]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/auditsc.c
audit_update_lsm_rules() misses the audit_inode_hash[] ones
[net-next-2.6.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
715b49ef 47#include <asm/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
01116105 52#include <linux/mount.h>
3ec3b2fb 53#include <linux/socket.h>
20ca73bc 54#include <linux/mqueue.h>
1da177e4
LT
55#include <linux/audit.h>
56#include <linux/personality.h>
57#include <linux/time.h>
5bb289b5 58#include <linux/netlink.h>
f5561964 59#include <linux/compiler.h>
1da177e4 60#include <asm/unistd.h>
8c8570fb 61#include <linux/security.h>
fe7752ba 62#include <linux/list.h>
a6c043a8 63#include <linux/tty.h>
473ae30b 64#include <linux/binfmts.h>
a1f8e7f7 65#include <linux/highmem.h>
f46038ff 66#include <linux/syscalls.h>
74c3cbe3 67#include <linux/inotify.h>
851f7ff5 68#include <linux/capability.h>
1da177e4 69
fe7752ba 70#include "audit.h"
1da177e4 71
1da177e4
LT
72/* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74#define AUDIT_NAMES 20
75
9c937dcc
AG
76/* Indicates that audit should log the full pathname. */
77#define AUDIT_NAME_FULL -1
78
de6bbd1d
EP
79/* no execve audit message should be longer than this (userspace limits) */
80#define MAX_EXECVE_AUDIT_LEN 7500
81
471a5c7c
AV
82/* number of audit rules */
83int audit_n_rules;
84
e54dc243
AG
85/* determines whether we collect data for signals sent */
86int audit_signals;
87
851f7ff5
EP
88struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
91 union {
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
94 };
95};
96
1da177e4
LT
97/* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
100 *
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102struct audit_names {
103 const char *name;
9c937dcc
AG
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
106 unsigned long ino;
107 dev_t dev;
108 umode_t mode;
109 uid_t uid;
110 gid_t gid;
111 dev_t rdev;
1b50eed9 112 u32 osid;
851f7ff5
EP
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
1da177e4
LT
115};
116
117struct audit_aux_data {
118 struct audit_aux_data *next;
119 int type;
120};
121
122#define AUDIT_AUX_IPCPERM 0
123
e54dc243
AG
124/* Number of target pids per aux struct. */
125#define AUDIT_AUX_PIDS 16
126
473ae30b
AV
127struct audit_aux_data_execve {
128 struct audit_aux_data d;
129 int argc;
130 int envc;
bdf4c48a 131 struct mm_struct *mm;
473ae30b
AV
132};
133
e54dc243
AG
134struct audit_aux_data_pids {
135 struct audit_aux_data d;
136 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
137 uid_t target_auid[AUDIT_AUX_PIDS];
138 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 139 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 140 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 141 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
142 int pid_count;
143};
144
3fc689e9
EP
145struct audit_aux_data_bprm_fcaps {
146 struct audit_aux_data d;
147 struct audit_cap_data fcap;
148 unsigned int fcap_ver;
149 struct audit_cap_data old_pcap;
150 struct audit_cap_data new_pcap;
151};
152
e68b75a0
EP
153struct audit_aux_data_capset {
154 struct audit_aux_data d;
155 pid_t pid;
156 struct audit_cap_data cap;
157};
158
74c3cbe3
AV
159struct audit_tree_refs {
160 struct audit_tree_refs *next;
161 struct audit_chunk *c[31];
162};
163
1da177e4
LT
164/* The per-task audit context. */
165struct audit_context {
d51374ad 166 int dummy; /* must be the first element */
1da177e4
LT
167 int in_syscall; /* 1 if task is in a syscall */
168 enum audit_state state;
169 unsigned int serial; /* serial number for record */
170 struct timespec ctime; /* time of syscall entry */
1da177e4
LT
171 int major; /* syscall number */
172 unsigned long argv[4]; /* syscall arguments */
173 int return_valid; /* return code is valid */
2fd6f58b 174 long return_code;/* syscall return code */
1da177e4
LT
175 int auditable; /* 1 if record should be written */
176 int name_count;
177 struct audit_names names[AUDIT_NAMES];
5adc8a6a 178 char * filterkey; /* key for rule that triggered record */
44707fdf 179 struct path pwd;
1da177e4
LT
180 struct audit_context *previous; /* For nested syscalls */
181 struct audit_aux_data *aux;
e54dc243 182 struct audit_aux_data *aux_pids;
4f6b434f
AV
183 struct sockaddr_storage *sockaddr;
184 size_t sockaddr_len;
1da177e4 185 /* Save things to print about task_struct */
f46038ff 186 pid_t pid, ppid;
1da177e4
LT
187 uid_t uid, euid, suid, fsuid;
188 gid_t gid, egid, sgid, fsgid;
189 unsigned long personality;
2fd6f58b 190 int arch;
1da177e4 191
a5cb013d 192 pid_t target_pid;
c2a7780e
EP
193 uid_t target_auid;
194 uid_t target_uid;
4746ec5b 195 unsigned int target_sessionid;
a5cb013d 196 u32 target_sid;
c2a7780e 197 char target_comm[TASK_COMM_LEN];
a5cb013d 198
74c3cbe3
AV
199 struct audit_tree_refs *trees, *first_trees;
200 int tree_count;
201
f3298dc4
AV
202 int type;
203 union {
204 struct {
205 int nargs;
206 long args[6];
207 } socketcall;
a33e6751
AV
208 struct {
209 uid_t uid;
210 gid_t gid;
211 mode_t mode;
212 u32 osid;
e816f370
AV
213 int has_perm;
214 uid_t perm_uid;
215 gid_t perm_gid;
216 mode_t perm_mode;
217 unsigned long qbytes;
a33e6751 218 } ipc;
7392906e
AV
219 struct {
220 mqd_t mqdes;
221 struct mq_attr mqstat;
222 } mq_getsetattr;
20114f71
AV
223 struct {
224 mqd_t mqdes;
225 int sigev_signo;
226 } mq_notify;
c32c8af4
AV
227 struct {
228 mqd_t mqdes;
229 size_t msg_len;
230 unsigned int msg_prio;
231 struct timespec abs_timeout;
232 } mq_sendrecv;
564f6993
AV
233 struct {
234 int oflag;
235 mode_t mode;
236 struct mq_attr attr;
237 } mq_open;
57f71a0a
AV
238 struct {
239 pid_t pid;
240 struct audit_cap_data cap;
241 } capset;
f3298dc4 242 };
157cf649 243 int fds[2];
f3298dc4 244
1da177e4
LT
245#if AUDIT_DEBUG
246 int put_count;
247 int ino_count;
248#endif
249};
250
55669bfa
AV
251#define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
252static inline int open_arg(int flags, int mask)
253{
254 int n = ACC_MODE(flags);
255 if (flags & (O_TRUNC | O_CREAT))
256 n |= AUDIT_PERM_WRITE;
257 return n & mask;
258}
259
260static int audit_match_perm(struct audit_context *ctx, int mask)
261{
c4bacefb 262 unsigned n;
1a61c88d 263 if (unlikely(!ctx))
264 return 0;
c4bacefb 265 n = ctx->major;
dbda4c0b 266
55669bfa
AV
267 switch (audit_classify_syscall(ctx->arch, n)) {
268 case 0: /* native */
269 if ((mask & AUDIT_PERM_WRITE) &&
270 audit_match_class(AUDIT_CLASS_WRITE, n))
271 return 1;
272 if ((mask & AUDIT_PERM_READ) &&
273 audit_match_class(AUDIT_CLASS_READ, n))
274 return 1;
275 if ((mask & AUDIT_PERM_ATTR) &&
276 audit_match_class(AUDIT_CLASS_CHATTR, n))
277 return 1;
278 return 0;
279 case 1: /* 32bit on biarch */
280 if ((mask & AUDIT_PERM_WRITE) &&
281 audit_match_class(AUDIT_CLASS_WRITE_32, n))
282 return 1;
283 if ((mask & AUDIT_PERM_READ) &&
284 audit_match_class(AUDIT_CLASS_READ_32, n))
285 return 1;
286 if ((mask & AUDIT_PERM_ATTR) &&
287 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
288 return 1;
289 return 0;
290 case 2: /* open */
291 return mask & ACC_MODE(ctx->argv[1]);
292 case 3: /* openat */
293 return mask & ACC_MODE(ctx->argv[2]);
294 case 4: /* socketcall */
295 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
296 case 5: /* execve */
297 return mask & AUDIT_PERM_EXEC;
298 default:
299 return 0;
300 }
301}
302
8b67dca9
AV
303static int audit_match_filetype(struct audit_context *ctx, int which)
304{
305 unsigned index = which & ~S_IFMT;
306 mode_t mode = which & S_IFMT;
1a61c88d 307
308 if (unlikely(!ctx))
309 return 0;
310
8b67dca9
AV
311 if (index >= ctx->name_count)
312 return 0;
313 if (ctx->names[index].ino == -1)
314 return 0;
315 if ((ctx->names[index].mode ^ mode) & S_IFMT)
316 return 0;
317 return 1;
318}
319
74c3cbe3
AV
320/*
321 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
322 * ->first_trees points to its beginning, ->trees - to the current end of data.
323 * ->tree_count is the number of free entries in array pointed to by ->trees.
324 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
325 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
326 * it's going to remain 1-element for almost any setup) until we free context itself.
327 * References in it _are_ dropped - at the same time we free/drop aux stuff.
328 */
329
330#ifdef CONFIG_AUDIT_TREE
331static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
332{
333 struct audit_tree_refs *p = ctx->trees;
334 int left = ctx->tree_count;
335 if (likely(left)) {
336 p->c[--left] = chunk;
337 ctx->tree_count = left;
338 return 1;
339 }
340 if (!p)
341 return 0;
342 p = p->next;
343 if (p) {
344 p->c[30] = chunk;
345 ctx->trees = p;
346 ctx->tree_count = 30;
347 return 1;
348 }
349 return 0;
350}
351
352static int grow_tree_refs(struct audit_context *ctx)
353{
354 struct audit_tree_refs *p = ctx->trees;
355 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
356 if (!ctx->trees) {
357 ctx->trees = p;
358 return 0;
359 }
360 if (p)
361 p->next = ctx->trees;
362 else
363 ctx->first_trees = ctx->trees;
364 ctx->tree_count = 31;
365 return 1;
366}
367#endif
368
369static void unroll_tree_refs(struct audit_context *ctx,
370 struct audit_tree_refs *p, int count)
371{
372#ifdef CONFIG_AUDIT_TREE
373 struct audit_tree_refs *q;
374 int n;
375 if (!p) {
376 /* we started with empty chain */
377 p = ctx->first_trees;
378 count = 31;
379 /* if the very first allocation has failed, nothing to do */
380 if (!p)
381 return;
382 }
383 n = count;
384 for (q = p; q != ctx->trees; q = q->next, n = 31) {
385 while (n--) {
386 audit_put_chunk(q->c[n]);
387 q->c[n] = NULL;
388 }
389 }
390 while (n-- > ctx->tree_count) {
391 audit_put_chunk(q->c[n]);
392 q->c[n] = NULL;
393 }
394 ctx->trees = p;
395 ctx->tree_count = count;
396#endif
397}
398
399static void free_tree_refs(struct audit_context *ctx)
400{
401 struct audit_tree_refs *p, *q;
402 for (p = ctx->first_trees; p; p = q) {
403 q = p->next;
404 kfree(p);
405 }
406}
407
408static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
409{
410#ifdef CONFIG_AUDIT_TREE
411 struct audit_tree_refs *p;
412 int n;
413 if (!tree)
414 return 0;
415 /* full ones */
416 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
417 for (n = 0; n < 31; n++)
418 if (audit_tree_match(p->c[n], tree))
419 return 1;
420 }
421 /* partial */
422 if (p) {
423 for (n = ctx->tree_count; n < 31; n++)
424 if (audit_tree_match(p->c[n], tree))
425 return 1;
426 }
427#endif
428 return 0;
429}
430
f368c07d 431/* Determine if any context name data matches a rule's watch data */
1da177e4
LT
432/* Compare a task_struct with an audit_rule. Return 1 on match, 0
433 * otherwise. */
434static int audit_filter_rules(struct task_struct *tsk,
93315ed6 435 struct audit_krule *rule,
1da177e4 436 struct audit_context *ctx,
f368c07d 437 struct audit_names *name,
1da177e4
LT
438 enum audit_state *state)
439{
c69e8d9c 440 const struct cred *cred = get_task_cred(tsk);
2ad312d2 441 int i, j, need_sid = 1;
3dc7e315
DG
442 u32 sid;
443
1da177e4 444 for (i = 0; i < rule->field_count; i++) {
93315ed6 445 struct audit_field *f = &rule->fields[i];
1da177e4
LT
446 int result = 0;
447
93315ed6 448 switch (f->type) {
1da177e4 449 case AUDIT_PID:
93315ed6 450 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 451 break;
3c66251e 452 case AUDIT_PPID:
419c58f1
AV
453 if (ctx) {
454 if (!ctx->ppid)
455 ctx->ppid = sys_getppid();
3c66251e 456 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 457 }
3c66251e 458 break;
1da177e4 459 case AUDIT_UID:
b6dff3ec 460 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
461 break;
462 case AUDIT_EUID:
b6dff3ec 463 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
464 break;
465 case AUDIT_SUID:
b6dff3ec 466 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
467 break;
468 case AUDIT_FSUID:
b6dff3ec 469 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
470 break;
471 case AUDIT_GID:
b6dff3ec 472 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
473 break;
474 case AUDIT_EGID:
b6dff3ec 475 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
476 break;
477 case AUDIT_SGID:
b6dff3ec 478 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
479 break;
480 case AUDIT_FSGID:
b6dff3ec 481 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
482 break;
483 case AUDIT_PERS:
93315ed6 484 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 485 break;
2fd6f58b 486 case AUDIT_ARCH:
9f8dbe9c 487 if (ctx)
93315ed6 488 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 489 break;
1da177e4
LT
490
491 case AUDIT_EXIT:
492 if (ctx && ctx->return_valid)
93315ed6 493 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
494 break;
495 case AUDIT_SUCCESS:
b01f2cc1 496 if (ctx && ctx->return_valid) {
93315ed6
AG
497 if (f->val)
498 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 499 else
93315ed6 500 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 501 }
1da177e4
LT
502 break;
503 case AUDIT_DEVMAJOR:
f368c07d
AG
504 if (name)
505 result = audit_comparator(MAJOR(name->dev),
506 f->op, f->val);
507 else if (ctx) {
1da177e4 508 for (j = 0; j < ctx->name_count; j++) {
93315ed6 509 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
510 ++result;
511 break;
512 }
513 }
514 }
515 break;
516 case AUDIT_DEVMINOR:
f368c07d
AG
517 if (name)
518 result = audit_comparator(MINOR(name->dev),
519 f->op, f->val);
520 else if (ctx) {
1da177e4 521 for (j = 0; j < ctx->name_count; j++) {
93315ed6 522 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
523 ++result;
524 break;
525 }
526 }
527 }
528 break;
529 case AUDIT_INODE:
f368c07d 530 if (name)
9c937dcc 531 result = (name->ino == f->val);
f368c07d 532 else if (ctx) {
1da177e4 533 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 534 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
535 ++result;
536 break;
537 }
538 }
539 }
540 break;
f368c07d
AG
541 case AUDIT_WATCH:
542 if (name && rule->watch->ino != (unsigned long)-1)
543 result = (name->dev == rule->watch->dev &&
9c937dcc 544 name->ino == rule->watch->ino);
f368c07d 545 break;
74c3cbe3
AV
546 case AUDIT_DIR:
547 if (ctx)
548 result = match_tree_refs(ctx, rule->tree);
549 break;
1da177e4
LT
550 case AUDIT_LOGINUID:
551 result = 0;
552 if (ctx)
bfef93a5 553 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 554 break;
3a6b9f85
DG
555 case AUDIT_SUBJ_USER:
556 case AUDIT_SUBJ_ROLE:
557 case AUDIT_SUBJ_TYPE:
558 case AUDIT_SUBJ_SEN:
559 case AUDIT_SUBJ_CLR:
3dc7e315
DG
560 /* NOTE: this may return negative values indicating
561 a temporary error. We simply treat this as a
562 match for now to avoid losing information that
563 may be wanted. An error message will also be
564 logged upon error */
04305e4a 565 if (f->lsm_rule) {
2ad312d2 566 if (need_sid) {
2a862b32 567 security_task_getsecid(tsk, &sid);
2ad312d2
SG
568 need_sid = 0;
569 }
d7a96f3a 570 result = security_audit_rule_match(sid, f->type,
3dc7e315 571 f->op,
04305e4a 572 f->lsm_rule,
3dc7e315 573 ctx);
2ad312d2 574 }
3dc7e315 575 break;
6e5a2d1d
DG
576 case AUDIT_OBJ_USER:
577 case AUDIT_OBJ_ROLE:
578 case AUDIT_OBJ_TYPE:
579 case AUDIT_OBJ_LEV_LOW:
580 case AUDIT_OBJ_LEV_HIGH:
581 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
582 also applies here */
04305e4a 583 if (f->lsm_rule) {
6e5a2d1d
DG
584 /* Find files that match */
585 if (name) {
d7a96f3a 586 result = security_audit_rule_match(
6e5a2d1d 587 name->osid, f->type, f->op,
04305e4a 588 f->lsm_rule, ctx);
6e5a2d1d
DG
589 } else if (ctx) {
590 for (j = 0; j < ctx->name_count; j++) {
d7a96f3a 591 if (security_audit_rule_match(
6e5a2d1d
DG
592 ctx->names[j].osid,
593 f->type, f->op,
04305e4a 594 f->lsm_rule, ctx)) {
6e5a2d1d
DG
595 ++result;
596 break;
597 }
598 }
599 }
600 /* Find ipc objects that match */
a33e6751
AV
601 if (!ctx || ctx->type != AUDIT_IPC)
602 break;
603 if (security_audit_rule_match(ctx->ipc.osid,
604 f->type, f->op,
605 f->lsm_rule, ctx))
606 ++result;
6e5a2d1d
DG
607 }
608 break;
1da177e4
LT
609 case AUDIT_ARG0:
610 case AUDIT_ARG1:
611 case AUDIT_ARG2:
612 case AUDIT_ARG3:
613 if (ctx)
93315ed6 614 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 615 break;
5adc8a6a
AG
616 case AUDIT_FILTERKEY:
617 /* ignore this field for filtering */
618 result = 1;
619 break;
55669bfa
AV
620 case AUDIT_PERM:
621 result = audit_match_perm(ctx, f->val);
622 break;
8b67dca9
AV
623 case AUDIT_FILETYPE:
624 result = audit_match_filetype(ctx, f->val);
625 break;
1da177e4
LT
626 }
627
c69e8d9c
DH
628 if (!result) {
629 put_cred(cred);
1da177e4 630 return 0;
c69e8d9c 631 }
1da177e4 632 }
980dfb0d 633 if (rule->filterkey && ctx)
5adc8a6a 634 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
1da177e4
LT
635 switch (rule->action) {
636 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
637 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
638 }
c69e8d9c 639 put_cred(cred);
1da177e4
LT
640 return 1;
641}
642
643/* At process creation time, we can determine if system-call auditing is
644 * completely disabled for this task. Since we only have the task
645 * structure at this point, we can only check uid and gid.
646 */
647static enum audit_state audit_filter_task(struct task_struct *tsk)
648{
649 struct audit_entry *e;
650 enum audit_state state;
651
652 rcu_read_lock();
0f45aa18 653 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f368c07d 654 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
1da177e4
LT
655 rcu_read_unlock();
656 return state;
657 }
658 }
659 rcu_read_unlock();
660 return AUDIT_BUILD_CONTEXT;
661}
662
663/* At syscall entry and exit time, this filter is called if the
664 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 665 * also not high enough that we already know we have to write an audit
b0dd25a8 666 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
667 */
668static enum audit_state audit_filter_syscall(struct task_struct *tsk,
669 struct audit_context *ctx,
670 struct list_head *list)
671{
672 struct audit_entry *e;
c3896495 673 enum audit_state state;
1da177e4 674
351bb722 675 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
676 return AUDIT_DISABLED;
677
1da177e4 678 rcu_read_lock();
c3896495 679 if (!list_empty(list)) {
b63862f4
DK
680 int word = AUDIT_WORD(ctx->major);
681 int bit = AUDIT_BIT(ctx->major);
682
683 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
684 if ((e->rule.mask[word] & bit) == bit &&
685 audit_filter_rules(tsk, &e->rule, ctx, NULL,
686 &state)) {
687 rcu_read_unlock();
688 return state;
689 }
690 }
691 }
692 rcu_read_unlock();
693 return AUDIT_BUILD_CONTEXT;
694}
695
696/* At syscall exit time, this filter is called if any audit_names[] have been
697 * collected during syscall processing. We only check rules in sublists at hash
698 * buckets applicable to the inode numbers in audit_names[].
699 * Regarding audit_state, same rules apply as for audit_filter_syscall().
700 */
701enum audit_state audit_filter_inodes(struct task_struct *tsk,
702 struct audit_context *ctx)
703{
704 int i;
705 struct audit_entry *e;
706 enum audit_state state;
707
708 if (audit_pid && tsk->tgid == audit_pid)
709 return AUDIT_DISABLED;
710
711 rcu_read_lock();
712 for (i = 0; i < ctx->name_count; i++) {
713 int word = AUDIT_WORD(ctx->major);
714 int bit = AUDIT_BIT(ctx->major);
715 struct audit_names *n = &ctx->names[i];
716 int h = audit_hash_ino((u32)n->ino);
717 struct list_head *list = &audit_inode_hash[h];
718
719 if (list_empty(list))
720 continue;
721
722 list_for_each_entry_rcu(e, list, list) {
723 if ((e->rule.mask[word] & bit) == bit &&
724 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
b63862f4
DK
725 rcu_read_unlock();
726 return state;
727 }
0f45aa18
DW
728 }
729 }
730 rcu_read_unlock();
1da177e4 731 return AUDIT_BUILD_CONTEXT;
0f45aa18
DW
732}
733
f368c07d
AG
734void audit_set_auditable(struct audit_context *ctx)
735{
736 ctx->auditable = 1;
737}
738
1da177e4
LT
739static inline struct audit_context *audit_get_context(struct task_struct *tsk,
740 int return_valid,
741 int return_code)
742{
743 struct audit_context *context = tsk->audit_context;
744
745 if (likely(!context))
746 return NULL;
747 context->return_valid = return_valid;
f701b75e
EP
748
749 /*
750 * we need to fix up the return code in the audit logs if the actual
751 * return codes are later going to be fixed up by the arch specific
752 * signal handlers
753 *
754 * This is actually a test for:
755 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
756 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
757 *
758 * but is faster than a bunch of ||
759 */
760 if (unlikely(return_code <= -ERESTARTSYS) &&
761 (return_code >= -ERESTART_RESTARTBLOCK) &&
762 (return_code != -ENOIOCTLCMD))
763 context->return_code = -EINTR;
764 else
765 context->return_code = return_code;
1da177e4 766
d51374ad 767 if (context->in_syscall && !context->dummy && !context->auditable) {
1da177e4 768 enum audit_state state;
f368c07d 769
0f45aa18 770 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
f368c07d
AG
771 if (state == AUDIT_RECORD_CONTEXT) {
772 context->auditable = 1;
773 goto get_context;
774 }
775
776 state = audit_filter_inodes(tsk, context);
1da177e4
LT
777 if (state == AUDIT_RECORD_CONTEXT)
778 context->auditable = 1;
f368c07d 779
1da177e4
LT
780 }
781
f368c07d 782get_context:
3f2792ff 783
1da177e4
LT
784 tsk->audit_context = NULL;
785 return context;
786}
787
788static inline void audit_free_names(struct audit_context *context)
789{
790 int i;
791
792#if AUDIT_DEBUG == 2
793 if (context->auditable
794 ||context->put_count + context->ino_count != context->name_count) {
73241ccc 795 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
796 " name_count=%d put_count=%d"
797 " ino_count=%d [NOT freeing]\n",
73241ccc 798 __FILE__, __LINE__,
1da177e4
LT
799 context->serial, context->major, context->in_syscall,
800 context->name_count, context->put_count,
801 context->ino_count);
8c8570fb 802 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
803 printk(KERN_ERR "names[%d] = %p = %s\n", i,
804 context->names[i].name,
73241ccc 805 context->names[i].name ?: "(null)");
8c8570fb 806 }
1da177e4
LT
807 dump_stack();
808 return;
809 }
810#endif
811#if AUDIT_DEBUG
812 context->put_count = 0;
813 context->ino_count = 0;
814#endif
815
8c8570fb 816 for (i = 0; i < context->name_count; i++) {
9c937dcc 817 if (context->names[i].name && context->names[i].name_put)
1da177e4 818 __putname(context->names[i].name);
8c8570fb 819 }
1da177e4 820 context->name_count = 0;
44707fdf
JB
821 path_put(&context->pwd);
822 context->pwd.dentry = NULL;
823 context->pwd.mnt = NULL;
1da177e4
LT
824}
825
826static inline void audit_free_aux(struct audit_context *context)
827{
828 struct audit_aux_data *aux;
829
830 while ((aux = context->aux)) {
831 context->aux = aux->next;
832 kfree(aux);
833 }
e54dc243
AG
834 while ((aux = context->aux_pids)) {
835 context->aux_pids = aux->next;
836 kfree(aux);
837 }
1da177e4
LT
838}
839
840static inline void audit_zero_context(struct audit_context *context,
841 enum audit_state state)
842{
1da177e4
LT
843 memset(context, 0, sizeof(*context));
844 context->state = state;
1da177e4
LT
845}
846
847static inline struct audit_context *audit_alloc_context(enum audit_state state)
848{
849 struct audit_context *context;
850
851 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
852 return NULL;
853 audit_zero_context(context, state);
854 return context;
855}
856
b0dd25a8
RD
857/**
858 * audit_alloc - allocate an audit context block for a task
859 * @tsk: task
860 *
861 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
862 * if necessary. Doing so turns on system call auditing for the
863 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
864 * needed.
865 */
1da177e4
LT
866int audit_alloc(struct task_struct *tsk)
867{
868 struct audit_context *context;
869 enum audit_state state;
870
b593d384 871 if (likely(!audit_ever_enabled))
1da177e4
LT
872 return 0; /* Return if not auditing. */
873
874 state = audit_filter_task(tsk);
875 if (likely(state == AUDIT_DISABLED))
876 return 0;
877
878 if (!(context = audit_alloc_context(state))) {
879 audit_log_lost("out of memory in audit_alloc");
880 return -ENOMEM;
881 }
882
1da177e4
LT
883 tsk->audit_context = context;
884 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
885 return 0;
886}
887
888static inline void audit_free_context(struct audit_context *context)
889{
890 struct audit_context *previous;
891 int count = 0;
892
893 do {
894 previous = context->previous;
895 if (previous || (count && count < 10)) {
896 ++count;
897 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
898 " freeing multiple contexts (%d)\n",
899 context->serial, context->major,
900 context->name_count, count);
901 }
902 audit_free_names(context);
74c3cbe3
AV
903 unroll_tree_refs(context, NULL, 0);
904 free_tree_refs(context);
1da177e4 905 audit_free_aux(context);
5adc8a6a 906 kfree(context->filterkey);
4f6b434f 907 kfree(context->sockaddr);
1da177e4
LT
908 kfree(context);
909 context = previous;
910 } while (context);
911 if (count >= 10)
912 printk(KERN_ERR "audit: freed %d contexts\n", count);
913}
914
161a09e7 915void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
916{
917 char *ctx = NULL;
c4823bce
AV
918 unsigned len;
919 int error;
920 u32 sid;
921
2a862b32 922 security_task_getsecid(current, &sid);
c4823bce
AV
923 if (!sid)
924 return;
8c8570fb 925
2a862b32 926 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
927 if (error) {
928 if (error != -EINVAL)
8c8570fb
DK
929 goto error_path;
930 return;
931 }
932
8c8570fb 933 audit_log_format(ab, " subj=%s", ctx);
2a862b32 934 security_release_secctx(ctx, len);
7306a0b9 935 return;
8c8570fb
DK
936
937error_path:
7306a0b9 938 audit_panic("error in audit_log_task_context");
8c8570fb
DK
939 return;
940}
941
161a09e7
JL
942EXPORT_SYMBOL(audit_log_task_context);
943
e495149b 944static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 945{
45d9bb0e
AV
946 char name[sizeof(tsk->comm)];
947 struct mm_struct *mm = tsk->mm;
219f0817
SS
948 struct vm_area_struct *vma;
949
e495149b
AV
950 /* tsk == current */
951
45d9bb0e 952 get_task_comm(name, tsk);
99e45eea
DW
953 audit_log_format(ab, " comm=");
954 audit_log_untrustedstring(ab, name);
219f0817 955
e495149b
AV
956 if (mm) {
957 down_read(&mm->mmap_sem);
958 vma = mm->mmap;
959 while (vma) {
960 if ((vma->vm_flags & VM_EXECUTABLE) &&
961 vma->vm_file) {
962 audit_log_d_path(ab, "exe=",
44707fdf 963 &vma->vm_file->f_path);
e495149b
AV
964 break;
965 }
966 vma = vma->vm_next;
219f0817 967 }
e495149b 968 up_read(&mm->mmap_sem);
219f0817 969 }
e495149b 970 audit_log_task_context(ab);
219f0817
SS
971}
972
e54dc243 973static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
974 uid_t auid, uid_t uid, unsigned int sessionid,
975 u32 sid, char *comm)
e54dc243
AG
976{
977 struct audit_buffer *ab;
2a862b32 978 char *ctx = NULL;
e54dc243
AG
979 u32 len;
980 int rc = 0;
981
982 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
983 if (!ab)
6246ccab 984 return rc;
e54dc243 985
4746ec5b
EP
986 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
987 uid, sessionid);
2a862b32 988 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 989 audit_log_format(ab, " obj=(none)");
e54dc243 990 rc = 1;
2a862b32
AD
991 } else {
992 audit_log_format(ab, " obj=%s", ctx);
993 security_release_secctx(ctx, len);
994 }
c2a7780e
EP
995 audit_log_format(ab, " ocomm=");
996 audit_log_untrustedstring(ab, comm);
e54dc243 997 audit_log_end(ab);
e54dc243
AG
998
999 return rc;
1000}
1001
de6bbd1d
EP
1002/*
1003 * to_send and len_sent accounting are very loose estimates. We aren't
1004 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1005 * within about 500 bytes (next page boundry)
1006 *
1007 * why snprintf? an int is up to 12 digits long. if we just assumed when
1008 * logging that a[%d]= was going to be 16 characters long we would be wasting
1009 * space in every audit message. In one 7500 byte message we can log up to
1010 * about 1000 min size arguments. That comes down to about 50% waste of space
1011 * if we didn't do the snprintf to find out how long arg_num_len was.
1012 */
1013static int audit_log_single_execve_arg(struct audit_context *context,
1014 struct audit_buffer **ab,
1015 int arg_num,
1016 size_t *len_sent,
1017 const char __user *p,
1018 char *buf)
bdf4c48a 1019{
de6bbd1d
EP
1020 char arg_num_len_buf[12];
1021 const char __user *tmp_p = p;
1022 /* how many digits are in arg_num? 3 is the length of a=\n */
1023 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1024 size_t len, len_left, to_send;
1025 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1026 unsigned int i, has_cntl = 0, too_long = 0;
1027 int ret;
1028
1029 /* strnlen_user includes the null we don't want to send */
1030 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1031
de6bbd1d
EP
1032 /*
1033 * We just created this mm, if we can't find the strings
1034 * we just copied into it something is _very_ wrong. Similar
1035 * for strings that are too long, we should not have created
1036 * any.
1037 */
b0abcfc1 1038 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1039 WARN_ON(1);
1040 send_sig(SIGKILL, current, 0);
b0abcfc1 1041 return -1;
de6bbd1d 1042 }
040b3a2d 1043
de6bbd1d
EP
1044 /* walk the whole argument looking for non-ascii chars */
1045 do {
1046 if (len_left > MAX_EXECVE_AUDIT_LEN)
1047 to_send = MAX_EXECVE_AUDIT_LEN;
1048 else
1049 to_send = len_left;
1050 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1051 /*
de6bbd1d
EP
1052 * There is no reason for this copy to be short. We just
1053 * copied them here, and the mm hasn't been exposed to user-
1054 * space yet.
bdf4c48a 1055 */
de6bbd1d 1056 if (ret) {
bdf4c48a
PZ
1057 WARN_ON(1);
1058 send_sig(SIGKILL, current, 0);
b0abcfc1 1059 return -1;
bdf4c48a 1060 }
de6bbd1d
EP
1061 buf[to_send] = '\0';
1062 has_cntl = audit_string_contains_control(buf, to_send);
1063 if (has_cntl) {
1064 /*
1065 * hex messages get logged as 2 bytes, so we can only
1066 * send half as much in each message
1067 */
1068 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1069 break;
1070 }
de6bbd1d
EP
1071 len_left -= to_send;
1072 tmp_p += to_send;
1073 } while (len_left > 0);
1074
1075 len_left = len;
1076
1077 if (len > max_execve_audit_len)
1078 too_long = 1;
1079
1080 /* rewalk the argument actually logging the message */
1081 for (i = 0; len_left > 0; i++) {
1082 int room_left;
1083
1084 if (len_left > max_execve_audit_len)
1085 to_send = max_execve_audit_len;
1086 else
1087 to_send = len_left;
1088
1089 /* do we have space left to send this argument in this ab? */
1090 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1091 if (has_cntl)
1092 room_left -= (to_send * 2);
1093 else
1094 room_left -= to_send;
1095 if (room_left < 0) {
1096 *len_sent = 0;
1097 audit_log_end(*ab);
1098 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1099 if (!*ab)
1100 return 0;
1101 }
bdf4c48a 1102
bdf4c48a 1103 /*
de6bbd1d
EP
1104 * first record needs to say how long the original string was
1105 * so we can be sure nothing was lost.
1106 */
1107 if ((i == 0) && (too_long))
422b03cf 1108 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
de6bbd1d
EP
1109 has_cntl ? 2*len : len);
1110
1111 /*
1112 * normally arguments are small enough to fit and we already
1113 * filled buf above when we checked for control characters
1114 * so don't bother with another copy_from_user
bdf4c48a 1115 */
de6bbd1d
EP
1116 if (len >= max_execve_audit_len)
1117 ret = copy_from_user(buf, p, to_send);
1118 else
1119 ret = 0;
040b3a2d 1120 if (ret) {
bdf4c48a
PZ
1121 WARN_ON(1);
1122 send_sig(SIGKILL, current, 0);
b0abcfc1 1123 return -1;
bdf4c48a 1124 }
de6bbd1d
EP
1125 buf[to_send] = '\0';
1126
1127 /* actually log it */
1128 audit_log_format(*ab, "a%d", arg_num);
1129 if (too_long)
1130 audit_log_format(*ab, "[%d]", i);
1131 audit_log_format(*ab, "=");
1132 if (has_cntl)
b556f8ad 1133 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d
EP
1134 else
1135 audit_log_format(*ab, "\"%s\"", buf);
1136 audit_log_format(*ab, "\n");
1137
1138 p += to_send;
1139 len_left -= to_send;
1140 *len_sent += arg_num_len;
1141 if (has_cntl)
1142 *len_sent += to_send * 2;
1143 else
1144 *len_sent += to_send;
1145 }
1146 /* include the null we didn't log */
1147 return len + 1;
1148}
1149
1150static void audit_log_execve_info(struct audit_context *context,
1151 struct audit_buffer **ab,
1152 struct audit_aux_data_execve *axi)
1153{
1154 int i;
1155 size_t len, len_sent = 0;
1156 const char __user *p;
1157 char *buf;
bdf4c48a 1158
de6bbd1d
EP
1159 if (axi->mm != current->mm)
1160 return; /* execve failed, no additional info */
1161
1162 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1163
de6bbd1d
EP
1164 audit_log_format(*ab, "argc=%d ", axi->argc);
1165
1166 /*
1167 * we need some kernel buffer to hold the userspace args. Just
1168 * allocate one big one rather than allocating one of the right size
1169 * for every single argument inside audit_log_single_execve_arg()
1170 * should be <8k allocation so should be pretty safe.
1171 */
1172 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1173 if (!buf) {
1174 audit_panic("out of memory for argv string\n");
1175 return;
bdf4c48a 1176 }
de6bbd1d
EP
1177
1178 for (i = 0; i < axi->argc; i++) {
1179 len = audit_log_single_execve_arg(context, ab, i,
1180 &len_sent, p, buf);
1181 if (len <= 0)
1182 break;
1183 p += len;
1184 }
1185 kfree(buf);
bdf4c48a
PZ
1186}
1187
851f7ff5
EP
1188static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1189{
1190 int i;
1191
1192 audit_log_format(ab, " %s=", prefix);
1193 CAP_FOR_EACH_U32(i) {
1194 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1195 }
1196}
1197
1198static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1199{
1200 kernel_cap_t *perm = &name->fcap.permitted;
1201 kernel_cap_t *inh = &name->fcap.inheritable;
1202 int log = 0;
1203
1204 if (!cap_isclear(*perm)) {
1205 audit_log_cap(ab, "cap_fp", perm);
1206 log = 1;
1207 }
1208 if (!cap_isclear(*inh)) {
1209 audit_log_cap(ab, "cap_fi", inh);
1210 log = 1;
1211 }
1212
1213 if (log)
1214 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1215}
1216
a33e6751 1217static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1218{
1219 struct audit_buffer *ab;
1220 int i;
1221
1222 ab = audit_log_start(context, GFP_KERNEL, context->type);
1223 if (!ab)
1224 return;
1225
1226 switch (context->type) {
1227 case AUDIT_SOCKETCALL: {
1228 int nargs = context->socketcall.nargs;
1229 audit_log_format(ab, "nargs=%d", nargs);
1230 for (i = 0; i < nargs; i++)
1231 audit_log_format(ab, " a%d=%lx", i,
1232 context->socketcall.args[i]);
1233 break; }
a33e6751
AV
1234 case AUDIT_IPC: {
1235 u32 osid = context->ipc.osid;
1236
1237 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1238 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1239 if (osid) {
1240 char *ctx = NULL;
1241 u32 len;
1242 if (security_secid_to_secctx(osid, &ctx, &len)) {
1243 audit_log_format(ab, " osid=%u", osid);
1244 *call_panic = 1;
1245 } else {
1246 audit_log_format(ab, " obj=%s", ctx);
1247 security_release_secctx(ctx, len);
1248 }
1249 }
e816f370
AV
1250 if (context->ipc.has_perm) {
1251 audit_log_end(ab);
1252 ab = audit_log_start(context, GFP_KERNEL,
1253 AUDIT_IPC_SET_PERM);
1254 audit_log_format(ab,
1255 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1256 context->ipc.qbytes,
1257 context->ipc.perm_uid,
1258 context->ipc.perm_gid,
1259 context->ipc.perm_mode);
1260 if (!ab)
1261 return;
1262 }
a33e6751 1263 break; }
564f6993
AV
1264 case AUDIT_MQ_OPEN: {
1265 audit_log_format(ab,
1266 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1267 "mq_msgsize=%ld mq_curmsgs=%ld",
1268 context->mq_open.oflag, context->mq_open.mode,
1269 context->mq_open.attr.mq_flags,
1270 context->mq_open.attr.mq_maxmsg,
1271 context->mq_open.attr.mq_msgsize,
1272 context->mq_open.attr.mq_curmsgs);
1273 break; }
c32c8af4
AV
1274 case AUDIT_MQ_SENDRECV: {
1275 audit_log_format(ab,
1276 "mqdes=%d msg_len=%zd msg_prio=%u "
1277 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1278 context->mq_sendrecv.mqdes,
1279 context->mq_sendrecv.msg_len,
1280 context->mq_sendrecv.msg_prio,
1281 context->mq_sendrecv.abs_timeout.tv_sec,
1282 context->mq_sendrecv.abs_timeout.tv_nsec);
1283 break; }
20114f71
AV
1284 case AUDIT_MQ_NOTIFY: {
1285 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1286 context->mq_notify.mqdes,
1287 context->mq_notify.sigev_signo);
1288 break; }
7392906e
AV
1289 case AUDIT_MQ_GETSETATTR: {
1290 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1291 audit_log_format(ab,
1292 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1293 "mq_curmsgs=%ld ",
1294 context->mq_getsetattr.mqdes,
1295 attr->mq_flags, attr->mq_maxmsg,
1296 attr->mq_msgsize, attr->mq_curmsgs);
1297 break; }
57f71a0a
AV
1298 case AUDIT_CAPSET: {
1299 audit_log_format(ab, "pid=%d", context->capset.pid);
1300 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1301 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1302 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1303 break; }
f3298dc4
AV
1304 }
1305 audit_log_end(ab);
1306}
1307
e495149b 1308static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1309{
c69e8d9c 1310 const struct cred *cred;
9c7aa6aa 1311 int i, call_panic = 0;
1da177e4 1312 struct audit_buffer *ab;
7551ced3 1313 struct audit_aux_data *aux;
a6c043a8 1314 const char *tty;
1da177e4 1315
e495149b 1316 /* tsk == current */
3f2792ff 1317 context->pid = tsk->pid;
419c58f1
AV
1318 if (!context->ppid)
1319 context->ppid = sys_getppid();
c69e8d9c
DH
1320 cred = current_cred();
1321 context->uid = cred->uid;
1322 context->gid = cred->gid;
1323 context->euid = cred->euid;
1324 context->suid = cred->suid;
b6dff3ec 1325 context->fsuid = cred->fsuid;
c69e8d9c
DH
1326 context->egid = cred->egid;
1327 context->sgid = cred->sgid;
b6dff3ec 1328 context->fsgid = cred->fsgid;
3f2792ff 1329 context->personality = tsk->personality;
e495149b
AV
1330
1331 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1332 if (!ab)
1333 return; /* audit_panic has been called */
bccf6ae0
DW
1334 audit_log_format(ab, "arch=%x syscall=%d",
1335 context->arch, context->major);
1da177e4
LT
1336 if (context->personality != PER_LINUX)
1337 audit_log_format(ab, " per=%lx", context->personality);
1338 if (context->return_valid)
9f8dbe9c 1339 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1340 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1341 context->return_code);
eb84a20e 1342
dbda4c0b 1343 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1344 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1345 tty = tsk->signal->tty->name;
a6c043a8
SG
1346 else
1347 tty = "(none)";
dbda4c0b
AC
1348 spin_unlock_irq(&tsk->sighand->siglock);
1349
1da177e4
LT
1350 audit_log_format(ab,
1351 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1352 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1353 " euid=%u suid=%u fsuid=%u"
4746ec5b 1354 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1355 context->argv[0],
1356 context->argv[1],
1357 context->argv[2],
1358 context->argv[3],
1359 context->name_count,
f46038ff 1360 context->ppid,
1da177e4 1361 context->pid,
bfef93a5 1362 tsk->loginuid,
1da177e4
LT
1363 context->uid,
1364 context->gid,
1365 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1366 context->egid, context->sgid, context->fsgid, tty,
1367 tsk->sessionid);
eb84a20e 1368
eb84a20e 1369
e495149b 1370 audit_log_task_info(ab, tsk);
5adc8a6a
AG
1371 if (context->filterkey) {
1372 audit_log_format(ab, " key=");
1373 audit_log_untrustedstring(ab, context->filterkey);
1374 } else
1375 audit_log_format(ab, " key=(null)");
1da177e4 1376 audit_log_end(ab);
1da177e4 1377
7551ced3 1378 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1379
e495149b 1380 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1381 if (!ab)
1382 continue; /* audit_panic has been called */
1383
1da177e4 1384 switch (aux->type) {
20ca73bc 1385
473ae30b
AV
1386 case AUDIT_EXECVE: {
1387 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1388 audit_log_execve_info(context, &ab, axi);
473ae30b 1389 break; }
073115d6 1390
3fc689e9
EP
1391 case AUDIT_BPRM_FCAPS: {
1392 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1393 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1394 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1395 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1396 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1397 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1398 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1399 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1400 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1401 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1402 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1403 break; }
1404
1da177e4
LT
1405 }
1406 audit_log_end(ab);
1da177e4
LT
1407 }
1408
f3298dc4 1409 if (context->type)
a33e6751 1410 show_special(context, &call_panic);
f3298dc4 1411
157cf649
AV
1412 if (context->fds[0] >= 0) {
1413 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1414 if (ab) {
1415 audit_log_format(ab, "fd0=%d fd1=%d",
1416 context->fds[0], context->fds[1]);
1417 audit_log_end(ab);
1418 }
1419 }
1420
4f6b434f
AV
1421 if (context->sockaddr_len) {
1422 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1423 if (ab) {
1424 audit_log_format(ab, "saddr=");
1425 audit_log_n_hex(ab, (void *)context->sockaddr,
1426 context->sockaddr_len);
1427 audit_log_end(ab);
1428 }
1429 }
1430
e54dc243
AG
1431 for (aux = context->aux_pids; aux; aux = aux->next) {
1432 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1433
1434 for (i = 0; i < axs->pid_count; i++)
1435 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1436 axs->target_auid[i],
1437 axs->target_uid[i],
4746ec5b 1438 axs->target_sessionid[i],
c2a7780e
EP
1439 axs->target_sid[i],
1440 axs->target_comm[i]))
e54dc243 1441 call_panic = 1;
a5cb013d
AV
1442 }
1443
e54dc243
AG
1444 if (context->target_pid &&
1445 audit_log_pid_context(context, context->target_pid,
c2a7780e 1446 context->target_auid, context->target_uid,
4746ec5b 1447 context->target_sessionid,
c2a7780e 1448 context->target_sid, context->target_comm))
e54dc243
AG
1449 call_panic = 1;
1450
44707fdf 1451 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1452 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1453 if (ab) {
44707fdf 1454 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1455 audit_log_end(ab);
1456 }
1457 }
1da177e4 1458 for (i = 0; i < context->name_count; i++) {
9c937dcc 1459 struct audit_names *n = &context->names[i];
73241ccc 1460
e495149b 1461 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1462 if (!ab)
1463 continue; /* audit_panic has been called */
8f37d47c 1464
1da177e4 1465 audit_log_format(ab, "item=%d", i);
73241ccc 1466
9c937dcc
AG
1467 if (n->name) {
1468 switch(n->name_len) {
1469 case AUDIT_NAME_FULL:
1470 /* log the full path */
1471 audit_log_format(ab, " name=");
1472 audit_log_untrustedstring(ab, n->name);
1473 break;
1474 case 0:
1475 /* name was specified as a relative path and the
1476 * directory component is the cwd */
44707fdf 1477 audit_log_d_path(ab, " name=", &context->pwd);
9c937dcc
AG
1478 break;
1479 default:
1480 /* log the name's directory component */
1481 audit_log_format(ab, " name=");
b556f8ad
EP
1482 audit_log_n_untrustedstring(ab, n->name,
1483 n->name_len);
9c937dcc
AG
1484 }
1485 } else
1486 audit_log_format(ab, " name=(null)");
1487
1488 if (n->ino != (unsigned long)-1) {
1489 audit_log_format(ab, " inode=%lu"
1490 " dev=%02x:%02x mode=%#o"
1491 " ouid=%u ogid=%u rdev=%02x:%02x",
1492 n->ino,
1493 MAJOR(n->dev),
1494 MINOR(n->dev),
1495 n->mode,
1496 n->uid,
1497 n->gid,
1498 MAJOR(n->rdev),
1499 MINOR(n->rdev));
1500 }
1501 if (n->osid != 0) {
1b50eed9
SG
1502 char *ctx = NULL;
1503 u32 len;
2a862b32 1504 if (security_secid_to_secctx(
9c937dcc
AG
1505 n->osid, &ctx, &len)) {
1506 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1507 call_panic = 2;
2a862b32 1508 } else {
1b50eed9 1509 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1510 security_release_secctx(ctx, len);
1511 }
8c8570fb
DK
1512 }
1513
851f7ff5
EP
1514 audit_log_fcaps(ab, n);
1515
1da177e4
LT
1516 audit_log_end(ab);
1517 }
c0641f28
EP
1518
1519 /* Send end of event record to help user space know we are finished */
1520 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1521 if (ab)
1522 audit_log_end(ab);
9c7aa6aa
SG
1523 if (call_panic)
1524 audit_panic("error converting sid to string");
1da177e4
LT
1525}
1526
b0dd25a8
RD
1527/**
1528 * audit_free - free a per-task audit context
1529 * @tsk: task whose audit context block to free
1530 *
fa84cb93 1531 * Called from copy_process and do_exit
b0dd25a8 1532 */
1da177e4
LT
1533void audit_free(struct task_struct *tsk)
1534{
1535 struct audit_context *context;
1536
1da177e4 1537 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1538 if (likely(!context))
1539 return;
1540
1541 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1542 * function (e.g., exit_group), then free context block.
1543 * We use GFP_ATOMIC here because we might be doing this
f5561964 1544 * in the context of the idle thread */
e495149b 1545 /* that can happen only if we are called from do_exit() */
f7056d64 1546 if (context->in_syscall && context->auditable)
e495149b 1547 audit_log_exit(context, tsk);
1da177e4
LT
1548
1549 audit_free_context(context);
1550}
1551
b0dd25a8
RD
1552/**
1553 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1554 * @arch: architecture type
1555 * @major: major syscall type (function)
1556 * @a1: additional syscall register 1
1557 * @a2: additional syscall register 2
1558 * @a3: additional syscall register 3
1559 * @a4: additional syscall register 4
1560 *
1561 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1562 * audit context was created when the task was created and the state or
1563 * filters demand the audit context be built. If the state from the
1564 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1565 * then the record will be written at syscall exit time (otherwise, it
1566 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1567 * be written).
1568 */
5411be59 1569void audit_syscall_entry(int arch, int major,
1da177e4
LT
1570 unsigned long a1, unsigned long a2,
1571 unsigned long a3, unsigned long a4)
1572{
5411be59 1573 struct task_struct *tsk = current;
1da177e4
LT
1574 struct audit_context *context = tsk->audit_context;
1575 enum audit_state state;
1576
86a1c34a
RM
1577 if (unlikely(!context))
1578 return;
1da177e4 1579
b0dd25a8
RD
1580 /*
1581 * This happens only on certain architectures that make system
1da177e4
LT
1582 * calls in kernel_thread via the entry.S interface, instead of
1583 * with direct calls. (If you are porting to a new
1584 * architecture, hitting this condition can indicate that you
1585 * got the _exit/_leave calls backward in entry.S.)
1586 *
1587 * i386 no
1588 * x86_64 no
2ef9481e 1589 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1590 *
1591 * This also happens with vm86 emulation in a non-nested manner
1592 * (entries without exits), so this case must be caught.
1593 */
1594 if (context->in_syscall) {
1595 struct audit_context *newctx;
1596
1da177e4
LT
1597#if AUDIT_DEBUG
1598 printk(KERN_ERR
1599 "audit(:%d) pid=%d in syscall=%d;"
1600 " entering syscall=%d\n",
1601 context->serial, tsk->pid, context->major, major);
1602#endif
1603 newctx = audit_alloc_context(context->state);
1604 if (newctx) {
1605 newctx->previous = context;
1606 context = newctx;
1607 tsk->audit_context = newctx;
1608 } else {
1609 /* If we can't alloc a new context, the best we
1610 * can do is to leak memory (any pending putname
1611 * will be lost). The only other alternative is
1612 * to abandon auditing. */
1613 audit_zero_context(context, context->state);
1614 }
1615 }
1616 BUG_ON(context->in_syscall || context->name_count);
1617
1618 if (!audit_enabled)
1619 return;
1620
2fd6f58b 1621 context->arch = arch;
1da177e4
LT
1622 context->major = major;
1623 context->argv[0] = a1;
1624 context->argv[1] = a2;
1625 context->argv[2] = a3;
1626 context->argv[3] = a4;
1627
1628 state = context->state;
d51374ad
AV
1629 context->dummy = !audit_n_rules;
1630 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
0f45aa18 1631 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1da177e4
LT
1632 if (likely(state == AUDIT_DISABLED))
1633 return;
1634
ce625a80 1635 context->serial = 0;
1da177e4
LT
1636 context->ctime = CURRENT_TIME;
1637 context->in_syscall = 1;
1638 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
419c58f1 1639 context->ppid = 0;
1da177e4
LT
1640}
1641
a64e6494
AV
1642void audit_finish_fork(struct task_struct *child)
1643{
1644 struct audit_context *ctx = current->audit_context;
1645 struct audit_context *p = child->audit_context;
1646 if (!p || !ctx || !ctx->auditable)
1647 return;
1648 p->arch = ctx->arch;
1649 p->major = ctx->major;
1650 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1651 p->ctime = ctx->ctime;
1652 p->dummy = ctx->dummy;
1653 p->auditable = ctx->auditable;
1654 p->in_syscall = ctx->in_syscall;
1655 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1656 p->ppid = current->pid;
1657}
1658
b0dd25a8
RD
1659/**
1660 * audit_syscall_exit - deallocate audit context after a system call
b0dd25a8
RD
1661 * @valid: success/failure flag
1662 * @return_code: syscall return value
1663 *
1664 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1665 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1666 * filtering, or because some other part of the kernel write an audit
1667 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1668 * free the names stored from getname().
1669 */
5411be59 1670void audit_syscall_exit(int valid, long return_code)
1da177e4 1671{
5411be59 1672 struct task_struct *tsk = current;
1da177e4
LT
1673 struct audit_context *context;
1674
2fd6f58b 1675 context = audit_get_context(tsk, valid, return_code);
1da177e4 1676
1da177e4 1677 if (likely(!context))
97e94c45 1678 return;
1da177e4 1679
f7056d64 1680 if (context->in_syscall && context->auditable)
e495149b 1681 audit_log_exit(context, tsk);
1da177e4
LT
1682
1683 context->in_syscall = 0;
1684 context->auditable = 0;
2fd6f58b 1685
1da177e4
LT
1686 if (context->previous) {
1687 struct audit_context *new_context = context->previous;
1688 context->previous = NULL;
1689 audit_free_context(context);
1690 tsk->audit_context = new_context;
1691 } else {
1692 audit_free_names(context);
74c3cbe3 1693 unroll_tree_refs(context, NULL, 0);
1da177e4 1694 audit_free_aux(context);
e54dc243
AG
1695 context->aux = NULL;
1696 context->aux_pids = NULL;
a5cb013d 1697 context->target_pid = 0;
e54dc243 1698 context->target_sid = 0;
4f6b434f 1699 context->sockaddr_len = 0;
f3298dc4 1700 context->type = 0;
157cf649 1701 context->fds[0] = -1;
5adc8a6a
AG
1702 kfree(context->filterkey);
1703 context->filterkey = NULL;
1da177e4
LT
1704 tsk->audit_context = context;
1705 }
1da177e4
LT
1706}
1707
74c3cbe3
AV
1708static inline void handle_one(const struct inode *inode)
1709{
1710#ifdef CONFIG_AUDIT_TREE
1711 struct audit_context *context;
1712 struct audit_tree_refs *p;
1713 struct audit_chunk *chunk;
1714 int count;
1715 if (likely(list_empty(&inode->inotify_watches)))
1716 return;
1717 context = current->audit_context;
1718 p = context->trees;
1719 count = context->tree_count;
1720 rcu_read_lock();
1721 chunk = audit_tree_lookup(inode);
1722 rcu_read_unlock();
1723 if (!chunk)
1724 return;
1725 if (likely(put_tree_ref(context, chunk)))
1726 return;
1727 if (unlikely(!grow_tree_refs(context))) {
436c405c 1728 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1729 audit_set_auditable(context);
1730 audit_put_chunk(chunk);
1731 unroll_tree_refs(context, p, count);
1732 return;
1733 }
1734 put_tree_ref(context, chunk);
1735#endif
1736}
1737
1738static void handle_path(const struct dentry *dentry)
1739{
1740#ifdef CONFIG_AUDIT_TREE
1741 struct audit_context *context;
1742 struct audit_tree_refs *p;
1743 const struct dentry *d, *parent;
1744 struct audit_chunk *drop;
1745 unsigned long seq;
1746 int count;
1747
1748 context = current->audit_context;
1749 p = context->trees;
1750 count = context->tree_count;
1751retry:
1752 drop = NULL;
1753 d = dentry;
1754 rcu_read_lock();
1755 seq = read_seqbegin(&rename_lock);
1756 for(;;) {
1757 struct inode *inode = d->d_inode;
1758 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1759 struct audit_chunk *chunk;
1760 chunk = audit_tree_lookup(inode);
1761 if (chunk) {
1762 if (unlikely(!put_tree_ref(context, chunk))) {
1763 drop = chunk;
1764 break;
1765 }
1766 }
1767 }
1768 parent = d->d_parent;
1769 if (parent == d)
1770 break;
1771 d = parent;
1772 }
1773 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1774 rcu_read_unlock();
1775 if (!drop) {
1776 /* just a race with rename */
1777 unroll_tree_refs(context, p, count);
1778 goto retry;
1779 }
1780 audit_put_chunk(drop);
1781 if (grow_tree_refs(context)) {
1782 /* OK, got more space */
1783 unroll_tree_refs(context, p, count);
1784 goto retry;
1785 }
1786 /* too bad */
1787 printk(KERN_WARNING
436c405c 1788 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1789 unroll_tree_refs(context, p, count);
1790 audit_set_auditable(context);
1791 return;
1792 }
1793 rcu_read_unlock();
1794#endif
1795}
1796
b0dd25a8
RD
1797/**
1798 * audit_getname - add a name to the list
1799 * @name: name to add
1800 *
1801 * Add a name to the list of audit names for this context.
1802 * Called from fs/namei.c:getname().
1803 */
d8945bb5 1804void __audit_getname(const char *name)
1da177e4
LT
1805{
1806 struct audit_context *context = current->audit_context;
1807
d8945bb5 1808 if (IS_ERR(name) || !name)
1da177e4
LT
1809 return;
1810
1811 if (!context->in_syscall) {
1812#if AUDIT_DEBUG == 2
1813 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1814 __FILE__, __LINE__, context->serial, name);
1815 dump_stack();
1816#endif
1817 return;
1818 }
1819 BUG_ON(context->name_count >= AUDIT_NAMES);
1820 context->names[context->name_count].name = name;
9c937dcc
AG
1821 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1822 context->names[context->name_count].name_put = 1;
1da177e4 1823 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1824 context->names[context->name_count].osid = 0;
1da177e4 1825 ++context->name_count;
44707fdf 1826 if (!context->pwd.dentry) {
8f37d47c 1827 read_lock(&current->fs->lock);
44707fdf
JB
1828 context->pwd = current->fs->pwd;
1829 path_get(&current->fs->pwd);
8f37d47c
DW
1830 read_unlock(&current->fs->lock);
1831 }
9f8dbe9c 1832
1da177e4
LT
1833}
1834
b0dd25a8
RD
1835/* audit_putname - intercept a putname request
1836 * @name: name to intercept and delay for putname
1837 *
1838 * If we have stored the name from getname in the audit context,
1839 * then we delay the putname until syscall exit.
1840 * Called from include/linux/fs.h:putname().
1841 */
1da177e4
LT
1842void audit_putname(const char *name)
1843{
1844 struct audit_context *context = current->audit_context;
1845
1846 BUG_ON(!context);
1847 if (!context->in_syscall) {
1848#if AUDIT_DEBUG == 2
1849 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1850 __FILE__, __LINE__, context->serial, name);
1851 if (context->name_count) {
1852 int i;
1853 for (i = 0; i < context->name_count; i++)
1854 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1855 context->names[i].name,
73241ccc 1856 context->names[i].name ?: "(null)");
1da177e4
LT
1857 }
1858#endif
1859 __putname(name);
1860 }
1861#if AUDIT_DEBUG
1862 else {
1863 ++context->put_count;
1864 if (context->put_count > context->name_count) {
1865 printk(KERN_ERR "%s:%d(:%d): major=%d"
1866 " in_syscall=%d putname(%p) name_count=%d"
1867 " put_count=%d\n",
1868 __FILE__, __LINE__,
1869 context->serial, context->major,
1870 context->in_syscall, name, context->name_count,
1871 context->put_count);
1872 dump_stack();
1873 }
1874 }
1875#endif
1876}
1877
5712e88f
AG
1878static int audit_inc_name_count(struct audit_context *context,
1879 const struct inode *inode)
1880{
1881 if (context->name_count >= AUDIT_NAMES) {
1882 if (inode)
1883 printk(KERN_DEBUG "name_count maxed, losing inode data: "
436c405c 1884 "dev=%02x:%02x, inode=%lu\n",
5712e88f
AG
1885 MAJOR(inode->i_sb->s_dev),
1886 MINOR(inode->i_sb->s_dev),
1887 inode->i_ino);
1888
1889 else
436c405c 1890 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
5712e88f
AG
1891 return 1;
1892 }
1893 context->name_count++;
1894#if AUDIT_DEBUG
1895 context->ino_count++;
1896#endif
1897 return 0;
1898}
1899
851f7ff5
EP
1900
1901static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1902{
1903 struct cpu_vfs_cap_data caps;
1904 int rc;
1905
1906 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1907 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1908 name->fcap.fE = 0;
1909 name->fcap_ver = 0;
1910
1911 if (!dentry)
1912 return 0;
1913
1914 rc = get_vfs_caps_from_disk(dentry, &caps);
1915 if (rc)
1916 return rc;
1917
1918 name->fcap.permitted = caps.permitted;
1919 name->fcap.inheritable = caps.inheritable;
1920 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1921 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1922
1923 return 0;
1924}
1925
1926
3e2efce0 1927/* Copy inode data into an audit_names. */
851f7ff5
EP
1928static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1929 const struct inode *inode)
8c8570fb 1930{
3e2efce0
AG
1931 name->ino = inode->i_ino;
1932 name->dev = inode->i_sb->s_dev;
1933 name->mode = inode->i_mode;
1934 name->uid = inode->i_uid;
1935 name->gid = inode->i_gid;
1936 name->rdev = inode->i_rdev;
2a862b32 1937 security_inode_getsecid(inode, &name->osid);
851f7ff5 1938 audit_copy_fcaps(name, dentry);
8c8570fb
DK
1939}
1940
b0dd25a8
RD
1941/**
1942 * audit_inode - store the inode and device from a lookup
1943 * @name: name being audited
481968f4 1944 * @dentry: dentry being audited
b0dd25a8
RD
1945 *
1946 * Called from fs/namei.c:path_lookup().
1947 */
5a190ae6 1948void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1949{
1950 int idx;
1951 struct audit_context *context = current->audit_context;
74c3cbe3 1952 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1953
1954 if (!context->in_syscall)
1955 return;
1956 if (context->name_count
1957 && context->names[context->name_count-1].name
1958 && context->names[context->name_count-1].name == name)
1959 idx = context->name_count - 1;
1960 else if (context->name_count > 1
1961 && context->names[context->name_count-2].name
1962 && context->names[context->name_count-2].name == name)
1963 idx = context->name_count - 2;
1964 else {
1965 /* FIXME: how much do we care about inodes that have no
1966 * associated name? */
5712e88f 1967 if (audit_inc_name_count(context, inode))
1da177e4 1968 return;
5712e88f 1969 idx = context->name_count - 1;
1da177e4 1970 context->names[idx].name = NULL;
1da177e4 1971 }
74c3cbe3 1972 handle_path(dentry);
851f7ff5 1973 audit_copy_inode(&context->names[idx], dentry, inode);
73241ccc
AG
1974}
1975
1976/**
1977 * audit_inode_child - collect inode info for created/removed objects
1978 * @dname: inode's dentry name
481968f4 1979 * @dentry: dentry being audited
73d3ec5a 1980 * @parent: inode of dentry parent
73241ccc
AG
1981 *
1982 * For syscalls that create or remove filesystem objects, audit_inode
1983 * can only collect information for the filesystem object's parent.
1984 * This call updates the audit context with the child's information.
1985 * Syscalls that create a new filesystem object must be hooked after
1986 * the object is created. Syscalls that remove a filesystem object
1987 * must be hooked prior, in order to capture the target inode during
1988 * unsuccessful attempts.
1989 */
5a190ae6 1990void __audit_inode_child(const char *dname, const struct dentry *dentry,
73d3ec5a 1991 const struct inode *parent)
73241ccc
AG
1992{
1993 int idx;
1994 struct audit_context *context = current->audit_context;
5712e88f 1995 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 1996 const struct inode *inode = dentry->d_inode;
9c937dcc 1997 int dirlen = 0;
73241ccc
AG
1998
1999 if (!context->in_syscall)
2000 return;
2001
74c3cbe3
AV
2002 if (inode)
2003 handle_one(inode);
73241ccc 2004 /* determine matching parent */
f368c07d 2005 if (!dname)
5712e88f 2006 goto add_names;
73241ccc 2007
5712e88f
AG
2008 /* parent is more likely, look for it first */
2009 for (idx = 0; idx < context->name_count; idx++) {
2010 struct audit_names *n = &context->names[idx];
f368c07d 2011
5712e88f
AG
2012 if (!n->name)
2013 continue;
2014
2015 if (n->ino == parent->i_ino &&
2016 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2017 n->name_len = dirlen; /* update parent data in place */
2018 found_parent = n->name;
2019 goto add_names;
f368c07d 2020 }
5712e88f 2021 }
73241ccc 2022
5712e88f
AG
2023 /* no matching parent, look for matching child */
2024 for (idx = 0; idx < context->name_count; idx++) {
2025 struct audit_names *n = &context->names[idx];
2026
2027 if (!n->name)
2028 continue;
2029
2030 /* strcmp() is the more likely scenario */
2031 if (!strcmp(dname, n->name) ||
2032 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2033 if (inode)
851f7ff5 2034 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2035 else
2036 n->ino = (unsigned long)-1;
2037 found_child = n->name;
2038 goto add_names;
2039 }
ac9910ce 2040 }
5712e88f
AG
2041
2042add_names:
2043 if (!found_parent) {
2044 if (audit_inc_name_count(context, parent))
ac9910ce 2045 return;
5712e88f
AG
2046 idx = context->name_count - 1;
2047 context->names[idx].name = NULL;
851f7ff5 2048 audit_copy_inode(&context->names[idx], NULL, parent);
73d3ec5a 2049 }
5712e88f
AG
2050
2051 if (!found_child) {
2052 if (audit_inc_name_count(context, inode))
2053 return;
2054 idx = context->name_count - 1;
2055
2056 /* Re-use the name belonging to the slot for a matching parent
2057 * directory. All names for this context are relinquished in
2058 * audit_free_names() */
2059 if (found_parent) {
2060 context->names[idx].name = found_parent;
2061 context->names[idx].name_len = AUDIT_NAME_FULL;
2062 /* don't call __putname() */
2063 context->names[idx].name_put = 0;
2064 } else {
2065 context->names[idx].name = NULL;
2066 }
2067
2068 if (inode)
851f7ff5 2069 audit_copy_inode(&context->names[idx], NULL, inode);
5712e88f
AG
2070 else
2071 context->names[idx].ino = (unsigned long)-1;
2072 }
3e2efce0 2073}
50e437d5 2074EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2075
b0dd25a8
RD
2076/**
2077 * auditsc_get_stamp - get local copies of audit_context values
2078 * @ctx: audit_context for the task
2079 * @t: timespec to store time recorded in the audit_context
2080 * @serial: serial value that is recorded in the audit_context
2081 *
2082 * Also sets the context as auditable.
2083 */
48887e63 2084int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2085 struct timespec *t, unsigned int *serial)
1da177e4 2086{
48887e63
AV
2087 if (!ctx->in_syscall)
2088 return 0;
ce625a80
DW
2089 if (!ctx->serial)
2090 ctx->serial = audit_serial();
bfb4496e
DW
2091 t->tv_sec = ctx->ctime.tv_sec;
2092 t->tv_nsec = ctx->ctime.tv_nsec;
2093 *serial = ctx->serial;
2094 ctx->auditable = 1;
48887e63 2095 return 1;
1da177e4
LT
2096}
2097
4746ec5b
EP
2098/* global counter which is incremented every time something logs in */
2099static atomic_t session_id = ATOMIC_INIT(0);
2100
b0dd25a8
RD
2101/**
2102 * audit_set_loginuid - set a task's audit_context loginuid
2103 * @task: task whose audit context is being modified
2104 * @loginuid: loginuid value
2105 *
2106 * Returns 0.
2107 *
2108 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2109 */
456be6cd 2110int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 2111{
4746ec5b 2112 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
2113 struct audit_context *context = task->audit_context;
2114
bfef93a5
AV
2115 if (context && context->in_syscall) {
2116 struct audit_buffer *ab;
2117
2118 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2119 if (ab) {
2120 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2121 "old auid=%u new auid=%u"
2122 " old ses=%u new ses=%u",
c69e8d9c 2123 task->pid, task_uid(task),
4746ec5b
EP
2124 task->loginuid, loginuid,
2125 task->sessionid, sessionid);
bfef93a5 2126 audit_log_end(ab);
c0404993 2127 }
1da177e4 2128 }
4746ec5b 2129 task->sessionid = sessionid;
bfef93a5 2130 task->loginuid = loginuid;
1da177e4
LT
2131 return 0;
2132}
2133
20ca73bc
GW
2134/**
2135 * __audit_mq_open - record audit data for a POSIX MQ open
2136 * @oflag: open flag
2137 * @mode: mode bits
2138 * @u_attr: queue attributes
2139 *
20ca73bc 2140 */
564f6993 2141void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
20ca73bc 2142{
20ca73bc
GW
2143 struct audit_context *context = current->audit_context;
2144
564f6993
AV
2145 if (attr)
2146 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2147 else
2148 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2149
564f6993
AV
2150 context->mq_open.oflag = oflag;
2151 context->mq_open.mode = mode;
20ca73bc 2152
564f6993 2153 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2154}
2155
2156/**
c32c8af4 2157 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2158 * @mqdes: MQ descriptor
2159 * @msg_len: Message length
2160 * @msg_prio: Message priority
c32c8af4 2161 * @abs_timeout: Message timeout in absolute time
20ca73bc 2162 *
20ca73bc 2163 */
c32c8af4
AV
2164void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2165 const struct timespec *abs_timeout)
20ca73bc 2166{
20ca73bc 2167 struct audit_context *context = current->audit_context;
c32c8af4 2168 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2169
c32c8af4
AV
2170 if (abs_timeout)
2171 memcpy(p, abs_timeout, sizeof(struct timespec));
2172 else
2173 memset(p, 0, sizeof(struct timespec));
20ca73bc 2174
c32c8af4
AV
2175 context->mq_sendrecv.mqdes = mqdes;
2176 context->mq_sendrecv.msg_len = msg_len;
2177 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2178
c32c8af4 2179 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2180}
2181
2182/**
2183 * __audit_mq_notify - record audit data for a POSIX MQ notify
2184 * @mqdes: MQ descriptor
2185 * @u_notification: Notification event
2186 *
20ca73bc
GW
2187 */
2188
20114f71 2189void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2190{
20ca73bc
GW
2191 struct audit_context *context = current->audit_context;
2192
20114f71
AV
2193 if (notification)
2194 context->mq_notify.sigev_signo = notification->sigev_signo;
2195 else
2196 context->mq_notify.sigev_signo = 0;
20ca73bc 2197
20114f71
AV
2198 context->mq_notify.mqdes = mqdes;
2199 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2200}
2201
2202/**
2203 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2204 * @mqdes: MQ descriptor
2205 * @mqstat: MQ flags
2206 *
20ca73bc 2207 */
7392906e 2208void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2209{
20ca73bc 2210 struct audit_context *context = current->audit_context;
7392906e
AV
2211 context->mq_getsetattr.mqdes = mqdes;
2212 context->mq_getsetattr.mqstat = *mqstat;
2213 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2214}
2215
b0dd25a8 2216/**
073115d6
SG
2217 * audit_ipc_obj - record audit data for ipc object
2218 * @ipcp: ipc permissions
2219 *
073115d6 2220 */
a33e6751 2221void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2222{
073115d6 2223 struct audit_context *context = current->audit_context;
a33e6751
AV
2224 context->ipc.uid = ipcp->uid;
2225 context->ipc.gid = ipcp->gid;
2226 context->ipc.mode = ipcp->mode;
e816f370 2227 context->ipc.has_perm = 0;
a33e6751
AV
2228 security_ipc_getsecid(ipcp, &context->ipc.osid);
2229 context->type = AUDIT_IPC;
073115d6
SG
2230}
2231
2232/**
2233 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2234 * @qbytes: msgq bytes
2235 * @uid: msgq user id
2236 * @gid: msgq group id
2237 * @mode: msgq mode (permissions)
2238 *
e816f370 2239 * Called only after audit_ipc_obj().
b0dd25a8 2240 */
e816f370 2241void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4 2242{
1da177e4
LT
2243 struct audit_context *context = current->audit_context;
2244
e816f370
AV
2245 context->ipc.qbytes = qbytes;
2246 context->ipc.perm_uid = uid;
2247 context->ipc.perm_gid = gid;
2248 context->ipc.perm_mode = mode;
2249 context->ipc.has_perm = 1;
1da177e4 2250}
c2f0c7c3 2251
473ae30b
AV
2252int audit_bprm(struct linux_binprm *bprm)
2253{
2254 struct audit_aux_data_execve *ax;
2255 struct audit_context *context = current->audit_context;
473ae30b 2256
5ac3a9c2 2257 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2258 return 0;
2259
bdf4c48a 2260 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2261 if (!ax)
2262 return -ENOMEM;
2263
2264 ax->argc = bprm->argc;
2265 ax->envc = bprm->envc;
bdf4c48a 2266 ax->mm = bprm->mm;
473ae30b
AV
2267 ax->d.type = AUDIT_EXECVE;
2268 ax->d.next = context->aux;
2269 context->aux = (void *)ax;
2270 return 0;
2271}
2272
2273
b0dd25a8
RD
2274/**
2275 * audit_socketcall - record audit data for sys_socketcall
2276 * @nargs: number of args
2277 * @args: args array
2278 *
b0dd25a8 2279 */
f3298dc4 2280void audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2281{
3ec3b2fb
DW
2282 struct audit_context *context = current->audit_context;
2283
5ac3a9c2 2284 if (likely(!context || context->dummy))
f3298dc4 2285 return;
3ec3b2fb 2286
f3298dc4
AV
2287 context->type = AUDIT_SOCKETCALL;
2288 context->socketcall.nargs = nargs;
2289 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2290}
2291
db349509
AV
2292/**
2293 * __audit_fd_pair - record audit data for pipe and socketpair
2294 * @fd1: the first file descriptor
2295 * @fd2: the second file descriptor
2296 *
db349509 2297 */
157cf649 2298void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2299{
2300 struct audit_context *context = current->audit_context;
157cf649
AV
2301 context->fds[0] = fd1;
2302 context->fds[1] = fd2;
db349509
AV
2303}
2304
b0dd25a8
RD
2305/**
2306 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2307 * @len: data length in user space
2308 * @a: data address in kernel space
2309 *
2310 * Returns 0 for success or NULL context or < 0 on error.
2311 */
3ec3b2fb
DW
2312int audit_sockaddr(int len, void *a)
2313{
3ec3b2fb
DW
2314 struct audit_context *context = current->audit_context;
2315
5ac3a9c2 2316 if (likely(!context || context->dummy))
3ec3b2fb
DW
2317 return 0;
2318
4f6b434f
AV
2319 if (!context->sockaddr) {
2320 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2321 if (!p)
2322 return -ENOMEM;
2323 context->sockaddr = p;
2324 }
3ec3b2fb 2325
4f6b434f
AV
2326 context->sockaddr_len = len;
2327 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2328 return 0;
2329}
2330
a5cb013d
AV
2331void __audit_ptrace(struct task_struct *t)
2332{
2333 struct audit_context *context = current->audit_context;
2334
2335 context->target_pid = t->pid;
c2a7780e 2336 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2337 context->target_uid = task_uid(t);
4746ec5b 2338 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2339 security_task_getsecid(t, &context->target_sid);
c2a7780e 2340 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2341}
2342
b0dd25a8
RD
2343/**
2344 * audit_signal_info - record signal info for shutting down audit subsystem
2345 * @sig: signal value
2346 * @t: task being signaled
2347 *
2348 * If the audit subsystem is being terminated, record the task (pid)
2349 * and uid that is doing that.
2350 */
e54dc243 2351int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2352{
e54dc243
AG
2353 struct audit_aux_data_pids *axp;
2354 struct task_struct *tsk = current;
2355 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2356 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2357
175fc484 2358 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2359 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2360 audit_sig_pid = tsk->pid;
bfef93a5
AV
2361 if (tsk->loginuid != -1)
2362 audit_sig_uid = tsk->loginuid;
175fc484 2363 else
c69e8d9c 2364 audit_sig_uid = uid;
2a862b32 2365 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2366 }
2367 if (!audit_signals || audit_dummy_context())
2368 return 0;
c2f0c7c3 2369 }
e54dc243 2370
e54dc243
AG
2371 /* optimize the common case by putting first signal recipient directly
2372 * in audit_context */
2373 if (!ctx->target_pid) {
2374 ctx->target_pid = t->tgid;
c2a7780e 2375 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2376 ctx->target_uid = t_uid;
4746ec5b 2377 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2378 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2379 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2380 return 0;
2381 }
2382
2383 axp = (void *)ctx->aux_pids;
2384 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2385 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2386 if (!axp)
2387 return -ENOMEM;
2388
2389 axp->d.type = AUDIT_OBJ_PID;
2390 axp->d.next = ctx->aux_pids;
2391 ctx->aux_pids = (void *)axp;
2392 }
88ae704c 2393 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2394
2395 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2396 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2397 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2398 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2399 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2400 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2401 axp->pid_count++;
2402
2403 return 0;
c2f0c7c3 2404}
0a4ff8c2 2405
3fc689e9
EP
2406/**
2407 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2408 * @bprm: pointer to the bprm being processed
2409 * @new: the proposed new credentials
2410 * @old: the old credentials
3fc689e9
EP
2411 *
2412 * Simply check if the proc already has the caps given by the file and if not
2413 * store the priv escalation info for later auditing at the end of the syscall
2414 *
3fc689e9
EP
2415 * -Eric
2416 */
d84f4f99
DH
2417int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2418 const struct cred *new, const struct cred *old)
3fc689e9
EP
2419{
2420 struct audit_aux_data_bprm_fcaps *ax;
2421 struct audit_context *context = current->audit_context;
2422 struct cpu_vfs_cap_data vcaps;
2423 struct dentry *dentry;
2424
2425 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2426 if (!ax)
d84f4f99 2427 return -ENOMEM;
3fc689e9
EP
2428
2429 ax->d.type = AUDIT_BPRM_FCAPS;
2430 ax->d.next = context->aux;
2431 context->aux = (void *)ax;
2432
2433 dentry = dget(bprm->file->f_dentry);
2434 get_vfs_caps_from_disk(dentry, &vcaps);
2435 dput(dentry);
2436
2437 ax->fcap.permitted = vcaps.permitted;
2438 ax->fcap.inheritable = vcaps.inheritable;
2439 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2440 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2441
d84f4f99
DH
2442 ax->old_pcap.permitted = old->cap_permitted;
2443 ax->old_pcap.inheritable = old->cap_inheritable;
2444 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2445
d84f4f99
DH
2446 ax->new_pcap.permitted = new->cap_permitted;
2447 ax->new_pcap.inheritable = new->cap_inheritable;
2448 ax->new_pcap.effective = new->cap_effective;
2449 return 0;
3fc689e9
EP
2450}
2451
e68b75a0
EP
2452/**
2453 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2454 * @pid: target pid of the capset call
2455 * @new: the new credentials
2456 * @old: the old (current) credentials
e68b75a0
EP
2457 *
2458 * Record the aguments userspace sent to sys_capset for later printing by the
2459 * audit system if applicable
2460 */
57f71a0a 2461void __audit_log_capset(pid_t pid,
d84f4f99 2462 const struct cred *new, const struct cred *old)
e68b75a0 2463{
e68b75a0 2464 struct audit_context *context = current->audit_context;
57f71a0a
AV
2465 context->capset.pid = pid;
2466 context->capset.cap.effective = new->cap_effective;
2467 context->capset.cap.inheritable = new->cap_effective;
2468 context->capset.cap.permitted = new->cap_permitted;
2469 context->type = AUDIT_CAPSET;
e68b75a0
EP
2470}
2471
0a4ff8c2
SG
2472/**
2473 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2474 * @signr: signal value
0a4ff8c2
SG
2475 *
2476 * If a process ends with a core dump, something fishy is going on and we
2477 * should record the event for investigation.
2478 */
2479void audit_core_dumps(long signr)
2480{
2481 struct audit_buffer *ab;
2482 u32 sid;
76aac0e9
DH
2483 uid_t auid = audit_get_loginuid(current), uid;
2484 gid_t gid;
4746ec5b 2485 unsigned int sessionid = audit_get_sessionid(current);
0a4ff8c2
SG
2486
2487 if (!audit_enabled)
2488 return;
2489
2490 if (signr == SIGQUIT) /* don't care for those */
2491 return;
2492
2493 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
76aac0e9 2494 current_uid_gid(&uid, &gid);
4746ec5b 2495 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
76aac0e9 2496 auid, uid, gid, sessionid);
2a862b32 2497 security_task_getsecid(current, &sid);
0a4ff8c2
SG
2498 if (sid) {
2499 char *ctx = NULL;
2500 u32 len;
2501
2a862b32 2502 if (security_secid_to_secctx(sid, &ctx, &len))
0a4ff8c2 2503 audit_log_format(ab, " ssid=%u", sid);
2a862b32 2504 else {
0a4ff8c2 2505 audit_log_format(ab, " subj=%s", ctx);
2a862b32
AD
2506 security_release_secctx(ctx, len);
2507 }
0a4ff8c2
SG
2508 }
2509 audit_log_format(ab, " pid=%d comm=", current->pid);
2510 audit_log_untrustedstring(ab, current->comm);
2511 audit_log_format(ab, " sig=%ld", signr);
2512 audit_log_end(ab);
2513}