]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/auditsc.c
xps: Transmit Packet Steering
[net-next-2.6.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
715b49ef 47#include <asm/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
1da177e4 70
fe7752ba 71#include "audit.h"
1da177e4 72
1da177e4
LT
73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75#define AUDIT_NAMES 20
76
9c937dcc
AG
77/* Indicates that audit should log the full pathname. */
78#define AUDIT_NAME_FULL -1
79
de6bbd1d
EP
80/* no execve audit message should be longer than this (userspace limits) */
81#define MAX_EXECVE_AUDIT_LEN 7500
82
471a5c7c
AV
83/* number of audit rules */
84int audit_n_rules;
85
e54dc243
AG
86/* determines whether we collect data for signals sent */
87int audit_signals;
88
851f7ff5
EP
89struct audit_cap_data {
90 kernel_cap_t permitted;
91 kernel_cap_t inheritable;
92 union {
93 unsigned int fE; /* effective bit of a file capability */
94 kernel_cap_t effective; /* effective set of a process */
95 };
96};
97
1da177e4
LT
98/* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
101 *
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103struct audit_names {
104 const char *name;
9c937dcc
AG
105 int name_len; /* number of name's characters to log */
106 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
107 unsigned long ino;
108 dev_t dev;
109 umode_t mode;
110 uid_t uid;
111 gid_t gid;
112 dev_t rdev;
1b50eed9 113 u32 osid;
851f7ff5
EP
114 struct audit_cap_data fcap;
115 unsigned int fcap_ver;
1da177e4
LT
116};
117
118struct audit_aux_data {
119 struct audit_aux_data *next;
120 int type;
121};
122
123#define AUDIT_AUX_IPCPERM 0
124
e54dc243
AG
125/* Number of target pids per aux struct. */
126#define AUDIT_AUX_PIDS 16
127
473ae30b
AV
128struct audit_aux_data_execve {
129 struct audit_aux_data d;
130 int argc;
131 int envc;
bdf4c48a 132 struct mm_struct *mm;
473ae30b
AV
133};
134
e54dc243
AG
135struct audit_aux_data_pids {
136 struct audit_aux_data d;
137 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
138 uid_t target_auid[AUDIT_AUX_PIDS];
139 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 140 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 141 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
143 int pid_count;
144};
145
3fc689e9
EP
146struct audit_aux_data_bprm_fcaps {
147 struct audit_aux_data d;
148 struct audit_cap_data fcap;
149 unsigned int fcap_ver;
150 struct audit_cap_data old_pcap;
151 struct audit_cap_data new_pcap;
152};
153
e68b75a0
EP
154struct audit_aux_data_capset {
155 struct audit_aux_data d;
156 pid_t pid;
157 struct audit_cap_data cap;
158};
159
74c3cbe3
AV
160struct audit_tree_refs {
161 struct audit_tree_refs *next;
162 struct audit_chunk *c[31];
163};
164
1da177e4
LT
165/* The per-task audit context. */
166struct audit_context {
d51374ad 167 int dummy; /* must be the first element */
1da177e4 168 int in_syscall; /* 1 if task is in a syscall */
0590b933 169 enum audit_state state, current_state;
1da177e4 170 unsigned int serial; /* serial number for record */
1da177e4 171 int major; /* syscall number */
44e51a1b 172 struct timespec ctime; /* time of syscall entry */
1da177e4 173 unsigned long argv[4]; /* syscall arguments */
2fd6f58b 174 long return_code;/* syscall return code */
0590b933 175 u64 prio;
44e51a1b 176 int return_valid; /* return code is valid */
1da177e4
LT
177 int name_count;
178 struct audit_names names[AUDIT_NAMES];
5adc8a6a 179 char * filterkey; /* key for rule that triggered record */
44707fdf 180 struct path pwd;
1da177e4
LT
181 struct audit_context *previous; /* For nested syscalls */
182 struct audit_aux_data *aux;
e54dc243 183 struct audit_aux_data *aux_pids;
4f6b434f
AV
184 struct sockaddr_storage *sockaddr;
185 size_t sockaddr_len;
1da177e4 186 /* Save things to print about task_struct */
f46038ff 187 pid_t pid, ppid;
1da177e4
LT
188 uid_t uid, euid, suid, fsuid;
189 gid_t gid, egid, sgid, fsgid;
190 unsigned long personality;
2fd6f58b 191 int arch;
1da177e4 192
a5cb013d 193 pid_t target_pid;
c2a7780e
EP
194 uid_t target_auid;
195 uid_t target_uid;
4746ec5b 196 unsigned int target_sessionid;
a5cb013d 197 u32 target_sid;
c2a7780e 198 char target_comm[TASK_COMM_LEN];
a5cb013d 199
74c3cbe3 200 struct audit_tree_refs *trees, *first_trees;
916d7576 201 struct list_head killed_trees;
44e51a1b 202 int tree_count;
74c3cbe3 203
f3298dc4
AV
204 int type;
205 union {
206 struct {
207 int nargs;
208 long args[6];
209 } socketcall;
a33e6751
AV
210 struct {
211 uid_t uid;
212 gid_t gid;
213 mode_t mode;
214 u32 osid;
e816f370
AV
215 int has_perm;
216 uid_t perm_uid;
217 gid_t perm_gid;
218 mode_t perm_mode;
219 unsigned long qbytes;
a33e6751 220 } ipc;
7392906e
AV
221 struct {
222 mqd_t mqdes;
223 struct mq_attr mqstat;
224 } mq_getsetattr;
20114f71
AV
225 struct {
226 mqd_t mqdes;
227 int sigev_signo;
228 } mq_notify;
c32c8af4
AV
229 struct {
230 mqd_t mqdes;
231 size_t msg_len;
232 unsigned int msg_prio;
233 struct timespec abs_timeout;
234 } mq_sendrecv;
564f6993
AV
235 struct {
236 int oflag;
237 mode_t mode;
238 struct mq_attr attr;
239 } mq_open;
57f71a0a
AV
240 struct {
241 pid_t pid;
242 struct audit_cap_data cap;
243 } capset;
120a795d
AV
244 struct {
245 int fd;
246 int flags;
247 } mmap;
f3298dc4 248 };
157cf649 249 int fds[2];
f3298dc4 250
1da177e4
LT
251#if AUDIT_DEBUG
252 int put_count;
253 int ino_count;
254#endif
255};
256
55669bfa
AV
257static inline int open_arg(int flags, int mask)
258{
259 int n = ACC_MODE(flags);
260 if (flags & (O_TRUNC | O_CREAT))
261 n |= AUDIT_PERM_WRITE;
262 return n & mask;
263}
264
265static int audit_match_perm(struct audit_context *ctx, int mask)
266{
c4bacefb 267 unsigned n;
1a61c88d 268 if (unlikely(!ctx))
269 return 0;
c4bacefb 270 n = ctx->major;
dbda4c0b 271
55669bfa
AV
272 switch (audit_classify_syscall(ctx->arch, n)) {
273 case 0: /* native */
274 if ((mask & AUDIT_PERM_WRITE) &&
275 audit_match_class(AUDIT_CLASS_WRITE, n))
276 return 1;
277 if ((mask & AUDIT_PERM_READ) &&
278 audit_match_class(AUDIT_CLASS_READ, n))
279 return 1;
280 if ((mask & AUDIT_PERM_ATTR) &&
281 audit_match_class(AUDIT_CLASS_CHATTR, n))
282 return 1;
283 return 0;
284 case 1: /* 32bit on biarch */
285 if ((mask & AUDIT_PERM_WRITE) &&
286 audit_match_class(AUDIT_CLASS_WRITE_32, n))
287 return 1;
288 if ((mask & AUDIT_PERM_READ) &&
289 audit_match_class(AUDIT_CLASS_READ_32, n))
290 return 1;
291 if ((mask & AUDIT_PERM_ATTR) &&
292 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
293 return 1;
294 return 0;
295 case 2: /* open */
296 return mask & ACC_MODE(ctx->argv[1]);
297 case 3: /* openat */
298 return mask & ACC_MODE(ctx->argv[2]);
299 case 4: /* socketcall */
300 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
301 case 5: /* execve */
302 return mask & AUDIT_PERM_EXEC;
303 default:
304 return 0;
305 }
306}
307
8b67dca9
AV
308static int audit_match_filetype(struct audit_context *ctx, int which)
309{
310 unsigned index = which & ~S_IFMT;
311 mode_t mode = which & S_IFMT;
1a61c88d 312
313 if (unlikely(!ctx))
314 return 0;
315
8b67dca9
AV
316 if (index >= ctx->name_count)
317 return 0;
318 if (ctx->names[index].ino == -1)
319 return 0;
320 if ((ctx->names[index].mode ^ mode) & S_IFMT)
321 return 0;
322 return 1;
323}
324
74c3cbe3
AV
325/*
326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
327 * ->first_trees points to its beginning, ->trees - to the current end of data.
328 * ->tree_count is the number of free entries in array pointed to by ->trees.
329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
330 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
331 * it's going to remain 1-element for almost any setup) until we free context itself.
332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
333 */
334
335#ifdef CONFIG_AUDIT_TREE
679173b7
EP
336static void audit_set_auditable(struct audit_context *ctx)
337{
338 if (!ctx->prio) {
339 ctx->prio = 1;
340 ctx->current_state = AUDIT_RECORD_CONTEXT;
341 }
342}
343
74c3cbe3
AV
344static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
345{
346 struct audit_tree_refs *p = ctx->trees;
347 int left = ctx->tree_count;
348 if (likely(left)) {
349 p->c[--left] = chunk;
350 ctx->tree_count = left;
351 return 1;
352 }
353 if (!p)
354 return 0;
355 p = p->next;
356 if (p) {
357 p->c[30] = chunk;
358 ctx->trees = p;
359 ctx->tree_count = 30;
360 return 1;
361 }
362 return 0;
363}
364
365static int grow_tree_refs(struct audit_context *ctx)
366{
367 struct audit_tree_refs *p = ctx->trees;
368 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
369 if (!ctx->trees) {
370 ctx->trees = p;
371 return 0;
372 }
373 if (p)
374 p->next = ctx->trees;
375 else
376 ctx->first_trees = ctx->trees;
377 ctx->tree_count = 31;
378 return 1;
379}
380#endif
381
382static void unroll_tree_refs(struct audit_context *ctx,
383 struct audit_tree_refs *p, int count)
384{
385#ifdef CONFIG_AUDIT_TREE
386 struct audit_tree_refs *q;
387 int n;
388 if (!p) {
389 /* we started with empty chain */
390 p = ctx->first_trees;
391 count = 31;
392 /* if the very first allocation has failed, nothing to do */
393 if (!p)
394 return;
395 }
396 n = count;
397 for (q = p; q != ctx->trees; q = q->next, n = 31) {
398 while (n--) {
399 audit_put_chunk(q->c[n]);
400 q->c[n] = NULL;
401 }
402 }
403 while (n-- > ctx->tree_count) {
404 audit_put_chunk(q->c[n]);
405 q->c[n] = NULL;
406 }
407 ctx->trees = p;
408 ctx->tree_count = count;
409#endif
410}
411
412static void free_tree_refs(struct audit_context *ctx)
413{
414 struct audit_tree_refs *p, *q;
415 for (p = ctx->first_trees; p; p = q) {
416 q = p->next;
417 kfree(p);
418 }
419}
420
421static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
422{
423#ifdef CONFIG_AUDIT_TREE
424 struct audit_tree_refs *p;
425 int n;
426 if (!tree)
427 return 0;
428 /* full ones */
429 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
430 for (n = 0; n < 31; n++)
431 if (audit_tree_match(p->c[n], tree))
432 return 1;
433 }
434 /* partial */
435 if (p) {
436 for (n = ctx->tree_count; n < 31; n++)
437 if (audit_tree_match(p->c[n], tree))
438 return 1;
439 }
440#endif
441 return 0;
442}
443
f368c07d 444/* Determine if any context name data matches a rule's watch data */
1da177e4
LT
445/* Compare a task_struct with an audit_rule. Return 1 on match, 0
446 * otherwise. */
447static int audit_filter_rules(struct task_struct *tsk,
93315ed6 448 struct audit_krule *rule,
1da177e4 449 struct audit_context *ctx,
f368c07d 450 struct audit_names *name,
1da177e4
LT
451 enum audit_state *state)
452{
c69e8d9c 453 const struct cred *cred = get_task_cred(tsk);
2ad312d2 454 int i, j, need_sid = 1;
3dc7e315
DG
455 u32 sid;
456
1da177e4 457 for (i = 0; i < rule->field_count; i++) {
93315ed6 458 struct audit_field *f = &rule->fields[i];
1da177e4
LT
459 int result = 0;
460
93315ed6 461 switch (f->type) {
1da177e4 462 case AUDIT_PID:
93315ed6 463 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 464 break;
3c66251e 465 case AUDIT_PPID:
419c58f1
AV
466 if (ctx) {
467 if (!ctx->ppid)
468 ctx->ppid = sys_getppid();
3c66251e 469 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 470 }
3c66251e 471 break;
1da177e4 472 case AUDIT_UID:
b6dff3ec 473 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
474 break;
475 case AUDIT_EUID:
b6dff3ec 476 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
477 break;
478 case AUDIT_SUID:
b6dff3ec 479 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
480 break;
481 case AUDIT_FSUID:
b6dff3ec 482 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
483 break;
484 case AUDIT_GID:
b6dff3ec 485 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
486 break;
487 case AUDIT_EGID:
b6dff3ec 488 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
489 break;
490 case AUDIT_SGID:
b6dff3ec 491 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
492 break;
493 case AUDIT_FSGID:
b6dff3ec 494 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
495 break;
496 case AUDIT_PERS:
93315ed6 497 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 498 break;
2fd6f58b 499 case AUDIT_ARCH:
9f8dbe9c 500 if (ctx)
93315ed6 501 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 502 break;
1da177e4
LT
503
504 case AUDIT_EXIT:
505 if (ctx && ctx->return_valid)
93315ed6 506 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
507 break;
508 case AUDIT_SUCCESS:
b01f2cc1 509 if (ctx && ctx->return_valid) {
93315ed6
AG
510 if (f->val)
511 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 512 else
93315ed6 513 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 514 }
1da177e4
LT
515 break;
516 case AUDIT_DEVMAJOR:
f368c07d
AG
517 if (name)
518 result = audit_comparator(MAJOR(name->dev),
519 f->op, f->val);
520 else if (ctx) {
1da177e4 521 for (j = 0; j < ctx->name_count; j++) {
93315ed6 522 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
523 ++result;
524 break;
525 }
526 }
527 }
528 break;
529 case AUDIT_DEVMINOR:
f368c07d
AG
530 if (name)
531 result = audit_comparator(MINOR(name->dev),
532 f->op, f->val);
533 else if (ctx) {
1da177e4 534 for (j = 0; j < ctx->name_count; j++) {
93315ed6 535 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
536 ++result;
537 break;
538 }
539 }
540 }
541 break;
542 case AUDIT_INODE:
f368c07d 543 if (name)
9c937dcc 544 result = (name->ino == f->val);
f368c07d 545 else if (ctx) {
1da177e4 546 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 547 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
548 ++result;
549 break;
550 }
551 }
552 }
553 break;
f368c07d 554 case AUDIT_WATCH:
ae7b8f41
EP
555 if (name)
556 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 557 break;
74c3cbe3
AV
558 case AUDIT_DIR:
559 if (ctx)
560 result = match_tree_refs(ctx, rule->tree);
561 break;
1da177e4
LT
562 case AUDIT_LOGINUID:
563 result = 0;
564 if (ctx)
bfef93a5 565 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 566 break;
3a6b9f85
DG
567 case AUDIT_SUBJ_USER:
568 case AUDIT_SUBJ_ROLE:
569 case AUDIT_SUBJ_TYPE:
570 case AUDIT_SUBJ_SEN:
571 case AUDIT_SUBJ_CLR:
3dc7e315
DG
572 /* NOTE: this may return negative values indicating
573 a temporary error. We simply treat this as a
574 match for now to avoid losing information that
575 may be wanted. An error message will also be
576 logged upon error */
04305e4a 577 if (f->lsm_rule) {
2ad312d2 578 if (need_sid) {
2a862b32 579 security_task_getsecid(tsk, &sid);
2ad312d2
SG
580 need_sid = 0;
581 }
d7a96f3a 582 result = security_audit_rule_match(sid, f->type,
3dc7e315 583 f->op,
04305e4a 584 f->lsm_rule,
3dc7e315 585 ctx);
2ad312d2 586 }
3dc7e315 587 break;
6e5a2d1d
DG
588 case AUDIT_OBJ_USER:
589 case AUDIT_OBJ_ROLE:
590 case AUDIT_OBJ_TYPE:
591 case AUDIT_OBJ_LEV_LOW:
592 case AUDIT_OBJ_LEV_HIGH:
593 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
594 also applies here */
04305e4a 595 if (f->lsm_rule) {
6e5a2d1d
DG
596 /* Find files that match */
597 if (name) {
d7a96f3a 598 result = security_audit_rule_match(
6e5a2d1d 599 name->osid, f->type, f->op,
04305e4a 600 f->lsm_rule, ctx);
6e5a2d1d
DG
601 } else if (ctx) {
602 for (j = 0; j < ctx->name_count; j++) {
d7a96f3a 603 if (security_audit_rule_match(
6e5a2d1d
DG
604 ctx->names[j].osid,
605 f->type, f->op,
04305e4a 606 f->lsm_rule, ctx)) {
6e5a2d1d
DG
607 ++result;
608 break;
609 }
610 }
611 }
612 /* Find ipc objects that match */
a33e6751
AV
613 if (!ctx || ctx->type != AUDIT_IPC)
614 break;
615 if (security_audit_rule_match(ctx->ipc.osid,
616 f->type, f->op,
617 f->lsm_rule, ctx))
618 ++result;
6e5a2d1d
DG
619 }
620 break;
1da177e4
LT
621 case AUDIT_ARG0:
622 case AUDIT_ARG1:
623 case AUDIT_ARG2:
624 case AUDIT_ARG3:
625 if (ctx)
93315ed6 626 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 627 break;
5adc8a6a
AG
628 case AUDIT_FILTERKEY:
629 /* ignore this field for filtering */
630 result = 1;
631 break;
55669bfa
AV
632 case AUDIT_PERM:
633 result = audit_match_perm(ctx, f->val);
634 break;
8b67dca9
AV
635 case AUDIT_FILETYPE:
636 result = audit_match_filetype(ctx, f->val);
637 break;
1da177e4
LT
638 }
639
c69e8d9c
DH
640 if (!result) {
641 put_cred(cred);
1da177e4 642 return 0;
c69e8d9c 643 }
1da177e4 644 }
0590b933
AV
645
646 if (ctx) {
647 if (rule->prio <= ctx->prio)
648 return 0;
649 if (rule->filterkey) {
650 kfree(ctx->filterkey);
651 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
652 }
653 ctx->prio = rule->prio;
654 }
1da177e4
LT
655 switch (rule->action) {
656 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
657 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
658 }
c69e8d9c 659 put_cred(cred);
1da177e4
LT
660 return 1;
661}
662
663/* At process creation time, we can determine if system-call auditing is
664 * completely disabled for this task. Since we only have the task
665 * structure at this point, we can only check uid and gid.
666 */
e048e02c 667static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
668{
669 struct audit_entry *e;
670 enum audit_state state;
671
672 rcu_read_lock();
0f45aa18 673 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f368c07d 674 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
e048e02c
AV
675 if (state == AUDIT_RECORD_CONTEXT)
676 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
677 rcu_read_unlock();
678 return state;
679 }
680 }
681 rcu_read_unlock();
682 return AUDIT_BUILD_CONTEXT;
683}
684
685/* At syscall entry and exit time, this filter is called if the
686 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 687 * also not high enough that we already know we have to write an audit
b0dd25a8 688 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
689 */
690static enum audit_state audit_filter_syscall(struct task_struct *tsk,
691 struct audit_context *ctx,
692 struct list_head *list)
693{
694 struct audit_entry *e;
c3896495 695 enum audit_state state;
1da177e4 696
351bb722 697 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
698 return AUDIT_DISABLED;
699
1da177e4 700 rcu_read_lock();
c3896495 701 if (!list_empty(list)) {
b63862f4
DK
702 int word = AUDIT_WORD(ctx->major);
703 int bit = AUDIT_BIT(ctx->major);
704
705 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
706 if ((e->rule.mask[word] & bit) == bit &&
707 audit_filter_rules(tsk, &e->rule, ctx, NULL,
708 &state)) {
709 rcu_read_unlock();
0590b933 710 ctx->current_state = state;
f368c07d
AG
711 return state;
712 }
713 }
714 }
715 rcu_read_unlock();
716 return AUDIT_BUILD_CONTEXT;
717}
718
719/* At syscall exit time, this filter is called if any audit_names[] have been
720 * collected during syscall processing. We only check rules in sublists at hash
721 * buckets applicable to the inode numbers in audit_names[].
722 * Regarding audit_state, same rules apply as for audit_filter_syscall().
723 */
0590b933 724void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d
AG
725{
726 int i;
727 struct audit_entry *e;
728 enum audit_state state;
729
730 if (audit_pid && tsk->tgid == audit_pid)
0590b933 731 return;
f368c07d
AG
732
733 rcu_read_lock();
734 for (i = 0; i < ctx->name_count; i++) {
735 int word = AUDIT_WORD(ctx->major);
736 int bit = AUDIT_BIT(ctx->major);
737 struct audit_names *n = &ctx->names[i];
738 int h = audit_hash_ino((u32)n->ino);
739 struct list_head *list = &audit_inode_hash[h];
740
741 if (list_empty(list))
742 continue;
743
744 list_for_each_entry_rcu(e, list, list) {
745 if ((e->rule.mask[word] & bit) == bit &&
746 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
b63862f4 747 rcu_read_unlock();
0590b933
AV
748 ctx->current_state = state;
749 return;
b63862f4 750 }
0f45aa18
DW
751 }
752 }
753 rcu_read_unlock();
0f45aa18
DW
754}
755
1da177e4
LT
756static inline struct audit_context *audit_get_context(struct task_struct *tsk,
757 int return_valid,
6d208da8 758 long return_code)
1da177e4
LT
759{
760 struct audit_context *context = tsk->audit_context;
761
762 if (likely(!context))
763 return NULL;
764 context->return_valid = return_valid;
f701b75e
EP
765
766 /*
767 * we need to fix up the return code in the audit logs if the actual
768 * return codes are later going to be fixed up by the arch specific
769 * signal handlers
770 *
771 * This is actually a test for:
772 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
773 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
774 *
775 * but is faster than a bunch of ||
776 */
777 if (unlikely(return_code <= -ERESTARTSYS) &&
778 (return_code >= -ERESTART_RESTARTBLOCK) &&
779 (return_code != -ENOIOCTLCMD))
780 context->return_code = -EINTR;
781 else
782 context->return_code = return_code;
1da177e4 783
0590b933
AV
784 if (context->in_syscall && !context->dummy) {
785 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
786 audit_filter_inodes(tsk, context);
1da177e4
LT
787 }
788
1da177e4
LT
789 tsk->audit_context = NULL;
790 return context;
791}
792
793static inline void audit_free_names(struct audit_context *context)
794{
795 int i;
796
797#if AUDIT_DEBUG == 2
0590b933 798 if (context->put_count + context->ino_count != context->name_count) {
73241ccc 799 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
800 " name_count=%d put_count=%d"
801 " ino_count=%d [NOT freeing]\n",
73241ccc 802 __FILE__, __LINE__,
1da177e4
LT
803 context->serial, context->major, context->in_syscall,
804 context->name_count, context->put_count,
805 context->ino_count);
8c8570fb 806 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
807 printk(KERN_ERR "names[%d] = %p = %s\n", i,
808 context->names[i].name,
73241ccc 809 context->names[i].name ?: "(null)");
8c8570fb 810 }
1da177e4
LT
811 dump_stack();
812 return;
813 }
814#endif
815#if AUDIT_DEBUG
816 context->put_count = 0;
817 context->ino_count = 0;
818#endif
819
8c8570fb 820 for (i = 0; i < context->name_count; i++) {
9c937dcc 821 if (context->names[i].name && context->names[i].name_put)
1da177e4 822 __putname(context->names[i].name);
8c8570fb 823 }
1da177e4 824 context->name_count = 0;
44707fdf
JB
825 path_put(&context->pwd);
826 context->pwd.dentry = NULL;
827 context->pwd.mnt = NULL;
1da177e4
LT
828}
829
830static inline void audit_free_aux(struct audit_context *context)
831{
832 struct audit_aux_data *aux;
833
834 while ((aux = context->aux)) {
835 context->aux = aux->next;
836 kfree(aux);
837 }
e54dc243
AG
838 while ((aux = context->aux_pids)) {
839 context->aux_pids = aux->next;
840 kfree(aux);
841 }
1da177e4
LT
842}
843
844static inline void audit_zero_context(struct audit_context *context,
845 enum audit_state state)
846{
1da177e4
LT
847 memset(context, 0, sizeof(*context));
848 context->state = state;
0590b933 849 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1da177e4
LT
850}
851
852static inline struct audit_context *audit_alloc_context(enum audit_state state)
853{
854 struct audit_context *context;
855
856 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
857 return NULL;
858 audit_zero_context(context, state);
916d7576 859 INIT_LIST_HEAD(&context->killed_trees);
1da177e4
LT
860 return context;
861}
862
b0dd25a8
RD
863/**
864 * audit_alloc - allocate an audit context block for a task
865 * @tsk: task
866 *
867 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
868 * if necessary. Doing so turns on system call auditing for the
869 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
870 * needed.
871 */
1da177e4
LT
872int audit_alloc(struct task_struct *tsk)
873{
874 struct audit_context *context;
875 enum audit_state state;
e048e02c 876 char *key = NULL;
1da177e4 877
b593d384 878 if (likely(!audit_ever_enabled))
1da177e4
LT
879 return 0; /* Return if not auditing. */
880
e048e02c 881 state = audit_filter_task(tsk, &key);
1da177e4
LT
882 if (likely(state == AUDIT_DISABLED))
883 return 0;
884
885 if (!(context = audit_alloc_context(state))) {
e048e02c 886 kfree(key);
1da177e4
LT
887 audit_log_lost("out of memory in audit_alloc");
888 return -ENOMEM;
889 }
e048e02c 890 context->filterkey = key;
1da177e4 891
1da177e4
LT
892 tsk->audit_context = context;
893 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
894 return 0;
895}
896
897static inline void audit_free_context(struct audit_context *context)
898{
899 struct audit_context *previous;
900 int count = 0;
901
902 do {
903 previous = context->previous;
904 if (previous || (count && count < 10)) {
905 ++count;
906 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
907 " freeing multiple contexts (%d)\n",
908 context->serial, context->major,
909 context->name_count, count);
910 }
911 audit_free_names(context);
74c3cbe3
AV
912 unroll_tree_refs(context, NULL, 0);
913 free_tree_refs(context);
1da177e4 914 audit_free_aux(context);
5adc8a6a 915 kfree(context->filterkey);
4f6b434f 916 kfree(context->sockaddr);
1da177e4
LT
917 kfree(context);
918 context = previous;
919 } while (context);
920 if (count >= 10)
921 printk(KERN_ERR "audit: freed %d contexts\n", count);
922}
923
161a09e7 924void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
925{
926 char *ctx = NULL;
c4823bce
AV
927 unsigned len;
928 int error;
929 u32 sid;
930
2a862b32 931 security_task_getsecid(current, &sid);
c4823bce
AV
932 if (!sid)
933 return;
8c8570fb 934
2a862b32 935 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
936 if (error) {
937 if (error != -EINVAL)
8c8570fb
DK
938 goto error_path;
939 return;
940 }
941
8c8570fb 942 audit_log_format(ab, " subj=%s", ctx);
2a862b32 943 security_release_secctx(ctx, len);
7306a0b9 944 return;
8c8570fb
DK
945
946error_path:
7306a0b9 947 audit_panic("error in audit_log_task_context");
8c8570fb
DK
948 return;
949}
950
161a09e7
JL
951EXPORT_SYMBOL(audit_log_task_context);
952
e495149b 953static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 954{
45d9bb0e
AV
955 char name[sizeof(tsk->comm)];
956 struct mm_struct *mm = tsk->mm;
219f0817
SS
957 struct vm_area_struct *vma;
958
e495149b
AV
959 /* tsk == current */
960
45d9bb0e 961 get_task_comm(name, tsk);
99e45eea
DW
962 audit_log_format(ab, " comm=");
963 audit_log_untrustedstring(ab, name);
219f0817 964
e495149b
AV
965 if (mm) {
966 down_read(&mm->mmap_sem);
967 vma = mm->mmap;
968 while (vma) {
969 if ((vma->vm_flags & VM_EXECUTABLE) &&
970 vma->vm_file) {
971 audit_log_d_path(ab, "exe=",
44707fdf 972 &vma->vm_file->f_path);
e495149b
AV
973 break;
974 }
975 vma = vma->vm_next;
219f0817 976 }
e495149b 977 up_read(&mm->mmap_sem);
219f0817 978 }
e495149b 979 audit_log_task_context(ab);
219f0817
SS
980}
981
e54dc243 982static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
983 uid_t auid, uid_t uid, unsigned int sessionid,
984 u32 sid, char *comm)
e54dc243
AG
985{
986 struct audit_buffer *ab;
2a862b32 987 char *ctx = NULL;
e54dc243
AG
988 u32 len;
989 int rc = 0;
990
991 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
992 if (!ab)
6246ccab 993 return rc;
e54dc243 994
4746ec5b
EP
995 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
996 uid, sessionid);
2a862b32 997 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 998 audit_log_format(ab, " obj=(none)");
e54dc243 999 rc = 1;
2a862b32
AD
1000 } else {
1001 audit_log_format(ab, " obj=%s", ctx);
1002 security_release_secctx(ctx, len);
1003 }
c2a7780e
EP
1004 audit_log_format(ab, " ocomm=");
1005 audit_log_untrustedstring(ab, comm);
e54dc243 1006 audit_log_end(ab);
e54dc243
AG
1007
1008 return rc;
1009}
1010
de6bbd1d
EP
1011/*
1012 * to_send and len_sent accounting are very loose estimates. We aren't
1013 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1014 * within about 500 bytes (next page boundry)
1015 *
1016 * why snprintf? an int is up to 12 digits long. if we just assumed when
1017 * logging that a[%d]= was going to be 16 characters long we would be wasting
1018 * space in every audit message. In one 7500 byte message we can log up to
1019 * about 1000 min size arguments. That comes down to about 50% waste of space
1020 * if we didn't do the snprintf to find out how long arg_num_len was.
1021 */
1022static int audit_log_single_execve_arg(struct audit_context *context,
1023 struct audit_buffer **ab,
1024 int arg_num,
1025 size_t *len_sent,
1026 const char __user *p,
1027 char *buf)
bdf4c48a 1028{
de6bbd1d
EP
1029 char arg_num_len_buf[12];
1030 const char __user *tmp_p = p;
b87ce6e4
EP
1031 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1032 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1033 size_t len, len_left, to_send;
1034 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1035 unsigned int i, has_cntl = 0, too_long = 0;
1036 int ret;
1037
1038 /* strnlen_user includes the null we don't want to send */
1039 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1040
de6bbd1d
EP
1041 /*
1042 * We just created this mm, if we can't find the strings
1043 * we just copied into it something is _very_ wrong. Similar
1044 * for strings that are too long, we should not have created
1045 * any.
1046 */
b0abcfc1 1047 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1048 WARN_ON(1);
1049 send_sig(SIGKILL, current, 0);
b0abcfc1 1050 return -1;
de6bbd1d 1051 }
040b3a2d 1052
de6bbd1d
EP
1053 /* walk the whole argument looking for non-ascii chars */
1054 do {
1055 if (len_left > MAX_EXECVE_AUDIT_LEN)
1056 to_send = MAX_EXECVE_AUDIT_LEN;
1057 else
1058 to_send = len_left;
1059 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1060 /*
de6bbd1d
EP
1061 * There is no reason for this copy to be short. We just
1062 * copied them here, and the mm hasn't been exposed to user-
1063 * space yet.
bdf4c48a 1064 */
de6bbd1d 1065 if (ret) {
bdf4c48a
PZ
1066 WARN_ON(1);
1067 send_sig(SIGKILL, current, 0);
b0abcfc1 1068 return -1;
bdf4c48a 1069 }
de6bbd1d
EP
1070 buf[to_send] = '\0';
1071 has_cntl = audit_string_contains_control(buf, to_send);
1072 if (has_cntl) {
1073 /*
1074 * hex messages get logged as 2 bytes, so we can only
1075 * send half as much in each message
1076 */
1077 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1078 break;
1079 }
de6bbd1d
EP
1080 len_left -= to_send;
1081 tmp_p += to_send;
1082 } while (len_left > 0);
1083
1084 len_left = len;
1085
1086 if (len > max_execve_audit_len)
1087 too_long = 1;
1088
1089 /* rewalk the argument actually logging the message */
1090 for (i = 0; len_left > 0; i++) {
1091 int room_left;
1092
1093 if (len_left > max_execve_audit_len)
1094 to_send = max_execve_audit_len;
1095 else
1096 to_send = len_left;
1097
1098 /* do we have space left to send this argument in this ab? */
1099 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1100 if (has_cntl)
1101 room_left -= (to_send * 2);
1102 else
1103 room_left -= to_send;
1104 if (room_left < 0) {
1105 *len_sent = 0;
1106 audit_log_end(*ab);
1107 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1108 if (!*ab)
1109 return 0;
1110 }
bdf4c48a 1111
bdf4c48a 1112 /*
de6bbd1d
EP
1113 * first record needs to say how long the original string was
1114 * so we can be sure nothing was lost.
1115 */
1116 if ((i == 0) && (too_long))
ca96a895 1117 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1118 has_cntl ? 2*len : len);
1119
1120 /*
1121 * normally arguments are small enough to fit and we already
1122 * filled buf above when we checked for control characters
1123 * so don't bother with another copy_from_user
bdf4c48a 1124 */
de6bbd1d
EP
1125 if (len >= max_execve_audit_len)
1126 ret = copy_from_user(buf, p, to_send);
1127 else
1128 ret = 0;
040b3a2d 1129 if (ret) {
bdf4c48a
PZ
1130 WARN_ON(1);
1131 send_sig(SIGKILL, current, 0);
b0abcfc1 1132 return -1;
bdf4c48a 1133 }
de6bbd1d
EP
1134 buf[to_send] = '\0';
1135
1136 /* actually log it */
ca96a895 1137 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1138 if (too_long)
1139 audit_log_format(*ab, "[%d]", i);
1140 audit_log_format(*ab, "=");
1141 if (has_cntl)
b556f8ad 1142 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1143 else
9d960985 1144 audit_log_string(*ab, buf);
de6bbd1d
EP
1145
1146 p += to_send;
1147 len_left -= to_send;
1148 *len_sent += arg_num_len;
1149 if (has_cntl)
1150 *len_sent += to_send * 2;
1151 else
1152 *len_sent += to_send;
1153 }
1154 /* include the null we didn't log */
1155 return len + 1;
1156}
1157
1158static void audit_log_execve_info(struct audit_context *context,
1159 struct audit_buffer **ab,
1160 struct audit_aux_data_execve *axi)
1161{
1162 int i;
1163 size_t len, len_sent = 0;
1164 const char __user *p;
1165 char *buf;
bdf4c48a 1166
de6bbd1d
EP
1167 if (axi->mm != current->mm)
1168 return; /* execve failed, no additional info */
1169
1170 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1171
ca96a895 1172 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1173
1174 /*
1175 * we need some kernel buffer to hold the userspace args. Just
1176 * allocate one big one rather than allocating one of the right size
1177 * for every single argument inside audit_log_single_execve_arg()
1178 * should be <8k allocation so should be pretty safe.
1179 */
1180 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1181 if (!buf) {
1182 audit_panic("out of memory for argv string\n");
1183 return;
bdf4c48a 1184 }
de6bbd1d
EP
1185
1186 for (i = 0; i < axi->argc; i++) {
1187 len = audit_log_single_execve_arg(context, ab, i,
1188 &len_sent, p, buf);
1189 if (len <= 0)
1190 break;
1191 p += len;
1192 }
1193 kfree(buf);
bdf4c48a
PZ
1194}
1195
851f7ff5
EP
1196static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1197{
1198 int i;
1199
1200 audit_log_format(ab, " %s=", prefix);
1201 CAP_FOR_EACH_U32(i) {
1202 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1203 }
1204}
1205
1206static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1207{
1208 kernel_cap_t *perm = &name->fcap.permitted;
1209 kernel_cap_t *inh = &name->fcap.inheritable;
1210 int log = 0;
1211
1212 if (!cap_isclear(*perm)) {
1213 audit_log_cap(ab, "cap_fp", perm);
1214 log = 1;
1215 }
1216 if (!cap_isclear(*inh)) {
1217 audit_log_cap(ab, "cap_fi", inh);
1218 log = 1;
1219 }
1220
1221 if (log)
1222 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1223}
1224
a33e6751 1225static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1226{
1227 struct audit_buffer *ab;
1228 int i;
1229
1230 ab = audit_log_start(context, GFP_KERNEL, context->type);
1231 if (!ab)
1232 return;
1233
1234 switch (context->type) {
1235 case AUDIT_SOCKETCALL: {
1236 int nargs = context->socketcall.nargs;
1237 audit_log_format(ab, "nargs=%d", nargs);
1238 for (i = 0; i < nargs; i++)
1239 audit_log_format(ab, " a%d=%lx", i,
1240 context->socketcall.args[i]);
1241 break; }
a33e6751
AV
1242 case AUDIT_IPC: {
1243 u32 osid = context->ipc.osid;
1244
1245 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1246 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1247 if (osid) {
1248 char *ctx = NULL;
1249 u32 len;
1250 if (security_secid_to_secctx(osid, &ctx, &len)) {
1251 audit_log_format(ab, " osid=%u", osid);
1252 *call_panic = 1;
1253 } else {
1254 audit_log_format(ab, " obj=%s", ctx);
1255 security_release_secctx(ctx, len);
1256 }
1257 }
e816f370
AV
1258 if (context->ipc.has_perm) {
1259 audit_log_end(ab);
1260 ab = audit_log_start(context, GFP_KERNEL,
1261 AUDIT_IPC_SET_PERM);
1262 audit_log_format(ab,
1263 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1264 context->ipc.qbytes,
1265 context->ipc.perm_uid,
1266 context->ipc.perm_gid,
1267 context->ipc.perm_mode);
1268 if (!ab)
1269 return;
1270 }
a33e6751 1271 break; }
564f6993
AV
1272 case AUDIT_MQ_OPEN: {
1273 audit_log_format(ab,
1274 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1275 "mq_msgsize=%ld mq_curmsgs=%ld",
1276 context->mq_open.oflag, context->mq_open.mode,
1277 context->mq_open.attr.mq_flags,
1278 context->mq_open.attr.mq_maxmsg,
1279 context->mq_open.attr.mq_msgsize,
1280 context->mq_open.attr.mq_curmsgs);
1281 break; }
c32c8af4
AV
1282 case AUDIT_MQ_SENDRECV: {
1283 audit_log_format(ab,
1284 "mqdes=%d msg_len=%zd msg_prio=%u "
1285 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1286 context->mq_sendrecv.mqdes,
1287 context->mq_sendrecv.msg_len,
1288 context->mq_sendrecv.msg_prio,
1289 context->mq_sendrecv.abs_timeout.tv_sec,
1290 context->mq_sendrecv.abs_timeout.tv_nsec);
1291 break; }
20114f71
AV
1292 case AUDIT_MQ_NOTIFY: {
1293 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1294 context->mq_notify.mqdes,
1295 context->mq_notify.sigev_signo);
1296 break; }
7392906e
AV
1297 case AUDIT_MQ_GETSETATTR: {
1298 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1299 audit_log_format(ab,
1300 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1301 "mq_curmsgs=%ld ",
1302 context->mq_getsetattr.mqdes,
1303 attr->mq_flags, attr->mq_maxmsg,
1304 attr->mq_msgsize, attr->mq_curmsgs);
1305 break; }
57f71a0a
AV
1306 case AUDIT_CAPSET: {
1307 audit_log_format(ab, "pid=%d", context->capset.pid);
1308 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1309 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1310 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1311 break; }
120a795d
AV
1312 case AUDIT_MMAP: {
1313 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1314 context->mmap.flags);
1315 break; }
f3298dc4
AV
1316 }
1317 audit_log_end(ab);
1318}
1319
e495149b 1320static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1321{
c69e8d9c 1322 const struct cred *cred;
9c7aa6aa 1323 int i, call_panic = 0;
1da177e4 1324 struct audit_buffer *ab;
7551ced3 1325 struct audit_aux_data *aux;
a6c043a8 1326 const char *tty;
1da177e4 1327
e495149b 1328 /* tsk == current */
3f2792ff 1329 context->pid = tsk->pid;
419c58f1
AV
1330 if (!context->ppid)
1331 context->ppid = sys_getppid();
c69e8d9c
DH
1332 cred = current_cred();
1333 context->uid = cred->uid;
1334 context->gid = cred->gid;
1335 context->euid = cred->euid;
1336 context->suid = cred->suid;
b6dff3ec 1337 context->fsuid = cred->fsuid;
c69e8d9c
DH
1338 context->egid = cred->egid;
1339 context->sgid = cred->sgid;
b6dff3ec 1340 context->fsgid = cred->fsgid;
3f2792ff 1341 context->personality = tsk->personality;
e495149b
AV
1342
1343 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1344 if (!ab)
1345 return; /* audit_panic has been called */
bccf6ae0
DW
1346 audit_log_format(ab, "arch=%x syscall=%d",
1347 context->arch, context->major);
1da177e4
LT
1348 if (context->personality != PER_LINUX)
1349 audit_log_format(ab, " per=%lx", context->personality);
1350 if (context->return_valid)
9f8dbe9c 1351 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1352 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1353 context->return_code);
eb84a20e 1354
dbda4c0b 1355 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1356 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1357 tty = tsk->signal->tty->name;
a6c043a8
SG
1358 else
1359 tty = "(none)";
dbda4c0b
AC
1360 spin_unlock_irq(&tsk->sighand->siglock);
1361
1da177e4
LT
1362 audit_log_format(ab,
1363 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1364 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1365 " euid=%u suid=%u fsuid=%u"
4746ec5b 1366 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1367 context->argv[0],
1368 context->argv[1],
1369 context->argv[2],
1370 context->argv[3],
1371 context->name_count,
f46038ff 1372 context->ppid,
1da177e4 1373 context->pid,
bfef93a5 1374 tsk->loginuid,
1da177e4
LT
1375 context->uid,
1376 context->gid,
1377 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1378 context->egid, context->sgid, context->fsgid, tty,
1379 tsk->sessionid);
eb84a20e 1380
eb84a20e 1381
e495149b 1382 audit_log_task_info(ab, tsk);
9d960985 1383 audit_log_key(ab, context->filterkey);
1da177e4 1384 audit_log_end(ab);
1da177e4 1385
7551ced3 1386 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1387
e495149b 1388 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1389 if (!ab)
1390 continue; /* audit_panic has been called */
1391
1da177e4 1392 switch (aux->type) {
20ca73bc 1393
473ae30b
AV
1394 case AUDIT_EXECVE: {
1395 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1396 audit_log_execve_info(context, &ab, axi);
473ae30b 1397 break; }
073115d6 1398
3fc689e9
EP
1399 case AUDIT_BPRM_FCAPS: {
1400 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1401 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1402 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1403 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1404 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1405 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1406 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1407 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1408 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1409 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1410 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1411 break; }
1412
1da177e4
LT
1413 }
1414 audit_log_end(ab);
1da177e4
LT
1415 }
1416
f3298dc4 1417 if (context->type)
a33e6751 1418 show_special(context, &call_panic);
f3298dc4 1419
157cf649
AV
1420 if (context->fds[0] >= 0) {
1421 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1422 if (ab) {
1423 audit_log_format(ab, "fd0=%d fd1=%d",
1424 context->fds[0], context->fds[1]);
1425 audit_log_end(ab);
1426 }
1427 }
1428
4f6b434f
AV
1429 if (context->sockaddr_len) {
1430 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1431 if (ab) {
1432 audit_log_format(ab, "saddr=");
1433 audit_log_n_hex(ab, (void *)context->sockaddr,
1434 context->sockaddr_len);
1435 audit_log_end(ab);
1436 }
1437 }
1438
e54dc243
AG
1439 for (aux = context->aux_pids; aux; aux = aux->next) {
1440 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1441
1442 for (i = 0; i < axs->pid_count; i++)
1443 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1444 axs->target_auid[i],
1445 axs->target_uid[i],
4746ec5b 1446 axs->target_sessionid[i],
c2a7780e
EP
1447 axs->target_sid[i],
1448 axs->target_comm[i]))
e54dc243 1449 call_panic = 1;
a5cb013d
AV
1450 }
1451
e54dc243
AG
1452 if (context->target_pid &&
1453 audit_log_pid_context(context, context->target_pid,
c2a7780e 1454 context->target_auid, context->target_uid,
4746ec5b 1455 context->target_sessionid,
c2a7780e 1456 context->target_sid, context->target_comm))
e54dc243
AG
1457 call_panic = 1;
1458
44707fdf 1459 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1460 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1461 if (ab) {
44707fdf 1462 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1463 audit_log_end(ab);
1464 }
1465 }
1da177e4 1466 for (i = 0; i < context->name_count; i++) {
9c937dcc 1467 struct audit_names *n = &context->names[i];
73241ccc 1468
e495149b 1469 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1470 if (!ab)
1471 continue; /* audit_panic has been called */
8f37d47c 1472
1da177e4 1473 audit_log_format(ab, "item=%d", i);
73241ccc 1474
9c937dcc
AG
1475 if (n->name) {
1476 switch(n->name_len) {
1477 case AUDIT_NAME_FULL:
1478 /* log the full path */
1479 audit_log_format(ab, " name=");
1480 audit_log_untrustedstring(ab, n->name);
1481 break;
1482 case 0:
1483 /* name was specified as a relative path and the
1484 * directory component is the cwd */
def57543 1485 audit_log_d_path(ab, "name=", &context->pwd);
9c937dcc
AG
1486 break;
1487 default:
1488 /* log the name's directory component */
1489 audit_log_format(ab, " name=");
b556f8ad
EP
1490 audit_log_n_untrustedstring(ab, n->name,
1491 n->name_len);
9c937dcc
AG
1492 }
1493 } else
1494 audit_log_format(ab, " name=(null)");
1495
1496 if (n->ino != (unsigned long)-1) {
1497 audit_log_format(ab, " inode=%lu"
1498 " dev=%02x:%02x mode=%#o"
1499 " ouid=%u ogid=%u rdev=%02x:%02x",
1500 n->ino,
1501 MAJOR(n->dev),
1502 MINOR(n->dev),
1503 n->mode,
1504 n->uid,
1505 n->gid,
1506 MAJOR(n->rdev),
1507 MINOR(n->rdev));
1508 }
1509 if (n->osid != 0) {
1b50eed9
SG
1510 char *ctx = NULL;
1511 u32 len;
2a862b32 1512 if (security_secid_to_secctx(
9c937dcc
AG
1513 n->osid, &ctx, &len)) {
1514 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1515 call_panic = 2;
2a862b32 1516 } else {
1b50eed9 1517 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1518 security_release_secctx(ctx, len);
1519 }
8c8570fb
DK
1520 }
1521
851f7ff5
EP
1522 audit_log_fcaps(ab, n);
1523
1da177e4
LT
1524 audit_log_end(ab);
1525 }
c0641f28
EP
1526
1527 /* Send end of event record to help user space know we are finished */
1528 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1529 if (ab)
1530 audit_log_end(ab);
9c7aa6aa
SG
1531 if (call_panic)
1532 audit_panic("error converting sid to string");
1da177e4
LT
1533}
1534
b0dd25a8
RD
1535/**
1536 * audit_free - free a per-task audit context
1537 * @tsk: task whose audit context block to free
1538 *
fa84cb93 1539 * Called from copy_process and do_exit
b0dd25a8 1540 */
1da177e4
LT
1541void audit_free(struct task_struct *tsk)
1542{
1543 struct audit_context *context;
1544
1da177e4 1545 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1546 if (likely(!context))
1547 return;
1548
1549 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1550 * function (e.g., exit_group), then free context block.
1551 * We use GFP_ATOMIC here because we might be doing this
f5561964 1552 * in the context of the idle thread */
e495149b 1553 /* that can happen only if we are called from do_exit() */
0590b933 1554 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1555 audit_log_exit(context, tsk);
916d7576
AV
1556 if (!list_empty(&context->killed_trees))
1557 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1558
1559 audit_free_context(context);
1560}
1561
b0dd25a8
RD
1562/**
1563 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1564 * @arch: architecture type
1565 * @major: major syscall type (function)
1566 * @a1: additional syscall register 1
1567 * @a2: additional syscall register 2
1568 * @a3: additional syscall register 3
1569 * @a4: additional syscall register 4
1570 *
1571 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1572 * audit context was created when the task was created and the state or
1573 * filters demand the audit context be built. If the state from the
1574 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1575 * then the record will be written at syscall exit time (otherwise, it
1576 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1577 * be written).
1578 */
5411be59 1579void audit_syscall_entry(int arch, int major,
1da177e4
LT
1580 unsigned long a1, unsigned long a2,
1581 unsigned long a3, unsigned long a4)
1582{
5411be59 1583 struct task_struct *tsk = current;
1da177e4
LT
1584 struct audit_context *context = tsk->audit_context;
1585 enum audit_state state;
1586
86a1c34a
RM
1587 if (unlikely(!context))
1588 return;
1da177e4 1589
b0dd25a8
RD
1590 /*
1591 * This happens only on certain architectures that make system
1da177e4
LT
1592 * calls in kernel_thread via the entry.S interface, instead of
1593 * with direct calls. (If you are porting to a new
1594 * architecture, hitting this condition can indicate that you
1595 * got the _exit/_leave calls backward in entry.S.)
1596 *
1597 * i386 no
1598 * x86_64 no
2ef9481e 1599 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1600 *
1601 * This also happens with vm86 emulation in a non-nested manner
1602 * (entries without exits), so this case must be caught.
1603 */
1604 if (context->in_syscall) {
1605 struct audit_context *newctx;
1606
1da177e4
LT
1607#if AUDIT_DEBUG
1608 printk(KERN_ERR
1609 "audit(:%d) pid=%d in syscall=%d;"
1610 " entering syscall=%d\n",
1611 context->serial, tsk->pid, context->major, major);
1612#endif
1613 newctx = audit_alloc_context(context->state);
1614 if (newctx) {
1615 newctx->previous = context;
1616 context = newctx;
1617 tsk->audit_context = newctx;
1618 } else {
1619 /* If we can't alloc a new context, the best we
1620 * can do is to leak memory (any pending putname
1621 * will be lost). The only other alternative is
1622 * to abandon auditing. */
1623 audit_zero_context(context, context->state);
1624 }
1625 }
1626 BUG_ON(context->in_syscall || context->name_count);
1627
1628 if (!audit_enabled)
1629 return;
1630
2fd6f58b 1631 context->arch = arch;
1da177e4
LT
1632 context->major = major;
1633 context->argv[0] = a1;
1634 context->argv[1] = a2;
1635 context->argv[2] = a3;
1636 context->argv[3] = a4;
1637
1638 state = context->state;
d51374ad 1639 context->dummy = !audit_n_rules;
0590b933
AV
1640 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1641 context->prio = 0;
0f45aa18 1642 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1643 }
1da177e4
LT
1644 if (likely(state == AUDIT_DISABLED))
1645 return;
1646
ce625a80 1647 context->serial = 0;
1da177e4
LT
1648 context->ctime = CURRENT_TIME;
1649 context->in_syscall = 1;
0590b933 1650 context->current_state = state;
419c58f1 1651 context->ppid = 0;
1da177e4
LT
1652}
1653
a64e6494
AV
1654void audit_finish_fork(struct task_struct *child)
1655{
1656 struct audit_context *ctx = current->audit_context;
1657 struct audit_context *p = child->audit_context;
0590b933
AV
1658 if (!p || !ctx)
1659 return;
1660 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
a64e6494
AV
1661 return;
1662 p->arch = ctx->arch;
1663 p->major = ctx->major;
1664 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1665 p->ctime = ctx->ctime;
1666 p->dummy = ctx->dummy;
a64e6494
AV
1667 p->in_syscall = ctx->in_syscall;
1668 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1669 p->ppid = current->pid;
0590b933
AV
1670 p->prio = ctx->prio;
1671 p->current_state = ctx->current_state;
a64e6494
AV
1672}
1673
b0dd25a8
RD
1674/**
1675 * audit_syscall_exit - deallocate audit context after a system call
b0dd25a8
RD
1676 * @valid: success/failure flag
1677 * @return_code: syscall return value
1678 *
1679 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1680 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1681 * filtering, or because some other part of the kernel write an audit
1682 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1683 * free the names stored from getname().
1684 */
5411be59 1685void audit_syscall_exit(int valid, long return_code)
1da177e4 1686{
5411be59 1687 struct task_struct *tsk = current;
1da177e4
LT
1688 struct audit_context *context;
1689
2fd6f58b 1690 context = audit_get_context(tsk, valid, return_code);
1da177e4 1691
1da177e4 1692 if (likely(!context))
97e94c45 1693 return;
1da177e4 1694
0590b933 1695 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1696 audit_log_exit(context, tsk);
1da177e4
LT
1697
1698 context->in_syscall = 0;
0590b933 1699 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1700
916d7576
AV
1701 if (!list_empty(&context->killed_trees))
1702 audit_kill_trees(&context->killed_trees);
1703
1da177e4
LT
1704 if (context->previous) {
1705 struct audit_context *new_context = context->previous;
1706 context->previous = NULL;
1707 audit_free_context(context);
1708 tsk->audit_context = new_context;
1709 } else {
1710 audit_free_names(context);
74c3cbe3 1711 unroll_tree_refs(context, NULL, 0);
1da177e4 1712 audit_free_aux(context);
e54dc243
AG
1713 context->aux = NULL;
1714 context->aux_pids = NULL;
a5cb013d 1715 context->target_pid = 0;
e54dc243 1716 context->target_sid = 0;
4f6b434f 1717 context->sockaddr_len = 0;
f3298dc4 1718 context->type = 0;
157cf649 1719 context->fds[0] = -1;
e048e02c
AV
1720 if (context->state != AUDIT_RECORD_CONTEXT) {
1721 kfree(context->filterkey);
1722 context->filterkey = NULL;
1723 }
1da177e4
LT
1724 tsk->audit_context = context;
1725 }
1da177e4
LT
1726}
1727
74c3cbe3
AV
1728static inline void handle_one(const struct inode *inode)
1729{
1730#ifdef CONFIG_AUDIT_TREE
1731 struct audit_context *context;
1732 struct audit_tree_refs *p;
1733 struct audit_chunk *chunk;
1734 int count;
e61ce867 1735 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1736 return;
1737 context = current->audit_context;
1738 p = context->trees;
1739 count = context->tree_count;
1740 rcu_read_lock();
1741 chunk = audit_tree_lookup(inode);
1742 rcu_read_unlock();
1743 if (!chunk)
1744 return;
1745 if (likely(put_tree_ref(context, chunk)))
1746 return;
1747 if (unlikely(!grow_tree_refs(context))) {
436c405c 1748 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1749 audit_set_auditable(context);
1750 audit_put_chunk(chunk);
1751 unroll_tree_refs(context, p, count);
1752 return;
1753 }
1754 put_tree_ref(context, chunk);
1755#endif
1756}
1757
1758static void handle_path(const struct dentry *dentry)
1759{
1760#ifdef CONFIG_AUDIT_TREE
1761 struct audit_context *context;
1762 struct audit_tree_refs *p;
1763 const struct dentry *d, *parent;
1764 struct audit_chunk *drop;
1765 unsigned long seq;
1766 int count;
1767
1768 context = current->audit_context;
1769 p = context->trees;
1770 count = context->tree_count;
1771retry:
1772 drop = NULL;
1773 d = dentry;
1774 rcu_read_lock();
1775 seq = read_seqbegin(&rename_lock);
1776 for(;;) {
1777 struct inode *inode = d->d_inode;
e61ce867 1778 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1779 struct audit_chunk *chunk;
1780 chunk = audit_tree_lookup(inode);
1781 if (chunk) {
1782 if (unlikely(!put_tree_ref(context, chunk))) {
1783 drop = chunk;
1784 break;
1785 }
1786 }
1787 }
1788 parent = d->d_parent;
1789 if (parent == d)
1790 break;
1791 d = parent;
1792 }
1793 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1794 rcu_read_unlock();
1795 if (!drop) {
1796 /* just a race with rename */
1797 unroll_tree_refs(context, p, count);
1798 goto retry;
1799 }
1800 audit_put_chunk(drop);
1801 if (grow_tree_refs(context)) {
1802 /* OK, got more space */
1803 unroll_tree_refs(context, p, count);
1804 goto retry;
1805 }
1806 /* too bad */
1807 printk(KERN_WARNING
436c405c 1808 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1809 unroll_tree_refs(context, p, count);
1810 audit_set_auditable(context);
1811 return;
1812 }
1813 rcu_read_unlock();
1814#endif
1815}
1816
b0dd25a8
RD
1817/**
1818 * audit_getname - add a name to the list
1819 * @name: name to add
1820 *
1821 * Add a name to the list of audit names for this context.
1822 * Called from fs/namei.c:getname().
1823 */
d8945bb5 1824void __audit_getname(const char *name)
1da177e4
LT
1825{
1826 struct audit_context *context = current->audit_context;
1827
d8945bb5 1828 if (IS_ERR(name) || !name)
1da177e4
LT
1829 return;
1830
1831 if (!context->in_syscall) {
1832#if AUDIT_DEBUG == 2
1833 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1834 __FILE__, __LINE__, context->serial, name);
1835 dump_stack();
1836#endif
1837 return;
1838 }
1839 BUG_ON(context->name_count >= AUDIT_NAMES);
1840 context->names[context->name_count].name = name;
9c937dcc
AG
1841 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1842 context->names[context->name_count].name_put = 1;
1da177e4 1843 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1844 context->names[context->name_count].osid = 0;
1da177e4 1845 ++context->name_count;
f7ad3c6b
MS
1846 if (!context->pwd.dentry)
1847 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1848}
1849
b0dd25a8
RD
1850/* audit_putname - intercept a putname request
1851 * @name: name to intercept and delay for putname
1852 *
1853 * If we have stored the name from getname in the audit context,
1854 * then we delay the putname until syscall exit.
1855 * Called from include/linux/fs.h:putname().
1856 */
1da177e4
LT
1857void audit_putname(const char *name)
1858{
1859 struct audit_context *context = current->audit_context;
1860
1861 BUG_ON(!context);
1862 if (!context->in_syscall) {
1863#if AUDIT_DEBUG == 2
1864 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1865 __FILE__, __LINE__, context->serial, name);
1866 if (context->name_count) {
1867 int i;
1868 for (i = 0; i < context->name_count; i++)
1869 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1870 context->names[i].name,
73241ccc 1871 context->names[i].name ?: "(null)");
1da177e4
LT
1872 }
1873#endif
1874 __putname(name);
1875 }
1876#if AUDIT_DEBUG
1877 else {
1878 ++context->put_count;
1879 if (context->put_count > context->name_count) {
1880 printk(KERN_ERR "%s:%d(:%d): major=%d"
1881 " in_syscall=%d putname(%p) name_count=%d"
1882 " put_count=%d\n",
1883 __FILE__, __LINE__,
1884 context->serial, context->major,
1885 context->in_syscall, name, context->name_count,
1886 context->put_count);
1887 dump_stack();
1888 }
1889 }
1890#endif
1891}
1892
5712e88f
AG
1893static int audit_inc_name_count(struct audit_context *context,
1894 const struct inode *inode)
1895{
1896 if (context->name_count >= AUDIT_NAMES) {
1897 if (inode)
449cedf0 1898 printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
436c405c 1899 "dev=%02x:%02x, inode=%lu\n",
5712e88f
AG
1900 MAJOR(inode->i_sb->s_dev),
1901 MINOR(inode->i_sb->s_dev),
1902 inode->i_ino);
1903
1904 else
436c405c 1905 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
5712e88f
AG
1906 return 1;
1907 }
1908 context->name_count++;
1909#if AUDIT_DEBUG
1910 context->ino_count++;
1911#endif
1912 return 0;
1913}
1914
851f7ff5
EP
1915
1916static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1917{
1918 struct cpu_vfs_cap_data caps;
1919 int rc;
1920
1921 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1922 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1923 name->fcap.fE = 0;
1924 name->fcap_ver = 0;
1925
1926 if (!dentry)
1927 return 0;
1928
1929 rc = get_vfs_caps_from_disk(dentry, &caps);
1930 if (rc)
1931 return rc;
1932
1933 name->fcap.permitted = caps.permitted;
1934 name->fcap.inheritable = caps.inheritable;
1935 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1936 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1937
1938 return 0;
1939}
1940
1941
3e2efce0 1942/* Copy inode data into an audit_names. */
851f7ff5
EP
1943static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1944 const struct inode *inode)
8c8570fb 1945{
3e2efce0
AG
1946 name->ino = inode->i_ino;
1947 name->dev = inode->i_sb->s_dev;
1948 name->mode = inode->i_mode;
1949 name->uid = inode->i_uid;
1950 name->gid = inode->i_gid;
1951 name->rdev = inode->i_rdev;
2a862b32 1952 security_inode_getsecid(inode, &name->osid);
851f7ff5 1953 audit_copy_fcaps(name, dentry);
8c8570fb
DK
1954}
1955
b0dd25a8
RD
1956/**
1957 * audit_inode - store the inode and device from a lookup
1958 * @name: name being audited
481968f4 1959 * @dentry: dentry being audited
b0dd25a8
RD
1960 *
1961 * Called from fs/namei.c:path_lookup().
1962 */
5a190ae6 1963void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1964{
1965 int idx;
1966 struct audit_context *context = current->audit_context;
74c3cbe3 1967 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1968
1969 if (!context->in_syscall)
1970 return;
1971 if (context->name_count
1972 && context->names[context->name_count-1].name
1973 && context->names[context->name_count-1].name == name)
1974 idx = context->name_count - 1;
1975 else if (context->name_count > 1
1976 && context->names[context->name_count-2].name
1977 && context->names[context->name_count-2].name == name)
1978 idx = context->name_count - 2;
1979 else {
1980 /* FIXME: how much do we care about inodes that have no
1981 * associated name? */
5712e88f 1982 if (audit_inc_name_count(context, inode))
1da177e4 1983 return;
5712e88f 1984 idx = context->name_count - 1;
1da177e4 1985 context->names[idx].name = NULL;
1da177e4 1986 }
74c3cbe3 1987 handle_path(dentry);
851f7ff5 1988 audit_copy_inode(&context->names[idx], dentry, inode);
73241ccc
AG
1989}
1990
1991/**
1992 * audit_inode_child - collect inode info for created/removed objects
481968f4 1993 * @dentry: dentry being audited
73d3ec5a 1994 * @parent: inode of dentry parent
73241ccc
AG
1995 *
1996 * For syscalls that create or remove filesystem objects, audit_inode
1997 * can only collect information for the filesystem object's parent.
1998 * This call updates the audit context with the child's information.
1999 * Syscalls that create a new filesystem object must be hooked after
2000 * the object is created. Syscalls that remove a filesystem object
2001 * must be hooked prior, in order to capture the target inode during
2002 * unsuccessful attempts.
2003 */
cccc6bba 2004void __audit_inode_child(const struct dentry *dentry,
73d3ec5a 2005 const struct inode *parent)
73241ccc
AG
2006{
2007 int idx;
2008 struct audit_context *context = current->audit_context;
5712e88f 2009 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 2010 const struct inode *inode = dentry->d_inode;
cccc6bba 2011 const char *dname = dentry->d_name.name;
9c937dcc 2012 int dirlen = 0;
73241ccc
AG
2013
2014 if (!context->in_syscall)
2015 return;
2016
74c3cbe3
AV
2017 if (inode)
2018 handle_one(inode);
73241ccc 2019
5712e88f
AG
2020 /* parent is more likely, look for it first */
2021 for (idx = 0; idx < context->name_count; idx++) {
2022 struct audit_names *n = &context->names[idx];
f368c07d 2023
5712e88f
AG
2024 if (!n->name)
2025 continue;
2026
2027 if (n->ino == parent->i_ino &&
2028 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2029 n->name_len = dirlen; /* update parent data in place */
2030 found_parent = n->name;
2031 goto add_names;
f368c07d 2032 }
5712e88f 2033 }
73241ccc 2034
5712e88f
AG
2035 /* no matching parent, look for matching child */
2036 for (idx = 0; idx < context->name_count; idx++) {
2037 struct audit_names *n = &context->names[idx];
2038
2039 if (!n->name)
2040 continue;
2041
2042 /* strcmp() is the more likely scenario */
2043 if (!strcmp(dname, n->name) ||
2044 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2045 if (inode)
851f7ff5 2046 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2047 else
2048 n->ino = (unsigned long)-1;
2049 found_child = n->name;
2050 goto add_names;
2051 }
ac9910ce 2052 }
5712e88f
AG
2053
2054add_names:
2055 if (!found_parent) {
2056 if (audit_inc_name_count(context, parent))
ac9910ce 2057 return;
5712e88f
AG
2058 idx = context->name_count - 1;
2059 context->names[idx].name = NULL;
851f7ff5 2060 audit_copy_inode(&context->names[idx], NULL, parent);
73d3ec5a 2061 }
5712e88f
AG
2062
2063 if (!found_child) {
2064 if (audit_inc_name_count(context, inode))
2065 return;
2066 idx = context->name_count - 1;
2067
2068 /* Re-use the name belonging to the slot for a matching parent
2069 * directory. All names for this context are relinquished in
2070 * audit_free_names() */
2071 if (found_parent) {
2072 context->names[idx].name = found_parent;
2073 context->names[idx].name_len = AUDIT_NAME_FULL;
2074 /* don't call __putname() */
2075 context->names[idx].name_put = 0;
2076 } else {
2077 context->names[idx].name = NULL;
2078 }
2079
2080 if (inode)
851f7ff5 2081 audit_copy_inode(&context->names[idx], NULL, inode);
5712e88f
AG
2082 else
2083 context->names[idx].ino = (unsigned long)-1;
2084 }
3e2efce0 2085}
50e437d5 2086EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2087
b0dd25a8
RD
2088/**
2089 * auditsc_get_stamp - get local copies of audit_context values
2090 * @ctx: audit_context for the task
2091 * @t: timespec to store time recorded in the audit_context
2092 * @serial: serial value that is recorded in the audit_context
2093 *
2094 * Also sets the context as auditable.
2095 */
48887e63 2096int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2097 struct timespec *t, unsigned int *serial)
1da177e4 2098{
48887e63
AV
2099 if (!ctx->in_syscall)
2100 return 0;
ce625a80
DW
2101 if (!ctx->serial)
2102 ctx->serial = audit_serial();
bfb4496e
DW
2103 t->tv_sec = ctx->ctime.tv_sec;
2104 t->tv_nsec = ctx->ctime.tv_nsec;
2105 *serial = ctx->serial;
0590b933
AV
2106 if (!ctx->prio) {
2107 ctx->prio = 1;
2108 ctx->current_state = AUDIT_RECORD_CONTEXT;
2109 }
48887e63 2110 return 1;
1da177e4
LT
2111}
2112
4746ec5b
EP
2113/* global counter which is incremented every time something logs in */
2114static atomic_t session_id = ATOMIC_INIT(0);
2115
b0dd25a8
RD
2116/**
2117 * audit_set_loginuid - set a task's audit_context loginuid
2118 * @task: task whose audit context is being modified
2119 * @loginuid: loginuid value
2120 *
2121 * Returns 0.
2122 *
2123 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2124 */
456be6cd 2125int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 2126{
4746ec5b 2127 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
2128 struct audit_context *context = task->audit_context;
2129
bfef93a5
AV
2130 if (context && context->in_syscall) {
2131 struct audit_buffer *ab;
2132
2133 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2134 if (ab) {
2135 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2136 "old auid=%u new auid=%u"
2137 " old ses=%u new ses=%u",
c69e8d9c 2138 task->pid, task_uid(task),
4746ec5b
EP
2139 task->loginuid, loginuid,
2140 task->sessionid, sessionid);
bfef93a5 2141 audit_log_end(ab);
c0404993 2142 }
1da177e4 2143 }
4746ec5b 2144 task->sessionid = sessionid;
bfef93a5 2145 task->loginuid = loginuid;
1da177e4
LT
2146 return 0;
2147}
2148
20ca73bc
GW
2149/**
2150 * __audit_mq_open - record audit data for a POSIX MQ open
2151 * @oflag: open flag
2152 * @mode: mode bits
6b962559 2153 * @attr: queue attributes
20ca73bc 2154 *
20ca73bc 2155 */
564f6993 2156void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
20ca73bc 2157{
20ca73bc
GW
2158 struct audit_context *context = current->audit_context;
2159
564f6993
AV
2160 if (attr)
2161 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2162 else
2163 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2164
564f6993
AV
2165 context->mq_open.oflag = oflag;
2166 context->mq_open.mode = mode;
20ca73bc 2167
564f6993 2168 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2169}
2170
2171/**
c32c8af4 2172 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2173 * @mqdes: MQ descriptor
2174 * @msg_len: Message length
2175 * @msg_prio: Message priority
c32c8af4 2176 * @abs_timeout: Message timeout in absolute time
20ca73bc 2177 *
20ca73bc 2178 */
c32c8af4
AV
2179void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2180 const struct timespec *abs_timeout)
20ca73bc 2181{
20ca73bc 2182 struct audit_context *context = current->audit_context;
c32c8af4 2183 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2184
c32c8af4
AV
2185 if (abs_timeout)
2186 memcpy(p, abs_timeout, sizeof(struct timespec));
2187 else
2188 memset(p, 0, sizeof(struct timespec));
20ca73bc 2189
c32c8af4
AV
2190 context->mq_sendrecv.mqdes = mqdes;
2191 context->mq_sendrecv.msg_len = msg_len;
2192 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2193
c32c8af4 2194 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2195}
2196
2197/**
2198 * __audit_mq_notify - record audit data for a POSIX MQ notify
2199 * @mqdes: MQ descriptor
6b962559 2200 * @notification: Notification event
20ca73bc 2201 *
20ca73bc
GW
2202 */
2203
20114f71 2204void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2205{
20ca73bc
GW
2206 struct audit_context *context = current->audit_context;
2207
20114f71
AV
2208 if (notification)
2209 context->mq_notify.sigev_signo = notification->sigev_signo;
2210 else
2211 context->mq_notify.sigev_signo = 0;
20ca73bc 2212
20114f71
AV
2213 context->mq_notify.mqdes = mqdes;
2214 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2215}
2216
2217/**
2218 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2219 * @mqdes: MQ descriptor
2220 * @mqstat: MQ flags
2221 *
20ca73bc 2222 */
7392906e 2223void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2224{
20ca73bc 2225 struct audit_context *context = current->audit_context;
7392906e
AV
2226 context->mq_getsetattr.mqdes = mqdes;
2227 context->mq_getsetattr.mqstat = *mqstat;
2228 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2229}
2230
b0dd25a8 2231/**
073115d6
SG
2232 * audit_ipc_obj - record audit data for ipc object
2233 * @ipcp: ipc permissions
2234 *
073115d6 2235 */
a33e6751 2236void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2237{
073115d6 2238 struct audit_context *context = current->audit_context;
a33e6751
AV
2239 context->ipc.uid = ipcp->uid;
2240 context->ipc.gid = ipcp->gid;
2241 context->ipc.mode = ipcp->mode;
e816f370 2242 context->ipc.has_perm = 0;
a33e6751
AV
2243 security_ipc_getsecid(ipcp, &context->ipc.osid);
2244 context->type = AUDIT_IPC;
073115d6
SG
2245}
2246
2247/**
2248 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2249 * @qbytes: msgq bytes
2250 * @uid: msgq user id
2251 * @gid: msgq group id
2252 * @mode: msgq mode (permissions)
2253 *
e816f370 2254 * Called only after audit_ipc_obj().
b0dd25a8 2255 */
e816f370 2256void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4 2257{
1da177e4
LT
2258 struct audit_context *context = current->audit_context;
2259
e816f370
AV
2260 context->ipc.qbytes = qbytes;
2261 context->ipc.perm_uid = uid;
2262 context->ipc.perm_gid = gid;
2263 context->ipc.perm_mode = mode;
2264 context->ipc.has_perm = 1;
1da177e4 2265}
c2f0c7c3 2266
473ae30b
AV
2267int audit_bprm(struct linux_binprm *bprm)
2268{
2269 struct audit_aux_data_execve *ax;
2270 struct audit_context *context = current->audit_context;
473ae30b 2271
5ac3a9c2 2272 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2273 return 0;
2274
bdf4c48a 2275 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2276 if (!ax)
2277 return -ENOMEM;
2278
2279 ax->argc = bprm->argc;
2280 ax->envc = bprm->envc;
bdf4c48a 2281 ax->mm = bprm->mm;
473ae30b
AV
2282 ax->d.type = AUDIT_EXECVE;
2283 ax->d.next = context->aux;
2284 context->aux = (void *)ax;
2285 return 0;
2286}
2287
2288
b0dd25a8
RD
2289/**
2290 * audit_socketcall - record audit data for sys_socketcall
2291 * @nargs: number of args
2292 * @args: args array
2293 *
b0dd25a8 2294 */
f3298dc4 2295void audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2296{
3ec3b2fb
DW
2297 struct audit_context *context = current->audit_context;
2298
5ac3a9c2 2299 if (likely(!context || context->dummy))
f3298dc4 2300 return;
3ec3b2fb 2301
f3298dc4
AV
2302 context->type = AUDIT_SOCKETCALL;
2303 context->socketcall.nargs = nargs;
2304 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2305}
2306
db349509
AV
2307/**
2308 * __audit_fd_pair - record audit data for pipe and socketpair
2309 * @fd1: the first file descriptor
2310 * @fd2: the second file descriptor
2311 *
db349509 2312 */
157cf649 2313void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2314{
2315 struct audit_context *context = current->audit_context;
157cf649
AV
2316 context->fds[0] = fd1;
2317 context->fds[1] = fd2;
db349509
AV
2318}
2319
b0dd25a8
RD
2320/**
2321 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2322 * @len: data length in user space
2323 * @a: data address in kernel space
2324 *
2325 * Returns 0 for success or NULL context or < 0 on error.
2326 */
3ec3b2fb
DW
2327int audit_sockaddr(int len, void *a)
2328{
3ec3b2fb
DW
2329 struct audit_context *context = current->audit_context;
2330
5ac3a9c2 2331 if (likely(!context || context->dummy))
3ec3b2fb
DW
2332 return 0;
2333
4f6b434f
AV
2334 if (!context->sockaddr) {
2335 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2336 if (!p)
2337 return -ENOMEM;
2338 context->sockaddr = p;
2339 }
3ec3b2fb 2340
4f6b434f
AV
2341 context->sockaddr_len = len;
2342 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2343 return 0;
2344}
2345
a5cb013d
AV
2346void __audit_ptrace(struct task_struct *t)
2347{
2348 struct audit_context *context = current->audit_context;
2349
2350 context->target_pid = t->pid;
c2a7780e 2351 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2352 context->target_uid = task_uid(t);
4746ec5b 2353 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2354 security_task_getsecid(t, &context->target_sid);
c2a7780e 2355 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2356}
2357
b0dd25a8
RD
2358/**
2359 * audit_signal_info - record signal info for shutting down audit subsystem
2360 * @sig: signal value
2361 * @t: task being signaled
2362 *
2363 * If the audit subsystem is being terminated, record the task (pid)
2364 * and uid that is doing that.
2365 */
e54dc243 2366int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2367{
e54dc243
AG
2368 struct audit_aux_data_pids *axp;
2369 struct task_struct *tsk = current;
2370 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2371 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2372
175fc484 2373 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2374 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2375 audit_sig_pid = tsk->pid;
bfef93a5
AV
2376 if (tsk->loginuid != -1)
2377 audit_sig_uid = tsk->loginuid;
175fc484 2378 else
c69e8d9c 2379 audit_sig_uid = uid;
2a862b32 2380 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2381 }
2382 if (!audit_signals || audit_dummy_context())
2383 return 0;
c2f0c7c3 2384 }
e54dc243 2385
e54dc243
AG
2386 /* optimize the common case by putting first signal recipient directly
2387 * in audit_context */
2388 if (!ctx->target_pid) {
2389 ctx->target_pid = t->tgid;
c2a7780e 2390 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2391 ctx->target_uid = t_uid;
4746ec5b 2392 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2393 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2394 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2395 return 0;
2396 }
2397
2398 axp = (void *)ctx->aux_pids;
2399 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2400 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2401 if (!axp)
2402 return -ENOMEM;
2403
2404 axp->d.type = AUDIT_OBJ_PID;
2405 axp->d.next = ctx->aux_pids;
2406 ctx->aux_pids = (void *)axp;
2407 }
88ae704c 2408 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2409
2410 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2411 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2412 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2413 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2414 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2415 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2416 axp->pid_count++;
2417
2418 return 0;
c2f0c7c3 2419}
0a4ff8c2 2420
3fc689e9
EP
2421/**
2422 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2423 * @bprm: pointer to the bprm being processed
2424 * @new: the proposed new credentials
2425 * @old: the old credentials
3fc689e9
EP
2426 *
2427 * Simply check if the proc already has the caps given by the file and if not
2428 * store the priv escalation info for later auditing at the end of the syscall
2429 *
3fc689e9
EP
2430 * -Eric
2431 */
d84f4f99
DH
2432int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2433 const struct cred *new, const struct cred *old)
3fc689e9
EP
2434{
2435 struct audit_aux_data_bprm_fcaps *ax;
2436 struct audit_context *context = current->audit_context;
2437 struct cpu_vfs_cap_data vcaps;
2438 struct dentry *dentry;
2439
2440 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2441 if (!ax)
d84f4f99 2442 return -ENOMEM;
3fc689e9
EP
2443
2444 ax->d.type = AUDIT_BPRM_FCAPS;
2445 ax->d.next = context->aux;
2446 context->aux = (void *)ax;
2447
2448 dentry = dget(bprm->file->f_dentry);
2449 get_vfs_caps_from_disk(dentry, &vcaps);
2450 dput(dentry);
2451
2452 ax->fcap.permitted = vcaps.permitted;
2453 ax->fcap.inheritable = vcaps.inheritable;
2454 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2455 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2456
d84f4f99
DH
2457 ax->old_pcap.permitted = old->cap_permitted;
2458 ax->old_pcap.inheritable = old->cap_inheritable;
2459 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2460
d84f4f99
DH
2461 ax->new_pcap.permitted = new->cap_permitted;
2462 ax->new_pcap.inheritable = new->cap_inheritable;
2463 ax->new_pcap.effective = new->cap_effective;
2464 return 0;
3fc689e9
EP
2465}
2466
e68b75a0
EP
2467/**
2468 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2469 * @pid: target pid of the capset call
2470 * @new: the new credentials
2471 * @old: the old (current) credentials
e68b75a0
EP
2472 *
2473 * Record the aguments userspace sent to sys_capset for later printing by the
2474 * audit system if applicable
2475 */
57f71a0a 2476void __audit_log_capset(pid_t pid,
d84f4f99 2477 const struct cred *new, const struct cred *old)
e68b75a0 2478{
e68b75a0 2479 struct audit_context *context = current->audit_context;
57f71a0a
AV
2480 context->capset.pid = pid;
2481 context->capset.cap.effective = new->cap_effective;
2482 context->capset.cap.inheritable = new->cap_effective;
2483 context->capset.cap.permitted = new->cap_permitted;
2484 context->type = AUDIT_CAPSET;
e68b75a0
EP
2485}
2486
120a795d
AV
2487void __audit_mmap_fd(int fd, int flags)
2488{
2489 struct audit_context *context = current->audit_context;
2490 context->mmap.fd = fd;
2491 context->mmap.flags = flags;
2492 context->type = AUDIT_MMAP;
2493}
2494
0a4ff8c2
SG
2495/**
2496 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2497 * @signr: signal value
0a4ff8c2
SG
2498 *
2499 * If a process ends with a core dump, something fishy is going on and we
2500 * should record the event for investigation.
2501 */
2502void audit_core_dumps(long signr)
2503{
2504 struct audit_buffer *ab;
2505 u32 sid;
76aac0e9
DH
2506 uid_t auid = audit_get_loginuid(current), uid;
2507 gid_t gid;
4746ec5b 2508 unsigned int sessionid = audit_get_sessionid(current);
0a4ff8c2
SG
2509
2510 if (!audit_enabled)
2511 return;
2512
2513 if (signr == SIGQUIT) /* don't care for those */
2514 return;
2515
2516 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
76aac0e9 2517 current_uid_gid(&uid, &gid);
4746ec5b 2518 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
76aac0e9 2519 auid, uid, gid, sessionid);
2a862b32 2520 security_task_getsecid(current, &sid);
0a4ff8c2
SG
2521 if (sid) {
2522 char *ctx = NULL;
2523 u32 len;
2524
2a862b32 2525 if (security_secid_to_secctx(sid, &ctx, &len))
0a4ff8c2 2526 audit_log_format(ab, " ssid=%u", sid);
2a862b32 2527 else {
0a4ff8c2 2528 audit_log_format(ab, " subj=%s", ctx);
2a862b32
AD
2529 security_release_secctx(ctx, len);
2530 }
0a4ff8c2
SG
2531 }
2532 audit_log_format(ab, " pid=%d comm=", current->pid);
2533 audit_log_untrustedstring(ab, current->comm);
2534 audit_log_format(ab, " sig=%ld", signr);
2535 audit_log_end(ab);
2536}
916d7576
AV
2537
2538struct list_head *audit_killed_trees(void)
2539{
2540 struct audit_context *ctx = current->audit_context;
2541 if (likely(!ctx || !ctx->in_syscall))
2542 return NULL;
2543 return &ctx->killed_trees;
2544}