]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/futex.c
futex: add helper to find the top prio waiter of a futex
[net-next-2.6.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
1da177e4
LT
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43#include <linux/slab.h>
44#include <linux/poll.h>
45#include <linux/fs.h>
46#include <linux/file.h>
47#include <linux/jhash.h>
48#include <linux/init.h>
49#include <linux/futex.h>
50#include <linux/mount.h>
51#include <linux/pagemap.h>
52#include <linux/syscalls.h>
7ed20e1a 53#include <linux/signal.h>
9adef58b 54#include <linux/module.h>
fd5eea42 55#include <linux/magic.h>
b488893a
PE
56#include <linux/pid.h>
57#include <linux/nsproxy.h>
58
4732efbe 59#include <asm/futex.h>
1da177e4 60
c87e2837
IM
61#include "rtmutex_common.h"
62
a0c1e907
TG
63int __read_mostly futex_cmpxchg_enabled;
64
1da177e4
LT
65#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
c87e2837
IM
67/*
68 * Priority Inheritance state:
69 */
70struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86};
87
1da177e4
LT
88/*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4 94 * The order of wakup is always to make the first condition true, then
73500ac5 95 * wake up q->waiter, then make the second condition true.
1da177e4
LT
96 */
97struct futex_q {
ec92d082 98 struct plist_node list;
73500ac5
DH
99 /* There can only be a single waiter */
100 wait_queue_head_t waiter;
1da177e4 101
e2970f2f 102 /* Which hash list lock to use: */
1da177e4
LT
103 spinlock_t *lock_ptr;
104
e2970f2f 105 /* Key which the futex is hashed on: */
1da177e4
LT
106 union futex_key key;
107
c87e2837
IM
108 /* Optional priority inheritance state: */
109 struct futex_pi_state *pi_state;
110 struct task_struct *task;
cd689985
TG
111
112 /* Bitset for the optional bitmasked wakeup */
113 u32 bitset;
1da177e4
LT
114};
115
116/*
b2d0994b
DH
117 * Hash buckets are shared by all the futex_keys that hash to the same
118 * location. Each key may have multiple futex_q structures, one for each task
119 * waiting on a futex.
1da177e4
LT
120 */
121struct futex_hash_bucket {
ec92d082
PP
122 spinlock_t lock;
123 struct plist_head chain;
1da177e4
LT
124};
125
126static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
127
1da177e4
LT
128/*
129 * We hash on the keys returned from get_futex_key (see below).
130 */
131static struct futex_hash_bucket *hash_futex(union futex_key *key)
132{
133 u32 hash = jhash2((u32*)&key->both.word,
134 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
135 key->both.offset);
136 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
137}
138
139/*
140 * Return 1 if two futex_keys are equal, 0 otherwise.
141 */
142static inline int match_futex(union futex_key *key1, union futex_key *key2)
143{
144 return (key1->both.word == key2->both.word
145 && key1->both.ptr == key2->both.ptr
146 && key1->both.offset == key2->both.offset);
147}
148
38d47c1b
PZ
149/*
150 * Take a reference to the resource addressed by a key.
151 * Can be called while holding spinlocks.
152 *
153 */
154static void get_futex_key_refs(union futex_key *key)
155{
156 if (!key->both.ptr)
157 return;
158
159 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
160 case FUT_OFF_INODE:
161 atomic_inc(&key->shared.inode->i_count);
162 break;
163 case FUT_OFF_MMSHARED:
164 atomic_inc(&key->private.mm->mm_count);
165 break;
166 }
167}
168
169/*
170 * Drop a reference to the resource addressed by a key.
171 * The hash bucket spinlock must not be held.
172 */
173static void drop_futex_key_refs(union futex_key *key)
174{
90621c40
DH
175 if (!key->both.ptr) {
176 /* If we're here then we tried to put a key we failed to get */
177 WARN_ON_ONCE(1);
38d47c1b 178 return;
90621c40 179 }
38d47c1b
PZ
180
181 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
182 case FUT_OFF_INODE:
183 iput(key->shared.inode);
184 break;
185 case FUT_OFF_MMSHARED:
186 mmdrop(key->private.mm);
187 break;
188 }
189}
190
34f01cc1
ED
191/**
192 * get_futex_key - Get parameters which are the keys for a futex.
193 * @uaddr: virtual address of the futex
b2d0994b 194 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
34f01cc1
ED
195 * @key: address where result is stored.
196 *
197 * Returns a negative error code or 0
198 * The key words are stored in *key on success.
1da177e4 199 *
f3a43f3f 200 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
201 * offset_within_page). For private mappings, it's (uaddr, current->mm).
202 * We can usually work out the index without swapping in the page.
203 *
b2d0994b 204 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 205 */
c2f9f201 206static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
1da177e4 207{
e2970f2f 208 unsigned long address = (unsigned long)uaddr;
1da177e4 209 struct mm_struct *mm = current->mm;
1da177e4
LT
210 struct page *page;
211 int err;
212
213 /*
214 * The futex address must be "naturally" aligned.
215 */
e2970f2f 216 key->both.offset = address % PAGE_SIZE;
34f01cc1 217 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 218 return -EINVAL;
e2970f2f 219 address -= key->both.offset;
1da177e4 220
34f01cc1
ED
221 /*
222 * PROCESS_PRIVATE futexes are fast.
223 * As the mm cannot disappear under us and the 'key' only needs
224 * virtual address, we dont even have to find the underlying vma.
225 * Note : We do have to check 'uaddr' is a valid user address,
226 * but access_ok() should be faster than find_vma()
227 */
228 if (!fshared) {
229 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
230 return -EFAULT;
231 key->private.mm = mm;
232 key->private.address = address;
42569c39 233 get_futex_key_refs(key);
34f01cc1
ED
234 return 0;
235 }
1da177e4 236
38d47c1b 237again:
734b05b1 238 err = get_user_pages_fast(address, 1, 0, &page);
38d47c1b
PZ
239 if (err < 0)
240 return err;
241
242 lock_page(page);
243 if (!page->mapping) {
244 unlock_page(page);
245 put_page(page);
246 goto again;
247 }
1da177e4
LT
248
249 /*
250 * Private mappings are handled in a simple way.
251 *
252 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
253 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 254 * the object not the particular process.
1da177e4 255 */
38d47c1b
PZ
256 if (PageAnon(page)) {
257 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 258 key->private.mm = mm;
e2970f2f 259 key->private.address = address;
38d47c1b
PZ
260 } else {
261 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
262 key->shared.inode = page->mapping->host;
263 key->shared.pgoff = page->index;
1da177e4
LT
264 }
265
38d47c1b 266 get_futex_key_refs(key);
1da177e4 267
38d47c1b
PZ
268 unlock_page(page);
269 put_page(page);
270 return 0;
1da177e4
LT
271}
272
38d47c1b 273static inline
c2f9f201 274void put_futex_key(int fshared, union futex_key *key)
1da177e4 275{
38d47c1b 276 drop_futex_key_refs(key);
1da177e4
LT
277}
278
4b1c486b
DH
279/**
280 * futex_top_waiter() - Return the highest priority waiter on a futex
281 * @hb: the hash bucket the futex_q's reside in
282 * @key: the futex key (to distinguish it from other futex futex_q's)
283 *
284 * Must be called with the hb lock held.
285 */
286static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
287 union futex_key *key)
288{
289 struct futex_q *this;
290
291 plist_for_each_entry(this, &hb->chain, list) {
292 if (match_futex(&this->key, key))
293 return this;
294 }
295 return NULL;
296}
297
36cf3b5c
TG
298static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
299{
300 u32 curval;
301
302 pagefault_disable();
303 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
304 pagefault_enable();
305
306 return curval;
307}
308
309static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
310{
311 int ret;
312
a866374a 313 pagefault_disable();
e2970f2f 314 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 315 pagefault_enable();
1da177e4
LT
316
317 return ret ? -EFAULT : 0;
318}
319
c87e2837
IM
320
321/*
322 * PI code:
323 */
324static int refill_pi_state_cache(void)
325{
326 struct futex_pi_state *pi_state;
327
328 if (likely(current->pi_state_cache))
329 return 0;
330
4668edc3 331 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
332
333 if (!pi_state)
334 return -ENOMEM;
335
c87e2837
IM
336 INIT_LIST_HEAD(&pi_state->list);
337 /* pi_mutex gets initialized later */
338 pi_state->owner = NULL;
339 atomic_set(&pi_state->refcount, 1);
38d47c1b 340 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
341
342 current->pi_state_cache = pi_state;
343
344 return 0;
345}
346
347static struct futex_pi_state * alloc_pi_state(void)
348{
349 struct futex_pi_state *pi_state = current->pi_state_cache;
350
351 WARN_ON(!pi_state);
352 current->pi_state_cache = NULL;
353
354 return pi_state;
355}
356
357static void free_pi_state(struct futex_pi_state *pi_state)
358{
359 if (!atomic_dec_and_test(&pi_state->refcount))
360 return;
361
362 /*
363 * If pi_state->owner is NULL, the owner is most probably dying
364 * and has cleaned up the pi_state already
365 */
366 if (pi_state->owner) {
367 spin_lock_irq(&pi_state->owner->pi_lock);
368 list_del_init(&pi_state->list);
369 spin_unlock_irq(&pi_state->owner->pi_lock);
370
371 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
372 }
373
374 if (current->pi_state_cache)
375 kfree(pi_state);
376 else {
377 /*
378 * pi_state->list is already empty.
379 * clear pi_state->owner.
380 * refcount is at 0 - put it back to 1.
381 */
382 pi_state->owner = NULL;
383 atomic_set(&pi_state->refcount, 1);
384 current->pi_state_cache = pi_state;
385 }
386}
387
388/*
389 * Look up the task based on what TID userspace gave us.
390 * We dont trust it.
391 */
392static struct task_struct * futex_find_get_task(pid_t pid)
393{
394 struct task_struct *p;
c69e8d9c 395 const struct cred *cred = current_cred(), *pcred;
c87e2837 396
d359b549 397 rcu_read_lock();
228ebcbe 398 p = find_task_by_vpid(pid);
c69e8d9c 399 if (!p) {
a06381fe 400 p = ERR_PTR(-ESRCH);
c69e8d9c
DH
401 } else {
402 pcred = __task_cred(p);
403 if (cred->euid != pcred->euid &&
404 cred->euid != pcred->uid)
405 p = ERR_PTR(-ESRCH);
406 else
407 get_task_struct(p);
408 }
a06381fe 409
d359b549 410 rcu_read_unlock();
c87e2837
IM
411
412 return p;
413}
414
415/*
416 * This task is holding PI mutexes at exit time => bad.
417 * Kernel cleans up PI-state, but userspace is likely hosed.
418 * (Robust-futex cleanup is separate and might save the day for userspace.)
419 */
420void exit_pi_state_list(struct task_struct *curr)
421{
c87e2837
IM
422 struct list_head *next, *head = &curr->pi_state_list;
423 struct futex_pi_state *pi_state;
627371d7 424 struct futex_hash_bucket *hb;
38d47c1b 425 union futex_key key = FUTEX_KEY_INIT;
c87e2837 426
a0c1e907
TG
427 if (!futex_cmpxchg_enabled)
428 return;
c87e2837
IM
429 /*
430 * We are a ZOMBIE and nobody can enqueue itself on
431 * pi_state_list anymore, but we have to be careful
627371d7 432 * versus waiters unqueueing themselves:
c87e2837
IM
433 */
434 spin_lock_irq(&curr->pi_lock);
435 while (!list_empty(head)) {
436
437 next = head->next;
438 pi_state = list_entry(next, struct futex_pi_state, list);
439 key = pi_state->key;
627371d7 440 hb = hash_futex(&key);
c87e2837
IM
441 spin_unlock_irq(&curr->pi_lock);
442
c87e2837
IM
443 spin_lock(&hb->lock);
444
445 spin_lock_irq(&curr->pi_lock);
627371d7
IM
446 /*
447 * We dropped the pi-lock, so re-check whether this
448 * task still owns the PI-state:
449 */
c87e2837
IM
450 if (head->next != next) {
451 spin_unlock(&hb->lock);
452 continue;
453 }
454
c87e2837 455 WARN_ON(pi_state->owner != curr);
627371d7
IM
456 WARN_ON(list_empty(&pi_state->list));
457 list_del_init(&pi_state->list);
c87e2837
IM
458 pi_state->owner = NULL;
459 spin_unlock_irq(&curr->pi_lock);
460
461 rt_mutex_unlock(&pi_state->pi_mutex);
462
463 spin_unlock(&hb->lock);
464
465 spin_lock_irq(&curr->pi_lock);
466 }
467 spin_unlock_irq(&curr->pi_lock);
468}
469
470static int
d0aa7a70
PP
471lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
472 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
473{
474 struct futex_pi_state *pi_state = NULL;
475 struct futex_q *this, *next;
ec92d082 476 struct plist_head *head;
c87e2837 477 struct task_struct *p;
778e9a9c 478 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
479
480 head = &hb->chain;
481
ec92d082 482 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 483 if (match_futex(&this->key, key)) {
c87e2837
IM
484 /*
485 * Another waiter already exists - bump up
486 * the refcount and return its pi_state:
487 */
488 pi_state = this->pi_state;
06a9ec29
TG
489 /*
490 * Userspace might have messed up non PI and PI futexes
491 */
492 if (unlikely(!pi_state))
493 return -EINVAL;
494
627371d7 495 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
496 WARN_ON(pid && pi_state->owner &&
497 pi_state->owner->pid != pid);
627371d7 498
c87e2837 499 atomic_inc(&pi_state->refcount);
d0aa7a70 500 *ps = pi_state;
c87e2837
IM
501
502 return 0;
503 }
504 }
505
506 /*
e3f2ddea 507 * We are the first waiter - try to look up the real owner and attach
778e9a9c 508 * the new pi_state to it, but bail out when TID = 0
c87e2837 509 */
778e9a9c 510 if (!pid)
e3f2ddea 511 return -ESRCH;
c87e2837 512 p = futex_find_get_task(pid);
778e9a9c
AK
513 if (IS_ERR(p))
514 return PTR_ERR(p);
515
516 /*
517 * We need to look at the task state flags to figure out,
518 * whether the task is exiting. To protect against the do_exit
519 * change of the task flags, we do this protected by
520 * p->pi_lock:
521 */
522 spin_lock_irq(&p->pi_lock);
523 if (unlikely(p->flags & PF_EXITING)) {
524 /*
525 * The task is on the way out. When PF_EXITPIDONE is
526 * set, we know that the task has finished the
527 * cleanup:
528 */
529 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
530
531 spin_unlock_irq(&p->pi_lock);
532 put_task_struct(p);
533 return ret;
534 }
c87e2837
IM
535
536 pi_state = alloc_pi_state();
537
538 /*
539 * Initialize the pi_mutex in locked state and make 'p'
540 * the owner of it:
541 */
542 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
543
544 /* Store the key for possible exit cleanups: */
d0aa7a70 545 pi_state->key = *key;
c87e2837 546
627371d7 547 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
548 list_add(&pi_state->list, &p->pi_state_list);
549 pi_state->owner = p;
550 spin_unlock_irq(&p->pi_lock);
551
552 put_task_struct(p);
553
d0aa7a70 554 *ps = pi_state;
c87e2837
IM
555
556 return 0;
557}
558
1da177e4
LT
559/*
560 * The hash bucket lock must be held when this is called.
561 * Afterwards, the futex_q must not be accessed.
562 */
563static void wake_futex(struct futex_q *q)
564{
ec92d082 565 plist_del(&q->list, &q->list.plist);
1da177e4
LT
566 /*
567 * The lock in wake_up_all() is a crucial memory barrier after the
ec92d082 568 * plist_del() and also before assigning to q->lock_ptr.
1da177e4 569 */
73500ac5 570 wake_up(&q->waiter);
1da177e4
LT
571 /*
572 * The waiting task can free the futex_q as soon as this is written,
573 * without taking any locks. This must come last.
8e31108b 574 *
b2d0994b
DH
575 * A memory barrier is required here to prevent the following store to
576 * lock_ptr from getting ahead of the wakeup. Clearing the lock at the
577 * end of wake_up() does not prevent this store from moving.
1da177e4 578 */
ccdea2f8 579 smp_wmb();
1da177e4
LT
580 q->lock_ptr = NULL;
581}
582
c87e2837
IM
583static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
584{
585 struct task_struct *new_owner;
586 struct futex_pi_state *pi_state = this->pi_state;
587 u32 curval, newval;
588
589 if (!pi_state)
590 return -EINVAL;
591
21778867 592 spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
593 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
594
595 /*
596 * This happens when we have stolen the lock and the original
597 * pending owner did not enqueue itself back on the rt_mutex.
598 * Thats not a tragedy. We know that way, that a lock waiter
599 * is on the fly. We make the futex_q waiter the pending owner.
600 */
601 if (!new_owner)
602 new_owner = this->task;
603
604 /*
605 * We pass it to the next owner. (The WAITERS bit is always
606 * kept enabled while there is PI state around. We must also
607 * preserve the owner died bit.)
608 */
e3f2ddea 609 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
610 int ret = 0;
611
b488893a 612 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 613
36cf3b5c 614 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 615
e3f2ddea 616 if (curval == -EFAULT)
778e9a9c 617 ret = -EFAULT;
cde898fa 618 else if (curval != uval)
778e9a9c
AK
619 ret = -EINVAL;
620 if (ret) {
621 spin_unlock(&pi_state->pi_mutex.wait_lock);
622 return ret;
623 }
e3f2ddea 624 }
c87e2837 625
627371d7
IM
626 spin_lock_irq(&pi_state->owner->pi_lock);
627 WARN_ON(list_empty(&pi_state->list));
628 list_del_init(&pi_state->list);
629 spin_unlock_irq(&pi_state->owner->pi_lock);
630
631 spin_lock_irq(&new_owner->pi_lock);
632 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
633 list_add(&pi_state->list, &new_owner->pi_state_list);
634 pi_state->owner = new_owner;
627371d7
IM
635 spin_unlock_irq(&new_owner->pi_lock);
636
21778867 637 spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
638 rt_mutex_unlock(&pi_state->pi_mutex);
639
640 return 0;
641}
642
643static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
644{
645 u32 oldval;
646
647 /*
648 * There is no waiter, so we unlock the futex. The owner died
649 * bit has not to be preserved here. We are the owner:
650 */
36cf3b5c 651 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
652
653 if (oldval == -EFAULT)
654 return oldval;
655 if (oldval != uval)
656 return -EAGAIN;
657
658 return 0;
659}
660
8b8f319f
IM
661/*
662 * Express the locking dependencies for lockdep:
663 */
664static inline void
665double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
666{
667 if (hb1 <= hb2) {
668 spin_lock(&hb1->lock);
669 if (hb1 < hb2)
670 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
671 } else { /* hb1 > hb2 */
672 spin_lock(&hb2->lock);
673 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
674 }
675}
676
5eb3dc62
DH
677static inline void
678double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
679{
f061d351 680 spin_unlock(&hb1->lock);
88f502fe
IM
681 if (hb1 != hb2)
682 spin_unlock(&hb2->lock);
5eb3dc62
DH
683}
684
1da177e4 685/*
b2d0994b 686 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 687 */
c2f9f201 688static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
1da177e4 689{
e2970f2f 690 struct futex_hash_bucket *hb;
1da177e4 691 struct futex_q *this, *next;
ec92d082 692 struct plist_head *head;
38d47c1b 693 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
694 int ret;
695
cd689985
TG
696 if (!bitset)
697 return -EINVAL;
698
34f01cc1 699 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
700 if (unlikely(ret != 0))
701 goto out;
702
e2970f2f
IM
703 hb = hash_futex(&key);
704 spin_lock(&hb->lock);
705 head = &hb->chain;
1da177e4 706
ec92d082 707 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 708 if (match_futex (&this->key, &key)) {
ed6f7b10
IM
709 if (this->pi_state) {
710 ret = -EINVAL;
711 break;
712 }
cd689985
TG
713
714 /* Check if one of the bits is set in both bitsets */
715 if (!(this->bitset & bitset))
716 continue;
717
1da177e4
LT
718 wake_futex(this);
719 if (++ret >= nr_wake)
720 break;
721 }
722 }
723
e2970f2f 724 spin_unlock(&hb->lock);
38d47c1b 725 put_futex_key(fshared, &key);
42d35d48 726out:
1da177e4
LT
727 return ret;
728}
729
4732efbe
JJ
730/*
731 * Wake up all waiters hashed on the physical page that is mapped
732 * to this virtual address:
733 */
e2970f2f 734static int
c2f9f201 735futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 736 int nr_wake, int nr_wake2, int op)
4732efbe 737{
38d47c1b 738 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 739 struct futex_hash_bucket *hb1, *hb2;
ec92d082 740 struct plist_head *head;
4732efbe 741 struct futex_q *this, *next;
e4dc5b7a 742 int ret, op_ret;
4732efbe 743
e4dc5b7a 744retry:
34f01cc1 745 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
746 if (unlikely(ret != 0))
747 goto out;
34f01cc1 748 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe 749 if (unlikely(ret != 0))
42d35d48 750 goto out_put_key1;
4732efbe 751
e2970f2f
IM
752 hb1 = hash_futex(&key1);
753 hb2 = hash_futex(&key2);
4732efbe 754
8b8f319f 755 double_lock_hb(hb1, hb2);
e4dc5b7a 756retry_private:
e2970f2f 757 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 758 if (unlikely(op_ret < 0)) {
e2970f2f 759 u32 dummy;
4732efbe 760
5eb3dc62 761 double_unlock_hb(hb1, hb2);
4732efbe 762
7ee1dd3f 763#ifndef CONFIG_MMU
e2970f2f
IM
764 /*
765 * we don't get EFAULT from MMU faults if we don't have an MMU,
766 * but we might get them from range checking
767 */
7ee1dd3f 768 ret = op_ret;
42d35d48 769 goto out_put_keys;
7ee1dd3f
DH
770#endif
771
796f8d9b
DG
772 if (unlikely(op_ret != -EFAULT)) {
773 ret = op_ret;
42d35d48 774 goto out_put_keys;
796f8d9b
DG
775 }
776
e2970f2f 777 ret = get_user(dummy, uaddr2);
4732efbe 778 if (ret)
de87fcc1 779 goto out_put_keys;
4732efbe 780
e4dc5b7a
DH
781 if (!fshared)
782 goto retry_private;
783
de87fcc1
DH
784 put_futex_key(fshared, &key2);
785 put_futex_key(fshared, &key1);
e4dc5b7a 786 goto retry;
4732efbe
JJ
787 }
788
e2970f2f 789 head = &hb1->chain;
4732efbe 790
ec92d082 791 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
792 if (match_futex (&this->key, &key1)) {
793 wake_futex(this);
794 if (++ret >= nr_wake)
795 break;
796 }
797 }
798
799 if (op_ret > 0) {
e2970f2f 800 head = &hb2->chain;
4732efbe
JJ
801
802 op_ret = 0;
ec92d082 803 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
804 if (match_futex (&this->key, &key2)) {
805 wake_futex(this);
806 if (++op_ret >= nr_wake2)
807 break;
808 }
809 }
810 ret += op_ret;
811 }
812
5eb3dc62 813 double_unlock_hb(hb1, hb2);
42d35d48 814out_put_keys:
38d47c1b 815 put_futex_key(fshared, &key2);
42d35d48 816out_put_key1:
38d47c1b 817 put_futex_key(fshared, &key1);
42d35d48 818out:
4732efbe
JJ
819 return ret;
820}
821
1da177e4
LT
822/*
823 * Requeue all waiters hashed on one physical page to another
824 * physical page.
825 */
c2f9f201 826static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 827 int nr_wake, int nr_requeue, u32 *cmpval)
1da177e4 828{
38d47c1b 829 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 830 struct futex_hash_bucket *hb1, *hb2;
ec92d082 831 struct plist_head *head1;
1da177e4
LT
832 struct futex_q *this, *next;
833 int ret, drop_count = 0;
834
42d35d48 835retry:
34f01cc1 836 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
837 if (unlikely(ret != 0))
838 goto out;
34f01cc1 839 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4 840 if (unlikely(ret != 0))
42d35d48 841 goto out_put_key1;
1da177e4 842
e2970f2f
IM
843 hb1 = hash_futex(&key1);
844 hb2 = hash_futex(&key2);
1da177e4 845
e4dc5b7a 846retry_private:
8b8f319f 847 double_lock_hb(hb1, hb2);
1da177e4 848
e2970f2f
IM
849 if (likely(cmpval != NULL)) {
850 u32 curval;
1da177e4 851
e2970f2f 852 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
853
854 if (unlikely(ret)) {
5eb3dc62 855 double_unlock_hb(hb1, hb2);
1da177e4 856
e2970f2f 857 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
858 if (ret)
859 goto out_put_keys;
1da177e4 860
e4dc5b7a
DH
861 if (!fshared)
862 goto retry_private;
1da177e4 863
e4dc5b7a
DH
864 put_futex_key(fshared, &key2);
865 put_futex_key(fshared, &key1);
866 goto retry;
1da177e4 867 }
e2970f2f 868 if (curval != *cmpval) {
1da177e4
LT
869 ret = -EAGAIN;
870 goto out_unlock;
871 }
872 }
873
e2970f2f 874 head1 = &hb1->chain;
ec92d082 875 plist_for_each_entry_safe(this, next, head1, list) {
1da177e4
LT
876 if (!match_futex (&this->key, &key1))
877 continue;
878 if (++ret <= nr_wake) {
879 wake_futex(this);
880 } else {
59e0e0ac
SD
881 /*
882 * If key1 and key2 hash to the same bucket, no need to
883 * requeue.
884 */
885 if (likely(head1 != &hb2->chain)) {
ec92d082
PP
886 plist_del(&this->list, &hb1->chain);
887 plist_add(&this->list, &hb2->chain);
59e0e0ac 888 this->lock_ptr = &hb2->lock;
ec92d082
PP
889#ifdef CONFIG_DEBUG_PI_LIST
890 this->list.plist.lock = &hb2->lock;
891#endif
778e9a9c 892 }
1da177e4 893 this->key = key2;
9adef58b 894 get_futex_key_refs(&key2);
1da177e4
LT
895 drop_count++;
896
897 if (ret - nr_wake >= nr_requeue)
898 break;
1da177e4
LT
899 }
900 }
901
902out_unlock:
5eb3dc62 903 double_unlock_hb(hb1, hb2);
1da177e4 904
9adef58b 905 /* drop_futex_key_refs() must be called outside the spinlocks. */
1da177e4 906 while (--drop_count >= 0)
9adef58b 907 drop_futex_key_refs(&key1);
1da177e4 908
42d35d48 909out_put_keys:
38d47c1b 910 put_futex_key(fshared, &key2);
42d35d48 911out_put_key1:
38d47c1b 912 put_futex_key(fshared, &key1);
42d35d48 913out:
1da177e4
LT
914 return ret;
915}
916
917/* The key must be already stored in q->key. */
82af7aca 918static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 919{
e2970f2f 920 struct futex_hash_bucket *hb;
1da177e4 921
73500ac5 922 init_waitqueue_head(&q->waiter);
1da177e4 923
9adef58b 924 get_futex_key_refs(&q->key);
e2970f2f
IM
925 hb = hash_futex(&q->key);
926 q->lock_ptr = &hb->lock;
1da177e4 927
e2970f2f
IM
928 spin_lock(&hb->lock);
929 return hb;
1da177e4
LT
930}
931
82af7aca 932static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 933{
ec92d082
PP
934 int prio;
935
936 /*
937 * The priority used to register this element is
938 * - either the real thread-priority for the real-time threads
939 * (i.e. threads with a priority lower than MAX_RT_PRIO)
940 * - or MAX_RT_PRIO for non-RT threads.
941 * Thus, all RT-threads are woken first in priority order, and
942 * the others are woken last, in FIFO order.
943 */
944 prio = min(current->normal_prio, MAX_RT_PRIO);
945
946 plist_node_init(&q->list, prio);
947#ifdef CONFIG_DEBUG_PI_LIST
948 q->list.plist.lock = &hb->lock;
949#endif
950 plist_add(&q->list, &hb->chain);
c87e2837 951 q->task = current;
e2970f2f 952 spin_unlock(&hb->lock);
1da177e4
LT
953}
954
955static inline void
e2970f2f 956queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 957{
e2970f2f 958 spin_unlock(&hb->lock);
9adef58b 959 drop_futex_key_refs(&q->key);
1da177e4
LT
960}
961
962/*
963 * queue_me and unqueue_me must be called as a pair, each
964 * exactly once. They are called with the hashed spinlock held.
965 */
966
1da177e4
LT
967/* Return 1 if we were still queued (ie. 0 means we were woken) */
968static int unqueue_me(struct futex_q *q)
969{
1da177e4 970 spinlock_t *lock_ptr;
e2970f2f 971 int ret = 0;
1da177e4
LT
972
973 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 974retry:
1da177e4 975 lock_ptr = q->lock_ptr;
e91467ec 976 barrier();
c80544dc 977 if (lock_ptr != NULL) {
1da177e4
LT
978 spin_lock(lock_ptr);
979 /*
980 * q->lock_ptr can change between reading it and
981 * spin_lock(), causing us to take the wrong lock. This
982 * corrects the race condition.
983 *
984 * Reasoning goes like this: if we have the wrong lock,
985 * q->lock_ptr must have changed (maybe several times)
986 * between reading it and the spin_lock(). It can
987 * change again after the spin_lock() but only if it was
988 * already changed before the spin_lock(). It cannot,
989 * however, change back to the original value. Therefore
990 * we can detect whether we acquired the correct lock.
991 */
992 if (unlikely(lock_ptr != q->lock_ptr)) {
993 spin_unlock(lock_ptr);
994 goto retry;
995 }
ec92d082
PP
996 WARN_ON(plist_node_empty(&q->list));
997 plist_del(&q->list, &q->list.plist);
c87e2837
IM
998
999 BUG_ON(q->pi_state);
1000
1da177e4
LT
1001 spin_unlock(lock_ptr);
1002 ret = 1;
1003 }
1004
9adef58b 1005 drop_futex_key_refs(&q->key);
1da177e4
LT
1006 return ret;
1007}
1008
c87e2837
IM
1009/*
1010 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1011 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1012 * and dropped here.
c87e2837 1013 */
d0aa7a70 1014static void unqueue_me_pi(struct futex_q *q)
c87e2837 1015{
ec92d082
PP
1016 WARN_ON(plist_node_empty(&q->list));
1017 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1018
1019 BUG_ON(!q->pi_state);
1020 free_pi_state(q->pi_state);
1021 q->pi_state = NULL;
1022
d0aa7a70 1023 spin_unlock(q->lock_ptr);
c87e2837 1024
9adef58b 1025 drop_futex_key_refs(&q->key);
c87e2837
IM
1026}
1027
d0aa7a70 1028/*
cdf71a10 1029 * Fixup the pi_state owner with the new owner.
d0aa7a70 1030 *
778e9a9c
AK
1031 * Must be called with hash bucket lock held and mm->sem held for non
1032 * private futexes.
d0aa7a70 1033 */
778e9a9c 1034static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c2f9f201 1035 struct task_struct *newowner, int fshared)
d0aa7a70 1036{
cdf71a10 1037 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1038 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1039 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1040 u32 uval, curval, newval;
e4dc5b7a 1041 int ret;
d0aa7a70
PP
1042
1043 /* Owner died? */
1b7558e4
TG
1044 if (!pi_state->owner)
1045 newtid |= FUTEX_OWNER_DIED;
1046
1047 /*
1048 * We are here either because we stole the rtmutex from the
1049 * pending owner or we are the pending owner which failed to
1050 * get the rtmutex. We have to replace the pending owner TID
1051 * in the user space variable. This must be atomic as we have
1052 * to preserve the owner died bit here.
1053 *
b2d0994b
DH
1054 * Note: We write the user space value _before_ changing the pi_state
1055 * because we can fault here. Imagine swapped out pages or a fork
1056 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1057 *
1058 * Modifying pi_state _before_ the user space value would
1059 * leave the pi_state in an inconsistent state when we fault
1060 * here, because we need to drop the hash bucket lock to
1061 * handle the fault. This might be observed in the PID check
1062 * in lookup_pi_state.
1063 */
1064retry:
1065 if (get_futex_value_locked(&uval, uaddr))
1066 goto handle_fault;
1067
1068 while (1) {
1069 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1070
1071 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1072
1073 if (curval == -EFAULT)
1074 goto handle_fault;
1075 if (curval == uval)
1076 break;
1077 uval = curval;
1078 }
1079
1080 /*
1081 * We fixed up user space. Now we need to fix the pi_state
1082 * itself.
1083 */
d0aa7a70
PP
1084 if (pi_state->owner != NULL) {
1085 spin_lock_irq(&pi_state->owner->pi_lock);
1086 WARN_ON(list_empty(&pi_state->list));
1087 list_del_init(&pi_state->list);
1088 spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1089 }
d0aa7a70 1090
cdf71a10 1091 pi_state->owner = newowner;
d0aa7a70 1092
cdf71a10 1093 spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1094 WARN_ON(!list_empty(&pi_state->list));
cdf71a10
TG
1095 list_add(&pi_state->list, &newowner->pi_state_list);
1096 spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1097 return 0;
d0aa7a70 1098
d0aa7a70 1099 /*
1b7558e4
TG
1100 * To handle the page fault we need to drop the hash bucket
1101 * lock here. That gives the other task (either the pending
1102 * owner itself or the task which stole the rtmutex) the
1103 * chance to try the fixup of the pi_state. So once we are
1104 * back from handling the fault we need to check the pi_state
1105 * after reacquiring the hash bucket lock and before trying to
1106 * do another fixup. When the fixup has been done already we
1107 * simply return.
d0aa7a70 1108 */
1b7558e4
TG
1109handle_fault:
1110 spin_unlock(q->lock_ptr);
778e9a9c 1111
e4dc5b7a 1112 ret = get_user(uval, uaddr);
778e9a9c 1113
1b7558e4 1114 spin_lock(q->lock_ptr);
778e9a9c 1115
1b7558e4
TG
1116 /*
1117 * Check if someone else fixed it for us:
1118 */
1119 if (pi_state->owner != oldowner)
1120 return 0;
1121
1122 if (ret)
1123 return ret;
1124
1125 goto retry;
d0aa7a70
PP
1126}
1127
34f01cc1
ED
1128/*
1129 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1130 * we encode in the 'flags' shared capability
34f01cc1 1131 */
1acdac10
TG
1132#define FLAGS_SHARED 0x01
1133#define FLAGS_CLOCKRT 0x02
34f01cc1 1134
72c1bbf3 1135static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1136
ca5f9524
DH
1137/**
1138 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1139 * @hb: the futex hash bucket, must be locked by the caller
1140 * @q: the futex_q to queue up on
1141 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1142 * @wait: the wait_queue to add to the futex_q after queueing in the hb
1143 */
1144static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1145 struct hrtimer_sleeper *timeout,
1146 wait_queue_t *wait)
1147{
1148 queue_me(q, hb);
1149
1150 /*
1151 * There might have been scheduling since the queue_me(), as we
1152 * cannot hold a spinlock across the get_user() in case it
1153 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1154 * queueing ourselves into the futex hash. This code thus has to
1155 * rely on the futex_wake() code removing us from hash when it
1156 * wakes us up.
1157 */
1158
1159 /* add_wait_queue is the barrier after __set_current_state. */
1160 __set_current_state(TASK_INTERRUPTIBLE);
1161
1162 /*
1163 * Add current as the futex_q waiter. We don't remove ourselves from
1164 * the wait_queue because we are the only user of it.
1165 */
1166 add_wait_queue(&q->waiter, wait);
1167
1168 /* Arm the timer */
1169 if (timeout) {
1170 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1171 if (!hrtimer_active(&timeout->timer))
1172 timeout->task = NULL;
1173 }
1174
1175 /*
1176 * !plist_node_empty() is safe here without any lock.
1177 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1178 */
1179 if (likely(!plist_node_empty(&q->list))) {
1180 /*
1181 * If the timer has already expired, current will already be
1182 * flagged for rescheduling. Only call schedule if there
1183 * is no timeout, or if it has yet to expire.
1184 */
1185 if (!timeout || timeout->task)
1186 schedule();
1187 }
1188 __set_current_state(TASK_RUNNING);
1189}
1190
c2f9f201 1191static int futex_wait(u32 __user *uaddr, int fshared,
1acdac10 1192 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1da177e4 1193{
ca5f9524
DH
1194 struct hrtimer_sleeper timeout, *to = NULL;
1195 DECLARE_WAITQUEUE(wait, current);
2fff78c7 1196 struct restart_block *restart;
e2970f2f 1197 struct futex_hash_bucket *hb;
1da177e4 1198 struct futex_q q;
e2970f2f
IM
1199 u32 uval;
1200 int ret;
1da177e4 1201
cd689985
TG
1202 if (!bitset)
1203 return -EINVAL;
1204
c87e2837 1205 q.pi_state = NULL;
cd689985 1206 q.bitset = bitset;
ca5f9524
DH
1207
1208 if (abs_time) {
1209 to = &timeout;
1210
1211 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1212 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1213 hrtimer_init_sleeper(to, current);
1214 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1215 current->timer_slack_ns);
1216 }
1217
42d35d48 1218retry:
38d47c1b 1219 q.key = FUTEX_KEY_INIT;
34f01cc1 1220 ret = get_futex_key(uaddr, fshared, &q.key);
1da177e4 1221 if (unlikely(ret != 0))
42d35d48 1222 goto out;
1da177e4 1223
e4dc5b7a 1224retry_private:
82af7aca 1225 hb = queue_lock(&q);
1da177e4
LT
1226
1227 /*
b2d0994b 1228 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1229 * Order is important:
1230 *
1231 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1232 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1233 *
1234 * The basic logical guarantee of a futex is that it blocks ONLY
1235 * if cond(var) is known to be true at the time of blocking, for
1236 * any cond. If we queued after testing *uaddr, that would open
1237 * a race condition where we could block indefinitely with
1238 * cond(var) false, which would violate the guarantee.
1239 *
1240 * A consequence is that futex_wait() can return zero and absorb
1241 * a wakeup when *uaddr != val on entry to the syscall. This is
1242 * rare, but normal.
1243 *
b2d0994b 1244 * For shared futexes, we hold the mmap semaphore, so the mapping
34f01cc1 1245 * cannot have changed since we looked it up in get_futex_key.
1da177e4 1246 */
e2970f2f 1247 ret = get_futex_value_locked(&uval, uaddr);
1da177e4
LT
1248
1249 if (unlikely(ret)) {
e2970f2f 1250 queue_unlock(&q, hb);
1da177e4 1251
e2970f2f 1252 ret = get_user(uval, uaddr);
e4dc5b7a
DH
1253 if (ret)
1254 goto out_put_key;
1da177e4 1255
e4dc5b7a
DH
1256 if (!fshared)
1257 goto retry_private;
1258
1259 put_futex_key(fshared, &q.key);
1260 goto retry;
1da177e4 1261 }
c87e2837 1262 ret = -EWOULDBLOCK;
ca5f9524
DH
1263
1264 /* Only actually queue if *uaddr contained val. */
2fff78c7
PZ
1265 if (unlikely(uval != val)) {
1266 queue_unlock(&q, hb);
1267 goto out_put_key;
1268 }
1da177e4 1269
ca5f9524
DH
1270 /* queue_me and wait for wakeup, timeout, or a signal. */
1271 futex_wait_queue_me(hb, &q, to, &wait);
1da177e4
LT
1272
1273 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1274 ret = 0;
1da177e4 1275 if (!unqueue_me(&q))
2fff78c7
PZ
1276 goto out_put_key;
1277 ret = -ETIMEDOUT;
ca5f9524 1278 if (to && !to->task)
2fff78c7 1279 goto out_put_key;
72c1bbf3 1280
e2970f2f
IM
1281 /*
1282 * We expect signal_pending(current), but another thread may
1283 * have handled it for us already.
1284 */
2fff78c7 1285 ret = -ERESTARTSYS;
c19384b5 1286 if (!abs_time)
2fff78c7 1287 goto out_put_key;
1da177e4 1288
2fff78c7
PZ
1289 restart = &current_thread_info()->restart_block;
1290 restart->fn = futex_wait_restart;
1291 restart->futex.uaddr = (u32 *)uaddr;
1292 restart->futex.val = val;
1293 restart->futex.time = abs_time->tv64;
1294 restart->futex.bitset = bitset;
1295 restart->futex.flags = 0;
1296
1297 if (fshared)
1298 restart->futex.flags |= FLAGS_SHARED;
1299 if (clockrt)
1300 restart->futex.flags |= FLAGS_CLOCKRT;
42d35d48 1301
2fff78c7
PZ
1302 ret = -ERESTART_RESTARTBLOCK;
1303
1304out_put_key:
1305 put_futex_key(fshared, &q.key);
42d35d48 1306out:
ca5f9524
DH
1307 if (to) {
1308 hrtimer_cancel(&to->timer);
1309 destroy_hrtimer_on_stack(&to->timer);
1310 }
c87e2837
IM
1311 return ret;
1312}
1313
72c1bbf3
NP
1314
1315static long futex_wait_restart(struct restart_block *restart)
1316{
ce6bd420 1317 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
c2f9f201 1318 int fshared = 0;
ce6bd420 1319 ktime_t t;
72c1bbf3 1320
ce6bd420 1321 t.tv64 = restart->futex.time;
72c1bbf3 1322 restart->fn = do_no_restart_syscall;
ce6bd420 1323 if (restart->futex.flags & FLAGS_SHARED)
c2f9f201 1324 fshared = 1;
cd689985 1325 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1acdac10
TG
1326 restart->futex.bitset,
1327 restart->futex.flags & FLAGS_CLOCKRT);
72c1bbf3
NP
1328}
1329
1330
c87e2837
IM
1331/*
1332 * Userspace tried a 0 -> TID atomic transition of the futex value
1333 * and failed. The kernel side here does the whole locking operation:
1334 * if there are waiters then it will block, it does PI, etc. (Due to
1335 * races the kernel might see a 0 value of the futex too.)
1336 */
c2f9f201 1337static int futex_lock_pi(u32 __user *uaddr, int fshared,
34f01cc1 1338 int detect, ktime_t *time, int trylock)
c87e2837 1339{
c5780e97 1340 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837
IM
1341 struct task_struct *curr = current;
1342 struct futex_hash_bucket *hb;
1343 u32 uval, newval, curval;
1344 struct futex_q q;
e4dc5b7a 1345 int ret, lock_taken, ownerdied = 0;
c87e2837
IM
1346
1347 if (refill_pi_state_cache())
1348 return -ENOMEM;
1349
c19384b5 1350 if (time) {
c5780e97 1351 to = &timeout;
237fc6e7
TG
1352 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1353 HRTIMER_MODE_ABS);
c5780e97 1354 hrtimer_init_sleeper(to, current);
cc584b21 1355 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1356 }
1357
c87e2837 1358 q.pi_state = NULL;
42d35d48 1359retry:
38d47c1b 1360 q.key = FUTEX_KEY_INIT;
34f01cc1 1361 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837 1362 if (unlikely(ret != 0))
42d35d48 1363 goto out;
c87e2837 1364
e4dc5b7a 1365retry_private:
82af7aca 1366 hb = queue_lock(&q);
c87e2837 1367
42d35d48 1368retry_locked:
778e9a9c 1369 ret = lock_taken = 0;
d0aa7a70 1370
c87e2837
IM
1371 /*
1372 * To avoid races, we attempt to take the lock here again
1373 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1374 * the locks. It will most likely not succeed.
1375 */
b488893a 1376 newval = task_pid_vnr(current);
c87e2837 1377
36cf3b5c 1378 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
c87e2837
IM
1379
1380 if (unlikely(curval == -EFAULT))
1381 goto uaddr_faulted;
1382
778e9a9c
AK
1383 /*
1384 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1385 * situation and we return success to user space.
1386 */
b488893a 1387 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
bd197234 1388 ret = -EDEADLK;
42d35d48 1389 goto out_unlock_put_key;
c87e2837
IM
1390 }
1391
1392 /*
778e9a9c 1393 * Surprise - we got the lock. Just return to userspace:
c87e2837
IM
1394 */
1395 if (unlikely(!curval))
42d35d48 1396 goto out_unlock_put_key;
c87e2837
IM
1397
1398 uval = curval;
778e9a9c 1399
d0aa7a70 1400 /*
778e9a9c
AK
1401 * Set the WAITERS flag, so the owner will know it has someone
1402 * to wake at next unlock
d0aa7a70 1403 */
778e9a9c
AK
1404 newval = curval | FUTEX_WAITERS;
1405
1406 /*
1407 * There are two cases, where a futex might have no owner (the
bd197234
TG
1408 * owner TID is 0): OWNER_DIED. We take over the futex in this
1409 * case. We also do an unconditional take over, when the owner
1410 * of the futex died.
778e9a9c
AK
1411 *
1412 * This is safe as we are protected by the hash bucket lock !
1413 */
1414 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
bd197234 1415 /* Keep the OWNER_DIED bit */
b488893a 1416 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
778e9a9c
AK
1417 ownerdied = 0;
1418 lock_taken = 1;
1419 }
c87e2837 1420
36cf3b5c 1421 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
c87e2837
IM
1422
1423 if (unlikely(curval == -EFAULT))
1424 goto uaddr_faulted;
1425 if (unlikely(curval != uval))
1426 goto retry_locked;
1427
778e9a9c 1428 /*
bd197234 1429 * We took the lock due to owner died take over.
778e9a9c 1430 */
bd197234 1431 if (unlikely(lock_taken))
42d35d48 1432 goto out_unlock_put_key;
d0aa7a70 1433
c87e2837
IM
1434 /*
1435 * We dont have the lock. Look up the PI state (or create it if
1436 * we are the first waiter):
1437 */
d0aa7a70 1438 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
c87e2837
IM
1439
1440 if (unlikely(ret)) {
778e9a9c 1441 switch (ret) {
c87e2837 1442
778e9a9c
AK
1443 case -EAGAIN:
1444 /*
1445 * Task is exiting and we just wait for the
1446 * exit to complete.
1447 */
1448 queue_unlock(&q, hb);
de87fcc1 1449 put_futex_key(fshared, &q.key);
778e9a9c
AK
1450 cond_resched();
1451 goto retry;
c87e2837 1452
778e9a9c
AK
1453 case -ESRCH:
1454 /*
1455 * No owner found for this futex. Check if the
1456 * OWNER_DIED bit is set to figure out whether
1457 * this is a robust futex or not.
1458 */
1459 if (get_futex_value_locked(&curval, uaddr))
c87e2837 1460 goto uaddr_faulted;
778e9a9c
AK
1461
1462 /*
1463 * We simply start over in case of a robust
1464 * futex. The code above will take the futex
1465 * and return happy.
1466 */
1467 if (curval & FUTEX_OWNER_DIED) {
1468 ownerdied = 1;
c87e2837 1469 goto retry_locked;
778e9a9c
AK
1470 }
1471 default:
42d35d48 1472 goto out_unlock_put_key;
c87e2837 1473 }
c87e2837
IM
1474 }
1475
1476 /*
1477 * Only actually queue now that the atomic ops are done:
1478 */
82af7aca 1479 queue_me(&q, hb);
c87e2837 1480
c87e2837
IM
1481 WARN_ON(!q.pi_state);
1482 /*
1483 * Block on the PI mutex:
1484 */
1485 if (!trylock)
1486 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1487 else {
1488 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1489 /* Fixup the trylock return value: */
1490 ret = ret ? 0 : -EWOULDBLOCK;
1491 }
1492
a99e4e41 1493 spin_lock(q.lock_ptr);
c87e2837 1494
778e9a9c
AK
1495 if (!ret) {
1496 /*
1497 * Got the lock. We might not be the anticipated owner
1498 * if we did a lock-steal - fix up the PI-state in
1499 * that case:
1500 */
1501 if (q.pi_state->owner != curr)
1b7558e4 1502 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
778e9a9c 1503 } else {
c87e2837
IM
1504 /*
1505 * Catch the rare case, where the lock was released
778e9a9c
AK
1506 * when we were on the way back before we locked the
1507 * hash bucket.
c87e2837 1508 */
cdf71a10
TG
1509 if (q.pi_state->owner == curr) {
1510 /*
1511 * Try to get the rt_mutex now. This might
1512 * fail as some other task acquired the
1513 * rt_mutex after we removed ourself from the
1514 * rt_mutex waiters list.
1515 */
1516 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1517 ret = 0;
1518 else {
1519 /*
1520 * pi_state is incorrect, some other
1521 * task did a lock steal and we
1522 * returned due to timeout or signal
1523 * without taking the rt_mutex. Too
1524 * late. We can access the
1525 * rt_mutex_owner without locking, as
1526 * the other task is now blocked on
1527 * the hash bucket lock. Fix the state
1528 * up.
1529 */
1530 struct task_struct *owner;
1531 int res;
1532
1533 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1b7558e4
TG
1534 res = fixup_pi_state_owner(uaddr, &q, owner,
1535 fshared);
cdf71a10 1536
cdf71a10
TG
1537 /* propagate -EFAULT, if the fixup failed */
1538 if (res)
1539 ret = res;
1540 }
778e9a9c
AK
1541 } else {
1542 /*
1543 * Paranoia check. If we did not take the lock
1544 * in the trylock above, then we should not be
1545 * the owner of the rtmutex, neither the real
1546 * nor the pending one:
1547 */
1548 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1549 printk(KERN_ERR "futex_lock_pi: ret = %d "
1550 "pi-mutex: %p pi-state %p\n", ret,
1551 q.pi_state->pi_mutex.owner,
1552 q.pi_state->owner);
c87e2837 1553 }
c87e2837
IM
1554 }
1555
e8f6386c
DH
1556 /*
1557 * If fixup_pi_state_owner() faulted and was unable to handle the
1558 * fault, unlock it and return the fault to userspace.
1559 */
1560 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1561 rt_mutex_unlock(&q.pi_state->pi_mutex);
1562
778e9a9c
AK
1563 /* Unqueue and drop the lock */
1564 unqueue_me_pi(&q);
c87e2837 1565
237fc6e7
TG
1566 if (to)
1567 destroy_hrtimer_on_stack(&to->timer);
c5780e97 1568 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 1569
42d35d48 1570out_unlock_put_key:
c87e2837
IM
1571 queue_unlock(&q, hb);
1572
42d35d48 1573out_put_key:
38d47c1b 1574 put_futex_key(fshared, &q.key);
42d35d48 1575out:
237fc6e7
TG
1576 if (to)
1577 destroy_hrtimer_on_stack(&to->timer);
c87e2837
IM
1578 return ret;
1579
42d35d48 1580uaddr_faulted:
c87e2837 1581 /*
b5686363
DH
1582 * We have to r/w *(int __user *)uaddr, and we have to modify it
1583 * atomically. Therefore, if we continue to fault after get_user()
1584 * below, we need to handle the fault ourselves, while still holding
1585 * the mmap_sem. This can occur if the uaddr is under contention as
1586 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1587 */
778e9a9c
AK
1588 queue_unlock(&q, hb);
1589
c87e2837 1590 ret = get_user(uval, uaddr);
e4dc5b7a
DH
1591 if (ret)
1592 goto out_put_key;
c87e2837 1593
e4dc5b7a
DH
1594 if (!fshared)
1595 goto retry_private;
1596
1597 put_futex_key(fshared, &q.key);
1598 goto retry;
c87e2837
IM
1599}
1600
de87fcc1 1601
c87e2837
IM
1602/*
1603 * Userspace attempted a TID -> 0 atomic transition, and failed.
1604 * This is the in-kernel slowpath: we look up the PI state (if any),
1605 * and do the rt-mutex unlock.
1606 */
c2f9f201 1607static int futex_unlock_pi(u32 __user *uaddr, int fshared)
c87e2837
IM
1608{
1609 struct futex_hash_bucket *hb;
1610 struct futex_q *this, *next;
1611 u32 uval;
ec92d082 1612 struct plist_head *head;
38d47c1b 1613 union futex_key key = FUTEX_KEY_INIT;
e4dc5b7a 1614 int ret;
c87e2837
IM
1615
1616retry:
1617 if (get_user(uval, uaddr))
1618 return -EFAULT;
1619 /*
1620 * We release only a lock we actually own:
1621 */
b488893a 1622 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 1623 return -EPERM;
c87e2837 1624
34f01cc1 1625 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
1626 if (unlikely(ret != 0))
1627 goto out;
1628
1629 hb = hash_futex(&key);
1630 spin_lock(&hb->lock);
1631
c87e2837
IM
1632 /*
1633 * To avoid races, try to do the TID -> 0 atomic transition
1634 * again. If it succeeds then we can return without waking
1635 * anyone else up:
1636 */
36cf3b5c 1637 if (!(uval & FUTEX_OWNER_DIED))
b488893a 1638 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 1639
c87e2837
IM
1640
1641 if (unlikely(uval == -EFAULT))
1642 goto pi_faulted;
1643 /*
1644 * Rare case: we managed to release the lock atomically,
1645 * no need to wake anyone else up:
1646 */
b488893a 1647 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
1648 goto out_unlock;
1649
1650 /*
1651 * Ok, other tasks may need to be woken up - check waiters
1652 * and do the wakeup if necessary:
1653 */
1654 head = &hb->chain;
1655
ec92d082 1656 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
1657 if (!match_futex (&this->key, &key))
1658 continue;
1659 ret = wake_futex_pi(uaddr, uval, this);
1660 /*
1661 * The atomic access to the futex value
1662 * generated a pagefault, so retry the
1663 * user-access and the wakeup:
1664 */
1665 if (ret == -EFAULT)
1666 goto pi_faulted;
1667 goto out_unlock;
1668 }
1669 /*
1670 * No waiters - kernel unlocks the futex:
1671 */
e3f2ddea
IM
1672 if (!(uval & FUTEX_OWNER_DIED)) {
1673 ret = unlock_futex_pi(uaddr, uval);
1674 if (ret == -EFAULT)
1675 goto pi_faulted;
1676 }
c87e2837
IM
1677
1678out_unlock:
1679 spin_unlock(&hb->lock);
38d47c1b 1680 put_futex_key(fshared, &key);
c87e2837 1681
42d35d48 1682out:
c87e2837
IM
1683 return ret;
1684
1685pi_faulted:
1686 /*
b5686363
DH
1687 * We have to r/w *(int __user *)uaddr, and we have to modify it
1688 * atomically. Therefore, if we continue to fault after get_user()
1689 * below, we need to handle the fault ourselves, while still holding
1690 * the mmap_sem. This can occur if the uaddr is under contention as
1691 * we have to drop the mmap_sem in order to call get_user().
c87e2837 1692 */
778e9a9c 1693 spin_unlock(&hb->lock);
e4dc5b7a 1694 put_futex_key(fshared, &key);
c87e2837 1695
c87e2837 1696 ret = get_user(uval, uaddr);
b5686363 1697 if (!ret)
c87e2837
IM
1698 goto retry;
1699
1da177e4
LT
1700 return ret;
1701}
1702
0771dfef
IM
1703/*
1704 * Support for robust futexes: the kernel cleans up held futexes at
1705 * thread exit time.
1706 *
1707 * Implementation: user-space maintains a per-thread list of locks it
1708 * is holding. Upon do_exit(), the kernel carefully walks this list,
1709 * and marks all locks that are owned by this thread with the
c87e2837 1710 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
1711 * always manipulated with the lock held, so the list is private and
1712 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1713 * field, to allow the kernel to clean up if the thread dies after
1714 * acquiring the lock, but just before it could have added itself to
1715 * the list. There can only be one such pending lock.
1716 */
1717
1718/**
1719 * sys_set_robust_list - set the robust-futex list head of a task
1720 * @head: pointer to the list-head
1721 * @len: length of the list-head, as userspace expects
1722 */
836f92ad
HC
1723SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
1724 size_t, len)
0771dfef 1725{
a0c1e907
TG
1726 if (!futex_cmpxchg_enabled)
1727 return -ENOSYS;
0771dfef
IM
1728 /*
1729 * The kernel knows only one size for now:
1730 */
1731 if (unlikely(len != sizeof(*head)))
1732 return -EINVAL;
1733
1734 current->robust_list = head;
1735
1736 return 0;
1737}
1738
1739/**
1740 * sys_get_robust_list - get the robust-futex list head of a task
1741 * @pid: pid of the process [zero for current task]
1742 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1743 * @len_ptr: pointer to a length field, the kernel fills in the header size
1744 */
836f92ad
HC
1745SYSCALL_DEFINE3(get_robust_list, int, pid,
1746 struct robust_list_head __user * __user *, head_ptr,
1747 size_t __user *, len_ptr)
0771dfef 1748{
ba46df98 1749 struct robust_list_head __user *head;
0771dfef 1750 unsigned long ret;
c69e8d9c 1751 const struct cred *cred = current_cred(), *pcred;
0771dfef 1752
a0c1e907
TG
1753 if (!futex_cmpxchg_enabled)
1754 return -ENOSYS;
1755
0771dfef
IM
1756 if (!pid)
1757 head = current->robust_list;
1758 else {
1759 struct task_struct *p;
1760
1761 ret = -ESRCH;
aaa2a97e 1762 rcu_read_lock();
228ebcbe 1763 p = find_task_by_vpid(pid);
0771dfef
IM
1764 if (!p)
1765 goto err_unlock;
1766 ret = -EPERM;
c69e8d9c
DH
1767 pcred = __task_cred(p);
1768 if (cred->euid != pcred->euid &&
1769 cred->euid != pcred->uid &&
76aac0e9 1770 !capable(CAP_SYS_PTRACE))
0771dfef
IM
1771 goto err_unlock;
1772 head = p->robust_list;
aaa2a97e 1773 rcu_read_unlock();
0771dfef
IM
1774 }
1775
1776 if (put_user(sizeof(*head), len_ptr))
1777 return -EFAULT;
1778 return put_user(head, head_ptr);
1779
1780err_unlock:
aaa2a97e 1781 rcu_read_unlock();
0771dfef
IM
1782
1783 return ret;
1784}
1785
1786/*
1787 * Process a futex-list entry, check whether it's owned by the
1788 * dying task, and do notification if so:
1789 */
e3f2ddea 1790int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 1791{
e3f2ddea 1792 u32 uval, nval, mval;
0771dfef 1793
8f17d3a5
IM
1794retry:
1795 if (get_user(uval, uaddr))
0771dfef
IM
1796 return -1;
1797
b488893a 1798 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
1799 /*
1800 * Ok, this dying thread is truly holding a futex
1801 * of interest. Set the OWNER_DIED bit atomically
1802 * via cmpxchg, and if the value had FUTEX_WAITERS
1803 * set, wake up a waiter (if any). (We have to do a
1804 * futex_wake() even if OWNER_DIED is already set -
1805 * to handle the rare but possible case of recursive
1806 * thread-death.) The rest of the cleanup is done in
1807 * userspace.
1808 */
e3f2ddea
IM
1809 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1810 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1811
c87e2837
IM
1812 if (nval == -EFAULT)
1813 return -1;
1814
1815 if (nval != uval)
8f17d3a5 1816 goto retry;
0771dfef 1817
e3f2ddea
IM
1818 /*
1819 * Wake robust non-PI futexes here. The wakeup of
1820 * PI futexes happens in exit_pi_state():
1821 */
36cf3b5c 1822 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 1823 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
1824 }
1825 return 0;
1826}
1827
e3f2ddea
IM
1828/*
1829 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1830 */
1831static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
1832 struct robust_list __user * __user *head,
1833 int *pi)
e3f2ddea
IM
1834{
1835 unsigned long uentry;
1836
ba46df98 1837 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
1838 return -EFAULT;
1839
ba46df98 1840 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
1841 *pi = uentry & 1;
1842
1843 return 0;
1844}
1845
0771dfef
IM
1846/*
1847 * Walk curr->robust_list (very carefully, it's a userspace list!)
1848 * and mark any locks found there dead, and notify any waiters.
1849 *
1850 * We silently return on any sign of list-walking problem.
1851 */
1852void exit_robust_list(struct task_struct *curr)
1853{
1854 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
1855 struct robust_list __user *entry, *next_entry, *pending;
1856 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 1857 unsigned long futex_offset;
9f96cb1e 1858 int rc;
0771dfef 1859
a0c1e907
TG
1860 if (!futex_cmpxchg_enabled)
1861 return;
1862
0771dfef
IM
1863 /*
1864 * Fetch the list head (which was registered earlier, via
1865 * sys_set_robust_list()):
1866 */
e3f2ddea 1867 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
1868 return;
1869 /*
1870 * Fetch the relative futex offset:
1871 */
1872 if (get_user(futex_offset, &head->futex_offset))
1873 return;
1874 /*
1875 * Fetch any possibly pending lock-add first, and handle it
1876 * if it exists:
1877 */
e3f2ddea 1878 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 1879 return;
e3f2ddea 1880
9f96cb1e 1881 next_entry = NULL; /* avoid warning with gcc */
0771dfef 1882 while (entry != &head->list) {
9f96cb1e
MS
1883 /*
1884 * Fetch the next entry in the list before calling
1885 * handle_futex_death:
1886 */
1887 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
1888 /*
1889 * A pending lock might already be on the list, so
c87e2837 1890 * don't process it twice:
0771dfef
IM
1891 */
1892 if (entry != pending)
ba46df98 1893 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 1894 curr, pi))
0771dfef 1895 return;
9f96cb1e 1896 if (rc)
0771dfef 1897 return;
9f96cb1e
MS
1898 entry = next_entry;
1899 pi = next_pi;
0771dfef
IM
1900 /*
1901 * Avoid excessively long or circular lists:
1902 */
1903 if (!--limit)
1904 break;
1905
1906 cond_resched();
1907 }
9f96cb1e
MS
1908
1909 if (pending)
1910 handle_futex_death((void __user *)pending + futex_offset,
1911 curr, pip);
0771dfef
IM
1912}
1913
c19384b5 1914long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 1915 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 1916{
1acdac10 1917 int clockrt, ret = -ENOSYS;
34f01cc1 1918 int cmd = op & FUTEX_CMD_MASK;
c2f9f201 1919 int fshared = 0;
34f01cc1
ED
1920
1921 if (!(op & FUTEX_PRIVATE_FLAG))
c2f9f201 1922 fshared = 1;
1da177e4 1923
1acdac10
TG
1924 clockrt = op & FUTEX_CLOCK_REALTIME;
1925 if (clockrt && cmd != FUTEX_WAIT_BITSET)
1926 return -ENOSYS;
1da177e4 1927
34f01cc1 1928 switch (cmd) {
1da177e4 1929 case FUTEX_WAIT:
cd689985
TG
1930 val3 = FUTEX_BITSET_MATCH_ANY;
1931 case FUTEX_WAIT_BITSET:
1acdac10 1932 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1da177e4
LT
1933 break;
1934 case FUTEX_WAKE:
cd689985
TG
1935 val3 = FUTEX_BITSET_MATCH_ANY;
1936 case FUTEX_WAKE_BITSET:
1937 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 1938 break;
1da177e4 1939 case FUTEX_REQUEUE:
34f01cc1 1940 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1da177e4
LT
1941 break;
1942 case FUTEX_CMP_REQUEUE:
34f01cc1 1943 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1da177e4 1944 break;
4732efbe 1945 case FUTEX_WAKE_OP:
34f01cc1 1946 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 1947 break;
c87e2837 1948 case FUTEX_LOCK_PI:
a0c1e907
TG
1949 if (futex_cmpxchg_enabled)
1950 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
1951 break;
1952 case FUTEX_UNLOCK_PI:
a0c1e907
TG
1953 if (futex_cmpxchg_enabled)
1954 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
1955 break;
1956 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
1957 if (futex_cmpxchg_enabled)
1958 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 1959 break;
1da177e4
LT
1960 default:
1961 ret = -ENOSYS;
1962 }
1963 return ret;
1964}
1965
1966
17da2bd9
HC
1967SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
1968 struct timespec __user *, utime, u32 __user *, uaddr2,
1969 u32, val3)
1da177e4 1970{
c19384b5
PP
1971 struct timespec ts;
1972 ktime_t t, *tp = NULL;
e2970f2f 1973 u32 val2 = 0;
34f01cc1 1974 int cmd = op & FUTEX_CMD_MASK;
1da177e4 1975
cd689985
TG
1976 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1977 cmd == FUTEX_WAIT_BITSET)) {
c19384b5 1978 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 1979 return -EFAULT;
c19384b5 1980 if (!timespec_valid(&ts))
9741ef96 1981 return -EINVAL;
c19384b5
PP
1982
1983 t = timespec_to_ktime(ts);
34f01cc1 1984 if (cmd == FUTEX_WAIT)
5a7780e7 1985 t = ktime_add_safe(ktime_get(), t);
c19384b5 1986 tp = &t;
1da177e4
LT
1987 }
1988 /*
34f01cc1 1989 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
f54f0986 1990 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 1991 */
f54f0986
AS
1992 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1993 cmd == FUTEX_WAKE_OP)
e2970f2f 1994 val2 = (u32) (unsigned long) utime;
1da177e4 1995
c19384b5 1996 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
1997}
1998
f6d107fb 1999static int __init futex_init(void)
1da177e4 2000{
a0c1e907 2001 u32 curval;
3e4ab747 2002 int i;
95362fa9 2003
a0c1e907
TG
2004 /*
2005 * This will fail and we want it. Some arch implementations do
2006 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2007 * functionality. We want to know that before we call in any
2008 * of the complex code paths. Also we want to prevent
2009 * registration of robust lists in that case. NULL is
2010 * guaranteed to fault and we get -EFAULT on functional
2011 * implementation, the non functional ones will return
2012 * -ENOSYS.
2013 */
2014 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2015 if (curval == -EFAULT)
2016 futex_cmpxchg_enabled = 1;
2017
3e4ab747
TG
2018 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2019 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2020 spin_lock_init(&futex_queues[i].lock);
2021 }
2022
1da177e4
LT
2023 return 0;
2024}
f6d107fb 2025__initcall(futex_init);