]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
ext4: Check return value of sb_getblk() and friends
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
5a0e3ad6 42#include <linux/slab.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
d2a17637 47#include "ext4_extents.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
678aaf48
JK
53static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55{
7f5aa215
JK
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
678aaf48
JK
60}
61
64769240 62static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
63static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
64 struct buffer_head *bh_result, int create);
65static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
66static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
67static int __ext4_journalled_writepage(struct page *page, unsigned int len);
68static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
64769240 69
ac27a0ec
DK
70/*
71 * Test whether an inode is a fast symlink.
72 */
617ba13b 73static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 74{
617ba13b 75 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
76 (inode->i_sb->s_blocksize >> 9) : 0;
77
78 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
79}
80
ac27a0ec
DK
81/*
82 * Work out how many blocks we need to proceed with the next chunk of a
83 * truncate transaction.
84 */
85static unsigned long blocks_for_truncate(struct inode *inode)
86{
725d26d3 87 ext4_lblk_t needed;
ac27a0ec
DK
88
89 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
90
91 /* Give ourselves just enough room to cope with inodes in which
92 * i_blocks is corrupt: we've seen disk corruptions in the past
93 * which resulted in random data in an inode which looked enough
617ba13b 94 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
95 * will go a bit crazy if that happens, but at least we should
96 * try not to panic the whole kernel. */
97 if (needed < 2)
98 needed = 2;
99
100 /* But we need to bound the transaction so we don't overflow the
101 * journal. */
617ba13b
MC
102 if (needed > EXT4_MAX_TRANS_DATA)
103 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 104
617ba13b 105 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
106}
107
108/*
109 * Truncate transactions can be complex and absolutely huge. So we need to
110 * be able to restart the transaction at a conventient checkpoint to make
111 * sure we don't overflow the journal.
112 *
113 * start_transaction gets us a new handle for a truncate transaction,
114 * and extend_transaction tries to extend the existing one a bit. If
115 * extend fails, we need to propagate the failure up and restart the
116 * transaction in the top-level truncate loop. --sct
117 */
118static handle_t *start_transaction(struct inode *inode)
119{
120 handle_t *result;
121
617ba13b 122 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
123 if (!IS_ERR(result))
124 return result;
125
617ba13b 126 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
127 return result;
128}
129
130/*
131 * Try to extend this transaction for the purposes of truncation.
132 *
133 * Returns 0 if we managed to create more room. If we can't create more
134 * room, and the transaction must be restarted we return 1.
135 */
136static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
137{
0390131b
FM
138 if (!ext4_handle_valid(handle))
139 return 0;
140 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 141 return 0;
617ba13b 142 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
143 return 0;
144 return 1;
145}
146
147/*
148 * Restart the transaction associated with *handle. This does a commit,
149 * so before we call here everything must be consistently dirtied against
150 * this transaction.
151 */
fa5d1113 152int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 153 int nblocks)
ac27a0ec 154{
487caeef
JK
155 int ret;
156
157 /*
e35fd660 158 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
159 * moment, get_block can be called only for blocks inside i_size since
160 * page cache has been already dropped and writes are blocked by
161 * i_mutex. So we can safely drop the i_data_sem here.
162 */
0390131b 163 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 164 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
165 up_write(&EXT4_I(inode)->i_data_sem);
166 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
167 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 168 ext4_discard_preallocations(inode);
487caeef
JK
169
170 return ret;
ac27a0ec
DK
171}
172
173/*
174 * Called at the last iput() if i_nlink is zero.
175 */
0930fcc1 176void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
177{
178 handle_t *handle;
bc965ab3 179 int err;
ac27a0ec 180
0930fcc1
AV
181 if (inode->i_nlink) {
182 truncate_inode_pages(&inode->i_data, 0);
183 goto no_delete;
184 }
185
907f4554 186 if (!is_bad_inode(inode))
871a2931 187 dquot_initialize(inode);
907f4554 188
678aaf48
JK
189 if (ext4_should_order_data(inode))
190 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
191 truncate_inode_pages(&inode->i_data, 0);
192
193 if (is_bad_inode(inode))
194 goto no_delete;
195
bc965ab3 196 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 197 if (IS_ERR(handle)) {
bc965ab3 198 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
199 /*
200 * If we're going to skip the normal cleanup, we still need to
201 * make sure that the in-core orphan linked list is properly
202 * cleaned up.
203 */
617ba13b 204 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
205 goto no_delete;
206 }
207
208 if (IS_SYNC(inode))
0390131b 209 ext4_handle_sync(handle);
ac27a0ec 210 inode->i_size = 0;
bc965ab3
TT
211 err = ext4_mark_inode_dirty(handle, inode);
212 if (err) {
12062ddd 213 ext4_warning(inode->i_sb,
bc965ab3
TT
214 "couldn't mark inode dirty (err %d)", err);
215 goto stop_handle;
216 }
ac27a0ec 217 if (inode->i_blocks)
617ba13b 218 ext4_truncate(inode);
bc965ab3
TT
219
220 /*
221 * ext4_ext_truncate() doesn't reserve any slop when it
222 * restarts journal transactions; therefore there may not be
223 * enough credits left in the handle to remove the inode from
224 * the orphan list and set the dtime field.
225 */
0390131b 226 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
227 err = ext4_journal_extend(handle, 3);
228 if (err > 0)
229 err = ext4_journal_restart(handle, 3);
230 if (err != 0) {
12062ddd 231 ext4_warning(inode->i_sb,
bc965ab3
TT
232 "couldn't extend journal (err %d)", err);
233 stop_handle:
234 ext4_journal_stop(handle);
45388219 235 ext4_orphan_del(NULL, inode);
bc965ab3
TT
236 goto no_delete;
237 }
238 }
239
ac27a0ec 240 /*
617ba13b 241 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 242 * AKPM: I think this can be inside the above `if'.
617ba13b 243 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 244 * deletion of a non-existent orphan - this is because we don't
617ba13b 245 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
246 * (Well, we could do this if we need to, but heck - it works)
247 */
617ba13b
MC
248 ext4_orphan_del(handle, inode);
249 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
250
251 /*
252 * One subtle ordering requirement: if anything has gone wrong
253 * (transaction abort, IO errors, whatever), then we can still
254 * do these next steps (the fs will already have been marked as
255 * having errors), but we can't free the inode if the mark_dirty
256 * fails.
257 */
617ba13b 258 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 259 /* If that failed, just do the required in-core inode clear. */
0930fcc1 260 ext4_clear_inode(inode);
ac27a0ec 261 else
617ba13b
MC
262 ext4_free_inode(handle, inode);
263 ext4_journal_stop(handle);
ac27a0ec
DK
264 return;
265no_delete:
0930fcc1 266 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
267}
268
269typedef struct {
270 __le32 *p;
271 __le32 key;
272 struct buffer_head *bh;
273} Indirect;
274
275static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
276{
277 p->key = *(p->p = v);
278 p->bh = bh;
279}
280
ac27a0ec 281/**
617ba13b 282 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
283 * @inode: inode in question (we are only interested in its superblock)
284 * @i_block: block number to be parsed
285 * @offsets: array to store the offsets in
8c55e204
DK
286 * @boundary: set this non-zero if the referred-to block is likely to be
287 * followed (on disk) by an indirect block.
ac27a0ec 288 *
617ba13b 289 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
290 * for UNIX filesystems - tree of pointers anchored in the inode, with
291 * data blocks at leaves and indirect blocks in intermediate nodes.
292 * This function translates the block number into path in that tree -
293 * return value is the path length and @offsets[n] is the offset of
294 * pointer to (n+1)th node in the nth one. If @block is out of range
295 * (negative or too large) warning is printed and zero returned.
296 *
297 * Note: function doesn't find node addresses, so no IO is needed. All
298 * we need to know is the capacity of indirect blocks (taken from the
299 * inode->i_sb).
300 */
301
302/*
303 * Portability note: the last comparison (check that we fit into triple
304 * indirect block) is spelled differently, because otherwise on an
305 * architecture with 32-bit longs and 8Kb pages we might get into trouble
306 * if our filesystem had 8Kb blocks. We might use long long, but that would
307 * kill us on x86. Oh, well, at least the sign propagation does not matter -
308 * i_block would have to be negative in the very beginning, so we would not
309 * get there at all.
310 */
311
617ba13b 312static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
313 ext4_lblk_t i_block,
314 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 315{
617ba13b
MC
316 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
317 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
318 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
319 indirect_blocks = ptrs,
320 double_blocks = (1 << (ptrs_bits * 2));
321 int n = 0;
322 int final = 0;
323
c333e073 324 if (i_block < direct_blocks) {
ac27a0ec
DK
325 offsets[n++] = i_block;
326 final = direct_blocks;
af5bc92d 327 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 328 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
329 offsets[n++] = i_block;
330 final = ptrs;
331 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 332 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
333 offsets[n++] = i_block >> ptrs_bits;
334 offsets[n++] = i_block & (ptrs - 1);
335 final = ptrs;
336 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 337 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
338 offsets[n++] = i_block >> (ptrs_bits * 2);
339 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
340 offsets[n++] = i_block & (ptrs - 1);
341 final = ptrs;
342 } else {
12062ddd 343 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
344 i_block + direct_blocks +
345 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
346 }
347 if (boundary)
348 *boundary = final - 1 - (i_block & (ptrs - 1));
349 return n;
350}
351
c398eda0
TT
352static int __ext4_check_blockref(const char *function, unsigned int line,
353 struct inode *inode,
6fd058f7
TT
354 __le32 *p, unsigned int max)
355{
1c13d5c0 356 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
f73953c0 357 __le32 *bref = p;
6fd058f7
TT
358 unsigned int blk;
359
fe2c8191 360 while (bref < p+max) {
6fd058f7 361 blk = le32_to_cpu(*bref++);
de9a55b8
TT
362 if (blk &&
363 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 364 blk, 1))) {
1c13d5c0 365 es->s_last_error_block = cpu_to_le64(blk);
c398eda0
TT
366 ext4_error_inode(inode, function, line, blk,
367 "invalid block");
de9a55b8
TT
368 return -EIO;
369 }
370 }
371 return 0;
fe2c8191
TN
372}
373
374
375#define ext4_check_indirect_blockref(inode, bh) \
c398eda0
TT
376 __ext4_check_blockref(__func__, __LINE__, inode, \
377 (__le32 *)(bh)->b_data, \
fe2c8191
TN
378 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
379
380#define ext4_check_inode_blockref(inode) \
c398eda0
TT
381 __ext4_check_blockref(__func__, __LINE__, inode, \
382 EXT4_I(inode)->i_data, \
fe2c8191
TN
383 EXT4_NDIR_BLOCKS)
384
ac27a0ec 385/**
617ba13b 386 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
387 * @inode: inode in question
388 * @depth: depth of the chain (1 - direct pointer, etc.)
389 * @offsets: offsets of pointers in inode/indirect blocks
390 * @chain: place to store the result
391 * @err: here we store the error value
392 *
393 * Function fills the array of triples <key, p, bh> and returns %NULL
394 * if everything went OK or the pointer to the last filled triple
395 * (incomplete one) otherwise. Upon the return chain[i].key contains
396 * the number of (i+1)-th block in the chain (as it is stored in memory,
397 * i.e. little-endian 32-bit), chain[i].p contains the address of that
398 * number (it points into struct inode for i==0 and into the bh->b_data
399 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
400 * block for i>0 and NULL for i==0. In other words, it holds the block
401 * numbers of the chain, addresses they were taken from (and where we can
402 * verify that chain did not change) and buffer_heads hosting these
403 * numbers.
404 *
405 * Function stops when it stumbles upon zero pointer (absent block)
406 * (pointer to last triple returned, *@err == 0)
407 * or when it gets an IO error reading an indirect block
408 * (ditto, *@err == -EIO)
ac27a0ec
DK
409 * or when it reads all @depth-1 indirect blocks successfully and finds
410 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
411 *
412 * Need to be called with
0e855ac8 413 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 414 */
725d26d3
AK
415static Indirect *ext4_get_branch(struct inode *inode, int depth,
416 ext4_lblk_t *offsets,
ac27a0ec
DK
417 Indirect chain[4], int *err)
418{
419 struct super_block *sb = inode->i_sb;
420 Indirect *p = chain;
421 struct buffer_head *bh;
422
423 *err = 0;
424 /* i_data is not going away, no lock needed */
af5bc92d 425 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
426 if (!p->key)
427 goto no_block;
428 while (--depth) {
fe2c8191
TN
429 bh = sb_getblk(sb, le32_to_cpu(p->key));
430 if (unlikely(!bh))
ac27a0ec 431 goto failure;
de9a55b8 432
fe2c8191
TN
433 if (!bh_uptodate_or_lock(bh)) {
434 if (bh_submit_read(bh) < 0) {
435 put_bh(bh);
436 goto failure;
437 }
438 /* validate block references */
439 if (ext4_check_indirect_blockref(inode, bh)) {
440 put_bh(bh);
441 goto failure;
442 }
443 }
de9a55b8 444
af5bc92d 445 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
446 /* Reader: end */
447 if (!p->key)
448 goto no_block;
449 }
450 return NULL;
451
ac27a0ec
DK
452failure:
453 *err = -EIO;
454no_block:
455 return p;
456}
457
458/**
617ba13b 459 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
460 * @inode: owner
461 * @ind: descriptor of indirect block.
462 *
1cc8dcf5 463 * This function returns the preferred place for block allocation.
ac27a0ec
DK
464 * It is used when heuristic for sequential allocation fails.
465 * Rules are:
466 * + if there is a block to the left of our position - allocate near it.
467 * + if pointer will live in indirect block - allocate near that block.
468 * + if pointer will live in inode - allocate in the same
469 * cylinder group.
470 *
471 * In the latter case we colour the starting block by the callers PID to
472 * prevent it from clashing with concurrent allocations for a different inode
473 * in the same block group. The PID is used here so that functionally related
474 * files will be close-by on-disk.
475 *
476 * Caller must make sure that @ind is valid and will stay that way.
477 */
617ba13b 478static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 479{
617ba13b 480 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 481 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 482 __le32 *p;
617ba13b 483 ext4_fsblk_t bg_start;
74d3487f 484 ext4_fsblk_t last_block;
617ba13b 485 ext4_grpblk_t colour;
a4912123
TT
486 ext4_group_t block_group;
487 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
488
489 /* Try to find previous block */
490 for (p = ind->p - 1; p >= start; p--) {
491 if (*p)
492 return le32_to_cpu(*p);
493 }
494
495 /* No such thing, so let's try location of indirect block */
496 if (ind->bh)
497 return ind->bh->b_blocknr;
498
499 /*
500 * It is going to be referred to from the inode itself? OK, just put it
501 * into the same cylinder group then.
502 */
a4912123
TT
503 block_group = ei->i_block_group;
504 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
505 block_group &= ~(flex_size-1);
506 if (S_ISREG(inode->i_mode))
507 block_group++;
508 }
509 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
510 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
511
a4912123
TT
512 /*
513 * If we are doing delayed allocation, we don't need take
514 * colour into account.
515 */
516 if (test_opt(inode->i_sb, DELALLOC))
517 return bg_start;
518
74d3487f
VC
519 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
520 colour = (current->pid % 16) *
617ba13b 521 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
522 else
523 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
524 return bg_start + colour;
525}
526
527/**
1cc8dcf5 528 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
529 * @inode: owner
530 * @block: block we want
ac27a0ec 531 * @partial: pointer to the last triple within a chain
ac27a0ec 532 *
1cc8dcf5 533 * Normally this function find the preferred place for block allocation,
fb01bfda 534 * returns it.
fb0a387d
ES
535 * Because this is only used for non-extent files, we limit the block nr
536 * to 32 bits.
ac27a0ec 537 */
725d26d3 538static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 539 Indirect *partial)
ac27a0ec 540{
fb0a387d
ES
541 ext4_fsblk_t goal;
542
ac27a0ec 543 /*
c2ea3fde 544 * XXX need to get goal block from mballoc's data structures
ac27a0ec 545 */
ac27a0ec 546
fb0a387d
ES
547 goal = ext4_find_near(inode, partial);
548 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
549 return goal;
ac27a0ec
DK
550}
551
552/**
617ba13b 553 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
554 * of direct blocks need to be allocated for the given branch.
555 *
556 * @branch: chain of indirect blocks
557 * @k: number of blocks need for indirect blocks
558 * @blks: number of data blocks to be mapped.
559 * @blocks_to_boundary: the offset in the indirect block
560 *
561 * return the total number of blocks to be allocate, including the
562 * direct and indirect blocks.
563 */
498e5f24 564static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 565 int blocks_to_boundary)
ac27a0ec 566{
498e5f24 567 unsigned int count = 0;
ac27a0ec
DK
568
569 /*
570 * Simple case, [t,d]Indirect block(s) has not allocated yet
571 * then it's clear blocks on that path have not allocated
572 */
573 if (k > 0) {
574 /* right now we don't handle cross boundary allocation */
575 if (blks < blocks_to_boundary + 1)
576 count += blks;
577 else
578 count += blocks_to_boundary + 1;
579 return count;
580 }
581
582 count++;
583 while (count < blks && count <= blocks_to_boundary &&
584 le32_to_cpu(*(branch[0].p + count)) == 0) {
585 count++;
586 }
587 return count;
588}
589
590/**
617ba13b 591 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
592 * @indirect_blks: the number of blocks need to allocate for indirect
593 * blocks
594 *
595 * @new_blocks: on return it will store the new block numbers for
596 * the indirect blocks(if needed) and the first direct block,
597 * @blks: on return it will store the total number of allocated
598 * direct blocks
599 */
617ba13b 600static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
601 ext4_lblk_t iblock, ext4_fsblk_t goal,
602 int indirect_blks, int blks,
603 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 604{
815a1130 605 struct ext4_allocation_request ar;
ac27a0ec 606 int target, i;
7061eba7 607 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 608 int index = 0;
617ba13b 609 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
610 int ret = 0;
611
612 /*
613 * Here we try to allocate the requested multiple blocks at once,
614 * on a best-effort basis.
615 * To build a branch, we should allocate blocks for
616 * the indirect blocks(if not allocated yet), and at least
617 * the first direct block of this branch. That's the
618 * minimum number of blocks need to allocate(required)
619 */
7061eba7
AK
620 /* first we try to allocate the indirect blocks */
621 target = indirect_blks;
622 while (target > 0) {
ac27a0ec
DK
623 count = target;
624 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
625 current_block = ext4_new_meta_blocks(handle, inode,
626 goal, &count, err);
ac27a0ec
DK
627 if (*err)
628 goto failed_out;
629
273df556
FM
630 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
631 EXT4_ERROR_INODE(inode,
632 "current_block %llu + count %lu > %d!",
633 current_block, count,
634 EXT4_MAX_BLOCK_FILE_PHYS);
635 *err = -EIO;
636 goto failed_out;
637 }
fb0a387d 638
ac27a0ec
DK
639 target -= count;
640 /* allocate blocks for indirect blocks */
641 while (index < indirect_blks && count) {
642 new_blocks[index++] = current_block++;
643 count--;
644 }
7061eba7
AK
645 if (count > 0) {
646 /*
647 * save the new block number
648 * for the first direct block
649 */
650 new_blocks[index] = current_block;
651 printk(KERN_INFO "%s returned more blocks than "
652 "requested\n", __func__);
653 WARN_ON(1);
ac27a0ec 654 break;
7061eba7 655 }
ac27a0ec
DK
656 }
657
7061eba7
AK
658 target = blks - count ;
659 blk_allocated = count;
660 if (!target)
661 goto allocated;
662 /* Now allocate data blocks */
815a1130
TT
663 memset(&ar, 0, sizeof(ar));
664 ar.inode = inode;
665 ar.goal = goal;
666 ar.len = target;
667 ar.logical = iblock;
668 if (S_ISREG(inode->i_mode))
669 /* enable in-core preallocation only for regular files */
670 ar.flags = EXT4_MB_HINT_DATA;
671
672 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
673 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
674 EXT4_ERROR_INODE(inode,
675 "current_block %llu + ar.len %d > %d!",
676 current_block, ar.len,
677 EXT4_MAX_BLOCK_FILE_PHYS);
678 *err = -EIO;
679 goto failed_out;
680 }
815a1130 681
7061eba7
AK
682 if (*err && (target == blks)) {
683 /*
684 * if the allocation failed and we didn't allocate
685 * any blocks before
686 */
687 goto failed_out;
688 }
689 if (!*err) {
690 if (target == blks) {
de9a55b8
TT
691 /*
692 * save the new block number
693 * for the first direct block
694 */
7061eba7
AK
695 new_blocks[index] = current_block;
696 }
815a1130 697 blk_allocated += ar.len;
7061eba7
AK
698 }
699allocated:
ac27a0ec 700 /* total number of blocks allocated for direct blocks */
7061eba7 701 ret = blk_allocated;
ac27a0ec
DK
702 *err = 0;
703 return ret;
704failed_out:
af5bc92d 705 for (i = 0; i < index; i++)
e6362609 706 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
707 return ret;
708}
709
710/**
617ba13b 711 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
712 * @inode: owner
713 * @indirect_blks: number of allocated indirect blocks
714 * @blks: number of allocated direct blocks
715 * @offsets: offsets (in the blocks) to store the pointers to next.
716 * @branch: place to store the chain in.
717 *
718 * This function allocates blocks, zeroes out all but the last one,
719 * links them into chain and (if we are synchronous) writes them to disk.
720 * In other words, it prepares a branch that can be spliced onto the
721 * inode. It stores the information about that chain in the branch[], in
617ba13b 722 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
723 * we had read the existing part of chain and partial points to the last
724 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 725 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
726 * place chain is disconnected - *branch->p is still zero (we did not
727 * set the last link), but branch->key contains the number that should
728 * be placed into *branch->p to fill that gap.
729 *
730 * If allocation fails we free all blocks we've allocated (and forget
731 * their buffer_heads) and return the error value the from failed
617ba13b 732 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
733 * as described above and return 0.
734 */
617ba13b 735static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
736 ext4_lblk_t iblock, int indirect_blks,
737 int *blks, ext4_fsblk_t goal,
738 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
739{
740 int blocksize = inode->i_sb->s_blocksize;
741 int i, n = 0;
742 int err = 0;
743 struct buffer_head *bh;
744 int num;
617ba13b
MC
745 ext4_fsblk_t new_blocks[4];
746 ext4_fsblk_t current_block;
ac27a0ec 747
7061eba7 748 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
749 *blks, new_blocks, &err);
750 if (err)
751 return err;
752
753 branch[0].key = cpu_to_le32(new_blocks[0]);
754 /*
755 * metadata blocks and data blocks are allocated.
756 */
757 for (n = 1; n <= indirect_blks; n++) {
758 /*
759 * Get buffer_head for parent block, zero it out
760 * and set the pointer to new one, then send
761 * parent to disk.
762 */
763 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
87783690
NK
764 if (unlikely(!bh)) {
765 err = -EIO;
766 goto failed;
767 }
768
ac27a0ec
DK
769 branch[n].bh = bh;
770 lock_buffer(bh);
771 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 772 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 773 if (err) {
6487a9d3
CW
774 /* Don't brelse(bh) here; it's done in
775 * ext4_journal_forget() below */
ac27a0ec 776 unlock_buffer(bh);
ac27a0ec
DK
777 goto failed;
778 }
779
780 memset(bh->b_data, 0, blocksize);
781 branch[n].p = (__le32 *) bh->b_data + offsets[n];
782 branch[n].key = cpu_to_le32(new_blocks[n]);
783 *branch[n].p = branch[n].key;
af5bc92d 784 if (n == indirect_blks) {
ac27a0ec
DK
785 current_block = new_blocks[n];
786 /*
787 * End of chain, update the last new metablock of
788 * the chain to point to the new allocated
789 * data blocks numbers
790 */
de9a55b8 791 for (i = 1; i < num; i++)
ac27a0ec
DK
792 *(branch[n].p + i) = cpu_to_le32(++current_block);
793 }
794 BUFFER_TRACE(bh, "marking uptodate");
795 set_buffer_uptodate(bh);
796 unlock_buffer(bh);
797
0390131b
FM
798 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
799 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
800 if (err)
801 goto failed;
802 }
803 *blks = num;
804 return err;
805failed:
806 /* Allocation failed, free what we already allocated */
e6362609 807 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 808 for (i = 1; i <= n ; i++) {
60e6679e 809 /*
e6362609
TT
810 * branch[i].bh is newly allocated, so there is no
811 * need to revoke the block, which is why we don't
812 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 813 */
e6362609
TT
814 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
815 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 816 }
e6362609
TT
817 for (i = n+1; i < indirect_blks; i++)
818 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 819
e6362609 820 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
821
822 return err;
823}
824
825/**
617ba13b 826 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
827 * @inode: owner
828 * @block: (logical) number of block we are adding
829 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 830 * ext4_alloc_branch)
ac27a0ec
DK
831 * @where: location of missing link
832 * @num: number of indirect blocks we are adding
833 * @blks: number of direct blocks we are adding
834 *
835 * This function fills the missing link and does all housekeeping needed in
836 * inode (->i_blocks, etc.). In case of success we end up with the full
837 * chain to new block and return 0.
838 */
617ba13b 839static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
840 ext4_lblk_t block, Indirect *where, int num,
841 int blks)
ac27a0ec
DK
842{
843 int i;
844 int err = 0;
617ba13b 845 ext4_fsblk_t current_block;
ac27a0ec 846
ac27a0ec
DK
847 /*
848 * If we're splicing into a [td]indirect block (as opposed to the
849 * inode) then we need to get write access to the [td]indirect block
850 * before the splice.
851 */
852 if (where->bh) {
853 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 854 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
855 if (err)
856 goto err_out;
857 }
858 /* That's it */
859
860 *where->p = where->key;
861
862 /*
863 * Update the host buffer_head or inode to point to more just allocated
864 * direct blocks blocks
865 */
866 if (num == 0 && blks > 1) {
867 current_block = le32_to_cpu(where->key) + 1;
868 for (i = 1; i < blks; i++)
af5bc92d 869 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
870 }
871
ac27a0ec 872 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
873 /* had we spliced it onto indirect block? */
874 if (where->bh) {
875 /*
876 * If we spliced it onto an indirect block, we haven't
877 * altered the inode. Note however that if it is being spliced
878 * onto an indirect block at the very end of the file (the
879 * file is growing) then we *will* alter the inode to reflect
880 * the new i_size. But that is not done here - it is done in
617ba13b 881 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
882 */
883 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
884 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
885 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
886 if (err)
887 goto err_out;
888 } else {
889 /*
890 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 891 */
41591750 892 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
893 jbd_debug(5, "splicing direct\n");
894 }
895 return err;
896
897err_out:
898 for (i = 1; i <= num; i++) {
60e6679e 899 /*
e6362609
TT
900 * branch[i].bh is newly allocated, so there is no
901 * need to revoke the block, which is why we don't
902 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 903 */
e6362609
TT
904 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
905 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 906 }
e6362609
TT
907 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
908 blks, 0);
ac27a0ec
DK
909
910 return err;
911}
912
913/*
e35fd660 914 * The ext4_ind_map_blocks() function handles non-extents inodes
b920c755 915 * (i.e., using the traditional indirect/double-indirect i_blocks
e35fd660 916 * scheme) for ext4_map_blocks().
b920c755 917 *
ac27a0ec
DK
918 * Allocation strategy is simple: if we have to allocate something, we will
919 * have to go the whole way to leaf. So let's do it before attaching anything
920 * to tree, set linkage between the newborn blocks, write them if sync is
921 * required, recheck the path, free and repeat if check fails, otherwise
922 * set the last missing link (that will protect us from any truncate-generated
923 * removals - all blocks on the path are immune now) and possibly force the
924 * write on the parent block.
925 * That has a nice additional property: no special recovery from the failed
926 * allocations is needed - we simply release blocks and do not touch anything
927 * reachable from inode.
928 *
929 * `handle' can be NULL if create == 0.
930 *
ac27a0ec
DK
931 * return > 0, # of blocks mapped or allocated.
932 * return = 0, if plain lookup failed.
933 * return < 0, error case.
c278bfec 934 *
b920c755
TT
935 * The ext4_ind_get_blocks() function should be called with
936 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
937 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
938 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
939 * blocks.
ac27a0ec 940 */
e35fd660
TT
941static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
942 struct ext4_map_blocks *map,
de9a55b8 943 int flags)
ac27a0ec
DK
944{
945 int err = -EIO;
725d26d3 946 ext4_lblk_t offsets[4];
ac27a0ec
DK
947 Indirect chain[4];
948 Indirect *partial;
617ba13b 949 ext4_fsblk_t goal;
ac27a0ec
DK
950 int indirect_blks;
951 int blocks_to_boundary = 0;
952 int depth;
ac27a0ec 953 int count = 0;
617ba13b 954 ext4_fsblk_t first_block = 0;
ac27a0ec 955
12e9b892 956 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
c2177057 957 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
e35fd660 958 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
de9a55b8 959 &blocks_to_boundary);
ac27a0ec
DK
960
961 if (depth == 0)
962 goto out;
963
617ba13b 964 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
965
966 /* Simplest case - block found, no allocation needed */
967 if (!partial) {
968 first_block = le32_to_cpu(chain[depth - 1].key);
ac27a0ec
DK
969 count++;
970 /*map more blocks*/
e35fd660 971 while (count < map->m_len && count <= blocks_to_boundary) {
617ba13b 972 ext4_fsblk_t blk;
ac27a0ec 973
ac27a0ec
DK
974 blk = le32_to_cpu(*(chain[depth-1].p + count));
975
976 if (blk == first_block + count)
977 count++;
978 else
979 break;
980 }
c278bfec 981 goto got_it;
ac27a0ec
DK
982 }
983
984 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 985 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
986 goto cleanup;
987
ac27a0ec 988 /*
c2ea3fde 989 * Okay, we need to do block allocation.
ac27a0ec 990 */
e35fd660 991 goal = ext4_find_goal(inode, map->m_lblk, partial);
ac27a0ec
DK
992
993 /* the number of blocks need to allocate for [d,t]indirect blocks */
994 indirect_blks = (chain + depth) - partial - 1;
995
996 /*
997 * Next look up the indirect map to count the totoal number of
998 * direct blocks to allocate for this branch.
999 */
617ba13b 1000 count = ext4_blks_to_allocate(partial, indirect_blks,
e35fd660 1001 map->m_len, blocks_to_boundary);
ac27a0ec 1002 /*
617ba13b 1003 * Block out ext4_truncate while we alter the tree
ac27a0ec 1004 */
e35fd660 1005 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
de9a55b8
TT
1006 &count, goal,
1007 offsets + (partial - chain), partial);
ac27a0ec
DK
1008
1009 /*
617ba13b 1010 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
1011 * on the new chain if there is a failure, but that risks using
1012 * up transaction credits, especially for bitmaps where the
1013 * credits cannot be returned. Can we handle this somehow? We
1014 * may need to return -EAGAIN upwards in the worst case. --sct
1015 */
1016 if (!err)
e35fd660 1017 err = ext4_splice_branch(handle, inode, map->m_lblk,
de9a55b8 1018 partial, indirect_blks, count);
2bba702d 1019 if (err)
ac27a0ec
DK
1020 goto cleanup;
1021
e35fd660 1022 map->m_flags |= EXT4_MAP_NEW;
b436b9be
JK
1023
1024 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec 1025got_it:
e35fd660
TT
1026 map->m_flags |= EXT4_MAP_MAPPED;
1027 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1028 map->m_len = count;
ac27a0ec 1029 if (count > blocks_to_boundary)
e35fd660 1030 map->m_flags |= EXT4_MAP_BOUNDARY;
ac27a0ec
DK
1031 err = count;
1032 /* Clean up and exit */
1033 partial = chain + depth - 1; /* the whole chain */
1034cleanup:
1035 while (partial > chain) {
1036 BUFFER_TRACE(partial->bh, "call brelse");
1037 brelse(partial->bh);
1038 partial--;
1039 }
ac27a0ec
DK
1040out:
1041 return err;
1042}
1043
a9e7f447
DM
1044#ifdef CONFIG_QUOTA
1045qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1046{
a9e7f447 1047 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1048}
a9e7f447 1049#endif
9d0be502 1050
12219aea
AK
1051/*
1052 * Calculate the number of metadata blocks need to reserve
9d0be502 1053 * to allocate a new block at @lblocks for non extent file based file
12219aea 1054 */
9d0be502
TT
1055static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1056 sector_t lblock)
12219aea 1057{
9d0be502 1058 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1059 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1060 int blk_bits;
12219aea 1061
9d0be502
TT
1062 if (lblock < EXT4_NDIR_BLOCKS)
1063 return 0;
12219aea 1064
9d0be502 1065 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1066
9d0be502
TT
1067 if (ei->i_da_metadata_calc_len &&
1068 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1069 ei->i_da_metadata_calc_len++;
1070 return 0;
1071 }
1072 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1073 ei->i_da_metadata_calc_len = 1;
d330a5be 1074 blk_bits = order_base_2(lblock);
9d0be502 1075 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1076}
1077
1078/*
1079 * Calculate the number of metadata blocks need to reserve
9d0be502 1080 * to allocate a block located at @lblock
12219aea 1081 */
9d0be502 1082static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea 1083{
12e9b892 1084 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 1085 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1086
9d0be502 1087 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1088}
1089
0637c6f4
TT
1090/*
1091 * Called with i_data_sem down, which is important since we can call
1092 * ext4_discard_preallocations() from here.
1093 */
5f634d06
AK
1094void ext4_da_update_reserve_space(struct inode *inode,
1095 int used, int quota_claim)
12219aea
AK
1096{
1097 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1098 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1099
1100 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1101 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1102 if (unlikely(used > ei->i_reserved_data_blocks)) {
1103 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1104 "with only %d reserved data blocks\n",
1105 __func__, inode->i_ino, used,
1106 ei->i_reserved_data_blocks);
1107 WARN_ON(1);
1108 used = ei->i_reserved_data_blocks;
1109 }
12219aea 1110
0637c6f4
TT
1111 /* Update per-inode reservations */
1112 ei->i_reserved_data_blocks -= used;
0637c6f4 1113 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1114 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1115 used + ei->i_allocated_meta_blocks);
0637c6f4 1116 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1117
0637c6f4
TT
1118 if (ei->i_reserved_data_blocks == 0) {
1119 /*
1120 * We can release all of the reserved metadata blocks
1121 * only when we have written all of the delayed
1122 * allocation blocks.
1123 */
72b8ab9d
ES
1124 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1125 ei->i_reserved_meta_blocks);
ee5f4d9c 1126 ei->i_reserved_meta_blocks = 0;
9d0be502 1127 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1128 }
12219aea 1129 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1130
72b8ab9d
ES
1131 /* Update quota subsystem for data blocks */
1132 if (quota_claim)
5dd4056d 1133 dquot_claim_block(inode, used);
72b8ab9d 1134 else {
5f634d06
AK
1135 /*
1136 * We did fallocate with an offset that is already delayed
1137 * allocated. So on delayed allocated writeback we should
72b8ab9d 1138 * not re-claim the quota for fallocated blocks.
5f634d06 1139 */
72b8ab9d 1140 dquot_release_reservation_block(inode, used);
5f634d06 1141 }
d6014301
AK
1142
1143 /*
1144 * If we have done all the pending block allocations and if
1145 * there aren't any writers on the inode, we can discard the
1146 * inode's preallocations.
1147 */
0637c6f4
TT
1148 if ((ei->i_reserved_data_blocks == 0) &&
1149 (atomic_read(&inode->i_writecount) == 0))
d6014301 1150 ext4_discard_preallocations(inode);
12219aea
AK
1151}
1152
e29136f8 1153static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
1154 unsigned int line,
1155 struct ext4_map_blocks *map)
6fd058f7 1156{
24676da4
TT
1157 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1158 map->m_len)) {
c398eda0
TT
1159 ext4_error_inode(inode, func, line, map->m_pblk,
1160 "lblock %lu mapped to illegal pblock "
1161 "(length %d)", (unsigned long) map->m_lblk,
1162 map->m_len);
6fd058f7
TT
1163 return -EIO;
1164 }
1165 return 0;
1166}
1167
e29136f8 1168#define check_block_validity(inode, map) \
c398eda0 1169 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 1170
55138e0b 1171/*
1f94533d
TT
1172 * Return the number of contiguous dirty pages in a given inode
1173 * starting at page frame idx.
55138e0b
TT
1174 */
1175static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1176 unsigned int max_pages)
1177{
1178 struct address_space *mapping = inode->i_mapping;
1179 pgoff_t index;
1180 struct pagevec pvec;
1181 pgoff_t num = 0;
1182 int i, nr_pages, done = 0;
1183
1184 if (max_pages == 0)
1185 return 0;
1186 pagevec_init(&pvec, 0);
1187 while (!done) {
1188 index = idx;
1189 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1190 PAGECACHE_TAG_DIRTY,
1191 (pgoff_t)PAGEVEC_SIZE);
1192 if (nr_pages == 0)
1193 break;
1194 for (i = 0; i < nr_pages; i++) {
1195 struct page *page = pvec.pages[i];
1196 struct buffer_head *bh, *head;
1197
1198 lock_page(page);
1199 if (unlikely(page->mapping != mapping) ||
1200 !PageDirty(page) ||
1201 PageWriteback(page) ||
1202 page->index != idx) {
1203 done = 1;
1204 unlock_page(page);
1205 break;
1206 }
1f94533d
TT
1207 if (page_has_buffers(page)) {
1208 bh = head = page_buffers(page);
1209 do {
1210 if (!buffer_delay(bh) &&
1211 !buffer_unwritten(bh))
1212 done = 1;
1213 bh = bh->b_this_page;
1214 } while (!done && (bh != head));
1215 }
55138e0b
TT
1216 unlock_page(page);
1217 if (done)
1218 break;
1219 idx++;
1220 num++;
659c6009
ES
1221 if (num >= max_pages) {
1222 done = 1;
55138e0b 1223 break;
659c6009 1224 }
55138e0b
TT
1225 }
1226 pagevec_release(&pvec);
1227 }
1228 return num;
1229}
1230
f5ab0d1f 1231/*
e35fd660 1232 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 1233 * and returns if the blocks are already mapped.
f5ab0d1f 1234 *
f5ab0d1f
MC
1235 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1236 * and store the allocated blocks in the result buffer head and mark it
1237 * mapped.
1238 *
e35fd660
TT
1239 * If file type is extents based, it will call ext4_ext_map_blocks(),
1240 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
1241 * based files
1242 *
1243 * On success, it returns the number of blocks being mapped or allocate.
1244 * if create==0 and the blocks are pre-allocated and uninitialized block,
1245 * the result buffer head is unmapped. If the create ==1, it will make sure
1246 * the buffer head is mapped.
1247 *
1248 * It returns 0 if plain look up failed (blocks have not been allocated), in
1249 * that casem, buffer head is unmapped
1250 *
1251 * It returns the error in case of allocation failure.
1252 */
e35fd660
TT
1253int ext4_map_blocks(handle_t *handle, struct inode *inode,
1254 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
1255{
1256 int retval;
f5ab0d1f 1257
e35fd660
TT
1258 map->m_flags = 0;
1259 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1260 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1261 (unsigned long) map->m_lblk);
4df3d265 1262 /*
b920c755
TT
1263 * Try to see if we can get the block without requesting a new
1264 * file system block.
4df3d265
AK
1265 */
1266 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 1267 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1268 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 1269 } else {
e35fd660 1270 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 1271 }
4df3d265 1272 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1273
e35fd660 1274 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1275 int ret = check_block_validity(inode, map);
6fd058f7
TT
1276 if (ret != 0)
1277 return ret;
1278 }
1279
f5ab0d1f 1280 /* If it is only a block(s) look up */
c2177057 1281 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1282 return retval;
1283
1284 /*
1285 * Returns if the blocks have already allocated
1286 *
1287 * Note that if blocks have been preallocated
1288 * ext4_ext_get_block() returns th create = 0
1289 * with buffer head unmapped.
1290 */
e35fd660 1291 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
1292 return retval;
1293
2a8964d6
AK
1294 /*
1295 * When we call get_blocks without the create flag, the
1296 * BH_Unwritten flag could have gotten set if the blocks
1297 * requested were part of a uninitialized extent. We need to
1298 * clear this flag now that we are committed to convert all or
1299 * part of the uninitialized extent to be an initialized
1300 * extent. This is because we need to avoid the combination
1301 * of BH_Unwritten and BH_Mapped flags being simultaneously
1302 * set on the buffer_head.
1303 */
e35fd660 1304 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 1305
4df3d265 1306 /*
f5ab0d1f
MC
1307 * New blocks allocate and/or writing to uninitialized extent
1308 * will possibly result in updating i_data, so we take
1309 * the write lock of i_data_sem, and call get_blocks()
1310 * with create == 1 flag.
4df3d265
AK
1311 */
1312 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1313
1314 /*
1315 * if the caller is from delayed allocation writeout path
1316 * we have already reserved fs blocks for allocation
1317 * let the underlying get_block() function know to
1318 * avoid double accounting
1319 */
c2177057 1320 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1321 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1322 /*
1323 * We need to check for EXT4 here because migrate
1324 * could have changed the inode type in between
1325 */
12e9b892 1326 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1327 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 1328 } else {
e35fd660 1329 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 1330
e35fd660 1331 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
1332 /*
1333 * We allocated new blocks which will result in
1334 * i_data's format changing. Force the migrate
1335 * to fail by clearing migrate flags
1336 */
19f5fb7a 1337 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1338 }
d2a17637 1339
5f634d06
AK
1340 /*
1341 * Update reserved blocks/metadata blocks after successful
1342 * block allocation which had been deferred till now. We don't
1343 * support fallocate for non extent files. So we can update
1344 * reserve space here.
1345 */
1346 if ((retval > 0) &&
1296cc85 1347 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1348 ext4_da_update_reserve_space(inode, retval, 1);
1349 }
2ac3b6e0 1350 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1351 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1352
4df3d265 1353 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 1354 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1355 int ret = check_block_validity(inode, map);
6fd058f7
TT
1356 if (ret != 0)
1357 return ret;
1358 }
0e855ac8
AK
1359 return retval;
1360}
1361
f3bd1f3f
MC
1362/* Maximum number of blocks we map for direct IO at once. */
1363#define DIO_MAX_BLOCKS 4096
1364
2ed88685
TT
1365static int _ext4_get_block(struct inode *inode, sector_t iblock,
1366 struct buffer_head *bh, int flags)
ac27a0ec 1367{
3e4fdaf8 1368 handle_t *handle = ext4_journal_current_handle();
2ed88685 1369 struct ext4_map_blocks map;
7fb5409d 1370 int ret = 0, started = 0;
f3bd1f3f 1371 int dio_credits;
ac27a0ec 1372
2ed88685
TT
1373 map.m_lblk = iblock;
1374 map.m_len = bh->b_size >> inode->i_blkbits;
1375
1376 if (flags && !handle) {
7fb5409d 1377 /* Direct IO write... */
2ed88685
TT
1378 if (map.m_len > DIO_MAX_BLOCKS)
1379 map.m_len = DIO_MAX_BLOCKS;
1380 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 1381 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1382 if (IS_ERR(handle)) {
ac27a0ec 1383 ret = PTR_ERR(handle);
2ed88685 1384 return ret;
ac27a0ec 1385 }
7fb5409d 1386 started = 1;
ac27a0ec
DK
1387 }
1388
2ed88685 1389 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 1390 if (ret > 0) {
2ed88685
TT
1391 map_bh(bh, inode->i_sb, map.m_pblk);
1392 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1393 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 1394 ret = 0;
ac27a0ec 1395 }
7fb5409d
JK
1396 if (started)
1397 ext4_journal_stop(handle);
ac27a0ec
DK
1398 return ret;
1399}
1400
2ed88685
TT
1401int ext4_get_block(struct inode *inode, sector_t iblock,
1402 struct buffer_head *bh, int create)
1403{
1404 return _ext4_get_block(inode, iblock, bh,
1405 create ? EXT4_GET_BLOCKS_CREATE : 0);
1406}
1407
ac27a0ec
DK
1408/*
1409 * `handle' can be NULL if create is zero
1410 */
617ba13b 1411struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1412 ext4_lblk_t block, int create, int *errp)
ac27a0ec 1413{
2ed88685
TT
1414 struct ext4_map_blocks map;
1415 struct buffer_head *bh;
ac27a0ec
DK
1416 int fatal = 0, err;
1417
1418 J_ASSERT(handle != NULL || create == 0);
1419
2ed88685
TT
1420 map.m_lblk = block;
1421 map.m_len = 1;
1422 err = ext4_map_blocks(handle, inode, &map,
1423 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 1424
2ed88685
TT
1425 if (err < 0)
1426 *errp = err;
1427 if (err <= 0)
1428 return NULL;
1429 *errp = 0;
1430
1431 bh = sb_getblk(inode->i_sb, map.m_pblk);
1432 if (!bh) {
1433 *errp = -EIO;
1434 return NULL;
ac27a0ec 1435 }
2ed88685
TT
1436 if (map.m_flags & EXT4_MAP_NEW) {
1437 J_ASSERT(create != 0);
1438 J_ASSERT(handle != NULL);
ac27a0ec 1439
2ed88685
TT
1440 /*
1441 * Now that we do not always journal data, we should
1442 * keep in mind whether this should always journal the
1443 * new buffer as metadata. For now, regular file
1444 * writes use ext4_get_block instead, so it's not a
1445 * problem.
1446 */
1447 lock_buffer(bh);
1448 BUFFER_TRACE(bh, "call get_create_access");
1449 fatal = ext4_journal_get_create_access(handle, bh);
1450 if (!fatal && !buffer_uptodate(bh)) {
1451 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1452 set_buffer_uptodate(bh);
ac27a0ec 1453 }
2ed88685
TT
1454 unlock_buffer(bh);
1455 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1456 err = ext4_handle_dirty_metadata(handle, inode, bh);
1457 if (!fatal)
1458 fatal = err;
1459 } else {
1460 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 1461 }
2ed88685
TT
1462 if (fatal) {
1463 *errp = fatal;
1464 brelse(bh);
1465 bh = NULL;
1466 }
1467 return bh;
ac27a0ec
DK
1468}
1469
617ba13b 1470struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1471 ext4_lblk_t block, int create, int *err)
ac27a0ec 1472{
af5bc92d 1473 struct buffer_head *bh;
ac27a0ec 1474
617ba13b 1475 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1476 if (!bh)
1477 return bh;
1478 if (buffer_uptodate(bh))
1479 return bh;
1480 ll_rw_block(READ_META, 1, &bh);
1481 wait_on_buffer(bh);
1482 if (buffer_uptodate(bh))
1483 return bh;
1484 put_bh(bh);
1485 *err = -EIO;
1486 return NULL;
1487}
1488
af5bc92d
TT
1489static int walk_page_buffers(handle_t *handle,
1490 struct buffer_head *head,
1491 unsigned from,
1492 unsigned to,
1493 int *partial,
1494 int (*fn)(handle_t *handle,
1495 struct buffer_head *bh))
ac27a0ec
DK
1496{
1497 struct buffer_head *bh;
1498 unsigned block_start, block_end;
1499 unsigned blocksize = head->b_size;
1500 int err, ret = 0;
1501 struct buffer_head *next;
1502
af5bc92d
TT
1503 for (bh = head, block_start = 0;
1504 ret == 0 && (bh != head || !block_start);
de9a55b8 1505 block_start = block_end, bh = next) {
ac27a0ec
DK
1506 next = bh->b_this_page;
1507 block_end = block_start + blocksize;
1508 if (block_end <= from || block_start >= to) {
1509 if (partial && !buffer_uptodate(bh))
1510 *partial = 1;
1511 continue;
1512 }
1513 err = (*fn)(handle, bh);
1514 if (!ret)
1515 ret = err;
1516 }
1517 return ret;
1518}
1519
1520/*
1521 * To preserve ordering, it is essential that the hole instantiation and
1522 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1523 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1524 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1525 * prepare_write() is the right place.
1526 *
617ba13b
MC
1527 * Also, this function can nest inside ext4_writepage() ->
1528 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1529 * has generated enough buffer credits to do the whole page. So we won't
1530 * block on the journal in that case, which is good, because the caller may
1531 * be PF_MEMALLOC.
1532 *
617ba13b 1533 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1534 * quota file writes. If we were to commit the transaction while thus
1535 * reentered, there can be a deadlock - we would be holding a quota
1536 * lock, and the commit would never complete if another thread had a
1537 * transaction open and was blocking on the quota lock - a ranking
1538 * violation.
1539 *
dab291af 1540 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1541 * will _not_ run commit under these circumstances because handle->h_ref
1542 * is elevated. We'll still have enough credits for the tiny quotafile
1543 * write.
1544 */
1545static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1546 struct buffer_head *bh)
ac27a0ec 1547{
56d35a4c
JK
1548 int dirty = buffer_dirty(bh);
1549 int ret;
1550
ac27a0ec
DK
1551 if (!buffer_mapped(bh) || buffer_freed(bh))
1552 return 0;
56d35a4c
JK
1553 /*
1554 * __block_prepare_write() could have dirtied some buffers. Clean
1555 * the dirty bit as jbd2_journal_get_write_access() could complain
1556 * otherwise about fs integrity issues. Setting of the dirty bit
1557 * by __block_prepare_write() isn't a real problem here as we clear
1558 * the bit before releasing a page lock and thus writeback cannot
1559 * ever write the buffer.
1560 */
1561 if (dirty)
1562 clear_buffer_dirty(bh);
1563 ret = ext4_journal_get_write_access(handle, bh);
1564 if (!ret && dirty)
1565 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1566 return ret;
ac27a0ec
DK
1567}
1568
b9a4207d
JK
1569/*
1570 * Truncate blocks that were not used by write. We have to truncate the
1571 * pagecache as well so that corresponding buffers get properly unmapped.
1572 */
1573static void ext4_truncate_failed_write(struct inode *inode)
1574{
1575 truncate_inode_pages(inode->i_mapping, inode->i_size);
1576 ext4_truncate(inode);
1577}
1578
744692dc
JZ
1579static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1580 struct buffer_head *bh_result, int create);
bfc1af65 1581static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1582 loff_t pos, unsigned len, unsigned flags,
1583 struct page **pagep, void **fsdata)
ac27a0ec 1584{
af5bc92d 1585 struct inode *inode = mapping->host;
1938a150 1586 int ret, needed_blocks;
ac27a0ec
DK
1587 handle_t *handle;
1588 int retries = 0;
af5bc92d 1589 struct page *page;
de9a55b8 1590 pgoff_t index;
af5bc92d 1591 unsigned from, to;
bfc1af65 1592
9bffad1e 1593 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1594 /*
1595 * Reserve one block more for addition to orphan list in case
1596 * we allocate blocks but write fails for some reason
1597 */
1598 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1599 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1600 from = pos & (PAGE_CACHE_SIZE - 1);
1601 to = from + len;
ac27a0ec
DK
1602
1603retry:
af5bc92d
TT
1604 handle = ext4_journal_start(inode, needed_blocks);
1605 if (IS_ERR(handle)) {
1606 ret = PTR_ERR(handle);
1607 goto out;
7479d2b9 1608 }
ac27a0ec 1609
ebd3610b
JK
1610 /* We cannot recurse into the filesystem as the transaction is already
1611 * started */
1612 flags |= AOP_FLAG_NOFS;
1613
54566b2c 1614 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1615 if (!page) {
1616 ext4_journal_stop(handle);
1617 ret = -ENOMEM;
1618 goto out;
1619 }
1620 *pagep = page;
1621
744692dc 1622 if (ext4_should_dioread_nolock(inode))
6e1db88d 1623 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1624 else
6e1db88d 1625 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1626
1627 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1628 ret = walk_page_buffers(handle, page_buffers(page),
1629 from, to, NULL, do_journal_get_write_access);
1630 }
bfc1af65
NP
1631
1632 if (ret) {
af5bc92d 1633 unlock_page(page);
af5bc92d 1634 page_cache_release(page);
ae4d5372 1635 /*
6e1db88d 1636 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1637 * outside i_size. Trim these off again. Don't need
1638 * i_size_read because we hold i_mutex.
1938a150
AK
1639 *
1640 * Add inode to orphan list in case we crash before
1641 * truncate finishes
ae4d5372 1642 */
ffacfa7a 1643 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1644 ext4_orphan_add(handle, inode);
1645
1646 ext4_journal_stop(handle);
1647 if (pos + len > inode->i_size) {
b9a4207d 1648 ext4_truncate_failed_write(inode);
de9a55b8 1649 /*
ffacfa7a 1650 * If truncate failed early the inode might
1938a150
AK
1651 * still be on the orphan list; we need to
1652 * make sure the inode is removed from the
1653 * orphan list in that case.
1654 */
1655 if (inode->i_nlink)
1656 ext4_orphan_del(NULL, inode);
1657 }
bfc1af65
NP
1658 }
1659
617ba13b 1660 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1661 goto retry;
7479d2b9 1662out:
ac27a0ec
DK
1663 return ret;
1664}
1665
bfc1af65
NP
1666/* For write_end() in data=journal mode */
1667static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1668{
1669 if (!buffer_mapped(bh) || buffer_freed(bh))
1670 return 0;
1671 set_buffer_uptodate(bh);
0390131b 1672 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1673}
1674
f8514083 1675static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1676 struct address_space *mapping,
1677 loff_t pos, unsigned len, unsigned copied,
1678 struct page *page, void *fsdata)
f8514083
AK
1679{
1680 int i_size_changed = 0;
1681 struct inode *inode = mapping->host;
1682 handle_t *handle = ext4_journal_current_handle();
1683
1684 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1685
1686 /*
1687 * No need to use i_size_read() here, the i_size
1688 * cannot change under us because we hold i_mutex.
1689 *
1690 * But it's important to update i_size while still holding page lock:
1691 * page writeout could otherwise come in and zero beyond i_size.
1692 */
1693 if (pos + copied > inode->i_size) {
1694 i_size_write(inode, pos + copied);
1695 i_size_changed = 1;
1696 }
1697
1698 if (pos + copied > EXT4_I(inode)->i_disksize) {
1699 /* We need to mark inode dirty even if
1700 * new_i_size is less that inode->i_size
1701 * bu greater than i_disksize.(hint delalloc)
1702 */
1703 ext4_update_i_disksize(inode, (pos + copied));
1704 i_size_changed = 1;
1705 }
1706 unlock_page(page);
1707 page_cache_release(page);
1708
1709 /*
1710 * Don't mark the inode dirty under page lock. First, it unnecessarily
1711 * makes the holding time of page lock longer. Second, it forces lock
1712 * ordering of page lock and transaction start for journaling
1713 * filesystems.
1714 */
1715 if (i_size_changed)
1716 ext4_mark_inode_dirty(handle, inode);
1717
1718 return copied;
1719}
1720
ac27a0ec
DK
1721/*
1722 * We need to pick up the new inode size which generic_commit_write gave us
1723 * `file' can be NULL - eg, when called from page_symlink().
1724 *
617ba13b 1725 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1726 * buffers are managed internally.
1727 */
bfc1af65 1728static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1729 struct address_space *mapping,
1730 loff_t pos, unsigned len, unsigned copied,
1731 struct page *page, void *fsdata)
ac27a0ec 1732{
617ba13b 1733 handle_t *handle = ext4_journal_current_handle();
cf108bca 1734 struct inode *inode = mapping->host;
ac27a0ec
DK
1735 int ret = 0, ret2;
1736
9bffad1e 1737 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1738 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1739
1740 if (ret == 0) {
f8514083 1741 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1742 page, fsdata);
f8a87d89 1743 copied = ret2;
ffacfa7a 1744 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1745 /* if we have allocated more blocks and copied
1746 * less. We will have blocks allocated outside
1747 * inode->i_size. So truncate them
1748 */
1749 ext4_orphan_add(handle, inode);
f8a87d89
RK
1750 if (ret2 < 0)
1751 ret = ret2;
ac27a0ec 1752 }
617ba13b 1753 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1754 if (!ret)
1755 ret = ret2;
bfc1af65 1756
f8514083 1757 if (pos + len > inode->i_size) {
b9a4207d 1758 ext4_truncate_failed_write(inode);
de9a55b8 1759 /*
ffacfa7a 1760 * If truncate failed early the inode might still be
f8514083
AK
1761 * on the orphan list; we need to make sure the inode
1762 * is removed from the orphan list in that case.
1763 */
1764 if (inode->i_nlink)
1765 ext4_orphan_del(NULL, inode);
1766 }
1767
1768
bfc1af65 1769 return ret ? ret : copied;
ac27a0ec
DK
1770}
1771
bfc1af65 1772static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1773 struct address_space *mapping,
1774 loff_t pos, unsigned len, unsigned copied,
1775 struct page *page, void *fsdata)
ac27a0ec 1776{
617ba13b 1777 handle_t *handle = ext4_journal_current_handle();
cf108bca 1778 struct inode *inode = mapping->host;
ac27a0ec 1779 int ret = 0, ret2;
ac27a0ec 1780
9bffad1e 1781 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1782 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1783 page, fsdata);
f8a87d89 1784 copied = ret2;
ffacfa7a 1785 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1786 /* if we have allocated more blocks and copied
1787 * less. We will have blocks allocated outside
1788 * inode->i_size. So truncate them
1789 */
1790 ext4_orphan_add(handle, inode);
1791
f8a87d89
RK
1792 if (ret2 < 0)
1793 ret = ret2;
ac27a0ec 1794
617ba13b 1795 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1796 if (!ret)
1797 ret = ret2;
bfc1af65 1798
f8514083 1799 if (pos + len > inode->i_size) {
b9a4207d 1800 ext4_truncate_failed_write(inode);
de9a55b8 1801 /*
ffacfa7a 1802 * If truncate failed early the inode might still be
f8514083
AK
1803 * on the orphan list; we need to make sure the inode
1804 * is removed from the orphan list in that case.
1805 */
1806 if (inode->i_nlink)
1807 ext4_orphan_del(NULL, inode);
1808 }
1809
bfc1af65 1810 return ret ? ret : copied;
ac27a0ec
DK
1811}
1812
bfc1af65 1813static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1814 struct address_space *mapping,
1815 loff_t pos, unsigned len, unsigned copied,
1816 struct page *page, void *fsdata)
ac27a0ec 1817{
617ba13b 1818 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1819 struct inode *inode = mapping->host;
ac27a0ec
DK
1820 int ret = 0, ret2;
1821 int partial = 0;
bfc1af65 1822 unsigned from, to;
cf17fea6 1823 loff_t new_i_size;
ac27a0ec 1824
9bffad1e 1825 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1826 from = pos & (PAGE_CACHE_SIZE - 1);
1827 to = from + len;
1828
1829 if (copied < len) {
1830 if (!PageUptodate(page))
1831 copied = 0;
1832 page_zero_new_buffers(page, from+copied, to);
1833 }
ac27a0ec
DK
1834
1835 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1836 to, &partial, write_end_fn);
ac27a0ec
DK
1837 if (!partial)
1838 SetPageUptodate(page);
cf17fea6
AK
1839 new_i_size = pos + copied;
1840 if (new_i_size > inode->i_size)
bfc1af65 1841 i_size_write(inode, pos+copied);
19f5fb7a 1842 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1843 if (new_i_size > EXT4_I(inode)->i_disksize) {
1844 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1845 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1846 if (!ret)
1847 ret = ret2;
1848 }
bfc1af65 1849
cf108bca 1850 unlock_page(page);
f8514083 1851 page_cache_release(page);
ffacfa7a 1852 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1853 /* if we have allocated more blocks and copied
1854 * less. We will have blocks allocated outside
1855 * inode->i_size. So truncate them
1856 */
1857 ext4_orphan_add(handle, inode);
1858
617ba13b 1859 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1860 if (!ret)
1861 ret = ret2;
f8514083 1862 if (pos + len > inode->i_size) {
b9a4207d 1863 ext4_truncate_failed_write(inode);
de9a55b8 1864 /*
ffacfa7a 1865 * If truncate failed early the inode might still be
f8514083
AK
1866 * on the orphan list; we need to make sure the inode
1867 * is removed from the orphan list in that case.
1868 */
1869 if (inode->i_nlink)
1870 ext4_orphan_del(NULL, inode);
1871 }
bfc1af65
NP
1872
1873 return ret ? ret : copied;
ac27a0ec 1874}
d2a17637 1875
9d0be502
TT
1876/*
1877 * Reserve a single block located at lblock
1878 */
1879static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1880{
030ba6bc 1881 int retries = 0;
60e58e0f 1882 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1883 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1884 unsigned long md_needed;
5dd4056d 1885 int ret;
d2a17637
MC
1886
1887 /*
1888 * recalculate the amount of metadata blocks to reserve
1889 * in order to allocate nrblocks
1890 * worse case is one extent per block
1891 */
030ba6bc 1892repeat:
0637c6f4 1893 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1894 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1895 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1896 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1897
60e58e0f 1898 /*
72b8ab9d
ES
1899 * We will charge metadata quota at writeout time; this saves
1900 * us from metadata over-estimation, though we may go over by
1901 * a small amount in the end. Here we just reserve for data.
60e58e0f 1902 */
72b8ab9d 1903 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1904 if (ret)
1905 return ret;
72b8ab9d
ES
1906 /*
1907 * We do still charge estimated metadata to the sb though;
1908 * we cannot afford to run out of free blocks.
1909 */
9d0be502 1910 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1911 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1912 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1913 yield();
1914 goto repeat;
1915 }
d2a17637
MC
1916 return -ENOSPC;
1917 }
0637c6f4 1918 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1919 ei->i_reserved_data_blocks++;
0637c6f4
TT
1920 ei->i_reserved_meta_blocks += md_needed;
1921 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1922
d2a17637
MC
1923 return 0; /* success */
1924}
1925
12219aea 1926static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1927{
1928 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1929 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1930
cd213226
MC
1931 if (!to_free)
1932 return; /* Nothing to release, exit */
1933
d2a17637 1934 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1935
5a58ec87 1936 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1937 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1938 /*
0637c6f4
TT
1939 * if there aren't enough reserved blocks, then the
1940 * counter is messed up somewhere. Since this
1941 * function is called from invalidate page, it's
1942 * harmless to return without any action.
cd213226 1943 */
0637c6f4
TT
1944 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1945 "ino %lu, to_free %d with only %d reserved "
1946 "data blocks\n", inode->i_ino, to_free,
1947 ei->i_reserved_data_blocks);
1948 WARN_ON(1);
1949 to_free = ei->i_reserved_data_blocks;
cd213226 1950 }
0637c6f4 1951 ei->i_reserved_data_blocks -= to_free;
cd213226 1952
0637c6f4
TT
1953 if (ei->i_reserved_data_blocks == 0) {
1954 /*
1955 * We can release all of the reserved metadata blocks
1956 * only when we have written all of the delayed
1957 * allocation blocks.
1958 */
72b8ab9d
ES
1959 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1960 ei->i_reserved_meta_blocks);
ee5f4d9c 1961 ei->i_reserved_meta_blocks = 0;
9d0be502 1962 ei->i_da_metadata_calc_len = 0;
0637c6f4 1963 }
d2a17637 1964
72b8ab9d 1965 /* update fs dirty data blocks counter */
0637c6f4 1966 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1967
d2a17637 1968 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1969
5dd4056d 1970 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1971}
1972
1973static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1974 unsigned long offset)
d2a17637
MC
1975{
1976 int to_release = 0;
1977 struct buffer_head *head, *bh;
1978 unsigned int curr_off = 0;
1979
1980 head = page_buffers(page);
1981 bh = head;
1982 do {
1983 unsigned int next_off = curr_off + bh->b_size;
1984
1985 if ((offset <= curr_off) && (buffer_delay(bh))) {
1986 to_release++;
1987 clear_buffer_delay(bh);
1988 }
1989 curr_off = next_off;
1990 } while ((bh = bh->b_this_page) != head);
12219aea 1991 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1992}
ac27a0ec 1993
64769240
AT
1994/*
1995 * Delayed allocation stuff
1996 */
1997
64769240
AT
1998/*
1999 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 2000 * them with writepage() call back
64769240
AT
2001 *
2002 * @mpd->inode: inode
2003 * @mpd->first_page: first page of the extent
2004 * @mpd->next_page: page after the last page of the extent
64769240
AT
2005 *
2006 * By the time mpage_da_submit_io() is called we expect all blocks
2007 * to be allocated. this may be wrong if allocation failed.
2008 *
2009 * As pages are already locked by write_cache_pages(), we can't use it
2010 */
1de3e3df
TT
2011static int mpage_da_submit_io(struct mpage_da_data *mpd,
2012 struct ext4_map_blocks *map)
64769240 2013{
791b7f08
AK
2014 struct pagevec pvec;
2015 unsigned long index, end;
2016 int ret = 0, err, nr_pages, i;
2017 struct inode *inode = mpd->inode;
2018 struct address_space *mapping = inode->i_mapping;
cb20d518 2019 loff_t size = i_size_read(inode);
3ecdb3a1
TT
2020 unsigned int len, block_start;
2021 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 2022 int journal_data = ext4_should_journal_data(inode);
1de3e3df 2023 sector_t pblock = 0, cur_logical = 0;
bd2d0210 2024 struct ext4_io_submit io_submit;
64769240
AT
2025
2026 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 2027 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
2028 /*
2029 * We need to start from the first_page to the next_page - 1
2030 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 2031 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
2032 * at the currently mapped buffer_heads.
2033 */
64769240
AT
2034 index = mpd->first_page;
2035 end = mpd->next_page - 1;
2036
791b7f08 2037 pagevec_init(&pvec, 0);
64769240 2038 while (index <= end) {
791b7f08 2039 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
2040 if (nr_pages == 0)
2041 break;
2042 for (i = 0; i < nr_pages; i++) {
1de3e3df 2043 int commit_write = 0, redirty_page = 0;
64769240
AT
2044 struct page *page = pvec.pages[i];
2045
791b7f08
AK
2046 index = page->index;
2047 if (index > end)
2048 break;
cb20d518
TT
2049
2050 if (index == size >> PAGE_CACHE_SHIFT)
2051 len = size & ~PAGE_CACHE_MASK;
2052 else
2053 len = PAGE_CACHE_SIZE;
1de3e3df
TT
2054 if (map) {
2055 cur_logical = index << (PAGE_CACHE_SHIFT -
2056 inode->i_blkbits);
2057 pblock = map->m_pblk + (cur_logical -
2058 map->m_lblk);
2059 }
791b7f08
AK
2060 index++;
2061
2062 BUG_ON(!PageLocked(page));
2063 BUG_ON(PageWriteback(page));
2064
cb20d518
TT
2065 /*
2066 * If the page does not have buffers (for
2067 * whatever reason), try to create them using
2068 * block_prepare_write. If this fails,
2069 * redirty the page and move on.
2070 */
2071 if (!page_has_buffers(page)) {
2072 if (block_prepare_write(page, 0, len,
2073 noalloc_get_block_write)) {
2074 redirty_page:
2075 redirty_page_for_writepage(mpd->wbc,
2076 page);
2077 unlock_page(page);
2078 continue;
2079 }
2080 commit_write = 1;
2081 }
3ecdb3a1
TT
2082
2083 bh = page_bufs = page_buffers(page);
2084 block_start = 0;
2085 do {
1de3e3df 2086 if (!bh)
3ecdb3a1 2087 goto redirty_page;
1de3e3df
TT
2088 if (map && (cur_logical >= map->m_lblk) &&
2089 (cur_logical <= (map->m_lblk +
2090 (map->m_len - 1)))) {
2091 if (buffer_delay(bh)) {
2092 clear_buffer_delay(bh);
2093 bh->b_blocknr = pblock;
2094 }
2095 if (buffer_unwritten(bh) ||
2096 buffer_mapped(bh))
2097 BUG_ON(bh->b_blocknr != pblock);
2098 if (map->m_flags & EXT4_MAP_UNINIT)
2099 set_buffer_uninit(bh);
2100 clear_buffer_unwritten(bh);
2101 }
2102
2103 /* redirty page if block allocation undone */
2104 if (buffer_delay(bh) || buffer_unwritten(bh))
2105 redirty_page = 1;
3ecdb3a1
TT
2106 bh = bh->b_this_page;
2107 block_start += bh->b_size;
1de3e3df
TT
2108 cur_logical++;
2109 pblock++;
2110 } while (bh != page_bufs);
2111
2112 if (redirty_page)
2113 goto redirty_page;
cb20d518
TT
2114
2115 if (commit_write)
2116 /* mark the buffer_heads as dirty & uptodate */
2117 block_commit_write(page, 0, len);
2118
bd2d0210
TT
2119 /*
2120 * Delalloc doesn't support data journalling,
2121 * but eventually maybe we'll lift this
2122 * restriction.
2123 */
2124 if (unlikely(journal_data && PageChecked(page)))
cb20d518 2125 err = __ext4_journalled_writepage(page, len);
bd2d0210
TT
2126 else
2127 err = ext4_bio_write_page(&io_submit, page,
2128 len, mpd->wbc);
cb20d518
TT
2129
2130 if (!err)
a1d6cc56 2131 mpd->pages_written++;
64769240
AT
2132 /*
2133 * In error case, we have to continue because
2134 * remaining pages are still locked
64769240
AT
2135 */
2136 if (ret == 0)
2137 ret = err;
2138 }
2139 pagevec_release(&pvec);
2140 }
bd2d0210 2141 ext4_io_submit(&io_submit);
64769240
AT
2142 return ret;
2143}
2144
c4a0c46e
AK
2145static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2146 sector_t logical, long blk_cnt)
2147{
2148 int nr_pages, i;
2149 pgoff_t index, end;
2150 struct pagevec pvec;
2151 struct inode *inode = mpd->inode;
2152 struct address_space *mapping = inode->i_mapping;
2153
2154 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2155 end = (logical + blk_cnt - 1) >>
2156 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2157 while (index <= end) {
2158 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2159 if (nr_pages == 0)
2160 break;
2161 for (i = 0; i < nr_pages; i++) {
2162 struct page *page = pvec.pages[i];
9b1d0998 2163 if (page->index > end)
c4a0c46e 2164 break;
c4a0c46e
AK
2165 BUG_ON(!PageLocked(page));
2166 BUG_ON(PageWriteback(page));
2167 block_invalidatepage(page, 0);
2168 ClearPageUptodate(page);
2169 unlock_page(page);
2170 }
9b1d0998
JK
2171 index = pvec.pages[nr_pages - 1]->index + 1;
2172 pagevec_release(&pvec);
c4a0c46e
AK
2173 }
2174 return;
2175}
2176
df22291f
AK
2177static void ext4_print_free_blocks(struct inode *inode)
2178{
2179 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2180 printk(KERN_CRIT "Total free blocks count %lld\n",
2181 ext4_count_free_blocks(inode->i_sb));
2182 printk(KERN_CRIT "Free/Dirty block details\n");
2183 printk(KERN_CRIT "free_blocks=%lld\n",
2184 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2185 printk(KERN_CRIT "dirty_blocks=%lld\n",
2186 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2187 printk(KERN_CRIT "Block reservation details\n");
2188 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2189 EXT4_I(inode)->i_reserved_data_blocks);
2190 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2191 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2192 return;
2193}
2194
64769240 2195/*
5a87b7a5
TT
2196 * mpage_da_map_and_submit - go through given space, map them
2197 * if necessary, and then submit them for I/O
64769240 2198 *
8dc207c0 2199 * @mpd - bh describing space
64769240
AT
2200 *
2201 * The function skips space we know is already mapped to disk blocks.
2202 *
64769240 2203 */
5a87b7a5 2204static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 2205{
2ac3b6e0 2206 int err, blks, get_blocks_flags;
1de3e3df 2207 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
2208 sector_t next = mpd->b_blocknr;
2209 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2210 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2211 handle_t *handle = NULL;
64769240
AT
2212
2213 /*
5a87b7a5
TT
2214 * If the blocks are mapped already, or we couldn't accumulate
2215 * any blocks, then proceed immediately to the submission stage.
64769240 2216 */
5a87b7a5
TT
2217 if ((mpd->b_size == 0) ||
2218 ((mpd->b_state & (1 << BH_Mapped)) &&
2219 !(mpd->b_state & (1 << BH_Delay)) &&
2220 !(mpd->b_state & (1 << BH_Unwritten))))
2221 goto submit_io;
2fa3cdfb
TT
2222
2223 handle = ext4_journal_current_handle();
2224 BUG_ON(!handle);
2225
79ffab34 2226 /*
79e83036 2227 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
2228 * blocks, or to convert an uninitialized extent to be
2229 * initialized (in the case where we have written into
2230 * one or more preallocated blocks).
2231 *
2232 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2233 * indicate that we are on the delayed allocation path. This
2234 * affects functions in many different parts of the allocation
2235 * call path. This flag exists primarily because we don't
79e83036 2236 * want to change *many* call functions, so ext4_map_blocks()
2ac3b6e0
TT
2237 * will set the magic i_delalloc_reserved_flag once the
2238 * inode's allocation semaphore is taken.
2239 *
2240 * If the blocks in questions were delalloc blocks, set
2241 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2242 * variables are updated after the blocks have been allocated.
79ffab34 2243 */
2ed88685
TT
2244 map.m_lblk = next;
2245 map.m_len = max_blocks;
1296cc85 2246 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2247 if (ext4_should_dioread_nolock(mpd->inode))
2248 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2249 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2250 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2251
2ed88685 2252 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 2253 if (blks < 0) {
e3570639
ES
2254 struct super_block *sb = mpd->inode->i_sb;
2255
2fa3cdfb 2256 err = blks;
ed5bde0b 2257 /*
5a87b7a5
TT
2258 * If get block returns EAGAIN or ENOSPC and there
2259 * appears to be free blocks we will call
2260 * ext4_writepage() for all of the pages which will
2261 * just redirty the pages.
c4a0c46e
AK
2262 */
2263 if (err == -EAGAIN)
5a87b7a5 2264 goto submit_io;
df22291f
AK
2265
2266 if (err == -ENOSPC &&
e3570639 2267 ext4_count_free_blocks(sb)) {
df22291f 2268 mpd->retval = err;
5a87b7a5 2269 goto submit_io;
df22291f
AK
2270 }
2271
c4a0c46e 2272 /*
ed5bde0b
TT
2273 * get block failure will cause us to loop in
2274 * writepages, because a_ops->writepage won't be able
2275 * to make progress. The page will be redirtied by
2276 * writepage and writepages will again try to write
2277 * the same.
c4a0c46e 2278 */
e3570639
ES
2279 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2280 ext4_msg(sb, KERN_CRIT,
2281 "delayed block allocation failed for inode %lu "
2282 "at logical offset %llu with max blocks %zd "
2283 "with error %d", mpd->inode->i_ino,
2284 (unsigned long long) next,
2285 mpd->b_size >> mpd->inode->i_blkbits, err);
2286 ext4_msg(sb, KERN_CRIT,
2287 "This should not happen!! Data will be lost\n");
2288 if (err == -ENOSPC)
2289 ext4_print_free_blocks(mpd->inode);
030ba6bc 2290 }
2fa3cdfb 2291 /* invalidate all the pages */
c4a0c46e 2292 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2293 mpd->b_size >> mpd->inode->i_blkbits);
5a87b7a5 2294 return;
c4a0c46e 2295 }
2fa3cdfb
TT
2296 BUG_ON(blks == 0);
2297
1de3e3df 2298 mapp = &map;
2ed88685
TT
2299 if (map.m_flags & EXT4_MAP_NEW) {
2300 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2301 int i;
64769240 2302
2ed88685
TT
2303 for (i = 0; i < map.m_len; i++)
2304 unmap_underlying_metadata(bdev, map.m_pblk + i);
2305 }
64769240 2306
2fa3cdfb
TT
2307 if (ext4_should_order_data(mpd->inode)) {
2308 err = ext4_jbd2_file_inode(handle, mpd->inode);
2309 if (err)
5a87b7a5
TT
2310 /* This only happens if the journal is aborted */
2311 return;
2fa3cdfb
TT
2312 }
2313
2314 /*
03f5d8bc 2315 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2316 */
2317 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2318 if (disksize > i_size_read(mpd->inode))
2319 disksize = i_size_read(mpd->inode);
2320 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2321 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
2322 err = ext4_mark_inode_dirty(handle, mpd->inode);
2323 if (err)
2324 ext4_error(mpd->inode->i_sb,
2325 "Failed to mark inode %lu dirty",
2326 mpd->inode->i_ino);
2fa3cdfb
TT
2327 }
2328
5a87b7a5 2329submit_io:
1de3e3df 2330 mpage_da_submit_io(mpd, mapp);
5a87b7a5 2331 mpd->io_done = 1;
64769240
AT
2332}
2333
bf068ee2
AK
2334#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2335 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2336
2337/*
2338 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2339 *
2340 * @mpd->lbh - extent of blocks
2341 * @logical - logical number of the block in the file
2342 * @bh - bh of the block (used to access block's state)
2343 *
2344 * the function is used to collect contig. blocks in same state
2345 */
2346static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2347 sector_t logical, size_t b_size,
2348 unsigned long b_state)
64769240 2349{
64769240 2350 sector_t next;
8dc207c0 2351 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2352
c445e3e0
ES
2353 /*
2354 * XXX Don't go larger than mballoc is willing to allocate
2355 * This is a stopgap solution. We eventually need to fold
2356 * mpage_da_submit_io() into this function and then call
79e83036 2357 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
2358 */
2359 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2360 goto flush_it;
2361
525f4ed8 2362 /* check if thereserved journal credits might overflow */
12e9b892 2363 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
2364 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2365 /*
2366 * With non-extent format we are limited by the journal
2367 * credit available. Total credit needed to insert
2368 * nrblocks contiguous blocks is dependent on the
2369 * nrblocks. So limit nrblocks.
2370 */
2371 goto flush_it;
2372 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2373 EXT4_MAX_TRANS_DATA) {
2374 /*
2375 * Adding the new buffer_head would make it cross the
2376 * allowed limit for which we have journal credit
2377 * reserved. So limit the new bh->b_size
2378 */
2379 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2380 mpd->inode->i_blkbits;
2381 /* we will do mpage_da_submit_io in the next loop */
2382 }
2383 }
64769240
AT
2384 /*
2385 * First block in the extent
2386 */
8dc207c0
TT
2387 if (mpd->b_size == 0) {
2388 mpd->b_blocknr = logical;
2389 mpd->b_size = b_size;
2390 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2391 return;
2392 }
2393
8dc207c0 2394 next = mpd->b_blocknr + nrblocks;
64769240
AT
2395 /*
2396 * Can we merge the block to our big extent?
2397 */
8dc207c0
TT
2398 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2399 mpd->b_size += b_size;
64769240
AT
2400 return;
2401 }
2402
525f4ed8 2403flush_it:
64769240
AT
2404 /*
2405 * We couldn't merge the block to our extent, so we
2406 * need to flush current extent and start new one
2407 */
5a87b7a5 2408 mpage_da_map_and_submit(mpd);
a1d6cc56 2409 return;
64769240
AT
2410}
2411
c364b22c 2412static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2413{
c364b22c 2414 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2415}
2416
64769240
AT
2417/*
2418 * __mpage_da_writepage - finds extent of pages and blocks
2419 *
2420 * @page: page to consider
2421 * @wbc: not used, we just follow rules
2422 * @data: context
2423 *
2424 * The function finds extents of pages and scan them for all blocks.
2425 */
2426static int __mpage_da_writepage(struct page *page,
2427 struct writeback_control *wbc, void *data)
2428{
2429 struct mpage_da_data *mpd = data;
2430 struct inode *inode = mpd->inode;
8dc207c0 2431 struct buffer_head *bh, *head;
64769240
AT
2432 sector_t logical;
2433
2434 /*
2435 * Can we merge this page to current extent?
2436 */
2437 if (mpd->next_page != page->index) {
2438 /*
2439 * Nope, we can't. So, we map non-allocated blocks
5a87b7a5 2440 * and start IO on them
64769240
AT
2441 */
2442 if (mpd->next_page != mpd->first_page) {
5a87b7a5 2443 mpage_da_map_and_submit(mpd);
a1d6cc56
AK
2444 /*
2445 * skip rest of the page in the page_vec
2446 */
a1d6cc56
AK
2447 redirty_page_for_writepage(wbc, page);
2448 unlock_page(page);
2449 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2450 }
2451
2452 /*
2453 * Start next extent of pages ...
2454 */
2455 mpd->first_page = page->index;
2456
2457 /*
2458 * ... and blocks
2459 */
8dc207c0
TT
2460 mpd->b_size = 0;
2461 mpd->b_state = 0;
2462 mpd->b_blocknr = 0;
64769240
AT
2463 }
2464
2465 mpd->next_page = page->index + 1;
2466 logical = (sector_t) page->index <<
2467 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2468
2469 if (!page_has_buffers(page)) {
8dc207c0
TT
2470 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2471 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2472 if (mpd->io_done)
2473 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2474 } else {
2475 /*
2476 * Page with regular buffer heads, just add all dirty ones
2477 */
2478 head = page_buffers(page);
2479 bh = head;
2480 do {
2481 BUG_ON(buffer_locked(bh));
791b7f08
AK
2482 /*
2483 * We need to try to allocate
2484 * unmapped blocks in the same page.
2485 * Otherwise we won't make progress
43ce1d23 2486 * with the page in ext4_writepage
791b7f08 2487 */
c364b22c 2488 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2489 mpage_add_bh_to_extent(mpd, logical,
2490 bh->b_size,
2491 bh->b_state);
a1d6cc56
AK
2492 if (mpd->io_done)
2493 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2494 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2495 /*
2496 * mapped dirty buffer. We need to update
2497 * the b_state because we look at
2498 * b_state in mpage_da_map_blocks. We don't
2499 * update b_size because if we find an
2500 * unmapped buffer_head later we need to
2501 * use the b_state flag of that buffer_head.
2502 */
8dc207c0
TT
2503 if (mpd->b_size == 0)
2504 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2505 }
64769240
AT
2506 logical++;
2507 } while ((bh = bh->b_this_page) != head);
2508 }
2509
2510 return 0;
2511}
2512
64769240 2513/*
b920c755
TT
2514 * This is a special get_blocks_t callback which is used by
2515 * ext4_da_write_begin(). It will either return mapped block or
2516 * reserve space for a single block.
29fa89d0
AK
2517 *
2518 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2519 * We also have b_blocknr = -1 and b_bdev initialized properly
2520 *
2521 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2522 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2523 * initialized properly.
64769240
AT
2524 */
2525static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 2526 struct buffer_head *bh, int create)
64769240 2527{
2ed88685 2528 struct ext4_map_blocks map;
64769240 2529 int ret = 0;
33b9817e
AK
2530 sector_t invalid_block = ~((sector_t) 0xffff);
2531
2532 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2533 invalid_block = ~0;
64769240
AT
2534
2535 BUG_ON(create == 0);
2ed88685
TT
2536 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2537
2538 map.m_lblk = iblock;
2539 map.m_len = 1;
64769240
AT
2540
2541 /*
2542 * first, we need to know whether the block is allocated already
2543 * preallocated blocks are unmapped but should treated
2544 * the same as allocated blocks.
2545 */
2ed88685
TT
2546 ret = ext4_map_blocks(NULL, inode, &map, 0);
2547 if (ret < 0)
2548 return ret;
2549 if (ret == 0) {
2550 if (buffer_delay(bh))
2551 return 0; /* Not sure this could or should happen */
64769240
AT
2552 /*
2553 * XXX: __block_prepare_write() unmaps passed block,
2554 * is it OK?
2555 */
9d0be502 2556 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2557 if (ret)
2558 /* not enough space to reserve */
2559 return ret;
2560
2ed88685
TT
2561 map_bh(bh, inode->i_sb, invalid_block);
2562 set_buffer_new(bh);
2563 set_buffer_delay(bh);
2564 return 0;
64769240
AT
2565 }
2566
2ed88685
TT
2567 map_bh(bh, inode->i_sb, map.m_pblk);
2568 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2569
2570 if (buffer_unwritten(bh)) {
2571 /* A delayed write to unwritten bh should be marked
2572 * new and mapped. Mapped ensures that we don't do
2573 * get_block multiple times when we write to the same
2574 * offset and new ensures that we do proper zero out
2575 * for partial write.
2576 */
2577 set_buffer_new(bh);
2578 set_buffer_mapped(bh);
2579 }
2580 return 0;
64769240 2581}
61628a3f 2582
b920c755
TT
2583/*
2584 * This function is used as a standard get_block_t calback function
2585 * when there is no desire to allocate any blocks. It is used as a
206f7ab4
CH
2586 * callback function for block_prepare_write() and block_write_full_page().
2587 * These functions should only try to map a single block at a time.
b920c755
TT
2588 *
2589 * Since this function doesn't do block allocations even if the caller
2590 * requests it by passing in create=1, it is critically important that
2591 * any caller checks to make sure that any buffer heads are returned
2592 * by this function are either all already mapped or marked for
206f7ab4
CH
2593 * delayed allocation before calling block_write_full_page(). Otherwise,
2594 * b_blocknr could be left unitialized, and the page write functions will
2595 * be taken by surprise.
b920c755
TT
2596 */
2597static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2598 struct buffer_head *bh_result, int create)
2599{
a2dc52b5 2600 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 2601 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
2602}
2603
62e086be
AK
2604static int bget_one(handle_t *handle, struct buffer_head *bh)
2605{
2606 get_bh(bh);
2607 return 0;
2608}
2609
2610static int bput_one(handle_t *handle, struct buffer_head *bh)
2611{
2612 put_bh(bh);
2613 return 0;
2614}
2615
2616static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2617 unsigned int len)
2618{
2619 struct address_space *mapping = page->mapping;
2620 struct inode *inode = mapping->host;
2621 struct buffer_head *page_bufs;
2622 handle_t *handle = NULL;
2623 int ret = 0;
2624 int err;
2625
cb20d518 2626 ClearPageChecked(page);
62e086be
AK
2627 page_bufs = page_buffers(page);
2628 BUG_ON(!page_bufs);
2629 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2630 /* As soon as we unlock the page, it can go away, but we have
2631 * references to buffers so we are safe */
2632 unlock_page(page);
2633
2634 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2635 if (IS_ERR(handle)) {
2636 ret = PTR_ERR(handle);
2637 goto out;
2638 }
2639
2640 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2641 do_journal_get_write_access);
2642
2643 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2644 write_end_fn);
2645 if (ret == 0)
2646 ret = err;
2647 err = ext4_journal_stop(handle);
2648 if (!ret)
2649 ret = err;
2650
2651 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2652 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2653out:
2654 return ret;
2655}
2656
744692dc
JZ
2657static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2658static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2659
61628a3f 2660/*
43ce1d23
AK
2661 * Note that we don't need to start a transaction unless we're journaling data
2662 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2663 * need to file the inode to the transaction's list in ordered mode because if
2664 * we are writing back data added by write(), the inode is already there and if
2665 * we are writing back data modified via mmap(), noone guarantees in which
2666 * transaction the data will hit the disk. In case we are journaling data, we
2667 * cannot start transaction directly because transaction start ranks above page
2668 * lock so we have to do some magic.
2669 *
b920c755
TT
2670 * This function can get called via...
2671 * - ext4_da_writepages after taking page lock (have journal handle)
2672 * - journal_submit_inode_data_buffers (no journal handle)
2673 * - shrink_page_list via pdflush (no journal handle)
2674 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2675 *
2676 * We don't do any block allocation in this function. If we have page with
2677 * multiple blocks we need to write those buffer_heads that are mapped. This
2678 * is important for mmaped based write. So if we do with blocksize 1K
2679 * truncate(f, 1024);
2680 * a = mmap(f, 0, 4096);
2681 * a[0] = 'a';
2682 * truncate(f, 4096);
2683 * we have in the page first buffer_head mapped via page_mkwrite call back
2684 * but other bufer_heads would be unmapped but dirty(dirty done via the
2685 * do_wp_page). So writepage should write the first block. If we modify
2686 * the mmap area beyond 1024 we will again get a page_fault and the
2687 * page_mkwrite callback will do the block allocation and mark the
2688 * buffer_heads mapped.
2689 *
2690 * We redirty the page if we have any buffer_heads that is either delay or
2691 * unwritten in the page.
2692 *
2693 * We can get recursively called as show below.
2694 *
2695 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2696 * ext4_writepage()
2697 *
2698 * But since we don't do any block allocation we should not deadlock.
2699 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2700 */
43ce1d23 2701static int ext4_writepage(struct page *page,
62e086be 2702 struct writeback_control *wbc)
64769240 2703{
a42afc5f 2704 int ret = 0, commit_write = 0;
61628a3f 2705 loff_t size;
498e5f24 2706 unsigned int len;
744692dc 2707 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2708 struct inode *inode = page->mapping->host;
2709
43ce1d23 2710 trace_ext4_writepage(inode, page);
f0e6c985
AK
2711 size = i_size_read(inode);
2712 if (page->index == size >> PAGE_CACHE_SHIFT)
2713 len = size & ~PAGE_CACHE_MASK;
2714 else
2715 len = PAGE_CACHE_SIZE;
64769240 2716
a42afc5f
TT
2717 /*
2718 * If the page does not have buffers (for whatever reason),
2719 * try to create them using block_prepare_write. If this
2720 * fails, redirty the page and move on.
2721 */
2722 if (!page_buffers(page)) {
2723 if (block_prepare_write(page, 0, len,
2724 noalloc_get_block_write)) {
2725 redirty_page:
f0e6c985
AK
2726 redirty_page_for_writepage(wbc, page);
2727 unlock_page(page);
2728 return 0;
2729 }
a42afc5f
TT
2730 commit_write = 1;
2731 }
2732 page_bufs = page_buffers(page);
2733 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2734 ext4_bh_delay_or_unwritten)) {
f0e6c985 2735 /*
a42afc5f
TT
2736 * We don't want to do block allocation So redirty the
2737 * page and return We may reach here when we do a
2738 * journal commit via
2739 * journal_submit_inode_data_buffers. If we don't
2740 * have mapping block we just ignore them. We can also
2741 * reach here via shrink_page_list
f0e6c985 2742 */
a42afc5f
TT
2743 goto redirty_page;
2744 }
2745 if (commit_write)
ed9b3e33 2746 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2747 block_commit_write(page, 0, len);
64769240 2748
cb20d518 2749 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2750 /*
2751 * It's mmapped pagecache. Add buffers and journal it. There
2752 * doesn't seem much point in redirtying the page here.
2753 */
3f0ca309 2754 return __ext4_journalled_writepage(page, len);
43ce1d23 2755
a42afc5f 2756 if (buffer_uninit(page_bufs)) {
744692dc
JZ
2757 ext4_set_bh_endio(page_bufs, inode);
2758 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2759 wbc, ext4_end_io_buffer_write);
2760 } else
b920c755
TT
2761 ret = block_write_full_page(page, noalloc_get_block_write,
2762 wbc);
64769240 2763
64769240
AT
2764 return ret;
2765}
2766
61628a3f 2767/*
525f4ed8
MC
2768 * This is called via ext4_da_writepages() to
2769 * calulate the total number of credits to reserve to fit
2770 * a single extent allocation into a single transaction,
2771 * ext4_da_writpeages() will loop calling this before
2772 * the block allocation.
61628a3f 2773 */
525f4ed8
MC
2774
2775static int ext4_da_writepages_trans_blocks(struct inode *inode)
2776{
2777 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2778
2779 /*
2780 * With non-extent format the journal credit needed to
2781 * insert nrblocks contiguous block is dependent on
2782 * number of contiguous block. So we will limit
2783 * number of contiguous block to a sane value
2784 */
12e9b892 2785 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2786 (max_blocks > EXT4_MAX_TRANS_DATA))
2787 max_blocks = EXT4_MAX_TRANS_DATA;
2788
2789 return ext4_chunk_trans_blocks(inode, max_blocks);
2790}
61628a3f 2791
8e48dcfb
TT
2792/*
2793 * write_cache_pages_da - walk the list of dirty pages of the given
2794 * address space and call the callback function (which usually writes
2795 * the pages).
2796 *
2797 * This is a forked version of write_cache_pages(). Differences:
2798 * Range cyclic is ignored.
2799 * no_nrwrite_index_update is always presumed true
2800 */
2801static int write_cache_pages_da(struct address_space *mapping,
2802 struct writeback_control *wbc,
2803 struct mpage_da_data *mpd)
2804{
2805 int ret = 0;
2806 int done = 0;
2807 struct pagevec pvec;
2808 int nr_pages;
2809 pgoff_t index;
2810 pgoff_t end; /* Inclusive */
2811 long nr_to_write = wbc->nr_to_write;
2812
2813 pagevec_init(&pvec, 0);
2814 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2815 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2816
2817 while (!done && (index <= end)) {
2818 int i;
2819
2820 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2821 PAGECACHE_TAG_DIRTY,
2822 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2823 if (nr_pages == 0)
2824 break;
2825
2826 for (i = 0; i < nr_pages; i++) {
2827 struct page *page = pvec.pages[i];
2828
2829 /*
2830 * At this point, the page may be truncated or
2831 * invalidated (changing page->mapping to NULL), or
2832 * even swizzled back from swapper_space to tmpfs file
2833 * mapping. However, page->index will not change
2834 * because we have a reference on the page.
2835 */
2836 if (page->index > end) {
2837 done = 1;
2838 break;
2839 }
2840
2841 lock_page(page);
2842
2843 /*
2844 * Page truncated or invalidated. We can freely skip it
2845 * then, even for data integrity operations: the page
2846 * has disappeared concurrently, so there could be no
2847 * real expectation of this data interity operation
2848 * even if there is now a new, dirty page at the same
2849 * pagecache address.
2850 */
2851 if (unlikely(page->mapping != mapping)) {
2852continue_unlock:
2853 unlock_page(page);
2854 continue;
2855 }
2856
2857 if (!PageDirty(page)) {
2858 /* someone wrote it for us */
2859 goto continue_unlock;
2860 }
2861
2862 if (PageWriteback(page)) {
2863 if (wbc->sync_mode != WB_SYNC_NONE)
2864 wait_on_page_writeback(page);
2865 else
2866 goto continue_unlock;
2867 }
2868
2869 BUG_ON(PageWriteback(page));
2870 if (!clear_page_dirty_for_io(page))
2871 goto continue_unlock;
2872
2873 ret = __mpage_da_writepage(page, wbc, mpd);
2874 if (unlikely(ret)) {
2875 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2876 unlock_page(page);
2877 ret = 0;
2878 } else {
2879 done = 1;
2880 break;
2881 }
2882 }
2883
2884 if (nr_to_write > 0) {
2885 nr_to_write--;
2886 if (nr_to_write == 0 &&
2887 wbc->sync_mode == WB_SYNC_NONE) {
2888 /*
2889 * We stop writing back only if we are
2890 * not doing integrity sync. In case of
2891 * integrity sync we have to keep going
2892 * because someone may be concurrently
2893 * dirtying pages, and we might have
2894 * synced a lot of newly appeared dirty
2895 * pages, but have not synced all of the
2896 * old dirty pages.
2897 */
2898 done = 1;
2899 break;
2900 }
2901 }
2902 }
2903 pagevec_release(&pvec);
2904 cond_resched();
2905 }
2906 return ret;
2907}
2908
2909
64769240 2910static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2911 struct writeback_control *wbc)
64769240 2912{
22208ded
AK
2913 pgoff_t index;
2914 int range_whole = 0;
61628a3f 2915 handle_t *handle = NULL;
df22291f 2916 struct mpage_da_data mpd;
5e745b04 2917 struct inode *inode = mapping->host;
498e5f24
TT
2918 int pages_written = 0;
2919 long pages_skipped;
55138e0b 2920 unsigned int max_pages;
2acf2c26 2921 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2922 int needed_blocks, ret = 0;
2923 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2924 loff_t range_start = wbc->range_start;
5e745b04 2925 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2926
9bffad1e 2927 trace_ext4_da_writepages(inode, wbc);
ba80b101 2928
61628a3f
MC
2929 /*
2930 * No pages to write? This is mainly a kludge to avoid starting
2931 * a transaction for special inodes like journal inode on last iput()
2932 * because that could violate lock ordering on umount
2933 */
a1d6cc56 2934 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2935 return 0;
2a21e37e
TT
2936
2937 /*
2938 * If the filesystem has aborted, it is read-only, so return
2939 * right away instead of dumping stack traces later on that
2940 * will obscure the real source of the problem. We test
4ab2f15b 2941 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2942 * the latter could be true if the filesystem is mounted
2943 * read-only, and in that case, ext4_da_writepages should
2944 * *never* be called, so if that ever happens, we would want
2945 * the stack trace.
2946 */
4ab2f15b 2947 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2948 return -EROFS;
2949
22208ded
AK
2950 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2951 range_whole = 1;
61628a3f 2952
2acf2c26
AK
2953 range_cyclic = wbc->range_cyclic;
2954 if (wbc->range_cyclic) {
22208ded 2955 index = mapping->writeback_index;
2acf2c26
AK
2956 if (index)
2957 cycled = 0;
2958 wbc->range_start = index << PAGE_CACHE_SHIFT;
2959 wbc->range_end = LLONG_MAX;
2960 wbc->range_cyclic = 0;
2961 } else
22208ded 2962 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2963
55138e0b
TT
2964 /*
2965 * This works around two forms of stupidity. The first is in
2966 * the writeback code, which caps the maximum number of pages
2967 * written to be 1024 pages. This is wrong on multiple
2968 * levels; different architectues have a different page size,
2969 * which changes the maximum amount of data which gets
2970 * written. Secondly, 4 megabytes is way too small. XFS
2971 * forces this value to be 16 megabytes by multiplying
2972 * nr_to_write parameter by four, and then relies on its
2973 * allocator to allocate larger extents to make them
2974 * contiguous. Unfortunately this brings us to the second
2975 * stupidity, which is that ext4's mballoc code only allocates
2976 * at most 2048 blocks. So we force contiguous writes up to
2977 * the number of dirty blocks in the inode, or
2978 * sbi->max_writeback_mb_bump whichever is smaller.
2979 */
2980 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2981 if (!range_cyclic && range_whole) {
2982 if (wbc->nr_to_write == LONG_MAX)
2983 desired_nr_to_write = wbc->nr_to_write;
2984 else
2985 desired_nr_to_write = wbc->nr_to_write * 8;
2986 } else
55138e0b
TT
2987 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2988 max_pages);
2989 if (desired_nr_to_write > max_pages)
2990 desired_nr_to_write = max_pages;
2991
2992 if (wbc->nr_to_write < desired_nr_to_write) {
2993 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2994 wbc->nr_to_write = desired_nr_to_write;
2995 }
2996
df22291f
AK
2997 mpd.wbc = wbc;
2998 mpd.inode = mapping->host;
2999
22208ded
AK
3000 pages_skipped = wbc->pages_skipped;
3001
2acf2c26 3002retry:
22208ded 3003 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
3004
3005 /*
3006 * we insert one extent at a time. So we need
3007 * credit needed for single extent allocation.
3008 * journalled mode is currently not supported
3009 * by delalloc
3010 */
3011 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 3012 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 3013
61628a3f
MC
3014 /* start a new transaction*/
3015 handle = ext4_journal_start(inode, needed_blocks);
3016 if (IS_ERR(handle)) {
3017 ret = PTR_ERR(handle);
1693918e 3018 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 3019 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 3020 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
3021 goto out_writepages;
3022 }
f63e6005
TT
3023
3024 /*
3025 * Now call __mpage_da_writepage to find the next
3026 * contiguous region of logical blocks that need
3027 * blocks to be allocated by ext4. We don't actually
3028 * submit the blocks for I/O here, even though
3029 * write_cache_pages thinks it will, and will set the
3030 * pages as clean for write before calling
3031 * __mpage_da_writepage().
3032 */
3033 mpd.b_size = 0;
3034 mpd.b_state = 0;
3035 mpd.b_blocknr = 0;
3036 mpd.first_page = 0;
3037 mpd.next_page = 0;
3038 mpd.io_done = 0;
3039 mpd.pages_written = 0;
3040 mpd.retval = 0;
8e48dcfb 3041 ret = write_cache_pages_da(mapping, wbc, &mpd);
f63e6005 3042 /*
af901ca1 3043 * If we have a contiguous extent of pages and we
f63e6005
TT
3044 * haven't done the I/O yet, map the blocks and submit
3045 * them for I/O.
3046 */
3047 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 3048 mpage_da_map_and_submit(&mpd);
f63e6005
TT
3049 ret = MPAGE_DA_EXTENT_TAIL;
3050 }
b3a3ca8c 3051 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 3052 wbc->nr_to_write -= mpd.pages_written;
df22291f 3053
61628a3f 3054 ext4_journal_stop(handle);
df22291f 3055
8f64b32e 3056 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
3057 /* commit the transaction which would
3058 * free blocks released in the transaction
3059 * and try again
3060 */
df22291f 3061 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
3062 wbc->pages_skipped = pages_skipped;
3063 ret = 0;
3064 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
3065 /*
3066 * got one extent now try with
3067 * rest of the pages
3068 */
22208ded
AK
3069 pages_written += mpd.pages_written;
3070 wbc->pages_skipped = pages_skipped;
a1d6cc56 3071 ret = 0;
2acf2c26 3072 io_done = 1;
22208ded 3073 } else if (wbc->nr_to_write)
61628a3f
MC
3074 /*
3075 * There is no more writeout needed
3076 * or we requested for a noblocking writeout
3077 * and we found the device congested
3078 */
61628a3f 3079 break;
a1d6cc56 3080 }
2acf2c26
AK
3081 if (!io_done && !cycled) {
3082 cycled = 1;
3083 index = 0;
3084 wbc->range_start = index << PAGE_CACHE_SHIFT;
3085 wbc->range_end = mapping->writeback_index - 1;
3086 goto retry;
3087 }
22208ded 3088 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3089 ext4_msg(inode->i_sb, KERN_CRIT,
3090 "This should not happen leaving %s "
fbe845dd 3091 "with nr_to_write = %ld ret = %d",
1693918e 3092 __func__, wbc->nr_to_write, ret);
22208ded
AK
3093
3094 /* Update index */
3095 index += pages_written;
2acf2c26 3096 wbc->range_cyclic = range_cyclic;
22208ded
AK
3097 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3098 /*
3099 * set the writeback_index so that range_cyclic
3100 * mode will write it back later
3101 */
3102 mapping->writeback_index = index;
a1d6cc56 3103
61628a3f 3104out_writepages:
2faf2e19 3105 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3106 wbc->range_start = range_start;
9bffad1e 3107 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3108 return ret;
64769240
AT
3109}
3110
79f0be8d
AK
3111#define FALL_BACK_TO_NONDELALLOC 1
3112static int ext4_nonda_switch(struct super_block *sb)
3113{
3114 s64 free_blocks, dirty_blocks;
3115 struct ext4_sb_info *sbi = EXT4_SB(sb);
3116
3117 /*
3118 * switch to non delalloc mode if we are running low
3119 * on free block. The free block accounting via percpu
179f7ebf 3120 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3121 * accumulated on each CPU without updating global counters
3122 * Delalloc need an accurate free block accounting. So switch
3123 * to non delalloc when we are near to error range.
3124 */
3125 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3126 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3127 if (2 * free_blocks < 3 * dirty_blocks ||
3128 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3129 /*
c8afb446
ES
3130 * free block count is less than 150% of dirty blocks
3131 * or free blocks is less than watermark
79f0be8d
AK
3132 */
3133 return 1;
3134 }
c8afb446
ES
3135 /*
3136 * Even if we don't switch but are nearing capacity,
3137 * start pushing delalloc when 1/2 of free blocks are dirty.
3138 */
3139 if (free_blocks < 2 * dirty_blocks)
3140 writeback_inodes_sb_if_idle(sb);
3141
79f0be8d
AK
3142 return 0;
3143}
3144
64769240 3145static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3146 loff_t pos, unsigned len, unsigned flags,
3147 struct page **pagep, void **fsdata)
64769240 3148{
72b8ab9d 3149 int ret, retries = 0;
64769240
AT
3150 struct page *page;
3151 pgoff_t index;
64769240
AT
3152 struct inode *inode = mapping->host;
3153 handle_t *handle;
3154
3155 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
3156
3157 if (ext4_nonda_switch(inode->i_sb)) {
3158 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3159 return ext4_write_begin(file, mapping, pos,
3160 len, flags, pagep, fsdata);
3161 }
3162 *fsdata = (void *)0;
9bffad1e 3163 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3164retry:
64769240
AT
3165 /*
3166 * With delayed allocation, we don't log the i_disksize update
3167 * if there is delayed block allocation. But we still need
3168 * to journalling the i_disksize update if writes to the end
3169 * of file which has an already mapped buffer.
3170 */
3171 handle = ext4_journal_start(inode, 1);
3172 if (IS_ERR(handle)) {
3173 ret = PTR_ERR(handle);
3174 goto out;
3175 }
ebd3610b
JK
3176 /* We cannot recurse into the filesystem as the transaction is already
3177 * started */
3178 flags |= AOP_FLAG_NOFS;
64769240 3179
54566b2c 3180 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3181 if (!page) {
3182 ext4_journal_stop(handle);
3183 ret = -ENOMEM;
3184 goto out;
3185 }
64769240
AT
3186 *pagep = page;
3187
6e1db88d 3188 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
3189 if (ret < 0) {
3190 unlock_page(page);
3191 ext4_journal_stop(handle);
3192 page_cache_release(page);
ae4d5372
AK
3193 /*
3194 * block_write_begin may have instantiated a few blocks
3195 * outside i_size. Trim these off again. Don't need
3196 * i_size_read because we hold i_mutex.
3197 */
3198 if (pos + len > inode->i_size)
b9a4207d 3199 ext4_truncate_failed_write(inode);
64769240
AT
3200 }
3201
d2a17637
MC
3202 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3203 goto retry;
64769240
AT
3204out:
3205 return ret;
3206}
3207
632eaeab
MC
3208/*
3209 * Check if we should update i_disksize
3210 * when write to the end of file but not require block allocation
3211 */
3212static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3213 unsigned long offset)
632eaeab
MC
3214{
3215 struct buffer_head *bh;
3216 struct inode *inode = page->mapping->host;
3217 unsigned int idx;
3218 int i;
3219
3220 bh = page_buffers(page);
3221 idx = offset >> inode->i_blkbits;
3222
af5bc92d 3223 for (i = 0; i < idx; i++)
632eaeab
MC
3224 bh = bh->b_this_page;
3225
29fa89d0 3226 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3227 return 0;
3228 return 1;
3229}
3230
64769240 3231static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3232 struct address_space *mapping,
3233 loff_t pos, unsigned len, unsigned copied,
3234 struct page *page, void *fsdata)
64769240
AT
3235{
3236 struct inode *inode = mapping->host;
3237 int ret = 0, ret2;
3238 handle_t *handle = ext4_journal_current_handle();
3239 loff_t new_i_size;
632eaeab 3240 unsigned long start, end;
79f0be8d
AK
3241 int write_mode = (int)(unsigned long)fsdata;
3242
3243 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3244 if (ext4_should_order_data(inode)) {
3245 return ext4_ordered_write_end(file, mapping, pos,
3246 len, copied, page, fsdata);
3247 } else if (ext4_should_writeback_data(inode)) {
3248 return ext4_writeback_write_end(file, mapping, pos,
3249 len, copied, page, fsdata);
3250 } else {
3251 BUG();
3252 }
3253 }
632eaeab 3254
9bffad1e 3255 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3256 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3257 end = start + copied - 1;
64769240
AT
3258
3259 /*
3260 * generic_write_end() will run mark_inode_dirty() if i_size
3261 * changes. So let's piggyback the i_disksize mark_inode_dirty
3262 * into that.
3263 */
3264
3265 new_i_size = pos + copied;
632eaeab
MC
3266 if (new_i_size > EXT4_I(inode)->i_disksize) {
3267 if (ext4_da_should_update_i_disksize(page, end)) {
3268 down_write(&EXT4_I(inode)->i_data_sem);
3269 if (new_i_size > EXT4_I(inode)->i_disksize) {
3270 /*
3271 * Updating i_disksize when extending file
3272 * without needing block allocation
3273 */
3274 if (ext4_should_order_data(inode))
3275 ret = ext4_jbd2_file_inode(handle,
3276 inode);
64769240 3277
632eaeab
MC
3278 EXT4_I(inode)->i_disksize = new_i_size;
3279 }
3280 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3281 /* We need to mark inode dirty even if
3282 * new_i_size is less that inode->i_size
3283 * bu greater than i_disksize.(hint delalloc)
3284 */
3285 ext4_mark_inode_dirty(handle, inode);
64769240 3286 }
632eaeab 3287 }
64769240
AT
3288 ret2 = generic_write_end(file, mapping, pos, len, copied,
3289 page, fsdata);
3290 copied = ret2;
3291 if (ret2 < 0)
3292 ret = ret2;
3293 ret2 = ext4_journal_stop(handle);
3294 if (!ret)
3295 ret = ret2;
3296
3297 return ret ? ret : copied;
3298}
3299
3300static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3301{
64769240
AT
3302 /*
3303 * Drop reserved blocks
3304 */
3305 BUG_ON(!PageLocked(page));
3306 if (!page_has_buffers(page))
3307 goto out;
3308
d2a17637 3309 ext4_da_page_release_reservation(page, offset);
64769240
AT
3310
3311out:
3312 ext4_invalidatepage(page, offset);
3313
3314 return;
3315}
3316
ccd2506b
TT
3317/*
3318 * Force all delayed allocation blocks to be allocated for a given inode.
3319 */
3320int ext4_alloc_da_blocks(struct inode *inode)
3321{
fb40ba0d
TT
3322 trace_ext4_alloc_da_blocks(inode);
3323
ccd2506b
TT
3324 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3325 !EXT4_I(inode)->i_reserved_meta_blocks)
3326 return 0;
3327
3328 /*
3329 * We do something simple for now. The filemap_flush() will
3330 * also start triggering a write of the data blocks, which is
3331 * not strictly speaking necessary (and for users of
3332 * laptop_mode, not even desirable). However, to do otherwise
3333 * would require replicating code paths in:
de9a55b8 3334 *
ccd2506b
TT
3335 * ext4_da_writepages() ->
3336 * write_cache_pages() ---> (via passed in callback function)
3337 * __mpage_da_writepage() -->
3338 * mpage_add_bh_to_extent()
3339 * mpage_da_map_blocks()
3340 *
3341 * The problem is that write_cache_pages(), located in
3342 * mm/page-writeback.c, marks pages clean in preparation for
3343 * doing I/O, which is not desirable if we're not planning on
3344 * doing I/O at all.
3345 *
3346 * We could call write_cache_pages(), and then redirty all of
3347 * the pages by calling redirty_page_for_writeback() but that
3348 * would be ugly in the extreme. So instead we would need to
3349 * replicate parts of the code in the above functions,
3350 * simplifying them becuase we wouldn't actually intend to
3351 * write out the pages, but rather only collect contiguous
3352 * logical block extents, call the multi-block allocator, and
3353 * then update the buffer heads with the block allocations.
de9a55b8 3354 *
ccd2506b
TT
3355 * For now, though, we'll cheat by calling filemap_flush(),
3356 * which will map the blocks, and start the I/O, but not
3357 * actually wait for the I/O to complete.
3358 */
3359 return filemap_flush(inode->i_mapping);
3360}
64769240 3361
ac27a0ec
DK
3362/*
3363 * bmap() is special. It gets used by applications such as lilo and by
3364 * the swapper to find the on-disk block of a specific piece of data.
3365 *
3366 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3367 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3368 * filesystem and enables swap, then they may get a nasty shock when the
3369 * data getting swapped to that swapfile suddenly gets overwritten by
3370 * the original zero's written out previously to the journal and
3371 * awaiting writeback in the kernel's buffer cache.
3372 *
3373 * So, if we see any bmap calls here on a modified, data-journaled file,
3374 * take extra steps to flush any blocks which might be in the cache.
3375 */
617ba13b 3376static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3377{
3378 struct inode *inode = mapping->host;
3379 journal_t *journal;
3380 int err;
3381
64769240
AT
3382 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3383 test_opt(inode->i_sb, DELALLOC)) {
3384 /*
3385 * With delalloc we want to sync the file
3386 * so that we can make sure we allocate
3387 * blocks for file
3388 */
3389 filemap_write_and_wait(mapping);
3390 }
3391
19f5fb7a
TT
3392 if (EXT4_JOURNAL(inode) &&
3393 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3394 /*
3395 * This is a REALLY heavyweight approach, but the use of
3396 * bmap on dirty files is expected to be extremely rare:
3397 * only if we run lilo or swapon on a freshly made file
3398 * do we expect this to happen.
3399 *
3400 * (bmap requires CAP_SYS_RAWIO so this does not
3401 * represent an unprivileged user DOS attack --- we'd be
3402 * in trouble if mortal users could trigger this path at
3403 * will.)
3404 *
617ba13b 3405 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3406 * regular files. If somebody wants to bmap a directory
3407 * or symlink and gets confused because the buffer
3408 * hasn't yet been flushed to disk, they deserve
3409 * everything they get.
3410 */
3411
19f5fb7a 3412 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3413 journal = EXT4_JOURNAL(inode);
dab291af
MC
3414 jbd2_journal_lock_updates(journal);
3415 err = jbd2_journal_flush(journal);
3416 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3417
3418 if (err)
3419 return 0;
3420 }
3421
af5bc92d 3422 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3423}
3424
617ba13b 3425static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3426{
617ba13b 3427 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3428}
3429
3430static int
617ba13b 3431ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3432 struct list_head *pages, unsigned nr_pages)
3433{
617ba13b 3434 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3435}
3436
744692dc
JZ
3437static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3438{
3439 struct buffer_head *head, *bh;
3440 unsigned int curr_off = 0;
3441
3442 if (!page_has_buffers(page))
3443 return;
3444 head = bh = page_buffers(page);
3445 do {
3446 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3447 && bh->b_private) {
3448 ext4_free_io_end(bh->b_private);
3449 bh->b_private = NULL;
3450 bh->b_end_io = NULL;
3451 }
3452 curr_off = curr_off + bh->b_size;
3453 bh = bh->b_this_page;
3454 } while (bh != head);
3455}
3456
617ba13b 3457static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3458{
617ba13b 3459 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3460
744692dc
JZ
3461 /*
3462 * free any io_end structure allocated for buffers to be discarded
3463 */
3464 if (ext4_should_dioread_nolock(page->mapping->host))
3465 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3466 /*
3467 * If it's a full truncate we just forget about the pending dirtying
3468 */
3469 if (offset == 0)
3470 ClearPageChecked(page);
3471
0390131b
FM
3472 if (journal)
3473 jbd2_journal_invalidatepage(journal, page, offset);
3474 else
3475 block_invalidatepage(page, offset);
ac27a0ec
DK
3476}
3477
617ba13b 3478static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3479{
617ba13b 3480 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3481
3482 WARN_ON(PageChecked(page));
3483 if (!page_has_buffers(page))
3484 return 0;
0390131b
FM
3485 if (journal)
3486 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3487 else
3488 return try_to_free_buffers(page);
ac27a0ec
DK
3489}
3490
3491/*
4c0425ff
MC
3492 * O_DIRECT for ext3 (or indirect map) based files
3493 *
ac27a0ec
DK
3494 * If the O_DIRECT write will extend the file then add this inode to the
3495 * orphan list. So recovery will truncate it back to the original size
3496 * if the machine crashes during the write.
3497 *
3498 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3499 * crashes then stale disk data _may_ be exposed inside the file. But current
3500 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3501 */
4c0425ff 3502static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3503 const struct iovec *iov, loff_t offset,
3504 unsigned long nr_segs)
ac27a0ec
DK
3505{
3506 struct file *file = iocb->ki_filp;
3507 struct inode *inode = file->f_mapping->host;
617ba13b 3508 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3509 handle_t *handle;
ac27a0ec
DK
3510 ssize_t ret;
3511 int orphan = 0;
3512 size_t count = iov_length(iov, nr_segs);
fbbf6945 3513 int retries = 0;
ac27a0ec
DK
3514
3515 if (rw == WRITE) {
3516 loff_t final_size = offset + count;
3517
ac27a0ec 3518 if (final_size > inode->i_size) {
7fb5409d
JK
3519 /* Credits for sb + inode write */
3520 handle = ext4_journal_start(inode, 2);
3521 if (IS_ERR(handle)) {
3522 ret = PTR_ERR(handle);
3523 goto out;
3524 }
617ba13b 3525 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3526 if (ret) {
3527 ext4_journal_stop(handle);
3528 goto out;
3529 }
ac27a0ec
DK
3530 orphan = 1;
3531 ei->i_disksize = inode->i_size;
7fb5409d 3532 ext4_journal_stop(handle);
ac27a0ec
DK
3533 }
3534 }
3535
fbbf6945 3536retry:
b7adc1f3 3537 if (rw == READ && ext4_should_dioread_nolock(inode))
eafdc7d1 3538 ret = __blockdev_direct_IO(rw, iocb, inode,
b7adc1f3
JZ
3539 inode->i_sb->s_bdev, iov,
3540 offset, nr_segs,
eafdc7d1
CH
3541 ext4_get_block, NULL, NULL, 0);
3542 else {
b7adc1f3
JZ
3543 ret = blockdev_direct_IO(rw, iocb, inode,
3544 inode->i_sb->s_bdev, iov,
ac27a0ec 3545 offset, nr_segs,
617ba13b 3546 ext4_get_block, NULL);
eafdc7d1
CH
3547
3548 if (unlikely((rw & WRITE) && ret < 0)) {
3549 loff_t isize = i_size_read(inode);
3550 loff_t end = offset + iov_length(iov, nr_segs);
3551
3552 if (end > isize)
3553 vmtruncate(inode, isize);
3554 }
3555 }
fbbf6945
ES
3556 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3557 goto retry;
ac27a0ec 3558
7fb5409d 3559 if (orphan) {
ac27a0ec
DK
3560 int err;
3561
7fb5409d
JK
3562 /* Credits for sb + inode write */
3563 handle = ext4_journal_start(inode, 2);
3564 if (IS_ERR(handle)) {
3565 /* This is really bad luck. We've written the data
3566 * but cannot extend i_size. Bail out and pretend
3567 * the write failed... */
3568 ret = PTR_ERR(handle);
da1dafca
DM
3569 if (inode->i_nlink)
3570 ext4_orphan_del(NULL, inode);
3571
7fb5409d
JK
3572 goto out;
3573 }
3574 if (inode->i_nlink)
617ba13b 3575 ext4_orphan_del(handle, inode);
7fb5409d 3576 if (ret > 0) {
ac27a0ec
DK
3577 loff_t end = offset + ret;
3578 if (end > inode->i_size) {
3579 ei->i_disksize = end;
3580 i_size_write(inode, end);
3581 /*
3582 * We're going to return a positive `ret'
3583 * here due to non-zero-length I/O, so there's
3584 * no way of reporting error returns from
617ba13b 3585 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3586 * ignore it.
3587 */
617ba13b 3588 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3589 }
3590 }
617ba13b 3591 err = ext4_journal_stop(handle);
ac27a0ec
DK
3592 if (ret == 0)
3593 ret = err;
3594 }
3595out:
3596 return ret;
3597}
3598
2ed88685
TT
3599/*
3600 * ext4_get_block used when preparing for a DIO write or buffer write.
3601 * We allocate an uinitialized extent if blocks haven't been allocated.
3602 * The extent will be converted to initialized after the IO is complete.
3603 */
c7064ef1 3604static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3605 struct buffer_head *bh_result, int create)
3606{
c7064ef1 3607 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3608 inode->i_ino, create);
2ed88685
TT
3609 return _ext4_get_block(inode, iblock, bh_result,
3610 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3611}
3612
c7064ef1 3613static void dump_completed_IO(struct inode * inode)
8d5d02e6
MC
3614{
3615#ifdef EXT4_DEBUG
3616 struct list_head *cur, *before, *after;
3617 ext4_io_end_t *io, *io0, *io1;
744692dc 3618 unsigned long flags;
8d5d02e6 3619
c7064ef1
JZ
3620 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3621 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
8d5d02e6
MC
3622 return;
3623 }
3624
c7064ef1 3625 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
744692dc 3626 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
c7064ef1 3627 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
8d5d02e6
MC
3628 cur = &io->list;
3629 before = cur->prev;
3630 io0 = container_of(before, ext4_io_end_t, list);
3631 after = cur->next;
3632 io1 = container_of(after, ext4_io_end_t, list);
3633
3634 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3635 io, inode->i_ino, io0, io1);
3636 }
744692dc 3637 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
8d5d02e6
MC
3638#endif
3639}
4c0425ff 3640
8d5d02e6
MC
3641/*
3642 * This function is called from ext4_sync_file().
3643 *
c7064ef1
JZ
3644 * When IO is completed, the work to convert unwritten extents to
3645 * written is queued on workqueue but may not get immediately
8d5d02e6
MC
3646 * scheduled. When fsync is called, we need to ensure the
3647 * conversion is complete before fsync returns.
c7064ef1
JZ
3648 * The inode keeps track of a list of pending/completed IO that
3649 * might needs to do the conversion. This function walks through
3650 * the list and convert the related unwritten extents for completed IO
3651 * to written.
3652 * The function return the number of pending IOs on success.
8d5d02e6 3653 */
c7064ef1 3654int flush_completed_IO(struct inode *inode)
8d5d02e6
MC
3655{
3656 ext4_io_end_t *io;
744692dc
JZ
3657 struct ext4_inode_info *ei = EXT4_I(inode);
3658 unsigned long flags;
8d5d02e6
MC
3659 int ret = 0;
3660 int ret2 = 0;
3661
744692dc 3662 if (list_empty(&ei->i_completed_io_list))
8d5d02e6
MC
3663 return ret;
3664
c7064ef1 3665 dump_completed_IO(inode);
744692dc
JZ
3666 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3667 while (!list_empty(&ei->i_completed_io_list)){
3668 io = list_entry(ei->i_completed_io_list.next,
8d5d02e6
MC
3669 ext4_io_end_t, list);
3670 /*
c7064ef1 3671 * Calling ext4_end_io_nolock() to convert completed
8d5d02e6
MC
3672 * IO to written.
3673 *
3674 * When ext4_sync_file() is called, run_queue() may already
3675 * about to flush the work corresponding to this io structure.
3676 * It will be upset if it founds the io structure related
3677 * to the work-to-be schedule is freed.
3678 *
3679 * Thus we need to keep the io structure still valid here after
3680 * convertion finished. The io structure has a flag to
3681 * avoid double converting from both fsync and background work
3682 * queue work.
3683 */
744692dc 3684 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c7064ef1 3685 ret = ext4_end_io_nolock(io);
744692dc 3686 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3687 if (ret < 0)
3688 ret2 = ret;
3689 else
3690 list_del_init(&io->list);
3691 }
744692dc 3692 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3693 return (ret2 < 0) ? ret2 : 0;
3694}
3695
4c0425ff 3696static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3697 ssize_t size, void *private, int ret,
3698 bool is_async)
4c0425ff
MC
3699{
3700 ext4_io_end_t *io_end = iocb->private;
3701 struct workqueue_struct *wq;
744692dc
JZ
3702 unsigned long flags;
3703 struct ext4_inode_info *ei;
4c0425ff 3704
4b70df18
M
3705 /* if not async direct IO or dio with 0 bytes write, just return */
3706 if (!io_end || !size)
552ef802 3707 goto out;
4b70df18 3708
8d5d02e6
MC
3709 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3710 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3711 iocb->private, io_end->inode->i_ino, iocb, offset,
3712 size);
8d5d02e6
MC
3713
3714 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 3715 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6
MC
3716 ext4_free_io_end(io_end);
3717 iocb->private = NULL;
5b3ff237
JZ
3718out:
3719 if (is_async)
3720 aio_complete(iocb, ret, 0);
3721 return;
8d5d02e6
MC
3722 }
3723
4c0425ff
MC
3724 io_end->offset = offset;
3725 io_end->size = size;
5b3ff237
JZ
3726 if (is_async) {
3727 io_end->iocb = iocb;
3728 io_end->result = ret;
3729 }
4c0425ff
MC
3730 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3731
8d5d02e6 3732 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3733 ei = EXT4_I(io_end->inode);
3734 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3735 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3736 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
3737
3738 /* queue the work to convert unwritten extents to written */
3739 queue_work(wq, &io_end->work);
4c0425ff
MC
3740 iocb->private = NULL;
3741}
c7064ef1 3742
744692dc
JZ
3743static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3744{
3745 ext4_io_end_t *io_end = bh->b_private;
3746 struct workqueue_struct *wq;
3747 struct inode *inode;
3748 unsigned long flags;
3749
3750 if (!test_clear_buffer_uninit(bh) || !io_end)
3751 goto out;
3752
3753 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3754 printk("sb umounted, discard end_io request for inode %lu\n",
3755 io_end->inode->i_ino);
3756 ext4_free_io_end(io_end);
3757 goto out;
3758 }
3759
bd2d0210 3760 io_end->flag = EXT4_IO_END_UNWRITTEN;
744692dc
JZ
3761 inode = io_end->inode;
3762
3763 /* Add the io_end to per-inode completed io list*/
3764 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3765 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3766 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3767
3768 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3769 /* queue the work to convert unwritten extents to written */
3770 queue_work(wq, &io_end->work);
3771out:
3772 bh->b_private = NULL;
3773 bh->b_end_io = NULL;
3774 clear_buffer_uninit(bh);
3775 end_buffer_async_write(bh, uptodate);
3776}
3777
3778static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3779{
3780 ext4_io_end_t *io_end;
3781 struct page *page = bh->b_page;
3782 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3783 size_t size = bh->b_size;
3784
3785retry:
3786 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3787 if (!io_end) {
3788 if (printk_ratelimit())
3789 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3790 schedule();
3791 goto retry;
3792 }
3793 io_end->offset = offset;
3794 io_end->size = size;
3795 /*
3796 * We need to hold a reference to the page to make sure it
3797 * doesn't get evicted before ext4_end_io_work() has a chance
3798 * to convert the extent from written to unwritten.
3799 */
3800 io_end->page = page;
3801 get_page(io_end->page);
3802
3803 bh->b_private = io_end;
3804 bh->b_end_io = ext4_end_io_buffer_write;
3805 return 0;
3806}
3807
4c0425ff
MC
3808/*
3809 * For ext4 extent files, ext4 will do direct-io write to holes,
3810 * preallocated extents, and those write extend the file, no need to
3811 * fall back to buffered IO.
3812 *
3813 * For holes, we fallocate those blocks, mark them as unintialized
3814 * If those blocks were preallocated, we mark sure they are splited, but
3815 * still keep the range to write as unintialized.
3816 *
8d5d02e6
MC
3817 * The unwrritten extents will be converted to written when DIO is completed.
3818 * For async direct IO, since the IO may still pending when return, we
3819 * set up an end_io call back function, which will do the convertion
3820 * when async direct IO completed.
4c0425ff
MC
3821 *
3822 * If the O_DIRECT write will extend the file then add this inode to the
3823 * orphan list. So recovery will truncate it back to the original size
3824 * if the machine crashes during the write.
3825 *
3826 */
3827static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3828 const struct iovec *iov, loff_t offset,
3829 unsigned long nr_segs)
3830{
3831 struct file *file = iocb->ki_filp;
3832 struct inode *inode = file->f_mapping->host;
3833 ssize_t ret;
3834 size_t count = iov_length(iov, nr_segs);
3835
3836 loff_t final_size = offset + count;
3837 if (rw == WRITE && final_size <= inode->i_size) {
3838 /*
8d5d02e6
MC
3839 * We could direct write to holes and fallocate.
3840 *
3841 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3842 * to prevent paralel buffered read to expose the stale data
3843 * before DIO complete the data IO.
8d5d02e6
MC
3844 *
3845 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3846 * will just simply mark the buffer mapped but still
3847 * keep the extents uninitialized.
3848 *
8d5d02e6
MC
3849 * for non AIO case, we will convert those unwritten extents
3850 * to written after return back from blockdev_direct_IO.
3851 *
3852 * for async DIO, the conversion needs to be defered when
3853 * the IO is completed. The ext4 end_io callback function
3854 * will be called to take care of the conversion work.
3855 * Here for async case, we allocate an io_end structure to
3856 * hook to the iocb.
4c0425ff 3857 */
8d5d02e6
MC
3858 iocb->private = NULL;
3859 EXT4_I(inode)->cur_aio_dio = NULL;
3860 if (!is_sync_kiocb(iocb)) {
744692dc 3861 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3862 if (!iocb->private)
3863 return -ENOMEM;
3864 /*
3865 * we save the io structure for current async
79e83036 3866 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
3867 * could flag the io structure whether there
3868 * is a unwritten extents needs to be converted
3869 * when IO is completed.
3870 */
3871 EXT4_I(inode)->cur_aio_dio = iocb->private;
3872 }
3873
4c0425ff
MC
3874 ret = blockdev_direct_IO(rw, iocb, inode,
3875 inode->i_sb->s_bdev, iov,
3876 offset, nr_segs,
c7064ef1 3877 ext4_get_block_write,
4c0425ff 3878 ext4_end_io_dio);
8d5d02e6
MC
3879 if (iocb->private)
3880 EXT4_I(inode)->cur_aio_dio = NULL;
3881 /*
3882 * The io_end structure takes a reference to the inode,
3883 * that structure needs to be destroyed and the
3884 * reference to the inode need to be dropped, when IO is
3885 * complete, even with 0 byte write, or failed.
3886 *
3887 * In the successful AIO DIO case, the io_end structure will be
3888 * desctroyed and the reference to the inode will be dropped
3889 * after the end_io call back function is called.
3890 *
3891 * In the case there is 0 byte write, or error case, since
3892 * VFS direct IO won't invoke the end_io call back function,
3893 * we need to free the end_io structure here.
3894 */
3895 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3896 ext4_free_io_end(iocb->private);
3897 iocb->private = NULL;
19f5fb7a
TT
3898 } else if (ret > 0 && ext4_test_inode_state(inode,
3899 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3900 int err;
8d5d02e6
MC
3901 /*
3902 * for non AIO case, since the IO is already
3903 * completed, we could do the convertion right here
3904 */
109f5565
M
3905 err = ext4_convert_unwritten_extents(inode,
3906 offset, ret);
3907 if (err < 0)
3908 ret = err;
19f5fb7a 3909 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3910 }
4c0425ff
MC
3911 return ret;
3912 }
8d5d02e6
MC
3913
3914 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3915 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3916}
3917
3918static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3919 const struct iovec *iov, loff_t offset,
3920 unsigned long nr_segs)
3921{
3922 struct file *file = iocb->ki_filp;
3923 struct inode *inode = file->f_mapping->host;
3924
12e9b892 3925 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4c0425ff
MC
3926 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3927
3928 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3929}
3930
ac27a0ec 3931/*
617ba13b 3932 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3933 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3934 * much here because ->set_page_dirty is called under VFS locks. The page is
3935 * not necessarily locked.
3936 *
3937 * We cannot just dirty the page and leave attached buffers clean, because the
3938 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3939 * or jbddirty because all the journalling code will explode.
3940 *
3941 * So what we do is to mark the page "pending dirty" and next time writepage
3942 * is called, propagate that into the buffers appropriately.
3943 */
617ba13b 3944static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3945{
3946 SetPageChecked(page);
3947 return __set_page_dirty_nobuffers(page);
3948}
3949
617ba13b 3950static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3951 .readpage = ext4_readpage,
3952 .readpages = ext4_readpages,
43ce1d23 3953 .writepage = ext4_writepage,
8ab22b9a
HH
3954 .sync_page = block_sync_page,
3955 .write_begin = ext4_write_begin,
3956 .write_end = ext4_ordered_write_end,
3957 .bmap = ext4_bmap,
3958 .invalidatepage = ext4_invalidatepage,
3959 .releasepage = ext4_releasepage,
3960 .direct_IO = ext4_direct_IO,
3961 .migratepage = buffer_migrate_page,
3962 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3963 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3964};
3965
617ba13b 3966static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3967 .readpage = ext4_readpage,
3968 .readpages = ext4_readpages,
43ce1d23 3969 .writepage = ext4_writepage,
8ab22b9a
HH
3970 .sync_page = block_sync_page,
3971 .write_begin = ext4_write_begin,
3972 .write_end = ext4_writeback_write_end,
3973 .bmap = ext4_bmap,
3974 .invalidatepage = ext4_invalidatepage,
3975 .releasepage = ext4_releasepage,
3976 .direct_IO = ext4_direct_IO,
3977 .migratepage = buffer_migrate_page,
3978 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3979 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3980};
3981
617ba13b 3982static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3983 .readpage = ext4_readpage,
3984 .readpages = ext4_readpages,
43ce1d23 3985 .writepage = ext4_writepage,
8ab22b9a
HH
3986 .sync_page = block_sync_page,
3987 .write_begin = ext4_write_begin,
3988 .write_end = ext4_journalled_write_end,
3989 .set_page_dirty = ext4_journalled_set_page_dirty,
3990 .bmap = ext4_bmap,
3991 .invalidatepage = ext4_invalidatepage,
3992 .releasepage = ext4_releasepage,
3993 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3994 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3995};
3996
64769240 3997static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3998 .readpage = ext4_readpage,
3999 .readpages = ext4_readpages,
43ce1d23 4000 .writepage = ext4_writepage,
8ab22b9a
HH
4001 .writepages = ext4_da_writepages,
4002 .sync_page = block_sync_page,
4003 .write_begin = ext4_da_write_begin,
4004 .write_end = ext4_da_write_end,
4005 .bmap = ext4_bmap,
4006 .invalidatepage = ext4_da_invalidatepage,
4007 .releasepage = ext4_releasepage,
4008 .direct_IO = ext4_direct_IO,
4009 .migratepage = buffer_migrate_page,
4010 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4011 .error_remove_page = generic_error_remove_page,
64769240
AT
4012};
4013
617ba13b 4014void ext4_set_aops(struct inode *inode)
ac27a0ec 4015{
cd1aac32
AK
4016 if (ext4_should_order_data(inode) &&
4017 test_opt(inode->i_sb, DELALLOC))
4018 inode->i_mapping->a_ops = &ext4_da_aops;
4019 else if (ext4_should_order_data(inode))
617ba13b 4020 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
4021 else if (ext4_should_writeback_data(inode) &&
4022 test_opt(inode->i_sb, DELALLOC))
4023 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
4024 else if (ext4_should_writeback_data(inode))
4025 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 4026 else
617ba13b 4027 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
4028}
4029
4030/*
617ba13b 4031 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
4032 * up to the end of the block which corresponds to `from'.
4033 * This required during truncate. We need to physically zero the tail end
4034 * of that block so it doesn't yield old data if the file is later grown.
4035 */
cf108bca 4036int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
4037 struct address_space *mapping, loff_t from)
4038{
617ba13b 4039 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 4040 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
4041 unsigned blocksize, length, pos;
4042 ext4_lblk_t iblock;
ac27a0ec
DK
4043 struct inode *inode = mapping->host;
4044 struct buffer_head *bh;
cf108bca 4045 struct page *page;
ac27a0ec 4046 int err = 0;
ac27a0ec 4047
f4a01017
TT
4048 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4049 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4050 if (!page)
4051 return -EINVAL;
4052
ac27a0ec
DK
4053 blocksize = inode->i_sb->s_blocksize;
4054 length = blocksize - (offset & (blocksize - 1));
4055 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4056
ac27a0ec
DK
4057 if (!page_has_buffers(page))
4058 create_empty_buffers(page, blocksize, 0);
4059
4060 /* Find the buffer that contains "offset" */
4061 bh = page_buffers(page);
4062 pos = blocksize;
4063 while (offset >= pos) {
4064 bh = bh->b_this_page;
4065 iblock++;
4066 pos += blocksize;
4067 }
4068
4069 err = 0;
4070 if (buffer_freed(bh)) {
4071 BUFFER_TRACE(bh, "freed: skip");
4072 goto unlock;
4073 }
4074
4075 if (!buffer_mapped(bh)) {
4076 BUFFER_TRACE(bh, "unmapped");
617ba13b 4077 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4078 /* unmapped? It's a hole - nothing to do */
4079 if (!buffer_mapped(bh)) {
4080 BUFFER_TRACE(bh, "still unmapped");
4081 goto unlock;
4082 }
4083 }
4084
4085 /* Ok, it's mapped. Make sure it's up-to-date */
4086 if (PageUptodate(page))
4087 set_buffer_uptodate(bh);
4088
4089 if (!buffer_uptodate(bh)) {
4090 err = -EIO;
4091 ll_rw_block(READ, 1, &bh);
4092 wait_on_buffer(bh);
4093 /* Uhhuh. Read error. Complain and punt. */
4094 if (!buffer_uptodate(bh))
4095 goto unlock;
4096 }
4097
617ba13b 4098 if (ext4_should_journal_data(inode)) {
ac27a0ec 4099 BUFFER_TRACE(bh, "get write access");
617ba13b 4100 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4101 if (err)
4102 goto unlock;
4103 }
4104
eebd2aa3 4105 zero_user(page, offset, length);
ac27a0ec
DK
4106
4107 BUFFER_TRACE(bh, "zeroed end of block");
4108
4109 err = 0;
617ba13b 4110 if (ext4_should_journal_data(inode)) {
0390131b 4111 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4112 } else {
617ba13b 4113 if (ext4_should_order_data(inode))
678aaf48 4114 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4115 mark_buffer_dirty(bh);
4116 }
4117
4118unlock:
4119 unlock_page(page);
4120 page_cache_release(page);
4121 return err;
4122}
4123
4124/*
4125 * Probably it should be a library function... search for first non-zero word
4126 * or memcmp with zero_page, whatever is better for particular architecture.
4127 * Linus?
4128 */
4129static inline int all_zeroes(__le32 *p, __le32 *q)
4130{
4131 while (p < q)
4132 if (*p++)
4133 return 0;
4134 return 1;
4135}
4136
4137/**
617ba13b 4138 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4139 * @inode: inode in question
4140 * @depth: depth of the affected branch
617ba13b 4141 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4142 * @chain: place to store the pointers to partial indirect blocks
4143 * @top: place to the (detached) top of branch
4144 *
617ba13b 4145 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4146 *
4147 * When we do truncate() we may have to clean the ends of several
4148 * indirect blocks but leave the blocks themselves alive. Block is
4149 * partially truncated if some data below the new i_size is refered
4150 * from it (and it is on the path to the first completely truncated
4151 * data block, indeed). We have to free the top of that path along
4152 * with everything to the right of the path. Since no allocation
617ba13b 4153 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4154 * finishes, we may safely do the latter, but top of branch may
4155 * require special attention - pageout below the truncation point
4156 * might try to populate it.
4157 *
4158 * We atomically detach the top of branch from the tree, store the
4159 * block number of its root in *@top, pointers to buffer_heads of
4160 * partially truncated blocks - in @chain[].bh and pointers to
4161 * their last elements that should not be removed - in
4162 * @chain[].p. Return value is the pointer to last filled element
4163 * of @chain.
4164 *
4165 * The work left to caller to do the actual freeing of subtrees:
4166 * a) free the subtree starting from *@top
4167 * b) free the subtrees whose roots are stored in
4168 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4169 * c) free the subtrees growing from the inode past the @chain[0].
4170 * (no partially truncated stuff there). */
4171
617ba13b 4172static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4173 ext4_lblk_t offsets[4], Indirect chain[4],
4174 __le32 *top)
ac27a0ec
DK
4175{
4176 Indirect *partial, *p;
4177 int k, err;
4178
4179 *top = 0;
bf48aabb 4180 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4181 for (k = depth; k > 1 && !offsets[k-1]; k--)
4182 ;
617ba13b 4183 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4184 /* Writer: pointers */
4185 if (!partial)
4186 partial = chain + k-1;
4187 /*
4188 * If the branch acquired continuation since we've looked at it -
4189 * fine, it should all survive and (new) top doesn't belong to us.
4190 */
4191 if (!partial->key && *partial->p)
4192 /* Writer: end */
4193 goto no_top;
af5bc92d 4194 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4195 ;
4196 /*
4197 * OK, we've found the last block that must survive. The rest of our
4198 * branch should be detached before unlocking. However, if that rest
4199 * of branch is all ours and does not grow immediately from the inode
4200 * it's easier to cheat and just decrement partial->p.
4201 */
4202 if (p == chain + k - 1 && p > chain) {
4203 p->p--;
4204 } else {
4205 *top = *p->p;
617ba13b 4206 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4207#if 0
4208 *p->p = 0;
4209#endif
4210 }
4211 /* Writer: end */
4212
af5bc92d 4213 while (partial > p) {
ac27a0ec
DK
4214 brelse(partial->bh);
4215 partial--;
4216 }
4217no_top:
4218 return partial;
4219}
4220
4221/*
4222 * Zero a number of block pointers in either an inode or an indirect block.
4223 * If we restart the transaction we must again get write access to the
4224 * indirect block for further modification.
4225 *
4226 * We release `count' blocks on disk, but (last - first) may be greater
4227 * than `count' because there can be holes in there.
4228 */
1f2acb60
TT
4229static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4230 struct buffer_head *bh,
4231 ext4_fsblk_t block_to_free,
4232 unsigned long count, __le32 *first,
4233 __le32 *last)
ac27a0ec
DK
4234{
4235 __le32 *p;
1f2acb60 4236 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4237
4238 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4239 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4240
1f2acb60
TT
4241 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4242 count)) {
24676da4
TT
4243 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4244 "blocks %llu len %lu",
4245 (unsigned long long) block_to_free, count);
1f2acb60
TT
4246 return 1;
4247 }
4248
ac27a0ec
DK
4249 if (try_to_extend_transaction(handle, inode)) {
4250 if (bh) {
0390131b
FM
4251 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4252 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4253 }
617ba13b 4254 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4255 ext4_truncate_restart_trans(handle, inode,
4256 blocks_for_truncate(inode));
ac27a0ec
DK
4257 if (bh) {
4258 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4259 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4260 }
4261 }
4262
e6362609
TT
4263 for (p = first; p < last; p++)
4264 *p = 0;
ac27a0ec 4265
e6362609 4266 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4267 return 0;
ac27a0ec
DK
4268}
4269
4270/**
617ba13b 4271 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4272 * @handle: handle for this transaction
4273 * @inode: inode we are dealing with
4274 * @this_bh: indirect buffer_head which contains *@first and *@last
4275 * @first: array of block numbers
4276 * @last: points immediately past the end of array
4277 *
4278 * We are freeing all blocks refered from that array (numbers are stored as
4279 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4280 *
4281 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4282 * blocks are contiguous then releasing them at one time will only affect one
4283 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4284 * actually use a lot of journal space.
4285 *
4286 * @this_bh will be %NULL if @first and @last point into the inode's direct
4287 * block pointers.
4288 */
617ba13b 4289static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4290 struct buffer_head *this_bh,
4291 __le32 *first, __le32 *last)
4292{
617ba13b 4293 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4294 unsigned long count = 0; /* Number of blocks in the run */
4295 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4296 corresponding to
4297 block_to_free */
617ba13b 4298 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4299 __le32 *p; /* Pointer into inode/ind
4300 for current block */
4301 int err;
4302
4303 if (this_bh) { /* For indirect block */
4304 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4305 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4306 /* Important: if we can't update the indirect pointers
4307 * to the blocks, we can't free them. */
4308 if (err)
4309 return;
4310 }
4311
4312 for (p = first; p < last; p++) {
4313 nr = le32_to_cpu(*p);
4314 if (nr) {
4315 /* accumulate blocks to free if they're contiguous */
4316 if (count == 0) {
4317 block_to_free = nr;
4318 block_to_free_p = p;
4319 count = 1;
4320 } else if (nr == block_to_free + count) {
4321 count++;
4322 } else {
1f2acb60
TT
4323 if (ext4_clear_blocks(handle, inode, this_bh,
4324 block_to_free, count,
4325 block_to_free_p, p))
4326 break;
ac27a0ec
DK
4327 block_to_free = nr;
4328 block_to_free_p = p;
4329 count = 1;
4330 }
4331 }
4332 }
4333
4334 if (count > 0)
617ba13b 4335 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4336 count, block_to_free_p, p);
4337
4338 if (this_bh) {
0390131b 4339 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4340
4341 /*
4342 * The buffer head should have an attached journal head at this
4343 * point. However, if the data is corrupted and an indirect
4344 * block pointed to itself, it would have been detached when
4345 * the block was cleared. Check for this instead of OOPSing.
4346 */
e7f07968 4347 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4348 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4349 else
24676da4
TT
4350 EXT4_ERROR_INODE(inode,
4351 "circular indirect block detected at "
4352 "block %llu",
4353 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4354 }
4355}
4356
4357/**
617ba13b 4358 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4359 * @handle: JBD handle for this transaction
4360 * @inode: inode we are dealing with
4361 * @parent_bh: the buffer_head which contains *@first and *@last
4362 * @first: array of block numbers
4363 * @last: pointer immediately past the end of array
4364 * @depth: depth of the branches to free
4365 *
4366 * We are freeing all blocks refered from these branches (numbers are
4367 * stored as little-endian 32-bit) and updating @inode->i_blocks
4368 * appropriately.
4369 */
617ba13b 4370static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4371 struct buffer_head *parent_bh,
4372 __le32 *first, __le32 *last, int depth)
4373{
617ba13b 4374 ext4_fsblk_t nr;
ac27a0ec
DK
4375 __le32 *p;
4376
0390131b 4377 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4378 return;
4379
4380 if (depth--) {
4381 struct buffer_head *bh;
617ba13b 4382 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4383 p = last;
4384 while (--p >= first) {
4385 nr = le32_to_cpu(*p);
4386 if (!nr)
4387 continue; /* A hole */
4388
1f2acb60
TT
4389 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4390 nr, 1)) {
24676da4
TT
4391 EXT4_ERROR_INODE(inode,
4392 "invalid indirect mapped "
4393 "block %lu (level %d)",
4394 (unsigned long) nr, depth);
1f2acb60
TT
4395 break;
4396 }
4397
ac27a0ec
DK
4398 /* Go read the buffer for the next level down */
4399 bh = sb_bread(inode->i_sb, nr);
4400
4401 /*
4402 * A read failure? Report error and clear slot
4403 * (should be rare).
4404 */
4405 if (!bh) {
c398eda0
TT
4406 EXT4_ERROR_INODE_BLOCK(inode, nr,
4407 "Read failure");
ac27a0ec
DK
4408 continue;
4409 }
4410
4411 /* This zaps the entire block. Bottom up. */
4412 BUFFER_TRACE(bh, "free child branches");
617ba13b 4413 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4414 (__le32 *) bh->b_data,
4415 (__le32 *) bh->b_data + addr_per_block,
4416 depth);
ac27a0ec 4417
ac27a0ec
DK
4418 /*
4419 * Everything below this this pointer has been
4420 * released. Now let this top-of-subtree go.
4421 *
4422 * We want the freeing of this indirect block to be
4423 * atomic in the journal with the updating of the
4424 * bitmap block which owns it. So make some room in
4425 * the journal.
4426 *
4427 * We zero the parent pointer *after* freeing its
4428 * pointee in the bitmaps, so if extend_transaction()
4429 * for some reason fails to put the bitmap changes and
4430 * the release into the same transaction, recovery
4431 * will merely complain about releasing a free block,
4432 * rather than leaking blocks.
4433 */
0390131b 4434 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4435 return;
4436 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4437 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4438 ext4_truncate_restart_trans(handle, inode,
4439 blocks_for_truncate(inode));
ac27a0ec
DK
4440 }
4441
40389687
A
4442 /*
4443 * The forget flag here is critical because if
4444 * we are journaling (and not doing data
4445 * journaling), we have to make sure a revoke
4446 * record is written to prevent the journal
4447 * replay from overwriting the (former)
4448 * indirect block if it gets reallocated as a
4449 * data block. This must happen in the same
4450 * transaction where the data blocks are
4451 * actually freed.
4452 */
e6362609 4453 ext4_free_blocks(handle, inode, 0, nr, 1,
40389687
A
4454 EXT4_FREE_BLOCKS_METADATA|
4455 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec
DK
4456
4457 if (parent_bh) {
4458 /*
4459 * The block which we have just freed is
4460 * pointed to by an indirect block: journal it
4461 */
4462 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4463 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4464 parent_bh)){
4465 *p = 0;
4466 BUFFER_TRACE(parent_bh,
0390131b
FM
4467 "call ext4_handle_dirty_metadata");
4468 ext4_handle_dirty_metadata(handle,
4469 inode,
4470 parent_bh);
ac27a0ec
DK
4471 }
4472 }
4473 }
4474 } else {
4475 /* We have reached the bottom of the tree. */
4476 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4477 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4478 }
4479}
4480
91ef4caf
DG
4481int ext4_can_truncate(struct inode *inode)
4482{
4483 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4484 return 0;
4485 if (S_ISREG(inode->i_mode))
4486 return 1;
4487 if (S_ISDIR(inode->i_mode))
4488 return 1;
4489 if (S_ISLNK(inode->i_mode))
4490 return !ext4_inode_is_fast_symlink(inode);
4491 return 0;
4492}
4493
ac27a0ec 4494/*
617ba13b 4495 * ext4_truncate()
ac27a0ec 4496 *
617ba13b
MC
4497 * We block out ext4_get_block() block instantiations across the entire
4498 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4499 * simultaneously on behalf of the same inode.
4500 *
4501 * As we work through the truncate and commmit bits of it to the journal there
4502 * is one core, guiding principle: the file's tree must always be consistent on
4503 * disk. We must be able to restart the truncate after a crash.
4504 *
4505 * The file's tree may be transiently inconsistent in memory (although it
4506 * probably isn't), but whenever we close off and commit a journal transaction,
4507 * the contents of (the filesystem + the journal) must be consistent and
4508 * restartable. It's pretty simple, really: bottom up, right to left (although
4509 * left-to-right works OK too).
4510 *
4511 * Note that at recovery time, journal replay occurs *before* the restart of
4512 * truncate against the orphan inode list.
4513 *
4514 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4515 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4516 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4517 * ext4_truncate() to have another go. So there will be instantiated blocks
4518 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4519 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4520 * ext4_truncate() run will find them and release them.
ac27a0ec 4521 */
617ba13b 4522void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4523{
4524 handle_t *handle;
617ba13b 4525 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4526 __le32 *i_data = ei->i_data;
617ba13b 4527 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4528 struct address_space *mapping = inode->i_mapping;
725d26d3 4529 ext4_lblk_t offsets[4];
ac27a0ec
DK
4530 Indirect chain[4];
4531 Indirect *partial;
4532 __le32 nr = 0;
4533 int n;
725d26d3 4534 ext4_lblk_t last_block;
ac27a0ec 4535 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4536
91ef4caf 4537 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4538 return;
4539
12e9b892 4540 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4541
5534fb5b 4542 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4543 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4544
12e9b892 4545 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
cf108bca 4546 ext4_ext_truncate(inode);
1d03ec98
AK
4547 return;
4548 }
a86c6181 4549
ac27a0ec 4550 handle = start_transaction(inode);
cf108bca 4551 if (IS_ERR(handle))
ac27a0ec 4552 return; /* AKPM: return what? */
ac27a0ec
DK
4553
4554 last_block = (inode->i_size + blocksize-1)
617ba13b 4555 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4556
cf108bca
JK
4557 if (inode->i_size & (blocksize - 1))
4558 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4559 goto out_stop;
ac27a0ec 4560
617ba13b 4561 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4562 if (n == 0)
4563 goto out_stop; /* error */
4564
4565 /*
4566 * OK. This truncate is going to happen. We add the inode to the
4567 * orphan list, so that if this truncate spans multiple transactions,
4568 * and we crash, we will resume the truncate when the filesystem
4569 * recovers. It also marks the inode dirty, to catch the new size.
4570 *
4571 * Implication: the file must always be in a sane, consistent
4572 * truncatable state while each transaction commits.
4573 */
617ba13b 4574 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4575 goto out_stop;
4576
632eaeab
MC
4577 /*
4578 * From here we block out all ext4_get_block() callers who want to
4579 * modify the block allocation tree.
4580 */
4581 down_write(&ei->i_data_sem);
b4df2030 4582
c2ea3fde 4583 ext4_discard_preallocations(inode);
b4df2030 4584
ac27a0ec
DK
4585 /*
4586 * The orphan list entry will now protect us from any crash which
4587 * occurs before the truncate completes, so it is now safe to propagate
4588 * the new, shorter inode size (held for now in i_size) into the
4589 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4590 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4591 */
4592 ei->i_disksize = inode->i_size;
4593
ac27a0ec 4594 if (n == 1) { /* direct blocks */
617ba13b
MC
4595 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4596 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4597 goto do_indirects;
4598 }
4599
617ba13b 4600 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4601 /* Kill the top of shared branch (not detached) */
4602 if (nr) {
4603 if (partial == chain) {
4604 /* Shared branch grows from the inode */
617ba13b 4605 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4606 &nr, &nr+1, (chain+n-1) - partial);
4607 *partial->p = 0;
4608 /*
4609 * We mark the inode dirty prior to restart,
4610 * and prior to stop. No need for it here.
4611 */
4612 } else {
4613 /* Shared branch grows from an indirect block */
4614 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4615 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4616 partial->p,
4617 partial->p+1, (chain+n-1) - partial);
4618 }
4619 }
4620 /* Clear the ends of indirect blocks on the shared branch */
4621 while (partial > chain) {
617ba13b 4622 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4623 (__le32*)partial->bh->b_data+addr_per_block,
4624 (chain+n-1) - partial);
4625 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4626 brelse(partial->bh);
ac27a0ec
DK
4627 partial--;
4628 }
4629do_indirects:
4630 /* Kill the remaining (whole) subtrees */
4631 switch (offsets[0]) {
4632 default:
617ba13b 4633 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4634 if (nr) {
617ba13b
MC
4635 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4636 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4637 }
617ba13b
MC
4638 case EXT4_IND_BLOCK:
4639 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4640 if (nr) {
617ba13b
MC
4641 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4642 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4643 }
617ba13b
MC
4644 case EXT4_DIND_BLOCK:
4645 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4646 if (nr) {
617ba13b
MC
4647 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4648 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4649 }
617ba13b 4650 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4651 ;
4652 }
4653
0e855ac8 4654 up_write(&ei->i_data_sem);
ef7f3835 4655 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4656 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4657
4658 /*
4659 * In a multi-transaction truncate, we only make the final transaction
4660 * synchronous
4661 */
4662 if (IS_SYNC(inode))
0390131b 4663 ext4_handle_sync(handle);
ac27a0ec
DK
4664out_stop:
4665 /*
4666 * If this was a simple ftruncate(), and the file will remain alive
4667 * then we need to clear up the orphan record which we created above.
4668 * However, if this was a real unlink then we were called by
617ba13b 4669 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4670 * orphan info for us.
4671 */
4672 if (inode->i_nlink)
617ba13b 4673 ext4_orphan_del(handle, inode);
ac27a0ec 4674
617ba13b 4675 ext4_journal_stop(handle);
ac27a0ec
DK
4676}
4677
ac27a0ec 4678/*
617ba13b 4679 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4680 * underlying buffer_head on success. If 'in_mem' is true, we have all
4681 * data in memory that is needed to recreate the on-disk version of this
4682 * inode.
4683 */
617ba13b
MC
4684static int __ext4_get_inode_loc(struct inode *inode,
4685 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4686{
240799cd
TT
4687 struct ext4_group_desc *gdp;
4688 struct buffer_head *bh;
4689 struct super_block *sb = inode->i_sb;
4690 ext4_fsblk_t block;
4691 int inodes_per_block, inode_offset;
4692
3a06d778 4693 iloc->bh = NULL;
240799cd
TT
4694 if (!ext4_valid_inum(sb, inode->i_ino))
4695 return -EIO;
ac27a0ec 4696
240799cd
TT
4697 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4698 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4699 if (!gdp)
ac27a0ec
DK
4700 return -EIO;
4701
240799cd
TT
4702 /*
4703 * Figure out the offset within the block group inode table
4704 */
4705 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4706 inode_offset = ((inode->i_ino - 1) %
4707 EXT4_INODES_PER_GROUP(sb));
4708 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4709 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4710
4711 bh = sb_getblk(sb, block);
ac27a0ec 4712 if (!bh) {
c398eda0
TT
4713 EXT4_ERROR_INODE_BLOCK(inode, block,
4714 "unable to read itable block");
ac27a0ec
DK
4715 return -EIO;
4716 }
4717 if (!buffer_uptodate(bh)) {
4718 lock_buffer(bh);
9c83a923
HK
4719
4720 /*
4721 * If the buffer has the write error flag, we have failed
4722 * to write out another inode in the same block. In this
4723 * case, we don't have to read the block because we may
4724 * read the old inode data successfully.
4725 */
4726 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4727 set_buffer_uptodate(bh);
4728
ac27a0ec
DK
4729 if (buffer_uptodate(bh)) {
4730 /* someone brought it uptodate while we waited */
4731 unlock_buffer(bh);
4732 goto has_buffer;
4733 }
4734
4735 /*
4736 * If we have all information of the inode in memory and this
4737 * is the only valid inode in the block, we need not read the
4738 * block.
4739 */
4740 if (in_mem) {
4741 struct buffer_head *bitmap_bh;
240799cd 4742 int i, start;
ac27a0ec 4743
240799cd 4744 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4745
240799cd
TT
4746 /* Is the inode bitmap in cache? */
4747 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4748 if (!bitmap_bh)
4749 goto make_io;
4750
4751 /*
4752 * If the inode bitmap isn't in cache then the
4753 * optimisation may end up performing two reads instead
4754 * of one, so skip it.
4755 */
4756 if (!buffer_uptodate(bitmap_bh)) {
4757 brelse(bitmap_bh);
4758 goto make_io;
4759 }
240799cd 4760 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4761 if (i == inode_offset)
4762 continue;
617ba13b 4763 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4764 break;
4765 }
4766 brelse(bitmap_bh);
240799cd 4767 if (i == start + inodes_per_block) {
ac27a0ec
DK
4768 /* all other inodes are free, so skip I/O */
4769 memset(bh->b_data, 0, bh->b_size);
4770 set_buffer_uptodate(bh);
4771 unlock_buffer(bh);
4772 goto has_buffer;
4773 }
4774 }
4775
4776make_io:
240799cd
TT
4777 /*
4778 * If we need to do any I/O, try to pre-readahead extra
4779 * blocks from the inode table.
4780 */
4781 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4782 ext4_fsblk_t b, end, table;
4783 unsigned num;
4784
4785 table = ext4_inode_table(sb, gdp);
b713a5ec 4786 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4787 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4788 if (table > b)
4789 b = table;
4790 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4791 num = EXT4_INODES_PER_GROUP(sb);
4792 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4793 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4794 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4795 table += num / inodes_per_block;
4796 if (end > table)
4797 end = table;
4798 while (b <= end)
4799 sb_breadahead(sb, b++);
4800 }
4801
ac27a0ec
DK
4802 /*
4803 * There are other valid inodes in the buffer, this inode
4804 * has in-inode xattrs, or we don't have this inode in memory.
4805 * Read the block from disk.
4806 */
4807 get_bh(bh);
4808 bh->b_end_io = end_buffer_read_sync;
4809 submit_bh(READ_META, bh);
4810 wait_on_buffer(bh);
4811 if (!buffer_uptodate(bh)) {
c398eda0
TT
4812 EXT4_ERROR_INODE_BLOCK(inode, block,
4813 "unable to read itable block");
ac27a0ec
DK
4814 brelse(bh);
4815 return -EIO;
4816 }
4817 }
4818has_buffer:
4819 iloc->bh = bh;
4820 return 0;
4821}
4822
617ba13b 4823int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4824{
4825 /* We have all inode data except xattrs in memory here. */
617ba13b 4826 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4827 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4828}
4829
617ba13b 4830void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4831{
617ba13b 4832 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4833
4834 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4835 if (flags & EXT4_SYNC_FL)
ac27a0ec 4836 inode->i_flags |= S_SYNC;
617ba13b 4837 if (flags & EXT4_APPEND_FL)
ac27a0ec 4838 inode->i_flags |= S_APPEND;
617ba13b 4839 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4840 inode->i_flags |= S_IMMUTABLE;
617ba13b 4841 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4842 inode->i_flags |= S_NOATIME;
617ba13b 4843 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4844 inode->i_flags |= S_DIRSYNC;
4845}
4846
ff9ddf7e
JK
4847/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4848void ext4_get_inode_flags(struct ext4_inode_info *ei)
4849{
84a8dce2
DM
4850 unsigned int vfs_fl;
4851 unsigned long old_fl, new_fl;
4852
4853 do {
4854 vfs_fl = ei->vfs_inode.i_flags;
4855 old_fl = ei->i_flags;
4856 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4857 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4858 EXT4_DIRSYNC_FL);
4859 if (vfs_fl & S_SYNC)
4860 new_fl |= EXT4_SYNC_FL;
4861 if (vfs_fl & S_APPEND)
4862 new_fl |= EXT4_APPEND_FL;
4863 if (vfs_fl & S_IMMUTABLE)
4864 new_fl |= EXT4_IMMUTABLE_FL;
4865 if (vfs_fl & S_NOATIME)
4866 new_fl |= EXT4_NOATIME_FL;
4867 if (vfs_fl & S_DIRSYNC)
4868 new_fl |= EXT4_DIRSYNC_FL;
4869 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4870}
de9a55b8 4871
0fc1b451 4872static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4873 struct ext4_inode_info *ei)
0fc1b451
AK
4874{
4875 blkcnt_t i_blocks ;
8180a562
AK
4876 struct inode *inode = &(ei->vfs_inode);
4877 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4878
4879 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4880 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4881 /* we are using combined 48 bit field */
4882 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4883 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4884 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4885 /* i_blocks represent file system block size */
4886 return i_blocks << (inode->i_blkbits - 9);
4887 } else {
4888 return i_blocks;
4889 }
0fc1b451
AK
4890 } else {
4891 return le32_to_cpu(raw_inode->i_blocks_lo);
4892 }
4893}
ff9ddf7e 4894
1d1fe1ee 4895struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4896{
617ba13b
MC
4897 struct ext4_iloc iloc;
4898 struct ext4_inode *raw_inode;
1d1fe1ee 4899 struct ext4_inode_info *ei;
1d1fe1ee 4900 struct inode *inode;
b436b9be 4901 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4902 long ret;
ac27a0ec
DK
4903 int block;
4904
1d1fe1ee
DH
4905 inode = iget_locked(sb, ino);
4906 if (!inode)
4907 return ERR_PTR(-ENOMEM);
4908 if (!(inode->i_state & I_NEW))
4909 return inode;
4910
4911 ei = EXT4_I(inode);
567f3e9a 4912 iloc.bh = 0;
ac27a0ec 4913
1d1fe1ee
DH
4914 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4915 if (ret < 0)
ac27a0ec 4916 goto bad_inode;
617ba13b 4917 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4918 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4919 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4920 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4921 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4922 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4923 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4924 }
4925 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 4926
19f5fb7a 4927 ei->i_state_flags = 0;
ac27a0ec
DK
4928 ei->i_dir_start_lookup = 0;
4929 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4930 /* We now have enough fields to check if the inode was active or not.
4931 * This is needed because nfsd might try to access dead inodes
4932 * the test is that same one that e2fsck uses
4933 * NeilBrown 1999oct15
4934 */
4935 if (inode->i_nlink == 0) {
4936 if (inode->i_mode == 0 ||
617ba13b 4937 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4938 /* this inode is deleted */
1d1fe1ee 4939 ret = -ESTALE;
ac27a0ec
DK
4940 goto bad_inode;
4941 }
4942 /* The only unlinked inodes we let through here have
4943 * valid i_mode and are being read by the orphan
4944 * recovery code: that's fine, we're about to complete
4945 * the process of deleting those. */
4946 }
ac27a0ec 4947 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4948 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4949 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4950 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4951 ei->i_file_acl |=
4952 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4953 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4954 ei->i_disksize = inode->i_size;
a9e7f447
DM
4955#ifdef CONFIG_QUOTA
4956 ei->i_reserved_quota = 0;
4957#endif
ac27a0ec
DK
4958 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4959 ei->i_block_group = iloc.block_group;
a4912123 4960 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4961 /*
4962 * NOTE! The in-memory inode i_data array is in little-endian order
4963 * even on big-endian machines: we do NOT byteswap the block numbers!
4964 */
617ba13b 4965 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4966 ei->i_data[block] = raw_inode->i_block[block];
4967 INIT_LIST_HEAD(&ei->i_orphan);
4968
b436b9be
JK
4969 /*
4970 * Set transaction id's of transactions that have to be committed
4971 * to finish f[data]sync. We set them to currently running transaction
4972 * as we cannot be sure that the inode or some of its metadata isn't
4973 * part of the transaction - the inode could have been reclaimed and
4974 * now it is reread from disk.
4975 */
4976 if (journal) {
4977 transaction_t *transaction;
4978 tid_t tid;
4979
a931da6a 4980 read_lock(&journal->j_state_lock);
b436b9be
JK
4981 if (journal->j_running_transaction)
4982 transaction = journal->j_running_transaction;
4983 else
4984 transaction = journal->j_committing_transaction;
4985 if (transaction)
4986 tid = transaction->t_tid;
4987 else
4988 tid = journal->j_commit_sequence;
a931da6a 4989 read_unlock(&journal->j_state_lock);
b436b9be
JK
4990 ei->i_sync_tid = tid;
4991 ei->i_datasync_tid = tid;
4992 }
4993
0040d987 4994 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4995 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4996 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4997 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 4998 ret = -EIO;
ac27a0ec 4999 goto bad_inode;
e5d2861f 5000 }
ac27a0ec
DK
5001 if (ei->i_extra_isize == 0) {
5002 /* The extra space is currently unused. Use it. */
617ba13b
MC
5003 ei->i_extra_isize = sizeof(struct ext4_inode) -
5004 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
5005 } else {
5006 __le32 *magic = (void *)raw_inode +
617ba13b 5007 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 5008 ei->i_extra_isize;
617ba13b 5009 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 5010 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
5011 }
5012 } else
5013 ei->i_extra_isize = 0;
5014
ef7f3835
KS
5015 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5016 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5017 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5018 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5019
25ec56b5
JNC
5020 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5021 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5022 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5023 inode->i_version |=
5024 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5025 }
5026
c4b5a614 5027 ret = 0;
485c26ec 5028 if (ei->i_file_acl &&
1032988c 5029 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
5030 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5031 ei->i_file_acl);
485c26ec
TT
5032 ret = -EIO;
5033 goto bad_inode;
07a03824 5034 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
5035 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5036 (S_ISLNK(inode->i_mode) &&
5037 !ext4_inode_is_fast_symlink(inode)))
5038 /* Validate extent which is part of inode */
5039 ret = ext4_ext_check_inode(inode);
de9a55b8 5040 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5041 (S_ISLNK(inode->i_mode) &&
5042 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5043 /* Validate block references which are part of inode */
fe2c8191
TN
5044 ret = ext4_check_inode_blockref(inode);
5045 }
567f3e9a 5046 if (ret)
de9a55b8 5047 goto bad_inode;
7a262f7c 5048
ac27a0ec 5049 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5050 inode->i_op = &ext4_file_inode_operations;
5051 inode->i_fop = &ext4_file_operations;
5052 ext4_set_aops(inode);
ac27a0ec 5053 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5054 inode->i_op = &ext4_dir_inode_operations;
5055 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5056 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5057 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5058 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5059 nd_terminate_link(ei->i_data, inode->i_size,
5060 sizeof(ei->i_data) - 1);
5061 } else {
617ba13b
MC
5062 inode->i_op = &ext4_symlink_inode_operations;
5063 ext4_set_aops(inode);
ac27a0ec 5064 }
563bdd61
TT
5065 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5066 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5067 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5068 if (raw_inode->i_block[0])
5069 init_special_inode(inode, inode->i_mode,
5070 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5071 else
5072 init_special_inode(inode, inode->i_mode,
5073 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5074 } else {
563bdd61 5075 ret = -EIO;
24676da4 5076 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5077 goto bad_inode;
ac27a0ec 5078 }
af5bc92d 5079 brelse(iloc.bh);
617ba13b 5080 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5081 unlock_new_inode(inode);
5082 return inode;
ac27a0ec
DK
5083
5084bad_inode:
567f3e9a 5085 brelse(iloc.bh);
1d1fe1ee
DH
5086 iget_failed(inode);
5087 return ERR_PTR(ret);
ac27a0ec
DK
5088}
5089
0fc1b451
AK
5090static int ext4_inode_blocks_set(handle_t *handle,
5091 struct ext4_inode *raw_inode,
5092 struct ext4_inode_info *ei)
5093{
5094 struct inode *inode = &(ei->vfs_inode);
5095 u64 i_blocks = inode->i_blocks;
5096 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5097
5098 if (i_blocks <= ~0U) {
5099 /*
5100 * i_blocks can be represnted in a 32 bit variable
5101 * as multiple of 512 bytes
5102 */
8180a562 5103 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5104 raw_inode->i_blocks_high = 0;
84a8dce2 5105 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5106 return 0;
5107 }
5108 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5109 return -EFBIG;
5110
5111 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5112 /*
5113 * i_blocks can be represented in a 48 bit variable
5114 * as multiple of 512 bytes
5115 */
8180a562 5116 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5117 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5118 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5119 } else {
84a8dce2 5120 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5121 /* i_block is stored in file system block size */
5122 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5123 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5124 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5125 }
f287a1a5 5126 return 0;
0fc1b451
AK
5127}
5128
ac27a0ec
DK
5129/*
5130 * Post the struct inode info into an on-disk inode location in the
5131 * buffer-cache. This gobbles the caller's reference to the
5132 * buffer_head in the inode location struct.
5133 *
5134 * The caller must have write access to iloc->bh.
5135 */
617ba13b 5136static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5137 struct inode *inode,
830156c7 5138 struct ext4_iloc *iloc)
ac27a0ec 5139{
617ba13b
MC
5140 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5141 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5142 struct buffer_head *bh = iloc->bh;
5143 int err = 0, rc, block;
5144
5145 /* For fields not not tracking in the in-memory inode,
5146 * initialise them to zero for new inodes. */
19f5fb7a 5147 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5148 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5149
ff9ddf7e 5150 ext4_get_inode_flags(ei);
ac27a0ec 5151 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5152 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5153 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5154 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5155/*
5156 * Fix up interoperability with old kernels. Otherwise, old inodes get
5157 * re-used with the upper 16 bits of the uid/gid intact
5158 */
af5bc92d 5159 if (!ei->i_dtime) {
ac27a0ec
DK
5160 raw_inode->i_uid_high =
5161 cpu_to_le16(high_16_bits(inode->i_uid));
5162 raw_inode->i_gid_high =
5163 cpu_to_le16(high_16_bits(inode->i_gid));
5164 } else {
5165 raw_inode->i_uid_high = 0;
5166 raw_inode->i_gid_high = 0;
5167 }
5168 } else {
5169 raw_inode->i_uid_low =
5170 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5171 raw_inode->i_gid_low =
5172 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5173 raw_inode->i_uid_high = 0;
5174 raw_inode->i_gid_high = 0;
5175 }
5176 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5177
5178 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5179 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5180 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5181 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5182
0fc1b451
AK
5183 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5184 goto out_brelse;
ac27a0ec 5185 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5186 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5187 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5188 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5189 raw_inode->i_file_acl_high =
5190 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5191 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5192 ext4_isize_set(raw_inode, ei->i_disksize);
5193 if (ei->i_disksize > 0x7fffffffULL) {
5194 struct super_block *sb = inode->i_sb;
5195 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5196 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5197 EXT4_SB(sb)->s_es->s_rev_level ==
5198 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5199 /* If this is the first large file
5200 * created, add a flag to the superblock.
5201 */
5202 err = ext4_journal_get_write_access(handle,
5203 EXT4_SB(sb)->s_sbh);
5204 if (err)
5205 goto out_brelse;
5206 ext4_update_dynamic_rev(sb);
5207 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5208 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5209 sb->s_dirt = 1;
0390131b 5210 ext4_handle_sync(handle);
73b50c1c 5211 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5212 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5213 }
5214 }
5215 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5216 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5217 if (old_valid_dev(inode->i_rdev)) {
5218 raw_inode->i_block[0] =
5219 cpu_to_le32(old_encode_dev(inode->i_rdev));
5220 raw_inode->i_block[1] = 0;
5221 } else {
5222 raw_inode->i_block[0] = 0;
5223 raw_inode->i_block[1] =
5224 cpu_to_le32(new_encode_dev(inode->i_rdev));
5225 raw_inode->i_block[2] = 0;
5226 }
de9a55b8
TT
5227 } else
5228 for (block = 0; block < EXT4_N_BLOCKS; block++)
5229 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5230
25ec56b5
JNC
5231 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5232 if (ei->i_extra_isize) {
5233 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5234 raw_inode->i_version_hi =
5235 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5236 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5237 }
5238
830156c7 5239 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5240 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5241 if (!err)
5242 err = rc;
19f5fb7a 5243 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5244
b436b9be 5245 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5246out_brelse:
af5bc92d 5247 brelse(bh);
617ba13b 5248 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5249 return err;
5250}
5251
5252/*
617ba13b 5253 * ext4_write_inode()
ac27a0ec
DK
5254 *
5255 * We are called from a few places:
5256 *
5257 * - Within generic_file_write() for O_SYNC files.
5258 * Here, there will be no transaction running. We wait for any running
5259 * trasnaction to commit.
5260 *
5261 * - Within sys_sync(), kupdate and such.
5262 * We wait on commit, if tol to.
5263 *
5264 * - Within prune_icache() (PF_MEMALLOC == true)
5265 * Here we simply return. We can't afford to block kswapd on the
5266 * journal commit.
5267 *
5268 * In all cases it is actually safe for us to return without doing anything,
5269 * because the inode has been copied into a raw inode buffer in
617ba13b 5270 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5271 * knfsd.
5272 *
5273 * Note that we are absolutely dependent upon all inode dirtiers doing the
5274 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5275 * which we are interested.
5276 *
5277 * It would be a bug for them to not do this. The code:
5278 *
5279 * mark_inode_dirty(inode)
5280 * stuff();
5281 * inode->i_size = expr;
5282 *
5283 * is in error because a kswapd-driven write_inode() could occur while
5284 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5285 * will no longer be on the superblock's dirty inode list.
5286 */
a9185b41 5287int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5288{
91ac6f43
FM
5289 int err;
5290
ac27a0ec
DK
5291 if (current->flags & PF_MEMALLOC)
5292 return 0;
5293
91ac6f43
FM
5294 if (EXT4_SB(inode->i_sb)->s_journal) {
5295 if (ext4_journal_current_handle()) {
5296 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5297 dump_stack();
5298 return -EIO;
5299 }
ac27a0ec 5300
a9185b41 5301 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5302 return 0;
5303
5304 err = ext4_force_commit(inode->i_sb);
5305 } else {
5306 struct ext4_iloc iloc;
ac27a0ec 5307
8b472d73 5308 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5309 if (err)
5310 return err;
a9185b41 5311 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5312 sync_dirty_buffer(iloc.bh);
5313 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5314 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5315 "IO error syncing inode");
830156c7
FM
5316 err = -EIO;
5317 }
fd2dd9fb 5318 brelse(iloc.bh);
91ac6f43
FM
5319 }
5320 return err;
ac27a0ec
DK
5321}
5322
5323/*
617ba13b 5324 * ext4_setattr()
ac27a0ec
DK
5325 *
5326 * Called from notify_change.
5327 *
5328 * We want to trap VFS attempts to truncate the file as soon as
5329 * possible. In particular, we want to make sure that when the VFS
5330 * shrinks i_size, we put the inode on the orphan list and modify
5331 * i_disksize immediately, so that during the subsequent flushing of
5332 * dirty pages and freeing of disk blocks, we can guarantee that any
5333 * commit will leave the blocks being flushed in an unused state on
5334 * disk. (On recovery, the inode will get truncated and the blocks will
5335 * be freed, so we have a strong guarantee that no future commit will
5336 * leave these blocks visible to the user.)
5337 *
678aaf48
JK
5338 * Another thing we have to assure is that if we are in ordered mode
5339 * and inode is still attached to the committing transaction, we must
5340 * we start writeout of all the dirty pages which are being truncated.
5341 * This way we are sure that all the data written in the previous
5342 * transaction are already on disk (truncate waits for pages under
5343 * writeback).
5344 *
5345 * Called with inode->i_mutex down.
ac27a0ec 5346 */
617ba13b 5347int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5348{
5349 struct inode *inode = dentry->d_inode;
5350 int error, rc = 0;
5351 const unsigned int ia_valid = attr->ia_valid;
5352
5353 error = inode_change_ok(inode, attr);
5354 if (error)
5355 return error;
5356
12755627 5357 if (is_quota_modification(inode, attr))
871a2931 5358 dquot_initialize(inode);
ac27a0ec
DK
5359 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5360 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5361 handle_t *handle;
5362
5363 /* (user+group)*(old+new) structure, inode write (sb,
5364 * inode block, ? - but truncate inode update has it) */
5aca07eb 5365 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5366 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5367 if (IS_ERR(handle)) {
5368 error = PTR_ERR(handle);
5369 goto err_out;
5370 }
b43fa828 5371 error = dquot_transfer(inode, attr);
ac27a0ec 5372 if (error) {
617ba13b 5373 ext4_journal_stop(handle);
ac27a0ec
DK
5374 return error;
5375 }
5376 /* Update corresponding info in inode so that everything is in
5377 * one transaction */
5378 if (attr->ia_valid & ATTR_UID)
5379 inode->i_uid = attr->ia_uid;
5380 if (attr->ia_valid & ATTR_GID)
5381 inode->i_gid = attr->ia_gid;
617ba13b
MC
5382 error = ext4_mark_inode_dirty(handle, inode);
5383 ext4_journal_stop(handle);
ac27a0ec
DK
5384 }
5385
e2b46574 5386 if (attr->ia_valid & ATTR_SIZE) {
12e9b892 5387 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5388 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5389
0c095c7f
TT
5390 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5391 return -EFBIG;
e2b46574
ES
5392 }
5393 }
5394
ac27a0ec 5395 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5396 attr->ia_valid & ATTR_SIZE &&
5397 (attr->ia_size < inode->i_size ||
12e9b892 5398 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
ac27a0ec
DK
5399 handle_t *handle;
5400
617ba13b 5401 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5402 if (IS_ERR(handle)) {
5403 error = PTR_ERR(handle);
5404 goto err_out;
5405 }
5406
617ba13b
MC
5407 error = ext4_orphan_add(handle, inode);
5408 EXT4_I(inode)->i_disksize = attr->ia_size;
5409 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5410 if (!error)
5411 error = rc;
617ba13b 5412 ext4_journal_stop(handle);
678aaf48
JK
5413
5414 if (ext4_should_order_data(inode)) {
5415 error = ext4_begin_ordered_truncate(inode,
5416 attr->ia_size);
5417 if (error) {
5418 /* Do as much error cleanup as possible */
5419 handle = ext4_journal_start(inode, 3);
5420 if (IS_ERR(handle)) {
5421 ext4_orphan_del(NULL, inode);
5422 goto err_out;
5423 }
5424 ext4_orphan_del(handle, inode);
5425 ext4_journal_stop(handle);
5426 goto err_out;
5427 }
5428 }
c8d46e41 5429 /* ext4_truncate will clear the flag */
12e9b892 5430 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
c8d46e41 5431 ext4_truncate(inode);
ac27a0ec
DK
5432 }
5433
1025774c
CH
5434 if ((attr->ia_valid & ATTR_SIZE) &&
5435 attr->ia_size != i_size_read(inode))
5436 rc = vmtruncate(inode, attr->ia_size);
ac27a0ec 5437
1025774c
CH
5438 if (!rc) {
5439 setattr_copy(inode, attr);
5440 mark_inode_dirty(inode);
5441 }
5442
5443 /*
5444 * If the call to ext4_truncate failed to get a transaction handle at
5445 * all, we need to clean up the in-core orphan list manually.
5446 */
ac27a0ec 5447 if (inode->i_nlink)
617ba13b 5448 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5449
5450 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5451 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5452
5453err_out:
617ba13b 5454 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5455 if (!error)
5456 error = rc;
5457 return error;
5458}
5459
3e3398a0
MC
5460int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5461 struct kstat *stat)
5462{
5463 struct inode *inode;
5464 unsigned long delalloc_blocks;
5465
5466 inode = dentry->d_inode;
5467 generic_fillattr(inode, stat);
5468
5469 /*
5470 * We can't update i_blocks if the block allocation is delayed
5471 * otherwise in the case of system crash before the real block
5472 * allocation is done, we will have i_blocks inconsistent with
5473 * on-disk file blocks.
5474 * We always keep i_blocks updated together with real
5475 * allocation. But to not confuse with user, stat
5476 * will return the blocks that include the delayed allocation
5477 * blocks for this file.
5478 */
5479 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5480 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5481 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5482
5483 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5484 return 0;
5485}
ac27a0ec 5486
a02908f1
MC
5487static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5488 int chunk)
5489{
5490 int indirects;
5491
5492 /* if nrblocks are contiguous */
5493 if (chunk) {
5494 /*
5495 * With N contiguous data blocks, it need at most
5496 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5497 * 2 dindirect blocks
5498 * 1 tindirect block
5499 */
5500 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5501 return indirects + 3;
5502 }
5503 /*
5504 * if nrblocks are not contiguous, worse case, each block touch
5505 * a indirect block, and each indirect block touch a double indirect
5506 * block, plus a triple indirect block
5507 */
5508 indirects = nrblocks * 2 + 1;
5509 return indirects;
5510}
5511
5512static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5513{
12e9b892 5514 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
ac51d837
TT
5515 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5516 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5517}
ac51d837 5518
ac27a0ec 5519/*
a02908f1
MC
5520 * Account for index blocks, block groups bitmaps and block group
5521 * descriptor blocks if modify datablocks and index blocks
5522 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5523 *
a02908f1 5524 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5525 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5526 * they could still across block group boundary.
ac27a0ec 5527 *
a02908f1
MC
5528 * Also account for superblock, inode, quota and xattr blocks
5529 */
5530int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5531{
8df9675f
TT
5532 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5533 int gdpblocks;
a02908f1
MC
5534 int idxblocks;
5535 int ret = 0;
5536
5537 /*
5538 * How many index blocks need to touch to modify nrblocks?
5539 * The "Chunk" flag indicating whether the nrblocks is
5540 * physically contiguous on disk
5541 *
5542 * For Direct IO and fallocate, they calls get_block to allocate
5543 * one single extent at a time, so they could set the "Chunk" flag
5544 */
5545 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5546
5547 ret = idxblocks;
5548
5549 /*
5550 * Now let's see how many group bitmaps and group descriptors need
5551 * to account
5552 */
5553 groups = idxblocks;
5554 if (chunk)
5555 groups += 1;
5556 else
5557 groups += nrblocks;
5558
5559 gdpblocks = groups;
8df9675f
TT
5560 if (groups > ngroups)
5561 groups = ngroups;
a02908f1
MC
5562 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5563 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5564
5565 /* bitmaps and block group descriptor blocks */
5566 ret += groups + gdpblocks;
5567
5568 /* Blocks for super block, inode, quota and xattr blocks */
5569 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5570
5571 return ret;
5572}
5573
5574/*
5575 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5576 * the modification of a single pages into a single transaction,
5577 * which may include multiple chunks of block allocations.
ac27a0ec 5578 *
525f4ed8 5579 * This could be called via ext4_write_begin()
ac27a0ec 5580 *
525f4ed8 5581 * We need to consider the worse case, when
a02908f1 5582 * one new block per extent.
ac27a0ec 5583 */
a86c6181 5584int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5585{
617ba13b 5586 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5587 int ret;
5588
a02908f1 5589 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5590
a02908f1 5591 /* Account for data blocks for journalled mode */
617ba13b 5592 if (ext4_should_journal_data(inode))
a02908f1 5593 ret += bpp;
ac27a0ec
DK
5594 return ret;
5595}
f3bd1f3f
MC
5596
5597/*
5598 * Calculate the journal credits for a chunk of data modification.
5599 *
5600 * This is called from DIO, fallocate or whoever calling
79e83036 5601 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5602 *
5603 * journal buffers for data blocks are not included here, as DIO
5604 * and fallocate do no need to journal data buffers.
5605 */
5606int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5607{
5608 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5609}
5610
ac27a0ec 5611/*
617ba13b 5612 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5613 * Give this, we know that the caller already has write access to iloc->bh.
5614 */
617ba13b 5615int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5616 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5617{
5618 int err = 0;
5619
25ec56b5
JNC
5620 if (test_opt(inode->i_sb, I_VERSION))
5621 inode_inc_iversion(inode);
5622
ac27a0ec
DK
5623 /* the do_update_inode consumes one bh->b_count */
5624 get_bh(iloc->bh);
5625
dab291af 5626 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5627 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5628 put_bh(iloc->bh);
5629 return err;
5630}
5631
5632/*
5633 * On success, We end up with an outstanding reference count against
5634 * iloc->bh. This _must_ be cleaned up later.
5635 */
5636
5637int
617ba13b
MC
5638ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5639 struct ext4_iloc *iloc)
ac27a0ec 5640{
0390131b
FM
5641 int err;
5642
5643 err = ext4_get_inode_loc(inode, iloc);
5644 if (!err) {
5645 BUFFER_TRACE(iloc->bh, "get_write_access");
5646 err = ext4_journal_get_write_access(handle, iloc->bh);
5647 if (err) {
5648 brelse(iloc->bh);
5649 iloc->bh = NULL;
ac27a0ec
DK
5650 }
5651 }
617ba13b 5652 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5653 return err;
5654}
5655
6dd4ee7c
KS
5656/*
5657 * Expand an inode by new_extra_isize bytes.
5658 * Returns 0 on success or negative error number on failure.
5659 */
1d03ec98
AK
5660static int ext4_expand_extra_isize(struct inode *inode,
5661 unsigned int new_extra_isize,
5662 struct ext4_iloc iloc,
5663 handle_t *handle)
6dd4ee7c
KS
5664{
5665 struct ext4_inode *raw_inode;
5666 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5667
5668 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5669 return 0;
5670
5671 raw_inode = ext4_raw_inode(&iloc);
5672
5673 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5674
5675 /* No extended attributes present */
19f5fb7a
TT
5676 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5677 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5678 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5679 new_extra_isize);
5680 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5681 return 0;
5682 }
5683
5684 /* try to expand with EAs present */
5685 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5686 raw_inode, handle);
5687}
5688
ac27a0ec
DK
5689/*
5690 * What we do here is to mark the in-core inode as clean with respect to inode
5691 * dirtiness (it may still be data-dirty).
5692 * This means that the in-core inode may be reaped by prune_icache
5693 * without having to perform any I/O. This is a very good thing,
5694 * because *any* task may call prune_icache - even ones which
5695 * have a transaction open against a different journal.
5696 *
5697 * Is this cheating? Not really. Sure, we haven't written the
5698 * inode out, but prune_icache isn't a user-visible syncing function.
5699 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5700 * we start and wait on commits.
5701 *
5702 * Is this efficient/effective? Well, we're being nice to the system
5703 * by cleaning up our inodes proactively so they can be reaped
5704 * without I/O. But we are potentially leaving up to five seconds'
5705 * worth of inodes floating about which prune_icache wants us to
5706 * write out. One way to fix that would be to get prune_icache()
5707 * to do a write_super() to free up some memory. It has the desired
5708 * effect.
5709 */
617ba13b 5710int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5711{
617ba13b 5712 struct ext4_iloc iloc;
6dd4ee7c
KS
5713 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5714 static unsigned int mnt_count;
5715 int err, ret;
ac27a0ec
DK
5716
5717 might_sleep();
617ba13b 5718 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5719 if (ext4_handle_valid(handle) &&
5720 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5721 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5722 /*
5723 * We need extra buffer credits since we may write into EA block
5724 * with this same handle. If journal_extend fails, then it will
5725 * only result in a minor loss of functionality for that inode.
5726 * If this is felt to be critical, then e2fsck should be run to
5727 * force a large enough s_min_extra_isize.
5728 */
5729 if ((jbd2_journal_extend(handle,
5730 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5731 ret = ext4_expand_extra_isize(inode,
5732 sbi->s_want_extra_isize,
5733 iloc, handle);
5734 if (ret) {
19f5fb7a
TT
5735 ext4_set_inode_state(inode,
5736 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5737 if (mnt_count !=
5738 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5739 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5740 "Unable to expand inode %lu. Delete"
5741 " some EAs or run e2fsck.",
5742 inode->i_ino);
c1bddad9
AK
5743 mnt_count =
5744 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5745 }
5746 }
5747 }
5748 }
ac27a0ec 5749 if (!err)
617ba13b 5750 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5751 return err;
5752}
5753
5754/*
617ba13b 5755 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5756 *
5757 * We're really interested in the case where a file is being extended.
5758 * i_size has been changed by generic_commit_write() and we thus need
5759 * to include the updated inode in the current transaction.
5760 *
5dd4056d 5761 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5762 * are allocated to the file.
5763 *
5764 * If the inode is marked synchronous, we don't honour that here - doing
5765 * so would cause a commit on atime updates, which we don't bother doing.
5766 * We handle synchronous inodes at the highest possible level.
5767 */
617ba13b 5768void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5769{
ac27a0ec
DK
5770 handle_t *handle;
5771
617ba13b 5772 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5773 if (IS_ERR(handle))
5774 goto out;
f3dc272f 5775
f3dc272f
CW
5776 ext4_mark_inode_dirty(handle, inode);
5777
617ba13b 5778 ext4_journal_stop(handle);
ac27a0ec
DK
5779out:
5780 return;
5781}
5782
5783#if 0
5784/*
5785 * Bind an inode's backing buffer_head into this transaction, to prevent
5786 * it from being flushed to disk early. Unlike
617ba13b 5787 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5788 * returns no iloc structure, so the caller needs to repeat the iloc
5789 * lookup to mark the inode dirty later.
5790 */
617ba13b 5791static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5792{
617ba13b 5793 struct ext4_iloc iloc;
ac27a0ec
DK
5794
5795 int err = 0;
5796 if (handle) {
617ba13b 5797 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5798 if (!err) {
5799 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5800 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5801 if (!err)
0390131b 5802 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5803 NULL,
0390131b 5804 iloc.bh);
ac27a0ec
DK
5805 brelse(iloc.bh);
5806 }
5807 }
617ba13b 5808 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5809 return err;
5810}
5811#endif
5812
617ba13b 5813int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5814{
5815 journal_t *journal;
5816 handle_t *handle;
5817 int err;
5818
5819 /*
5820 * We have to be very careful here: changing a data block's
5821 * journaling status dynamically is dangerous. If we write a
5822 * data block to the journal, change the status and then delete
5823 * that block, we risk forgetting to revoke the old log record
5824 * from the journal and so a subsequent replay can corrupt data.
5825 * So, first we make sure that the journal is empty and that
5826 * nobody is changing anything.
5827 */
5828
617ba13b 5829 journal = EXT4_JOURNAL(inode);
0390131b
FM
5830 if (!journal)
5831 return 0;
d699594d 5832 if (is_journal_aborted(journal))
ac27a0ec
DK
5833 return -EROFS;
5834
dab291af
MC
5835 jbd2_journal_lock_updates(journal);
5836 jbd2_journal_flush(journal);
ac27a0ec
DK
5837
5838 /*
5839 * OK, there are no updates running now, and all cached data is
5840 * synced to disk. We are now in a completely consistent state
5841 * which doesn't have anything in the journal, and we know that
5842 * no filesystem updates are running, so it is safe to modify
5843 * the inode's in-core data-journaling state flag now.
5844 */
5845
5846 if (val)
12e9b892 5847 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 5848 else
12e9b892 5849 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 5850 ext4_set_aops(inode);
ac27a0ec 5851
dab291af 5852 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5853
5854 /* Finally we can mark the inode as dirty. */
5855
617ba13b 5856 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5857 if (IS_ERR(handle))
5858 return PTR_ERR(handle);
5859
617ba13b 5860 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5861 ext4_handle_sync(handle);
617ba13b
MC
5862 ext4_journal_stop(handle);
5863 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5864
5865 return err;
5866}
2e9ee850
AK
5867
5868static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5869{
5870 return !buffer_mapped(bh);
5871}
5872
c2ec175c 5873int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5874{
c2ec175c 5875 struct page *page = vmf->page;
2e9ee850
AK
5876 loff_t size;
5877 unsigned long len;
5878 int ret = -EINVAL;
79f0be8d 5879 void *fsdata;
2e9ee850
AK
5880 struct file *file = vma->vm_file;
5881 struct inode *inode = file->f_path.dentry->d_inode;
5882 struct address_space *mapping = inode->i_mapping;
5883
5884 /*
5885 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5886 * get i_mutex because we are already holding mmap_sem.
5887 */
5888 down_read(&inode->i_alloc_sem);
5889 size = i_size_read(inode);
5890 if (page->mapping != mapping || size <= page_offset(page)
5891 || !PageUptodate(page)) {
5892 /* page got truncated from under us? */
5893 goto out_unlock;
5894 }
5895 ret = 0;
5896 if (PageMappedToDisk(page))
5897 goto out_unlock;
5898
5899 if (page->index == size >> PAGE_CACHE_SHIFT)
5900 len = size & ~PAGE_CACHE_MASK;
5901 else
5902 len = PAGE_CACHE_SIZE;
5903
a827eaff
AK
5904 lock_page(page);
5905 /*
5906 * return if we have all the buffers mapped. This avoid
5907 * the need to call write_begin/write_end which does a
5908 * journal_start/journal_stop which can block and take
5909 * long time
5910 */
2e9ee850 5911 if (page_has_buffers(page)) {
2e9ee850 5912 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5913 ext4_bh_unmapped)) {
5914 unlock_page(page);
2e9ee850 5915 goto out_unlock;
a827eaff 5916 }
2e9ee850 5917 }
a827eaff 5918 unlock_page(page);
2e9ee850
AK
5919 /*
5920 * OK, we need to fill the hole... Do write_begin write_end
5921 * to do block allocation/reservation.We are not holding
5922 * inode.i__mutex here. That allow * parallel write_begin,
5923 * write_end call. lock_page prevent this from happening
5924 * on the same page though
5925 */
5926 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5927 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5928 if (ret < 0)
5929 goto out_unlock;
5930 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5931 len, len, page, fsdata);
2e9ee850
AK
5932 if (ret < 0)
5933 goto out_unlock;
5934 ret = 0;
5935out_unlock:
c2ec175c
NP
5936 if (ret)
5937 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5938 up_read(&inode->i_alloc_sem);
5939 return ret;
5940}