]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/xfs_log_recover.c
[XFS] factor out xfs_read_agf helper
[net-next-2.6.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_error.h"
31#include "xfs_bmap_btree.h"
a844f451
NS
32#include "xfs_alloc_btree.h"
33#include "xfs_ialloc_btree.h"
1da177e4 34#include "xfs_dir2_sf.h"
a844f451 35#include "xfs_attr_sf.h"
1da177e4 36#include "xfs_dinode.h"
1da177e4 37#include "xfs_inode.h"
a844f451
NS
38#include "xfs_inode_item.h"
39#include "xfs_imap.h"
40#include "xfs_alloc.h"
1da177e4
LT
41#include "xfs_ialloc.h"
42#include "xfs_log_priv.h"
43#include "xfs_buf_item.h"
1da177e4
LT
44#include "xfs_log_recover.h"
45#include "xfs_extfree_item.h"
46#include "xfs_trans_priv.h"
1da177e4
LT
47#include "xfs_quota.h"
48#include "xfs_rw.h"
43355099 49#include "xfs_utils.h"
1da177e4
LT
50
51STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
53STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
54 xlog_recover_item_t *item);
55#if defined(DEBUG)
56STATIC void xlog_recover_check_summary(xlog_t *);
1da177e4
LT
57#else
58#define xlog_recover_check_summary(log)
1da177e4
LT
59#endif
60
61
62/*
63 * Sector aligned buffer routines for buffer create/read/write/access
64 */
65
66#define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
67 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
68 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
69#define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
70
71xfs_buf_t *
72xlog_get_bp(
73 xlog_t *log,
74 int num_bblks)
75{
76 ASSERT(num_bblks > 0);
77
78 if (log->l_sectbb_log) {
79 if (num_bblks > 1)
80 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
81 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
82 }
83 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
84}
85
86void
87xlog_put_bp(
88 xfs_buf_t *bp)
89{
90 xfs_buf_free(bp);
91}
92
93
94/*
95 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
96 */
97int
98xlog_bread(
99 xlog_t *log,
100 xfs_daddr_t blk_no,
101 int nbblks,
102 xfs_buf_t *bp)
103{
104 int error;
105
106 if (log->l_sectbb_log) {
107 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
108 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
109 }
110
111 ASSERT(nbblks > 0);
112 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
113 ASSERT(bp);
114
115 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
116 XFS_BUF_READ(bp);
117 XFS_BUF_BUSY(bp);
118 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
119 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
120
121 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
122 error = xfs_iowait(bp);
123 if (error)
1da177e4
LT
124 xfs_ioerror_alert("xlog_bread", log->l_mp,
125 bp, XFS_BUF_ADDR(bp));
126 return error;
127}
128
129/*
130 * Write out the buffer at the given block for the given number of blocks.
131 * The buffer is kept locked across the write and is returned locked.
132 * This can only be used for synchronous log writes.
133 */
ba0f32d4 134STATIC int
1da177e4
LT
135xlog_bwrite(
136 xlog_t *log,
137 xfs_daddr_t blk_no,
138 int nbblks,
139 xfs_buf_t *bp)
140{
141 int error;
142
143 if (log->l_sectbb_log) {
144 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
145 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
146 }
147
148 ASSERT(nbblks > 0);
149 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
150
151 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
152 XFS_BUF_ZEROFLAGS(bp);
153 XFS_BUF_BUSY(bp);
154 XFS_BUF_HOLD(bp);
155 XFS_BUF_PSEMA(bp, PRIBIO);
156 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
157 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
158
159 if ((error = xfs_bwrite(log->l_mp, bp)))
160 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
161 bp, XFS_BUF_ADDR(bp));
162 return error;
163}
164
ba0f32d4 165STATIC xfs_caddr_t
1da177e4
LT
166xlog_align(
167 xlog_t *log,
168 xfs_daddr_t blk_no,
169 int nbblks,
170 xfs_buf_t *bp)
171{
172 xfs_caddr_t ptr;
173
174 if (!log->l_sectbb_log)
175 return XFS_BUF_PTR(bp);
176
177 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
178 ASSERT(XFS_BUF_SIZE(bp) >=
179 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
180 return ptr;
181}
182
183#ifdef DEBUG
184/*
185 * dump debug superblock and log record information
186 */
187STATIC void
188xlog_header_check_dump(
189 xfs_mount_t *mp,
190 xlog_rec_header_t *head)
191{
192 int b;
193
34a622b2 194 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
1da177e4 195 for (b = 0; b < 16; b++)
b6574520
NS
196 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
197 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
198 cmn_err(CE_DEBUG, " log : uuid = ");
1da177e4 199 for (b = 0; b < 16; b++)
b6574520 200 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
b53e675d 201 cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
1da177e4
LT
202}
203#else
204#define xlog_header_check_dump(mp, head)
205#endif
206
207/*
208 * check log record header for recovery
209 */
210STATIC int
211xlog_header_check_recover(
212 xfs_mount_t *mp,
213 xlog_rec_header_t *head)
214{
b53e675d 215 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
216
217 /*
218 * IRIX doesn't write the h_fmt field and leaves it zeroed
219 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
220 * a dirty log created in IRIX.
221 */
b53e675d 222 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
1da177e4
LT
223 xlog_warn(
224 "XFS: dirty log written in incompatible format - can't recover");
225 xlog_header_check_dump(mp, head);
226 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
227 XFS_ERRLEVEL_HIGH, mp);
228 return XFS_ERROR(EFSCORRUPTED);
229 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
230 xlog_warn(
231 "XFS: dirty log entry has mismatched uuid - can't recover");
232 xlog_header_check_dump(mp, head);
233 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
234 XFS_ERRLEVEL_HIGH, mp);
235 return XFS_ERROR(EFSCORRUPTED);
236 }
237 return 0;
238}
239
240/*
241 * read the head block of the log and check the header
242 */
243STATIC int
244xlog_header_check_mount(
245 xfs_mount_t *mp,
246 xlog_rec_header_t *head)
247{
b53e675d 248 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
249
250 if (uuid_is_nil(&head->h_fs_uuid)) {
251 /*
252 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
253 * h_fs_uuid is nil, we assume this log was last mounted
254 * by IRIX and continue.
255 */
256 xlog_warn("XFS: nil uuid in log - IRIX style log");
257 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
258 xlog_warn("XFS: log has mismatched uuid - can't recover");
259 xlog_header_check_dump(mp, head);
260 XFS_ERROR_REPORT("xlog_header_check_mount",
261 XFS_ERRLEVEL_HIGH, mp);
262 return XFS_ERROR(EFSCORRUPTED);
263 }
264 return 0;
265}
266
267STATIC void
268xlog_recover_iodone(
269 struct xfs_buf *bp)
270{
271 xfs_mount_t *mp;
272
273 ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
274
275 if (XFS_BUF_GETERROR(bp)) {
276 /*
277 * We're not going to bother about retrying
278 * this during recovery. One strike!
279 */
280 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
281 xfs_ioerror_alert("xlog_recover_iodone",
282 mp, bp, XFS_BUF_ADDR(bp));
7d04a335 283 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1da177e4
LT
284 }
285 XFS_BUF_SET_FSPRIVATE(bp, NULL);
286 XFS_BUF_CLR_IODONE_FUNC(bp);
287 xfs_biodone(bp);
288}
289
290/*
291 * This routine finds (to an approximation) the first block in the physical
292 * log which contains the given cycle. It uses a binary search algorithm.
293 * Note that the algorithm can not be perfect because the disk will not
294 * necessarily be perfect.
295 */
a8272ce0 296STATIC int
1da177e4
LT
297xlog_find_cycle_start(
298 xlog_t *log,
299 xfs_buf_t *bp,
300 xfs_daddr_t first_blk,
301 xfs_daddr_t *last_blk,
302 uint cycle)
303{
304 xfs_caddr_t offset;
305 xfs_daddr_t mid_blk;
306 uint mid_cycle;
307 int error;
308
309 mid_blk = BLK_AVG(first_blk, *last_blk);
310 while (mid_blk != first_blk && mid_blk != *last_blk) {
311 if ((error = xlog_bread(log, mid_blk, 1, bp)))
312 return error;
313 offset = xlog_align(log, mid_blk, 1, bp);
03bea6fe 314 mid_cycle = xlog_get_cycle(offset);
1da177e4
LT
315 if (mid_cycle == cycle) {
316 *last_blk = mid_blk;
317 /* last_half_cycle == mid_cycle */
318 } else {
319 first_blk = mid_blk;
320 /* first_half_cycle == mid_cycle */
321 }
322 mid_blk = BLK_AVG(first_blk, *last_blk);
323 }
324 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
325 (mid_blk == *last_blk && mid_blk-1 == first_blk));
326
327 return 0;
328}
329
330/*
331 * Check that the range of blocks does not contain the cycle number
332 * given. The scan needs to occur from front to back and the ptr into the
333 * region must be updated since a later routine will need to perform another
334 * test. If the region is completely good, we end up returning the same
335 * last block number.
336 *
337 * Set blkno to -1 if we encounter no errors. This is an invalid block number
338 * since we don't ever expect logs to get this large.
339 */
340STATIC int
341xlog_find_verify_cycle(
342 xlog_t *log,
343 xfs_daddr_t start_blk,
344 int nbblks,
345 uint stop_on_cycle_no,
346 xfs_daddr_t *new_blk)
347{
348 xfs_daddr_t i, j;
349 uint cycle;
350 xfs_buf_t *bp;
351 xfs_daddr_t bufblks;
352 xfs_caddr_t buf = NULL;
353 int error = 0;
354
355 bufblks = 1 << ffs(nbblks);
356
357 while (!(bp = xlog_get_bp(log, bufblks))) {
358 /* can't get enough memory to do everything in one big buffer */
359 bufblks >>= 1;
360 if (bufblks <= log->l_sectbb_log)
361 return ENOMEM;
362 }
363
364 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
365 int bcount;
366
367 bcount = min(bufblks, (start_blk + nbblks - i));
368
369 if ((error = xlog_bread(log, i, bcount, bp)))
370 goto out;
371
372 buf = xlog_align(log, i, bcount, bp);
373 for (j = 0; j < bcount; j++) {
03bea6fe 374 cycle = xlog_get_cycle(buf);
1da177e4
LT
375 if (cycle == stop_on_cycle_no) {
376 *new_blk = i+j;
377 goto out;
378 }
379
380 buf += BBSIZE;
381 }
382 }
383
384 *new_blk = -1;
385
386out:
387 xlog_put_bp(bp);
388 return error;
389}
390
391/*
392 * Potentially backup over partial log record write.
393 *
394 * In the typical case, last_blk is the number of the block directly after
395 * a good log record. Therefore, we subtract one to get the block number
396 * of the last block in the given buffer. extra_bblks contains the number
397 * of blocks we would have read on a previous read. This happens when the
398 * last log record is split over the end of the physical log.
399 *
400 * extra_bblks is the number of blocks potentially verified on a previous
401 * call to this routine.
402 */
403STATIC int
404xlog_find_verify_log_record(
405 xlog_t *log,
406 xfs_daddr_t start_blk,
407 xfs_daddr_t *last_blk,
408 int extra_bblks)
409{
410 xfs_daddr_t i;
411 xfs_buf_t *bp;
412 xfs_caddr_t offset = NULL;
413 xlog_rec_header_t *head = NULL;
414 int error = 0;
415 int smallmem = 0;
416 int num_blks = *last_blk - start_blk;
417 int xhdrs;
418
419 ASSERT(start_blk != 0 || *last_blk != start_blk);
420
421 if (!(bp = xlog_get_bp(log, num_blks))) {
422 if (!(bp = xlog_get_bp(log, 1)))
423 return ENOMEM;
424 smallmem = 1;
425 } else {
426 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
427 goto out;
428 offset = xlog_align(log, start_blk, num_blks, bp);
429 offset += ((num_blks - 1) << BBSHIFT);
430 }
431
432 for (i = (*last_blk) - 1; i >= 0; i--) {
433 if (i < start_blk) {
434 /* valid log record not found */
435 xlog_warn(
436 "XFS: Log inconsistent (didn't find previous header)");
437 ASSERT(0);
438 error = XFS_ERROR(EIO);
439 goto out;
440 }
441
442 if (smallmem) {
443 if ((error = xlog_bread(log, i, 1, bp)))
444 goto out;
445 offset = xlog_align(log, i, 1, bp);
446 }
447
448 head = (xlog_rec_header_t *)offset;
449
b53e675d 450 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
1da177e4
LT
451 break;
452
453 if (!smallmem)
454 offset -= BBSIZE;
455 }
456
457 /*
458 * We hit the beginning of the physical log & still no header. Return
459 * to caller. If caller can handle a return of -1, then this routine
460 * will be called again for the end of the physical log.
461 */
462 if (i == -1) {
463 error = -1;
464 goto out;
465 }
466
467 /*
468 * We have the final block of the good log (the first block
469 * of the log record _before_ the head. So we check the uuid.
470 */
471 if ((error = xlog_header_check_mount(log->l_mp, head)))
472 goto out;
473
474 /*
475 * We may have found a log record header before we expected one.
476 * last_blk will be the 1st block # with a given cycle #. We may end
477 * up reading an entire log record. In this case, we don't want to
478 * reset last_blk. Only when last_blk points in the middle of a log
479 * record do we update last_blk.
480 */
62118709 481 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 482 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
483
484 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
485 if (h_size % XLOG_HEADER_CYCLE_SIZE)
486 xhdrs++;
487 } else {
488 xhdrs = 1;
489 }
490
b53e675d
CH
491 if (*last_blk - i + extra_bblks !=
492 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
493 *last_blk = i;
494
495out:
496 xlog_put_bp(bp);
497 return error;
498}
499
500/*
501 * Head is defined to be the point of the log where the next log write
502 * write could go. This means that incomplete LR writes at the end are
503 * eliminated when calculating the head. We aren't guaranteed that previous
504 * LR have complete transactions. We only know that a cycle number of
505 * current cycle number -1 won't be present in the log if we start writing
506 * from our current block number.
507 *
508 * last_blk contains the block number of the first block with a given
509 * cycle number.
510 *
511 * Return: zero if normal, non-zero if error.
512 */
ba0f32d4 513STATIC int
1da177e4
LT
514xlog_find_head(
515 xlog_t *log,
516 xfs_daddr_t *return_head_blk)
517{
518 xfs_buf_t *bp;
519 xfs_caddr_t offset;
520 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
521 int num_scan_bblks;
522 uint first_half_cycle, last_half_cycle;
523 uint stop_on_cycle;
524 int error, log_bbnum = log->l_logBBsize;
525
526 /* Is the end of the log device zeroed? */
527 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
528 *return_head_blk = first_blk;
529
530 /* Is the whole lot zeroed? */
531 if (!first_blk) {
532 /* Linux XFS shouldn't generate totally zeroed logs -
533 * mkfs etc write a dummy unmount record to a fresh
534 * log so we can store the uuid in there
535 */
536 xlog_warn("XFS: totally zeroed log");
537 }
538
539 return 0;
540 } else if (error) {
541 xlog_warn("XFS: empty log check failed");
542 return error;
543 }
544
545 first_blk = 0; /* get cycle # of 1st block */
546 bp = xlog_get_bp(log, 1);
547 if (!bp)
548 return ENOMEM;
549 if ((error = xlog_bread(log, 0, 1, bp)))
550 goto bp_err;
551 offset = xlog_align(log, 0, 1, bp);
03bea6fe 552 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
553
554 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
555 if ((error = xlog_bread(log, last_blk, 1, bp)))
556 goto bp_err;
557 offset = xlog_align(log, last_blk, 1, bp);
03bea6fe 558 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
559 ASSERT(last_half_cycle != 0);
560
561 /*
562 * If the 1st half cycle number is equal to the last half cycle number,
563 * then the entire log is stamped with the same cycle number. In this
564 * case, head_blk can't be set to zero (which makes sense). The below
565 * math doesn't work out properly with head_blk equal to zero. Instead,
566 * we set it to log_bbnum which is an invalid block number, but this
567 * value makes the math correct. If head_blk doesn't changed through
568 * all the tests below, *head_blk is set to zero at the very end rather
569 * than log_bbnum. In a sense, log_bbnum and zero are the same block
570 * in a circular file.
571 */
572 if (first_half_cycle == last_half_cycle) {
573 /*
574 * In this case we believe that the entire log should have
575 * cycle number last_half_cycle. We need to scan backwards
576 * from the end verifying that there are no holes still
577 * containing last_half_cycle - 1. If we find such a hole,
578 * then the start of that hole will be the new head. The
579 * simple case looks like
580 * x | x ... | x - 1 | x
581 * Another case that fits this picture would be
582 * x | x + 1 | x ... | x
c41564b5 583 * In this case the head really is somewhere at the end of the
1da177e4
LT
584 * log, as one of the latest writes at the beginning was
585 * incomplete.
586 * One more case is
587 * x | x + 1 | x ... | x - 1 | x
588 * This is really the combination of the above two cases, and
589 * the head has to end up at the start of the x-1 hole at the
590 * end of the log.
591 *
592 * In the 256k log case, we will read from the beginning to the
593 * end of the log and search for cycle numbers equal to x-1.
594 * We don't worry about the x+1 blocks that we encounter,
595 * because we know that they cannot be the head since the log
596 * started with x.
597 */
598 head_blk = log_bbnum;
599 stop_on_cycle = last_half_cycle - 1;
600 } else {
601 /*
602 * In this case we want to find the first block with cycle
603 * number matching last_half_cycle. We expect the log to be
604 * some variation on
605 * x + 1 ... | x ...
606 * The first block with cycle number x (last_half_cycle) will
607 * be where the new head belongs. First we do a binary search
608 * for the first occurrence of last_half_cycle. The binary
609 * search may not be totally accurate, so then we scan back
610 * from there looking for occurrences of last_half_cycle before
611 * us. If that backwards scan wraps around the beginning of
612 * the log, then we look for occurrences of last_half_cycle - 1
613 * at the end of the log. The cases we're looking for look
614 * like
615 * x + 1 ... | x | x + 1 | x ...
616 * ^ binary search stopped here
617 * or
618 * x + 1 ... | x ... | x - 1 | x
619 * <---------> less than scan distance
620 */
621 stop_on_cycle = last_half_cycle;
622 if ((error = xlog_find_cycle_start(log, bp, first_blk,
623 &head_blk, last_half_cycle)))
624 goto bp_err;
625 }
626
627 /*
628 * Now validate the answer. Scan back some number of maximum possible
629 * blocks and make sure each one has the expected cycle number. The
630 * maximum is determined by the total possible amount of buffering
631 * in the in-core log. The following number can be made tighter if
632 * we actually look at the block size of the filesystem.
633 */
634 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
635 if (head_blk >= num_scan_bblks) {
636 /*
637 * We are guaranteed that the entire check can be performed
638 * in one buffer.
639 */
640 start_blk = head_blk - num_scan_bblks;
641 if ((error = xlog_find_verify_cycle(log,
642 start_blk, num_scan_bblks,
643 stop_on_cycle, &new_blk)))
644 goto bp_err;
645 if (new_blk != -1)
646 head_blk = new_blk;
647 } else { /* need to read 2 parts of log */
648 /*
649 * We are going to scan backwards in the log in two parts.
650 * First we scan the physical end of the log. In this part
651 * of the log, we are looking for blocks with cycle number
652 * last_half_cycle - 1.
653 * If we find one, then we know that the log starts there, as
654 * we've found a hole that didn't get written in going around
655 * the end of the physical log. The simple case for this is
656 * x + 1 ... | x ... | x - 1 | x
657 * <---------> less than scan distance
658 * If all of the blocks at the end of the log have cycle number
659 * last_half_cycle, then we check the blocks at the start of
660 * the log looking for occurrences of last_half_cycle. If we
661 * find one, then our current estimate for the location of the
662 * first occurrence of last_half_cycle is wrong and we move
663 * back to the hole we've found. This case looks like
664 * x + 1 ... | x | x + 1 | x ...
665 * ^ binary search stopped here
666 * Another case we need to handle that only occurs in 256k
667 * logs is
668 * x + 1 ... | x ... | x+1 | x ...
669 * ^ binary search stops here
670 * In a 256k log, the scan at the end of the log will see the
671 * x + 1 blocks. We need to skip past those since that is
672 * certainly not the head of the log. By searching for
673 * last_half_cycle-1 we accomplish that.
674 */
675 start_blk = log_bbnum - num_scan_bblks + head_blk;
676 ASSERT(head_blk <= INT_MAX &&
677 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
678 if ((error = xlog_find_verify_cycle(log, start_blk,
679 num_scan_bblks - (int)head_blk,
680 (stop_on_cycle - 1), &new_blk)))
681 goto bp_err;
682 if (new_blk != -1) {
683 head_blk = new_blk;
684 goto bad_blk;
685 }
686
687 /*
688 * Scan beginning of log now. The last part of the physical
689 * log is good. This scan needs to verify that it doesn't find
690 * the last_half_cycle.
691 */
692 start_blk = 0;
693 ASSERT(head_blk <= INT_MAX);
694 if ((error = xlog_find_verify_cycle(log,
695 start_blk, (int)head_blk,
696 stop_on_cycle, &new_blk)))
697 goto bp_err;
698 if (new_blk != -1)
699 head_blk = new_blk;
700 }
701
702 bad_blk:
703 /*
704 * Now we need to make sure head_blk is not pointing to a block in
705 * the middle of a log record.
706 */
707 num_scan_bblks = XLOG_REC_SHIFT(log);
708 if (head_blk >= num_scan_bblks) {
709 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
710
711 /* start ptr at last block ptr before head_blk */
712 if ((error = xlog_find_verify_log_record(log, start_blk,
713 &head_blk, 0)) == -1) {
714 error = XFS_ERROR(EIO);
715 goto bp_err;
716 } else if (error)
717 goto bp_err;
718 } else {
719 start_blk = 0;
720 ASSERT(head_blk <= INT_MAX);
721 if ((error = xlog_find_verify_log_record(log, start_blk,
722 &head_blk, 0)) == -1) {
723 /* We hit the beginning of the log during our search */
724 start_blk = log_bbnum - num_scan_bblks + head_blk;
725 new_blk = log_bbnum;
726 ASSERT(start_blk <= INT_MAX &&
727 (xfs_daddr_t) log_bbnum-start_blk >= 0);
728 ASSERT(head_blk <= INT_MAX);
729 if ((error = xlog_find_verify_log_record(log,
730 start_blk, &new_blk,
731 (int)head_blk)) == -1) {
732 error = XFS_ERROR(EIO);
733 goto bp_err;
734 } else if (error)
735 goto bp_err;
736 if (new_blk != log_bbnum)
737 head_blk = new_blk;
738 } else if (error)
739 goto bp_err;
740 }
741
742 xlog_put_bp(bp);
743 if (head_blk == log_bbnum)
744 *return_head_blk = 0;
745 else
746 *return_head_blk = head_blk;
747 /*
748 * When returning here, we have a good block number. Bad block
749 * means that during a previous crash, we didn't have a clean break
750 * from cycle number N to cycle number N-1. In this case, we need
751 * to find the first block with cycle number N-1.
752 */
753 return 0;
754
755 bp_err:
756 xlog_put_bp(bp);
757
758 if (error)
759 xlog_warn("XFS: failed to find log head");
760 return error;
761}
762
763/*
764 * Find the sync block number or the tail of the log.
765 *
766 * This will be the block number of the last record to have its
767 * associated buffers synced to disk. Every log record header has
768 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
769 * to get a sync block number. The only concern is to figure out which
770 * log record header to believe.
771 *
772 * The following algorithm uses the log record header with the largest
773 * lsn. The entire log record does not need to be valid. We only care
774 * that the header is valid.
775 *
776 * We could speed up search by using current head_blk buffer, but it is not
777 * available.
778 */
779int
780xlog_find_tail(
781 xlog_t *log,
782 xfs_daddr_t *head_blk,
65be6054 783 xfs_daddr_t *tail_blk)
1da177e4
LT
784{
785 xlog_rec_header_t *rhead;
786 xlog_op_header_t *op_head;
787 xfs_caddr_t offset = NULL;
788 xfs_buf_t *bp;
789 int error, i, found;
790 xfs_daddr_t umount_data_blk;
791 xfs_daddr_t after_umount_blk;
792 xfs_lsn_t tail_lsn;
793 int hblks;
794
795 found = 0;
796
797 /*
798 * Find previous log record
799 */
800 if ((error = xlog_find_head(log, head_blk)))
801 return error;
802
803 bp = xlog_get_bp(log, 1);
804 if (!bp)
805 return ENOMEM;
806 if (*head_blk == 0) { /* special case */
807 if ((error = xlog_bread(log, 0, 1, bp)))
808 goto bread_err;
809 offset = xlog_align(log, 0, 1, bp);
03bea6fe 810 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
811 *tail_blk = 0;
812 /* leave all other log inited values alone */
813 goto exit;
814 }
815 }
816
817 /*
818 * Search backwards looking for log record header block
819 */
820 ASSERT(*head_blk < INT_MAX);
821 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
822 if ((error = xlog_bread(log, i, 1, bp)))
823 goto bread_err;
824 offset = xlog_align(log, i, 1, bp);
b53e675d 825 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
826 found = 1;
827 break;
828 }
829 }
830 /*
831 * If we haven't found the log record header block, start looking
832 * again from the end of the physical log. XXXmiken: There should be
833 * a check here to make sure we didn't search more than N blocks in
834 * the previous code.
835 */
836 if (!found) {
837 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
838 if ((error = xlog_bread(log, i, 1, bp)))
839 goto bread_err;
840 offset = xlog_align(log, i, 1, bp);
841 if (XLOG_HEADER_MAGIC_NUM ==
b53e675d 842 be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
843 found = 2;
844 break;
845 }
846 }
847 }
848 if (!found) {
849 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
850 ASSERT(0);
851 return XFS_ERROR(EIO);
852 }
853
854 /* find blk_no of tail of log */
855 rhead = (xlog_rec_header_t *)offset;
b53e675d 856 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
857
858 /*
859 * Reset log values according to the state of the log when we
860 * crashed. In the case where head_blk == 0, we bump curr_cycle
861 * one because the next write starts a new cycle rather than
862 * continuing the cycle of the last good log record. At this
863 * point we have guaranteed that all partial log records have been
864 * accounted for. Therefore, we know that the last good log record
865 * written was complete and ended exactly on the end boundary
866 * of the physical log.
867 */
868 log->l_prev_block = i;
869 log->l_curr_block = (int)*head_blk;
b53e675d 870 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
871 if (found == 2)
872 log->l_curr_cycle++;
b53e675d
CH
873 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
874 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
1da177e4
LT
875 log->l_grant_reserve_cycle = log->l_curr_cycle;
876 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
877 log->l_grant_write_cycle = log->l_curr_cycle;
878 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
879
880 /*
881 * Look for unmount record. If we find it, then we know there
882 * was a clean unmount. Since 'i' could be the last block in
883 * the physical log, we convert to a log block before comparing
884 * to the head_blk.
885 *
886 * Save the current tail lsn to use to pass to
887 * xlog_clear_stale_blocks() below. We won't want to clear the
888 * unmount record if there is one, so we pass the lsn of the
889 * unmount record rather than the block after it.
890 */
62118709 891 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
892 int h_size = be32_to_cpu(rhead->h_size);
893 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
894
895 if ((h_version & XLOG_VERSION_2) &&
896 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
897 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
898 if (h_size % XLOG_HEADER_CYCLE_SIZE)
899 hblks++;
900 } else {
901 hblks = 1;
902 }
903 } else {
904 hblks = 1;
905 }
906 after_umount_blk = (i + hblks + (int)
b53e675d 907 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1da177e4
LT
908 tail_lsn = log->l_tail_lsn;
909 if (*head_blk == after_umount_blk &&
b53e675d 910 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4
LT
911 umount_data_blk = (i + hblks) % log->l_logBBsize;
912 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
913 goto bread_err;
914 }
915 offset = xlog_align(log, umount_data_blk, 1, bp);
916 op_head = (xlog_op_header_t *)offset;
917 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
918 /*
919 * Set tail and last sync so that newly written
920 * log records will point recovery to after the
921 * current unmount record.
922 */
03bea6fe
CH
923 log->l_tail_lsn =
924 xlog_assign_lsn(log->l_curr_cycle,
925 after_umount_blk);
926 log->l_last_sync_lsn =
927 xlog_assign_lsn(log->l_curr_cycle,
928 after_umount_blk);
1da177e4 929 *tail_blk = after_umount_blk;
92821e2b
DC
930
931 /*
932 * Note that the unmount was clean. If the unmount
933 * was not clean, we need to know this to rebuild the
934 * superblock counters from the perag headers if we
935 * have a filesystem using non-persistent counters.
936 */
937 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
938 }
939 }
940
941 /*
942 * Make sure that there are no blocks in front of the head
943 * with the same cycle number as the head. This can happen
944 * because we allow multiple outstanding log writes concurrently,
945 * and the later writes might make it out before earlier ones.
946 *
947 * We use the lsn from before modifying it so that we'll never
948 * overwrite the unmount record after a clean unmount.
949 *
950 * Do this only if we are going to recover the filesystem
951 *
952 * NOTE: This used to say "if (!readonly)"
953 * However on Linux, we can & do recover a read-only filesystem.
954 * We only skip recovery if NORECOVERY is specified on mount,
955 * in which case we would not be here.
956 *
957 * But... if the -device- itself is readonly, just skip this.
958 * We can't recover this device anyway, so it won't matter.
959 */
960 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
961 error = xlog_clear_stale_blocks(log, tail_lsn);
962 }
963
964bread_err:
965exit:
966 xlog_put_bp(bp);
967
968 if (error)
969 xlog_warn("XFS: failed to locate log tail");
970 return error;
971}
972
973/*
974 * Is the log zeroed at all?
975 *
976 * The last binary search should be changed to perform an X block read
977 * once X becomes small enough. You can then search linearly through
978 * the X blocks. This will cut down on the number of reads we need to do.
979 *
980 * If the log is partially zeroed, this routine will pass back the blkno
981 * of the first block with cycle number 0. It won't have a complete LR
982 * preceding it.
983 *
984 * Return:
985 * 0 => the log is completely written to
986 * -1 => use *blk_no as the first block of the log
987 * >0 => error has occurred
988 */
a8272ce0 989STATIC int
1da177e4
LT
990xlog_find_zeroed(
991 xlog_t *log,
992 xfs_daddr_t *blk_no)
993{
994 xfs_buf_t *bp;
995 xfs_caddr_t offset;
996 uint first_cycle, last_cycle;
997 xfs_daddr_t new_blk, last_blk, start_blk;
998 xfs_daddr_t num_scan_bblks;
999 int error, log_bbnum = log->l_logBBsize;
1000
6fdf8ccc
NS
1001 *blk_no = 0;
1002
1da177e4
LT
1003 /* check totally zeroed log */
1004 bp = xlog_get_bp(log, 1);
1005 if (!bp)
1006 return ENOMEM;
1007 if ((error = xlog_bread(log, 0, 1, bp)))
1008 goto bp_err;
1009 offset = xlog_align(log, 0, 1, bp);
03bea6fe 1010 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1011 if (first_cycle == 0) { /* completely zeroed log */
1012 *blk_no = 0;
1013 xlog_put_bp(bp);
1014 return -1;
1015 }
1016
1017 /* check partially zeroed log */
1018 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1019 goto bp_err;
1020 offset = xlog_align(log, log_bbnum-1, 1, bp);
03bea6fe 1021 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1022 if (last_cycle != 0) { /* log completely written to */
1023 xlog_put_bp(bp);
1024 return 0;
1025 } else if (first_cycle != 1) {
1026 /*
1027 * If the cycle of the last block is zero, the cycle of
1028 * the first block must be 1. If it's not, maybe we're
1029 * not looking at a log... Bail out.
1030 */
1031 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1032 return XFS_ERROR(EINVAL);
1033 }
1034
1035 /* we have a partially zeroed log */
1036 last_blk = log_bbnum-1;
1037 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1038 goto bp_err;
1039
1040 /*
1041 * Validate the answer. Because there is no way to guarantee that
1042 * the entire log is made up of log records which are the same size,
1043 * we scan over the defined maximum blocks. At this point, the maximum
1044 * is not chosen to mean anything special. XXXmiken
1045 */
1046 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1047 ASSERT(num_scan_bblks <= INT_MAX);
1048
1049 if (last_blk < num_scan_bblks)
1050 num_scan_bblks = last_blk;
1051 start_blk = last_blk - num_scan_bblks;
1052
1053 /*
1054 * We search for any instances of cycle number 0 that occur before
1055 * our current estimate of the head. What we're trying to detect is
1056 * 1 ... | 0 | 1 | 0...
1057 * ^ binary search ends here
1058 */
1059 if ((error = xlog_find_verify_cycle(log, start_blk,
1060 (int)num_scan_bblks, 0, &new_blk)))
1061 goto bp_err;
1062 if (new_blk != -1)
1063 last_blk = new_blk;
1064
1065 /*
1066 * Potentially backup over partial log record write. We don't need
1067 * to search the end of the log because we know it is zero.
1068 */
1069 if ((error = xlog_find_verify_log_record(log, start_blk,
1070 &last_blk, 0)) == -1) {
1071 error = XFS_ERROR(EIO);
1072 goto bp_err;
1073 } else if (error)
1074 goto bp_err;
1075
1076 *blk_no = last_blk;
1077bp_err:
1078 xlog_put_bp(bp);
1079 if (error)
1080 return error;
1081 return -1;
1082}
1083
1084/*
1085 * These are simple subroutines used by xlog_clear_stale_blocks() below
1086 * to initialize a buffer full of empty log record headers and write
1087 * them into the log.
1088 */
1089STATIC void
1090xlog_add_record(
1091 xlog_t *log,
1092 xfs_caddr_t buf,
1093 int cycle,
1094 int block,
1095 int tail_cycle,
1096 int tail_block)
1097{
1098 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1099
1100 memset(buf, 0, BBSIZE);
b53e675d
CH
1101 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1102 recp->h_cycle = cpu_to_be32(cycle);
1103 recp->h_version = cpu_to_be32(
62118709 1104 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1105 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1106 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1107 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1108 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1109}
1110
1111STATIC int
1112xlog_write_log_records(
1113 xlog_t *log,
1114 int cycle,
1115 int start_block,
1116 int blocks,
1117 int tail_cycle,
1118 int tail_block)
1119{
1120 xfs_caddr_t offset;
1121 xfs_buf_t *bp;
1122 int balign, ealign;
1123 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1124 int end_block = start_block + blocks;
1125 int bufblks;
1126 int error = 0;
1127 int i, j = 0;
1128
1129 bufblks = 1 << ffs(blocks);
1130 while (!(bp = xlog_get_bp(log, bufblks))) {
1131 bufblks >>= 1;
1132 if (bufblks <= log->l_sectbb_log)
1133 return ENOMEM;
1134 }
1135
1136 /* We may need to do a read at the start to fill in part of
1137 * the buffer in the starting sector not covered by the first
1138 * write below.
1139 */
1140 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1141 if (balign != start_block) {
1142 if ((error = xlog_bread(log, start_block, 1, bp))) {
1143 xlog_put_bp(bp);
1144 return error;
1145 }
1146 j = start_block - balign;
1147 }
1148
1149 for (i = start_block; i < end_block; i += bufblks) {
1150 int bcount, endcount;
1151
1152 bcount = min(bufblks, end_block - start_block);
1153 endcount = bcount - j;
1154
1155 /* We may need to do a read at the end to fill in part of
1156 * the buffer in the final sector not covered by the write.
1157 * If this is the same sector as the above read, skip it.
1158 */
1159 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1160 if (j == 0 && (start_block + endcount > ealign)) {
1161 offset = XFS_BUF_PTR(bp);
1162 balign = BBTOB(ealign - start_block);
234f56ac
DC
1163 error = XFS_BUF_SET_PTR(bp, offset + balign,
1164 BBTOB(sectbb));
1165 if (!error)
1166 error = xlog_bread(log, ealign, sectbb, bp);
1167 if (!error)
1168 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1169 if (error)
1da177e4 1170 break;
1da177e4
LT
1171 }
1172
1173 offset = xlog_align(log, start_block, endcount, bp);
1174 for (; j < endcount; j++) {
1175 xlog_add_record(log, offset, cycle, i+j,
1176 tail_cycle, tail_block);
1177 offset += BBSIZE;
1178 }
1179 error = xlog_bwrite(log, start_block, endcount, bp);
1180 if (error)
1181 break;
1182 start_block += endcount;
1183 j = 0;
1184 }
1185 xlog_put_bp(bp);
1186 return error;
1187}
1188
1189/*
1190 * This routine is called to blow away any incomplete log writes out
1191 * in front of the log head. We do this so that we won't become confused
1192 * if we come up, write only a little bit more, and then crash again.
1193 * If we leave the partial log records out there, this situation could
1194 * cause us to think those partial writes are valid blocks since they
1195 * have the current cycle number. We get rid of them by overwriting them
1196 * with empty log records with the old cycle number rather than the
1197 * current one.
1198 *
1199 * The tail lsn is passed in rather than taken from
1200 * the log so that we will not write over the unmount record after a
1201 * clean unmount in a 512 block log. Doing so would leave the log without
1202 * any valid log records in it until a new one was written. If we crashed
1203 * during that time we would not be able to recover.
1204 */
1205STATIC int
1206xlog_clear_stale_blocks(
1207 xlog_t *log,
1208 xfs_lsn_t tail_lsn)
1209{
1210 int tail_cycle, head_cycle;
1211 int tail_block, head_block;
1212 int tail_distance, max_distance;
1213 int distance;
1214 int error;
1215
1216 tail_cycle = CYCLE_LSN(tail_lsn);
1217 tail_block = BLOCK_LSN(tail_lsn);
1218 head_cycle = log->l_curr_cycle;
1219 head_block = log->l_curr_block;
1220
1221 /*
1222 * Figure out the distance between the new head of the log
1223 * and the tail. We want to write over any blocks beyond the
1224 * head that we may have written just before the crash, but
1225 * we don't want to overwrite the tail of the log.
1226 */
1227 if (head_cycle == tail_cycle) {
1228 /*
1229 * The tail is behind the head in the physical log,
1230 * so the distance from the head to the tail is the
1231 * distance from the head to the end of the log plus
1232 * the distance from the beginning of the log to the
1233 * tail.
1234 */
1235 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1236 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1237 XFS_ERRLEVEL_LOW, log->l_mp);
1238 return XFS_ERROR(EFSCORRUPTED);
1239 }
1240 tail_distance = tail_block + (log->l_logBBsize - head_block);
1241 } else {
1242 /*
1243 * The head is behind the tail in the physical log,
1244 * so the distance from the head to the tail is just
1245 * the tail block minus the head block.
1246 */
1247 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1248 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1249 XFS_ERRLEVEL_LOW, log->l_mp);
1250 return XFS_ERROR(EFSCORRUPTED);
1251 }
1252 tail_distance = tail_block - head_block;
1253 }
1254
1255 /*
1256 * If the head is right up against the tail, we can't clear
1257 * anything.
1258 */
1259 if (tail_distance <= 0) {
1260 ASSERT(tail_distance == 0);
1261 return 0;
1262 }
1263
1264 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1265 /*
1266 * Take the smaller of the maximum amount of outstanding I/O
1267 * we could have and the distance to the tail to clear out.
1268 * We take the smaller so that we don't overwrite the tail and
1269 * we don't waste all day writing from the head to the tail
1270 * for no reason.
1271 */
1272 max_distance = MIN(max_distance, tail_distance);
1273
1274 if ((head_block + max_distance) <= log->l_logBBsize) {
1275 /*
1276 * We can stomp all the blocks we need to without
1277 * wrapping around the end of the log. Just do it
1278 * in a single write. Use the cycle number of the
1279 * current cycle minus one so that the log will look like:
1280 * n ... | n - 1 ...
1281 */
1282 error = xlog_write_log_records(log, (head_cycle - 1),
1283 head_block, max_distance, tail_cycle,
1284 tail_block);
1285 if (error)
1286 return error;
1287 } else {
1288 /*
1289 * We need to wrap around the end of the physical log in
1290 * order to clear all the blocks. Do it in two separate
1291 * I/Os. The first write should be from the head to the
1292 * end of the physical log, and it should use the current
1293 * cycle number minus one just like above.
1294 */
1295 distance = log->l_logBBsize - head_block;
1296 error = xlog_write_log_records(log, (head_cycle - 1),
1297 head_block, distance, tail_cycle,
1298 tail_block);
1299
1300 if (error)
1301 return error;
1302
1303 /*
1304 * Now write the blocks at the start of the physical log.
1305 * This writes the remainder of the blocks we want to clear.
1306 * It uses the current cycle number since we're now on the
1307 * same cycle as the head so that we get:
1308 * n ... n ... | n - 1 ...
1309 * ^^^^^ blocks we're writing
1310 */
1311 distance = max_distance - (log->l_logBBsize - head_block);
1312 error = xlog_write_log_records(log, head_cycle, 0, distance,
1313 tail_cycle, tail_block);
1314 if (error)
1315 return error;
1316 }
1317
1318 return 0;
1319}
1320
1321/******************************************************************************
1322 *
1323 * Log recover routines
1324 *
1325 ******************************************************************************
1326 */
1327
1328STATIC xlog_recover_t *
1329xlog_recover_find_tid(
1330 xlog_recover_t *q,
1331 xlog_tid_t tid)
1332{
1333 xlog_recover_t *p = q;
1334
1335 while (p != NULL) {
1336 if (p->r_log_tid == tid)
1337 break;
1338 p = p->r_next;
1339 }
1340 return p;
1341}
1342
1343STATIC void
1344xlog_recover_put_hashq(
1345 xlog_recover_t **q,
1346 xlog_recover_t *trans)
1347{
1348 trans->r_next = *q;
1349 *q = trans;
1350}
1351
1352STATIC void
1353xlog_recover_add_item(
1354 xlog_recover_item_t **itemq)
1355{
1356 xlog_recover_item_t *item;
1357
1358 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1359 xlog_recover_insert_item_backq(itemq, item);
1360}
1361
1362STATIC int
1363xlog_recover_add_to_cont_trans(
1364 xlog_recover_t *trans,
1365 xfs_caddr_t dp,
1366 int len)
1367{
1368 xlog_recover_item_t *item;
1369 xfs_caddr_t ptr, old_ptr;
1370 int old_len;
1371
1372 item = trans->r_itemq;
4b80916b 1373 if (item == NULL) {
1da177e4
LT
1374 /* finish copying rest of trans header */
1375 xlog_recover_add_item(&trans->r_itemq);
1376 ptr = (xfs_caddr_t) &trans->r_theader +
1377 sizeof(xfs_trans_header_t) - len;
1378 memcpy(ptr, dp, len); /* d, s, l */
1379 return 0;
1380 }
1381 item = item->ri_prev;
1382
1383 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1384 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1385
760dea67 1386 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1da177e4
LT
1387 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1388 item->ri_buf[item->ri_cnt-1].i_len += len;
1389 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1390 return 0;
1391}
1392
1393/*
1394 * The next region to add is the start of a new region. It could be
1395 * a whole region or it could be the first part of a new region. Because
1396 * of this, the assumption here is that the type and size fields of all
1397 * format structures fit into the first 32 bits of the structure.
1398 *
1399 * This works because all regions must be 32 bit aligned. Therefore, we
1400 * either have both fields or we have neither field. In the case we have
1401 * neither field, the data part of the region is zero length. We only have
1402 * a log_op_header and can throw away the header since a new one will appear
1403 * later. If we have at least 4 bytes, then we can determine how many regions
1404 * will appear in the current log item.
1405 */
1406STATIC int
1407xlog_recover_add_to_trans(
1408 xlog_recover_t *trans,
1409 xfs_caddr_t dp,
1410 int len)
1411{
1412 xfs_inode_log_format_t *in_f; /* any will do */
1413 xlog_recover_item_t *item;
1414 xfs_caddr_t ptr;
1415
1416 if (!len)
1417 return 0;
1418 item = trans->r_itemq;
4b80916b 1419 if (item == NULL) {
5a792c45
DC
1420 /* we need to catch log corruptions here */
1421 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1422 xlog_warn("XFS: xlog_recover_add_to_trans: "
1423 "bad header magic number");
1424 ASSERT(0);
1425 return XFS_ERROR(EIO);
1426 }
1da177e4
LT
1427 if (len == sizeof(xfs_trans_header_t))
1428 xlog_recover_add_item(&trans->r_itemq);
1429 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1430 return 0;
1431 }
1432
1433 ptr = kmem_alloc(len, KM_SLEEP);
1434 memcpy(ptr, dp, len);
1435 in_f = (xfs_inode_log_format_t *)ptr;
1436
1437 if (item->ri_prev->ri_total != 0 &&
1438 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1439 xlog_recover_add_item(&trans->r_itemq);
1440 }
1441 item = trans->r_itemq;
1442 item = item->ri_prev;
1443
1444 if (item->ri_total == 0) { /* first region to be added */
1445 item->ri_total = in_f->ilf_size;
1446 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1447 item->ri_buf = kmem_zalloc((item->ri_total *
1448 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1449 }
1450 ASSERT(item->ri_total > item->ri_cnt);
1451 /* Description region is ri_buf[0] */
1452 item->ri_buf[item->ri_cnt].i_addr = ptr;
1453 item->ri_buf[item->ri_cnt].i_len = len;
1454 item->ri_cnt++;
1455 return 0;
1456}
1457
1458STATIC void
1459xlog_recover_new_tid(
1460 xlog_recover_t **q,
1461 xlog_tid_t tid,
1462 xfs_lsn_t lsn)
1463{
1464 xlog_recover_t *trans;
1465
1466 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1467 trans->r_log_tid = tid;
1468 trans->r_lsn = lsn;
1469 xlog_recover_put_hashq(q, trans);
1470}
1471
1472STATIC int
1473xlog_recover_unlink_tid(
1474 xlog_recover_t **q,
1475 xlog_recover_t *trans)
1476{
1477 xlog_recover_t *tp;
1478 int found = 0;
1479
4b80916b 1480 ASSERT(trans != NULL);
1da177e4
LT
1481 if (trans == *q) {
1482 *q = (*q)->r_next;
1483 } else {
1484 tp = *q;
4b80916b 1485 while (tp) {
1da177e4
LT
1486 if (tp->r_next == trans) {
1487 found = 1;
1488 break;
1489 }
1490 tp = tp->r_next;
1491 }
1492 if (!found) {
1493 xlog_warn(
1494 "XFS: xlog_recover_unlink_tid: trans not found");
1495 ASSERT(0);
1496 return XFS_ERROR(EIO);
1497 }
1498 tp->r_next = tp->r_next->r_next;
1499 }
1500 return 0;
1501}
1502
1503STATIC void
1504xlog_recover_insert_item_backq(
1505 xlog_recover_item_t **q,
1506 xlog_recover_item_t *item)
1507{
4b80916b 1508 if (*q == NULL) {
1da177e4
LT
1509 item->ri_prev = item->ri_next = item;
1510 *q = item;
1511 } else {
1512 item->ri_next = *q;
1513 item->ri_prev = (*q)->ri_prev;
1514 (*q)->ri_prev = item;
1515 item->ri_prev->ri_next = item;
1516 }
1517}
1518
1519STATIC void
1520xlog_recover_insert_item_frontq(
1521 xlog_recover_item_t **q,
1522 xlog_recover_item_t *item)
1523{
1524 xlog_recover_insert_item_backq(q, item);
1525 *q = item;
1526}
1527
1528STATIC int
1529xlog_recover_reorder_trans(
1da177e4
LT
1530 xlog_recover_t *trans)
1531{
1532 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1533 xfs_buf_log_format_t *buf_f;
1da177e4
LT
1534 ushort flags = 0;
1535
1536 first_item = itemq = trans->r_itemq;
1537 trans->r_itemq = NULL;
1538 do {
1539 itemq_next = itemq->ri_next;
1540 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1da177e4
LT
1541
1542 switch (ITEM_TYPE(itemq)) {
1543 case XFS_LI_BUF:
804195b6 1544 flags = buf_f->blf_flags;
1da177e4
LT
1545 if (!(flags & XFS_BLI_CANCEL)) {
1546 xlog_recover_insert_item_frontq(&trans->r_itemq,
1547 itemq);
1548 break;
1549 }
1550 case XFS_LI_INODE:
1da177e4
LT
1551 case XFS_LI_DQUOT:
1552 case XFS_LI_QUOTAOFF:
1553 case XFS_LI_EFD:
1554 case XFS_LI_EFI:
1555 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1556 break;
1557 default:
1558 xlog_warn(
1559 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1560 ASSERT(0);
1561 return XFS_ERROR(EIO);
1562 }
1563 itemq = itemq_next;
1564 } while (first_item != itemq);
1565 return 0;
1566}
1567
1568/*
1569 * Build up the table of buf cancel records so that we don't replay
1570 * cancelled data in the second pass. For buffer records that are
1571 * not cancel records, there is nothing to do here so we just return.
1572 *
1573 * If we get a cancel record which is already in the table, this indicates
1574 * that the buffer was cancelled multiple times. In order to ensure
1575 * that during pass 2 we keep the record in the table until we reach its
1576 * last occurrence in the log, we keep a reference count in the cancel
1577 * record in the table to tell us how many times we expect to see this
1578 * record during the second pass.
1579 */
1580STATIC void
1581xlog_recover_do_buffer_pass1(
1582 xlog_t *log,
1583 xfs_buf_log_format_t *buf_f)
1584{
1585 xfs_buf_cancel_t *bcp;
1586 xfs_buf_cancel_t *nextp;
1587 xfs_buf_cancel_t *prevp;
1588 xfs_buf_cancel_t **bucket;
1da177e4
LT
1589 xfs_daddr_t blkno = 0;
1590 uint len = 0;
1591 ushort flags = 0;
1592
1593 switch (buf_f->blf_type) {
1594 case XFS_LI_BUF:
1595 blkno = buf_f->blf_blkno;
1596 len = buf_f->blf_len;
1597 flags = buf_f->blf_flags;
1598 break;
1da177e4
LT
1599 }
1600
1601 /*
1602 * If this isn't a cancel buffer item, then just return.
1603 */
1604 if (!(flags & XFS_BLI_CANCEL))
1605 return;
1606
1607 /*
1608 * Insert an xfs_buf_cancel record into the hash table of
1609 * them. If there is already an identical record, bump
1610 * its reference count.
1611 */
1612 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1613 XLOG_BC_TABLE_SIZE];
1614 /*
1615 * If the hash bucket is empty then just insert a new record into
1616 * the bucket.
1617 */
1618 if (*bucket == NULL) {
1619 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1620 KM_SLEEP);
1621 bcp->bc_blkno = blkno;
1622 bcp->bc_len = len;
1623 bcp->bc_refcount = 1;
1624 bcp->bc_next = NULL;
1625 *bucket = bcp;
1626 return;
1627 }
1628
1629 /*
1630 * The hash bucket is not empty, so search for duplicates of our
1631 * record. If we find one them just bump its refcount. If not
1632 * then add us at the end of the list.
1633 */
1634 prevp = NULL;
1635 nextp = *bucket;
1636 while (nextp != NULL) {
1637 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1638 nextp->bc_refcount++;
1639 return;
1640 }
1641 prevp = nextp;
1642 nextp = nextp->bc_next;
1643 }
1644 ASSERT(prevp != NULL);
1645 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1646 KM_SLEEP);
1647 bcp->bc_blkno = blkno;
1648 bcp->bc_len = len;
1649 bcp->bc_refcount = 1;
1650 bcp->bc_next = NULL;
1651 prevp->bc_next = bcp;
1652}
1653
1654/*
1655 * Check to see whether the buffer being recovered has a corresponding
1656 * entry in the buffer cancel record table. If it does then return 1
1657 * so that it will be cancelled, otherwise return 0. If the buffer is
1658 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1659 * the refcount on the entry in the table and remove it from the table
1660 * if this is the last reference.
1661 *
1662 * We remove the cancel record from the table when we encounter its
1663 * last occurrence in the log so that if the same buffer is re-used
1664 * again after its last cancellation we actually replay the changes
1665 * made at that point.
1666 */
1667STATIC int
1668xlog_check_buffer_cancelled(
1669 xlog_t *log,
1670 xfs_daddr_t blkno,
1671 uint len,
1672 ushort flags)
1673{
1674 xfs_buf_cancel_t *bcp;
1675 xfs_buf_cancel_t *prevp;
1676 xfs_buf_cancel_t **bucket;
1677
1678 if (log->l_buf_cancel_table == NULL) {
1679 /*
1680 * There is nothing in the table built in pass one,
1681 * so this buffer must not be cancelled.
1682 */
1683 ASSERT(!(flags & XFS_BLI_CANCEL));
1684 return 0;
1685 }
1686
1687 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1688 XLOG_BC_TABLE_SIZE];
1689 bcp = *bucket;
1690 if (bcp == NULL) {
1691 /*
1692 * There is no corresponding entry in the table built
1693 * in pass one, so this buffer has not been cancelled.
1694 */
1695 ASSERT(!(flags & XFS_BLI_CANCEL));
1696 return 0;
1697 }
1698
1699 /*
1700 * Search for an entry in the buffer cancel table that
1701 * matches our buffer.
1702 */
1703 prevp = NULL;
1704 while (bcp != NULL) {
1705 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1706 /*
1707 * We've go a match, so return 1 so that the
1708 * recovery of this buffer is cancelled.
1709 * If this buffer is actually a buffer cancel
1710 * log item, then decrement the refcount on the
1711 * one in the table and remove it if this is the
1712 * last reference.
1713 */
1714 if (flags & XFS_BLI_CANCEL) {
1715 bcp->bc_refcount--;
1716 if (bcp->bc_refcount == 0) {
1717 if (prevp == NULL) {
1718 *bucket = bcp->bc_next;
1719 } else {
1720 prevp->bc_next = bcp->bc_next;
1721 }
f0e2d93c 1722 kmem_free(bcp);
1da177e4
LT
1723 }
1724 }
1725 return 1;
1726 }
1727 prevp = bcp;
1728 bcp = bcp->bc_next;
1729 }
1730 /*
1731 * We didn't find a corresponding entry in the table, so
1732 * return 0 so that the buffer is NOT cancelled.
1733 */
1734 ASSERT(!(flags & XFS_BLI_CANCEL));
1735 return 0;
1736}
1737
1738STATIC int
1739xlog_recover_do_buffer_pass2(
1740 xlog_t *log,
1741 xfs_buf_log_format_t *buf_f)
1742{
1da177e4
LT
1743 xfs_daddr_t blkno = 0;
1744 ushort flags = 0;
1745 uint len = 0;
1746
1747 switch (buf_f->blf_type) {
1748 case XFS_LI_BUF:
1749 blkno = buf_f->blf_blkno;
1750 flags = buf_f->blf_flags;
1751 len = buf_f->blf_len;
1752 break;
1da177e4
LT
1753 }
1754
1755 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1756}
1757
1758/*
1759 * Perform recovery for a buffer full of inodes. In these buffers,
1760 * the only data which should be recovered is that which corresponds
1761 * to the di_next_unlinked pointers in the on disk inode structures.
1762 * The rest of the data for the inodes is always logged through the
1763 * inodes themselves rather than the inode buffer and is recovered
1764 * in xlog_recover_do_inode_trans().
1765 *
1766 * The only time when buffers full of inodes are fully recovered is
1767 * when the buffer is full of newly allocated inodes. In this case
1768 * the buffer will not be marked as an inode buffer and so will be
1769 * sent to xlog_recover_do_reg_buffer() below during recovery.
1770 */
1771STATIC int
1772xlog_recover_do_inode_buffer(
1773 xfs_mount_t *mp,
1774 xlog_recover_item_t *item,
1775 xfs_buf_t *bp,
1776 xfs_buf_log_format_t *buf_f)
1777{
1778 int i;
1779 int item_index;
1780 int bit;
1781 int nbits;
1782 int reg_buf_offset;
1783 int reg_buf_bytes;
1784 int next_unlinked_offset;
1785 int inodes_per_buf;
1786 xfs_agino_t *logged_nextp;
1787 xfs_agino_t *buffer_nextp;
1da177e4
LT
1788 unsigned int *data_map = NULL;
1789 unsigned int map_size = 0;
1790
1791 switch (buf_f->blf_type) {
1792 case XFS_LI_BUF:
1793 data_map = buf_f->blf_data_map;
1794 map_size = buf_f->blf_map_size;
1795 break;
1da177e4
LT
1796 }
1797 /*
1798 * Set the variables corresponding to the current region to
1799 * 0 so that we'll initialize them on the first pass through
1800 * the loop.
1801 */
1802 reg_buf_offset = 0;
1803 reg_buf_bytes = 0;
1804 bit = 0;
1805 nbits = 0;
1806 item_index = 0;
1807 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1808 for (i = 0; i < inodes_per_buf; i++) {
1809 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1810 offsetof(xfs_dinode_t, di_next_unlinked);
1811
1812 while (next_unlinked_offset >=
1813 (reg_buf_offset + reg_buf_bytes)) {
1814 /*
1815 * The next di_next_unlinked field is beyond
1816 * the current logged region. Find the next
1817 * logged region that contains or is beyond
1818 * the current di_next_unlinked field.
1819 */
1820 bit += nbits;
1821 bit = xfs_next_bit(data_map, map_size, bit);
1822
1823 /*
1824 * If there are no more logged regions in the
1825 * buffer, then we're done.
1826 */
1827 if (bit == -1) {
1828 return 0;
1829 }
1830
1831 nbits = xfs_contig_bits(data_map, map_size,
1832 bit);
1833 ASSERT(nbits > 0);
1834 reg_buf_offset = bit << XFS_BLI_SHIFT;
1835 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1836 item_index++;
1837 }
1838
1839 /*
1840 * If the current logged region starts after the current
1841 * di_next_unlinked field, then move on to the next
1842 * di_next_unlinked field.
1843 */
1844 if (next_unlinked_offset < reg_buf_offset) {
1845 continue;
1846 }
1847
1848 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1849 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1850 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1851
1852 /*
1853 * The current logged region contains a copy of the
1854 * current di_next_unlinked field. Extract its value
1855 * and copy it to the buffer copy.
1856 */
1857 logged_nextp = (xfs_agino_t *)
1858 ((char *)(item->ri_buf[item_index].i_addr) +
1859 (next_unlinked_offset - reg_buf_offset));
1860 if (unlikely(*logged_nextp == 0)) {
1861 xfs_fs_cmn_err(CE_ALERT, mp,
1862 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1863 item, bp);
1864 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1865 XFS_ERRLEVEL_LOW, mp);
1866 return XFS_ERROR(EFSCORRUPTED);
1867 }
1868
1869 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1870 next_unlinked_offset);
87c199c2 1871 *buffer_nextp = *logged_nextp;
1da177e4
LT
1872 }
1873
1874 return 0;
1875}
1876
1877/*
1878 * Perform a 'normal' buffer recovery. Each logged region of the
1879 * buffer should be copied over the corresponding region in the
1880 * given buffer. The bitmap in the buf log format structure indicates
1881 * where to place the logged data.
1882 */
1883/*ARGSUSED*/
1884STATIC void
1885xlog_recover_do_reg_buffer(
1da177e4
LT
1886 xlog_recover_item_t *item,
1887 xfs_buf_t *bp,
1888 xfs_buf_log_format_t *buf_f)
1889{
1890 int i;
1891 int bit;
1892 int nbits;
1da177e4
LT
1893 unsigned int *data_map = NULL;
1894 unsigned int map_size = 0;
1895 int error;
1896
1897 switch (buf_f->blf_type) {
1898 case XFS_LI_BUF:
1899 data_map = buf_f->blf_data_map;
1900 map_size = buf_f->blf_map_size;
1901 break;
1da177e4
LT
1902 }
1903 bit = 0;
1904 i = 1; /* 0 is the buf format structure */
1905 while (1) {
1906 bit = xfs_next_bit(data_map, map_size, bit);
1907 if (bit == -1)
1908 break;
1909 nbits = xfs_contig_bits(data_map, map_size, bit);
1910 ASSERT(nbits > 0);
4b80916b 1911 ASSERT(item->ri_buf[i].i_addr != NULL);
1da177e4
LT
1912 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1913 ASSERT(XFS_BUF_COUNT(bp) >=
1914 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1915
1916 /*
1917 * Do a sanity check if this is a dquot buffer. Just checking
1918 * the first dquot in the buffer should do. XXXThis is
1919 * probably a good thing to do for other buf types also.
1920 */
1921 error = 0;
c8ad20ff
NS
1922 if (buf_f->blf_flags &
1923 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1da177e4
LT
1924 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1925 item->ri_buf[i].i_addr,
1926 -1, 0, XFS_QMOPT_DOWARN,
1927 "dquot_buf_recover");
1928 }
053c59a0 1929 if (!error)
1da177e4
LT
1930 memcpy(xfs_buf_offset(bp,
1931 (uint)bit << XFS_BLI_SHIFT), /* dest */
1932 item->ri_buf[i].i_addr, /* source */
1933 nbits<<XFS_BLI_SHIFT); /* length */
1934 i++;
1935 bit += nbits;
1936 }
1937
1938 /* Shouldn't be any more regions */
1939 ASSERT(i == item->ri_total);
1940}
1941
1942/*
1943 * Do some primitive error checking on ondisk dquot data structures.
1944 */
1945int
1946xfs_qm_dqcheck(
1947 xfs_disk_dquot_t *ddq,
1948 xfs_dqid_t id,
1949 uint type, /* used only when IO_dorepair is true */
1950 uint flags,
1951 char *str)
1952{
1953 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1954 int errs = 0;
1955
1956 /*
1957 * We can encounter an uninitialized dquot buffer for 2 reasons:
1958 * 1. If we crash while deleting the quotainode(s), and those blks got
1959 * used for user data. This is because we take the path of regular
1960 * file deletion; however, the size field of quotainodes is never
1961 * updated, so all the tricks that we play in itruncate_finish
1962 * don't quite matter.
1963 *
1964 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1965 * But the allocation will be replayed so we'll end up with an
1966 * uninitialized quota block.
1967 *
1968 * This is all fine; things are still consistent, and we haven't lost
1969 * any quota information. Just don't complain about bad dquot blks.
1970 */
1149d96a 1971 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1da177e4
LT
1972 if (flags & XFS_QMOPT_DOWARN)
1973 cmn_err(CE_ALERT,
1974 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 1975 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
1976 errs++;
1977 }
1149d96a 1978 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4
LT
1979 if (flags & XFS_QMOPT_DOWARN)
1980 cmn_err(CE_ALERT,
1981 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 1982 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
1983 errs++;
1984 }
1985
1149d96a
CH
1986 if (ddq->d_flags != XFS_DQ_USER &&
1987 ddq->d_flags != XFS_DQ_PROJ &&
1988 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4
LT
1989 if (flags & XFS_QMOPT_DOWARN)
1990 cmn_err(CE_ALERT,
1991 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 1992 str, id, ddq->d_flags);
1da177e4
LT
1993 errs++;
1994 }
1995
1149d96a 1996 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4
LT
1997 if (flags & XFS_QMOPT_DOWARN)
1998 cmn_err(CE_ALERT,
1999 "%s : ondisk-dquot 0x%p, ID mismatch: "
2000 "0x%x expected, found id 0x%x",
1149d96a 2001 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2002 errs++;
2003 }
2004
2005 if (!errs && ddq->d_id) {
1149d96a
CH
2006 if (ddq->d_blk_softlimit &&
2007 be64_to_cpu(ddq->d_bcount) >=
2008 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2009 if (!ddq->d_btimer) {
2010 if (flags & XFS_QMOPT_DOWARN)
2011 cmn_err(CE_ALERT,
2012 "%s : Dquot ID 0x%x (0x%p) "
2013 "BLK TIMER NOT STARTED",
1149d96a 2014 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2015 errs++;
2016 }
2017 }
1149d96a
CH
2018 if (ddq->d_ino_softlimit &&
2019 be64_to_cpu(ddq->d_icount) >=
2020 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2021 if (!ddq->d_itimer) {
2022 if (flags & XFS_QMOPT_DOWARN)
2023 cmn_err(CE_ALERT,
2024 "%s : Dquot ID 0x%x (0x%p) "
2025 "INODE TIMER NOT STARTED",
1149d96a 2026 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2027 errs++;
2028 }
2029 }
1149d96a
CH
2030 if (ddq->d_rtb_softlimit &&
2031 be64_to_cpu(ddq->d_rtbcount) >=
2032 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2033 if (!ddq->d_rtbtimer) {
2034 if (flags & XFS_QMOPT_DOWARN)
2035 cmn_err(CE_ALERT,
2036 "%s : Dquot ID 0x%x (0x%p) "
2037 "RTBLK TIMER NOT STARTED",
1149d96a 2038 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2039 errs++;
2040 }
2041 }
2042 }
2043
2044 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2045 return errs;
2046
2047 if (flags & XFS_QMOPT_DOWARN)
2048 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2049
2050 /*
2051 * Typically, a repair is only requested by quotacheck.
2052 */
2053 ASSERT(id != -1);
2054 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2055 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2056
2057 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2058 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2059 d->dd_diskdq.d_flags = type;
2060 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2061
2062 return errs;
2063}
2064
2065/*
2066 * Perform a dquot buffer recovery.
2067 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2068 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2069 * Else, treat it as a regular buffer and do recovery.
2070 */
2071STATIC void
2072xlog_recover_do_dquot_buffer(
2073 xfs_mount_t *mp,
2074 xlog_t *log,
2075 xlog_recover_item_t *item,
2076 xfs_buf_t *bp,
2077 xfs_buf_log_format_t *buf_f)
2078{
2079 uint type;
2080
2081 /*
2082 * Filesystems are required to send in quota flags at mount time.
2083 */
2084 if (mp->m_qflags == 0) {
2085 return;
2086 }
2087
2088 type = 0;
2089 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2090 type |= XFS_DQ_USER;
c8ad20ff
NS
2091 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2092 type |= XFS_DQ_PROJ;
1da177e4
LT
2093 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2094 type |= XFS_DQ_GROUP;
2095 /*
2096 * This type of quotas was turned off, so ignore this buffer
2097 */
2098 if (log->l_quotaoffs_flag & type)
2099 return;
2100
053c59a0 2101 xlog_recover_do_reg_buffer(item, bp, buf_f);
1da177e4
LT
2102}
2103
2104/*
2105 * This routine replays a modification made to a buffer at runtime.
2106 * There are actually two types of buffer, regular and inode, which
2107 * are handled differently. Inode buffers are handled differently
2108 * in that we only recover a specific set of data from them, namely
2109 * the inode di_next_unlinked fields. This is because all other inode
2110 * data is actually logged via inode records and any data we replay
2111 * here which overlaps that may be stale.
2112 *
2113 * When meta-data buffers are freed at run time we log a buffer item
2114 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2115 * of the buffer in the log should not be replayed at recovery time.
2116 * This is so that if the blocks covered by the buffer are reused for
2117 * file data before we crash we don't end up replaying old, freed
2118 * meta-data into a user's file.
2119 *
2120 * To handle the cancellation of buffer log items, we make two passes
2121 * over the log during recovery. During the first we build a table of
2122 * those buffers which have been cancelled, and during the second we
2123 * only replay those buffers which do not have corresponding cancel
2124 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2125 * for more details on the implementation of the table of cancel records.
2126 */
2127STATIC int
2128xlog_recover_do_buffer_trans(
2129 xlog_t *log,
2130 xlog_recover_item_t *item,
2131 int pass)
2132{
2133 xfs_buf_log_format_t *buf_f;
1da177e4
LT
2134 xfs_mount_t *mp;
2135 xfs_buf_t *bp;
2136 int error;
2137 int cancel;
2138 xfs_daddr_t blkno;
2139 int len;
2140 ushort flags;
2141
2142 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2143
2144 if (pass == XLOG_RECOVER_PASS1) {
2145 /*
2146 * In this pass we're only looking for buf items
2147 * with the XFS_BLI_CANCEL bit set.
2148 */
2149 xlog_recover_do_buffer_pass1(log, buf_f);
2150 return 0;
2151 } else {
2152 /*
2153 * In this pass we want to recover all the buffers
2154 * which have not been cancelled and are not
2155 * cancellation buffers themselves. The routine
2156 * we call here will tell us whether or not to
2157 * continue with the replay of this buffer.
2158 */
2159 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2160 if (cancel) {
2161 return 0;
2162 }
2163 }
2164 switch (buf_f->blf_type) {
2165 case XFS_LI_BUF:
2166 blkno = buf_f->blf_blkno;
2167 len = buf_f->blf_len;
2168 flags = buf_f->blf_flags;
2169 break;
1da177e4
LT
2170 default:
2171 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
fc1f8c1c
NS
2172 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2173 buf_f->blf_type, log->l_mp->m_logname ?
2174 log->l_mp->m_logname : "internal");
1da177e4
LT
2175 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2176 XFS_ERRLEVEL_LOW, log->l_mp);
2177 return XFS_ERROR(EFSCORRUPTED);
2178 }
2179
2180 mp = log->l_mp;
2181 if (flags & XFS_BLI_INODE_BUF) {
2182 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2183 XFS_BUF_LOCK);
2184 } else {
2185 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2186 }
2187 if (XFS_BUF_ISERROR(bp)) {
2188 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2189 bp, blkno);
2190 error = XFS_BUF_GETERROR(bp);
2191 xfs_buf_relse(bp);
2192 return error;
2193 }
2194
2195 error = 0;
2196 if (flags & XFS_BLI_INODE_BUF) {
2197 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
c8ad20ff
NS
2198 } else if (flags &
2199 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1da177e4
LT
2200 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2201 } else {
053c59a0 2202 xlog_recover_do_reg_buffer(item, bp, buf_f);
1da177e4
LT
2203 }
2204 if (error)
2205 return XFS_ERROR(error);
2206
2207 /*
2208 * Perform delayed write on the buffer. Asynchronous writes will be
2209 * slower when taking into account all the buffers to be flushed.
2210 *
2211 * Also make sure that only inode buffers with good sizes stay in
2212 * the buffer cache. The kernel moves inodes in buffers of 1 block
2213 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2214 * buffers in the log can be a different size if the log was generated
2215 * by an older kernel using unclustered inode buffers or a newer kernel
2216 * running with a different inode cluster size. Regardless, if the
2217 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2218 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2219 * the buffer out of the buffer cache so that the buffer won't
2220 * overlap with future reads of those inodes.
2221 */
2222 if (XFS_DINODE_MAGIC ==
b53e675d 2223 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
1da177e4
LT
2224 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2225 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2226 XFS_BUF_STALE(bp);
2227 error = xfs_bwrite(mp, bp);
2228 } else {
2229 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2230 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2231 XFS_BUF_SET_FSPRIVATE(bp, mp);
2232 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2233 xfs_bdwrite(mp, bp);
2234 }
2235
2236 return (error);
2237}
2238
2239STATIC int
2240xlog_recover_do_inode_trans(
2241 xlog_t *log,
2242 xlog_recover_item_t *item,
2243 int pass)
2244{
2245 xfs_inode_log_format_t *in_f;
2246 xfs_mount_t *mp;
2247 xfs_buf_t *bp;
2248 xfs_imap_t imap;
2249 xfs_dinode_t *dip;
2250 xfs_ino_t ino;
2251 int len;
2252 xfs_caddr_t src;
2253 xfs_caddr_t dest;
2254 int error;
2255 int attr_index;
2256 uint fields;
347d1c01 2257 xfs_icdinode_t *dicp;
6d192a9b 2258 int need_free = 0;
1da177e4
LT
2259
2260 if (pass == XLOG_RECOVER_PASS1) {
2261 return 0;
2262 }
2263
6d192a9b
TS
2264 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2265 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2266 } else {
2267 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2268 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2269 need_free = 1;
2270 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2271 if (error)
2272 goto error;
2273 }
1da177e4
LT
2274 ino = in_f->ilf_ino;
2275 mp = log->l_mp;
2276 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2277 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2278 imap.im_len = in_f->ilf_len;
2279 imap.im_boffset = in_f->ilf_boffset;
2280 } else {
2281 /*
2282 * It's an old inode format record. We don't know where
2283 * its cluster is located on disk, and we can't allow
2284 * xfs_imap() to figure it out because the inode btrees
2285 * are not ready to be used. Therefore do not pass the
2286 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2287 * us only the single block in which the inode lives
2288 * rather than its cluster, so we must make sure to
2289 * invalidate the buffer when we write it out below.
2290 */
2291 imap.im_blkno = 0;
64bfe1bf
DC
2292 error = xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2293 if (error)
2294 goto error;
1da177e4
LT
2295 }
2296
2297 /*
2298 * Inode buffers can be freed, look out for it,
2299 * and do not replay the inode.
2300 */
6d192a9b
TS
2301 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2302 error = 0;
2303 goto error;
2304 }
1da177e4
LT
2305
2306 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2307 XFS_BUF_LOCK);
2308 if (XFS_BUF_ISERROR(bp)) {
2309 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2310 bp, imap.im_blkno);
2311 error = XFS_BUF_GETERROR(bp);
2312 xfs_buf_relse(bp);
6d192a9b 2313 goto error;
1da177e4
LT
2314 }
2315 error = 0;
2316 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2317 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2318
2319 /*
2320 * Make sure the place we're flushing out to really looks
2321 * like an inode!
2322 */
347d1c01 2323 if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
1da177e4
LT
2324 xfs_buf_relse(bp);
2325 xfs_fs_cmn_err(CE_ALERT, mp,
2326 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2327 dip, bp, ino);
2328 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2329 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2330 error = EFSCORRUPTED;
2331 goto error;
1da177e4 2332 }
347d1c01 2333 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
1da177e4
LT
2334 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2335 xfs_buf_relse(bp);
2336 xfs_fs_cmn_err(CE_ALERT, mp,
2337 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2338 item, ino);
2339 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2340 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2341 error = EFSCORRUPTED;
2342 goto error;
1da177e4
LT
2343 }
2344
2345 /* Skip replay when the on disk inode is newer than the log one */
347d1c01 2346 if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
1da177e4
LT
2347 /*
2348 * Deal with the wrap case, DI_MAX_FLUSH is less
2349 * than smaller numbers
2350 */
347d1c01
CH
2351 if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
2352 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2353 /* do nothing */
2354 } else {
2355 xfs_buf_relse(bp);
6d192a9b
TS
2356 error = 0;
2357 goto error;
1da177e4
LT
2358 }
2359 }
2360 /* Take the opportunity to reset the flush iteration count */
2361 dicp->di_flushiter = 0;
2362
2363 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2364 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2365 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2366 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2367 XFS_ERRLEVEL_LOW, mp, dicp);
2368 xfs_buf_relse(bp);
2369 xfs_fs_cmn_err(CE_ALERT, mp,
2370 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2371 item, dip, bp, ino);
6d192a9b
TS
2372 error = EFSCORRUPTED;
2373 goto error;
1da177e4
LT
2374 }
2375 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2376 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2377 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2378 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2379 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2380 XFS_ERRLEVEL_LOW, mp, dicp);
2381 xfs_buf_relse(bp);
2382 xfs_fs_cmn_err(CE_ALERT, mp,
2383 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2384 item, dip, bp, ino);
6d192a9b
TS
2385 error = EFSCORRUPTED;
2386 goto error;
1da177e4
LT
2387 }
2388 }
2389 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2390 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2391 XFS_ERRLEVEL_LOW, mp, dicp);
2392 xfs_buf_relse(bp);
2393 xfs_fs_cmn_err(CE_ALERT, mp,
2394 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2395 item, dip, bp, ino,
2396 dicp->di_nextents + dicp->di_anextents,
2397 dicp->di_nblocks);
6d192a9b
TS
2398 error = EFSCORRUPTED;
2399 goto error;
1da177e4
LT
2400 }
2401 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2402 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2403 XFS_ERRLEVEL_LOW, mp, dicp);
2404 xfs_buf_relse(bp);
2405 xfs_fs_cmn_err(CE_ALERT, mp,
2406 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2407 item, dip, bp, ino, dicp->di_forkoff);
6d192a9b
TS
2408 error = EFSCORRUPTED;
2409 goto error;
1da177e4
LT
2410 }
2411 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2412 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2413 XFS_ERRLEVEL_LOW, mp, dicp);
2414 xfs_buf_relse(bp);
2415 xfs_fs_cmn_err(CE_ALERT, mp,
2416 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2417 item->ri_buf[1].i_len, item);
6d192a9b
TS
2418 error = EFSCORRUPTED;
2419 goto error;
1da177e4
LT
2420 }
2421
2422 /* The core is in in-core format */
347d1c01
CH
2423 xfs_dinode_to_disk(&dip->di_core,
2424 (xfs_icdinode_t *)item->ri_buf[1].i_addr);
1da177e4
LT
2425
2426 /* the rest is in on-disk format */
2427 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2428 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2429 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2430 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
2431 }
2432
2433 fields = in_f->ilf_fields;
2434 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2435 case XFS_ILOG_DEV:
347d1c01 2436 dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2437 break;
2438 case XFS_ILOG_UUID:
2439 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2440 break;
2441 }
2442
2443 if (in_f->ilf_size == 2)
2444 goto write_inode_buffer;
2445 len = item->ri_buf[2].i_len;
2446 src = item->ri_buf[2].i_addr;
2447 ASSERT(in_f->ilf_size <= 4);
2448 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2449 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2450 (len == in_f->ilf_dsize));
2451
2452 switch (fields & XFS_ILOG_DFORK) {
2453 case XFS_ILOG_DDATA:
2454 case XFS_ILOG_DEXT:
2455 memcpy(&dip->di_u, src, len);
2456 break;
2457
2458 case XFS_ILOG_DBROOT:
7cc95a82
CH
2459 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2460 &dip->di_u.di_bmbt,
1da177e4
LT
2461 XFS_DFORK_DSIZE(dip, mp));
2462 break;
2463
2464 default:
2465 /*
2466 * There are no data fork flags set.
2467 */
2468 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2469 break;
2470 }
2471
2472 /*
2473 * If we logged any attribute data, recover it. There may or
2474 * may not have been any other non-core data logged in this
2475 * transaction.
2476 */
2477 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2478 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2479 attr_index = 3;
2480 } else {
2481 attr_index = 2;
2482 }
2483 len = item->ri_buf[attr_index].i_len;
2484 src = item->ri_buf[attr_index].i_addr;
2485 ASSERT(len == in_f->ilf_asize);
2486
2487 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2488 case XFS_ILOG_ADATA:
2489 case XFS_ILOG_AEXT:
2490 dest = XFS_DFORK_APTR(dip);
2491 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2492 memcpy(dest, src, len);
2493 break;
2494
2495 case XFS_ILOG_ABROOT:
2496 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2497 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2498 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2499 XFS_DFORK_ASIZE(dip, mp));
2500 break;
2501
2502 default:
2503 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2504 ASSERT(0);
2505 xfs_buf_relse(bp);
6d192a9b
TS
2506 error = EIO;
2507 goto error;
1da177e4
LT
2508 }
2509 }
2510
2511write_inode_buffer:
2512 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2513 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2514 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2515 XFS_BUF_SET_FSPRIVATE(bp, mp);
2516 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2517 xfs_bdwrite(mp, bp);
2518 } else {
2519 XFS_BUF_STALE(bp);
2520 error = xfs_bwrite(mp, bp);
2521 }
2522
6d192a9b
TS
2523error:
2524 if (need_free)
f0e2d93c 2525 kmem_free(in_f);
6d192a9b 2526 return XFS_ERROR(error);
1da177e4
LT
2527}
2528
2529/*
2530 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2531 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2532 * of that type.
2533 */
2534STATIC int
2535xlog_recover_do_quotaoff_trans(
2536 xlog_t *log,
2537 xlog_recover_item_t *item,
2538 int pass)
2539{
2540 xfs_qoff_logformat_t *qoff_f;
2541
2542 if (pass == XLOG_RECOVER_PASS2) {
2543 return (0);
2544 }
2545
2546 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2547 ASSERT(qoff_f);
2548
2549 /*
2550 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2551 * group/project quotaoff or both.
1da177e4
LT
2552 */
2553 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2554 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2555 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2556 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2557 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2558 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2559
2560 return (0);
2561}
2562
2563/*
2564 * Recover a dquot record
2565 */
2566STATIC int
2567xlog_recover_do_dquot_trans(
2568 xlog_t *log,
2569 xlog_recover_item_t *item,
2570 int pass)
2571{
2572 xfs_mount_t *mp;
2573 xfs_buf_t *bp;
2574 struct xfs_disk_dquot *ddq, *recddq;
2575 int error;
2576 xfs_dq_logformat_t *dq_f;
2577 uint type;
2578
2579 if (pass == XLOG_RECOVER_PASS1) {
2580 return 0;
2581 }
2582 mp = log->l_mp;
2583
2584 /*
2585 * Filesystems are required to send in quota flags at mount time.
2586 */
2587 if (mp->m_qflags == 0)
2588 return (0);
2589
2590 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2591 ASSERT(recddq);
2592 /*
2593 * This type of quotas was turned off, so ignore this record.
2594 */
b53e675d 2595 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2596 ASSERT(type);
2597 if (log->l_quotaoffs_flag & type)
2598 return (0);
2599
2600 /*
2601 * At this point we know that quota was _not_ turned off.
2602 * Since the mount flags are not indicating to us otherwise, this
2603 * must mean that quota is on, and the dquot needs to be replayed.
2604 * Remember that we may not have fully recovered the superblock yet,
2605 * so we can't do the usual trick of looking at the SB quota bits.
2606 *
2607 * The other possibility, of course, is that the quota subsystem was
2608 * removed since the last mount - ENOSYS.
2609 */
2610 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2611 ASSERT(dq_f);
2612 if ((error = xfs_qm_dqcheck(recddq,
2613 dq_f->qlf_id,
2614 0, XFS_QMOPT_DOWARN,
2615 "xlog_recover_do_dquot_trans (log copy)"))) {
2616 return XFS_ERROR(EIO);
2617 }
2618 ASSERT(dq_f->qlf_len == 1);
2619
2620 error = xfs_read_buf(mp, mp->m_ddev_targp,
2621 dq_f->qlf_blkno,
2622 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2623 0, &bp);
2624 if (error) {
2625 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2626 bp, dq_f->qlf_blkno);
2627 return error;
2628 }
2629 ASSERT(bp);
2630 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2631
2632 /*
2633 * At least the magic num portion should be on disk because this
2634 * was among a chunk of dquots created earlier, and we did some
2635 * minimal initialization then.
2636 */
2637 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2638 "xlog_recover_do_dquot_trans")) {
2639 xfs_buf_relse(bp);
2640 return XFS_ERROR(EIO);
2641 }
2642
2643 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2644
2645 ASSERT(dq_f->qlf_size == 2);
2646 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2647 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2648 XFS_BUF_SET_FSPRIVATE(bp, mp);
2649 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2650 xfs_bdwrite(mp, bp);
2651
2652 return (0);
2653}
2654
2655/*
2656 * This routine is called to create an in-core extent free intent
2657 * item from the efi format structure which was logged on disk.
2658 * It allocates an in-core efi, copies the extents from the format
2659 * structure into it, and adds the efi to the AIL with the given
2660 * LSN.
2661 */
6d192a9b 2662STATIC int
1da177e4
LT
2663xlog_recover_do_efi_trans(
2664 xlog_t *log,
2665 xlog_recover_item_t *item,
2666 xfs_lsn_t lsn,
2667 int pass)
2668{
6d192a9b 2669 int error;
1da177e4
LT
2670 xfs_mount_t *mp;
2671 xfs_efi_log_item_t *efip;
2672 xfs_efi_log_format_t *efi_formatp;
1da177e4
LT
2673
2674 if (pass == XLOG_RECOVER_PASS1) {
6d192a9b 2675 return 0;
1da177e4
LT
2676 }
2677
2678 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
1da177e4
LT
2679
2680 mp = log->l_mp;
2681 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2682 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2683 &(efip->efi_format)))) {
2684 xfs_efi_item_free(efip);
2685 return error;
2686 }
1da177e4
LT
2687 efip->efi_next_extent = efi_formatp->efi_nextents;
2688 efip->efi_flags |= XFS_EFI_COMMITTED;
2689
a9c21c1b 2690 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2691 /*
783a2f65 2692 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2693 */
783a2f65 2694 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
6d192a9b 2695 return 0;
1da177e4
LT
2696}
2697
2698
2699/*
2700 * This routine is called when an efd format structure is found in
2701 * a committed transaction in the log. It's purpose is to cancel
2702 * the corresponding efi if it was still in the log. To do this
2703 * it searches the AIL for the efi with an id equal to that in the
2704 * efd format structure. If we find it, we remove the efi from the
2705 * AIL and free it.
2706 */
2707STATIC void
2708xlog_recover_do_efd_trans(
2709 xlog_t *log,
2710 xlog_recover_item_t *item,
2711 int pass)
2712{
1da177e4
LT
2713 xfs_efd_log_format_t *efd_formatp;
2714 xfs_efi_log_item_t *efip = NULL;
2715 xfs_log_item_t *lip;
1da177e4 2716 __uint64_t efi_id;
27d8d5fe 2717 struct xfs_ail_cursor cur;
783a2f65 2718 struct xfs_ail *ailp = log->l_ailp;
1da177e4
LT
2719
2720 if (pass == XLOG_RECOVER_PASS1) {
2721 return;
2722 }
2723
2724 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
6d192a9b
TS
2725 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2726 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2727 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2728 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2729 efi_id = efd_formatp->efd_efi_id;
2730
2731 /*
2732 * Search for the efi with the id in the efd format structure
2733 * in the AIL.
2734 */
a9c21c1b
DC
2735 spin_lock(&ailp->xa_lock);
2736 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2737 while (lip != NULL) {
2738 if (lip->li_type == XFS_LI_EFI) {
2739 efip = (xfs_efi_log_item_t *)lip;
2740 if (efip->efi_format.efi_id == efi_id) {
2741 /*
783a2f65 2742 * xfs_trans_ail_delete() drops the
1da177e4
LT
2743 * AIL lock.
2744 */
783a2f65 2745 xfs_trans_ail_delete(ailp, lip);
8ae2c0f6 2746 xfs_efi_item_free(efip);
a9c21c1b 2747 spin_lock(&ailp->xa_lock);
27d8d5fe 2748 break;
1da177e4
LT
2749 }
2750 }
a9c21c1b 2751 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 2752 }
a9c21c1b
DC
2753 xfs_trans_ail_cursor_done(ailp, &cur);
2754 spin_unlock(&ailp->xa_lock);
1da177e4
LT
2755}
2756
2757/*
2758 * Perform the transaction
2759 *
2760 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2761 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2762 */
2763STATIC int
2764xlog_recover_do_trans(
2765 xlog_t *log,
2766 xlog_recover_t *trans,
2767 int pass)
2768{
2769 int error = 0;
2770 xlog_recover_item_t *item, *first_item;
2771
e9ed9d22 2772 if ((error = xlog_recover_reorder_trans(trans)))
1da177e4
LT
2773 return error;
2774 first_item = item = trans->r_itemq;
2775 do {
2776 /*
2777 * we don't need to worry about the block number being
2778 * truncated in > 1 TB buffers because in user-land,
2779 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
c41564b5 2780 * the blknos will get through the user-mode buffer
1da177e4
LT
2781 * cache properly. The only bad case is o32 kernels
2782 * where xfs_daddr_t is 32-bits but mount will warn us
2783 * off a > 1 TB filesystem before we get here.
2784 */
804195b6 2785 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
1da177e4
LT
2786 if ((error = xlog_recover_do_buffer_trans(log, item,
2787 pass)))
2788 break;
6d192a9b 2789 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
1da177e4
LT
2790 if ((error = xlog_recover_do_inode_trans(log, item,
2791 pass)))
2792 break;
2793 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
6d192a9b
TS
2794 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2795 pass)))
2796 break;
1da177e4
LT
2797 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2798 xlog_recover_do_efd_trans(log, item, pass);
2799 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2800 if ((error = xlog_recover_do_dquot_trans(log, item,
2801 pass)))
2802 break;
2803 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2804 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2805 pass)))
2806 break;
2807 } else {
2808 xlog_warn("XFS: xlog_recover_do_trans");
2809 ASSERT(0);
2810 error = XFS_ERROR(EIO);
2811 break;
2812 }
2813 item = item->ri_next;
2814 } while (first_item != item);
2815
2816 return error;
2817}
2818
2819/*
2820 * Free up any resources allocated by the transaction
2821 *
2822 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2823 */
2824STATIC void
2825xlog_recover_free_trans(
2826 xlog_recover_t *trans)
2827{
2828 xlog_recover_item_t *first_item, *item, *free_item;
2829 int i;
2830
2831 item = first_item = trans->r_itemq;
2832 do {
2833 free_item = item;
2834 item = item->ri_next;
2835 /* Free the regions in the item. */
2836 for (i = 0; i < free_item->ri_cnt; i++) {
f0e2d93c 2837 kmem_free(free_item->ri_buf[i].i_addr);
1da177e4
LT
2838 }
2839 /* Free the item itself */
f0e2d93c
DV
2840 kmem_free(free_item->ri_buf);
2841 kmem_free(free_item);
1da177e4
LT
2842 } while (first_item != item);
2843 /* Free the transaction recover structure */
f0e2d93c 2844 kmem_free(trans);
1da177e4
LT
2845}
2846
2847STATIC int
2848xlog_recover_commit_trans(
2849 xlog_t *log,
2850 xlog_recover_t **q,
2851 xlog_recover_t *trans,
2852 int pass)
2853{
2854 int error;
2855
2856 if ((error = xlog_recover_unlink_tid(q, trans)))
2857 return error;
2858 if ((error = xlog_recover_do_trans(log, trans, pass)))
2859 return error;
2860 xlog_recover_free_trans(trans); /* no error */
2861 return 0;
2862}
2863
2864STATIC int
2865xlog_recover_unmount_trans(
2866 xlog_recover_t *trans)
2867{
2868 /* Do nothing now */
2869 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2870 return 0;
2871}
2872
2873/*
2874 * There are two valid states of the r_state field. 0 indicates that the
2875 * transaction structure is in a normal state. We have either seen the
2876 * start of the transaction or the last operation we added was not a partial
2877 * operation. If the last operation we added to the transaction was a
2878 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2879 *
2880 * NOTE: skip LRs with 0 data length.
2881 */
2882STATIC int
2883xlog_recover_process_data(
2884 xlog_t *log,
2885 xlog_recover_t *rhash[],
2886 xlog_rec_header_t *rhead,
2887 xfs_caddr_t dp,
2888 int pass)
2889{
2890 xfs_caddr_t lp;
2891 int num_logops;
2892 xlog_op_header_t *ohead;
2893 xlog_recover_t *trans;
2894 xlog_tid_t tid;
2895 int error;
2896 unsigned long hash;
2897 uint flags;
2898
b53e675d
CH
2899 lp = dp + be32_to_cpu(rhead->h_len);
2900 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
2901
2902 /* check the log format matches our own - else we can't recover */
2903 if (xlog_header_check_recover(log->l_mp, rhead))
2904 return (XFS_ERROR(EIO));
2905
2906 while ((dp < lp) && num_logops) {
2907 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2908 ohead = (xlog_op_header_t *)dp;
2909 dp += sizeof(xlog_op_header_t);
2910 if (ohead->oh_clientid != XFS_TRANSACTION &&
2911 ohead->oh_clientid != XFS_LOG) {
2912 xlog_warn(
2913 "XFS: xlog_recover_process_data: bad clientid");
2914 ASSERT(0);
2915 return (XFS_ERROR(EIO));
2916 }
67fcb7bf 2917 tid = be32_to_cpu(ohead->oh_tid);
1da177e4
LT
2918 hash = XLOG_RHASH(tid);
2919 trans = xlog_recover_find_tid(rhash[hash], tid);
2920 if (trans == NULL) { /* not found; add new tid */
2921 if (ohead->oh_flags & XLOG_START_TRANS)
2922 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 2923 be64_to_cpu(rhead->h_lsn));
1da177e4 2924 } else {
9742bb93
LM
2925 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2926 xlog_warn(
2927 "XFS: xlog_recover_process_data: bad length");
2928 WARN_ON(1);
2929 return (XFS_ERROR(EIO));
2930 }
1da177e4
LT
2931 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2932 if (flags & XLOG_WAS_CONT_TRANS)
2933 flags &= ~XLOG_CONTINUE_TRANS;
2934 switch (flags) {
2935 case XLOG_COMMIT_TRANS:
2936 error = xlog_recover_commit_trans(log,
2937 &rhash[hash], trans, pass);
2938 break;
2939 case XLOG_UNMOUNT_TRANS:
2940 error = xlog_recover_unmount_trans(trans);
2941 break;
2942 case XLOG_WAS_CONT_TRANS:
2943 error = xlog_recover_add_to_cont_trans(trans,
67fcb7bf 2944 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2945 break;
2946 case XLOG_START_TRANS:
2947 xlog_warn(
2948 "XFS: xlog_recover_process_data: bad transaction");
2949 ASSERT(0);
2950 error = XFS_ERROR(EIO);
2951 break;
2952 case 0:
2953 case XLOG_CONTINUE_TRANS:
2954 error = xlog_recover_add_to_trans(trans,
67fcb7bf 2955 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2956 break;
2957 default:
2958 xlog_warn(
2959 "XFS: xlog_recover_process_data: bad flag");
2960 ASSERT(0);
2961 error = XFS_ERROR(EIO);
2962 break;
2963 }
2964 if (error)
2965 return error;
2966 }
67fcb7bf 2967 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
2968 num_logops--;
2969 }
2970 return 0;
2971}
2972
2973/*
2974 * Process an extent free intent item that was recovered from
2975 * the log. We need to free the extents that it describes.
2976 */
3c1e2bbe 2977STATIC int
1da177e4
LT
2978xlog_recover_process_efi(
2979 xfs_mount_t *mp,
2980 xfs_efi_log_item_t *efip)
2981{
2982 xfs_efd_log_item_t *efdp;
2983 xfs_trans_t *tp;
2984 int i;
3c1e2bbe 2985 int error = 0;
1da177e4
LT
2986 xfs_extent_t *extp;
2987 xfs_fsblock_t startblock_fsb;
2988
2989 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2990
2991 /*
2992 * First check the validity of the extents described by the
2993 * EFI. If any are bad, then assume that all are bad and
2994 * just toss the EFI.
2995 */
2996 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2997 extp = &(efip->efi_format.efi_extents[i]);
2998 startblock_fsb = XFS_BB_TO_FSB(mp,
2999 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3000 if ((startblock_fsb == 0) ||
3001 (extp->ext_len == 0) ||
3002 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3003 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3004 /*
3005 * This will pull the EFI from the AIL and
3006 * free the memory associated with it.
3007 */
3008 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 3009 return XFS_ERROR(EIO);
1da177e4
LT
3010 }
3011 }
3012
3013 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 3014 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
3015 if (error)
3016 goto abort_error;
1da177e4
LT
3017 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3018
3019 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3020 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3021 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3022 if (error)
3023 goto abort_error;
1da177e4
LT
3024 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3025 extp->ext_len);
3026 }
3027
3028 efip->efi_flags |= XFS_EFI_RECOVERED;
e5720eec 3029 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3030 return error;
fc6149d8
DC
3031
3032abort_error:
3033 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3034 return error;
1da177e4
LT
3035}
3036
1da177e4
LT
3037/*
3038 * When this is called, all of the EFIs which did not have
3039 * corresponding EFDs should be in the AIL. What we do now
3040 * is free the extents associated with each one.
3041 *
3042 * Since we process the EFIs in normal transactions, they
3043 * will be removed at some point after the commit. This prevents
3044 * us from just walking down the list processing each one.
3045 * We'll use a flag in the EFI to skip those that we've already
3046 * processed and use the AIL iteration mechanism's generation
3047 * count to try to speed this up at least a bit.
3048 *
3049 * When we start, we know that the EFIs are the only things in
3050 * the AIL. As we process them, however, other items are added
3051 * to the AIL. Since everything added to the AIL must come after
3052 * everything already in the AIL, we stop processing as soon as
3053 * we see something other than an EFI in the AIL.
3054 */
3c1e2bbe 3055STATIC int
1da177e4
LT
3056xlog_recover_process_efis(
3057 xlog_t *log)
3058{
3059 xfs_log_item_t *lip;
3060 xfs_efi_log_item_t *efip;
3c1e2bbe 3061 int error = 0;
27d8d5fe 3062 struct xfs_ail_cursor cur;
a9c21c1b 3063 struct xfs_ail *ailp;
1da177e4 3064
a9c21c1b
DC
3065 ailp = log->l_ailp;
3066 spin_lock(&ailp->xa_lock);
3067 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3068 while (lip != NULL) {
3069 /*
3070 * We're done when we see something other than an EFI.
27d8d5fe 3071 * There should be no EFIs left in the AIL now.
1da177e4
LT
3072 */
3073 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3074#ifdef DEBUG
a9c21c1b 3075 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3076 ASSERT(lip->li_type != XFS_LI_EFI);
3077#endif
1da177e4
LT
3078 break;
3079 }
3080
3081 /*
3082 * Skip EFIs that we've already processed.
3083 */
3084 efip = (xfs_efi_log_item_t *)lip;
3085 if (efip->efi_flags & XFS_EFI_RECOVERED) {
a9c21c1b 3086 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3087 continue;
3088 }
3089
a9c21c1b
DC
3090 spin_unlock(&ailp->xa_lock);
3091 error = xlog_recover_process_efi(log->l_mp, efip);
3092 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3093 if (error)
3094 goto out;
a9c21c1b 3095 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3096 }
27d8d5fe 3097out:
a9c21c1b
DC
3098 xfs_trans_ail_cursor_done(ailp, &cur);
3099 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3100 return error;
1da177e4
LT
3101}
3102
3103/*
3104 * This routine performs a transaction to null out a bad inode pointer
3105 * in an agi unlinked inode hash bucket.
3106 */
3107STATIC void
3108xlog_recover_clear_agi_bucket(
3109 xfs_mount_t *mp,
3110 xfs_agnumber_t agno,
3111 int bucket)
3112{
3113 xfs_trans_t *tp;
3114 xfs_agi_t *agi;
3115 xfs_buf_t *agibp;
3116 int offset;
3117 int error;
3118
3119 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
5e1be0fb
CH
3120 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3121 0, 0, 0);
e5720eec
DC
3122 if (error)
3123 goto out_abort;
1da177e4 3124
5e1be0fb
CH
3125 error = xfs_read_agi(mp, tp, agno, &agibp);
3126 if (error)
e5720eec 3127 goto out_abort;
1da177e4 3128
5e1be0fb 3129 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3130 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3131 offset = offsetof(xfs_agi_t, agi_unlinked) +
3132 (sizeof(xfs_agino_t) * bucket);
3133 xfs_trans_log_buf(tp, agibp, offset,
3134 (offset + sizeof(xfs_agino_t) - 1));
3135
e5720eec
DC
3136 error = xfs_trans_commit(tp, 0);
3137 if (error)
3138 goto out_error;
3139 return;
3140
3141out_abort:
3142 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3143out_error:
3144 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3145 "failed to clear agi %d. Continuing.", agno);
3146 return;
1da177e4
LT
3147}
3148
3149/*
3150 * xlog_iunlink_recover
3151 *
3152 * This is called during recovery to process any inodes which
3153 * we unlinked but not freed when the system crashed. These
3154 * inodes will be on the lists in the AGI blocks. What we do
3155 * here is scan all the AGIs and fully truncate and free any
3156 * inodes found on the lists. Each inode is removed from the
3157 * lists when it has been fully truncated and is freed. The
3158 * freeing of the inode and its removal from the list must be
3159 * atomic.
3160 */
3161void
3162xlog_recover_process_iunlinks(
3163 xlog_t *log)
3164{
3165 xfs_mount_t *mp;
3166 xfs_agnumber_t agno;
3167 xfs_agi_t *agi;
3168 xfs_buf_t *agibp;
3169 xfs_buf_t *ibp;
3170 xfs_dinode_t *dip;
3171 xfs_inode_t *ip;
3172 xfs_agino_t agino;
3173 xfs_ino_t ino;
3174 int bucket;
3175 int error;
3176 uint mp_dmevmask;
3177
3178 mp = log->l_mp;
3179
3180 /*
3181 * Prevent any DMAPI event from being sent while in this function.
3182 */
3183 mp_dmevmask = mp->m_dmevmask;
3184 mp->m_dmevmask = 0;
3185
3186 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3187 /*
3188 * Find the agi for this ag.
3189 */
5e1be0fb
CH
3190 error = xfs_read_agi(mp, NULL, agno, &agibp);
3191 if (error) {
3192 /*
3193 * AGI is b0rked. Don't process it.
3194 *
3195 * We should probably mark the filesystem as corrupt
3196 * after we've recovered all the ag's we can....
3197 */
3198 continue;
1da177e4
LT
3199 }
3200 agi = XFS_BUF_TO_AGI(agibp);
1da177e4
LT
3201
3202 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3203
16259e7d 3204 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4
LT
3205 while (agino != NULLAGINO) {
3206
3207 /*
3208 * Release the agi buffer so that it can
3209 * be acquired in the normal course of the
3210 * transaction to truncate and free the inode.
3211 */
3212 xfs_buf_relse(agibp);
3213
3214 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3215 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3216 ASSERT(error || (ip != NULL));
3217
3218 if (!error) {
3219 /*
3220 * Get the on disk inode to find the
3221 * next inode in the bucket.
3222 */
3223 error = xfs_itobp(mp, NULL, ip, &dip,
a3f74ffb
DC
3224 &ibp, 0, 0,
3225 XFS_BUF_LOCK);
1da177e4
LT
3226 ASSERT(error || (dip != NULL));
3227 }
3228
3229 if (!error) {
3230 ASSERT(ip->i_d.di_nlink == 0);
3231
3232 /* setup for the next pass */
347d1c01
CH
3233 agino = be32_to_cpu(
3234 dip->di_next_unlinked);
1da177e4
LT
3235 xfs_buf_relse(ibp);
3236 /*
3237 * Prevent any DMAPI event from
3238 * being sent when the
3239 * reference on the inode is
3240 * dropped.
3241 */
3242 ip->i_d.di_dmevmask = 0;
3243
3244 /*
3245 * If this is a new inode, handle
3246 * it specially. Otherwise,
3247 * just drop our reference to the
3248 * inode. If there are no
3249 * other references, this will
3250 * send the inode to
3251 * xfs_inactive() which will
3252 * truncate the file and free
3253 * the inode.
3254 */
3255 if (ip->i_d.di_mode == 0)
3256 xfs_iput_new(ip, 0);
3257 else
43355099 3258 IRELE(ip);
1da177e4
LT
3259 } else {
3260 /*
3261 * We can't read in the inode
3262 * this bucket points to, or
3263 * this inode is messed up. Just
3264 * ditch this bucket of inodes. We
3265 * will lose some inodes and space,
3266 * but at least we won't hang. Call
3267 * xlog_recover_clear_agi_bucket()
3268 * to perform a transaction to clear
3269 * the inode pointer in the bucket.
3270 */
3271 xlog_recover_clear_agi_bucket(mp, agno,
3272 bucket);
3273
3274 agino = NULLAGINO;
3275 }
3276
3277 /*
3278 * Reacquire the agibuffer and continue around
5e1be0fb
CH
3279 * the loop. This should never fail as we know
3280 * the buffer was good earlier on.
1da177e4 3281 */
5e1be0fb
CH
3282 error = xfs_read_agi(mp, NULL, agno, &agibp);
3283 ASSERT(error == 0);
1da177e4 3284 agi = XFS_BUF_TO_AGI(agibp);
1da177e4
LT
3285 }
3286 }
3287
3288 /*
3289 * Release the buffer for the current agi so we can
3290 * go on to the next one.
3291 */
3292 xfs_buf_relse(agibp);
3293 }
3294
3295 mp->m_dmevmask = mp_dmevmask;
3296}
3297
3298
3299#ifdef DEBUG
3300STATIC void
3301xlog_pack_data_checksum(
3302 xlog_t *log,
3303 xlog_in_core_t *iclog,
3304 int size)
3305{
3306 int i;
b53e675d 3307 __be32 *up;
1da177e4
LT
3308 uint chksum = 0;
3309
b53e675d 3310 up = (__be32 *)iclog->ic_datap;
1da177e4
LT
3311 /* divide length by 4 to get # words */
3312 for (i = 0; i < (size >> 2); i++) {
b53e675d 3313 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3314 up++;
3315 }
b53e675d 3316 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
1da177e4
LT
3317}
3318#else
3319#define xlog_pack_data_checksum(log, iclog, size)
3320#endif
3321
3322/*
3323 * Stamp cycle number in every block
3324 */
3325void
3326xlog_pack_data(
3327 xlog_t *log,
3328 xlog_in_core_t *iclog,
3329 int roundoff)
3330{
3331 int i, j, k;
3332 int size = iclog->ic_offset + roundoff;
b53e675d 3333 __be32 cycle_lsn;
1da177e4
LT
3334 xfs_caddr_t dp;
3335 xlog_in_core_2_t *xhdr;
3336
3337 xlog_pack_data_checksum(log, iclog, size);
3338
3339 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3340
3341 dp = iclog->ic_datap;
3342 for (i = 0; i < BTOBB(size) &&
3343 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d
CH
3344 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3345 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3346 dp += BBSIZE;
3347 }
3348
62118709 3349 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3350 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3351 for ( ; i < BTOBB(size); i++) {
3352 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3353 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d
CH
3354 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3355 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3356 dp += BBSIZE;
3357 }
3358
3359 for (i = 1; i < log->l_iclog_heads; i++) {
3360 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3361 }
3362 }
3363}
3364
3365#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3366STATIC void
3367xlog_unpack_data_checksum(
3368 xlog_rec_header_t *rhead,
3369 xfs_caddr_t dp,
3370 xlog_t *log)
3371{
b53e675d 3372 __be32 *up = (__be32 *)dp;
1da177e4
LT
3373 uint chksum = 0;
3374 int i;
3375
3376 /* divide length by 4 to get # words */
b53e675d
CH
3377 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3378 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3379 up++;
3380 }
b53e675d 3381 if (chksum != be32_to_cpu(rhead->h_chksum)) {
1da177e4
LT
3382 if (rhead->h_chksum ||
3383 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3384 cmn_err(CE_DEBUG,
b6574520 3385 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
b53e675d 3386 be32_to_cpu(rhead->h_chksum), chksum);
1da177e4
LT
3387 cmn_err(CE_DEBUG,
3388"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
62118709 3389 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4 3390 cmn_err(CE_DEBUG,
b6574520 3391 "XFS: LogR this is a LogV2 filesystem\n");
1da177e4
LT
3392 }
3393 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3394 }
3395 }
3396}
3397#else
3398#define xlog_unpack_data_checksum(rhead, dp, log)
3399#endif
3400
3401STATIC void
3402xlog_unpack_data(
3403 xlog_rec_header_t *rhead,
3404 xfs_caddr_t dp,
3405 xlog_t *log)
3406{
3407 int i, j, k;
3408 xlog_in_core_2_t *xhdr;
3409
b53e675d 3410 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3411 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3412 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3413 dp += BBSIZE;
3414 }
3415
62118709 3416 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4 3417 xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3418 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3419 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3420 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3421 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3422 dp += BBSIZE;
3423 }
3424 }
3425
3426 xlog_unpack_data_checksum(rhead, dp, log);
3427}
3428
3429STATIC int
3430xlog_valid_rec_header(
3431 xlog_t *log,
3432 xlog_rec_header_t *rhead,
3433 xfs_daddr_t blkno)
3434{
3435 int hlen;
3436
b53e675d 3437 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
3438 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3439 XFS_ERRLEVEL_LOW, log->l_mp);
3440 return XFS_ERROR(EFSCORRUPTED);
3441 }
3442 if (unlikely(
3443 (!rhead->h_version ||
b53e675d 3444 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
1da177e4 3445 xlog_warn("XFS: %s: unrecognised log version (%d).",
34a622b2 3446 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3447 return XFS_ERROR(EIO);
3448 }
3449
3450 /* LR body must have data or it wouldn't have been written */
b53e675d 3451 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3452 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3453 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3454 XFS_ERRLEVEL_LOW, log->l_mp);
3455 return XFS_ERROR(EFSCORRUPTED);
3456 }
3457 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3458 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3459 XFS_ERRLEVEL_LOW, log->l_mp);
3460 return XFS_ERROR(EFSCORRUPTED);
3461 }
3462 return 0;
3463}
3464
3465/*
3466 * Read the log from tail to head and process the log records found.
3467 * Handle the two cases where the tail and head are in the same cycle
3468 * and where the active portion of the log wraps around the end of
3469 * the physical log separately. The pass parameter is passed through
3470 * to the routines called to process the data and is not looked at
3471 * here.
3472 */
3473STATIC int
3474xlog_do_recovery_pass(
3475 xlog_t *log,
3476 xfs_daddr_t head_blk,
3477 xfs_daddr_t tail_blk,
3478 int pass)
3479{
3480 xlog_rec_header_t *rhead;
3481 xfs_daddr_t blk_no;
3482 xfs_caddr_t bufaddr, offset;
3483 xfs_buf_t *hbp, *dbp;
3484 int error = 0, h_size;
3485 int bblks, split_bblks;
3486 int hblks, split_hblks, wrapped_hblks;
3487 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3488
3489 ASSERT(head_blk != tail_blk);
3490
3491 /*
3492 * Read the header of the tail block and get the iclog buffer size from
3493 * h_size. Use this to tell how many sectors make up the log header.
3494 */
62118709 3495 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3496 /*
3497 * When using variable length iclogs, read first sector of
3498 * iclog header and extract the header size from it. Get a
3499 * new hbp that is the correct size.
3500 */
3501 hbp = xlog_get_bp(log, 1);
3502 if (!hbp)
3503 return ENOMEM;
3504 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3505 goto bread_err1;
3506 offset = xlog_align(log, tail_blk, 1, hbp);
3507 rhead = (xlog_rec_header_t *)offset;
3508 error = xlog_valid_rec_header(log, rhead, tail_blk);
3509 if (error)
3510 goto bread_err1;
b53e675d
CH
3511 h_size = be32_to_cpu(rhead->h_size);
3512 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3513 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3514 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3515 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3516 hblks++;
3517 xlog_put_bp(hbp);
3518 hbp = xlog_get_bp(log, hblks);
3519 } else {
3520 hblks = 1;
3521 }
3522 } else {
3523 ASSERT(log->l_sectbb_log == 0);
3524 hblks = 1;
3525 hbp = xlog_get_bp(log, 1);
3526 h_size = XLOG_BIG_RECORD_BSIZE;
3527 }
3528
3529 if (!hbp)
3530 return ENOMEM;
3531 dbp = xlog_get_bp(log, BTOBB(h_size));
3532 if (!dbp) {
3533 xlog_put_bp(hbp);
3534 return ENOMEM;
3535 }
3536
3537 memset(rhash, 0, sizeof(rhash));
3538 if (tail_blk <= head_blk) {
3539 for (blk_no = tail_blk; blk_no < head_blk; ) {
3540 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3541 goto bread_err2;
3542 offset = xlog_align(log, blk_no, hblks, hbp);
3543 rhead = (xlog_rec_header_t *)offset;
3544 error = xlog_valid_rec_header(log, rhead, blk_no);
3545 if (error)
3546 goto bread_err2;
3547
3548 /* blocks in data section */
b53e675d 3549 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3550 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3551 if (error)
3552 goto bread_err2;
3553 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3554 xlog_unpack_data(rhead, offset, log);
3555 if ((error = xlog_recover_process_data(log,
3556 rhash, rhead, offset, pass)))
3557 goto bread_err2;
3558 blk_no += bblks + hblks;
3559 }
3560 } else {
3561 /*
3562 * Perform recovery around the end of the physical log.
3563 * When the head is not on the same cycle number as the tail,
3564 * we can't do a sequential recovery as above.
3565 */
3566 blk_no = tail_blk;
3567 while (blk_no < log->l_logBBsize) {
3568 /*
3569 * Check for header wrapping around physical end-of-log
3570 */
3571 offset = NULL;
3572 split_hblks = 0;
3573 wrapped_hblks = 0;
3574 if (blk_no + hblks <= log->l_logBBsize) {
3575 /* Read header in one read */
3576 error = xlog_bread(log, blk_no, hblks, hbp);
3577 if (error)
3578 goto bread_err2;
3579 offset = xlog_align(log, blk_no, hblks, hbp);
3580 } else {
3581 /* This LR is split across physical log end */
3582 if (blk_no != log->l_logBBsize) {
3583 /* some data before physical log end */
3584 ASSERT(blk_no <= INT_MAX);
3585 split_hblks = log->l_logBBsize - (int)blk_no;
3586 ASSERT(split_hblks > 0);
3587 if ((error = xlog_bread(log, blk_no,
3588 split_hblks, hbp)))
3589 goto bread_err2;
3590 offset = xlog_align(log, blk_no,
3591 split_hblks, hbp);
3592 }
3593 /*
3594 * Note: this black magic still works with
3595 * large sector sizes (non-512) only because:
3596 * - we increased the buffer size originally
3597 * by 1 sector giving us enough extra space
3598 * for the second read;
3599 * - the log start is guaranteed to be sector
3600 * aligned;
3601 * - we read the log end (LR header start)
3602 * _first_, then the log start (LR header end)
3603 * - order is important.
3604 */
234f56ac 3605 wrapped_hblks = hblks - split_hblks;
1da177e4 3606 bufaddr = XFS_BUF_PTR(hbp);
234f56ac 3607 error = XFS_BUF_SET_PTR(hbp,
1da177e4
LT
3608 bufaddr + BBTOB(split_hblks),
3609 BBTOB(hblks - split_hblks));
234f56ac
DC
3610 if (!error)
3611 error = xlog_bread(log, 0,
3612 wrapped_hblks, hbp);
3613 if (!error)
3614 error = XFS_BUF_SET_PTR(hbp, bufaddr,
3615 BBTOB(hblks));
1da177e4
LT
3616 if (error)
3617 goto bread_err2;
1da177e4
LT
3618 if (!offset)
3619 offset = xlog_align(log, 0,
3620 wrapped_hblks, hbp);
3621 }
3622 rhead = (xlog_rec_header_t *)offset;
3623 error = xlog_valid_rec_header(log, rhead,
3624 split_hblks ? blk_no : 0);
3625 if (error)
3626 goto bread_err2;
3627
b53e675d 3628 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3629 blk_no += hblks;
3630
3631 /* Read in data for log record */
3632 if (blk_no + bblks <= log->l_logBBsize) {
3633 error = xlog_bread(log, blk_no, bblks, dbp);
3634 if (error)
3635 goto bread_err2;
3636 offset = xlog_align(log, blk_no, bblks, dbp);
3637 } else {
3638 /* This log record is split across the
3639 * physical end of log */
3640 offset = NULL;
3641 split_bblks = 0;
3642 if (blk_no != log->l_logBBsize) {
3643 /* some data is before the physical
3644 * end of log */
3645 ASSERT(!wrapped_hblks);
3646 ASSERT(blk_no <= INT_MAX);
3647 split_bblks =
3648 log->l_logBBsize - (int)blk_no;
3649 ASSERT(split_bblks > 0);
3650 if ((error = xlog_bread(log, blk_no,
3651 split_bblks, dbp)))
3652 goto bread_err2;
3653 offset = xlog_align(log, blk_no,
3654 split_bblks, dbp);
3655 }
3656 /*
3657 * Note: this black magic still works with
3658 * large sector sizes (non-512) only because:
3659 * - we increased the buffer size originally
3660 * by 1 sector giving us enough extra space
3661 * for the second read;
3662 * - the log start is guaranteed to be sector
3663 * aligned;
3664 * - we read the log end (LR header start)
3665 * _first_, then the log start (LR header end)
3666 * - order is important.
3667 */
3668 bufaddr = XFS_BUF_PTR(dbp);
234f56ac 3669 error = XFS_BUF_SET_PTR(dbp,
1da177e4
LT
3670 bufaddr + BBTOB(split_bblks),
3671 BBTOB(bblks - split_bblks));
234f56ac
DC
3672 if (!error)
3673 error = xlog_bread(log, wrapped_hblks,
3674 bblks - split_bblks,
3675 dbp);
3676 if (!error)
3677 error = XFS_BUF_SET_PTR(dbp, bufaddr,
3678 h_size);
3679 if (error)
1da177e4 3680 goto bread_err2;
1da177e4
LT
3681 if (!offset)
3682 offset = xlog_align(log, wrapped_hblks,
3683 bblks - split_bblks, dbp);
3684 }
3685 xlog_unpack_data(rhead, offset, log);
3686 if ((error = xlog_recover_process_data(log, rhash,
3687 rhead, offset, pass)))
3688 goto bread_err2;
3689 blk_no += bblks;
3690 }
3691
3692 ASSERT(blk_no >= log->l_logBBsize);
3693 blk_no -= log->l_logBBsize;
3694
3695 /* read first part of physical log */
3696 while (blk_no < head_blk) {
3697 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3698 goto bread_err2;
3699 offset = xlog_align(log, blk_no, hblks, hbp);
3700 rhead = (xlog_rec_header_t *)offset;
3701 error = xlog_valid_rec_header(log, rhead, blk_no);
3702 if (error)
3703 goto bread_err2;
b53e675d 3704 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3705 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3706 goto bread_err2;
3707 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3708 xlog_unpack_data(rhead, offset, log);
3709 if ((error = xlog_recover_process_data(log, rhash,
3710 rhead, offset, pass)))
3711 goto bread_err2;
3712 blk_no += bblks + hblks;
3713 }
3714 }
3715
3716 bread_err2:
3717 xlog_put_bp(dbp);
3718 bread_err1:
3719 xlog_put_bp(hbp);
3720 return error;
3721}
3722
3723/*
3724 * Do the recovery of the log. We actually do this in two phases.
3725 * The two passes are necessary in order to implement the function
3726 * of cancelling a record written into the log. The first pass
3727 * determines those things which have been cancelled, and the
3728 * second pass replays log items normally except for those which
3729 * have been cancelled. The handling of the replay and cancellations
3730 * takes place in the log item type specific routines.
3731 *
3732 * The table of items which have cancel records in the log is allocated
3733 * and freed at this level, since only here do we know when all of
3734 * the log recovery has been completed.
3735 */
3736STATIC int
3737xlog_do_log_recovery(
3738 xlog_t *log,
3739 xfs_daddr_t head_blk,
3740 xfs_daddr_t tail_blk)
3741{
3742 int error;
3743
3744 ASSERT(head_blk != tail_blk);
3745
3746 /*
3747 * First do a pass to find all of the cancelled buf log items.
3748 * Store them in the buf_cancel_table for use in the second pass.
3749 */
3750 log->l_buf_cancel_table =
3751 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3752 sizeof(xfs_buf_cancel_t*),
3753 KM_SLEEP);
3754 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3755 XLOG_RECOVER_PASS1);
3756 if (error != 0) {
f0e2d93c 3757 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3758 log->l_buf_cancel_table = NULL;
3759 return error;
3760 }
3761 /*
3762 * Then do a second pass to actually recover the items in the log.
3763 * When it is complete free the table of buf cancel items.
3764 */
3765 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3766 XLOG_RECOVER_PASS2);
3767#ifdef DEBUG
6d192a9b 3768 if (!error) {
1da177e4
LT
3769 int i;
3770
3771 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3772 ASSERT(log->l_buf_cancel_table[i] == NULL);
3773 }
3774#endif /* DEBUG */
3775
f0e2d93c 3776 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3777 log->l_buf_cancel_table = NULL;
3778
3779 return error;
3780}
3781
3782/*
3783 * Do the actual recovery
3784 */
3785STATIC int
3786xlog_do_recover(
3787 xlog_t *log,
3788 xfs_daddr_t head_blk,
3789 xfs_daddr_t tail_blk)
3790{
3791 int error;
3792 xfs_buf_t *bp;
3793 xfs_sb_t *sbp;
3794
3795 /*
3796 * First replay the images in the log.
3797 */
3798 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3799 if (error) {
3800 return error;
3801 }
3802
3803 XFS_bflush(log->l_mp->m_ddev_targp);
3804
3805 /*
3806 * If IO errors happened during recovery, bail out.
3807 */
3808 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3809 return (EIO);
3810 }
3811
3812 /*
3813 * We now update the tail_lsn since much of the recovery has completed
3814 * and there may be space available to use. If there were no extent
3815 * or iunlinks, we can free up the entire log and set the tail_lsn to
3816 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3817 * lsn of the last known good LR on disk. If there are extent frees
3818 * or iunlinks they will have some entries in the AIL; so we look at
3819 * the AIL to determine how to set the tail_lsn.
3820 */
3821 xlog_assign_tail_lsn(log->l_mp);
3822
3823 /*
3824 * Now that we've finished replaying all buffer and inode
3825 * updates, re-read in the superblock.
3826 */
3827 bp = xfs_getsb(log->l_mp, 0);
3828 XFS_BUF_UNDONE(bp);
bebf963f
LM
3829 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3830 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
1da177e4 3831 XFS_BUF_READ(bp);
bebf963f 3832 XFS_BUF_UNASYNC(bp);
1da177e4 3833 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
3834 error = xfs_iowait(bp);
3835 if (error) {
1da177e4
LT
3836 xfs_ioerror_alert("xlog_do_recover",
3837 log->l_mp, bp, XFS_BUF_ADDR(bp));
3838 ASSERT(0);
3839 xfs_buf_relse(bp);
3840 return error;
3841 }
3842
3843 /* Convert superblock from on-disk format */
3844 sbp = &log->l_mp->m_sb;
2bdf7cd0 3845 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 3846 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 3847 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
3848 xfs_buf_relse(bp);
3849
5478eead
LM
3850 /* We've re-read the superblock so re-initialize per-cpu counters */
3851 xfs_icsb_reinit_counters(log->l_mp);
3852
1da177e4
LT
3853 xlog_recover_check_summary(log);
3854
3855 /* Normal transactions can now occur */
3856 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3857 return 0;
3858}
3859
3860/*
3861 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3862 *
3863 * Return error or zero.
3864 */
3865int
3866xlog_recover(
65be6054 3867 xlog_t *log)
1da177e4
LT
3868{
3869 xfs_daddr_t head_blk, tail_blk;
3870 int error;
3871
3872 /* find the tail of the log */
65be6054 3873 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3874 return error;
3875
3876 if (tail_blk != head_blk) {
3877 /* There used to be a comment here:
3878 *
3879 * disallow recovery on read-only mounts. note -- mount
3880 * checks for ENOSPC and turns it into an intelligent
3881 * error message.
3882 * ...but this is no longer true. Now, unless you specify
3883 * NORECOVERY (in which case this function would never be
3884 * called), we just go ahead and recover. We do this all
3885 * under the vfs layer, so we can get away with it unless
3886 * the device itself is read-only, in which case we fail.
3887 */
3a02ee18 3888 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
3889 return error;
3890 }
3891
3892 cmn_err(CE_NOTE,
fc1f8c1c
NS
3893 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3894 log->l_mp->m_fsname, log->l_mp->m_logname ?
3895 log->l_mp->m_logname : "internal");
1da177e4
LT
3896
3897 error = xlog_do_recover(log, head_blk, tail_blk);
3898 log->l_flags |= XLOG_RECOVERY_NEEDED;
3899 }
3900 return error;
3901}
3902
3903/*
3904 * In the first part of recovery we replay inodes and buffers and build
3905 * up the list of extent free items which need to be processed. Here
3906 * we process the extent free items and clean up the on disk unlinked
3907 * inode lists. This is separated from the first part of recovery so
3908 * that the root and real-time bitmap inodes can be read in from disk in
3909 * between the two stages. This is necessary so that we can free space
3910 * in the real-time portion of the file system.
3911 */
3912int
3913xlog_recover_finish(
4249023a 3914 xlog_t *log)
1da177e4
LT
3915{
3916 /*
3917 * Now we're ready to do the transactions needed for the
3918 * rest of recovery. Start with completing all the extent
3919 * free intent records and then process the unlinked inode
3920 * lists. At this point, we essentially run in normal mode
3921 * except that we're still performing recovery actions
3922 * rather than accepting new requests.
3923 */
3924 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
3925 int error;
3926 error = xlog_recover_process_efis(log);
3927 if (error) {
3928 cmn_err(CE_ALERT,
3929 "Failed to recover EFIs on filesystem: %s",
3930 log->l_mp->m_fsname);
3931 return error;
3932 }
1da177e4
LT
3933 /*
3934 * Sync the log to get all the EFIs out of the AIL.
3935 * This isn't absolutely necessary, but it helps in
3936 * case the unlink transactions would have problems
3937 * pushing the EFIs out of the way.
3938 */
3939 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3940 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3941
4249023a 3942 xlog_recover_process_iunlinks(log);
1da177e4
LT
3943
3944 xlog_recover_check_summary(log);
3945
3946 cmn_err(CE_NOTE,
fc1f8c1c
NS
3947 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3948 log->l_mp->m_fsname, log->l_mp->m_logname ?
3949 log->l_mp->m_logname : "internal");
1da177e4
LT
3950 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3951 } else {
3952 cmn_err(CE_DEBUG,
b6574520 3953 "!Ending clean XFS mount for filesystem: %s\n",
1da177e4
LT
3954 log->l_mp->m_fsname);
3955 }
3956 return 0;
3957}
3958
3959
3960#if defined(DEBUG)
3961/*
3962 * Read all of the agf and agi counters and check that they
3963 * are consistent with the superblock counters.
3964 */
3965void
3966xlog_recover_check_summary(
3967 xlog_t *log)
3968{
3969 xfs_mount_t *mp;
3970 xfs_agf_t *agfp;
1da177e4
LT
3971 xfs_buf_t *agfbp;
3972 xfs_buf_t *agibp;
1da177e4
LT
3973 xfs_buf_t *sbbp;
3974#ifdef XFS_LOUD_RECOVERY
3975 xfs_sb_t *sbp;
3976#endif
3977 xfs_agnumber_t agno;
3978 __uint64_t freeblks;
3979 __uint64_t itotal;
3980 __uint64_t ifree;
5e1be0fb 3981 int error;
1da177e4
LT
3982
3983 mp = log->l_mp;
3984
3985 freeblks = 0LL;
3986 itotal = 0LL;
3987 ifree = 0LL;
3988 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
CH
3989 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3990 if (error) {
3991 xfs_fs_cmn_err(CE_ALERT, mp,
3992 "xlog_recover_check_summary(agf)"
3993 "agf read failed agno %d error %d",
3994 agno, error);
3995 } else {
3996 agfp = XFS_BUF_TO_AGF(agfbp);
3997 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3998 be32_to_cpu(agfp->agf_flcount);
3999 xfs_buf_relse(agfbp);
1da177e4 4000 }
1da177e4 4001
5e1be0fb
CH
4002 error = xfs_read_agi(mp, NULL, agno, &agibp);
4003 if (!error) {
4004 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4005
5e1be0fb
CH
4006 itotal += be32_to_cpu(agi->agi_count);
4007 ifree += be32_to_cpu(agi->agi_freecount);
4008 xfs_buf_relse(agibp);
4009 }
1da177e4
LT
4010 }
4011
4012 sbbp = xfs_getsb(mp, 0);
4013#ifdef XFS_LOUD_RECOVERY
4014 sbp = &mp->m_sb;
2bdf7cd0 4015 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
1da177e4
LT
4016 cmn_err(CE_NOTE,
4017 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4018 sbp->sb_icount, itotal);
4019 cmn_err(CE_NOTE,
4020 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4021 sbp->sb_ifree, ifree);
4022 cmn_err(CE_NOTE,
4023 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4024 sbp->sb_fdblocks, freeblks);
4025#if 0
4026 /*
4027 * This is turned off until I account for the allocation
4028 * btree blocks which live in free space.
4029 */
4030 ASSERT(sbp->sb_icount == itotal);
4031 ASSERT(sbp->sb_ifree == ifree);
4032 ASSERT(sbp->sb_fdblocks == freeblks);
4033#endif
4034#endif
4035 xfs_buf_relse(sbbp);
4036}
4037#endif /* DEBUG */