]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/xfs_log_recover.c
xfs: kill XLOG_VEC_SET_TYPE
[net-next-2.6.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_error.h"
31#include "xfs_bmap_btree.h"
a844f451
NS
32#include "xfs_alloc_btree.h"
33#include "xfs_ialloc_btree.h"
1da177e4 34#include "xfs_dir2_sf.h"
a844f451 35#include "xfs_attr_sf.h"
1da177e4 36#include "xfs_dinode.h"
1da177e4 37#include "xfs_inode.h"
a844f451 38#include "xfs_inode_item.h"
a844f451 39#include "xfs_alloc.h"
1da177e4
LT
40#include "xfs_ialloc.h"
41#include "xfs_log_priv.h"
42#include "xfs_buf_item.h"
1da177e4
LT
43#include "xfs_log_recover.h"
44#include "xfs_extfree_item.h"
45#include "xfs_trans_priv.h"
1da177e4
LT
46#include "xfs_quota.h"
47#include "xfs_rw.h"
43355099 48#include "xfs_utils.h"
0b1b213f 49#include "xfs_trace.h"
1da177e4
LT
50
51STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
1da177e4
LT
53#if defined(DEBUG)
54STATIC void xlog_recover_check_summary(xlog_t *);
1da177e4
LT
55#else
56#define xlog_recover_check_summary(log)
1da177e4
LT
57#endif
58
59
60/*
61 * Sector aligned buffer routines for buffer create/read/write/access
62 */
63
64#define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
65 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
66 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
67#define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
68
5d77c0dc 69STATIC xfs_buf_t *
1da177e4
LT
70xlog_get_bp(
71 xlog_t *log,
3228149c 72 int nbblks)
1da177e4 73{
3228149c
DC
74 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
75 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
76 XFS_ERROR_REPORT("xlog_get_bp(1)",
77 XFS_ERRLEVEL_HIGH, log->l_mp);
78 return NULL;
79 }
1da177e4
LT
80
81 if (log->l_sectbb_log) {
3228149c
DC
82 if (nbblks > 1)
83 nbblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
84 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
1da177e4 85 }
3228149c 86 return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
1da177e4
LT
87}
88
5d77c0dc 89STATIC void
1da177e4
LT
90xlog_put_bp(
91 xfs_buf_t *bp)
92{
93 xfs_buf_free(bp);
94}
95
076e6acb
CH
96STATIC xfs_caddr_t
97xlog_align(
98 xlog_t *log,
99 xfs_daddr_t blk_no,
100 int nbblks,
101 xfs_buf_t *bp)
102{
103 xfs_caddr_t ptr;
104
105 if (!log->l_sectbb_log)
106 return XFS_BUF_PTR(bp);
107
108 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
109 ASSERT(XFS_BUF_SIZE(bp) >=
110 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
111 return ptr;
112}
113
1da177e4
LT
114
115/*
116 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
117 */
076e6acb
CH
118STATIC int
119xlog_bread_noalign(
1da177e4
LT
120 xlog_t *log,
121 xfs_daddr_t blk_no,
122 int nbblks,
123 xfs_buf_t *bp)
124{
125 int error;
126
3228149c
DC
127 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
128 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
129 XFS_ERROR_REPORT("xlog_bread(1)",
130 XFS_ERRLEVEL_HIGH, log->l_mp);
131 return EFSCORRUPTED;
132 }
133
1da177e4
LT
134 if (log->l_sectbb_log) {
135 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
136 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
137 }
138
139 ASSERT(nbblks > 0);
140 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
141 ASSERT(bp);
142
143 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
144 XFS_BUF_READ(bp);
145 XFS_BUF_BUSY(bp);
146 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
147 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
148
149 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
150 error = xfs_iowait(bp);
151 if (error)
1da177e4
LT
152 xfs_ioerror_alert("xlog_bread", log->l_mp,
153 bp, XFS_BUF_ADDR(bp));
154 return error;
155}
156
076e6acb
CH
157STATIC int
158xlog_bread(
159 xlog_t *log,
160 xfs_daddr_t blk_no,
161 int nbblks,
162 xfs_buf_t *bp,
163 xfs_caddr_t *offset)
164{
165 int error;
166
167 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
168 if (error)
169 return error;
170
171 *offset = xlog_align(log, blk_no, nbblks, bp);
172 return 0;
173}
174
1da177e4
LT
175/*
176 * Write out the buffer at the given block for the given number of blocks.
177 * The buffer is kept locked across the write and is returned locked.
178 * This can only be used for synchronous log writes.
179 */
ba0f32d4 180STATIC int
1da177e4
LT
181xlog_bwrite(
182 xlog_t *log,
183 xfs_daddr_t blk_no,
184 int nbblks,
185 xfs_buf_t *bp)
186{
187 int error;
188
3228149c
DC
189 if (nbblks <= 0 || nbblks > log->l_logBBsize) {
190 xlog_warn("XFS: Invalid block length (0x%x) given for buffer", nbblks);
191 XFS_ERROR_REPORT("xlog_bwrite(1)",
192 XFS_ERRLEVEL_HIGH, log->l_mp);
193 return EFSCORRUPTED;
194 }
195
1da177e4
LT
196 if (log->l_sectbb_log) {
197 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
198 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
199 }
200
201 ASSERT(nbblks > 0);
202 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
203
204 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
205 XFS_BUF_ZEROFLAGS(bp);
206 XFS_BUF_BUSY(bp);
207 XFS_BUF_HOLD(bp);
208 XFS_BUF_PSEMA(bp, PRIBIO);
209 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
210 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
211
212 if ((error = xfs_bwrite(log->l_mp, bp)))
213 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
214 bp, XFS_BUF_ADDR(bp));
215 return error;
216}
217
1da177e4
LT
218#ifdef DEBUG
219/*
220 * dump debug superblock and log record information
221 */
222STATIC void
223xlog_header_check_dump(
224 xfs_mount_t *mp,
225 xlog_rec_header_t *head)
226{
03daa57c
JP
227 cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
228 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
229 cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
230 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
231}
232#else
233#define xlog_header_check_dump(mp, head)
234#endif
235
236/*
237 * check log record header for recovery
238 */
239STATIC int
240xlog_header_check_recover(
241 xfs_mount_t *mp,
242 xlog_rec_header_t *head)
243{
b53e675d 244 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
245
246 /*
247 * IRIX doesn't write the h_fmt field and leaves it zeroed
248 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
249 * a dirty log created in IRIX.
250 */
b53e675d 251 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
1da177e4
LT
252 xlog_warn(
253 "XFS: dirty log written in incompatible format - can't recover");
254 xlog_header_check_dump(mp, head);
255 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
256 XFS_ERRLEVEL_HIGH, mp);
257 return XFS_ERROR(EFSCORRUPTED);
258 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
259 xlog_warn(
260 "XFS: dirty log entry has mismatched uuid - can't recover");
261 xlog_header_check_dump(mp, head);
262 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
263 XFS_ERRLEVEL_HIGH, mp);
264 return XFS_ERROR(EFSCORRUPTED);
265 }
266 return 0;
267}
268
269/*
270 * read the head block of the log and check the header
271 */
272STATIC int
273xlog_header_check_mount(
274 xfs_mount_t *mp,
275 xlog_rec_header_t *head)
276{
b53e675d 277 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
278
279 if (uuid_is_nil(&head->h_fs_uuid)) {
280 /*
281 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
282 * h_fs_uuid is nil, we assume this log was last mounted
283 * by IRIX and continue.
284 */
285 xlog_warn("XFS: nil uuid in log - IRIX style log");
286 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
287 xlog_warn("XFS: log has mismatched uuid - can't recover");
288 xlog_header_check_dump(mp, head);
289 XFS_ERROR_REPORT("xlog_header_check_mount",
290 XFS_ERRLEVEL_HIGH, mp);
291 return XFS_ERROR(EFSCORRUPTED);
292 }
293 return 0;
294}
295
296STATIC void
297xlog_recover_iodone(
298 struct xfs_buf *bp)
299{
1da177e4
LT
300 if (XFS_BUF_GETERROR(bp)) {
301 /*
302 * We're not going to bother about retrying
303 * this during recovery. One strike!
304 */
1da177e4 305 xfs_ioerror_alert("xlog_recover_iodone",
15ac08a8
CH
306 bp->b_mount, bp, XFS_BUF_ADDR(bp));
307 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1da177e4 308 }
15ac08a8 309 bp->b_mount = NULL;
1da177e4
LT
310 XFS_BUF_CLR_IODONE_FUNC(bp);
311 xfs_biodone(bp);
312}
313
314/*
315 * This routine finds (to an approximation) the first block in the physical
316 * log which contains the given cycle. It uses a binary search algorithm.
317 * Note that the algorithm can not be perfect because the disk will not
318 * necessarily be perfect.
319 */
a8272ce0 320STATIC int
1da177e4
LT
321xlog_find_cycle_start(
322 xlog_t *log,
323 xfs_buf_t *bp,
324 xfs_daddr_t first_blk,
325 xfs_daddr_t *last_blk,
326 uint cycle)
327{
328 xfs_caddr_t offset;
329 xfs_daddr_t mid_blk;
330 uint mid_cycle;
331 int error;
332
333 mid_blk = BLK_AVG(first_blk, *last_blk);
334 while (mid_blk != first_blk && mid_blk != *last_blk) {
076e6acb
CH
335 error = xlog_bread(log, mid_blk, 1, bp, &offset);
336 if (error)
1da177e4 337 return error;
03bea6fe 338 mid_cycle = xlog_get_cycle(offset);
1da177e4
LT
339 if (mid_cycle == cycle) {
340 *last_blk = mid_blk;
341 /* last_half_cycle == mid_cycle */
342 } else {
343 first_blk = mid_blk;
344 /* first_half_cycle == mid_cycle */
345 }
346 mid_blk = BLK_AVG(first_blk, *last_blk);
347 }
348 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
349 (mid_blk == *last_blk && mid_blk-1 == first_blk));
350
351 return 0;
352}
353
354/*
355 * Check that the range of blocks does not contain the cycle number
356 * given. The scan needs to occur from front to back and the ptr into the
357 * region must be updated since a later routine will need to perform another
358 * test. If the region is completely good, we end up returning the same
359 * last block number.
360 *
361 * Set blkno to -1 if we encounter no errors. This is an invalid block number
362 * since we don't ever expect logs to get this large.
363 */
364STATIC int
365xlog_find_verify_cycle(
366 xlog_t *log,
367 xfs_daddr_t start_blk,
368 int nbblks,
369 uint stop_on_cycle_no,
370 xfs_daddr_t *new_blk)
371{
372 xfs_daddr_t i, j;
373 uint cycle;
374 xfs_buf_t *bp;
375 xfs_daddr_t bufblks;
376 xfs_caddr_t buf = NULL;
377 int error = 0;
378
379 bufblks = 1 << ffs(nbblks);
380
381 while (!(bp = xlog_get_bp(log, bufblks))) {
382 /* can't get enough memory to do everything in one big buffer */
383 bufblks >>= 1;
384 if (bufblks <= log->l_sectbb_log)
385 return ENOMEM;
386 }
387
388 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
389 int bcount;
390
391 bcount = min(bufblks, (start_blk + nbblks - i));
392
076e6acb
CH
393 error = xlog_bread(log, i, bcount, bp, &buf);
394 if (error)
1da177e4
LT
395 goto out;
396
1da177e4 397 for (j = 0; j < bcount; j++) {
03bea6fe 398 cycle = xlog_get_cycle(buf);
1da177e4
LT
399 if (cycle == stop_on_cycle_no) {
400 *new_blk = i+j;
401 goto out;
402 }
403
404 buf += BBSIZE;
405 }
406 }
407
408 *new_blk = -1;
409
410out:
411 xlog_put_bp(bp);
412 return error;
413}
414
415/*
416 * Potentially backup over partial log record write.
417 *
418 * In the typical case, last_blk is the number of the block directly after
419 * a good log record. Therefore, we subtract one to get the block number
420 * of the last block in the given buffer. extra_bblks contains the number
421 * of blocks we would have read on a previous read. This happens when the
422 * last log record is split over the end of the physical log.
423 *
424 * extra_bblks is the number of blocks potentially verified on a previous
425 * call to this routine.
426 */
427STATIC int
428xlog_find_verify_log_record(
429 xlog_t *log,
430 xfs_daddr_t start_blk,
431 xfs_daddr_t *last_blk,
432 int extra_bblks)
433{
434 xfs_daddr_t i;
435 xfs_buf_t *bp;
436 xfs_caddr_t offset = NULL;
437 xlog_rec_header_t *head = NULL;
438 int error = 0;
439 int smallmem = 0;
440 int num_blks = *last_blk - start_blk;
441 int xhdrs;
442
443 ASSERT(start_blk != 0 || *last_blk != start_blk);
444
445 if (!(bp = xlog_get_bp(log, num_blks))) {
446 if (!(bp = xlog_get_bp(log, 1)))
447 return ENOMEM;
448 smallmem = 1;
449 } else {
076e6acb
CH
450 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
451 if (error)
1da177e4 452 goto out;
1da177e4
LT
453 offset += ((num_blks - 1) << BBSHIFT);
454 }
455
456 for (i = (*last_blk) - 1; i >= 0; i--) {
457 if (i < start_blk) {
458 /* valid log record not found */
459 xlog_warn(
460 "XFS: Log inconsistent (didn't find previous header)");
461 ASSERT(0);
462 error = XFS_ERROR(EIO);
463 goto out;
464 }
465
466 if (smallmem) {
076e6acb
CH
467 error = xlog_bread(log, i, 1, bp, &offset);
468 if (error)
1da177e4 469 goto out;
1da177e4
LT
470 }
471
472 head = (xlog_rec_header_t *)offset;
473
b53e675d 474 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
1da177e4
LT
475 break;
476
477 if (!smallmem)
478 offset -= BBSIZE;
479 }
480
481 /*
482 * We hit the beginning of the physical log & still no header. Return
483 * to caller. If caller can handle a return of -1, then this routine
484 * will be called again for the end of the physical log.
485 */
486 if (i == -1) {
487 error = -1;
488 goto out;
489 }
490
491 /*
492 * We have the final block of the good log (the first block
493 * of the log record _before_ the head. So we check the uuid.
494 */
495 if ((error = xlog_header_check_mount(log->l_mp, head)))
496 goto out;
497
498 /*
499 * We may have found a log record header before we expected one.
500 * last_blk will be the 1st block # with a given cycle #. We may end
501 * up reading an entire log record. In this case, we don't want to
502 * reset last_blk. Only when last_blk points in the middle of a log
503 * record do we update last_blk.
504 */
62118709 505 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 506 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
507
508 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
509 if (h_size % XLOG_HEADER_CYCLE_SIZE)
510 xhdrs++;
511 } else {
512 xhdrs = 1;
513 }
514
b53e675d
CH
515 if (*last_blk - i + extra_bblks !=
516 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
517 *last_blk = i;
518
519out:
520 xlog_put_bp(bp);
521 return error;
522}
523
524/*
525 * Head is defined to be the point of the log where the next log write
526 * write could go. This means that incomplete LR writes at the end are
527 * eliminated when calculating the head. We aren't guaranteed that previous
528 * LR have complete transactions. We only know that a cycle number of
529 * current cycle number -1 won't be present in the log if we start writing
530 * from our current block number.
531 *
532 * last_blk contains the block number of the first block with a given
533 * cycle number.
534 *
535 * Return: zero if normal, non-zero if error.
536 */
ba0f32d4 537STATIC int
1da177e4
LT
538xlog_find_head(
539 xlog_t *log,
540 xfs_daddr_t *return_head_blk)
541{
542 xfs_buf_t *bp;
543 xfs_caddr_t offset;
544 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
545 int num_scan_bblks;
546 uint first_half_cycle, last_half_cycle;
547 uint stop_on_cycle;
548 int error, log_bbnum = log->l_logBBsize;
549
550 /* Is the end of the log device zeroed? */
551 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
552 *return_head_blk = first_blk;
553
554 /* Is the whole lot zeroed? */
555 if (!first_blk) {
556 /* Linux XFS shouldn't generate totally zeroed logs -
557 * mkfs etc write a dummy unmount record to a fresh
558 * log so we can store the uuid in there
559 */
560 xlog_warn("XFS: totally zeroed log");
561 }
562
563 return 0;
564 } else if (error) {
565 xlog_warn("XFS: empty log check failed");
566 return error;
567 }
568
569 first_blk = 0; /* get cycle # of 1st block */
570 bp = xlog_get_bp(log, 1);
571 if (!bp)
572 return ENOMEM;
076e6acb
CH
573
574 error = xlog_bread(log, 0, 1, bp, &offset);
575 if (error)
1da177e4 576 goto bp_err;
076e6acb 577
03bea6fe 578 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
579
580 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
581 error = xlog_bread(log, last_blk, 1, bp, &offset);
582 if (error)
1da177e4 583 goto bp_err;
076e6acb 584
03bea6fe 585 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
586 ASSERT(last_half_cycle != 0);
587
588 /*
589 * If the 1st half cycle number is equal to the last half cycle number,
590 * then the entire log is stamped with the same cycle number. In this
591 * case, head_blk can't be set to zero (which makes sense). The below
592 * math doesn't work out properly with head_blk equal to zero. Instead,
593 * we set it to log_bbnum which is an invalid block number, but this
594 * value makes the math correct. If head_blk doesn't changed through
595 * all the tests below, *head_blk is set to zero at the very end rather
596 * than log_bbnum. In a sense, log_bbnum and zero are the same block
597 * in a circular file.
598 */
599 if (first_half_cycle == last_half_cycle) {
600 /*
601 * In this case we believe that the entire log should have
602 * cycle number last_half_cycle. We need to scan backwards
603 * from the end verifying that there are no holes still
604 * containing last_half_cycle - 1. If we find such a hole,
605 * then the start of that hole will be the new head. The
606 * simple case looks like
607 * x | x ... | x - 1 | x
608 * Another case that fits this picture would be
609 * x | x + 1 | x ... | x
c41564b5 610 * In this case the head really is somewhere at the end of the
1da177e4
LT
611 * log, as one of the latest writes at the beginning was
612 * incomplete.
613 * One more case is
614 * x | x + 1 | x ... | x - 1 | x
615 * This is really the combination of the above two cases, and
616 * the head has to end up at the start of the x-1 hole at the
617 * end of the log.
618 *
619 * In the 256k log case, we will read from the beginning to the
620 * end of the log and search for cycle numbers equal to x-1.
621 * We don't worry about the x+1 blocks that we encounter,
622 * because we know that they cannot be the head since the log
623 * started with x.
624 */
625 head_blk = log_bbnum;
626 stop_on_cycle = last_half_cycle - 1;
627 } else {
628 /*
629 * In this case we want to find the first block with cycle
630 * number matching last_half_cycle. We expect the log to be
631 * some variation on
632 * x + 1 ... | x ...
633 * The first block with cycle number x (last_half_cycle) will
634 * be where the new head belongs. First we do a binary search
635 * for the first occurrence of last_half_cycle. The binary
636 * search may not be totally accurate, so then we scan back
637 * from there looking for occurrences of last_half_cycle before
638 * us. If that backwards scan wraps around the beginning of
639 * the log, then we look for occurrences of last_half_cycle - 1
640 * at the end of the log. The cases we're looking for look
641 * like
642 * x + 1 ... | x | x + 1 | x ...
643 * ^ binary search stopped here
644 * or
645 * x + 1 ... | x ... | x - 1 | x
646 * <---------> less than scan distance
647 */
648 stop_on_cycle = last_half_cycle;
649 if ((error = xlog_find_cycle_start(log, bp, first_blk,
650 &head_blk, last_half_cycle)))
651 goto bp_err;
652 }
653
654 /*
655 * Now validate the answer. Scan back some number of maximum possible
656 * blocks and make sure each one has the expected cycle number. The
657 * maximum is determined by the total possible amount of buffering
658 * in the in-core log. The following number can be made tighter if
659 * we actually look at the block size of the filesystem.
660 */
661 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
662 if (head_blk >= num_scan_bblks) {
663 /*
664 * We are guaranteed that the entire check can be performed
665 * in one buffer.
666 */
667 start_blk = head_blk - num_scan_bblks;
668 if ((error = xlog_find_verify_cycle(log,
669 start_blk, num_scan_bblks,
670 stop_on_cycle, &new_blk)))
671 goto bp_err;
672 if (new_blk != -1)
673 head_blk = new_blk;
674 } else { /* need to read 2 parts of log */
675 /*
676 * We are going to scan backwards in the log in two parts.
677 * First we scan the physical end of the log. In this part
678 * of the log, we are looking for blocks with cycle number
679 * last_half_cycle - 1.
680 * If we find one, then we know that the log starts there, as
681 * we've found a hole that didn't get written in going around
682 * the end of the physical log. The simple case for this is
683 * x + 1 ... | x ... | x - 1 | x
684 * <---------> less than scan distance
685 * If all of the blocks at the end of the log have cycle number
686 * last_half_cycle, then we check the blocks at the start of
687 * the log looking for occurrences of last_half_cycle. If we
688 * find one, then our current estimate for the location of the
689 * first occurrence of last_half_cycle is wrong and we move
690 * back to the hole we've found. This case looks like
691 * x + 1 ... | x | x + 1 | x ...
692 * ^ binary search stopped here
693 * Another case we need to handle that only occurs in 256k
694 * logs is
695 * x + 1 ... | x ... | x+1 | x ...
696 * ^ binary search stops here
697 * In a 256k log, the scan at the end of the log will see the
698 * x + 1 blocks. We need to skip past those since that is
699 * certainly not the head of the log. By searching for
700 * last_half_cycle-1 we accomplish that.
701 */
702 start_blk = log_bbnum - num_scan_bblks + head_blk;
703 ASSERT(head_blk <= INT_MAX &&
704 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
705 if ((error = xlog_find_verify_cycle(log, start_blk,
706 num_scan_bblks - (int)head_blk,
707 (stop_on_cycle - 1), &new_blk)))
708 goto bp_err;
709 if (new_blk != -1) {
710 head_blk = new_blk;
711 goto bad_blk;
712 }
713
714 /*
715 * Scan beginning of log now. The last part of the physical
716 * log is good. This scan needs to verify that it doesn't find
717 * the last_half_cycle.
718 */
719 start_blk = 0;
720 ASSERT(head_blk <= INT_MAX);
721 if ((error = xlog_find_verify_cycle(log,
722 start_blk, (int)head_blk,
723 stop_on_cycle, &new_blk)))
724 goto bp_err;
725 if (new_blk != -1)
726 head_blk = new_blk;
727 }
728
729 bad_blk:
730 /*
731 * Now we need to make sure head_blk is not pointing to a block in
732 * the middle of a log record.
733 */
734 num_scan_bblks = XLOG_REC_SHIFT(log);
735 if (head_blk >= num_scan_bblks) {
736 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
737
738 /* start ptr at last block ptr before head_blk */
739 if ((error = xlog_find_verify_log_record(log, start_blk,
740 &head_blk, 0)) == -1) {
741 error = XFS_ERROR(EIO);
742 goto bp_err;
743 } else if (error)
744 goto bp_err;
745 } else {
746 start_blk = 0;
747 ASSERT(head_blk <= INT_MAX);
748 if ((error = xlog_find_verify_log_record(log, start_blk,
749 &head_blk, 0)) == -1) {
750 /* We hit the beginning of the log during our search */
751 start_blk = log_bbnum - num_scan_bblks + head_blk;
752 new_blk = log_bbnum;
753 ASSERT(start_blk <= INT_MAX &&
754 (xfs_daddr_t) log_bbnum-start_blk >= 0);
755 ASSERT(head_blk <= INT_MAX);
756 if ((error = xlog_find_verify_log_record(log,
757 start_blk, &new_blk,
758 (int)head_blk)) == -1) {
759 error = XFS_ERROR(EIO);
760 goto bp_err;
761 } else if (error)
762 goto bp_err;
763 if (new_blk != log_bbnum)
764 head_blk = new_blk;
765 } else if (error)
766 goto bp_err;
767 }
768
769 xlog_put_bp(bp);
770 if (head_blk == log_bbnum)
771 *return_head_blk = 0;
772 else
773 *return_head_blk = head_blk;
774 /*
775 * When returning here, we have a good block number. Bad block
776 * means that during a previous crash, we didn't have a clean break
777 * from cycle number N to cycle number N-1. In this case, we need
778 * to find the first block with cycle number N-1.
779 */
780 return 0;
781
782 bp_err:
783 xlog_put_bp(bp);
784
785 if (error)
786 xlog_warn("XFS: failed to find log head");
787 return error;
788}
789
790/*
791 * Find the sync block number or the tail of the log.
792 *
793 * This will be the block number of the last record to have its
794 * associated buffers synced to disk. Every log record header has
795 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
796 * to get a sync block number. The only concern is to figure out which
797 * log record header to believe.
798 *
799 * The following algorithm uses the log record header with the largest
800 * lsn. The entire log record does not need to be valid. We only care
801 * that the header is valid.
802 *
803 * We could speed up search by using current head_blk buffer, but it is not
804 * available.
805 */
5d77c0dc 806STATIC int
1da177e4
LT
807xlog_find_tail(
808 xlog_t *log,
809 xfs_daddr_t *head_blk,
65be6054 810 xfs_daddr_t *tail_blk)
1da177e4
LT
811{
812 xlog_rec_header_t *rhead;
813 xlog_op_header_t *op_head;
814 xfs_caddr_t offset = NULL;
815 xfs_buf_t *bp;
816 int error, i, found;
817 xfs_daddr_t umount_data_blk;
818 xfs_daddr_t after_umount_blk;
819 xfs_lsn_t tail_lsn;
820 int hblks;
821
822 found = 0;
823
824 /*
825 * Find previous log record
826 */
827 if ((error = xlog_find_head(log, head_blk)))
828 return error;
829
830 bp = xlog_get_bp(log, 1);
831 if (!bp)
832 return ENOMEM;
833 if (*head_blk == 0) { /* special case */
076e6acb
CH
834 error = xlog_bread(log, 0, 1, bp, &offset);
835 if (error)
1da177e4 836 goto bread_err;
076e6acb 837
03bea6fe 838 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
839 *tail_blk = 0;
840 /* leave all other log inited values alone */
841 goto exit;
842 }
843 }
844
845 /*
846 * Search backwards looking for log record header block
847 */
848 ASSERT(*head_blk < INT_MAX);
849 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
850 error = xlog_bread(log, i, 1, bp, &offset);
851 if (error)
1da177e4 852 goto bread_err;
076e6acb 853
b53e675d 854 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
855 found = 1;
856 break;
857 }
858 }
859 /*
860 * If we haven't found the log record header block, start looking
861 * again from the end of the physical log. XXXmiken: There should be
862 * a check here to make sure we didn't search more than N blocks in
863 * the previous code.
864 */
865 if (!found) {
866 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
867 error = xlog_bread(log, i, 1, bp, &offset);
868 if (error)
1da177e4 869 goto bread_err;
076e6acb 870
1da177e4 871 if (XLOG_HEADER_MAGIC_NUM ==
b53e675d 872 be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
873 found = 2;
874 break;
875 }
876 }
877 }
878 if (!found) {
879 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
880 ASSERT(0);
881 return XFS_ERROR(EIO);
882 }
883
884 /* find blk_no of tail of log */
885 rhead = (xlog_rec_header_t *)offset;
b53e675d 886 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
887
888 /*
889 * Reset log values according to the state of the log when we
890 * crashed. In the case where head_blk == 0, we bump curr_cycle
891 * one because the next write starts a new cycle rather than
892 * continuing the cycle of the last good log record. At this
893 * point we have guaranteed that all partial log records have been
894 * accounted for. Therefore, we know that the last good log record
895 * written was complete and ended exactly on the end boundary
896 * of the physical log.
897 */
898 log->l_prev_block = i;
899 log->l_curr_block = (int)*head_blk;
b53e675d 900 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
901 if (found == 2)
902 log->l_curr_cycle++;
b53e675d
CH
903 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
904 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
1da177e4
LT
905 log->l_grant_reserve_cycle = log->l_curr_cycle;
906 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
907 log->l_grant_write_cycle = log->l_curr_cycle;
908 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
909
910 /*
911 * Look for unmount record. If we find it, then we know there
912 * was a clean unmount. Since 'i' could be the last block in
913 * the physical log, we convert to a log block before comparing
914 * to the head_blk.
915 *
916 * Save the current tail lsn to use to pass to
917 * xlog_clear_stale_blocks() below. We won't want to clear the
918 * unmount record if there is one, so we pass the lsn of the
919 * unmount record rather than the block after it.
920 */
62118709 921 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
922 int h_size = be32_to_cpu(rhead->h_size);
923 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
924
925 if ((h_version & XLOG_VERSION_2) &&
926 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
927 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
928 if (h_size % XLOG_HEADER_CYCLE_SIZE)
929 hblks++;
930 } else {
931 hblks = 1;
932 }
933 } else {
934 hblks = 1;
935 }
936 after_umount_blk = (i + hblks + (int)
b53e675d 937 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1da177e4
LT
938 tail_lsn = log->l_tail_lsn;
939 if (*head_blk == after_umount_blk &&
b53e675d 940 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 941 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
942 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
943 if (error)
1da177e4 944 goto bread_err;
076e6acb 945
1da177e4
LT
946 op_head = (xlog_op_header_t *)offset;
947 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
948 /*
949 * Set tail and last sync so that newly written
950 * log records will point recovery to after the
951 * current unmount record.
952 */
03bea6fe
CH
953 log->l_tail_lsn =
954 xlog_assign_lsn(log->l_curr_cycle,
955 after_umount_blk);
956 log->l_last_sync_lsn =
957 xlog_assign_lsn(log->l_curr_cycle,
958 after_umount_blk);
1da177e4 959 *tail_blk = after_umount_blk;
92821e2b
DC
960
961 /*
962 * Note that the unmount was clean. If the unmount
963 * was not clean, we need to know this to rebuild the
964 * superblock counters from the perag headers if we
965 * have a filesystem using non-persistent counters.
966 */
967 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
968 }
969 }
970
971 /*
972 * Make sure that there are no blocks in front of the head
973 * with the same cycle number as the head. This can happen
974 * because we allow multiple outstanding log writes concurrently,
975 * and the later writes might make it out before earlier ones.
976 *
977 * We use the lsn from before modifying it so that we'll never
978 * overwrite the unmount record after a clean unmount.
979 *
980 * Do this only if we are going to recover the filesystem
981 *
982 * NOTE: This used to say "if (!readonly)"
983 * However on Linux, we can & do recover a read-only filesystem.
984 * We only skip recovery if NORECOVERY is specified on mount,
985 * in which case we would not be here.
986 *
987 * But... if the -device- itself is readonly, just skip this.
988 * We can't recover this device anyway, so it won't matter.
989 */
990 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
991 error = xlog_clear_stale_blocks(log, tail_lsn);
992 }
993
994bread_err:
995exit:
996 xlog_put_bp(bp);
997
998 if (error)
999 xlog_warn("XFS: failed to locate log tail");
1000 return error;
1001}
1002
1003/*
1004 * Is the log zeroed at all?
1005 *
1006 * The last binary search should be changed to perform an X block read
1007 * once X becomes small enough. You can then search linearly through
1008 * the X blocks. This will cut down on the number of reads we need to do.
1009 *
1010 * If the log is partially zeroed, this routine will pass back the blkno
1011 * of the first block with cycle number 0. It won't have a complete LR
1012 * preceding it.
1013 *
1014 * Return:
1015 * 0 => the log is completely written to
1016 * -1 => use *blk_no as the first block of the log
1017 * >0 => error has occurred
1018 */
a8272ce0 1019STATIC int
1da177e4
LT
1020xlog_find_zeroed(
1021 xlog_t *log,
1022 xfs_daddr_t *blk_no)
1023{
1024 xfs_buf_t *bp;
1025 xfs_caddr_t offset;
1026 uint first_cycle, last_cycle;
1027 xfs_daddr_t new_blk, last_blk, start_blk;
1028 xfs_daddr_t num_scan_bblks;
1029 int error, log_bbnum = log->l_logBBsize;
1030
6fdf8ccc
NS
1031 *blk_no = 0;
1032
1da177e4
LT
1033 /* check totally zeroed log */
1034 bp = xlog_get_bp(log, 1);
1035 if (!bp)
1036 return ENOMEM;
076e6acb
CH
1037 error = xlog_bread(log, 0, 1, bp, &offset);
1038 if (error)
1da177e4 1039 goto bp_err;
076e6acb 1040
03bea6fe 1041 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1042 if (first_cycle == 0) { /* completely zeroed log */
1043 *blk_no = 0;
1044 xlog_put_bp(bp);
1045 return -1;
1046 }
1047
1048 /* check partially zeroed log */
076e6acb
CH
1049 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1050 if (error)
1da177e4 1051 goto bp_err;
076e6acb 1052
03bea6fe 1053 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1054 if (last_cycle != 0) { /* log completely written to */
1055 xlog_put_bp(bp);
1056 return 0;
1057 } else if (first_cycle != 1) {
1058 /*
1059 * If the cycle of the last block is zero, the cycle of
1060 * the first block must be 1. If it's not, maybe we're
1061 * not looking at a log... Bail out.
1062 */
1063 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1064 return XFS_ERROR(EINVAL);
1065 }
1066
1067 /* we have a partially zeroed log */
1068 last_blk = log_bbnum-1;
1069 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1070 goto bp_err;
1071
1072 /*
1073 * Validate the answer. Because there is no way to guarantee that
1074 * the entire log is made up of log records which are the same size,
1075 * we scan over the defined maximum blocks. At this point, the maximum
1076 * is not chosen to mean anything special. XXXmiken
1077 */
1078 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1079 ASSERT(num_scan_bblks <= INT_MAX);
1080
1081 if (last_blk < num_scan_bblks)
1082 num_scan_bblks = last_blk;
1083 start_blk = last_blk - num_scan_bblks;
1084
1085 /*
1086 * We search for any instances of cycle number 0 that occur before
1087 * our current estimate of the head. What we're trying to detect is
1088 * 1 ... | 0 | 1 | 0...
1089 * ^ binary search ends here
1090 */
1091 if ((error = xlog_find_verify_cycle(log, start_blk,
1092 (int)num_scan_bblks, 0, &new_blk)))
1093 goto bp_err;
1094 if (new_blk != -1)
1095 last_blk = new_blk;
1096
1097 /*
1098 * Potentially backup over partial log record write. We don't need
1099 * to search the end of the log because we know it is zero.
1100 */
1101 if ((error = xlog_find_verify_log_record(log, start_blk,
1102 &last_blk, 0)) == -1) {
1103 error = XFS_ERROR(EIO);
1104 goto bp_err;
1105 } else if (error)
1106 goto bp_err;
1107
1108 *blk_no = last_blk;
1109bp_err:
1110 xlog_put_bp(bp);
1111 if (error)
1112 return error;
1113 return -1;
1114}
1115
1116/*
1117 * These are simple subroutines used by xlog_clear_stale_blocks() below
1118 * to initialize a buffer full of empty log record headers and write
1119 * them into the log.
1120 */
1121STATIC void
1122xlog_add_record(
1123 xlog_t *log,
1124 xfs_caddr_t buf,
1125 int cycle,
1126 int block,
1127 int tail_cycle,
1128 int tail_block)
1129{
1130 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1131
1132 memset(buf, 0, BBSIZE);
b53e675d
CH
1133 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1134 recp->h_cycle = cpu_to_be32(cycle);
1135 recp->h_version = cpu_to_be32(
62118709 1136 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1137 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1138 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1139 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1140 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1141}
1142
1143STATIC int
1144xlog_write_log_records(
1145 xlog_t *log,
1146 int cycle,
1147 int start_block,
1148 int blocks,
1149 int tail_cycle,
1150 int tail_block)
1151{
1152 xfs_caddr_t offset;
1153 xfs_buf_t *bp;
1154 int balign, ealign;
1155 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1156 int end_block = start_block + blocks;
1157 int bufblks;
1158 int error = 0;
1159 int i, j = 0;
1160
1161 bufblks = 1 << ffs(blocks);
1162 while (!(bp = xlog_get_bp(log, bufblks))) {
1163 bufblks >>= 1;
1164 if (bufblks <= log->l_sectbb_log)
1165 return ENOMEM;
1166 }
1167
1168 /* We may need to do a read at the start to fill in part of
1169 * the buffer in the starting sector not covered by the first
1170 * write below.
1171 */
1172 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1173 if (balign != start_block) {
076e6acb
CH
1174 error = xlog_bread_noalign(log, start_block, 1, bp);
1175 if (error)
1176 goto out_put_bp;
1177
1da177e4
LT
1178 j = start_block - balign;
1179 }
1180
1181 for (i = start_block; i < end_block; i += bufblks) {
1182 int bcount, endcount;
1183
1184 bcount = min(bufblks, end_block - start_block);
1185 endcount = bcount - j;
1186
1187 /* We may need to do a read at the end to fill in part of
1188 * the buffer in the final sector not covered by the write.
1189 * If this is the same sector as the above read, skip it.
1190 */
1191 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1192 if (j == 0 && (start_block + endcount > ealign)) {
1193 offset = XFS_BUF_PTR(bp);
1194 balign = BBTOB(ealign - start_block);
234f56ac
DC
1195 error = XFS_BUF_SET_PTR(bp, offset + balign,
1196 BBTOB(sectbb));
076e6acb
CH
1197 if (error)
1198 break;
1199
1200 error = xlog_bread_noalign(log, ealign, sectbb, bp);
1201 if (error)
1202 break;
1203
1204 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
234f56ac 1205 if (error)
1da177e4 1206 break;
1da177e4
LT
1207 }
1208
1209 offset = xlog_align(log, start_block, endcount, bp);
1210 for (; j < endcount; j++) {
1211 xlog_add_record(log, offset, cycle, i+j,
1212 tail_cycle, tail_block);
1213 offset += BBSIZE;
1214 }
1215 error = xlog_bwrite(log, start_block, endcount, bp);
1216 if (error)
1217 break;
1218 start_block += endcount;
1219 j = 0;
1220 }
076e6acb
CH
1221
1222 out_put_bp:
1da177e4
LT
1223 xlog_put_bp(bp);
1224 return error;
1225}
1226
1227/*
1228 * This routine is called to blow away any incomplete log writes out
1229 * in front of the log head. We do this so that we won't become confused
1230 * if we come up, write only a little bit more, and then crash again.
1231 * If we leave the partial log records out there, this situation could
1232 * cause us to think those partial writes are valid blocks since they
1233 * have the current cycle number. We get rid of them by overwriting them
1234 * with empty log records with the old cycle number rather than the
1235 * current one.
1236 *
1237 * The tail lsn is passed in rather than taken from
1238 * the log so that we will not write over the unmount record after a
1239 * clean unmount in a 512 block log. Doing so would leave the log without
1240 * any valid log records in it until a new one was written. If we crashed
1241 * during that time we would not be able to recover.
1242 */
1243STATIC int
1244xlog_clear_stale_blocks(
1245 xlog_t *log,
1246 xfs_lsn_t tail_lsn)
1247{
1248 int tail_cycle, head_cycle;
1249 int tail_block, head_block;
1250 int tail_distance, max_distance;
1251 int distance;
1252 int error;
1253
1254 tail_cycle = CYCLE_LSN(tail_lsn);
1255 tail_block = BLOCK_LSN(tail_lsn);
1256 head_cycle = log->l_curr_cycle;
1257 head_block = log->l_curr_block;
1258
1259 /*
1260 * Figure out the distance between the new head of the log
1261 * and the tail. We want to write over any blocks beyond the
1262 * head that we may have written just before the crash, but
1263 * we don't want to overwrite the tail of the log.
1264 */
1265 if (head_cycle == tail_cycle) {
1266 /*
1267 * The tail is behind the head in the physical log,
1268 * so the distance from the head to the tail is the
1269 * distance from the head to the end of the log plus
1270 * the distance from the beginning of the log to the
1271 * tail.
1272 */
1273 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1274 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1275 XFS_ERRLEVEL_LOW, log->l_mp);
1276 return XFS_ERROR(EFSCORRUPTED);
1277 }
1278 tail_distance = tail_block + (log->l_logBBsize - head_block);
1279 } else {
1280 /*
1281 * The head is behind the tail in the physical log,
1282 * so the distance from the head to the tail is just
1283 * the tail block minus the head block.
1284 */
1285 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1286 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1287 XFS_ERRLEVEL_LOW, log->l_mp);
1288 return XFS_ERROR(EFSCORRUPTED);
1289 }
1290 tail_distance = tail_block - head_block;
1291 }
1292
1293 /*
1294 * If the head is right up against the tail, we can't clear
1295 * anything.
1296 */
1297 if (tail_distance <= 0) {
1298 ASSERT(tail_distance == 0);
1299 return 0;
1300 }
1301
1302 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1303 /*
1304 * Take the smaller of the maximum amount of outstanding I/O
1305 * we could have and the distance to the tail to clear out.
1306 * We take the smaller so that we don't overwrite the tail and
1307 * we don't waste all day writing from the head to the tail
1308 * for no reason.
1309 */
1310 max_distance = MIN(max_distance, tail_distance);
1311
1312 if ((head_block + max_distance) <= log->l_logBBsize) {
1313 /*
1314 * We can stomp all the blocks we need to without
1315 * wrapping around the end of the log. Just do it
1316 * in a single write. Use the cycle number of the
1317 * current cycle minus one so that the log will look like:
1318 * n ... | n - 1 ...
1319 */
1320 error = xlog_write_log_records(log, (head_cycle - 1),
1321 head_block, max_distance, tail_cycle,
1322 tail_block);
1323 if (error)
1324 return error;
1325 } else {
1326 /*
1327 * We need to wrap around the end of the physical log in
1328 * order to clear all the blocks. Do it in two separate
1329 * I/Os. The first write should be from the head to the
1330 * end of the physical log, and it should use the current
1331 * cycle number minus one just like above.
1332 */
1333 distance = log->l_logBBsize - head_block;
1334 error = xlog_write_log_records(log, (head_cycle - 1),
1335 head_block, distance, tail_cycle,
1336 tail_block);
1337
1338 if (error)
1339 return error;
1340
1341 /*
1342 * Now write the blocks at the start of the physical log.
1343 * This writes the remainder of the blocks we want to clear.
1344 * It uses the current cycle number since we're now on the
1345 * same cycle as the head so that we get:
1346 * n ... n ... | n - 1 ...
1347 * ^^^^^ blocks we're writing
1348 */
1349 distance = max_distance - (log->l_logBBsize - head_block);
1350 error = xlog_write_log_records(log, head_cycle, 0, distance,
1351 tail_cycle, tail_block);
1352 if (error)
1353 return error;
1354 }
1355
1356 return 0;
1357}
1358
1359/******************************************************************************
1360 *
1361 * Log recover routines
1362 *
1363 ******************************************************************************
1364 */
1365
1366STATIC xlog_recover_t *
1367xlog_recover_find_tid(
f0a76953 1368 struct hlist_head *head,
1da177e4
LT
1369 xlog_tid_t tid)
1370{
f0a76953
DC
1371 xlog_recover_t *trans;
1372 struct hlist_node *n;
1da177e4 1373
f0a76953
DC
1374 hlist_for_each_entry(trans, n, head, r_list) {
1375 if (trans->r_log_tid == tid)
1376 return trans;
1da177e4 1377 }
f0a76953 1378 return NULL;
1da177e4
LT
1379}
1380
1381STATIC void
f0a76953
DC
1382xlog_recover_new_tid(
1383 struct hlist_head *head,
1384 xlog_tid_t tid,
1385 xfs_lsn_t lsn)
1da177e4 1386{
f0a76953
DC
1387 xlog_recover_t *trans;
1388
1389 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1390 trans->r_log_tid = tid;
1391 trans->r_lsn = lsn;
1392 INIT_LIST_HEAD(&trans->r_itemq);
1393
1394 INIT_HLIST_NODE(&trans->r_list);
1395 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1396}
1397
1398STATIC void
1399xlog_recover_add_item(
f0a76953 1400 struct list_head *head)
1da177e4
LT
1401{
1402 xlog_recover_item_t *item;
1403
1404 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1405 INIT_LIST_HEAD(&item->ri_list);
1406 list_add_tail(&item->ri_list, head);
1da177e4
LT
1407}
1408
1409STATIC int
1410xlog_recover_add_to_cont_trans(
1411 xlog_recover_t *trans,
1412 xfs_caddr_t dp,
1413 int len)
1414{
1415 xlog_recover_item_t *item;
1416 xfs_caddr_t ptr, old_ptr;
1417 int old_len;
1418
f0a76953 1419 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1420 /* finish copying rest of trans header */
1421 xlog_recover_add_item(&trans->r_itemq);
1422 ptr = (xfs_caddr_t) &trans->r_theader +
1423 sizeof(xfs_trans_header_t) - len;
1424 memcpy(ptr, dp, len); /* d, s, l */
1425 return 0;
1426 }
f0a76953
DC
1427 /* take the tail entry */
1428 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1429
1430 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1431 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1432
760dea67 1433 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1da177e4
LT
1434 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1435 item->ri_buf[item->ri_cnt-1].i_len += len;
1436 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1437 return 0;
1438}
1439
1440/*
1441 * The next region to add is the start of a new region. It could be
1442 * a whole region or it could be the first part of a new region. Because
1443 * of this, the assumption here is that the type and size fields of all
1444 * format structures fit into the first 32 bits of the structure.
1445 *
1446 * This works because all regions must be 32 bit aligned. Therefore, we
1447 * either have both fields or we have neither field. In the case we have
1448 * neither field, the data part of the region is zero length. We only have
1449 * a log_op_header and can throw away the header since a new one will appear
1450 * later. If we have at least 4 bytes, then we can determine how many regions
1451 * will appear in the current log item.
1452 */
1453STATIC int
1454xlog_recover_add_to_trans(
1455 xlog_recover_t *trans,
1456 xfs_caddr_t dp,
1457 int len)
1458{
1459 xfs_inode_log_format_t *in_f; /* any will do */
1460 xlog_recover_item_t *item;
1461 xfs_caddr_t ptr;
1462
1463 if (!len)
1464 return 0;
f0a76953 1465 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1466 /* we need to catch log corruptions here */
1467 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1468 xlog_warn("XFS: xlog_recover_add_to_trans: "
1469 "bad header magic number");
1470 ASSERT(0);
1471 return XFS_ERROR(EIO);
1472 }
1da177e4
LT
1473 if (len == sizeof(xfs_trans_header_t))
1474 xlog_recover_add_item(&trans->r_itemq);
1475 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1476 return 0;
1477 }
1478
1479 ptr = kmem_alloc(len, KM_SLEEP);
1480 memcpy(ptr, dp, len);
1481 in_f = (xfs_inode_log_format_t *)ptr;
1482
f0a76953
DC
1483 /* take the tail entry */
1484 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1485 if (item->ri_total != 0 &&
1486 item->ri_total == item->ri_cnt) {
1487 /* tail item is in use, get a new one */
1da177e4 1488 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1489 item = list_entry(trans->r_itemq.prev,
1490 xlog_recover_item_t, ri_list);
1da177e4 1491 }
1da177e4
LT
1492
1493 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1494 if (in_f->ilf_size == 0 ||
1495 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1496 xlog_warn(
1497 "XFS: bad number of regions (%d) in inode log format",
1498 in_f->ilf_size);
1499 ASSERT(0);
1500 return XFS_ERROR(EIO);
1501 }
1502
1503 item->ri_total = in_f->ilf_size;
1504 item->ri_buf =
1505 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1506 KM_SLEEP);
1da177e4
LT
1507 }
1508 ASSERT(item->ri_total > item->ri_cnt);
1509 /* Description region is ri_buf[0] */
1510 item->ri_buf[item->ri_cnt].i_addr = ptr;
1511 item->ri_buf[item->ri_cnt].i_len = len;
1512 item->ri_cnt++;
1513 return 0;
1514}
1515
f0a76953
DC
1516/*
1517 * Sort the log items in the transaction. Cancelled buffers need
1518 * to be put first so they are processed before any items that might
1519 * modify the buffers. If they are cancelled, then the modifications
1520 * don't need to be replayed.
1521 */
1da177e4
LT
1522STATIC int
1523xlog_recover_reorder_trans(
1da177e4
LT
1524 xlog_recover_t *trans)
1525{
f0a76953
DC
1526 xlog_recover_item_t *item, *n;
1527 LIST_HEAD(sort_list);
1528
1529 list_splice_init(&trans->r_itemq, &sort_list);
1530 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1531 xfs_buf_log_format_t *buf_f;
1da177e4 1532
f0a76953 1533 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
1da177e4 1534
f0a76953 1535 switch (ITEM_TYPE(item)) {
1da177e4 1536 case XFS_LI_BUF:
f0a76953
DC
1537 if (!(buf_f->blf_flags & XFS_BLI_CANCEL)) {
1538 list_move(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1539 break;
1540 }
1541 case XFS_LI_INODE:
1da177e4
LT
1542 case XFS_LI_DQUOT:
1543 case XFS_LI_QUOTAOFF:
1544 case XFS_LI_EFD:
1545 case XFS_LI_EFI:
f0a76953 1546 list_move_tail(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1547 break;
1548 default:
1549 xlog_warn(
1550 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1551 ASSERT(0);
1552 return XFS_ERROR(EIO);
1553 }
f0a76953
DC
1554 }
1555 ASSERT(list_empty(&sort_list));
1da177e4
LT
1556 return 0;
1557}
1558
1559/*
1560 * Build up the table of buf cancel records so that we don't replay
1561 * cancelled data in the second pass. For buffer records that are
1562 * not cancel records, there is nothing to do here so we just return.
1563 *
1564 * If we get a cancel record which is already in the table, this indicates
1565 * that the buffer was cancelled multiple times. In order to ensure
1566 * that during pass 2 we keep the record in the table until we reach its
1567 * last occurrence in the log, we keep a reference count in the cancel
1568 * record in the table to tell us how many times we expect to see this
1569 * record during the second pass.
1570 */
1571STATIC void
1572xlog_recover_do_buffer_pass1(
1573 xlog_t *log,
1574 xfs_buf_log_format_t *buf_f)
1575{
1576 xfs_buf_cancel_t *bcp;
1577 xfs_buf_cancel_t *nextp;
1578 xfs_buf_cancel_t *prevp;
1579 xfs_buf_cancel_t **bucket;
1da177e4
LT
1580 xfs_daddr_t blkno = 0;
1581 uint len = 0;
1582 ushort flags = 0;
1583
1584 switch (buf_f->blf_type) {
1585 case XFS_LI_BUF:
1586 blkno = buf_f->blf_blkno;
1587 len = buf_f->blf_len;
1588 flags = buf_f->blf_flags;
1589 break;
1da177e4
LT
1590 }
1591
1592 /*
1593 * If this isn't a cancel buffer item, then just return.
1594 */
1595 if (!(flags & XFS_BLI_CANCEL))
1596 return;
1597
1598 /*
1599 * Insert an xfs_buf_cancel record into the hash table of
1600 * them. If there is already an identical record, bump
1601 * its reference count.
1602 */
1603 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1604 XLOG_BC_TABLE_SIZE];
1605 /*
1606 * If the hash bucket is empty then just insert a new record into
1607 * the bucket.
1608 */
1609 if (*bucket == NULL) {
1610 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1611 KM_SLEEP);
1612 bcp->bc_blkno = blkno;
1613 bcp->bc_len = len;
1614 bcp->bc_refcount = 1;
1615 bcp->bc_next = NULL;
1616 *bucket = bcp;
1617 return;
1618 }
1619
1620 /*
1621 * The hash bucket is not empty, so search for duplicates of our
1622 * record. If we find one them just bump its refcount. If not
1623 * then add us at the end of the list.
1624 */
1625 prevp = NULL;
1626 nextp = *bucket;
1627 while (nextp != NULL) {
1628 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1629 nextp->bc_refcount++;
1630 return;
1631 }
1632 prevp = nextp;
1633 nextp = nextp->bc_next;
1634 }
1635 ASSERT(prevp != NULL);
1636 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1637 KM_SLEEP);
1638 bcp->bc_blkno = blkno;
1639 bcp->bc_len = len;
1640 bcp->bc_refcount = 1;
1641 bcp->bc_next = NULL;
1642 prevp->bc_next = bcp;
1643}
1644
1645/*
1646 * Check to see whether the buffer being recovered has a corresponding
1647 * entry in the buffer cancel record table. If it does then return 1
1648 * so that it will be cancelled, otherwise return 0. If the buffer is
1649 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1650 * the refcount on the entry in the table and remove it from the table
1651 * if this is the last reference.
1652 *
1653 * We remove the cancel record from the table when we encounter its
1654 * last occurrence in the log so that if the same buffer is re-used
1655 * again after its last cancellation we actually replay the changes
1656 * made at that point.
1657 */
1658STATIC int
1659xlog_check_buffer_cancelled(
1660 xlog_t *log,
1661 xfs_daddr_t blkno,
1662 uint len,
1663 ushort flags)
1664{
1665 xfs_buf_cancel_t *bcp;
1666 xfs_buf_cancel_t *prevp;
1667 xfs_buf_cancel_t **bucket;
1668
1669 if (log->l_buf_cancel_table == NULL) {
1670 /*
1671 * There is nothing in the table built in pass one,
1672 * so this buffer must not be cancelled.
1673 */
1674 ASSERT(!(flags & XFS_BLI_CANCEL));
1675 return 0;
1676 }
1677
1678 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1679 XLOG_BC_TABLE_SIZE];
1680 bcp = *bucket;
1681 if (bcp == NULL) {
1682 /*
1683 * There is no corresponding entry in the table built
1684 * in pass one, so this buffer has not been cancelled.
1685 */
1686 ASSERT(!(flags & XFS_BLI_CANCEL));
1687 return 0;
1688 }
1689
1690 /*
1691 * Search for an entry in the buffer cancel table that
1692 * matches our buffer.
1693 */
1694 prevp = NULL;
1695 while (bcp != NULL) {
1696 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1697 /*
1698 * We've go a match, so return 1 so that the
1699 * recovery of this buffer is cancelled.
1700 * If this buffer is actually a buffer cancel
1701 * log item, then decrement the refcount on the
1702 * one in the table and remove it if this is the
1703 * last reference.
1704 */
1705 if (flags & XFS_BLI_CANCEL) {
1706 bcp->bc_refcount--;
1707 if (bcp->bc_refcount == 0) {
1708 if (prevp == NULL) {
1709 *bucket = bcp->bc_next;
1710 } else {
1711 prevp->bc_next = bcp->bc_next;
1712 }
f0e2d93c 1713 kmem_free(bcp);
1da177e4
LT
1714 }
1715 }
1716 return 1;
1717 }
1718 prevp = bcp;
1719 bcp = bcp->bc_next;
1720 }
1721 /*
1722 * We didn't find a corresponding entry in the table, so
1723 * return 0 so that the buffer is NOT cancelled.
1724 */
1725 ASSERT(!(flags & XFS_BLI_CANCEL));
1726 return 0;
1727}
1728
1729STATIC int
1730xlog_recover_do_buffer_pass2(
1731 xlog_t *log,
1732 xfs_buf_log_format_t *buf_f)
1733{
1da177e4
LT
1734 xfs_daddr_t blkno = 0;
1735 ushort flags = 0;
1736 uint len = 0;
1737
1738 switch (buf_f->blf_type) {
1739 case XFS_LI_BUF:
1740 blkno = buf_f->blf_blkno;
1741 flags = buf_f->blf_flags;
1742 len = buf_f->blf_len;
1743 break;
1da177e4
LT
1744 }
1745
1746 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1747}
1748
1749/*
1750 * Perform recovery for a buffer full of inodes. In these buffers,
1751 * the only data which should be recovered is that which corresponds
1752 * to the di_next_unlinked pointers in the on disk inode structures.
1753 * The rest of the data for the inodes is always logged through the
1754 * inodes themselves rather than the inode buffer and is recovered
1755 * in xlog_recover_do_inode_trans().
1756 *
1757 * The only time when buffers full of inodes are fully recovered is
1758 * when the buffer is full of newly allocated inodes. In this case
1759 * the buffer will not be marked as an inode buffer and so will be
1760 * sent to xlog_recover_do_reg_buffer() below during recovery.
1761 */
1762STATIC int
1763xlog_recover_do_inode_buffer(
1764 xfs_mount_t *mp,
1765 xlog_recover_item_t *item,
1766 xfs_buf_t *bp,
1767 xfs_buf_log_format_t *buf_f)
1768{
1769 int i;
1770 int item_index;
1771 int bit;
1772 int nbits;
1773 int reg_buf_offset;
1774 int reg_buf_bytes;
1775 int next_unlinked_offset;
1776 int inodes_per_buf;
1777 xfs_agino_t *logged_nextp;
1778 xfs_agino_t *buffer_nextp;
1da177e4
LT
1779 unsigned int *data_map = NULL;
1780 unsigned int map_size = 0;
1781
1782 switch (buf_f->blf_type) {
1783 case XFS_LI_BUF:
1784 data_map = buf_f->blf_data_map;
1785 map_size = buf_f->blf_map_size;
1786 break;
1da177e4
LT
1787 }
1788 /*
1789 * Set the variables corresponding to the current region to
1790 * 0 so that we'll initialize them on the first pass through
1791 * the loop.
1792 */
1793 reg_buf_offset = 0;
1794 reg_buf_bytes = 0;
1795 bit = 0;
1796 nbits = 0;
1797 item_index = 0;
1798 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1799 for (i = 0; i < inodes_per_buf; i++) {
1800 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1801 offsetof(xfs_dinode_t, di_next_unlinked);
1802
1803 while (next_unlinked_offset >=
1804 (reg_buf_offset + reg_buf_bytes)) {
1805 /*
1806 * The next di_next_unlinked field is beyond
1807 * the current logged region. Find the next
1808 * logged region that contains or is beyond
1809 * the current di_next_unlinked field.
1810 */
1811 bit += nbits;
1812 bit = xfs_next_bit(data_map, map_size, bit);
1813
1814 /*
1815 * If there are no more logged regions in the
1816 * buffer, then we're done.
1817 */
1818 if (bit == -1) {
1819 return 0;
1820 }
1821
1822 nbits = xfs_contig_bits(data_map, map_size,
1823 bit);
1824 ASSERT(nbits > 0);
1825 reg_buf_offset = bit << XFS_BLI_SHIFT;
1826 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1827 item_index++;
1828 }
1829
1830 /*
1831 * If the current logged region starts after the current
1832 * di_next_unlinked field, then move on to the next
1833 * di_next_unlinked field.
1834 */
1835 if (next_unlinked_offset < reg_buf_offset) {
1836 continue;
1837 }
1838
1839 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1840 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1841 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1842
1843 /*
1844 * The current logged region contains a copy of the
1845 * current di_next_unlinked field. Extract its value
1846 * and copy it to the buffer copy.
1847 */
1848 logged_nextp = (xfs_agino_t *)
1849 ((char *)(item->ri_buf[item_index].i_addr) +
1850 (next_unlinked_offset - reg_buf_offset));
1851 if (unlikely(*logged_nextp == 0)) {
1852 xfs_fs_cmn_err(CE_ALERT, mp,
1853 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1854 item, bp);
1855 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1856 XFS_ERRLEVEL_LOW, mp);
1857 return XFS_ERROR(EFSCORRUPTED);
1858 }
1859
1860 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1861 next_unlinked_offset);
87c199c2 1862 *buffer_nextp = *logged_nextp;
1da177e4
LT
1863 }
1864
1865 return 0;
1866}
1867
1868/*
1869 * Perform a 'normal' buffer recovery. Each logged region of the
1870 * buffer should be copied over the corresponding region in the
1871 * given buffer. The bitmap in the buf log format structure indicates
1872 * where to place the logged data.
1873 */
1874/*ARGSUSED*/
1875STATIC void
1876xlog_recover_do_reg_buffer(
1da177e4
LT
1877 xlog_recover_item_t *item,
1878 xfs_buf_t *bp,
1879 xfs_buf_log_format_t *buf_f)
1880{
1881 int i;
1882 int bit;
1883 int nbits;
1da177e4
LT
1884 unsigned int *data_map = NULL;
1885 unsigned int map_size = 0;
1886 int error;
1887
1888 switch (buf_f->blf_type) {
1889 case XFS_LI_BUF:
1890 data_map = buf_f->blf_data_map;
1891 map_size = buf_f->blf_map_size;
1892 break;
1da177e4
LT
1893 }
1894 bit = 0;
1895 i = 1; /* 0 is the buf format structure */
1896 while (1) {
1897 bit = xfs_next_bit(data_map, map_size, bit);
1898 if (bit == -1)
1899 break;
1900 nbits = xfs_contig_bits(data_map, map_size, bit);
1901 ASSERT(nbits > 0);
4b80916b 1902 ASSERT(item->ri_buf[i].i_addr != NULL);
1da177e4
LT
1903 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1904 ASSERT(XFS_BUF_COUNT(bp) >=
1905 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1906
1907 /*
1908 * Do a sanity check if this is a dquot buffer. Just checking
1909 * the first dquot in the buffer should do. XXXThis is
1910 * probably a good thing to do for other buf types also.
1911 */
1912 error = 0;
c8ad20ff
NS
1913 if (buf_f->blf_flags &
1914 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
0c5e1ce8
CH
1915 if (item->ri_buf[i].i_addr == NULL) {
1916 cmn_err(CE_ALERT,
1917 "XFS: NULL dquot in %s.", __func__);
1918 goto next;
1919 }
8ec6dba2 1920 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
0c5e1ce8
CH
1921 cmn_err(CE_ALERT,
1922 "XFS: dquot too small (%d) in %s.",
1923 item->ri_buf[i].i_len, __func__);
1924 goto next;
1925 }
1da177e4
LT
1926 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1927 item->ri_buf[i].i_addr,
1928 -1, 0, XFS_QMOPT_DOWARN,
1929 "dquot_buf_recover");
0c5e1ce8
CH
1930 if (error)
1931 goto next;
1da177e4 1932 }
0c5e1ce8
CH
1933
1934 memcpy(xfs_buf_offset(bp,
1935 (uint)bit << XFS_BLI_SHIFT), /* dest */
1936 item->ri_buf[i].i_addr, /* source */
1937 nbits<<XFS_BLI_SHIFT); /* length */
1938 next:
1da177e4
LT
1939 i++;
1940 bit += nbits;
1941 }
1942
1943 /* Shouldn't be any more regions */
1944 ASSERT(i == item->ri_total);
1945}
1946
1947/*
1948 * Do some primitive error checking on ondisk dquot data structures.
1949 */
1950int
1951xfs_qm_dqcheck(
1952 xfs_disk_dquot_t *ddq,
1953 xfs_dqid_t id,
1954 uint type, /* used only when IO_dorepair is true */
1955 uint flags,
1956 char *str)
1957{
1958 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1959 int errs = 0;
1960
1961 /*
1962 * We can encounter an uninitialized dquot buffer for 2 reasons:
1963 * 1. If we crash while deleting the quotainode(s), and those blks got
1964 * used for user data. This is because we take the path of regular
1965 * file deletion; however, the size field of quotainodes is never
1966 * updated, so all the tricks that we play in itruncate_finish
1967 * don't quite matter.
1968 *
1969 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1970 * But the allocation will be replayed so we'll end up with an
1971 * uninitialized quota block.
1972 *
1973 * This is all fine; things are still consistent, and we haven't lost
1974 * any quota information. Just don't complain about bad dquot blks.
1975 */
1149d96a 1976 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1da177e4
LT
1977 if (flags & XFS_QMOPT_DOWARN)
1978 cmn_err(CE_ALERT,
1979 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 1980 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
1981 errs++;
1982 }
1149d96a 1983 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4
LT
1984 if (flags & XFS_QMOPT_DOWARN)
1985 cmn_err(CE_ALERT,
1986 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 1987 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
1988 errs++;
1989 }
1990
1149d96a
CH
1991 if (ddq->d_flags != XFS_DQ_USER &&
1992 ddq->d_flags != XFS_DQ_PROJ &&
1993 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4
LT
1994 if (flags & XFS_QMOPT_DOWARN)
1995 cmn_err(CE_ALERT,
1996 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 1997 str, id, ddq->d_flags);
1da177e4
LT
1998 errs++;
1999 }
2000
1149d96a 2001 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4
LT
2002 if (flags & XFS_QMOPT_DOWARN)
2003 cmn_err(CE_ALERT,
2004 "%s : ondisk-dquot 0x%p, ID mismatch: "
2005 "0x%x expected, found id 0x%x",
1149d96a 2006 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2007 errs++;
2008 }
2009
2010 if (!errs && ddq->d_id) {
1149d96a
CH
2011 if (ddq->d_blk_softlimit &&
2012 be64_to_cpu(ddq->d_bcount) >=
2013 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2014 if (!ddq->d_btimer) {
2015 if (flags & XFS_QMOPT_DOWARN)
2016 cmn_err(CE_ALERT,
2017 "%s : Dquot ID 0x%x (0x%p) "
2018 "BLK TIMER NOT STARTED",
1149d96a 2019 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2020 errs++;
2021 }
2022 }
1149d96a
CH
2023 if (ddq->d_ino_softlimit &&
2024 be64_to_cpu(ddq->d_icount) >=
2025 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2026 if (!ddq->d_itimer) {
2027 if (flags & XFS_QMOPT_DOWARN)
2028 cmn_err(CE_ALERT,
2029 "%s : Dquot ID 0x%x (0x%p) "
2030 "INODE TIMER NOT STARTED",
1149d96a 2031 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2032 errs++;
2033 }
2034 }
1149d96a
CH
2035 if (ddq->d_rtb_softlimit &&
2036 be64_to_cpu(ddq->d_rtbcount) >=
2037 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2038 if (!ddq->d_rtbtimer) {
2039 if (flags & XFS_QMOPT_DOWARN)
2040 cmn_err(CE_ALERT,
2041 "%s : Dquot ID 0x%x (0x%p) "
2042 "RTBLK TIMER NOT STARTED",
1149d96a 2043 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2044 errs++;
2045 }
2046 }
2047 }
2048
2049 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2050 return errs;
2051
2052 if (flags & XFS_QMOPT_DOWARN)
2053 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2054
2055 /*
2056 * Typically, a repair is only requested by quotacheck.
2057 */
2058 ASSERT(id != -1);
2059 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2060 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2061
2062 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2063 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2064 d->dd_diskdq.d_flags = type;
2065 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2066
2067 return errs;
2068}
2069
2070/*
2071 * Perform a dquot buffer recovery.
2072 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2073 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2074 * Else, treat it as a regular buffer and do recovery.
2075 */
2076STATIC void
2077xlog_recover_do_dquot_buffer(
2078 xfs_mount_t *mp,
2079 xlog_t *log,
2080 xlog_recover_item_t *item,
2081 xfs_buf_t *bp,
2082 xfs_buf_log_format_t *buf_f)
2083{
2084 uint type;
2085
2086 /*
2087 * Filesystems are required to send in quota flags at mount time.
2088 */
2089 if (mp->m_qflags == 0) {
2090 return;
2091 }
2092
2093 type = 0;
2094 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2095 type |= XFS_DQ_USER;
c8ad20ff
NS
2096 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2097 type |= XFS_DQ_PROJ;
1da177e4
LT
2098 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2099 type |= XFS_DQ_GROUP;
2100 /*
2101 * This type of quotas was turned off, so ignore this buffer
2102 */
2103 if (log->l_quotaoffs_flag & type)
2104 return;
2105
053c59a0 2106 xlog_recover_do_reg_buffer(item, bp, buf_f);
1da177e4
LT
2107}
2108
2109/*
2110 * This routine replays a modification made to a buffer at runtime.
2111 * There are actually two types of buffer, regular and inode, which
2112 * are handled differently. Inode buffers are handled differently
2113 * in that we only recover a specific set of data from them, namely
2114 * the inode di_next_unlinked fields. This is because all other inode
2115 * data is actually logged via inode records and any data we replay
2116 * here which overlaps that may be stale.
2117 *
2118 * When meta-data buffers are freed at run time we log a buffer item
2119 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2120 * of the buffer in the log should not be replayed at recovery time.
2121 * This is so that if the blocks covered by the buffer are reused for
2122 * file data before we crash we don't end up replaying old, freed
2123 * meta-data into a user's file.
2124 *
2125 * To handle the cancellation of buffer log items, we make two passes
2126 * over the log during recovery. During the first we build a table of
2127 * those buffers which have been cancelled, and during the second we
2128 * only replay those buffers which do not have corresponding cancel
2129 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2130 * for more details on the implementation of the table of cancel records.
2131 */
2132STATIC int
2133xlog_recover_do_buffer_trans(
2134 xlog_t *log,
2135 xlog_recover_item_t *item,
2136 int pass)
2137{
2138 xfs_buf_log_format_t *buf_f;
1da177e4
LT
2139 xfs_mount_t *mp;
2140 xfs_buf_t *bp;
2141 int error;
2142 int cancel;
2143 xfs_daddr_t blkno;
2144 int len;
2145 ushort flags;
6ad112bf 2146 uint buf_flags;
1da177e4
LT
2147
2148 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2149
2150 if (pass == XLOG_RECOVER_PASS1) {
2151 /*
2152 * In this pass we're only looking for buf items
2153 * with the XFS_BLI_CANCEL bit set.
2154 */
2155 xlog_recover_do_buffer_pass1(log, buf_f);
2156 return 0;
2157 } else {
2158 /*
2159 * In this pass we want to recover all the buffers
2160 * which have not been cancelled and are not
2161 * cancellation buffers themselves. The routine
2162 * we call here will tell us whether or not to
2163 * continue with the replay of this buffer.
2164 */
2165 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2166 if (cancel) {
2167 return 0;
2168 }
2169 }
2170 switch (buf_f->blf_type) {
2171 case XFS_LI_BUF:
2172 blkno = buf_f->blf_blkno;
2173 len = buf_f->blf_len;
2174 flags = buf_f->blf_flags;
2175 break;
1da177e4
LT
2176 default:
2177 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
fc1f8c1c
NS
2178 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2179 buf_f->blf_type, log->l_mp->m_logname ?
2180 log->l_mp->m_logname : "internal");
1da177e4
LT
2181 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2182 XFS_ERRLEVEL_LOW, log->l_mp);
2183 return XFS_ERROR(EFSCORRUPTED);
2184 }
2185
2186 mp = log->l_mp;
0cadda1c 2187 buf_flags = XBF_LOCK;
6ad112bf 2188 if (!(flags & XFS_BLI_INODE_BUF))
0cadda1c 2189 buf_flags |= XBF_MAPPED;
6ad112bf
CH
2190
2191 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
1da177e4
LT
2192 if (XFS_BUF_ISERROR(bp)) {
2193 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2194 bp, blkno);
2195 error = XFS_BUF_GETERROR(bp);
2196 xfs_buf_relse(bp);
2197 return error;
2198 }
2199
2200 error = 0;
2201 if (flags & XFS_BLI_INODE_BUF) {
2202 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
c8ad20ff
NS
2203 } else if (flags &
2204 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1da177e4
LT
2205 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2206 } else {
053c59a0 2207 xlog_recover_do_reg_buffer(item, bp, buf_f);
1da177e4
LT
2208 }
2209 if (error)
2210 return XFS_ERROR(error);
2211
2212 /*
2213 * Perform delayed write on the buffer. Asynchronous writes will be
2214 * slower when taking into account all the buffers to be flushed.
2215 *
2216 * Also make sure that only inode buffers with good sizes stay in
2217 * the buffer cache. The kernel moves inodes in buffers of 1 block
2218 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2219 * buffers in the log can be a different size if the log was generated
2220 * by an older kernel using unclustered inode buffers or a newer kernel
2221 * running with a different inode cluster size. Regardless, if the
2222 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2223 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2224 * the buffer out of the buffer cache so that the buffer won't
2225 * overlap with future reads of those inodes.
2226 */
2227 if (XFS_DINODE_MAGIC ==
b53e675d 2228 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
1da177e4
LT
2229 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2230 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2231 XFS_BUF_STALE(bp);
2232 error = xfs_bwrite(mp, bp);
2233 } else {
15ac08a8
CH
2234 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2235 bp->b_mount = mp;
1da177e4
LT
2236 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2237 xfs_bdwrite(mp, bp);
2238 }
2239
2240 return (error);
2241}
2242
2243STATIC int
2244xlog_recover_do_inode_trans(
2245 xlog_t *log,
2246 xlog_recover_item_t *item,
2247 int pass)
2248{
2249 xfs_inode_log_format_t *in_f;
2250 xfs_mount_t *mp;
2251 xfs_buf_t *bp;
1da177e4
LT
2252 xfs_dinode_t *dip;
2253 xfs_ino_t ino;
2254 int len;
2255 xfs_caddr_t src;
2256 xfs_caddr_t dest;
2257 int error;
2258 int attr_index;
2259 uint fields;
347d1c01 2260 xfs_icdinode_t *dicp;
6d192a9b 2261 int need_free = 0;
1da177e4
LT
2262
2263 if (pass == XLOG_RECOVER_PASS1) {
2264 return 0;
2265 }
2266
6d192a9b
TS
2267 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2268 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2269 } else {
2270 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2271 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2272 need_free = 1;
2273 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2274 if (error)
2275 goto error;
2276 }
1da177e4
LT
2277 ino = in_f->ilf_ino;
2278 mp = log->l_mp;
1da177e4
LT
2279
2280 /*
2281 * Inode buffers can be freed, look out for it,
2282 * and do not replay the inode.
2283 */
a1941895
CH
2284 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2285 in_f->ilf_len, 0)) {
6d192a9b
TS
2286 error = 0;
2287 goto error;
2288 }
1da177e4 2289
6ad112bf 2290 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
0cadda1c 2291 XBF_LOCK);
1da177e4
LT
2292 if (XFS_BUF_ISERROR(bp)) {
2293 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
a1941895 2294 bp, in_f->ilf_blkno);
1da177e4
LT
2295 error = XFS_BUF_GETERROR(bp);
2296 xfs_buf_relse(bp);
6d192a9b 2297 goto error;
1da177e4
LT
2298 }
2299 error = 0;
2300 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2301 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2302
2303 /*
2304 * Make sure the place we're flushing out to really looks
2305 * like an inode!
2306 */
81591fe2 2307 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
1da177e4
LT
2308 xfs_buf_relse(bp);
2309 xfs_fs_cmn_err(CE_ALERT, mp,
2310 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2311 dip, bp, ino);
2312 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2313 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2314 error = EFSCORRUPTED;
2315 goto error;
1da177e4 2316 }
347d1c01 2317 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
1da177e4
LT
2318 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2319 xfs_buf_relse(bp);
2320 xfs_fs_cmn_err(CE_ALERT, mp,
2321 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2322 item, ino);
2323 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2324 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2325 error = EFSCORRUPTED;
2326 goto error;
1da177e4
LT
2327 }
2328
2329 /* Skip replay when the on disk inode is newer than the log one */
81591fe2 2330 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2331 /*
2332 * Deal with the wrap case, DI_MAX_FLUSH is less
2333 * than smaller numbers
2334 */
81591fe2 2335 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2336 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2337 /* do nothing */
2338 } else {
2339 xfs_buf_relse(bp);
6d192a9b
TS
2340 error = 0;
2341 goto error;
1da177e4
LT
2342 }
2343 }
2344 /* Take the opportunity to reset the flush iteration count */
2345 dicp->di_flushiter = 0;
2346
2347 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2348 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2349 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2350 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2351 XFS_ERRLEVEL_LOW, mp, dicp);
2352 xfs_buf_relse(bp);
2353 xfs_fs_cmn_err(CE_ALERT, mp,
2354 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2355 item, dip, bp, ino);
6d192a9b
TS
2356 error = EFSCORRUPTED;
2357 goto error;
1da177e4
LT
2358 }
2359 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2360 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2361 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2362 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2363 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2364 XFS_ERRLEVEL_LOW, mp, dicp);
2365 xfs_buf_relse(bp);
2366 xfs_fs_cmn_err(CE_ALERT, mp,
2367 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2368 item, dip, bp, ino);
6d192a9b
TS
2369 error = EFSCORRUPTED;
2370 goto error;
1da177e4
LT
2371 }
2372 }
2373 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2374 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2375 XFS_ERRLEVEL_LOW, mp, dicp);
2376 xfs_buf_relse(bp);
2377 xfs_fs_cmn_err(CE_ALERT, mp,
2378 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2379 item, dip, bp, ino,
2380 dicp->di_nextents + dicp->di_anextents,
2381 dicp->di_nblocks);
6d192a9b
TS
2382 error = EFSCORRUPTED;
2383 goto error;
1da177e4
LT
2384 }
2385 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2386 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2387 XFS_ERRLEVEL_LOW, mp, dicp);
2388 xfs_buf_relse(bp);
2389 xfs_fs_cmn_err(CE_ALERT, mp,
2390 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2391 item, dip, bp, ino, dicp->di_forkoff);
6d192a9b
TS
2392 error = EFSCORRUPTED;
2393 goto error;
1da177e4 2394 }
81591fe2 2395 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
1da177e4
LT
2396 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2397 XFS_ERRLEVEL_LOW, mp, dicp);
2398 xfs_buf_relse(bp);
2399 xfs_fs_cmn_err(CE_ALERT, mp,
2400 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2401 item->ri_buf[1].i_len, item);
6d192a9b
TS
2402 error = EFSCORRUPTED;
2403 goto error;
1da177e4
LT
2404 }
2405
2406 /* The core is in in-core format */
81591fe2 2407 xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
1da177e4
LT
2408
2409 /* the rest is in on-disk format */
81591fe2
CH
2410 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2411 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2412 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2413 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
1da177e4
LT
2414 }
2415
2416 fields = in_f->ilf_fields;
2417 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2418 case XFS_ILOG_DEV:
81591fe2 2419 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2420 break;
2421 case XFS_ILOG_UUID:
81591fe2
CH
2422 memcpy(XFS_DFORK_DPTR(dip),
2423 &in_f->ilf_u.ilfu_uuid,
2424 sizeof(uuid_t));
1da177e4
LT
2425 break;
2426 }
2427
2428 if (in_f->ilf_size == 2)
2429 goto write_inode_buffer;
2430 len = item->ri_buf[2].i_len;
2431 src = item->ri_buf[2].i_addr;
2432 ASSERT(in_f->ilf_size <= 4);
2433 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2434 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2435 (len == in_f->ilf_dsize));
2436
2437 switch (fields & XFS_ILOG_DFORK) {
2438 case XFS_ILOG_DDATA:
2439 case XFS_ILOG_DEXT:
81591fe2 2440 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2441 break;
2442
2443 case XFS_ILOG_DBROOT:
7cc95a82 2444 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2445 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2446 XFS_DFORK_DSIZE(dip, mp));
2447 break;
2448
2449 default:
2450 /*
2451 * There are no data fork flags set.
2452 */
2453 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2454 break;
2455 }
2456
2457 /*
2458 * If we logged any attribute data, recover it. There may or
2459 * may not have been any other non-core data logged in this
2460 * transaction.
2461 */
2462 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2463 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2464 attr_index = 3;
2465 } else {
2466 attr_index = 2;
2467 }
2468 len = item->ri_buf[attr_index].i_len;
2469 src = item->ri_buf[attr_index].i_addr;
2470 ASSERT(len == in_f->ilf_asize);
2471
2472 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2473 case XFS_ILOG_ADATA:
2474 case XFS_ILOG_AEXT:
2475 dest = XFS_DFORK_APTR(dip);
2476 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2477 memcpy(dest, src, len);
2478 break;
2479
2480 case XFS_ILOG_ABROOT:
2481 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2482 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2483 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2484 XFS_DFORK_ASIZE(dip, mp));
2485 break;
2486
2487 default:
2488 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2489 ASSERT(0);
2490 xfs_buf_relse(bp);
6d192a9b
TS
2491 error = EIO;
2492 goto error;
1da177e4
LT
2493 }
2494 }
2495
2496write_inode_buffer:
dd0bbad8
CH
2497 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2498 bp->b_mount = mp;
2499 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2500 xfs_bdwrite(mp, bp);
6d192a9b
TS
2501error:
2502 if (need_free)
f0e2d93c 2503 kmem_free(in_f);
6d192a9b 2504 return XFS_ERROR(error);
1da177e4
LT
2505}
2506
2507/*
2508 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2509 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2510 * of that type.
2511 */
2512STATIC int
2513xlog_recover_do_quotaoff_trans(
2514 xlog_t *log,
2515 xlog_recover_item_t *item,
2516 int pass)
2517{
2518 xfs_qoff_logformat_t *qoff_f;
2519
2520 if (pass == XLOG_RECOVER_PASS2) {
2521 return (0);
2522 }
2523
2524 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2525 ASSERT(qoff_f);
2526
2527 /*
2528 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2529 * group/project quotaoff or both.
1da177e4
LT
2530 */
2531 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2532 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2533 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2534 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2535 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2536 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2537
2538 return (0);
2539}
2540
2541/*
2542 * Recover a dquot record
2543 */
2544STATIC int
2545xlog_recover_do_dquot_trans(
2546 xlog_t *log,
2547 xlog_recover_item_t *item,
2548 int pass)
2549{
2550 xfs_mount_t *mp;
2551 xfs_buf_t *bp;
2552 struct xfs_disk_dquot *ddq, *recddq;
2553 int error;
2554 xfs_dq_logformat_t *dq_f;
2555 uint type;
2556
2557 if (pass == XLOG_RECOVER_PASS1) {
2558 return 0;
2559 }
2560 mp = log->l_mp;
2561
2562 /*
2563 * Filesystems are required to send in quota flags at mount time.
2564 */
2565 if (mp->m_qflags == 0)
2566 return (0);
2567
2568 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
0c5e1ce8
CH
2569
2570 if (item->ri_buf[1].i_addr == NULL) {
2571 cmn_err(CE_ALERT,
2572 "XFS: NULL dquot in %s.", __func__);
2573 return XFS_ERROR(EIO);
2574 }
8ec6dba2 2575 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
0c5e1ce8
CH
2576 cmn_err(CE_ALERT,
2577 "XFS: dquot too small (%d) in %s.",
2578 item->ri_buf[1].i_len, __func__);
2579 return XFS_ERROR(EIO);
2580 }
2581
1da177e4
LT
2582 /*
2583 * This type of quotas was turned off, so ignore this record.
2584 */
b53e675d 2585 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2586 ASSERT(type);
2587 if (log->l_quotaoffs_flag & type)
2588 return (0);
2589
2590 /*
2591 * At this point we know that quota was _not_ turned off.
2592 * Since the mount flags are not indicating to us otherwise, this
2593 * must mean that quota is on, and the dquot needs to be replayed.
2594 * Remember that we may not have fully recovered the superblock yet,
2595 * so we can't do the usual trick of looking at the SB quota bits.
2596 *
2597 * The other possibility, of course, is that the quota subsystem was
2598 * removed since the last mount - ENOSYS.
2599 */
2600 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2601 ASSERT(dq_f);
2602 if ((error = xfs_qm_dqcheck(recddq,
2603 dq_f->qlf_id,
2604 0, XFS_QMOPT_DOWARN,
2605 "xlog_recover_do_dquot_trans (log copy)"))) {
2606 return XFS_ERROR(EIO);
2607 }
2608 ASSERT(dq_f->qlf_len == 1);
2609
2610 error = xfs_read_buf(mp, mp->m_ddev_targp,
2611 dq_f->qlf_blkno,
2612 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2613 0, &bp);
2614 if (error) {
2615 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2616 bp, dq_f->qlf_blkno);
2617 return error;
2618 }
2619 ASSERT(bp);
2620 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2621
2622 /*
2623 * At least the magic num portion should be on disk because this
2624 * was among a chunk of dquots created earlier, and we did some
2625 * minimal initialization then.
2626 */
2627 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2628 "xlog_recover_do_dquot_trans")) {
2629 xfs_buf_relse(bp);
2630 return XFS_ERROR(EIO);
2631 }
2632
2633 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2634
2635 ASSERT(dq_f->qlf_size == 2);
15ac08a8
CH
2636 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2637 bp->b_mount = mp;
1da177e4
LT
2638 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2639 xfs_bdwrite(mp, bp);
2640
2641 return (0);
2642}
2643
2644/*
2645 * This routine is called to create an in-core extent free intent
2646 * item from the efi format structure which was logged on disk.
2647 * It allocates an in-core efi, copies the extents from the format
2648 * structure into it, and adds the efi to the AIL with the given
2649 * LSN.
2650 */
6d192a9b 2651STATIC int
1da177e4
LT
2652xlog_recover_do_efi_trans(
2653 xlog_t *log,
2654 xlog_recover_item_t *item,
2655 xfs_lsn_t lsn,
2656 int pass)
2657{
6d192a9b 2658 int error;
1da177e4
LT
2659 xfs_mount_t *mp;
2660 xfs_efi_log_item_t *efip;
2661 xfs_efi_log_format_t *efi_formatp;
1da177e4
LT
2662
2663 if (pass == XLOG_RECOVER_PASS1) {
6d192a9b 2664 return 0;
1da177e4
LT
2665 }
2666
2667 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
1da177e4
LT
2668
2669 mp = log->l_mp;
2670 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2671 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2672 &(efip->efi_format)))) {
2673 xfs_efi_item_free(efip);
2674 return error;
2675 }
1da177e4
LT
2676 efip->efi_next_extent = efi_formatp->efi_nextents;
2677 efip->efi_flags |= XFS_EFI_COMMITTED;
2678
a9c21c1b 2679 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2680 /*
783a2f65 2681 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2682 */
783a2f65 2683 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
6d192a9b 2684 return 0;
1da177e4
LT
2685}
2686
2687
2688/*
2689 * This routine is called when an efd format structure is found in
2690 * a committed transaction in the log. It's purpose is to cancel
2691 * the corresponding efi if it was still in the log. To do this
2692 * it searches the AIL for the efi with an id equal to that in the
2693 * efd format structure. If we find it, we remove the efi from the
2694 * AIL and free it.
2695 */
2696STATIC void
2697xlog_recover_do_efd_trans(
2698 xlog_t *log,
2699 xlog_recover_item_t *item,
2700 int pass)
2701{
1da177e4
LT
2702 xfs_efd_log_format_t *efd_formatp;
2703 xfs_efi_log_item_t *efip = NULL;
2704 xfs_log_item_t *lip;
1da177e4 2705 __uint64_t efi_id;
27d8d5fe 2706 struct xfs_ail_cursor cur;
783a2f65 2707 struct xfs_ail *ailp = log->l_ailp;
1da177e4
LT
2708
2709 if (pass == XLOG_RECOVER_PASS1) {
2710 return;
2711 }
2712
2713 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
6d192a9b
TS
2714 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2715 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2716 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2717 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2718 efi_id = efd_formatp->efd_efi_id;
2719
2720 /*
2721 * Search for the efi with the id in the efd format structure
2722 * in the AIL.
2723 */
a9c21c1b
DC
2724 spin_lock(&ailp->xa_lock);
2725 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2726 while (lip != NULL) {
2727 if (lip->li_type == XFS_LI_EFI) {
2728 efip = (xfs_efi_log_item_t *)lip;
2729 if (efip->efi_format.efi_id == efi_id) {
2730 /*
783a2f65 2731 * xfs_trans_ail_delete() drops the
1da177e4
LT
2732 * AIL lock.
2733 */
783a2f65 2734 xfs_trans_ail_delete(ailp, lip);
8ae2c0f6 2735 xfs_efi_item_free(efip);
a9c21c1b 2736 spin_lock(&ailp->xa_lock);
27d8d5fe 2737 break;
1da177e4
LT
2738 }
2739 }
a9c21c1b 2740 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 2741 }
a9c21c1b
DC
2742 xfs_trans_ail_cursor_done(ailp, &cur);
2743 spin_unlock(&ailp->xa_lock);
1da177e4
LT
2744}
2745
2746/*
2747 * Perform the transaction
2748 *
2749 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2750 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2751 */
2752STATIC int
2753xlog_recover_do_trans(
2754 xlog_t *log,
2755 xlog_recover_t *trans,
2756 int pass)
2757{
2758 int error = 0;
f0a76953 2759 xlog_recover_item_t *item;
1da177e4 2760
ff0205e0
CH
2761 error = xlog_recover_reorder_trans(trans);
2762 if (error)
1da177e4 2763 return error;
ff0205e0 2764
f0a76953 2765 list_for_each_entry(item, &trans->r_itemq, ri_list) {
ff0205e0
CH
2766 switch (ITEM_TYPE(item)) {
2767 case XFS_LI_BUF:
2768 error = xlog_recover_do_buffer_trans(log, item, pass);
2769 break;
2770 case XFS_LI_INODE:
2771 error = xlog_recover_do_inode_trans(log, item, pass);
2772 break;
2773 case XFS_LI_EFI:
2774 error = xlog_recover_do_efi_trans(log, item,
2775 trans->r_lsn, pass);
2776 break;
2777 case XFS_LI_EFD:
1da177e4 2778 xlog_recover_do_efd_trans(log, item, pass);
ff0205e0
CH
2779 error = 0;
2780 break;
2781 case XFS_LI_DQUOT:
2782 error = xlog_recover_do_dquot_trans(log, item, pass);
2783 break;
2784 case XFS_LI_QUOTAOFF:
2785 error = xlog_recover_do_quotaoff_trans(log, item,
2786 pass);
2787 break;
2788 default:
2789 xlog_warn(
2790 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
1da177e4
LT
2791 ASSERT(0);
2792 error = XFS_ERROR(EIO);
2793 break;
2794 }
ff0205e0
CH
2795
2796 if (error)
2797 return error;
f0a76953 2798 }
1da177e4 2799
ff0205e0 2800 return 0;
1da177e4
LT
2801}
2802
2803/*
2804 * Free up any resources allocated by the transaction
2805 *
2806 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2807 */
2808STATIC void
2809xlog_recover_free_trans(
2810 xlog_recover_t *trans)
2811{
f0a76953 2812 xlog_recover_item_t *item, *n;
1da177e4
LT
2813 int i;
2814
f0a76953
DC
2815 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2816 /* Free the regions in the item. */
2817 list_del(&item->ri_list);
2818 for (i = 0; i < item->ri_cnt; i++)
2819 kmem_free(item->ri_buf[i].i_addr);
1da177e4 2820 /* Free the item itself */
f0a76953
DC
2821 kmem_free(item->ri_buf);
2822 kmem_free(item);
2823 }
1da177e4 2824 /* Free the transaction recover structure */
f0e2d93c 2825 kmem_free(trans);
1da177e4
LT
2826}
2827
2828STATIC int
2829xlog_recover_commit_trans(
2830 xlog_t *log,
1da177e4
LT
2831 xlog_recover_t *trans,
2832 int pass)
2833{
2834 int error;
2835
f0a76953 2836 hlist_del(&trans->r_list);
1da177e4
LT
2837 if ((error = xlog_recover_do_trans(log, trans, pass)))
2838 return error;
2839 xlog_recover_free_trans(trans); /* no error */
2840 return 0;
2841}
2842
2843STATIC int
2844xlog_recover_unmount_trans(
2845 xlog_recover_t *trans)
2846{
2847 /* Do nothing now */
2848 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2849 return 0;
2850}
2851
2852/*
2853 * There are two valid states of the r_state field. 0 indicates that the
2854 * transaction structure is in a normal state. We have either seen the
2855 * start of the transaction or the last operation we added was not a partial
2856 * operation. If the last operation we added to the transaction was a
2857 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2858 *
2859 * NOTE: skip LRs with 0 data length.
2860 */
2861STATIC int
2862xlog_recover_process_data(
2863 xlog_t *log,
f0a76953 2864 struct hlist_head rhash[],
1da177e4
LT
2865 xlog_rec_header_t *rhead,
2866 xfs_caddr_t dp,
2867 int pass)
2868{
2869 xfs_caddr_t lp;
2870 int num_logops;
2871 xlog_op_header_t *ohead;
2872 xlog_recover_t *trans;
2873 xlog_tid_t tid;
2874 int error;
2875 unsigned long hash;
2876 uint flags;
2877
b53e675d
CH
2878 lp = dp + be32_to_cpu(rhead->h_len);
2879 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
2880
2881 /* check the log format matches our own - else we can't recover */
2882 if (xlog_header_check_recover(log->l_mp, rhead))
2883 return (XFS_ERROR(EIO));
2884
2885 while ((dp < lp) && num_logops) {
2886 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2887 ohead = (xlog_op_header_t *)dp;
2888 dp += sizeof(xlog_op_header_t);
2889 if (ohead->oh_clientid != XFS_TRANSACTION &&
2890 ohead->oh_clientid != XFS_LOG) {
2891 xlog_warn(
2892 "XFS: xlog_recover_process_data: bad clientid");
2893 ASSERT(0);
2894 return (XFS_ERROR(EIO));
2895 }
67fcb7bf 2896 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 2897 hash = XLOG_RHASH(tid);
f0a76953 2898 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
2899 if (trans == NULL) { /* not found; add new tid */
2900 if (ohead->oh_flags & XLOG_START_TRANS)
2901 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 2902 be64_to_cpu(rhead->h_lsn));
1da177e4 2903 } else {
9742bb93
LM
2904 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2905 xlog_warn(
2906 "XFS: xlog_recover_process_data: bad length");
2907 WARN_ON(1);
2908 return (XFS_ERROR(EIO));
2909 }
1da177e4
LT
2910 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2911 if (flags & XLOG_WAS_CONT_TRANS)
2912 flags &= ~XLOG_CONTINUE_TRANS;
2913 switch (flags) {
2914 case XLOG_COMMIT_TRANS:
2915 error = xlog_recover_commit_trans(log,
f0a76953 2916 trans, pass);
1da177e4
LT
2917 break;
2918 case XLOG_UNMOUNT_TRANS:
2919 error = xlog_recover_unmount_trans(trans);
2920 break;
2921 case XLOG_WAS_CONT_TRANS:
2922 error = xlog_recover_add_to_cont_trans(trans,
67fcb7bf 2923 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2924 break;
2925 case XLOG_START_TRANS:
2926 xlog_warn(
2927 "XFS: xlog_recover_process_data: bad transaction");
2928 ASSERT(0);
2929 error = XFS_ERROR(EIO);
2930 break;
2931 case 0:
2932 case XLOG_CONTINUE_TRANS:
2933 error = xlog_recover_add_to_trans(trans,
67fcb7bf 2934 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2935 break;
2936 default:
2937 xlog_warn(
2938 "XFS: xlog_recover_process_data: bad flag");
2939 ASSERT(0);
2940 error = XFS_ERROR(EIO);
2941 break;
2942 }
2943 if (error)
2944 return error;
2945 }
67fcb7bf 2946 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
2947 num_logops--;
2948 }
2949 return 0;
2950}
2951
2952/*
2953 * Process an extent free intent item that was recovered from
2954 * the log. We need to free the extents that it describes.
2955 */
3c1e2bbe 2956STATIC int
1da177e4
LT
2957xlog_recover_process_efi(
2958 xfs_mount_t *mp,
2959 xfs_efi_log_item_t *efip)
2960{
2961 xfs_efd_log_item_t *efdp;
2962 xfs_trans_t *tp;
2963 int i;
3c1e2bbe 2964 int error = 0;
1da177e4
LT
2965 xfs_extent_t *extp;
2966 xfs_fsblock_t startblock_fsb;
2967
2968 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2969
2970 /*
2971 * First check the validity of the extents described by the
2972 * EFI. If any are bad, then assume that all are bad and
2973 * just toss the EFI.
2974 */
2975 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2976 extp = &(efip->efi_format.efi_extents[i]);
2977 startblock_fsb = XFS_BB_TO_FSB(mp,
2978 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2979 if ((startblock_fsb == 0) ||
2980 (extp->ext_len == 0) ||
2981 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2982 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2983 /*
2984 * This will pull the EFI from the AIL and
2985 * free the memory associated with it.
2986 */
2987 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 2988 return XFS_ERROR(EIO);
1da177e4
LT
2989 }
2990 }
2991
2992 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 2993 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
2994 if (error)
2995 goto abort_error;
1da177e4
LT
2996 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2997
2998 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2999 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3000 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3001 if (error)
3002 goto abort_error;
1da177e4
LT
3003 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3004 extp->ext_len);
3005 }
3006
3007 efip->efi_flags |= XFS_EFI_RECOVERED;
e5720eec 3008 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3009 return error;
fc6149d8
DC
3010
3011abort_error:
3012 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3013 return error;
1da177e4
LT
3014}
3015
1da177e4
LT
3016/*
3017 * When this is called, all of the EFIs which did not have
3018 * corresponding EFDs should be in the AIL. What we do now
3019 * is free the extents associated with each one.
3020 *
3021 * Since we process the EFIs in normal transactions, they
3022 * will be removed at some point after the commit. This prevents
3023 * us from just walking down the list processing each one.
3024 * We'll use a flag in the EFI to skip those that we've already
3025 * processed and use the AIL iteration mechanism's generation
3026 * count to try to speed this up at least a bit.
3027 *
3028 * When we start, we know that the EFIs are the only things in
3029 * the AIL. As we process them, however, other items are added
3030 * to the AIL. Since everything added to the AIL must come after
3031 * everything already in the AIL, we stop processing as soon as
3032 * we see something other than an EFI in the AIL.
3033 */
3c1e2bbe 3034STATIC int
1da177e4
LT
3035xlog_recover_process_efis(
3036 xlog_t *log)
3037{
3038 xfs_log_item_t *lip;
3039 xfs_efi_log_item_t *efip;
3c1e2bbe 3040 int error = 0;
27d8d5fe 3041 struct xfs_ail_cursor cur;
a9c21c1b 3042 struct xfs_ail *ailp;
1da177e4 3043
a9c21c1b
DC
3044 ailp = log->l_ailp;
3045 spin_lock(&ailp->xa_lock);
3046 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3047 while (lip != NULL) {
3048 /*
3049 * We're done when we see something other than an EFI.
27d8d5fe 3050 * There should be no EFIs left in the AIL now.
1da177e4
LT
3051 */
3052 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3053#ifdef DEBUG
a9c21c1b 3054 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3055 ASSERT(lip->li_type != XFS_LI_EFI);
3056#endif
1da177e4
LT
3057 break;
3058 }
3059
3060 /*
3061 * Skip EFIs that we've already processed.
3062 */
3063 efip = (xfs_efi_log_item_t *)lip;
3064 if (efip->efi_flags & XFS_EFI_RECOVERED) {
a9c21c1b 3065 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3066 continue;
3067 }
3068
a9c21c1b
DC
3069 spin_unlock(&ailp->xa_lock);
3070 error = xlog_recover_process_efi(log->l_mp, efip);
3071 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3072 if (error)
3073 goto out;
a9c21c1b 3074 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3075 }
27d8d5fe 3076out:
a9c21c1b
DC
3077 xfs_trans_ail_cursor_done(ailp, &cur);
3078 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3079 return error;
1da177e4
LT
3080}
3081
3082/*
3083 * This routine performs a transaction to null out a bad inode pointer
3084 * in an agi unlinked inode hash bucket.
3085 */
3086STATIC void
3087xlog_recover_clear_agi_bucket(
3088 xfs_mount_t *mp,
3089 xfs_agnumber_t agno,
3090 int bucket)
3091{
3092 xfs_trans_t *tp;
3093 xfs_agi_t *agi;
3094 xfs_buf_t *agibp;
3095 int offset;
3096 int error;
3097
3098 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
5e1be0fb
CH
3099 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3100 0, 0, 0);
e5720eec
DC
3101 if (error)
3102 goto out_abort;
1da177e4 3103
5e1be0fb
CH
3104 error = xfs_read_agi(mp, tp, agno, &agibp);
3105 if (error)
e5720eec 3106 goto out_abort;
1da177e4 3107
5e1be0fb 3108 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3109 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3110 offset = offsetof(xfs_agi_t, agi_unlinked) +
3111 (sizeof(xfs_agino_t) * bucket);
3112 xfs_trans_log_buf(tp, agibp, offset,
3113 (offset + sizeof(xfs_agino_t) - 1));
3114
e5720eec
DC
3115 error = xfs_trans_commit(tp, 0);
3116 if (error)
3117 goto out_error;
3118 return;
3119
3120out_abort:
3121 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3122out_error:
3123 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3124 "failed to clear agi %d. Continuing.", agno);
3125 return;
1da177e4
LT
3126}
3127
23fac50f
CH
3128STATIC xfs_agino_t
3129xlog_recover_process_one_iunlink(
3130 struct xfs_mount *mp,
3131 xfs_agnumber_t agno,
3132 xfs_agino_t agino,
3133 int bucket)
3134{
3135 struct xfs_buf *ibp;
3136 struct xfs_dinode *dip;
3137 struct xfs_inode *ip;
3138 xfs_ino_t ino;
3139 int error;
3140
3141 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3142 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3143 if (error)
3144 goto fail;
3145
3146 /*
3147 * Get the on disk inode to find the next inode in the bucket.
3148 */
0cadda1c 3149 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
23fac50f 3150 if (error)
0e446673 3151 goto fail_iput;
23fac50f 3152
23fac50f 3153 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3154 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3155
3156 /* setup for the next pass */
3157 agino = be32_to_cpu(dip->di_next_unlinked);
3158 xfs_buf_relse(ibp);
3159
3160 /*
3161 * Prevent any DMAPI event from being sent when the reference on
3162 * the inode is dropped.
3163 */
3164 ip->i_d.di_dmevmask = 0;
3165
0e446673 3166 IRELE(ip);
23fac50f
CH
3167 return agino;
3168
0e446673
CH
3169 fail_iput:
3170 IRELE(ip);
23fac50f
CH
3171 fail:
3172 /*
3173 * We can't read in the inode this bucket points to, or this inode
3174 * is messed up. Just ditch this bucket of inodes. We will lose
3175 * some inodes and space, but at least we won't hang.
3176 *
3177 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3178 * clear the inode pointer in the bucket.
3179 */
3180 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3181 return NULLAGINO;
3182}
3183
1da177e4
LT
3184/*
3185 * xlog_iunlink_recover
3186 *
3187 * This is called during recovery to process any inodes which
3188 * we unlinked but not freed when the system crashed. These
3189 * inodes will be on the lists in the AGI blocks. What we do
3190 * here is scan all the AGIs and fully truncate and free any
3191 * inodes found on the lists. Each inode is removed from the
3192 * lists when it has been fully truncated and is freed. The
3193 * freeing of the inode and its removal from the list must be
3194 * atomic.
3195 */
d96f8f89 3196STATIC void
1da177e4
LT
3197xlog_recover_process_iunlinks(
3198 xlog_t *log)
3199{
3200 xfs_mount_t *mp;
3201 xfs_agnumber_t agno;
3202 xfs_agi_t *agi;
3203 xfs_buf_t *agibp;
1da177e4 3204 xfs_agino_t agino;
1da177e4
LT
3205 int bucket;
3206 int error;
3207 uint mp_dmevmask;
3208
3209 mp = log->l_mp;
3210
3211 /*
3212 * Prevent any DMAPI event from being sent while in this function.
3213 */
3214 mp_dmevmask = mp->m_dmevmask;
3215 mp->m_dmevmask = 0;
3216
3217 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3218 /*
3219 * Find the agi for this ag.
3220 */
5e1be0fb
CH
3221 error = xfs_read_agi(mp, NULL, agno, &agibp);
3222 if (error) {
3223 /*
3224 * AGI is b0rked. Don't process it.
3225 *
3226 * We should probably mark the filesystem as corrupt
3227 * after we've recovered all the ag's we can....
3228 */
3229 continue;
1da177e4
LT
3230 }
3231 agi = XFS_BUF_TO_AGI(agibp);
1da177e4
LT
3232
3233 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3234 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3235 while (agino != NULLAGINO) {
1da177e4
LT
3236 /*
3237 * Release the agi buffer so that it can
3238 * be acquired in the normal course of the
3239 * transaction to truncate and free the inode.
3240 */
3241 xfs_buf_relse(agibp);
3242
23fac50f
CH
3243 agino = xlog_recover_process_one_iunlink(mp,
3244 agno, agino, bucket);
1da177e4
LT
3245
3246 /*
3247 * Reacquire the agibuffer and continue around
5e1be0fb
CH
3248 * the loop. This should never fail as we know
3249 * the buffer was good earlier on.
1da177e4 3250 */
5e1be0fb
CH
3251 error = xfs_read_agi(mp, NULL, agno, &agibp);
3252 ASSERT(error == 0);
1da177e4 3253 agi = XFS_BUF_TO_AGI(agibp);
1da177e4
LT
3254 }
3255 }
3256
3257 /*
3258 * Release the buffer for the current agi so we can
3259 * go on to the next one.
3260 */
3261 xfs_buf_relse(agibp);
3262 }
3263
3264 mp->m_dmevmask = mp_dmevmask;
3265}
3266
3267
3268#ifdef DEBUG
3269STATIC void
3270xlog_pack_data_checksum(
3271 xlog_t *log,
3272 xlog_in_core_t *iclog,
3273 int size)
3274{
3275 int i;
b53e675d 3276 __be32 *up;
1da177e4
LT
3277 uint chksum = 0;
3278
b53e675d 3279 up = (__be32 *)iclog->ic_datap;
1da177e4
LT
3280 /* divide length by 4 to get # words */
3281 for (i = 0; i < (size >> 2); i++) {
b53e675d 3282 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3283 up++;
3284 }
b53e675d 3285 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
1da177e4
LT
3286}
3287#else
3288#define xlog_pack_data_checksum(log, iclog, size)
3289#endif
3290
3291/*
3292 * Stamp cycle number in every block
3293 */
3294void
3295xlog_pack_data(
3296 xlog_t *log,
3297 xlog_in_core_t *iclog,
3298 int roundoff)
3299{
3300 int i, j, k;
3301 int size = iclog->ic_offset + roundoff;
b53e675d 3302 __be32 cycle_lsn;
1da177e4 3303 xfs_caddr_t dp;
1da177e4
LT
3304
3305 xlog_pack_data_checksum(log, iclog, size);
3306
3307 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3308
3309 dp = iclog->ic_datap;
3310 for (i = 0; i < BTOBB(size) &&
3311 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d
CH
3312 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3313 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3314 dp += BBSIZE;
3315 }
3316
62118709 3317 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6
CH
3318 xlog_in_core_2_t *xhdr = iclog->ic_data;
3319
1da177e4
LT
3320 for ( ; i < BTOBB(size); i++) {
3321 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3322 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d
CH
3323 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3324 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3325 dp += BBSIZE;
3326 }
3327
3328 for (i = 1; i < log->l_iclog_heads; i++) {
3329 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3330 }
3331 }
3332}
3333
3334#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3335STATIC void
3336xlog_unpack_data_checksum(
3337 xlog_rec_header_t *rhead,
3338 xfs_caddr_t dp,
3339 xlog_t *log)
3340{
b53e675d 3341 __be32 *up = (__be32 *)dp;
1da177e4
LT
3342 uint chksum = 0;
3343 int i;
3344
3345 /* divide length by 4 to get # words */
b53e675d
CH
3346 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3347 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3348 up++;
3349 }
b53e675d 3350 if (chksum != be32_to_cpu(rhead->h_chksum)) {
1da177e4
LT
3351 if (rhead->h_chksum ||
3352 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3353 cmn_err(CE_DEBUG,
b6574520 3354 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
b53e675d 3355 be32_to_cpu(rhead->h_chksum), chksum);
1da177e4
LT
3356 cmn_err(CE_DEBUG,
3357"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
62118709 3358 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4 3359 cmn_err(CE_DEBUG,
b6574520 3360 "XFS: LogR this is a LogV2 filesystem\n");
1da177e4
LT
3361 }
3362 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3363 }
3364 }
3365}
3366#else
3367#define xlog_unpack_data_checksum(rhead, dp, log)
3368#endif
3369
3370STATIC void
3371xlog_unpack_data(
3372 xlog_rec_header_t *rhead,
3373 xfs_caddr_t dp,
3374 xlog_t *log)
3375{
3376 int i, j, k;
1da177e4 3377
b53e675d 3378 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3379 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3380 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3381 dp += BBSIZE;
3382 }
3383
62118709 3384 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3385 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3386 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3387 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3388 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3389 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3390 dp += BBSIZE;
3391 }
3392 }
3393
3394 xlog_unpack_data_checksum(rhead, dp, log);
3395}
3396
3397STATIC int
3398xlog_valid_rec_header(
3399 xlog_t *log,
3400 xlog_rec_header_t *rhead,
3401 xfs_daddr_t blkno)
3402{
3403 int hlen;
3404
b53e675d 3405 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
3406 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3407 XFS_ERRLEVEL_LOW, log->l_mp);
3408 return XFS_ERROR(EFSCORRUPTED);
3409 }
3410 if (unlikely(
3411 (!rhead->h_version ||
b53e675d 3412 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
1da177e4 3413 xlog_warn("XFS: %s: unrecognised log version (%d).",
34a622b2 3414 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3415 return XFS_ERROR(EIO);
3416 }
3417
3418 /* LR body must have data or it wouldn't have been written */
b53e675d 3419 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3420 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3421 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3422 XFS_ERRLEVEL_LOW, log->l_mp);
3423 return XFS_ERROR(EFSCORRUPTED);
3424 }
3425 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3426 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3427 XFS_ERRLEVEL_LOW, log->l_mp);
3428 return XFS_ERROR(EFSCORRUPTED);
3429 }
3430 return 0;
3431}
3432
3433/*
3434 * Read the log from tail to head and process the log records found.
3435 * Handle the two cases where the tail and head are in the same cycle
3436 * and where the active portion of the log wraps around the end of
3437 * the physical log separately. The pass parameter is passed through
3438 * to the routines called to process the data and is not looked at
3439 * here.
3440 */
3441STATIC int
3442xlog_do_recovery_pass(
3443 xlog_t *log,
3444 xfs_daddr_t head_blk,
3445 xfs_daddr_t tail_blk,
3446 int pass)
3447{
3448 xlog_rec_header_t *rhead;
3449 xfs_daddr_t blk_no;
fc5bc4c8 3450 xfs_caddr_t offset;
1da177e4
LT
3451 xfs_buf_t *hbp, *dbp;
3452 int error = 0, h_size;
3453 int bblks, split_bblks;
3454 int hblks, split_hblks, wrapped_hblks;
f0a76953 3455 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
3456
3457 ASSERT(head_blk != tail_blk);
3458
3459 /*
3460 * Read the header of the tail block and get the iclog buffer size from
3461 * h_size. Use this to tell how many sectors make up the log header.
3462 */
62118709 3463 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3464 /*
3465 * When using variable length iclogs, read first sector of
3466 * iclog header and extract the header size from it. Get a
3467 * new hbp that is the correct size.
3468 */
3469 hbp = xlog_get_bp(log, 1);
3470 if (!hbp)
3471 return ENOMEM;
076e6acb
CH
3472
3473 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3474 if (error)
1da177e4 3475 goto bread_err1;
076e6acb 3476
1da177e4
LT
3477 rhead = (xlog_rec_header_t *)offset;
3478 error = xlog_valid_rec_header(log, rhead, tail_blk);
3479 if (error)
3480 goto bread_err1;
b53e675d
CH
3481 h_size = be32_to_cpu(rhead->h_size);
3482 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3483 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3484 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3485 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3486 hblks++;
3487 xlog_put_bp(hbp);
3488 hbp = xlog_get_bp(log, hblks);
3489 } else {
3490 hblks = 1;
3491 }
3492 } else {
3493 ASSERT(log->l_sectbb_log == 0);
3494 hblks = 1;
3495 hbp = xlog_get_bp(log, 1);
3496 h_size = XLOG_BIG_RECORD_BSIZE;
3497 }
3498
3499 if (!hbp)
3500 return ENOMEM;
3501 dbp = xlog_get_bp(log, BTOBB(h_size));
3502 if (!dbp) {
3503 xlog_put_bp(hbp);
3504 return ENOMEM;
3505 }
3506
3507 memset(rhash, 0, sizeof(rhash));
3508 if (tail_blk <= head_blk) {
3509 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
3510 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3511 if (error)
1da177e4 3512 goto bread_err2;
076e6acb 3513
1da177e4
LT
3514 rhead = (xlog_rec_header_t *)offset;
3515 error = xlog_valid_rec_header(log, rhead, blk_no);
3516 if (error)
3517 goto bread_err2;
3518
3519 /* blocks in data section */
b53e675d 3520 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3521 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3522 &offset);
1da177e4
LT
3523 if (error)
3524 goto bread_err2;
076e6acb 3525
1da177e4
LT
3526 xlog_unpack_data(rhead, offset, log);
3527 if ((error = xlog_recover_process_data(log,
3528 rhash, rhead, offset, pass)))
3529 goto bread_err2;
3530 blk_no += bblks + hblks;
3531 }
3532 } else {
3533 /*
3534 * Perform recovery around the end of the physical log.
3535 * When the head is not on the same cycle number as the tail,
3536 * we can't do a sequential recovery as above.
3537 */
3538 blk_no = tail_blk;
3539 while (blk_no < log->l_logBBsize) {
3540 /*
3541 * Check for header wrapping around physical end-of-log
3542 */
fc5bc4c8 3543 offset = XFS_BUF_PTR(hbp);
1da177e4
LT
3544 split_hblks = 0;
3545 wrapped_hblks = 0;
3546 if (blk_no + hblks <= log->l_logBBsize) {
3547 /* Read header in one read */
076e6acb
CH
3548 error = xlog_bread(log, blk_no, hblks, hbp,
3549 &offset);
1da177e4
LT
3550 if (error)
3551 goto bread_err2;
1da177e4
LT
3552 } else {
3553 /* This LR is split across physical log end */
3554 if (blk_no != log->l_logBBsize) {
3555 /* some data before physical log end */
3556 ASSERT(blk_no <= INT_MAX);
3557 split_hblks = log->l_logBBsize - (int)blk_no;
3558 ASSERT(split_hblks > 0);
076e6acb
CH
3559 error = xlog_bread(log, blk_no,
3560 split_hblks, hbp,
3561 &offset);
3562 if (error)
1da177e4 3563 goto bread_err2;
1da177e4 3564 }
076e6acb 3565
1da177e4
LT
3566 /*
3567 * Note: this black magic still works with
3568 * large sector sizes (non-512) only because:
3569 * - we increased the buffer size originally
3570 * by 1 sector giving us enough extra space
3571 * for the second read;
3572 * - the log start is guaranteed to be sector
3573 * aligned;
3574 * - we read the log end (LR header start)
3575 * _first_, then the log start (LR header end)
3576 * - order is important.
3577 */
234f56ac 3578 wrapped_hblks = hblks - split_hblks;
234f56ac 3579 error = XFS_BUF_SET_PTR(hbp,
fc5bc4c8 3580 offset + BBTOB(split_hblks),
1da177e4 3581 BBTOB(hblks - split_hblks));
076e6acb
CH
3582 if (error)
3583 goto bread_err2;
3584
3585 error = xlog_bread_noalign(log, 0,
3586 wrapped_hblks, hbp);
3587 if (error)
3588 goto bread_err2;
3589
fc5bc4c8 3590 error = XFS_BUF_SET_PTR(hbp, offset,
234f56ac 3591 BBTOB(hblks));
1da177e4
LT
3592 if (error)
3593 goto bread_err2;
1da177e4
LT
3594 }
3595 rhead = (xlog_rec_header_t *)offset;
3596 error = xlog_valid_rec_header(log, rhead,
3597 split_hblks ? blk_no : 0);
3598 if (error)
3599 goto bread_err2;
3600
b53e675d 3601 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3602 blk_no += hblks;
3603
3604 /* Read in data for log record */
3605 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
3606 error = xlog_bread(log, blk_no, bblks, dbp,
3607 &offset);
1da177e4
LT
3608 if (error)
3609 goto bread_err2;
1da177e4
LT
3610 } else {
3611 /* This log record is split across the
3612 * physical end of log */
fc5bc4c8 3613 offset = XFS_BUF_PTR(dbp);
1da177e4
LT
3614 split_bblks = 0;
3615 if (blk_no != log->l_logBBsize) {
3616 /* some data is before the physical
3617 * end of log */
3618 ASSERT(!wrapped_hblks);
3619 ASSERT(blk_no <= INT_MAX);
3620 split_bblks =
3621 log->l_logBBsize - (int)blk_no;
3622 ASSERT(split_bblks > 0);
076e6acb
CH
3623 error = xlog_bread(log, blk_no,
3624 split_bblks, dbp,
3625 &offset);
3626 if (error)
1da177e4 3627 goto bread_err2;
1da177e4 3628 }
076e6acb 3629
1da177e4
LT
3630 /*
3631 * Note: this black magic still works with
3632 * large sector sizes (non-512) only because:
3633 * - we increased the buffer size originally
3634 * by 1 sector giving us enough extra space
3635 * for the second read;
3636 * - the log start is guaranteed to be sector
3637 * aligned;
3638 * - we read the log end (LR header start)
3639 * _first_, then the log start (LR header end)
3640 * - order is important.
3641 */
234f56ac 3642 error = XFS_BUF_SET_PTR(dbp,
fc5bc4c8 3643 offset + BBTOB(split_bblks),
1da177e4 3644 BBTOB(bblks - split_bblks));
234f56ac 3645 if (error)
1da177e4 3646 goto bread_err2;
076e6acb
CH
3647
3648 error = xlog_bread_noalign(log, wrapped_hblks,
3649 bblks - split_bblks,
3650 dbp);
3651 if (error)
3652 goto bread_err2;
3653
fc5bc4c8 3654 error = XFS_BUF_SET_PTR(dbp, offset, h_size);
076e6acb
CH
3655 if (error)
3656 goto bread_err2;
1da177e4
LT
3657 }
3658 xlog_unpack_data(rhead, offset, log);
3659 if ((error = xlog_recover_process_data(log, rhash,
3660 rhead, offset, pass)))
3661 goto bread_err2;
3662 blk_no += bblks;
3663 }
3664
3665 ASSERT(blk_no >= log->l_logBBsize);
3666 blk_no -= log->l_logBBsize;
3667
3668 /* read first part of physical log */
3669 while (blk_no < head_blk) {
076e6acb
CH
3670 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3671 if (error)
1da177e4 3672 goto bread_err2;
076e6acb 3673
1da177e4
LT
3674 rhead = (xlog_rec_header_t *)offset;
3675 error = xlog_valid_rec_header(log, rhead, blk_no);
3676 if (error)
3677 goto bread_err2;
076e6acb 3678
b53e675d 3679 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3680 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3681 &offset);
3682 if (error)
1da177e4 3683 goto bread_err2;
076e6acb 3684
1da177e4
LT
3685 xlog_unpack_data(rhead, offset, log);
3686 if ((error = xlog_recover_process_data(log, rhash,
3687 rhead, offset, pass)))
3688 goto bread_err2;
3689 blk_no += bblks + hblks;
3690 }
3691 }
3692
3693 bread_err2:
3694 xlog_put_bp(dbp);
3695 bread_err1:
3696 xlog_put_bp(hbp);
3697 return error;
3698}
3699
3700/*
3701 * Do the recovery of the log. We actually do this in two phases.
3702 * The two passes are necessary in order to implement the function
3703 * of cancelling a record written into the log. The first pass
3704 * determines those things which have been cancelled, and the
3705 * second pass replays log items normally except for those which
3706 * have been cancelled. The handling of the replay and cancellations
3707 * takes place in the log item type specific routines.
3708 *
3709 * The table of items which have cancel records in the log is allocated
3710 * and freed at this level, since only here do we know when all of
3711 * the log recovery has been completed.
3712 */
3713STATIC int
3714xlog_do_log_recovery(
3715 xlog_t *log,
3716 xfs_daddr_t head_blk,
3717 xfs_daddr_t tail_blk)
3718{
3719 int error;
3720
3721 ASSERT(head_blk != tail_blk);
3722
3723 /*
3724 * First do a pass to find all of the cancelled buf log items.
3725 * Store them in the buf_cancel_table for use in the second pass.
3726 */
3727 log->l_buf_cancel_table =
3728 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3729 sizeof(xfs_buf_cancel_t*),
3730 KM_SLEEP);
3731 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3732 XLOG_RECOVER_PASS1);
3733 if (error != 0) {
f0e2d93c 3734 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3735 log->l_buf_cancel_table = NULL;
3736 return error;
3737 }
3738 /*
3739 * Then do a second pass to actually recover the items in the log.
3740 * When it is complete free the table of buf cancel items.
3741 */
3742 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3743 XLOG_RECOVER_PASS2);
3744#ifdef DEBUG
6d192a9b 3745 if (!error) {
1da177e4
LT
3746 int i;
3747
3748 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3749 ASSERT(log->l_buf_cancel_table[i] == NULL);
3750 }
3751#endif /* DEBUG */
3752
f0e2d93c 3753 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3754 log->l_buf_cancel_table = NULL;
3755
3756 return error;
3757}
3758
3759/*
3760 * Do the actual recovery
3761 */
3762STATIC int
3763xlog_do_recover(
3764 xlog_t *log,
3765 xfs_daddr_t head_blk,
3766 xfs_daddr_t tail_blk)
3767{
3768 int error;
3769 xfs_buf_t *bp;
3770 xfs_sb_t *sbp;
3771
3772 /*
3773 * First replay the images in the log.
3774 */
3775 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3776 if (error) {
3777 return error;
3778 }
3779
3780 XFS_bflush(log->l_mp->m_ddev_targp);
3781
3782 /*
3783 * If IO errors happened during recovery, bail out.
3784 */
3785 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3786 return (EIO);
3787 }
3788
3789 /*
3790 * We now update the tail_lsn since much of the recovery has completed
3791 * and there may be space available to use. If there were no extent
3792 * or iunlinks, we can free up the entire log and set the tail_lsn to
3793 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3794 * lsn of the last known good LR on disk. If there are extent frees
3795 * or iunlinks they will have some entries in the AIL; so we look at
3796 * the AIL to determine how to set the tail_lsn.
3797 */
3798 xlog_assign_tail_lsn(log->l_mp);
3799
3800 /*
3801 * Now that we've finished replaying all buffer and inode
3802 * updates, re-read in the superblock.
3803 */
3804 bp = xfs_getsb(log->l_mp, 0);
3805 XFS_BUF_UNDONE(bp);
bebf963f
LM
3806 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3807 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
1da177e4 3808 XFS_BUF_READ(bp);
bebf963f 3809 XFS_BUF_UNASYNC(bp);
1da177e4 3810 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
3811 error = xfs_iowait(bp);
3812 if (error) {
1da177e4
LT
3813 xfs_ioerror_alert("xlog_do_recover",
3814 log->l_mp, bp, XFS_BUF_ADDR(bp));
3815 ASSERT(0);
3816 xfs_buf_relse(bp);
3817 return error;
3818 }
3819
3820 /* Convert superblock from on-disk format */
3821 sbp = &log->l_mp->m_sb;
2bdf7cd0 3822 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 3823 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 3824 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
3825 xfs_buf_relse(bp);
3826
5478eead
LM
3827 /* We've re-read the superblock so re-initialize per-cpu counters */
3828 xfs_icsb_reinit_counters(log->l_mp);
3829
1da177e4
LT
3830 xlog_recover_check_summary(log);
3831
3832 /* Normal transactions can now occur */
3833 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3834 return 0;
3835}
3836
3837/*
3838 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3839 *
3840 * Return error or zero.
3841 */
3842int
3843xlog_recover(
65be6054 3844 xlog_t *log)
1da177e4
LT
3845{
3846 xfs_daddr_t head_blk, tail_blk;
3847 int error;
3848
3849 /* find the tail of the log */
65be6054 3850 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3851 return error;
3852
3853 if (tail_blk != head_blk) {
3854 /* There used to be a comment here:
3855 *
3856 * disallow recovery on read-only mounts. note -- mount
3857 * checks for ENOSPC and turns it into an intelligent
3858 * error message.
3859 * ...but this is no longer true. Now, unless you specify
3860 * NORECOVERY (in which case this function would never be
3861 * called), we just go ahead and recover. We do this all
3862 * under the vfs layer, so we can get away with it unless
3863 * the device itself is read-only, in which case we fail.
3864 */
3a02ee18 3865 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
3866 return error;
3867 }
3868
3869 cmn_err(CE_NOTE,
fc1f8c1c
NS
3870 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3871 log->l_mp->m_fsname, log->l_mp->m_logname ?
3872 log->l_mp->m_logname : "internal");
1da177e4
LT
3873
3874 error = xlog_do_recover(log, head_blk, tail_blk);
3875 log->l_flags |= XLOG_RECOVERY_NEEDED;
3876 }
3877 return error;
3878}
3879
3880/*
3881 * In the first part of recovery we replay inodes and buffers and build
3882 * up the list of extent free items which need to be processed. Here
3883 * we process the extent free items and clean up the on disk unlinked
3884 * inode lists. This is separated from the first part of recovery so
3885 * that the root and real-time bitmap inodes can be read in from disk in
3886 * between the two stages. This is necessary so that we can free space
3887 * in the real-time portion of the file system.
3888 */
3889int
3890xlog_recover_finish(
4249023a 3891 xlog_t *log)
1da177e4
LT
3892{
3893 /*
3894 * Now we're ready to do the transactions needed for the
3895 * rest of recovery. Start with completing all the extent
3896 * free intent records and then process the unlinked inode
3897 * lists. At this point, we essentially run in normal mode
3898 * except that we're still performing recovery actions
3899 * rather than accepting new requests.
3900 */
3901 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
3902 int error;
3903 error = xlog_recover_process_efis(log);
3904 if (error) {
3905 cmn_err(CE_ALERT,
3906 "Failed to recover EFIs on filesystem: %s",
3907 log->l_mp->m_fsname);
3908 return error;
3909 }
1da177e4
LT
3910 /*
3911 * Sync the log to get all the EFIs out of the AIL.
3912 * This isn't absolutely necessary, but it helps in
3913 * case the unlink transactions would have problems
3914 * pushing the EFIs out of the way.
3915 */
3916 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3917 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3918
4249023a 3919 xlog_recover_process_iunlinks(log);
1da177e4
LT
3920
3921 xlog_recover_check_summary(log);
3922
3923 cmn_err(CE_NOTE,
fc1f8c1c
NS
3924 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3925 log->l_mp->m_fsname, log->l_mp->m_logname ?
3926 log->l_mp->m_logname : "internal");
1da177e4
LT
3927 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3928 } else {
3929 cmn_err(CE_DEBUG,
b6574520 3930 "!Ending clean XFS mount for filesystem: %s\n",
1da177e4
LT
3931 log->l_mp->m_fsname);
3932 }
3933 return 0;
3934}
3935
3936
3937#if defined(DEBUG)
3938/*
3939 * Read all of the agf and agi counters and check that they
3940 * are consistent with the superblock counters.
3941 */
3942void
3943xlog_recover_check_summary(
3944 xlog_t *log)
3945{
3946 xfs_mount_t *mp;
3947 xfs_agf_t *agfp;
1da177e4
LT
3948 xfs_buf_t *agfbp;
3949 xfs_buf_t *agibp;
1da177e4
LT
3950 xfs_buf_t *sbbp;
3951#ifdef XFS_LOUD_RECOVERY
3952 xfs_sb_t *sbp;
3953#endif
3954 xfs_agnumber_t agno;
3955 __uint64_t freeblks;
3956 __uint64_t itotal;
3957 __uint64_t ifree;
5e1be0fb 3958 int error;
1da177e4
LT
3959
3960 mp = log->l_mp;
3961
3962 freeblks = 0LL;
3963 itotal = 0LL;
3964 ifree = 0LL;
3965 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
CH
3966 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3967 if (error) {
3968 xfs_fs_cmn_err(CE_ALERT, mp,
3969 "xlog_recover_check_summary(agf)"
3970 "agf read failed agno %d error %d",
3971 agno, error);
3972 } else {
3973 agfp = XFS_BUF_TO_AGF(agfbp);
3974 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3975 be32_to_cpu(agfp->agf_flcount);
3976 xfs_buf_relse(agfbp);
1da177e4 3977 }
1da177e4 3978
5e1be0fb
CH
3979 error = xfs_read_agi(mp, NULL, agno, &agibp);
3980 if (!error) {
3981 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3982
5e1be0fb
CH
3983 itotal += be32_to_cpu(agi->agi_count);
3984 ifree += be32_to_cpu(agi->agi_freecount);
3985 xfs_buf_relse(agibp);
3986 }
1da177e4
LT
3987 }
3988
3989 sbbp = xfs_getsb(mp, 0);
3990#ifdef XFS_LOUD_RECOVERY
3991 sbp = &mp->m_sb;
2bdf7cd0 3992 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
1da177e4
LT
3993 cmn_err(CE_NOTE,
3994 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
3995 sbp->sb_icount, itotal);
3996 cmn_err(CE_NOTE,
3997 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
3998 sbp->sb_ifree, ifree);
3999 cmn_err(CE_NOTE,
4000 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4001 sbp->sb_fdblocks, freeblks);
4002#if 0
4003 /*
4004 * This is turned off until I account for the allocation
4005 * btree blocks which live in free space.
4006 */
4007 ASSERT(sbp->sb_icount == itotal);
4008 ASSERT(sbp->sb_ifree == ifree);
4009 ASSERT(sbp->sb_fdblocks == freeblks);
4010#endif
4011#endif
4012 xfs_buf_relse(sbbp);
4013}
4014#endif /* DEBUG */