;
c87e2837 1922
e4dc5b7a 1923retry_private:
82af7aca 1924 hb = queue_lock(&q);
c87e2837 1925
bab5bc9e 1926 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 1927 if (unlikely(ret)) {
778e9a9c 1928 switch (ret) {
1a52084d
DH
1929 case 1:
1930 /* We got the lock. */
1931 ret = 0;
1932 goto out_unlock_put_key;
1933 case -EFAULT:
1934 goto uaddr_faulted;
778e9a9c
AK
1935 case -EAGAIN:
1936 /*
1937 * Task is exiting and we just wait for the
1938 * exit to complete.
1939 */
1940 queue_unlock(&q, hb);
de87fcc1 1941 put_futex_key(fshared, &q.key);
778e9a9c
AK
1942 cond_resched();
1943 goto retry;
778e9a9c 1944 default:
42d35d48 1945 goto out_unlock_put_key;
c87e2837 1946 }
c87e2837
IM
1947 }
1948
1949 /*
1950 * Only actually queue now that the atomic ops are done:
1951 */
82af7aca 1952 queue_me(&q, hb);
c87e2837 1953
c87e2837
IM
1954 WARN_ON(!q.pi_state);
1955 /*
1956 * Block on the PI mutex:
1957 */
1958 if (!trylock)
1959 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1960 else {
1961 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1962 /* Fixup the trylock return value: */
1963 ret = ret ? 0 : -EWOULDBLOCK;
1964 }
1965
a99e4e41 1966 spin_lock(q.lock_ptr);
dd973998
DH
1967 /*
1968 * Fixup the pi_state owner and possibly acquire the lock if we
1969 * haven't already.
1970 */
1971 res = fixup_owner(uaddr, fshared, &q, !ret);
1972 /*
1973 * If fixup_owner() returned an error, proprogate that. If it acquired
1974 * the lock, clear our -ETIMEDOUT or -EINTR.
1975 */
1976 if (res)
1977 ret = (res < 0) ? res : 0;
c87e2837 1978
e8f6386c 1979 /*
dd973998
DH
1980 * If fixup_owner() faulted and was unable to handle the fault, unlock
1981 * it and return the fault to userspace.
e8f6386c
DH
1982 */
1983 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1984 rt_mutex_unlock(&q.pi_state->pi_mutex);
1985
778e9a9c
AK
1986 /* Unqueue and drop the lock */
1987 unqueue_me_pi(&q);
c87e2837 1988
5ecb01cf 1989 goto out_put_key;
c87e2837 1990
42d35d48 1991out_unlock_put_key:
c87e2837
IM
1992 queue_unlock(&q, hb);
1993
42d35d48 1994out_put_key:
38d47c1b 1995 put_futex_key(fshared, &q.key);
42d35d48 1996out:
237fc6e7
TG
1997 if (to)
1998 destroy_hrtimer_on_stack(&to->timer);
dd973998 1999 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2000
42d35d48 2001uaddr_faulted:
778e9a9c
AK
2002 queue_unlock(&q, hb);
2003
d0725992 2004 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2005 if (ret)
2006 goto out_put_key;
c87e2837 2007
e4dc5b7a
DH
2008 if (!fshared)
2009 goto retry_private;
2010
2011 put_futex_key(fshared, &q.key);
2012 goto retry;
c87e2837
IM
2013}
2014
c87e2837
IM
2015/*
2016 * Userspace attempted a TID -> 0 atomic transition, and failed.
2017 * This is the in-kernel slowpath: we look up the PI state (if any),
2018 * and do the rt-mutex unlock.
2019 */
c2f9f201 2020static int futex_unlock_pi(u32 __user *uaddr, int fshared)
c87e2837
IM
2021{
2022 struct futex_hash_bucket *hb;
2023 struct futex_q *this, *next;
2024 u32 uval;
ec92d082 2025 struct plist_head *head;
38d47c1b 2026 union futex_key key = FUTEX_KEY_INIT;
e4dc5b7a 2027 int ret;
c87e2837
IM
2028
2029retry:
2030 if (get_user(uval, uaddr))
2031 return -EFAULT;
2032 /*
2033 * We release only a lock we actually own:
2034 */
b488893a 2035 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 2036 return -EPERM;
c87e2837 2037
7485d0d3 2038 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
2039 if (unlikely(ret != 0))
2040 goto out;
2041
2042 hb = hash_futex(&key);
2043 spin_lock(&hb->lock);
2044
c87e2837
IM
2045 /*
2046 * To avoid races, try to do the TID -> 0 atomic transition
2047 * again. If it succeeds then we can return without waking
2048 * anyone else up:
2049 */
36cf3b5c 2050 if (!(uval & FUTEX_OWNER_DIED))
b488893a 2051 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 2052
c87e2837
IM
2053
2054 if (unlikely(uval == -EFAULT))
2055 goto pi_faulted;
2056 /*
2057 * Rare case: we managed to release the lock atomically,
2058 * no need to wake anyone else up:
2059 */
b488893a 2060 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
2061 goto out_unlock;
2062
2063 /*
2064 * Ok, other tasks may need to be woken up - check waiters
2065 * and do the wakeup if necessary:
2066 */
2067 head = &hb->chain;
2068
ec92d082 2069 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2070 if (!match_futex (&this->key, &key))
2071 continue;
2072 ret = wake_futex_pi(uaddr, uval, this);
2073 /*
2074 * The atomic access to the futex value
2075 * generated a pagefault, so retry the
2076 * user-access and the wakeup:
2077 */
2078 if (ret == -EFAULT)
2079 goto pi_faulted;
2080 goto out_unlock;
2081 }
2082 /*
2083 * No waiters - kernel unlocks the futex:
2084 */
e3f2ddea
IM
2085 if (!(uval & FUTEX_OWNER_DIED)) {
2086 ret = unlock_futex_pi(uaddr, uval);
2087 if (ret == -EFAULT)
2088 goto pi_faulted;
2089 }
c87e2837
IM
2090
2091out_unlock:
2092 spin_unlock(&hb->lock);
38d47c1b 2093 put_futex_key(fshared, &key);
c87e2837 2094
42d35d48 2095out:
c87e2837
IM
2096 return ret;
2097
2098pi_faulted:
778e9a9c 2099 spin_unlock(&hb->lock);
e4dc5b7a 2100 put_futex_key(fshared, &key);
c87e2837 2101
d0725992 2102 ret = fault_in_user_writeable(uaddr);
b5686363 2103 if (!ret)
c87e2837
IM
2104 goto retry;
2105
1da177e4
LT
2106 return ret;
2107}
2108
52400ba9
DH
2109/**
2110 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2111 * @hb: the hash_bucket futex_q was original enqueued on
2112 * @q: the futex_q woken while waiting to be requeued
2113 * @key2: the futex_key of the requeue target futex
2114 * @timeout: the timeout associated with the wait (NULL if none)
2115 *
2116 * Detect if the task was woken on the initial futex as opposed to the requeue
2117 * target futex. If so, determine if it was a timeout or a signal that caused
2118 * the wakeup and return the appropriate error code to the caller. Must be
2119 * called with the hb lock held.
2120 *
2121 * Returns
2122 * 0 - no early wakeup detected
1c840c14 2123 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2124 */
2125static inline
2126int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2127 struct futex_q *q, union futex_key *key2,
2128 struct hrtimer_sleeper *timeout)
2129{
2130 int ret = 0;
2131
2132 /*
2133 * With the hb lock held, we avoid races while we process the wakeup.
2134 * We only need to hold hb (and not hb2) to ensure atomicity as the
2135 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2136 * It can't be requeued from uaddr2 to something else since we don't
2137 * support a PI aware source futex for requeue.
2138 */
2139 if (!match_futex(&q->key, key2)) {
2140 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2141 /*
2142 * We were woken prior to requeue by a timeout or a signal.
2143 * Unqueue the futex_q and determine which it was.
2144 */
2145 plist_del(&q->list, &q->list.plist);
52400ba9 2146
d58e6576 2147 /* Handle spurious wakeups gracefully */
11df6ddd 2148 ret = -EWOULDBLOCK;
52400ba9
DH
2149 if (timeout && !timeout->task)
2150 ret = -ETIMEDOUT;
d58e6576 2151 else if (signal_pending(current))
1c840c14 2152 ret = -ERESTARTNOINTR;
52400ba9
DH
2153 }
2154 return ret;
2155}
2156
2157/**
2158 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2159 * @uaddr: the futex we initially wait on (non-pi)
52400ba9
DH
2160 * @fshared: whether the futexes are shared (1) or not (0). They must be
2161 * the same type, no requeueing from private to shared, etc.
2162 * @val: the expected value of uaddr
2163 * @abs_time: absolute timeout
56ec1607 2164 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2165 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2166 * @uaddr2: the pi futex we will take prior to returning to user-space
2167 *
2168 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2169 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2170 * complete the acquisition of the rt_mutex prior to returning to userspace.
2171 * This ensures the rt_mutex maintains an owner when it has waiters; without
2172 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2173 * need to.
2174 *
2175 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2176 * via the following:
2177 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2178 * 2) wakeup on uaddr2 after a requeue
2179 * 3) signal
2180 * 4) timeout
52400ba9 2181 *
cc6db4e6 2182 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2183 *
2184 * If 2, we may then block on trying to take the rt_mutex and return via:
2185 * 5) successful lock
2186 * 6) signal
2187 * 7) timeout
2188 * 8) other lock acquisition failure
2189 *
cc6db4e6 2190 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2191 *
2192 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2193 *
2194 * Returns:
2195 * 0 - On success
2196 * <0 - On error
2197 */
2198static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2199 u32 val, ktime_t *abs_time, u32 bitset,
2200 int clockrt, u32 __user *uaddr2)
2201{
2202 struct hrtimer_sleeper timeout, *to = NULL;
2203 struct rt_mutex_waiter rt_waiter;
2204 struct rt_mutex *pi_mutex = NULL;
52400ba9
DH
2205 struct futex_hash_bucket *hb;
2206 union futex_key key2;
2207 struct futex_q q;
2208 int res, ret;
52400ba9
DH
2209
2210 if (!bitset)
2211 return -EINVAL;
2212
2213 if (abs_time) {
2214 to = &timeout;
2215 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2216 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2217 hrtimer_init_sleeper(to, current);
2218 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2219 current->timer_slack_ns);
2220 }
2221
2222 /*
2223 * The waiter is allocated on our stack, manipulated by the requeue
2224 * code while we sleep on uaddr.
2225 */
2226 debug_rt_mutex_init_waiter(&rt_waiter);
2227 rt_waiter.task = NULL;
2228
52400ba9 2229 key2 = FUTEX_KEY_INIT;
7485d0d3 2230 ret = get_futex_key(uaddr2, fshared, &key2);
52400ba9
DH
2231 if (unlikely(ret != 0))
2232 goto out;
2233
84bc4af5
DH
2234 q.pi_state = NULL;
2235 q.bitset = bitset;
2236 q.rt_waiter = &rt_waiter;
2237 q.requeue_pi_key = &key2;
2238
52400ba9
DH
2239 /* Prepare to wait on uaddr. */
2240 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
c8b15a70
TG
2241 if (ret)
2242 goto out_key2;
52400ba9
DH
2243
2244 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2245 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2246
2247 spin_lock(&hb->lock);
2248 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2249 spin_unlock(&hb->lock);
2250 if (ret)
2251 goto out_put_keys;
2252
2253 /*
2254 * In order for us to be here, we know our q.key == key2, and since
2255 * we took the hb->lock above, we also know that futex_requeue() has
2256 * completed and we no longer have to concern ourselves with a wakeup
2257 * race with the atomic proxy lock acquition by the requeue code.
2258 */
2259
2260 /* Check if the requeue code acquired the second futex for us. */
2261 if (!q.rt_waiter) {
2262 /*
2263 * Got the lock. We might not be the anticipated owner if we
2264 * did a lock-steal - fix up the PI-state in that case.
2265 */
2266 if (q.pi_state && (q.pi_state->owner != current)) {
2267 spin_lock(q.lock_ptr);
2268 ret = fixup_pi_state_owner(uaddr2, &q, current,
2269 fshared);
2270 spin_unlock(q.lock_ptr);
2271 }
2272 } else {
2273 /*
2274 * We have been woken up by futex_unlock_pi(), a timeout, or a
2275 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2276 * the pi_state.
2277 */
2278 WARN_ON(!&q.pi_state);
2279 pi_mutex = &q.pi_state->pi_mutex;
2280 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2281 debug_rt_mutex_free_waiter(&rt_waiter);
2282
2283 spin_lock(q.lock_ptr);
2284 /*
2285 * Fixup the pi_state owner and possibly acquire the lock if we
2286 * haven't already.
2287 */
2288 res = fixup_owner(uaddr2, fshared, &q, !ret);
2289 /*
2290 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2291 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2292 */
2293 if (res)
2294 ret = (res < 0) ? res : 0;
2295
2296 /* Unqueue and drop the lock. */
2297 unqueue_me_pi(&q);
2298 }
2299
2300 /*
2301 * If fixup_pi_state_owner() faulted and was unable to handle the
2302 * fault, unlock the rt_mutex and return the fault to userspace.
2303 */
2304 if (ret == -EFAULT) {
2305 if (rt_mutex_owner(pi_mutex) == current)
2306 rt_mutex_unlock(pi_mutex);
2307 } else if (ret == -EINTR) {
52400ba9 2308 /*
cc6db4e6
DH
2309 * We've already been requeued, but cannot restart by calling
2310 * futex_lock_pi() directly. We could restart this syscall, but
2311 * it would detect that the user space "val" changed and return
2312 * -EWOULDBLOCK. Save the overhead of the restart and return
2313 * -EWOULDBLOCK directly.
52400ba9 2314 */
2070887f 2315 ret = -EWOULDBLOCK;
52400ba9
DH
2316 }
2317
2318out_put_keys:
2319 put_futex_key(fshared, &q.key);
c8b15a70 2320out_key2:
52400ba9
DH
2321 put_futex_key(fshared, &key2);
2322
2323out:
2324 if (to) {
2325 hrtimer_cancel(&to->timer);
2326 destroy_hrtimer_on_stack(&to->timer);
2327 }
2328 return ret;
2329}
2330
0771dfef
IM
2331/*
2332 * Support for robust futexes: the kernel cleans up held futexes at
2333 * thread exit time.
2334 *
2335 * Implementation: user-space maintains a per-thread list of locks it
2336 * is holding. Upon do_exit(), the kernel carefully walks this list,
2337 * and marks all locks that are owned by this thread with the
c87e2837 2338 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2339 * always manipulated with the lock held, so the list is private and
2340 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2341 * field, to allow the kernel to clean up if the thread dies after
2342 * acquiring the lock, but just before it could have added itself to
2343 * the list. There can only be one such pending lock.
2344 */
2345
2346/**
d96ee56c
DH
2347 * sys_set_robust_list() - Set the robust-futex list head of a task
2348 * @head: pointer to the list-head
2349 * @len: length of the list-head, as userspace expects
0771dfef 2350 */
836f92ad
HC
2351SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2352 size_t, len)
0771dfef 2353{
a0c1e907
TG
2354 if (!futex_cmpxchg_enabled)
2355 return -ENOSYS;
0771dfef
IM
2356 /*
2357 * The kernel knows only one size for now:
2358 */
2359 if (unlikely(len != sizeof(*head)))
2360 return -EINVAL;
2361
2362 current->robust_list = head;
2363
2364 return 0;
2365}
2366
2367/**
d96ee56c
DH
2368 * sys_get_robust_list() - Get the robust-futex list head of a task
2369 * @pid: pid of the process [zero for current task]
2370 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2371 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2372 */
836f92ad
HC
2373SYSCALL_DEFINE3(get_robust_list, int, pid,
2374 struct robust_list_head __user * __user *, head_ptr,
2375 size_t __user *, len_ptr)
0771dfef 2376{
ba46df98 2377 struct robust_list_head __user *head;
0771dfef 2378 unsigned long ret;
c69e8d9c 2379 const struct cred *cred = current_cred(), *pcred;
0771dfef 2380
a0c1e907
TG
2381 if (!futex_cmpxchg_enabled)
2382 return -ENOSYS;
2383
0771dfef
IM
2384 if (!pid)
2385 head = current->robust_list;
2386 else {
2387 struct task_struct *p;
2388
2389 ret = -ESRCH;
aaa2a97e 2390 rcu_read_lock();
228ebcbe 2391 p = find_task_by_vpid(pid);
0771dfef
IM
2392 if (!p)
2393 goto err_unlock;
2394 ret = -EPERM;
c69e8d9c
DH
2395 pcred = __task_cred(p);
2396 if (cred->euid != pcred->euid &&
2397 cred->euid != pcred->uid &&
76aac0e9 2398 !capable(CAP_SYS_PTRACE))
0771dfef
IM
2399 goto err_unlock;
2400 head = p->robust_list;
aaa2a97e 2401 rcu_read_unlock();
0771dfef
IM
2402 }
2403
2404 if (put_user(sizeof(*head), len_ptr))
2405 return -EFAULT;
2406 return put_user(head, head_ptr);
2407
2408err_unlock:
aaa2a97e 2409 rcu_read_unlock();
0771dfef
IM
2410
2411 return ret;
2412}
2413
2414/*
2415 * Process a futex-list entry, check whether it's owned by the
2416 * dying task, and do notification if so:
2417 */
e3f2ddea 2418int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2419{
e3f2ddea 2420 u32 uval, nval, mval;
0771dfef 2421
8f17d3a5
IM
2422retry:
2423 if (get_user(uval, uaddr))
0771dfef
IM
2424 return -1;
2425
b488893a 2426 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2427 /*
2428 * Ok, this dying thread is truly holding a futex
2429 * of interest. Set the OWNER_DIED bit atomically
2430 * via cmpxchg, and if the value had FUTEX_WAITERS
2431 * set, wake up a waiter (if any). (We have to do a
2432 * futex_wake() even if OWNER_DIED is already set -
2433 * to handle the rare but possible case of recursive
2434 * thread-death.) The rest of the cleanup is done in
2435 * userspace.
2436 */
e3f2ddea
IM
2437 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2438 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2439
c87e2837
IM
2440 if (nval == -EFAULT)
2441 return -1;
2442
2443 if (nval != uval)
8f17d3a5 2444 goto retry;
0771dfef 2445
e3f2ddea
IM
2446 /*
2447 * Wake robust non-PI futexes here. The wakeup of
2448 * PI futexes happens in exit_pi_state():
2449 */
36cf3b5c 2450 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2451 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2452 }
2453 return 0;
2454}
2455
e3f2ddea
IM
2456/*
2457 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2458 */
2459static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 2460 struct robust_list __user * __user *head,
1dcc41bb 2461 unsigned int *pi)
e3f2ddea
IM
2462{
2463 unsigned long uentry;
2464
ba46df98 2465 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2466 return -EFAULT;
2467
ba46df98 2468 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2469 *pi = uentry & 1;
2470
2471 return 0;
2472}
2473
0771dfef
IM
2474/*
2475 * Walk curr->robust_list (very carefully, it's a userspace list!)
2476 * and mark any locks found there dead, and notify any waiters.
2477 *
2478 * We silently return on any sign of list-walking problem.
2479 */
2480void exit_robust_list(struct task_struct *curr)
2481{
2482 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
2483 struct robust_list __user *entry, *next_entry, *pending;
2484 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 2485 unsigned long futex_offset;
9f96cb1e 2486 int rc;
0771dfef 2487
a0c1e907
TG
2488 if (!futex_cmpxchg_enabled)
2489 return;
2490
0771dfef
IM
2491 /*
2492 * Fetch the list head (which was registered earlier, via
2493 * sys_set_robust_list()):
2494 */
e3f2ddea 2495 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2496 return;
2497 /*
2498 * Fetch the relative futex offset:
2499 */
2500 if (get_user(futex_offset, &head->futex_offset))
2501 return;
2502 /*
2503 * Fetch any possibly pending lock-add first, and handle it
2504 * if it exists:
2505 */
e3f2ddea 2506 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2507 return;
e3f2ddea 2508
9f96cb1e 2509 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2510 while (entry != &head->list) {
9f96cb1e
MS
2511 /*
2512 * Fetch the next entry in the list before calling
2513 * handle_futex_death:
2514 */
2515 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2516 /*
2517 * A pending lock might already be on the list, so
c87e2837 2518 * don't process it twice:
0771dfef
IM
2519 */
2520 if (entry != pending)
ba46df98 2521 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2522 curr, pi))
0771dfef 2523 return;
9f96cb1e 2524 if (rc)
0771dfef 2525 return;
9f96cb1e
MS
2526 entry = next_entry;
2527 pi = next_pi;
0771dfef
IM
2528 /*
2529 * Avoid excessively long or circular lists:
2530 */
2531 if (!--limit)
2532 break;
2533
2534 cond_resched();
2535 }
9f96cb1e
MS
2536
2537 if (pending)
2538 handle_futex_death((void __user *)pending + futex_offset,
2539 curr, pip);
0771dfef
IM
2540}
2541
c19384b5 2542long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2543 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2544{
1acdac10 2545 int clockrt, ret = -ENOSYS;
34f01cc1 2546 int cmd = op & FUTEX_CMD_MASK;
c2f9f201 2547 int fshared = 0;
34f01cc1
ED
2548
2549 if (!(op & FUTEX_PRIVATE_FLAG))
c2f9f201 2550 fshared = 1;
1da177e4 2551
1acdac10 2552 clockrt = op & FUTEX_CLOCK_REALTIME;
52400ba9 2553 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
1acdac10 2554 return -ENOSYS;
1da177e4 2555
34f01cc1 2556 switch (cmd) {
1da177e4 2557 case FUTEX_WAIT:
cd689985
TG
2558 val3 = FUTEX_BITSET_MATCH_ANY;
2559 case FUTEX_WAIT_BITSET:
1acdac10 2560 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1da177e4
LT
2561 break;
2562 case FUTEX_WAKE:
cd689985
TG
2563 val3 = FUTEX_BITSET_MATCH_ANY;
2564 case FUTEX_WAKE_BITSET:
2565 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 2566 break;
1da177e4 2567 case FUTEX_REQUEUE:
52400ba9 2568 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
1da177e4
LT
2569 break;
2570 case FUTEX_CMP_REQUEUE:
52400ba9
DH
2571 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2572 0);
1da177e4 2573 break;
4732efbe 2574 case FUTEX_WAKE_OP:
34f01cc1 2575 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 2576 break;
c87e2837 2577 case FUTEX_LOCK_PI:
a0c1e907
TG
2578 if (futex_cmpxchg_enabled)
2579 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
2580 break;
2581 case FUTEX_UNLOCK_PI:
a0c1e907
TG
2582 if (futex_cmpxchg_enabled)
2583 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
2584 break;
2585 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
2586 if (futex_cmpxchg_enabled)
2587 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 2588 break;
52400ba9
DH
2589 case FUTEX_WAIT_REQUEUE_PI:
2590 val3 = FUTEX_BITSET_MATCH_ANY;
2591 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2592 clockrt, uaddr2);
2593 break;
52400ba9
DH
2594 case FUTEX_CMP_REQUEUE_PI:
2595 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2596 1);
2597 break;
1da177e4
LT
2598 default:
2599 ret = -ENOSYS;
2600 }
2601 return ret;
2602}
2603
2604
17da2bd9
HC
2605SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2606 struct timespec __user *, utime, u32 __user *, uaddr2,
2607 u32, val3)
1da177e4 2608{
c19384b5
PP
2609 struct timespec ts;
2610 ktime_t t, *tp = NULL;
e2970f2f 2611 u32 val2 = 0;
34f01cc1 2612 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2613
cd689985 2614 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2615 cmd == FUTEX_WAIT_BITSET ||
2616 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2617 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2618 return -EFAULT;
c19384b5 2619 if (!timespec_valid(&ts))
9741ef96 2620 return -EINVAL;
c19384b5
PP
2621
2622 t = timespec_to_ktime(ts);
34f01cc1 2623 if (cmd == FUTEX_WAIT)
5a7780e7 2624 t = ktime_add_safe(ktime_get(), t);
c19384b5 2625 tp = &t;
1da177e4
LT
2626 }
2627 /*
52400ba9 2628 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2629 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2630 */
f54f0986 2631 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2632 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2633 val2 = (u32) (unsigned long) utime;
1da177e4 2634
c19384b5 2635 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2636}
2637
f6d107fb 2638static int __init futex_init(void)
1da177e4 2639{
a0c1e907 2640 u32 curval;
3e4ab747 2641 int i;
95362fa9 2642
a0c1e907
TG
2643 /*
2644 * This will fail and we want it. Some arch implementations do
2645 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2646 * functionality. We want to know that before we call in any
2647 * of the complex code paths. Also we want to prevent
2648 * registration of robust lists in that case. NULL is
2649 * guaranteed to fault and we get -EFAULT on functional
2650 * implementation, the non functional ones will return
2651 * -ENOSYS.
2652 */
2653 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2654 if (curval == -EFAULT)
2655 futex_cmpxchg_enabled = 1;
2656
3e4ab747
TG
2657 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2658 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2659 spin_lock_init(&futex_queues[i].lock);
2660 }
2661
1da177e4
LT
2662 return 0;
2663}
f6d107fb 2664__initcall(futex_init);