]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ext4/inode.c
jbd2: Remove a large array of bh's from the stack of the checkpoint routine
[net-next-2.6.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
3dcf5451 40#include "ext4_jbd2.h"
ac27a0ec
DK
41#include "xattr.h"
42#include "acl.h"
d2a17637 43#include "ext4_extents.h"
ac27a0ec 44
a1d6cc56
AK
45#define MPAGE_DA_EXTENT_TAIL 0x01
46
678aaf48
JK
47static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49{
50 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
51 new_size);
52}
53
64769240
AT
54static void ext4_invalidatepage(struct page *page, unsigned long offset);
55
ac27a0ec
DK
56/*
57 * Test whether an inode is a fast symlink.
58 */
617ba13b 59static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 60{
617ba13b 61 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
62 (inode->i_sb->s_blocksize >> 9) : 0;
63
64 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
65}
66
67/*
617ba13b 68 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
69 * which has been journaled. Metadata (eg. indirect blocks) must be
70 * revoked in all cases.
71 *
72 * "bh" may be NULL: a metadata block may have been freed from memory
73 * but there may still be a record of it in the journal, and that record
74 * still needs to be revoked.
0390131b
FM
75 *
76 * If the handle isn't valid we're not journaling so there's nothing to do.
ac27a0ec 77 */
617ba13b
MC
78int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
79 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
80{
81 int err;
82
0390131b
FM
83 if (!ext4_handle_valid(handle))
84 return 0;
85
ac27a0ec
DK
86 might_sleep();
87
88 BUFFER_TRACE(bh, "enter");
89
90 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
91 "data mode %lx\n",
92 bh, is_metadata, inode->i_mode,
93 test_opt(inode->i_sb, DATA_FLAGS));
94
95 /* Never use the revoke function if we are doing full data
96 * journaling: there is no need to, and a V1 superblock won't
97 * support it. Otherwise, only skip the revoke on un-journaled
98 * data blocks. */
99
617ba13b
MC
100 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
101 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 102 if (bh) {
dab291af 103 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 104 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
105 }
106 return 0;
107 }
108
109 /*
110 * data!=journal && (is_metadata || should_journal_data(inode))
111 */
617ba13b
MC
112 BUFFER_TRACE(bh, "call ext4_journal_revoke");
113 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 114 if (err)
46e665e9 115 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
116 "error %d when attempting revoke", err);
117 BUFFER_TRACE(bh, "exit");
118 return err;
119}
120
121/*
122 * Work out how many blocks we need to proceed with the next chunk of a
123 * truncate transaction.
124 */
125static unsigned long blocks_for_truncate(struct inode *inode)
126{
725d26d3 127 ext4_lblk_t needed;
ac27a0ec
DK
128
129 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
130
131 /* Give ourselves just enough room to cope with inodes in which
132 * i_blocks is corrupt: we've seen disk corruptions in the past
133 * which resulted in random data in an inode which looked enough
617ba13b 134 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
135 * will go a bit crazy if that happens, but at least we should
136 * try not to panic the whole kernel. */
137 if (needed < 2)
138 needed = 2;
139
140 /* But we need to bound the transaction so we don't overflow the
141 * journal. */
617ba13b
MC
142 if (needed > EXT4_MAX_TRANS_DATA)
143 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 144
617ba13b 145 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
146}
147
148/*
149 * Truncate transactions can be complex and absolutely huge. So we need to
150 * be able to restart the transaction at a conventient checkpoint to make
151 * sure we don't overflow the journal.
152 *
153 * start_transaction gets us a new handle for a truncate transaction,
154 * and extend_transaction tries to extend the existing one a bit. If
155 * extend fails, we need to propagate the failure up and restart the
156 * transaction in the top-level truncate loop. --sct
157 */
158static handle_t *start_transaction(struct inode *inode)
159{
160 handle_t *result;
161
617ba13b 162 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
163 if (!IS_ERR(result))
164 return result;
165
617ba13b 166 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
167 return result;
168}
169
170/*
171 * Try to extend this transaction for the purposes of truncation.
172 *
173 * Returns 0 if we managed to create more room. If we can't create more
174 * room, and the transaction must be restarted we return 1.
175 */
176static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
177{
0390131b
FM
178 if (!ext4_handle_valid(handle))
179 return 0;
180 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 181 return 0;
617ba13b 182 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
183 return 0;
184 return 1;
185}
186
187/*
188 * Restart the transaction associated with *handle. This does a commit,
189 * so before we call here everything must be consistently dirtied against
190 * this transaction.
191 */
617ba13b 192static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec 193{
0390131b 194 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 195 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 196 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
197}
198
199/*
200 * Called at the last iput() if i_nlink is zero.
201 */
af5bc92d 202void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
203{
204 handle_t *handle;
bc965ab3 205 int err;
ac27a0ec 206
678aaf48
JK
207 if (ext4_should_order_data(inode))
208 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
209 truncate_inode_pages(&inode->i_data, 0);
210
211 if (is_bad_inode(inode))
212 goto no_delete;
213
bc965ab3 214 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 215 if (IS_ERR(handle)) {
bc965ab3 216 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
217 /*
218 * If we're going to skip the normal cleanup, we still need to
219 * make sure that the in-core orphan linked list is properly
220 * cleaned up.
221 */
617ba13b 222 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
223 goto no_delete;
224 }
225
226 if (IS_SYNC(inode))
0390131b 227 ext4_handle_sync(handle);
ac27a0ec 228 inode->i_size = 0;
bc965ab3
TT
229 err = ext4_mark_inode_dirty(handle, inode);
230 if (err) {
231 ext4_warning(inode->i_sb, __func__,
232 "couldn't mark inode dirty (err %d)", err);
233 goto stop_handle;
234 }
ac27a0ec 235 if (inode->i_blocks)
617ba13b 236 ext4_truncate(inode);
bc965ab3
TT
237
238 /*
239 * ext4_ext_truncate() doesn't reserve any slop when it
240 * restarts journal transactions; therefore there may not be
241 * enough credits left in the handle to remove the inode from
242 * the orphan list and set the dtime field.
243 */
0390131b 244 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
245 err = ext4_journal_extend(handle, 3);
246 if (err > 0)
247 err = ext4_journal_restart(handle, 3);
248 if (err != 0) {
249 ext4_warning(inode->i_sb, __func__,
250 "couldn't extend journal (err %d)", err);
251 stop_handle:
252 ext4_journal_stop(handle);
253 goto no_delete;
254 }
255 }
256
ac27a0ec 257 /*
617ba13b 258 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 259 * AKPM: I think this can be inside the above `if'.
617ba13b 260 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 261 * deletion of a non-existent orphan - this is because we don't
617ba13b 262 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
263 * (Well, we could do this if we need to, but heck - it works)
264 */
617ba13b
MC
265 ext4_orphan_del(handle, inode);
266 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
267
268 /*
269 * One subtle ordering requirement: if anything has gone wrong
270 * (transaction abort, IO errors, whatever), then we can still
271 * do these next steps (the fs will already have been marked as
272 * having errors), but we can't free the inode if the mark_dirty
273 * fails.
274 */
617ba13b 275 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
276 /* If that failed, just do the required in-core inode clear. */
277 clear_inode(inode);
278 else
617ba13b
MC
279 ext4_free_inode(handle, inode);
280 ext4_journal_stop(handle);
ac27a0ec
DK
281 return;
282no_delete:
283 clear_inode(inode); /* We must guarantee clearing of inode... */
284}
285
286typedef struct {
287 __le32 *p;
288 __le32 key;
289 struct buffer_head *bh;
290} Indirect;
291
292static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
293{
294 p->key = *(p->p = v);
295 p->bh = bh;
296}
297
ac27a0ec 298/**
617ba13b 299 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
300 * @inode: inode in question (we are only interested in its superblock)
301 * @i_block: block number to be parsed
302 * @offsets: array to store the offsets in
8c55e204
DK
303 * @boundary: set this non-zero if the referred-to block is likely to be
304 * followed (on disk) by an indirect block.
ac27a0ec 305 *
617ba13b 306 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
307 * for UNIX filesystems - tree of pointers anchored in the inode, with
308 * data blocks at leaves and indirect blocks in intermediate nodes.
309 * This function translates the block number into path in that tree -
310 * return value is the path length and @offsets[n] is the offset of
311 * pointer to (n+1)th node in the nth one. If @block is out of range
312 * (negative or too large) warning is printed and zero returned.
313 *
314 * Note: function doesn't find node addresses, so no IO is needed. All
315 * we need to know is the capacity of indirect blocks (taken from the
316 * inode->i_sb).
317 */
318
319/*
320 * Portability note: the last comparison (check that we fit into triple
321 * indirect block) is spelled differently, because otherwise on an
322 * architecture with 32-bit longs and 8Kb pages we might get into trouble
323 * if our filesystem had 8Kb blocks. We might use long long, but that would
324 * kill us on x86. Oh, well, at least the sign propagation does not matter -
325 * i_block would have to be negative in the very beginning, so we would not
326 * get there at all.
327 */
328
617ba13b 329static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
330 ext4_lblk_t i_block,
331 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 332{
617ba13b
MC
333 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
334 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
335 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
336 indirect_blocks = ptrs,
337 double_blocks = (1 << (ptrs_bits * 2));
338 int n = 0;
339 int final = 0;
340
341 if (i_block < 0) {
af5bc92d 342 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
343 } else if (i_block < direct_blocks) {
344 offsets[n++] = i_block;
345 final = direct_blocks;
af5bc92d 346 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 347 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
348 offsets[n++] = i_block;
349 final = ptrs;
350 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 351 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
352 offsets[n++] = i_block >> ptrs_bits;
353 offsets[n++] = i_block & (ptrs - 1);
354 final = ptrs;
355 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 356 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
357 offsets[n++] = i_block >> (ptrs_bits * 2);
358 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
359 offsets[n++] = i_block & (ptrs - 1);
360 final = ptrs;
361 } else {
e2b46574 362 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 363 "block %lu > max",
e2b46574
ES
364 i_block + direct_blocks +
365 indirect_blocks + double_blocks);
ac27a0ec
DK
366 }
367 if (boundary)
368 *boundary = final - 1 - (i_block & (ptrs - 1));
369 return n;
370}
371
372/**
617ba13b 373 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
374 * @inode: inode in question
375 * @depth: depth of the chain (1 - direct pointer, etc.)
376 * @offsets: offsets of pointers in inode/indirect blocks
377 * @chain: place to store the result
378 * @err: here we store the error value
379 *
380 * Function fills the array of triples <key, p, bh> and returns %NULL
381 * if everything went OK or the pointer to the last filled triple
382 * (incomplete one) otherwise. Upon the return chain[i].key contains
383 * the number of (i+1)-th block in the chain (as it is stored in memory,
384 * i.e. little-endian 32-bit), chain[i].p contains the address of that
385 * number (it points into struct inode for i==0 and into the bh->b_data
386 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
387 * block for i>0 and NULL for i==0. In other words, it holds the block
388 * numbers of the chain, addresses they were taken from (and where we can
389 * verify that chain did not change) and buffer_heads hosting these
390 * numbers.
391 *
392 * Function stops when it stumbles upon zero pointer (absent block)
393 * (pointer to last triple returned, *@err == 0)
394 * or when it gets an IO error reading an indirect block
395 * (ditto, *@err == -EIO)
ac27a0ec
DK
396 * or when it reads all @depth-1 indirect blocks successfully and finds
397 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
398 *
399 * Need to be called with
0e855ac8 400 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 401 */
725d26d3
AK
402static Indirect *ext4_get_branch(struct inode *inode, int depth,
403 ext4_lblk_t *offsets,
ac27a0ec
DK
404 Indirect chain[4], int *err)
405{
406 struct super_block *sb = inode->i_sb;
407 Indirect *p = chain;
408 struct buffer_head *bh;
409
410 *err = 0;
411 /* i_data is not going away, no lock needed */
af5bc92d 412 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
413 if (!p->key)
414 goto no_block;
415 while (--depth) {
416 bh = sb_bread(sb, le32_to_cpu(p->key));
417 if (!bh)
418 goto failure;
af5bc92d 419 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
420 /* Reader: end */
421 if (!p->key)
422 goto no_block;
423 }
424 return NULL;
425
ac27a0ec
DK
426failure:
427 *err = -EIO;
428no_block:
429 return p;
430}
431
432/**
617ba13b 433 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
434 * @inode: owner
435 * @ind: descriptor of indirect block.
436 *
1cc8dcf5 437 * This function returns the preferred place for block allocation.
ac27a0ec
DK
438 * It is used when heuristic for sequential allocation fails.
439 * Rules are:
440 * + if there is a block to the left of our position - allocate near it.
441 * + if pointer will live in indirect block - allocate near that block.
442 * + if pointer will live in inode - allocate in the same
443 * cylinder group.
444 *
445 * In the latter case we colour the starting block by the callers PID to
446 * prevent it from clashing with concurrent allocations for a different inode
447 * in the same block group. The PID is used here so that functionally related
448 * files will be close-by on-disk.
449 *
450 * Caller must make sure that @ind is valid and will stay that way.
451 */
617ba13b 452static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 453{
617ba13b 454 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 455 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 456 __le32 *p;
617ba13b 457 ext4_fsblk_t bg_start;
74d3487f 458 ext4_fsblk_t last_block;
617ba13b 459 ext4_grpblk_t colour;
ac27a0ec
DK
460
461 /* Try to find previous block */
462 for (p = ind->p - 1; p >= start; p--) {
463 if (*p)
464 return le32_to_cpu(*p);
465 }
466
467 /* No such thing, so let's try location of indirect block */
468 if (ind->bh)
469 return ind->bh->b_blocknr;
470
471 /*
472 * It is going to be referred to from the inode itself? OK, just put it
473 * into the same cylinder group then.
474 */
617ba13b 475 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
74d3487f
VC
476 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
477
478 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
479 colour = (current->pid % 16) *
617ba13b 480 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
481 else
482 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
483 return bg_start + colour;
484}
485
486/**
1cc8dcf5 487 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
488 * @inode: owner
489 * @block: block we want
ac27a0ec 490 * @partial: pointer to the last triple within a chain
ac27a0ec 491 *
1cc8dcf5 492 * Normally this function find the preferred place for block allocation,
fb01bfda 493 * returns it.
ac27a0ec 494 */
725d26d3 495static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 496 Indirect *partial)
ac27a0ec 497{
ac27a0ec 498 /*
c2ea3fde 499 * XXX need to get goal block from mballoc's data structures
ac27a0ec 500 */
ac27a0ec 501
617ba13b 502 return ext4_find_near(inode, partial);
ac27a0ec
DK
503}
504
505/**
617ba13b 506 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
507 * of direct blocks need to be allocated for the given branch.
508 *
509 * @branch: chain of indirect blocks
510 * @k: number of blocks need for indirect blocks
511 * @blks: number of data blocks to be mapped.
512 * @blocks_to_boundary: the offset in the indirect block
513 *
514 * return the total number of blocks to be allocate, including the
515 * direct and indirect blocks.
516 */
498e5f24 517static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
ac27a0ec
DK
518 int blocks_to_boundary)
519{
498e5f24 520 unsigned int count = 0;
ac27a0ec
DK
521
522 /*
523 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 * then it's clear blocks on that path have not allocated
525 */
526 if (k > 0) {
527 /* right now we don't handle cross boundary allocation */
528 if (blks < blocks_to_boundary + 1)
529 count += blks;
530 else
531 count += blocks_to_boundary + 1;
532 return count;
533 }
534
535 count++;
536 while (count < blks && count <= blocks_to_boundary &&
537 le32_to_cpu(*(branch[0].p + count)) == 0) {
538 count++;
539 }
540 return count;
541}
542
543/**
617ba13b 544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
545 * @indirect_blks: the number of blocks need to allocate for indirect
546 * blocks
547 *
548 * @new_blocks: on return it will store the new block numbers for
549 * the indirect blocks(if needed) and the first direct block,
550 * @blks: on return it will store the total number of allocated
551 * direct blocks
552 */
617ba13b 553static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
554 ext4_lblk_t iblock, ext4_fsblk_t goal,
555 int indirect_blks, int blks,
556 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 557{
815a1130 558 struct ext4_allocation_request ar;
ac27a0ec 559 int target, i;
7061eba7 560 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 561 int index = 0;
617ba13b 562 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
563 int ret = 0;
564
565 /*
566 * Here we try to allocate the requested multiple blocks at once,
567 * on a best-effort basis.
568 * To build a branch, we should allocate blocks for
569 * the indirect blocks(if not allocated yet), and at least
570 * the first direct block of this branch. That's the
571 * minimum number of blocks need to allocate(required)
572 */
7061eba7
AK
573 /* first we try to allocate the indirect blocks */
574 target = indirect_blks;
575 while (target > 0) {
ac27a0ec
DK
576 count = target;
577 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
578 current_block = ext4_new_meta_blocks(handle, inode,
579 goal, &count, err);
ac27a0ec
DK
580 if (*err)
581 goto failed_out;
582
583 target -= count;
584 /* allocate blocks for indirect blocks */
585 while (index < indirect_blks && count) {
586 new_blocks[index++] = current_block++;
587 count--;
588 }
7061eba7
AK
589 if (count > 0) {
590 /*
591 * save the new block number
592 * for the first direct block
593 */
594 new_blocks[index] = current_block;
595 printk(KERN_INFO "%s returned more blocks than "
596 "requested\n", __func__);
597 WARN_ON(1);
ac27a0ec 598 break;
7061eba7 599 }
ac27a0ec
DK
600 }
601
7061eba7
AK
602 target = blks - count ;
603 blk_allocated = count;
604 if (!target)
605 goto allocated;
606 /* Now allocate data blocks */
815a1130
TT
607 memset(&ar, 0, sizeof(ar));
608 ar.inode = inode;
609 ar.goal = goal;
610 ar.len = target;
611 ar.logical = iblock;
612 if (S_ISREG(inode->i_mode))
613 /* enable in-core preallocation only for regular files */
614 ar.flags = EXT4_MB_HINT_DATA;
615
616 current_block = ext4_mb_new_blocks(handle, &ar, err);
617
7061eba7
AK
618 if (*err && (target == blks)) {
619 /*
620 * if the allocation failed and we didn't allocate
621 * any blocks before
622 */
623 goto failed_out;
624 }
625 if (!*err) {
626 if (target == blks) {
627 /*
628 * save the new block number
629 * for the first direct block
630 */
631 new_blocks[index] = current_block;
632 }
815a1130 633 blk_allocated += ar.len;
7061eba7
AK
634 }
635allocated:
ac27a0ec 636 /* total number of blocks allocated for direct blocks */
7061eba7 637 ret = blk_allocated;
ac27a0ec
DK
638 *err = 0;
639 return ret;
640failed_out:
af5bc92d 641 for (i = 0; i < index; i++)
c9de560d 642 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
643 return ret;
644}
645
646/**
617ba13b 647 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
648 * @inode: owner
649 * @indirect_blks: number of allocated indirect blocks
650 * @blks: number of allocated direct blocks
651 * @offsets: offsets (in the blocks) to store the pointers to next.
652 * @branch: place to store the chain in.
653 *
654 * This function allocates blocks, zeroes out all but the last one,
655 * links them into chain and (if we are synchronous) writes them to disk.
656 * In other words, it prepares a branch that can be spliced onto the
657 * inode. It stores the information about that chain in the branch[], in
617ba13b 658 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
659 * we had read the existing part of chain and partial points to the last
660 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 661 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
662 * place chain is disconnected - *branch->p is still zero (we did not
663 * set the last link), but branch->key contains the number that should
664 * be placed into *branch->p to fill that gap.
665 *
666 * If allocation fails we free all blocks we've allocated (and forget
667 * their buffer_heads) and return the error value the from failed
617ba13b 668 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
669 * as described above and return 0.
670 */
617ba13b 671static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
672 ext4_lblk_t iblock, int indirect_blks,
673 int *blks, ext4_fsblk_t goal,
674 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
675{
676 int blocksize = inode->i_sb->s_blocksize;
677 int i, n = 0;
678 int err = 0;
679 struct buffer_head *bh;
680 int num;
617ba13b
MC
681 ext4_fsblk_t new_blocks[4];
682 ext4_fsblk_t current_block;
ac27a0ec 683
7061eba7 684 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
685 *blks, new_blocks, &err);
686 if (err)
687 return err;
688
689 branch[0].key = cpu_to_le32(new_blocks[0]);
690 /*
691 * metadata blocks and data blocks are allocated.
692 */
693 for (n = 1; n <= indirect_blks; n++) {
694 /*
695 * Get buffer_head for parent block, zero it out
696 * and set the pointer to new one, then send
697 * parent to disk.
698 */
699 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
700 branch[n].bh = bh;
701 lock_buffer(bh);
702 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 703 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
704 if (err) {
705 unlock_buffer(bh);
706 brelse(bh);
707 goto failed;
708 }
709
710 memset(bh->b_data, 0, blocksize);
711 branch[n].p = (__le32 *) bh->b_data + offsets[n];
712 branch[n].key = cpu_to_le32(new_blocks[n]);
713 *branch[n].p = branch[n].key;
af5bc92d 714 if (n == indirect_blks) {
ac27a0ec
DK
715 current_block = new_blocks[n];
716 /*
717 * End of chain, update the last new metablock of
718 * the chain to point to the new allocated
719 * data blocks numbers
720 */
721 for (i=1; i < num; i++)
722 *(branch[n].p + i) = cpu_to_le32(++current_block);
723 }
724 BUFFER_TRACE(bh, "marking uptodate");
725 set_buffer_uptodate(bh);
726 unlock_buffer(bh);
727
0390131b
FM
728 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
729 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
730 if (err)
731 goto failed;
732 }
733 *blks = num;
734 return err;
735failed:
736 /* Allocation failed, free what we already allocated */
737 for (i = 1; i <= n ; i++) {
dab291af 738 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 739 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 740 }
af5bc92d 741 for (i = 0; i < indirect_blks; i++)
c9de560d 742 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 743
c9de560d 744 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
745
746 return err;
747}
748
749/**
617ba13b 750 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
751 * @inode: owner
752 * @block: (logical) number of block we are adding
753 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 754 * ext4_alloc_branch)
ac27a0ec
DK
755 * @where: location of missing link
756 * @num: number of indirect blocks we are adding
757 * @blks: number of direct blocks we are adding
758 *
759 * This function fills the missing link and does all housekeeping needed in
760 * inode (->i_blocks, etc.). In case of success we end up with the full
761 * chain to new block and return 0.
762 */
617ba13b 763static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 764 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
765{
766 int i;
767 int err = 0;
617ba13b 768 ext4_fsblk_t current_block;
ac27a0ec 769
ac27a0ec
DK
770 /*
771 * If we're splicing into a [td]indirect block (as opposed to the
772 * inode) then we need to get write access to the [td]indirect block
773 * before the splice.
774 */
775 if (where->bh) {
776 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 777 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
778 if (err)
779 goto err_out;
780 }
781 /* That's it */
782
783 *where->p = where->key;
784
785 /*
786 * Update the host buffer_head or inode to point to more just allocated
787 * direct blocks blocks
788 */
789 if (num == 0 && blks > 1) {
790 current_block = le32_to_cpu(where->key) + 1;
791 for (i = 1; i < blks; i++)
af5bc92d 792 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
793 }
794
ac27a0ec
DK
795 /* We are done with atomic stuff, now do the rest of housekeeping */
796
ef7f3835 797 inode->i_ctime = ext4_current_time(inode);
617ba13b 798 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
799
800 /* had we spliced it onto indirect block? */
801 if (where->bh) {
802 /*
803 * If we spliced it onto an indirect block, we haven't
804 * altered the inode. Note however that if it is being spliced
805 * onto an indirect block at the very end of the file (the
806 * file is growing) then we *will* alter the inode to reflect
807 * the new i_size. But that is not done here - it is done in
617ba13b 808 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
809 */
810 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
811 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
812 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
813 if (err)
814 goto err_out;
815 } else {
816 /*
817 * OK, we spliced it into the inode itself on a direct block.
818 * Inode was dirtied above.
819 */
820 jbd_debug(5, "splicing direct\n");
821 }
822 return err;
823
824err_out:
825 for (i = 1; i <= num; i++) {
dab291af 826 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 827 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
828 ext4_free_blocks(handle, inode,
829 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 830 }
c9de560d 831 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
832
833 return err;
834}
835
836/*
837 * Allocation strategy is simple: if we have to allocate something, we will
838 * have to go the whole way to leaf. So let's do it before attaching anything
839 * to tree, set linkage between the newborn blocks, write them if sync is
840 * required, recheck the path, free and repeat if check fails, otherwise
841 * set the last missing link (that will protect us from any truncate-generated
842 * removals - all blocks on the path are immune now) and possibly force the
843 * write on the parent block.
844 * That has a nice additional property: no special recovery from the failed
845 * allocations is needed - we simply release blocks and do not touch anything
846 * reachable from inode.
847 *
848 * `handle' can be NULL if create == 0.
849 *
ac27a0ec
DK
850 * return > 0, # of blocks mapped or allocated.
851 * return = 0, if plain lookup failed.
852 * return < 0, error case.
c278bfec
AK
853 *
854 *
855 * Need to be called with
0e855ac8
AK
856 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
857 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 858 */
498e5f24
TT
859static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
860 ext4_lblk_t iblock, unsigned int maxblocks,
861 struct buffer_head *bh_result,
862 int create, int extend_disksize)
ac27a0ec
DK
863{
864 int err = -EIO;
725d26d3 865 ext4_lblk_t offsets[4];
ac27a0ec
DK
866 Indirect chain[4];
867 Indirect *partial;
617ba13b 868 ext4_fsblk_t goal;
ac27a0ec
DK
869 int indirect_blks;
870 int blocks_to_boundary = 0;
871 int depth;
617ba13b 872 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 873 int count = 0;
617ba13b 874 ext4_fsblk_t first_block = 0;
61628a3f 875 loff_t disksize;
ac27a0ec
DK
876
877
a86c6181 878 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 879 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
880 depth = ext4_block_to_path(inode, iblock, offsets,
881 &blocks_to_boundary);
ac27a0ec
DK
882
883 if (depth == 0)
884 goto out;
885
617ba13b 886 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
887
888 /* Simplest case - block found, no allocation needed */
889 if (!partial) {
890 first_block = le32_to_cpu(chain[depth - 1].key);
891 clear_buffer_new(bh_result);
892 count++;
893 /*map more blocks*/
894 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 895 ext4_fsblk_t blk;
ac27a0ec 896
ac27a0ec
DK
897 blk = le32_to_cpu(*(chain[depth-1].p + count));
898
899 if (blk == first_block + count)
900 count++;
901 else
902 break;
903 }
c278bfec 904 goto got_it;
ac27a0ec
DK
905 }
906
907 /* Next simple case - plain lookup or failed read of indirect block */
908 if (!create || err == -EIO)
909 goto cleanup;
910
ac27a0ec 911 /*
c2ea3fde 912 * Okay, we need to do block allocation.
ac27a0ec 913 */
fb01bfda 914 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
915
916 /* the number of blocks need to allocate for [d,t]indirect blocks */
917 indirect_blks = (chain + depth) - partial - 1;
918
919 /*
920 * Next look up the indirect map to count the totoal number of
921 * direct blocks to allocate for this branch.
922 */
617ba13b 923 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
924 maxblocks, blocks_to_boundary);
925 /*
617ba13b 926 * Block out ext4_truncate while we alter the tree
ac27a0ec 927 */
7061eba7
AK
928 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
929 &count, goal,
930 offsets + (partial - chain), partial);
ac27a0ec
DK
931
932 /*
617ba13b 933 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
934 * on the new chain if there is a failure, but that risks using
935 * up transaction credits, especially for bitmaps where the
936 * credits cannot be returned. Can we handle this somehow? We
937 * may need to return -EAGAIN upwards in the worst case. --sct
938 */
939 if (!err)
617ba13b 940 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
941 partial, indirect_blks, count);
942 /*
0e855ac8 943 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 944 * protect it if you're about to implement concurrent
617ba13b 945 * ext4_get_block() -bzzz
ac27a0ec 946 */
61628a3f
MC
947 if (!err && extend_disksize) {
948 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
949 if (disksize > i_size_read(inode))
950 disksize = i_size_read(inode);
951 if (disksize > ei->i_disksize)
952 ei->i_disksize = disksize;
953 }
ac27a0ec
DK
954 if (err)
955 goto cleanup;
956
957 set_buffer_new(bh_result);
958got_it:
959 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
960 if (count > blocks_to_boundary)
961 set_buffer_boundary(bh_result);
962 err = count;
963 /* Clean up and exit */
964 partial = chain + depth - 1; /* the whole chain */
965cleanup:
966 while (partial > chain) {
967 BUFFER_TRACE(partial->bh, "call brelse");
968 brelse(partial->bh);
969 partial--;
970 }
971 BUFFER_TRACE(bh_result, "returned");
972out:
973 return err;
974}
975
12219aea
AK
976/*
977 * Calculate the number of metadata blocks need to reserve
978 * to allocate @blocks for non extent file based file
979 */
980static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
981{
982 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
983 int ind_blks, dind_blks, tind_blks;
984
985 /* number of new indirect blocks needed */
986 ind_blks = (blocks + icap - 1) / icap;
987
988 dind_blks = (ind_blks + icap - 1) / icap;
989
990 tind_blks = 1;
991
992 return ind_blks + dind_blks + tind_blks;
993}
994
995/*
996 * Calculate the number of metadata blocks need to reserve
997 * to allocate given number of blocks
998 */
999static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1000{
cd213226
MC
1001 if (!blocks)
1002 return 0;
1003
12219aea
AK
1004 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1005 return ext4_ext_calc_metadata_amount(inode, blocks);
1006
1007 return ext4_indirect_calc_metadata_amount(inode, blocks);
1008}
1009
1010static void ext4_da_update_reserve_space(struct inode *inode, int used)
1011{
1012 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1013 int total, mdb, mdb_free;
1014
1015 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1016 /* recalculate the number of metablocks still need to be reserved */
1017 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1018 mdb = ext4_calc_metadata_amount(inode, total);
1019
1020 /* figure out how many metablocks to release */
1021 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1022 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1023
6bc6e63f
AK
1024 if (mdb_free) {
1025 /* Account for allocated meta_blocks */
1026 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1027
1028 /* update fs dirty blocks counter */
1029 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1030 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1031 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1032 }
12219aea
AK
1033
1034 /* update per-inode reservations */
1035 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1036 EXT4_I(inode)->i_reserved_data_blocks -= used;
1037
12219aea
AK
1038 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1039}
1040
f5ab0d1f 1041/*
2b2d6d01
TT
1042 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1043 * and returns if the blocks are already mapped.
f5ab0d1f 1044 *
f5ab0d1f
MC
1045 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1046 * and store the allocated blocks in the result buffer head and mark it
1047 * mapped.
1048 *
1049 * If file type is extents based, it will call ext4_ext_get_blocks(),
1050 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1051 * based files
1052 *
1053 * On success, it returns the number of blocks being mapped or allocate.
1054 * if create==0 and the blocks are pre-allocated and uninitialized block,
1055 * the result buffer head is unmapped. If the create ==1, it will make sure
1056 * the buffer head is mapped.
1057 *
1058 * It returns 0 if plain look up failed (blocks have not been allocated), in
1059 * that casem, buffer head is unmapped
1060 *
1061 * It returns the error in case of allocation failure.
1062 */
0e855ac8 1063int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
498e5f24 1064 unsigned int max_blocks, struct buffer_head *bh,
d2a17637 1065 int create, int extend_disksize, int flag)
0e855ac8
AK
1066{
1067 int retval;
f5ab0d1f
MC
1068
1069 clear_buffer_mapped(bh);
1070
4df3d265
AK
1071 /*
1072 * Try to see if we can get the block without requesting
1073 * for new file system block.
1074 */
1075 down_read((&EXT4_I(inode)->i_data_sem));
1076 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1077 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1078 bh, 0, 0);
0e855ac8 1079 } else {
4df3d265
AK
1080 retval = ext4_get_blocks_handle(handle,
1081 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1082 }
4df3d265 1083 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1084
1085 /* If it is only a block(s) look up */
1086 if (!create)
1087 return retval;
1088
1089 /*
1090 * Returns if the blocks have already allocated
1091 *
1092 * Note that if blocks have been preallocated
1093 * ext4_ext_get_block() returns th create = 0
1094 * with buffer head unmapped.
1095 */
1096 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1097 return retval;
1098
1099 /*
f5ab0d1f
MC
1100 * New blocks allocate and/or writing to uninitialized extent
1101 * will possibly result in updating i_data, so we take
1102 * the write lock of i_data_sem, and call get_blocks()
1103 * with create == 1 flag.
4df3d265
AK
1104 */
1105 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1106
1107 /*
1108 * if the caller is from delayed allocation writeout path
1109 * we have already reserved fs blocks for allocation
1110 * let the underlying get_block() function know to
1111 * avoid double accounting
1112 */
1113 if (flag)
1114 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1115 /*
1116 * We need to check for EXT4 here because migrate
1117 * could have changed the inode type in between
1118 */
0e855ac8
AK
1119 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1120 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1121 bh, create, extend_disksize);
1122 } else {
1123 retval = ext4_get_blocks_handle(handle, inode, block,
1124 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1125
1126 if (retval > 0 && buffer_new(bh)) {
1127 /*
1128 * We allocated new blocks which will result in
1129 * i_data's format changing. Force the migrate
1130 * to fail by clearing migrate flags
1131 */
1132 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1133 ~EXT4_EXT_MIGRATE;
1134 }
0e855ac8 1135 }
d2a17637
MC
1136
1137 if (flag) {
1138 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1139 /*
1140 * Update reserved blocks/metadata blocks
1141 * after successful block allocation
1142 * which were deferred till now
1143 */
1144 if ((retval > 0) && buffer_delay(bh))
12219aea 1145 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1146 }
1147
4df3d265 1148 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1149 return retval;
1150}
1151
f3bd1f3f
MC
1152/* Maximum number of blocks we map for direct IO at once. */
1153#define DIO_MAX_BLOCKS 4096
1154
6873fa0d
ES
1155int ext4_get_block(struct inode *inode, sector_t iblock,
1156 struct buffer_head *bh_result, int create)
ac27a0ec 1157{
3e4fdaf8 1158 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1159 int ret = 0, started = 0;
ac27a0ec 1160 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1161 int dio_credits;
ac27a0ec 1162
7fb5409d
JK
1163 if (create && !handle) {
1164 /* Direct IO write... */
1165 if (max_blocks > DIO_MAX_BLOCKS)
1166 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1167 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1168 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1169 if (IS_ERR(handle)) {
ac27a0ec 1170 ret = PTR_ERR(handle);
7fb5409d 1171 goto out;
ac27a0ec 1172 }
7fb5409d 1173 started = 1;
ac27a0ec
DK
1174 }
1175
7fb5409d 1176 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1177 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1178 if (ret > 0) {
1179 bh_result->b_size = (ret << inode->i_blkbits);
1180 ret = 0;
ac27a0ec 1181 }
7fb5409d
JK
1182 if (started)
1183 ext4_journal_stop(handle);
1184out:
ac27a0ec
DK
1185 return ret;
1186}
1187
1188/*
1189 * `handle' can be NULL if create is zero
1190 */
617ba13b 1191struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1192 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1193{
1194 struct buffer_head dummy;
1195 int fatal = 0, err;
1196
1197 J_ASSERT(handle != NULL || create == 0);
1198
1199 dummy.b_state = 0;
1200 dummy.b_blocknr = -1000;
1201 buffer_trace_init(&dummy.b_history);
a86c6181 1202 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1203 &dummy, create, 1, 0);
ac27a0ec 1204 /*
617ba13b 1205 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1206 * mapped. 0 in case of a HOLE.
1207 */
1208 if (err > 0) {
1209 if (err > 1)
1210 WARN_ON(1);
1211 err = 0;
1212 }
1213 *errp = err;
1214 if (!err && buffer_mapped(&dummy)) {
1215 struct buffer_head *bh;
1216 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1217 if (!bh) {
1218 *errp = -EIO;
1219 goto err;
1220 }
1221 if (buffer_new(&dummy)) {
1222 J_ASSERT(create != 0);
ac39849d 1223 J_ASSERT(handle != NULL);
ac27a0ec
DK
1224
1225 /*
1226 * Now that we do not always journal data, we should
1227 * keep in mind whether this should always journal the
1228 * new buffer as metadata. For now, regular file
617ba13b 1229 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1230 * problem.
1231 */
1232 lock_buffer(bh);
1233 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1234 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1235 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1236 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1237 set_buffer_uptodate(bh);
1238 }
1239 unlock_buffer(bh);
0390131b
FM
1240 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1241 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1242 if (!fatal)
1243 fatal = err;
1244 } else {
1245 BUFFER_TRACE(bh, "not a new buffer");
1246 }
1247 if (fatal) {
1248 *errp = fatal;
1249 brelse(bh);
1250 bh = NULL;
1251 }
1252 return bh;
1253 }
1254err:
1255 return NULL;
1256}
1257
617ba13b 1258struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1259 ext4_lblk_t block, int create, int *err)
ac27a0ec 1260{
af5bc92d 1261 struct buffer_head *bh;
ac27a0ec 1262
617ba13b 1263 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1264 if (!bh)
1265 return bh;
1266 if (buffer_uptodate(bh))
1267 return bh;
1268 ll_rw_block(READ_META, 1, &bh);
1269 wait_on_buffer(bh);
1270 if (buffer_uptodate(bh))
1271 return bh;
1272 put_bh(bh);
1273 *err = -EIO;
1274 return NULL;
1275}
1276
af5bc92d
TT
1277static int walk_page_buffers(handle_t *handle,
1278 struct buffer_head *head,
1279 unsigned from,
1280 unsigned to,
1281 int *partial,
1282 int (*fn)(handle_t *handle,
1283 struct buffer_head *bh))
ac27a0ec
DK
1284{
1285 struct buffer_head *bh;
1286 unsigned block_start, block_end;
1287 unsigned blocksize = head->b_size;
1288 int err, ret = 0;
1289 struct buffer_head *next;
1290
af5bc92d
TT
1291 for (bh = head, block_start = 0;
1292 ret == 0 && (bh != head || !block_start);
1293 block_start = block_end, bh = next)
ac27a0ec
DK
1294 {
1295 next = bh->b_this_page;
1296 block_end = block_start + blocksize;
1297 if (block_end <= from || block_start >= to) {
1298 if (partial && !buffer_uptodate(bh))
1299 *partial = 1;
1300 continue;
1301 }
1302 err = (*fn)(handle, bh);
1303 if (!ret)
1304 ret = err;
1305 }
1306 return ret;
1307}
1308
1309/*
1310 * To preserve ordering, it is essential that the hole instantiation and
1311 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1312 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1313 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1314 * prepare_write() is the right place.
1315 *
617ba13b
MC
1316 * Also, this function can nest inside ext4_writepage() ->
1317 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1318 * has generated enough buffer credits to do the whole page. So we won't
1319 * block on the journal in that case, which is good, because the caller may
1320 * be PF_MEMALLOC.
1321 *
617ba13b 1322 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1323 * quota file writes. If we were to commit the transaction while thus
1324 * reentered, there can be a deadlock - we would be holding a quota
1325 * lock, and the commit would never complete if another thread had a
1326 * transaction open and was blocking on the quota lock - a ranking
1327 * violation.
1328 *
dab291af 1329 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1330 * will _not_ run commit under these circumstances because handle->h_ref
1331 * is elevated. We'll still have enough credits for the tiny quotafile
1332 * write.
1333 */
1334static int do_journal_get_write_access(handle_t *handle,
1335 struct buffer_head *bh)
1336{
1337 if (!buffer_mapped(bh) || buffer_freed(bh))
1338 return 0;
617ba13b 1339 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1340}
1341
bfc1af65
NP
1342static int ext4_write_begin(struct file *file, struct address_space *mapping,
1343 loff_t pos, unsigned len, unsigned flags,
1344 struct page **pagep, void **fsdata)
ac27a0ec 1345{
af5bc92d 1346 struct inode *inode = mapping->host;
7479d2b9 1347 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1348 handle_t *handle;
1349 int retries = 0;
af5bc92d 1350 struct page *page;
bfc1af65 1351 pgoff_t index;
af5bc92d 1352 unsigned from, to;
bfc1af65
NP
1353
1354 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1355 from = pos & (PAGE_CACHE_SIZE - 1);
1356 to = from + len;
ac27a0ec
DK
1357
1358retry:
af5bc92d
TT
1359 handle = ext4_journal_start(inode, needed_blocks);
1360 if (IS_ERR(handle)) {
1361 ret = PTR_ERR(handle);
1362 goto out;
7479d2b9 1363 }
ac27a0ec 1364
54566b2c 1365 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1366 if (!page) {
1367 ext4_journal_stop(handle);
1368 ret = -ENOMEM;
1369 goto out;
1370 }
1371 *pagep = page;
1372
bfc1af65
NP
1373 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1374 ext4_get_block);
1375
1376 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1377 ret = walk_page_buffers(handle, page_buffers(page),
1378 from, to, NULL, do_journal_get_write_access);
1379 }
bfc1af65
NP
1380
1381 if (ret) {
af5bc92d 1382 unlock_page(page);
cf108bca 1383 ext4_journal_stop(handle);
af5bc92d 1384 page_cache_release(page);
ae4d5372
AK
1385 /*
1386 * block_write_begin may have instantiated a few blocks
1387 * outside i_size. Trim these off again. Don't need
1388 * i_size_read because we hold i_mutex.
1389 */
1390 if (pos + len > inode->i_size)
1391 vmtruncate(inode, inode->i_size);
bfc1af65
NP
1392 }
1393
617ba13b 1394 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1395 goto retry;
7479d2b9 1396out:
ac27a0ec
DK
1397 return ret;
1398}
1399
bfc1af65
NP
1400/* For write_end() in data=journal mode */
1401static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1402{
1403 if (!buffer_mapped(bh) || buffer_freed(bh))
1404 return 0;
1405 set_buffer_uptodate(bh);
0390131b 1406 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1407}
1408
1409/*
1410 * We need to pick up the new inode size which generic_commit_write gave us
1411 * `file' can be NULL - eg, when called from page_symlink().
1412 *
617ba13b 1413 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1414 * buffers are managed internally.
1415 */
bfc1af65
NP
1416static int ext4_ordered_write_end(struct file *file,
1417 struct address_space *mapping,
1418 loff_t pos, unsigned len, unsigned copied,
1419 struct page *page, void *fsdata)
ac27a0ec 1420{
617ba13b 1421 handle_t *handle = ext4_journal_current_handle();
cf108bca 1422 struct inode *inode = mapping->host;
ac27a0ec
DK
1423 int ret = 0, ret2;
1424
678aaf48 1425 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1426
1427 if (ret == 0) {
ac27a0ec
DK
1428 loff_t new_i_size;
1429
bfc1af65 1430 new_i_size = pos + copied;
cf17fea6
AK
1431 if (new_i_size > EXT4_I(inode)->i_disksize) {
1432 ext4_update_i_disksize(inode, new_i_size);
1433 /* We need to mark inode dirty even if
1434 * new_i_size is less that inode->i_size
1435 * bu greater than i_disksize.(hint delalloc)
1436 */
1437 ext4_mark_inode_dirty(handle, inode);
1438 }
1439
cf108bca 1440 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1441 page, fsdata);
f8a87d89
RK
1442 copied = ret2;
1443 if (ret2 < 0)
1444 ret = ret2;
ac27a0ec 1445 }
617ba13b 1446 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1447 if (!ret)
1448 ret = ret2;
bfc1af65
NP
1449
1450 return ret ? ret : copied;
ac27a0ec
DK
1451}
1452
bfc1af65
NP
1453static int ext4_writeback_write_end(struct file *file,
1454 struct address_space *mapping,
1455 loff_t pos, unsigned len, unsigned copied,
1456 struct page *page, void *fsdata)
ac27a0ec 1457{
617ba13b 1458 handle_t *handle = ext4_journal_current_handle();
cf108bca 1459 struct inode *inode = mapping->host;
ac27a0ec
DK
1460 int ret = 0, ret2;
1461 loff_t new_i_size;
1462
bfc1af65 1463 new_i_size = pos + copied;
cf17fea6
AK
1464 if (new_i_size > EXT4_I(inode)->i_disksize) {
1465 ext4_update_i_disksize(inode, new_i_size);
1466 /* We need to mark inode dirty even if
1467 * new_i_size is less that inode->i_size
1468 * bu greater than i_disksize.(hint delalloc)
1469 */
1470 ext4_mark_inode_dirty(handle, inode);
1471 }
ac27a0ec 1472
cf108bca 1473 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1474 page, fsdata);
f8a87d89
RK
1475 copied = ret2;
1476 if (ret2 < 0)
1477 ret = ret2;
ac27a0ec 1478
617ba13b 1479 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1480 if (!ret)
1481 ret = ret2;
bfc1af65
NP
1482
1483 return ret ? ret : copied;
ac27a0ec
DK
1484}
1485
bfc1af65
NP
1486static int ext4_journalled_write_end(struct file *file,
1487 struct address_space *mapping,
1488 loff_t pos, unsigned len, unsigned copied,
1489 struct page *page, void *fsdata)
ac27a0ec 1490{
617ba13b 1491 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1492 struct inode *inode = mapping->host;
ac27a0ec
DK
1493 int ret = 0, ret2;
1494 int partial = 0;
bfc1af65 1495 unsigned from, to;
cf17fea6 1496 loff_t new_i_size;
ac27a0ec 1497
bfc1af65
NP
1498 from = pos & (PAGE_CACHE_SIZE - 1);
1499 to = from + len;
1500
1501 if (copied < len) {
1502 if (!PageUptodate(page))
1503 copied = 0;
1504 page_zero_new_buffers(page, from+copied, to);
1505 }
ac27a0ec
DK
1506
1507 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1508 to, &partial, write_end_fn);
ac27a0ec
DK
1509 if (!partial)
1510 SetPageUptodate(page);
cf17fea6
AK
1511 new_i_size = pos + copied;
1512 if (new_i_size > inode->i_size)
bfc1af65 1513 i_size_write(inode, pos+copied);
617ba13b 1514 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1515 if (new_i_size > EXT4_I(inode)->i_disksize) {
1516 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1517 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1518 if (!ret)
1519 ret = ret2;
1520 }
bfc1af65 1521
cf108bca 1522 unlock_page(page);
617ba13b 1523 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1524 if (!ret)
1525 ret = ret2;
bfc1af65
NP
1526 page_cache_release(page);
1527
1528 return ret ? ret : copied;
ac27a0ec 1529}
d2a17637
MC
1530
1531static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1532{
030ba6bc 1533 int retries = 0;
d2a17637
MC
1534 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1535 unsigned long md_needed, mdblocks, total = 0;
1536
1537 /*
1538 * recalculate the amount of metadata blocks to reserve
1539 * in order to allocate nrblocks
1540 * worse case is one extent per block
1541 */
030ba6bc 1542repeat:
d2a17637
MC
1543 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1544 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1545 mdblocks = ext4_calc_metadata_amount(inode, total);
1546 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1547
1548 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1549 total = md_needed + nrblocks;
1550
a30d542a 1551 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1552 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
030ba6bc
AK
1553 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1554 yield();
1555 goto repeat;
1556 }
d2a17637
MC
1557 return -ENOSPC;
1558 }
d2a17637
MC
1559 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1560 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1561
1562 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1563 return 0; /* success */
1564}
1565
12219aea 1566static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1567{
1568 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1569 int total, mdb, mdb_free, release;
1570
cd213226
MC
1571 if (!to_free)
1572 return; /* Nothing to release, exit */
1573
d2a17637 1574 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1575
1576 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1577 /*
1578 * if there is no reserved blocks, but we try to free some
1579 * then the counter is messed up somewhere.
1580 * but since this function is called from invalidate
1581 * page, it's harmless to return without any action
1582 */
1583 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1584 "blocks for inode %lu, but there is no reserved "
1585 "data blocks\n", to_free, inode->i_ino);
1586 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1587 return;
1588 }
1589
d2a17637 1590 /* recalculate the number of metablocks still need to be reserved */
12219aea 1591 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1592 mdb = ext4_calc_metadata_amount(inode, total);
1593
1594 /* figure out how many metablocks to release */
1595 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1596 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1597
d2a17637
MC
1598 release = to_free + mdb_free;
1599
6bc6e63f
AK
1600 /* update fs dirty blocks counter for truncate case */
1601 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1602
1603 /* update per-inode reservations */
12219aea
AK
1604 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1605 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1606
1607 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1608 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637
MC
1609 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1610}
1611
1612static void ext4_da_page_release_reservation(struct page *page,
1613 unsigned long offset)
1614{
1615 int to_release = 0;
1616 struct buffer_head *head, *bh;
1617 unsigned int curr_off = 0;
1618
1619 head = page_buffers(page);
1620 bh = head;
1621 do {
1622 unsigned int next_off = curr_off + bh->b_size;
1623
1624 if ((offset <= curr_off) && (buffer_delay(bh))) {
1625 to_release++;
1626 clear_buffer_delay(bh);
1627 }
1628 curr_off = next_off;
1629 } while ((bh = bh->b_this_page) != head);
12219aea 1630 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1631}
ac27a0ec 1632
64769240
AT
1633/*
1634 * Delayed allocation stuff
1635 */
1636
1637struct mpage_da_data {
1638 struct inode *inode;
1639 struct buffer_head lbh; /* extent of blocks */
1640 unsigned long first_page, next_page; /* extent of pages */
1641 get_block_t *get_block;
1642 struct writeback_control *wbc;
a1d6cc56 1643 int io_done;
498e5f24 1644 int pages_written;
df22291f 1645 int retval;
64769240
AT
1646};
1647
1648/*
1649 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1650 * them with writepage() call back
64769240
AT
1651 *
1652 * @mpd->inode: inode
1653 * @mpd->first_page: first page of the extent
1654 * @mpd->next_page: page after the last page of the extent
1655 * @mpd->get_block: the filesystem's block mapper function
1656 *
1657 * By the time mpage_da_submit_io() is called we expect all blocks
1658 * to be allocated. this may be wrong if allocation failed.
1659 *
1660 * As pages are already locked by write_cache_pages(), we can't use it
1661 */
1662static int mpage_da_submit_io(struct mpage_da_data *mpd)
1663{
22208ded 1664 long pages_skipped;
791b7f08
AK
1665 struct pagevec pvec;
1666 unsigned long index, end;
1667 int ret = 0, err, nr_pages, i;
1668 struct inode *inode = mpd->inode;
1669 struct address_space *mapping = inode->i_mapping;
64769240
AT
1670
1671 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1672 /*
1673 * We need to start from the first_page to the next_page - 1
1674 * to make sure we also write the mapped dirty buffer_heads.
1675 * If we look at mpd->lbh.b_blocknr we would only be looking
1676 * at the currently mapped buffer_heads.
1677 */
64769240
AT
1678 index = mpd->first_page;
1679 end = mpd->next_page - 1;
1680
791b7f08 1681 pagevec_init(&pvec, 0);
64769240 1682 while (index <= end) {
791b7f08 1683 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1684 if (nr_pages == 0)
1685 break;
1686 for (i = 0; i < nr_pages; i++) {
1687 struct page *page = pvec.pages[i];
1688
791b7f08
AK
1689 index = page->index;
1690 if (index > end)
1691 break;
1692 index++;
1693
1694 BUG_ON(!PageLocked(page));
1695 BUG_ON(PageWriteback(page));
1696
22208ded 1697 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1698 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1699 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1700 /*
1701 * have successfully written the page
1702 * without skipping the same
1703 */
a1d6cc56 1704 mpd->pages_written++;
64769240
AT
1705 /*
1706 * In error case, we have to continue because
1707 * remaining pages are still locked
1708 * XXX: unlock and re-dirty them?
1709 */
1710 if (ret == 0)
1711 ret = err;
1712 }
1713 pagevec_release(&pvec);
1714 }
64769240
AT
1715 return ret;
1716}
1717
1718/*
1719 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1720 *
1721 * @mpd->inode - inode to walk through
1722 * @exbh->b_blocknr - first block on a disk
1723 * @exbh->b_size - amount of space in bytes
1724 * @logical - first logical block to start assignment with
1725 *
1726 * the function goes through all passed space and put actual disk
1727 * block numbers into buffer heads, dropping BH_Delay
1728 */
1729static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1730 struct buffer_head *exbh)
1731{
1732 struct inode *inode = mpd->inode;
1733 struct address_space *mapping = inode->i_mapping;
1734 int blocks = exbh->b_size >> inode->i_blkbits;
1735 sector_t pblock = exbh->b_blocknr, cur_logical;
1736 struct buffer_head *head, *bh;
a1d6cc56 1737 pgoff_t index, end;
64769240
AT
1738 struct pagevec pvec;
1739 int nr_pages, i;
1740
1741 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1742 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1743 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1744
1745 pagevec_init(&pvec, 0);
1746
1747 while (index <= end) {
1748 /* XXX: optimize tail */
1749 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1750 if (nr_pages == 0)
1751 break;
1752 for (i = 0; i < nr_pages; i++) {
1753 struct page *page = pvec.pages[i];
1754
1755 index = page->index;
1756 if (index > end)
1757 break;
1758 index++;
1759
1760 BUG_ON(!PageLocked(page));
1761 BUG_ON(PageWriteback(page));
1762 BUG_ON(!page_has_buffers(page));
1763
1764 bh = page_buffers(page);
1765 head = bh;
1766
1767 /* skip blocks out of the range */
1768 do {
1769 if (cur_logical >= logical)
1770 break;
1771 cur_logical++;
1772 } while ((bh = bh->b_this_page) != head);
1773
1774 do {
1775 if (cur_logical >= logical + blocks)
1776 break;
64769240
AT
1777 if (buffer_delay(bh)) {
1778 bh->b_blocknr = pblock;
1779 clear_buffer_delay(bh);
bf068ee2
AK
1780 bh->b_bdev = inode->i_sb->s_bdev;
1781 } else if (buffer_unwritten(bh)) {
1782 bh->b_blocknr = pblock;
1783 clear_buffer_unwritten(bh);
1784 set_buffer_mapped(bh);
1785 set_buffer_new(bh);
1786 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1787 } else if (buffer_mapped(bh))
64769240 1788 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1789
1790 cur_logical++;
1791 pblock++;
1792 } while ((bh = bh->b_this_page) != head);
1793 }
1794 pagevec_release(&pvec);
1795 }
1796}
1797
1798
1799/*
1800 * __unmap_underlying_blocks - just a helper function to unmap
1801 * set of blocks described by @bh
1802 */
1803static inline void __unmap_underlying_blocks(struct inode *inode,
1804 struct buffer_head *bh)
1805{
1806 struct block_device *bdev = inode->i_sb->s_bdev;
1807 int blocks, i;
1808
1809 blocks = bh->b_size >> inode->i_blkbits;
1810 for (i = 0; i < blocks; i++)
1811 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1812}
1813
c4a0c46e
AK
1814static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1815 sector_t logical, long blk_cnt)
1816{
1817 int nr_pages, i;
1818 pgoff_t index, end;
1819 struct pagevec pvec;
1820 struct inode *inode = mpd->inode;
1821 struct address_space *mapping = inode->i_mapping;
1822
1823 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1824 end = (logical + blk_cnt - 1) >>
1825 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1826 while (index <= end) {
1827 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1828 if (nr_pages == 0)
1829 break;
1830 for (i = 0; i < nr_pages; i++) {
1831 struct page *page = pvec.pages[i];
1832 index = page->index;
1833 if (index > end)
1834 break;
1835 index++;
1836
1837 BUG_ON(!PageLocked(page));
1838 BUG_ON(PageWriteback(page));
1839 block_invalidatepage(page, 0);
1840 ClearPageUptodate(page);
1841 unlock_page(page);
1842 }
1843 }
1844 return;
1845}
1846
df22291f
AK
1847static void ext4_print_free_blocks(struct inode *inode)
1848{
1849 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1850 printk(KERN_EMERG "Total free blocks count %lld\n",
1851 ext4_count_free_blocks(inode->i_sb));
1852 printk(KERN_EMERG "Free/Dirty block details\n");
1853 printk(KERN_EMERG "free_blocks=%lld\n",
8f72fbdf 1854 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
df22291f 1855 printk(KERN_EMERG "dirty_blocks=%lld\n",
8f72fbdf 1856 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
df22291f 1857 printk(KERN_EMERG "Block reservation details\n");
498e5f24 1858 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
df22291f 1859 EXT4_I(inode)->i_reserved_data_blocks);
498e5f24 1860 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
df22291f
AK
1861 EXT4_I(inode)->i_reserved_meta_blocks);
1862 return;
1863}
1864
64769240
AT
1865/*
1866 * mpage_da_map_blocks - go through given space
1867 *
1868 * @mpd->lbh - bh describing space
1869 * @mpd->get_block - the filesystem's block mapper function
1870 *
1871 * The function skips space we know is already mapped to disk blocks.
1872 *
64769240 1873 */
c4a0c46e 1874static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 1875{
a1d6cc56 1876 int err = 0;
030ba6bc 1877 struct buffer_head new;
64769240 1878 struct buffer_head *lbh = &mpd->lbh;
df22291f 1879 sector_t next;
64769240
AT
1880
1881 /*
1882 * We consider only non-mapped and non-allocated blocks
1883 */
1884 if (buffer_mapped(lbh) && !buffer_delay(lbh))
c4a0c46e 1885 return 0;
a1d6cc56
AK
1886 new.b_state = lbh->b_state;
1887 new.b_blocknr = 0;
1888 new.b_size = lbh->b_size;
df22291f 1889 next = lbh->b_blocknr;
a1d6cc56
AK
1890 /*
1891 * If we didn't accumulate anything
1892 * to write simply return
1893 */
1894 if (!new.b_size)
c4a0c46e 1895 return 0;
a1d6cc56 1896 err = mpd->get_block(mpd->inode, next, &new, 1);
c4a0c46e
AK
1897 if (err) {
1898
1899 /* If get block returns with error
1900 * we simply return. Later writepage
1901 * will redirty the page and writepages
1902 * will find the dirty page again
1903 */
1904 if (err == -EAGAIN)
1905 return 0;
df22291f
AK
1906
1907 if (err == -ENOSPC &&
1908 ext4_count_free_blocks(mpd->inode->i_sb)) {
1909 mpd->retval = err;
1910 return 0;
1911 }
1912
c4a0c46e
AK
1913 /*
1914 * get block failure will cause us
1915 * to loop in writepages. Because
1916 * a_ops->writepage won't be able to
1917 * make progress. The page will be redirtied
1918 * by writepage and writepages will again
1919 * try to write the same.
1920 */
1921 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1922 "at logical offset %llu with max blocks "
1923 "%zd with error %d\n",
1924 __func__, mpd->inode->i_ino,
1925 (unsigned long long)next,
1926 lbh->b_size >> mpd->inode->i_blkbits, err);
1927 printk(KERN_EMERG "This should not happen.!! "
1928 "Data will be lost\n");
030ba6bc 1929 if (err == -ENOSPC) {
df22291f 1930 ext4_print_free_blocks(mpd->inode);
030ba6bc 1931 }
c4a0c46e
AK
1932 /* invlaidate all the pages */
1933 ext4_da_block_invalidatepages(mpd, next,
1934 lbh->b_size >> mpd->inode->i_blkbits);
1935 return err;
1936 }
a1d6cc56 1937 BUG_ON(new.b_size == 0);
64769240 1938
a1d6cc56
AK
1939 if (buffer_new(&new))
1940 __unmap_underlying_blocks(mpd->inode, &new);
64769240 1941
a1d6cc56
AK
1942 /*
1943 * If blocks are delayed marked, we need to
1944 * put actual blocknr and drop delayed bit
1945 */
1946 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1947 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 1948
c4a0c46e 1949 return 0;
64769240
AT
1950}
1951
bf068ee2
AK
1952#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1953 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1954
1955/*
1956 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1957 *
1958 * @mpd->lbh - extent of blocks
1959 * @logical - logical number of the block in the file
1960 * @bh - bh of the block (used to access block's state)
1961 *
1962 * the function is used to collect contig. blocks in same state
1963 */
1964static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1965 sector_t logical, struct buffer_head *bh)
1966{
64769240 1967 sector_t next;
525f4ed8
MC
1968 size_t b_size = bh->b_size;
1969 struct buffer_head *lbh = &mpd->lbh;
1970 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
64769240 1971
525f4ed8
MC
1972 /* check if thereserved journal credits might overflow */
1973 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1974 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1975 /*
1976 * With non-extent format we are limited by the journal
1977 * credit available. Total credit needed to insert
1978 * nrblocks contiguous blocks is dependent on the
1979 * nrblocks. So limit nrblocks.
1980 */
1981 goto flush_it;
1982 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1983 EXT4_MAX_TRANS_DATA) {
1984 /*
1985 * Adding the new buffer_head would make it cross the
1986 * allowed limit for which we have journal credit
1987 * reserved. So limit the new bh->b_size
1988 */
1989 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1990 mpd->inode->i_blkbits;
1991 /* we will do mpage_da_submit_io in the next loop */
1992 }
1993 }
64769240
AT
1994 /*
1995 * First block in the extent
1996 */
1997 if (lbh->b_size == 0) {
1998 lbh->b_blocknr = logical;
525f4ed8 1999 lbh->b_size = b_size;
64769240
AT
2000 lbh->b_state = bh->b_state & BH_FLAGS;
2001 return;
2002 }
2003
525f4ed8 2004 next = lbh->b_blocknr + nrblocks;
64769240
AT
2005 /*
2006 * Can we merge the block to our big extent?
2007 */
2008 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
525f4ed8 2009 lbh->b_size += b_size;
64769240
AT
2010 return;
2011 }
2012
525f4ed8 2013flush_it:
64769240
AT
2014 /*
2015 * We couldn't merge the block to our extent, so we
2016 * need to flush current extent and start new one
2017 */
c4a0c46e
AK
2018 if (mpage_da_map_blocks(mpd) == 0)
2019 mpage_da_submit_io(mpd);
a1d6cc56
AK
2020 mpd->io_done = 1;
2021 return;
64769240
AT
2022}
2023
2024/*
2025 * __mpage_da_writepage - finds extent of pages and blocks
2026 *
2027 * @page: page to consider
2028 * @wbc: not used, we just follow rules
2029 * @data: context
2030 *
2031 * The function finds extents of pages and scan them for all blocks.
2032 */
2033static int __mpage_da_writepage(struct page *page,
2034 struct writeback_control *wbc, void *data)
2035{
2036 struct mpage_da_data *mpd = data;
2037 struct inode *inode = mpd->inode;
2038 struct buffer_head *bh, *head, fake;
2039 sector_t logical;
2040
a1d6cc56
AK
2041 if (mpd->io_done) {
2042 /*
2043 * Rest of the page in the page_vec
2044 * redirty then and skip then. We will
2045 * try to to write them again after
2046 * starting a new transaction
2047 */
2048 redirty_page_for_writepage(wbc, page);
2049 unlock_page(page);
2050 return MPAGE_DA_EXTENT_TAIL;
2051 }
64769240
AT
2052 /*
2053 * Can we merge this page to current extent?
2054 */
2055 if (mpd->next_page != page->index) {
2056 /*
2057 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2058 * and start IO on them using writepage()
64769240
AT
2059 */
2060 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2061 if (mpage_da_map_blocks(mpd) == 0)
2062 mpage_da_submit_io(mpd);
a1d6cc56
AK
2063 /*
2064 * skip rest of the page in the page_vec
2065 */
2066 mpd->io_done = 1;
2067 redirty_page_for_writepage(wbc, page);
2068 unlock_page(page);
2069 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2070 }
2071
2072 /*
2073 * Start next extent of pages ...
2074 */
2075 mpd->first_page = page->index;
2076
2077 /*
2078 * ... and blocks
2079 */
2080 mpd->lbh.b_size = 0;
2081 mpd->lbh.b_state = 0;
2082 mpd->lbh.b_blocknr = 0;
2083 }
2084
2085 mpd->next_page = page->index + 1;
2086 logical = (sector_t) page->index <<
2087 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2088
2089 if (!page_has_buffers(page)) {
2090 /*
2091 * There is no attached buffer heads yet (mmap?)
2092 * we treat the page asfull of dirty blocks
2093 */
2094 bh = &fake;
2095 bh->b_size = PAGE_CACHE_SIZE;
2096 bh->b_state = 0;
2097 set_buffer_dirty(bh);
2098 set_buffer_uptodate(bh);
2099 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2100 if (mpd->io_done)
2101 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2102 } else {
2103 /*
2104 * Page with regular buffer heads, just add all dirty ones
2105 */
2106 head = page_buffers(page);
2107 bh = head;
2108 do {
2109 BUG_ON(buffer_locked(bh));
791b7f08
AK
2110 /*
2111 * We need to try to allocate
2112 * unmapped blocks in the same page.
2113 * Otherwise we won't make progress
2114 * with the page in ext4_da_writepage
2115 */
a1d6cc56
AK
2116 if (buffer_dirty(bh) &&
2117 (!buffer_mapped(bh) || buffer_delay(bh))) {
64769240 2118 mpage_add_bh_to_extent(mpd, logical, bh);
a1d6cc56
AK
2119 if (mpd->io_done)
2120 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2121 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2122 /*
2123 * mapped dirty buffer. We need to update
2124 * the b_state because we look at
2125 * b_state in mpage_da_map_blocks. We don't
2126 * update b_size because if we find an
2127 * unmapped buffer_head later we need to
2128 * use the b_state flag of that buffer_head.
2129 */
2130 if (mpd->lbh.b_size == 0)
2131 mpd->lbh.b_state =
2132 bh->b_state & BH_FLAGS;
a1d6cc56 2133 }
64769240
AT
2134 logical++;
2135 } while ((bh = bh->b_this_page) != head);
2136 }
2137
2138 return 0;
2139}
2140
2141/*
2142 * mpage_da_writepages - walk the list of dirty pages of the given
2143 * address space, allocates non-allocated blocks, maps newly-allocated
2144 * blocks to existing bhs and issue IO them
2145 *
2146 * @mapping: address space structure to write
2147 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2148 * @get_block: the filesystem's block mapper function.
2149 *
2150 * This is a library function, which implements the writepages()
2151 * address_space_operation.
64769240
AT
2152 */
2153static int mpage_da_writepages(struct address_space *mapping,
2154 struct writeback_control *wbc,
df22291f 2155 struct mpage_da_data *mpd)
64769240 2156{
64769240
AT
2157 int ret;
2158
df22291f 2159 if (!mpd->get_block)
64769240
AT
2160 return generic_writepages(mapping, wbc);
2161
df22291f
AK
2162 mpd->lbh.b_size = 0;
2163 mpd->lbh.b_state = 0;
2164 mpd->lbh.b_blocknr = 0;
2165 mpd->first_page = 0;
2166 mpd->next_page = 0;
2167 mpd->io_done = 0;
2168 mpd->pages_written = 0;
2169 mpd->retval = 0;
a1d6cc56 2170
df22291f 2171 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
64769240
AT
2172 /*
2173 * Handle last extent of pages
2174 */
df22291f
AK
2175 if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2176 if (mpage_da_map_blocks(mpd) == 0)
2177 mpage_da_submit_io(mpd);
64769240 2178
22208ded
AK
2179 mpd->io_done = 1;
2180 ret = MPAGE_DA_EXTENT_TAIL;
2181 }
2182 wbc->nr_to_write -= mpd->pages_written;
64769240
AT
2183 return ret;
2184}
2185
2186/*
2187 * this is a special callback for ->write_begin() only
2188 * it's intention is to return mapped block or reserve space
2189 */
2190static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2191 struct buffer_head *bh_result, int create)
2192{
2193 int ret = 0;
2194
2195 BUG_ON(create == 0);
2196 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2197
2198 /*
2199 * first, we need to know whether the block is allocated already
2200 * preallocated blocks are unmapped but should treated
2201 * the same as allocated blocks.
2202 */
d2a17637
MC
2203 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2204 if ((ret == 0) && !buffer_delay(bh_result)) {
2205 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2206 /*
2207 * XXX: __block_prepare_write() unmaps passed block,
2208 * is it OK?
2209 */
d2a17637
MC
2210 ret = ext4_da_reserve_space(inode, 1);
2211 if (ret)
2212 /* not enough space to reserve */
2213 return ret;
2214
64769240
AT
2215 map_bh(bh_result, inode->i_sb, 0);
2216 set_buffer_new(bh_result);
2217 set_buffer_delay(bh_result);
2218 } else if (ret > 0) {
2219 bh_result->b_size = (ret << inode->i_blkbits);
2220 ret = 0;
2221 }
2222
2223 return ret;
2224}
d2a17637 2225#define EXT4_DELALLOC_RSVED 1
64769240
AT
2226static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2227 struct buffer_head *bh_result, int create)
2228{
61628a3f 2229 int ret;
64769240
AT
2230 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2231 loff_t disksize = EXT4_I(inode)->i_disksize;
2232 handle_t *handle = NULL;
2233
61628a3f 2234 handle = ext4_journal_current_handle();
166348dd
AK
2235 BUG_ON(!handle);
2236 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2237 bh_result, create, 0, EXT4_DELALLOC_RSVED);
64769240 2238 if (ret > 0) {
166348dd 2239
64769240
AT
2240 bh_result->b_size = (ret << inode->i_blkbits);
2241
166348dd
AK
2242 if (ext4_should_order_data(inode)) {
2243 int retval;
2244 retval = ext4_jbd2_file_inode(handle, inode);
2245 if (retval)
2246 /*
2247 * Failed to add inode for ordered
2248 * mode. Don't update file size
2249 */
2250 return retval;
2251 }
2252
64769240
AT
2253 /*
2254 * Update on-disk size along with block allocation
2255 * we don't use 'extend_disksize' as size may change
2256 * within already allocated block -bzzz
2257 */
2258 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2259 if (disksize > i_size_read(inode))
2260 disksize = i_size_read(inode);
2261 if (disksize > EXT4_I(inode)->i_disksize) {
cf17fea6
AK
2262 ext4_update_i_disksize(inode, disksize);
2263 ret = ext4_mark_inode_dirty(handle, inode);
2264 return ret;
64769240 2265 }
64769240
AT
2266 ret = 0;
2267 }
64769240
AT
2268 return ret;
2269}
61628a3f
MC
2270
2271static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2272{
f0e6c985
AK
2273 /*
2274 * unmapped buffer is possible for holes.
2275 * delay buffer is possible with delayed allocation
2276 */
2277 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2278}
2279
2280static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2281 struct buffer_head *bh_result, int create)
2282{
2283 int ret = 0;
2284 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2285
2286 /*
2287 * we don't want to do block allocation in writepage
2288 * so call get_block_wrap with create = 0
2289 */
2290 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2291 bh_result, 0, 0, 0);
2292 if (ret > 0) {
2293 bh_result->b_size = (ret << inode->i_blkbits);
2294 ret = 0;
2295 }
2296 return ret;
61628a3f
MC
2297}
2298
61628a3f 2299/*
f0e6c985
AK
2300 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2301 * get called via journal_submit_inode_data_buffers (no journal handle)
2302 * get called via shrink_page_list via pdflush (no journal handle)
2303 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2304 */
64769240
AT
2305static int ext4_da_writepage(struct page *page,
2306 struct writeback_control *wbc)
2307{
64769240 2308 int ret = 0;
61628a3f 2309 loff_t size;
498e5f24 2310 unsigned int len;
61628a3f
MC
2311 struct buffer_head *page_bufs;
2312 struct inode *inode = page->mapping->host;
2313
f0e6c985
AK
2314 size = i_size_read(inode);
2315 if (page->index == size >> PAGE_CACHE_SHIFT)
2316 len = size & ~PAGE_CACHE_MASK;
2317 else
2318 len = PAGE_CACHE_SIZE;
64769240 2319
f0e6c985 2320 if (page_has_buffers(page)) {
61628a3f 2321 page_bufs = page_buffers(page);
f0e6c985
AK
2322 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2323 ext4_bh_unmapped_or_delay)) {
61628a3f 2324 /*
f0e6c985
AK
2325 * We don't want to do block allocation
2326 * So redirty the page and return
cd1aac32
AK
2327 * We may reach here when we do a journal commit
2328 * via journal_submit_inode_data_buffers.
2329 * If we don't have mapping block we just ignore
f0e6c985
AK
2330 * them. We can also reach here via shrink_page_list
2331 */
2332 redirty_page_for_writepage(wbc, page);
2333 unlock_page(page);
2334 return 0;
2335 }
2336 } else {
2337 /*
2338 * The test for page_has_buffers() is subtle:
2339 * We know the page is dirty but it lost buffers. That means
2340 * that at some moment in time after write_begin()/write_end()
2341 * has been called all buffers have been clean and thus they
2342 * must have been written at least once. So they are all
2343 * mapped and we can happily proceed with mapping them
2344 * and writing the page.
2345 *
2346 * Try to initialize the buffer_heads and check whether
2347 * all are mapped and non delay. We don't want to
2348 * do block allocation here.
2349 */
2350 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2351 ext4_normal_get_block_write);
2352 if (!ret) {
2353 page_bufs = page_buffers(page);
2354 /* check whether all are mapped and non delay */
2355 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2356 ext4_bh_unmapped_or_delay)) {
2357 redirty_page_for_writepage(wbc, page);
2358 unlock_page(page);
2359 return 0;
2360 }
2361 } else {
2362 /*
2363 * We can't do block allocation here
2364 * so just redity the page and unlock
2365 * and return
61628a3f 2366 */
61628a3f
MC
2367 redirty_page_for_writepage(wbc, page);
2368 unlock_page(page);
2369 return 0;
2370 }
ed9b3e33
AK
2371 /* now mark the buffer_heads as dirty and uptodate */
2372 block_commit_write(page, 0, PAGE_CACHE_SIZE);
64769240
AT
2373 }
2374
2375 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2376 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2377 else
f0e6c985
AK
2378 ret = block_write_full_page(page,
2379 ext4_normal_get_block_write,
2380 wbc);
64769240 2381
64769240
AT
2382 return ret;
2383}
2384
61628a3f 2385/*
525f4ed8
MC
2386 * This is called via ext4_da_writepages() to
2387 * calulate the total number of credits to reserve to fit
2388 * a single extent allocation into a single transaction,
2389 * ext4_da_writpeages() will loop calling this before
2390 * the block allocation.
61628a3f 2391 */
525f4ed8
MC
2392
2393static int ext4_da_writepages_trans_blocks(struct inode *inode)
2394{
2395 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2396
2397 /*
2398 * With non-extent format the journal credit needed to
2399 * insert nrblocks contiguous block is dependent on
2400 * number of contiguous block. So we will limit
2401 * number of contiguous block to a sane value
2402 */
2403 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2404 (max_blocks > EXT4_MAX_TRANS_DATA))
2405 max_blocks = EXT4_MAX_TRANS_DATA;
2406
2407 return ext4_chunk_trans_blocks(inode, max_blocks);
2408}
61628a3f 2409
64769240 2410static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2411 struct writeback_control *wbc)
64769240 2412{
22208ded
AK
2413 pgoff_t index;
2414 int range_whole = 0;
61628a3f 2415 handle_t *handle = NULL;
df22291f 2416 struct mpage_da_data mpd;
5e745b04 2417 struct inode *inode = mapping->host;
22208ded 2418 int no_nrwrite_index_update;
498e5f24
TT
2419 int pages_written = 0;
2420 long pages_skipped;
5e745b04 2421 int needed_blocks, ret = 0, nr_to_writebump = 0;
5e745b04 2422 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f
MC
2423
2424 /*
2425 * No pages to write? This is mainly a kludge to avoid starting
2426 * a transaction for special inodes like journal inode on last iput()
2427 * because that could violate lock ordering on umount
2428 */
a1d6cc56 2429 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2430 return 0;
2a21e37e
TT
2431
2432 /*
2433 * If the filesystem has aborted, it is read-only, so return
2434 * right away instead of dumping stack traces later on that
2435 * will obscure the real source of the problem. We test
2436 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2437 * the latter could be true if the filesystem is mounted
2438 * read-only, and in that case, ext4_da_writepages should
2439 * *never* be called, so if that ever happens, we would want
2440 * the stack trace.
2441 */
2442 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2443 return -EROFS;
2444
5e745b04
AK
2445 /*
2446 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2447 * This make sure small files blocks are allocated in
2448 * single attempt. This ensure that small files
2449 * get less fragmented.
2450 */
2451 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2452 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2453 wbc->nr_to_write = sbi->s_mb_stream_request;
2454 }
22208ded
AK
2455 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2456 range_whole = 1;
61628a3f 2457
22208ded
AK
2458 if (wbc->range_cyclic)
2459 index = mapping->writeback_index;
2460 else
2461 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2462
df22291f
AK
2463 mpd.wbc = wbc;
2464 mpd.inode = mapping->host;
2465
22208ded
AK
2466 /*
2467 * we don't want write_cache_pages to update
2468 * nr_to_write and writeback_index
2469 */
2470 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2471 wbc->no_nrwrite_index_update = 1;
2472 pages_skipped = wbc->pages_skipped;
2473
2474 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2475
2476 /*
2477 * we insert one extent at a time. So we need
2478 * credit needed for single extent allocation.
2479 * journalled mode is currently not supported
2480 * by delalloc
2481 */
2482 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2483 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2484
61628a3f
MC
2485 /* start a new transaction*/
2486 handle = ext4_journal_start(inode, needed_blocks);
2487 if (IS_ERR(handle)) {
2488 ret = PTR_ERR(handle);
2a21e37e 2489 printk(KERN_CRIT "%s: jbd2_start: "
a1d6cc56
AK
2490 "%ld pages, ino %lu; err %d\n", __func__,
2491 wbc->nr_to_write, inode->i_ino, ret);
2492 dump_stack();
61628a3f
MC
2493 goto out_writepages;
2494 }
df22291f
AK
2495 mpd.get_block = ext4_da_get_block_write;
2496 ret = mpage_da_writepages(mapping, wbc, &mpd);
2497
61628a3f 2498 ext4_journal_stop(handle);
df22291f 2499
22208ded
AK
2500 if (mpd.retval == -ENOSPC) {
2501 /* commit the transaction which would
2502 * free blocks released in the transaction
2503 * and try again
2504 */
df22291f 2505 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2506 wbc->pages_skipped = pages_skipped;
2507 ret = 0;
2508 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2509 /*
2510 * got one extent now try with
2511 * rest of the pages
2512 */
22208ded
AK
2513 pages_written += mpd.pages_written;
2514 wbc->pages_skipped = pages_skipped;
a1d6cc56 2515 ret = 0;
22208ded 2516 } else if (wbc->nr_to_write)
61628a3f
MC
2517 /*
2518 * There is no more writeout needed
2519 * or we requested for a noblocking writeout
2520 * and we found the device congested
2521 */
61628a3f 2522 break;
a1d6cc56 2523 }
22208ded
AK
2524 if (pages_skipped != wbc->pages_skipped)
2525 printk(KERN_EMERG "This should not happen leaving %s "
2526 "with nr_to_write = %ld ret = %d\n",
2527 __func__, wbc->nr_to_write, ret);
2528
2529 /* Update index */
2530 index += pages_written;
2531 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2532 /*
2533 * set the writeback_index so that range_cyclic
2534 * mode will write it back later
2535 */
2536 mapping->writeback_index = index;
a1d6cc56 2537
61628a3f 2538out_writepages:
22208ded
AK
2539 if (!no_nrwrite_index_update)
2540 wbc->no_nrwrite_index_update = 0;
2541 wbc->nr_to_write -= nr_to_writebump;
61628a3f 2542 return ret;
64769240
AT
2543}
2544
79f0be8d
AK
2545#define FALL_BACK_TO_NONDELALLOC 1
2546static int ext4_nonda_switch(struct super_block *sb)
2547{
2548 s64 free_blocks, dirty_blocks;
2549 struct ext4_sb_info *sbi = EXT4_SB(sb);
2550
2551 /*
2552 * switch to non delalloc mode if we are running low
2553 * on free block. The free block accounting via percpu
2554 * counters can get slightly wrong with FBC_BATCH getting
2555 * accumulated on each CPU without updating global counters
2556 * Delalloc need an accurate free block accounting. So switch
2557 * to non delalloc when we are near to error range.
2558 */
2559 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2560 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2561 if (2 * free_blocks < 3 * dirty_blocks ||
2562 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2563 /*
2564 * free block count is less that 150% of dirty blocks
2565 * or free blocks is less that watermark
2566 */
2567 return 1;
2568 }
2569 return 0;
2570}
2571
64769240
AT
2572static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2573 loff_t pos, unsigned len, unsigned flags,
2574 struct page **pagep, void **fsdata)
2575{
d2a17637 2576 int ret, retries = 0;
64769240
AT
2577 struct page *page;
2578 pgoff_t index;
2579 unsigned from, to;
2580 struct inode *inode = mapping->host;
2581 handle_t *handle;
2582
2583 index = pos >> PAGE_CACHE_SHIFT;
2584 from = pos & (PAGE_CACHE_SIZE - 1);
2585 to = from + len;
79f0be8d
AK
2586
2587 if (ext4_nonda_switch(inode->i_sb)) {
2588 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2589 return ext4_write_begin(file, mapping, pos,
2590 len, flags, pagep, fsdata);
2591 }
2592 *fsdata = (void *)0;
d2a17637 2593retry:
64769240
AT
2594 /*
2595 * With delayed allocation, we don't log the i_disksize update
2596 * if there is delayed block allocation. But we still need
2597 * to journalling the i_disksize update if writes to the end
2598 * of file which has an already mapped buffer.
2599 */
2600 handle = ext4_journal_start(inode, 1);
2601 if (IS_ERR(handle)) {
2602 ret = PTR_ERR(handle);
2603 goto out;
2604 }
2605
54566b2c 2606 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2607 if (!page) {
2608 ext4_journal_stop(handle);
2609 ret = -ENOMEM;
2610 goto out;
2611 }
64769240
AT
2612 *pagep = page;
2613
2614 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2615 ext4_da_get_block_prep);
2616 if (ret < 0) {
2617 unlock_page(page);
2618 ext4_journal_stop(handle);
2619 page_cache_release(page);
ae4d5372
AK
2620 /*
2621 * block_write_begin may have instantiated a few blocks
2622 * outside i_size. Trim these off again. Don't need
2623 * i_size_read because we hold i_mutex.
2624 */
2625 if (pos + len > inode->i_size)
2626 vmtruncate(inode, inode->i_size);
64769240
AT
2627 }
2628
d2a17637
MC
2629 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2630 goto retry;
64769240
AT
2631out:
2632 return ret;
2633}
2634
632eaeab
MC
2635/*
2636 * Check if we should update i_disksize
2637 * when write to the end of file but not require block allocation
2638 */
2639static int ext4_da_should_update_i_disksize(struct page *page,
2640 unsigned long offset)
2641{
2642 struct buffer_head *bh;
2643 struct inode *inode = page->mapping->host;
2644 unsigned int idx;
2645 int i;
2646
2647 bh = page_buffers(page);
2648 idx = offset >> inode->i_blkbits;
2649
af5bc92d 2650 for (i = 0; i < idx; i++)
632eaeab
MC
2651 bh = bh->b_this_page;
2652
2653 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2654 return 0;
2655 return 1;
2656}
2657
64769240
AT
2658static int ext4_da_write_end(struct file *file,
2659 struct address_space *mapping,
2660 loff_t pos, unsigned len, unsigned copied,
2661 struct page *page, void *fsdata)
2662{
2663 struct inode *inode = mapping->host;
2664 int ret = 0, ret2;
2665 handle_t *handle = ext4_journal_current_handle();
2666 loff_t new_i_size;
632eaeab 2667 unsigned long start, end;
79f0be8d
AK
2668 int write_mode = (int)(unsigned long)fsdata;
2669
2670 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2671 if (ext4_should_order_data(inode)) {
2672 return ext4_ordered_write_end(file, mapping, pos,
2673 len, copied, page, fsdata);
2674 } else if (ext4_should_writeback_data(inode)) {
2675 return ext4_writeback_write_end(file, mapping, pos,
2676 len, copied, page, fsdata);
2677 } else {
2678 BUG();
2679 }
2680 }
632eaeab
MC
2681
2682 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2683 end = start + copied - 1;
64769240
AT
2684
2685 /*
2686 * generic_write_end() will run mark_inode_dirty() if i_size
2687 * changes. So let's piggyback the i_disksize mark_inode_dirty
2688 * into that.
2689 */
2690
2691 new_i_size = pos + copied;
632eaeab
MC
2692 if (new_i_size > EXT4_I(inode)->i_disksize) {
2693 if (ext4_da_should_update_i_disksize(page, end)) {
2694 down_write(&EXT4_I(inode)->i_data_sem);
2695 if (new_i_size > EXT4_I(inode)->i_disksize) {
2696 /*
2697 * Updating i_disksize when extending file
2698 * without needing block allocation
2699 */
2700 if (ext4_should_order_data(inode))
2701 ret = ext4_jbd2_file_inode(handle,
2702 inode);
64769240 2703
632eaeab
MC
2704 EXT4_I(inode)->i_disksize = new_i_size;
2705 }
2706 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2707 /* We need to mark inode dirty even if
2708 * new_i_size is less that inode->i_size
2709 * bu greater than i_disksize.(hint delalloc)
2710 */
2711 ext4_mark_inode_dirty(handle, inode);
64769240 2712 }
632eaeab 2713 }
64769240
AT
2714 ret2 = generic_write_end(file, mapping, pos, len, copied,
2715 page, fsdata);
2716 copied = ret2;
2717 if (ret2 < 0)
2718 ret = ret2;
2719 ret2 = ext4_journal_stop(handle);
2720 if (!ret)
2721 ret = ret2;
2722
2723 return ret ? ret : copied;
2724}
2725
2726static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2727{
64769240
AT
2728 /*
2729 * Drop reserved blocks
2730 */
2731 BUG_ON(!PageLocked(page));
2732 if (!page_has_buffers(page))
2733 goto out;
2734
d2a17637 2735 ext4_da_page_release_reservation(page, offset);
64769240
AT
2736
2737out:
2738 ext4_invalidatepage(page, offset);
2739
2740 return;
2741}
2742
2743
ac27a0ec
DK
2744/*
2745 * bmap() is special. It gets used by applications such as lilo and by
2746 * the swapper to find the on-disk block of a specific piece of data.
2747 *
2748 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2749 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2750 * filesystem and enables swap, then they may get a nasty shock when the
2751 * data getting swapped to that swapfile suddenly gets overwritten by
2752 * the original zero's written out previously to the journal and
2753 * awaiting writeback in the kernel's buffer cache.
2754 *
2755 * So, if we see any bmap calls here on a modified, data-journaled file,
2756 * take extra steps to flush any blocks which might be in the cache.
2757 */
617ba13b 2758static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2759{
2760 struct inode *inode = mapping->host;
2761 journal_t *journal;
2762 int err;
2763
64769240
AT
2764 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2765 test_opt(inode->i_sb, DELALLOC)) {
2766 /*
2767 * With delalloc we want to sync the file
2768 * so that we can make sure we allocate
2769 * blocks for file
2770 */
2771 filemap_write_and_wait(mapping);
2772 }
2773
0390131b
FM
2774 BUG_ON(!EXT4_JOURNAL(inode) &&
2775 EXT4_I(inode)->i_state & EXT4_STATE_JDATA);
2776
2777 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2778 /*
2779 * This is a REALLY heavyweight approach, but the use of
2780 * bmap on dirty files is expected to be extremely rare:
2781 * only if we run lilo or swapon on a freshly made file
2782 * do we expect this to happen.
2783 *
2784 * (bmap requires CAP_SYS_RAWIO so this does not
2785 * represent an unprivileged user DOS attack --- we'd be
2786 * in trouble if mortal users could trigger this path at
2787 * will.)
2788 *
617ba13b 2789 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2790 * regular files. If somebody wants to bmap a directory
2791 * or symlink and gets confused because the buffer
2792 * hasn't yet been flushed to disk, they deserve
2793 * everything they get.
2794 */
2795
617ba13b
MC
2796 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2797 journal = EXT4_JOURNAL(inode);
dab291af
MC
2798 jbd2_journal_lock_updates(journal);
2799 err = jbd2_journal_flush(journal);
2800 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2801
2802 if (err)
2803 return 0;
2804 }
2805
af5bc92d 2806 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2807}
2808
2809static int bget_one(handle_t *handle, struct buffer_head *bh)
2810{
2811 get_bh(bh);
2812 return 0;
2813}
2814
2815static int bput_one(handle_t *handle, struct buffer_head *bh)
2816{
2817 put_bh(bh);
2818 return 0;
2819}
2820
ac27a0ec 2821/*
678aaf48
JK
2822 * Note that we don't need to start a transaction unless we're journaling data
2823 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2824 * need to file the inode to the transaction's list in ordered mode because if
2825 * we are writing back data added by write(), the inode is already there and if
2826 * we are writing back data modified via mmap(), noone guarantees in which
2827 * transaction the data will hit the disk. In case we are journaling data, we
2828 * cannot start transaction directly because transaction start ranks above page
2829 * lock so we have to do some magic.
ac27a0ec 2830 *
678aaf48 2831 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
2832 *
2833 * Problem:
2834 *
617ba13b
MC
2835 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2836 * ext4_writepage()
ac27a0ec
DK
2837 *
2838 * Similar for:
2839 *
617ba13b 2840 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 2841 *
617ba13b 2842 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 2843 * lock_journal and i_data_sem
ac27a0ec
DK
2844 *
2845 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2846 * allocations fail.
2847 *
2848 * 16May01: If we're reentered then journal_current_handle() will be
2849 * non-zero. We simply *return*.
2850 *
2851 * 1 July 2001: @@@ FIXME:
2852 * In journalled data mode, a data buffer may be metadata against the
2853 * current transaction. But the same file is part of a shared mapping
2854 * and someone does a writepage() on it.
2855 *
2856 * We will move the buffer onto the async_data list, but *after* it has
2857 * been dirtied. So there's a small window where we have dirty data on
2858 * BJ_Metadata.
2859 *
2860 * Note that this only applies to the last partial page in the file. The
2861 * bit which block_write_full_page() uses prepare/commit for. (That's
2862 * broken code anyway: it's wrong for msync()).
2863 *
2864 * It's a rare case: affects the final partial page, for journalled data
2865 * where the file is subject to bith write() and writepage() in the same
2866 * transction. To fix it we'll need a custom block_write_full_page().
2867 * We'll probably need that anyway for journalling writepage() output.
2868 *
2869 * We don't honour synchronous mounts for writepage(). That would be
2870 * disastrous. Any write() or metadata operation will sync the fs for
2871 * us.
2872 *
ac27a0ec 2873 */
678aaf48 2874static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
2875 struct writeback_control *wbc)
2876{
2877 struct inode *inode = page->mapping->host;
2878
2879 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
2880 return nobh_writepage(page,
2881 ext4_normal_get_block_write, wbc);
cf108bca 2882 else
f0e6c985
AK
2883 return block_write_full_page(page,
2884 ext4_normal_get_block_write,
2885 wbc);
cf108bca
JK
2886}
2887
678aaf48 2888static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
2889 struct writeback_control *wbc)
2890{
2891 struct inode *inode = page->mapping->host;
cf108bca
JK
2892 loff_t size = i_size_read(inode);
2893 loff_t len;
2894
2895 J_ASSERT(PageLocked(page));
cf108bca
JK
2896 if (page->index == size >> PAGE_CACHE_SHIFT)
2897 len = size & ~PAGE_CACHE_MASK;
2898 else
2899 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2900
2901 if (page_has_buffers(page)) {
2902 /* if page has buffers it should all be mapped
2903 * and allocated. If there are not buffers attached
2904 * to the page we know the page is dirty but it lost
2905 * buffers. That means that at some moment in time
2906 * after write_begin() / write_end() has been called
2907 * all buffers have been clean and thus they must have been
2908 * written at least once. So they are all mapped and we can
2909 * happily proceed with mapping them and writing the page.
2910 */
2911 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2912 ext4_bh_unmapped_or_delay));
2913 }
cf108bca
JK
2914
2915 if (!ext4_journal_current_handle())
678aaf48 2916 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
2917
2918 redirty_page_for_writepage(wbc, page);
2919 unlock_page(page);
2920 return 0;
2921}
2922
2923static int __ext4_journalled_writepage(struct page *page,
2924 struct writeback_control *wbc)
2925{
2926 struct address_space *mapping = page->mapping;
2927 struct inode *inode = mapping->host;
2928 struct buffer_head *page_bufs;
ac27a0ec
DK
2929 handle_t *handle = NULL;
2930 int ret = 0;
2931 int err;
2932
f0e6c985
AK
2933 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2934 ext4_normal_get_block_write);
cf108bca
JK
2935 if (ret != 0)
2936 goto out_unlock;
2937
2938 page_bufs = page_buffers(page);
2939 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2940 bget_one);
2941 /* As soon as we unlock the page, it can go away, but we have
2942 * references to buffers so we are safe */
2943 unlock_page(page);
ac27a0ec 2944
617ba13b 2945 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
2946 if (IS_ERR(handle)) {
2947 ret = PTR_ERR(handle);
cf108bca 2948 goto out;
ac27a0ec
DK
2949 }
2950
cf108bca
JK
2951 ret = walk_page_buffers(handle, page_bufs, 0,
2952 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 2953
cf108bca
JK
2954 err = walk_page_buffers(handle, page_bufs, 0,
2955 PAGE_CACHE_SIZE, NULL, write_end_fn);
2956 if (ret == 0)
2957 ret = err;
617ba13b 2958 err = ext4_journal_stop(handle);
ac27a0ec
DK
2959 if (!ret)
2960 ret = err;
ac27a0ec 2961
cf108bca
JK
2962 walk_page_buffers(handle, page_bufs, 0,
2963 PAGE_CACHE_SIZE, NULL, bput_one);
2964 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2965 goto out;
2966
2967out_unlock:
ac27a0ec 2968 unlock_page(page);
cf108bca 2969out:
ac27a0ec
DK
2970 return ret;
2971}
2972
617ba13b 2973static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
2974 struct writeback_control *wbc)
2975{
2976 struct inode *inode = page->mapping->host;
cf108bca
JK
2977 loff_t size = i_size_read(inode);
2978 loff_t len;
ac27a0ec 2979
cf108bca 2980 J_ASSERT(PageLocked(page));
cf108bca
JK
2981 if (page->index == size >> PAGE_CACHE_SHIFT)
2982 len = size & ~PAGE_CACHE_MASK;
2983 else
2984 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2985
2986 if (page_has_buffers(page)) {
2987 /* if page has buffers it should all be mapped
2988 * and allocated. If there are not buffers attached
2989 * to the page we know the page is dirty but it lost
2990 * buffers. That means that at some moment in time
2991 * after write_begin() / write_end() has been called
2992 * all buffers have been clean and thus they must have been
2993 * written at least once. So they are all mapped and we can
2994 * happily proceed with mapping them and writing the page.
2995 */
2996 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2997 ext4_bh_unmapped_or_delay));
2998 }
ac27a0ec 2999
cf108bca 3000 if (ext4_journal_current_handle())
ac27a0ec 3001 goto no_write;
ac27a0ec 3002
cf108bca 3003 if (PageChecked(page)) {
ac27a0ec
DK
3004 /*
3005 * It's mmapped pagecache. Add buffers and journal it. There
3006 * doesn't seem much point in redirtying the page here.
3007 */
3008 ClearPageChecked(page);
cf108bca 3009 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
3010 } else {
3011 /*
3012 * It may be a page full of checkpoint-mode buffers. We don't
3013 * really know unless we go poke around in the buffer_heads.
3014 * But block_write_full_page will do the right thing.
3015 */
f0e6c985
AK
3016 return block_write_full_page(page,
3017 ext4_normal_get_block_write,
3018 wbc);
ac27a0ec 3019 }
ac27a0ec
DK
3020no_write:
3021 redirty_page_for_writepage(wbc, page);
ac27a0ec 3022 unlock_page(page);
cf108bca 3023 return 0;
ac27a0ec
DK
3024}
3025
617ba13b 3026static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3027{
617ba13b 3028 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3029}
3030
3031static int
617ba13b 3032ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3033 struct list_head *pages, unsigned nr_pages)
3034{
617ba13b 3035 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3036}
3037
617ba13b 3038static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3039{
617ba13b 3040 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3041
3042 /*
3043 * If it's a full truncate we just forget about the pending dirtying
3044 */
3045 if (offset == 0)
3046 ClearPageChecked(page);
3047
0390131b
FM
3048 if (journal)
3049 jbd2_journal_invalidatepage(journal, page, offset);
3050 else
3051 block_invalidatepage(page, offset);
ac27a0ec
DK
3052}
3053
617ba13b 3054static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3055{
617ba13b 3056 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3057
3058 WARN_ON(PageChecked(page));
3059 if (!page_has_buffers(page))
3060 return 0;
0390131b
FM
3061 if (journal)
3062 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3063 else
3064 return try_to_free_buffers(page);
ac27a0ec
DK
3065}
3066
3067/*
3068 * If the O_DIRECT write will extend the file then add this inode to the
3069 * orphan list. So recovery will truncate it back to the original size
3070 * if the machine crashes during the write.
3071 *
3072 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3073 * crashes then stale disk data _may_ be exposed inside the file. But current
3074 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3075 */
617ba13b 3076static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
3077 const struct iovec *iov, loff_t offset,
3078 unsigned long nr_segs)
3079{
3080 struct file *file = iocb->ki_filp;
3081 struct inode *inode = file->f_mapping->host;
617ba13b 3082 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3083 handle_t *handle;
ac27a0ec
DK
3084 ssize_t ret;
3085 int orphan = 0;
3086 size_t count = iov_length(iov, nr_segs);
3087
3088 if (rw == WRITE) {
3089 loff_t final_size = offset + count;
3090
ac27a0ec 3091 if (final_size > inode->i_size) {
7fb5409d
JK
3092 /* Credits for sb + inode write */
3093 handle = ext4_journal_start(inode, 2);
3094 if (IS_ERR(handle)) {
3095 ret = PTR_ERR(handle);
3096 goto out;
3097 }
617ba13b 3098 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3099 if (ret) {
3100 ext4_journal_stop(handle);
3101 goto out;
3102 }
ac27a0ec
DK
3103 orphan = 1;
3104 ei->i_disksize = inode->i_size;
7fb5409d 3105 ext4_journal_stop(handle);
ac27a0ec
DK
3106 }
3107 }
3108
3109 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3110 offset, nr_segs,
617ba13b 3111 ext4_get_block, NULL);
ac27a0ec 3112
7fb5409d 3113 if (orphan) {
ac27a0ec
DK
3114 int err;
3115
7fb5409d
JK
3116 /* Credits for sb + inode write */
3117 handle = ext4_journal_start(inode, 2);
3118 if (IS_ERR(handle)) {
3119 /* This is really bad luck. We've written the data
3120 * but cannot extend i_size. Bail out and pretend
3121 * the write failed... */
3122 ret = PTR_ERR(handle);
3123 goto out;
3124 }
3125 if (inode->i_nlink)
617ba13b 3126 ext4_orphan_del(handle, inode);
7fb5409d 3127 if (ret > 0) {
ac27a0ec
DK
3128 loff_t end = offset + ret;
3129 if (end > inode->i_size) {
3130 ei->i_disksize = end;
3131 i_size_write(inode, end);
3132 /*
3133 * We're going to return a positive `ret'
3134 * here due to non-zero-length I/O, so there's
3135 * no way of reporting error returns from
617ba13b 3136 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3137 * ignore it.
3138 */
617ba13b 3139 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3140 }
3141 }
617ba13b 3142 err = ext4_journal_stop(handle);
ac27a0ec
DK
3143 if (ret == 0)
3144 ret = err;
3145 }
3146out:
3147 return ret;
3148}
3149
3150/*
617ba13b 3151 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3152 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3153 * much here because ->set_page_dirty is called under VFS locks. The page is
3154 * not necessarily locked.
3155 *
3156 * We cannot just dirty the page and leave attached buffers clean, because the
3157 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3158 * or jbddirty because all the journalling code will explode.
3159 *
3160 * So what we do is to mark the page "pending dirty" and next time writepage
3161 * is called, propagate that into the buffers appropriately.
3162 */
617ba13b 3163static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3164{
3165 SetPageChecked(page);
3166 return __set_page_dirty_nobuffers(page);
3167}
3168
617ba13b 3169static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3170 .readpage = ext4_readpage,
3171 .readpages = ext4_readpages,
3172 .writepage = ext4_normal_writepage,
3173 .sync_page = block_sync_page,
3174 .write_begin = ext4_write_begin,
3175 .write_end = ext4_ordered_write_end,
3176 .bmap = ext4_bmap,
3177 .invalidatepage = ext4_invalidatepage,
3178 .releasepage = ext4_releasepage,
3179 .direct_IO = ext4_direct_IO,
3180 .migratepage = buffer_migrate_page,
3181 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3182};
3183
617ba13b 3184static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3185 .readpage = ext4_readpage,
3186 .readpages = ext4_readpages,
3187 .writepage = ext4_normal_writepage,
3188 .sync_page = block_sync_page,
3189 .write_begin = ext4_write_begin,
3190 .write_end = ext4_writeback_write_end,
3191 .bmap = ext4_bmap,
3192 .invalidatepage = ext4_invalidatepage,
3193 .releasepage = ext4_releasepage,
3194 .direct_IO = ext4_direct_IO,
3195 .migratepage = buffer_migrate_page,
3196 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3197};
3198
617ba13b 3199static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3200 .readpage = ext4_readpage,
3201 .readpages = ext4_readpages,
3202 .writepage = ext4_journalled_writepage,
3203 .sync_page = block_sync_page,
3204 .write_begin = ext4_write_begin,
3205 .write_end = ext4_journalled_write_end,
3206 .set_page_dirty = ext4_journalled_set_page_dirty,
3207 .bmap = ext4_bmap,
3208 .invalidatepage = ext4_invalidatepage,
3209 .releasepage = ext4_releasepage,
3210 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
3211};
3212
64769240 3213static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3214 .readpage = ext4_readpage,
3215 .readpages = ext4_readpages,
3216 .writepage = ext4_da_writepage,
3217 .writepages = ext4_da_writepages,
3218 .sync_page = block_sync_page,
3219 .write_begin = ext4_da_write_begin,
3220 .write_end = ext4_da_write_end,
3221 .bmap = ext4_bmap,
3222 .invalidatepage = ext4_da_invalidatepage,
3223 .releasepage = ext4_releasepage,
3224 .direct_IO = ext4_direct_IO,
3225 .migratepage = buffer_migrate_page,
3226 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
3227};
3228
617ba13b 3229void ext4_set_aops(struct inode *inode)
ac27a0ec 3230{
cd1aac32
AK
3231 if (ext4_should_order_data(inode) &&
3232 test_opt(inode->i_sb, DELALLOC))
3233 inode->i_mapping->a_ops = &ext4_da_aops;
3234 else if (ext4_should_order_data(inode))
617ba13b 3235 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3236 else if (ext4_should_writeback_data(inode) &&
3237 test_opt(inode->i_sb, DELALLOC))
3238 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3239 else if (ext4_should_writeback_data(inode))
3240 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3241 else
617ba13b 3242 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3243}
3244
3245/*
617ba13b 3246 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3247 * up to the end of the block which corresponds to `from'.
3248 * This required during truncate. We need to physically zero the tail end
3249 * of that block so it doesn't yield old data if the file is later grown.
3250 */
cf108bca 3251int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3252 struct address_space *mapping, loff_t from)
3253{
617ba13b 3254 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3255 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3256 unsigned blocksize, length, pos;
3257 ext4_lblk_t iblock;
ac27a0ec
DK
3258 struct inode *inode = mapping->host;
3259 struct buffer_head *bh;
cf108bca 3260 struct page *page;
ac27a0ec 3261 int err = 0;
ac27a0ec 3262
cf108bca
JK
3263 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3264 if (!page)
3265 return -EINVAL;
3266
ac27a0ec
DK
3267 blocksize = inode->i_sb->s_blocksize;
3268 length = blocksize - (offset & (blocksize - 1));
3269 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3270
3271 /*
3272 * For "nobh" option, we can only work if we don't need to
3273 * read-in the page - otherwise we create buffers to do the IO.
3274 */
3275 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3276 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3277 zero_user(page, offset, length);
ac27a0ec
DK
3278 set_page_dirty(page);
3279 goto unlock;
3280 }
3281
3282 if (!page_has_buffers(page))
3283 create_empty_buffers(page, blocksize, 0);
3284
3285 /* Find the buffer that contains "offset" */
3286 bh = page_buffers(page);
3287 pos = blocksize;
3288 while (offset >= pos) {
3289 bh = bh->b_this_page;
3290 iblock++;
3291 pos += blocksize;
3292 }
3293
3294 err = 0;
3295 if (buffer_freed(bh)) {
3296 BUFFER_TRACE(bh, "freed: skip");
3297 goto unlock;
3298 }
3299
3300 if (!buffer_mapped(bh)) {
3301 BUFFER_TRACE(bh, "unmapped");
617ba13b 3302 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3303 /* unmapped? It's a hole - nothing to do */
3304 if (!buffer_mapped(bh)) {
3305 BUFFER_TRACE(bh, "still unmapped");
3306 goto unlock;
3307 }
3308 }
3309
3310 /* Ok, it's mapped. Make sure it's up-to-date */
3311 if (PageUptodate(page))
3312 set_buffer_uptodate(bh);
3313
3314 if (!buffer_uptodate(bh)) {
3315 err = -EIO;
3316 ll_rw_block(READ, 1, &bh);
3317 wait_on_buffer(bh);
3318 /* Uhhuh. Read error. Complain and punt. */
3319 if (!buffer_uptodate(bh))
3320 goto unlock;
3321 }
3322
617ba13b 3323 if (ext4_should_journal_data(inode)) {
ac27a0ec 3324 BUFFER_TRACE(bh, "get write access");
617ba13b 3325 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3326 if (err)
3327 goto unlock;
3328 }
3329
eebd2aa3 3330 zero_user(page, offset, length);
ac27a0ec
DK
3331
3332 BUFFER_TRACE(bh, "zeroed end of block");
3333
3334 err = 0;
617ba13b 3335 if (ext4_should_journal_data(inode)) {
0390131b 3336 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3337 } else {
617ba13b 3338 if (ext4_should_order_data(inode))
678aaf48 3339 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3340 mark_buffer_dirty(bh);
3341 }
3342
3343unlock:
3344 unlock_page(page);
3345 page_cache_release(page);
3346 return err;
3347}
3348
3349/*
3350 * Probably it should be a library function... search for first non-zero word
3351 * or memcmp with zero_page, whatever is better for particular architecture.
3352 * Linus?
3353 */
3354static inline int all_zeroes(__le32 *p, __le32 *q)
3355{
3356 while (p < q)
3357 if (*p++)
3358 return 0;
3359 return 1;
3360}
3361
3362/**
617ba13b 3363 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3364 * @inode: inode in question
3365 * @depth: depth of the affected branch
617ba13b 3366 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3367 * @chain: place to store the pointers to partial indirect blocks
3368 * @top: place to the (detached) top of branch
3369 *
617ba13b 3370 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3371 *
3372 * When we do truncate() we may have to clean the ends of several
3373 * indirect blocks but leave the blocks themselves alive. Block is
3374 * partially truncated if some data below the new i_size is refered
3375 * from it (and it is on the path to the first completely truncated
3376 * data block, indeed). We have to free the top of that path along
3377 * with everything to the right of the path. Since no allocation
617ba13b 3378 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3379 * finishes, we may safely do the latter, but top of branch may
3380 * require special attention - pageout below the truncation point
3381 * might try to populate it.
3382 *
3383 * We atomically detach the top of branch from the tree, store the
3384 * block number of its root in *@top, pointers to buffer_heads of
3385 * partially truncated blocks - in @chain[].bh and pointers to
3386 * their last elements that should not be removed - in
3387 * @chain[].p. Return value is the pointer to last filled element
3388 * of @chain.
3389 *
3390 * The work left to caller to do the actual freeing of subtrees:
3391 * a) free the subtree starting from *@top
3392 * b) free the subtrees whose roots are stored in
3393 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3394 * c) free the subtrees growing from the inode past the @chain[0].
3395 * (no partially truncated stuff there). */
3396
617ba13b 3397static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3398 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3399{
3400 Indirect *partial, *p;
3401 int k, err;
3402
3403 *top = 0;
3404 /* Make k index the deepest non-null offest + 1 */
3405 for (k = depth; k > 1 && !offsets[k-1]; k--)
3406 ;
617ba13b 3407 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3408 /* Writer: pointers */
3409 if (!partial)
3410 partial = chain + k-1;
3411 /*
3412 * If the branch acquired continuation since we've looked at it -
3413 * fine, it should all survive and (new) top doesn't belong to us.
3414 */
3415 if (!partial->key && *partial->p)
3416 /* Writer: end */
3417 goto no_top;
af5bc92d 3418 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3419 ;
3420 /*
3421 * OK, we've found the last block that must survive. The rest of our
3422 * branch should be detached before unlocking. However, if that rest
3423 * of branch is all ours and does not grow immediately from the inode
3424 * it's easier to cheat and just decrement partial->p.
3425 */
3426 if (p == chain + k - 1 && p > chain) {
3427 p->p--;
3428 } else {
3429 *top = *p->p;
617ba13b 3430 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3431#if 0
3432 *p->p = 0;
3433#endif
3434 }
3435 /* Writer: end */
3436
af5bc92d 3437 while (partial > p) {
ac27a0ec
DK
3438 brelse(partial->bh);
3439 partial--;
3440 }
3441no_top:
3442 return partial;
3443}
3444
3445/*
3446 * Zero a number of block pointers in either an inode or an indirect block.
3447 * If we restart the transaction we must again get write access to the
3448 * indirect block for further modification.
3449 *
3450 * We release `count' blocks on disk, but (last - first) may be greater
3451 * than `count' because there can be holes in there.
3452 */
617ba13b
MC
3453static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3454 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3455 unsigned long count, __le32 *first, __le32 *last)
3456{
3457 __le32 *p;
3458 if (try_to_extend_transaction(handle, inode)) {
3459 if (bh) {
0390131b
FM
3460 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3461 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3462 }
617ba13b
MC
3463 ext4_mark_inode_dirty(handle, inode);
3464 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3465 if (bh) {
3466 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3467 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3468 }
3469 }
3470
3471 /*
3472 * Any buffers which are on the journal will be in memory. We find
dab291af 3473 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3474 * on them. We've already detached each block from the file, so
dab291af 3475 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3476 *
dab291af 3477 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3478 */
3479 for (p = first; p < last; p++) {
3480 u32 nr = le32_to_cpu(*p);
3481 if (nr) {
1d03ec98 3482 struct buffer_head *tbh;
ac27a0ec
DK
3483
3484 *p = 0;
1d03ec98
AK
3485 tbh = sb_find_get_block(inode->i_sb, nr);
3486 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3487 }
3488 }
3489
c9de560d 3490 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3491}
3492
3493/**
617ba13b 3494 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3495 * @handle: handle for this transaction
3496 * @inode: inode we are dealing with
3497 * @this_bh: indirect buffer_head which contains *@first and *@last
3498 * @first: array of block numbers
3499 * @last: points immediately past the end of array
3500 *
3501 * We are freeing all blocks refered from that array (numbers are stored as
3502 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3503 *
3504 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3505 * blocks are contiguous then releasing them at one time will only affect one
3506 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3507 * actually use a lot of journal space.
3508 *
3509 * @this_bh will be %NULL if @first and @last point into the inode's direct
3510 * block pointers.
3511 */
617ba13b 3512static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3513 struct buffer_head *this_bh,
3514 __le32 *first, __le32 *last)
3515{
617ba13b 3516 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3517 unsigned long count = 0; /* Number of blocks in the run */
3518 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3519 corresponding to
3520 block_to_free */
617ba13b 3521 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3522 __le32 *p; /* Pointer into inode/ind
3523 for current block */
3524 int err;
3525
3526 if (this_bh) { /* For indirect block */
3527 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3528 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3529 /* Important: if we can't update the indirect pointers
3530 * to the blocks, we can't free them. */
3531 if (err)
3532 return;
3533 }
3534
3535 for (p = first; p < last; p++) {
3536 nr = le32_to_cpu(*p);
3537 if (nr) {
3538 /* accumulate blocks to free if they're contiguous */
3539 if (count == 0) {
3540 block_to_free = nr;
3541 block_to_free_p = p;
3542 count = 1;
3543 } else if (nr == block_to_free + count) {
3544 count++;
3545 } else {
617ba13b 3546 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3547 block_to_free,
3548 count, block_to_free_p, p);
3549 block_to_free = nr;
3550 block_to_free_p = p;
3551 count = 1;
3552 }
3553 }
3554 }
3555
3556 if (count > 0)
617ba13b 3557 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3558 count, block_to_free_p, p);
3559
3560 if (this_bh) {
0390131b 3561 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3562
3563 /*
3564 * The buffer head should have an attached journal head at this
3565 * point. However, if the data is corrupted and an indirect
3566 * block pointed to itself, it would have been detached when
3567 * the block was cleared. Check for this instead of OOPSing.
3568 */
3569 if (bh2jh(this_bh))
0390131b 3570 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3571 else
3572 ext4_error(inode->i_sb, __func__,
3573 "circular indirect block detected, "
3574 "inode=%lu, block=%llu",
3575 inode->i_ino,
3576 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3577 }
3578}
3579
3580/**
617ba13b 3581 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3582 * @handle: JBD handle for this transaction
3583 * @inode: inode we are dealing with
3584 * @parent_bh: the buffer_head which contains *@first and *@last
3585 * @first: array of block numbers
3586 * @last: pointer immediately past the end of array
3587 * @depth: depth of the branches to free
3588 *
3589 * We are freeing all blocks refered from these branches (numbers are
3590 * stored as little-endian 32-bit) and updating @inode->i_blocks
3591 * appropriately.
3592 */
617ba13b 3593static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3594 struct buffer_head *parent_bh,
3595 __le32 *first, __le32 *last, int depth)
3596{
617ba13b 3597 ext4_fsblk_t nr;
ac27a0ec
DK
3598 __le32 *p;
3599
0390131b 3600 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3601 return;
3602
3603 if (depth--) {
3604 struct buffer_head *bh;
617ba13b 3605 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3606 p = last;
3607 while (--p >= first) {
3608 nr = le32_to_cpu(*p);
3609 if (!nr)
3610 continue; /* A hole */
3611
3612 /* Go read the buffer for the next level down */
3613 bh = sb_bread(inode->i_sb, nr);
3614
3615 /*
3616 * A read failure? Report error and clear slot
3617 * (should be rare).
3618 */
3619 if (!bh) {
617ba13b 3620 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3621 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3622 inode->i_ino, nr);
3623 continue;
3624 }
3625
3626 /* This zaps the entire block. Bottom up. */
3627 BUFFER_TRACE(bh, "free child branches");
617ba13b 3628 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3629 (__le32 *) bh->b_data,
3630 (__le32 *) bh->b_data + addr_per_block,
3631 depth);
ac27a0ec
DK
3632
3633 /*
3634 * We've probably journalled the indirect block several
3635 * times during the truncate. But it's no longer
3636 * needed and we now drop it from the transaction via
dab291af 3637 * jbd2_journal_revoke().
ac27a0ec
DK
3638 *
3639 * That's easy if it's exclusively part of this
3640 * transaction. But if it's part of the committing
dab291af 3641 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3642 * brelse() it. That means that if the underlying
617ba13b 3643 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3644 * unmap_underlying_metadata() will find this block
3645 * and will try to get rid of it. damn, damn.
3646 *
3647 * If this block has already been committed to the
3648 * journal, a revoke record will be written. And
3649 * revoke records must be emitted *before* clearing
3650 * this block's bit in the bitmaps.
3651 */
617ba13b 3652 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3653
3654 /*
3655 * Everything below this this pointer has been
3656 * released. Now let this top-of-subtree go.
3657 *
3658 * We want the freeing of this indirect block to be
3659 * atomic in the journal with the updating of the
3660 * bitmap block which owns it. So make some room in
3661 * the journal.
3662 *
3663 * We zero the parent pointer *after* freeing its
3664 * pointee in the bitmaps, so if extend_transaction()
3665 * for some reason fails to put the bitmap changes and
3666 * the release into the same transaction, recovery
3667 * will merely complain about releasing a free block,
3668 * rather than leaking blocks.
3669 */
0390131b 3670 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3671 return;
3672 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3673 ext4_mark_inode_dirty(handle, inode);
3674 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3675 }
3676
c9de560d 3677 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3678
3679 if (parent_bh) {
3680 /*
3681 * The block which we have just freed is
3682 * pointed to by an indirect block: journal it
3683 */
3684 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3685 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3686 parent_bh)){
3687 *p = 0;
3688 BUFFER_TRACE(parent_bh,
0390131b
FM
3689 "call ext4_handle_dirty_metadata");
3690 ext4_handle_dirty_metadata(handle,
3691 inode,
3692 parent_bh);
ac27a0ec
DK
3693 }
3694 }
3695 }
3696 } else {
3697 /* We have reached the bottom of the tree. */
3698 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3699 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3700 }
3701}
3702
91ef4caf
DG
3703int ext4_can_truncate(struct inode *inode)
3704{
3705 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3706 return 0;
3707 if (S_ISREG(inode->i_mode))
3708 return 1;
3709 if (S_ISDIR(inode->i_mode))
3710 return 1;
3711 if (S_ISLNK(inode->i_mode))
3712 return !ext4_inode_is_fast_symlink(inode);
3713 return 0;
3714}
3715
ac27a0ec 3716/*
617ba13b 3717 * ext4_truncate()
ac27a0ec 3718 *
617ba13b
MC
3719 * We block out ext4_get_block() block instantiations across the entire
3720 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3721 * simultaneously on behalf of the same inode.
3722 *
3723 * As we work through the truncate and commmit bits of it to the journal there
3724 * is one core, guiding principle: the file's tree must always be consistent on
3725 * disk. We must be able to restart the truncate after a crash.
3726 *
3727 * The file's tree may be transiently inconsistent in memory (although it
3728 * probably isn't), but whenever we close off and commit a journal transaction,
3729 * the contents of (the filesystem + the journal) must be consistent and
3730 * restartable. It's pretty simple, really: bottom up, right to left (although
3731 * left-to-right works OK too).
3732 *
3733 * Note that at recovery time, journal replay occurs *before* the restart of
3734 * truncate against the orphan inode list.
3735 *
3736 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3737 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3738 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3739 * ext4_truncate() to have another go. So there will be instantiated blocks
3740 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3741 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3742 * ext4_truncate() run will find them and release them.
ac27a0ec 3743 */
617ba13b 3744void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3745{
3746 handle_t *handle;
617ba13b 3747 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3748 __le32 *i_data = ei->i_data;
617ba13b 3749 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3750 struct address_space *mapping = inode->i_mapping;
725d26d3 3751 ext4_lblk_t offsets[4];
ac27a0ec
DK
3752 Indirect chain[4];
3753 Indirect *partial;
3754 __le32 nr = 0;
3755 int n;
725d26d3 3756 ext4_lblk_t last_block;
ac27a0ec 3757 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3758
91ef4caf 3759 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3760 return;
3761
1d03ec98 3762 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3763 ext4_ext_truncate(inode);
1d03ec98
AK
3764 return;
3765 }
a86c6181 3766
ac27a0ec 3767 handle = start_transaction(inode);
cf108bca 3768 if (IS_ERR(handle))
ac27a0ec 3769 return; /* AKPM: return what? */
ac27a0ec
DK
3770
3771 last_block = (inode->i_size + blocksize-1)
617ba13b 3772 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3773
cf108bca
JK
3774 if (inode->i_size & (blocksize - 1))
3775 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3776 goto out_stop;
ac27a0ec 3777
617ba13b 3778 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3779 if (n == 0)
3780 goto out_stop; /* error */
3781
3782 /*
3783 * OK. This truncate is going to happen. We add the inode to the
3784 * orphan list, so that if this truncate spans multiple transactions,
3785 * and we crash, we will resume the truncate when the filesystem
3786 * recovers. It also marks the inode dirty, to catch the new size.
3787 *
3788 * Implication: the file must always be in a sane, consistent
3789 * truncatable state while each transaction commits.
3790 */
617ba13b 3791 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3792 goto out_stop;
3793
632eaeab
MC
3794 /*
3795 * From here we block out all ext4_get_block() callers who want to
3796 * modify the block allocation tree.
3797 */
3798 down_write(&ei->i_data_sem);
b4df2030 3799
c2ea3fde 3800 ext4_discard_preallocations(inode);
b4df2030 3801
ac27a0ec
DK
3802 /*
3803 * The orphan list entry will now protect us from any crash which
3804 * occurs before the truncate completes, so it is now safe to propagate
3805 * the new, shorter inode size (held for now in i_size) into the
3806 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 3807 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
3808 */
3809 ei->i_disksize = inode->i_size;
3810
ac27a0ec 3811 if (n == 1) { /* direct blocks */
617ba13b
MC
3812 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3813 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
3814 goto do_indirects;
3815 }
3816
617ba13b 3817 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
3818 /* Kill the top of shared branch (not detached) */
3819 if (nr) {
3820 if (partial == chain) {
3821 /* Shared branch grows from the inode */
617ba13b 3822 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
3823 &nr, &nr+1, (chain+n-1) - partial);
3824 *partial->p = 0;
3825 /*
3826 * We mark the inode dirty prior to restart,
3827 * and prior to stop. No need for it here.
3828 */
3829 } else {
3830 /* Shared branch grows from an indirect block */
3831 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 3832 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
3833 partial->p,
3834 partial->p+1, (chain+n-1) - partial);
3835 }
3836 }
3837 /* Clear the ends of indirect blocks on the shared branch */
3838 while (partial > chain) {
617ba13b 3839 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
3840 (__le32*)partial->bh->b_data+addr_per_block,
3841 (chain+n-1) - partial);
3842 BUFFER_TRACE(partial->bh, "call brelse");
3843 brelse (partial->bh);
3844 partial--;
3845 }
3846do_indirects:
3847 /* Kill the remaining (whole) subtrees */
3848 switch (offsets[0]) {
3849 default:
617ba13b 3850 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 3851 if (nr) {
617ba13b
MC
3852 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3853 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 3854 }
617ba13b
MC
3855 case EXT4_IND_BLOCK:
3856 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 3857 if (nr) {
617ba13b
MC
3858 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3859 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 3860 }
617ba13b
MC
3861 case EXT4_DIND_BLOCK:
3862 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 3863 if (nr) {
617ba13b
MC
3864 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3865 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 3866 }
617ba13b 3867 case EXT4_TIND_BLOCK:
ac27a0ec
DK
3868 ;
3869 }
3870
0e855ac8 3871 up_write(&ei->i_data_sem);
ef7f3835 3872 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 3873 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3874
3875 /*
3876 * In a multi-transaction truncate, we only make the final transaction
3877 * synchronous
3878 */
3879 if (IS_SYNC(inode))
0390131b 3880 ext4_handle_sync(handle);
ac27a0ec
DK
3881out_stop:
3882 /*
3883 * If this was a simple ftruncate(), and the file will remain alive
3884 * then we need to clear up the orphan record which we created above.
3885 * However, if this was a real unlink then we were called by
617ba13b 3886 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
3887 * orphan info for us.
3888 */
3889 if (inode->i_nlink)
617ba13b 3890 ext4_orphan_del(handle, inode);
ac27a0ec 3891
617ba13b 3892 ext4_journal_stop(handle);
ac27a0ec
DK
3893}
3894
ac27a0ec 3895/*
617ba13b 3896 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3897 * underlying buffer_head on success. If 'in_mem' is true, we have all
3898 * data in memory that is needed to recreate the on-disk version of this
3899 * inode.
3900 */
617ba13b
MC
3901static int __ext4_get_inode_loc(struct inode *inode,
3902 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3903{
240799cd
TT
3904 struct ext4_group_desc *gdp;
3905 struct buffer_head *bh;
3906 struct super_block *sb = inode->i_sb;
3907 ext4_fsblk_t block;
3908 int inodes_per_block, inode_offset;
3909
3910 iloc->bh = 0;
3911 if (!ext4_valid_inum(sb, inode->i_ino))
3912 return -EIO;
ac27a0ec 3913
240799cd
TT
3914 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3915 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3916 if (!gdp)
ac27a0ec
DK
3917 return -EIO;
3918
240799cd
TT
3919 /*
3920 * Figure out the offset within the block group inode table
3921 */
3922 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3923 inode_offset = ((inode->i_ino - 1) %
3924 EXT4_INODES_PER_GROUP(sb));
3925 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3926 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3927
3928 bh = sb_getblk(sb, block);
ac27a0ec 3929 if (!bh) {
240799cd
TT
3930 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3931 "inode block - inode=%lu, block=%llu",
3932 inode->i_ino, block);
ac27a0ec
DK
3933 return -EIO;
3934 }
3935 if (!buffer_uptodate(bh)) {
3936 lock_buffer(bh);
9c83a923
HK
3937
3938 /*
3939 * If the buffer has the write error flag, we have failed
3940 * to write out another inode in the same block. In this
3941 * case, we don't have to read the block because we may
3942 * read the old inode data successfully.
3943 */
3944 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3945 set_buffer_uptodate(bh);
3946
ac27a0ec
DK
3947 if (buffer_uptodate(bh)) {
3948 /* someone brought it uptodate while we waited */
3949 unlock_buffer(bh);
3950 goto has_buffer;
3951 }
3952
3953 /*
3954 * If we have all information of the inode in memory and this
3955 * is the only valid inode in the block, we need not read the
3956 * block.
3957 */
3958 if (in_mem) {
3959 struct buffer_head *bitmap_bh;
240799cd 3960 int i, start;
ac27a0ec 3961
240799cd 3962 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3963
240799cd
TT
3964 /* Is the inode bitmap in cache? */
3965 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3966 if (!bitmap_bh)
3967 goto make_io;
3968
3969 /*
3970 * If the inode bitmap isn't in cache then the
3971 * optimisation may end up performing two reads instead
3972 * of one, so skip it.
3973 */
3974 if (!buffer_uptodate(bitmap_bh)) {
3975 brelse(bitmap_bh);
3976 goto make_io;
3977 }
240799cd 3978 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3979 if (i == inode_offset)
3980 continue;
617ba13b 3981 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3982 break;
3983 }
3984 brelse(bitmap_bh);
240799cd 3985 if (i == start + inodes_per_block) {
ac27a0ec
DK
3986 /* all other inodes are free, so skip I/O */
3987 memset(bh->b_data, 0, bh->b_size);
3988 set_buffer_uptodate(bh);
3989 unlock_buffer(bh);
3990 goto has_buffer;
3991 }
3992 }
3993
3994make_io:
240799cd
TT
3995 /*
3996 * If we need to do any I/O, try to pre-readahead extra
3997 * blocks from the inode table.
3998 */
3999 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4000 ext4_fsblk_t b, end, table;
4001 unsigned num;
4002
4003 table = ext4_inode_table(sb, gdp);
4004 /* Make sure s_inode_readahead_blks is a power of 2 */
4005 while (EXT4_SB(sb)->s_inode_readahead_blks &
4006 (EXT4_SB(sb)->s_inode_readahead_blks-1))
4007 EXT4_SB(sb)->s_inode_readahead_blks =
4008 (EXT4_SB(sb)->s_inode_readahead_blks &
4009 (EXT4_SB(sb)->s_inode_readahead_blks-1));
4010 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4011 if (table > b)
4012 b = table;
4013 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4014 num = EXT4_INODES_PER_GROUP(sb);
4015 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4016 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4017 num -= le16_to_cpu(gdp->bg_itable_unused);
4018 table += num / inodes_per_block;
4019 if (end > table)
4020 end = table;
4021 while (b <= end)
4022 sb_breadahead(sb, b++);
4023 }
4024
ac27a0ec
DK
4025 /*
4026 * There are other valid inodes in the buffer, this inode
4027 * has in-inode xattrs, or we don't have this inode in memory.
4028 * Read the block from disk.
4029 */
4030 get_bh(bh);
4031 bh->b_end_io = end_buffer_read_sync;
4032 submit_bh(READ_META, bh);
4033 wait_on_buffer(bh);
4034 if (!buffer_uptodate(bh)) {
240799cd
TT
4035 ext4_error(sb, __func__,
4036 "unable to read inode block - inode=%lu, "
4037 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4038 brelse(bh);
4039 return -EIO;
4040 }
4041 }
4042has_buffer:
4043 iloc->bh = bh;
4044 return 0;
4045}
4046
617ba13b 4047int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4048{
4049 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4050 return __ext4_get_inode_loc(inode, iloc,
4051 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4052}
4053
617ba13b 4054void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4055{
617ba13b 4056 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4057
4058 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4059 if (flags & EXT4_SYNC_FL)
ac27a0ec 4060 inode->i_flags |= S_SYNC;
617ba13b 4061 if (flags & EXT4_APPEND_FL)
ac27a0ec 4062 inode->i_flags |= S_APPEND;
617ba13b 4063 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4064 inode->i_flags |= S_IMMUTABLE;
617ba13b 4065 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4066 inode->i_flags |= S_NOATIME;
617ba13b 4067 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4068 inode->i_flags |= S_DIRSYNC;
4069}
4070
ff9ddf7e
JK
4071/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4072void ext4_get_inode_flags(struct ext4_inode_info *ei)
4073{
4074 unsigned int flags = ei->vfs_inode.i_flags;
4075
4076 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4077 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4078 if (flags & S_SYNC)
4079 ei->i_flags |= EXT4_SYNC_FL;
4080 if (flags & S_APPEND)
4081 ei->i_flags |= EXT4_APPEND_FL;
4082 if (flags & S_IMMUTABLE)
4083 ei->i_flags |= EXT4_IMMUTABLE_FL;
4084 if (flags & S_NOATIME)
4085 ei->i_flags |= EXT4_NOATIME_FL;
4086 if (flags & S_DIRSYNC)
4087 ei->i_flags |= EXT4_DIRSYNC_FL;
4088}
0fc1b451
AK
4089static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4090 struct ext4_inode_info *ei)
4091{
4092 blkcnt_t i_blocks ;
8180a562
AK
4093 struct inode *inode = &(ei->vfs_inode);
4094 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4095
4096 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4097 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4098 /* we are using combined 48 bit field */
4099 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4100 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4101 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4102 /* i_blocks represent file system block size */
4103 return i_blocks << (inode->i_blkbits - 9);
4104 } else {
4105 return i_blocks;
4106 }
0fc1b451
AK
4107 } else {
4108 return le32_to_cpu(raw_inode->i_blocks_lo);
4109 }
4110}
ff9ddf7e 4111
1d1fe1ee 4112struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4113{
617ba13b
MC
4114 struct ext4_iloc iloc;
4115 struct ext4_inode *raw_inode;
1d1fe1ee 4116 struct ext4_inode_info *ei;
ac27a0ec 4117 struct buffer_head *bh;
1d1fe1ee
DH
4118 struct inode *inode;
4119 long ret;
ac27a0ec
DK
4120 int block;
4121
1d1fe1ee
DH
4122 inode = iget_locked(sb, ino);
4123 if (!inode)
4124 return ERR_PTR(-ENOMEM);
4125 if (!(inode->i_state & I_NEW))
4126 return inode;
4127
4128 ei = EXT4_I(inode);
03010a33 4129#ifdef CONFIG_EXT4_FS_POSIX_ACL
617ba13b
MC
4130 ei->i_acl = EXT4_ACL_NOT_CACHED;
4131 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec 4132#endif
ac27a0ec 4133
1d1fe1ee
DH
4134 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4135 if (ret < 0)
ac27a0ec
DK
4136 goto bad_inode;
4137 bh = iloc.bh;
617ba13b 4138 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4139 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4140 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4141 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4142 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4143 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4144 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4145 }
4146 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4147
4148 ei->i_state = 0;
4149 ei->i_dir_start_lookup = 0;
4150 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4151 /* We now have enough fields to check if the inode was active or not.
4152 * This is needed because nfsd might try to access dead inodes
4153 * the test is that same one that e2fsck uses
4154 * NeilBrown 1999oct15
4155 */
4156 if (inode->i_nlink == 0) {
4157 if (inode->i_mode == 0 ||
617ba13b 4158 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4159 /* this inode is deleted */
af5bc92d 4160 brelse(bh);
1d1fe1ee 4161 ret = -ESTALE;
ac27a0ec
DK
4162 goto bad_inode;
4163 }
4164 /* The only unlinked inodes we let through here have
4165 * valid i_mode and are being read by the orphan
4166 * recovery code: that's fine, we're about to complete
4167 * the process of deleting those. */
4168 }
ac27a0ec 4169 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4170 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4171 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 4172 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 4173 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
4174 ei->i_file_acl |=
4175 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 4176 }
a48380f7 4177 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4178 ei->i_disksize = inode->i_size;
4179 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4180 ei->i_block_group = iloc.block_group;
4181 /*
4182 * NOTE! The in-memory inode i_data array is in little-endian order
4183 * even on big-endian machines: we do NOT byteswap the block numbers!
4184 */
617ba13b 4185 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4186 ei->i_data[block] = raw_inode->i_block[block];
4187 INIT_LIST_HEAD(&ei->i_orphan);
4188
0040d987 4189 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4190 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4191 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4192 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4193 brelse(bh);
1d1fe1ee 4194 ret = -EIO;
ac27a0ec 4195 goto bad_inode;
e5d2861f 4196 }
ac27a0ec
DK
4197 if (ei->i_extra_isize == 0) {
4198 /* The extra space is currently unused. Use it. */
617ba13b
MC
4199 ei->i_extra_isize = sizeof(struct ext4_inode) -
4200 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4201 } else {
4202 __le32 *magic = (void *)raw_inode +
617ba13b 4203 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4204 ei->i_extra_isize;
617ba13b
MC
4205 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4206 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4207 }
4208 } else
4209 ei->i_extra_isize = 0;
4210
ef7f3835
KS
4211 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4212 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4213 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4214 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4215
25ec56b5
JNC
4216 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4217 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4218 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4219 inode->i_version |=
4220 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4221 }
4222
ac27a0ec 4223 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4224 inode->i_op = &ext4_file_inode_operations;
4225 inode->i_fop = &ext4_file_operations;
4226 ext4_set_aops(inode);
ac27a0ec 4227 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4228 inode->i_op = &ext4_dir_inode_operations;
4229 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4230 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4231 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4232 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4233 nd_terminate_link(ei->i_data, inode->i_size,
4234 sizeof(ei->i_data) - 1);
4235 } else {
617ba13b
MC
4236 inode->i_op = &ext4_symlink_inode_operations;
4237 ext4_set_aops(inode);
ac27a0ec
DK
4238 }
4239 } else {
617ba13b 4240 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4241 if (raw_inode->i_block[0])
4242 init_special_inode(inode, inode->i_mode,
4243 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4244 else
4245 init_special_inode(inode, inode->i_mode,
4246 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4247 }
af5bc92d 4248 brelse(iloc.bh);
617ba13b 4249 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4250 unlock_new_inode(inode);
4251 return inode;
ac27a0ec
DK
4252
4253bad_inode:
1d1fe1ee
DH
4254 iget_failed(inode);
4255 return ERR_PTR(ret);
ac27a0ec
DK
4256}
4257
0fc1b451
AK
4258static int ext4_inode_blocks_set(handle_t *handle,
4259 struct ext4_inode *raw_inode,
4260 struct ext4_inode_info *ei)
4261{
4262 struct inode *inode = &(ei->vfs_inode);
4263 u64 i_blocks = inode->i_blocks;
4264 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4265
4266 if (i_blocks <= ~0U) {
4267 /*
4268 * i_blocks can be represnted in a 32 bit variable
4269 * as multiple of 512 bytes
4270 */
8180a562 4271 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4272 raw_inode->i_blocks_high = 0;
8180a562 4273 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4274 return 0;
4275 }
4276 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4277 return -EFBIG;
4278
4279 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4280 /*
4281 * i_blocks can be represented in a 48 bit variable
4282 * as multiple of 512 bytes
4283 */
8180a562 4284 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4285 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4286 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4287 } else {
8180a562
AK
4288 ei->i_flags |= EXT4_HUGE_FILE_FL;
4289 /* i_block is stored in file system block size */
4290 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4291 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4292 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4293 }
f287a1a5 4294 return 0;
0fc1b451
AK
4295}
4296
ac27a0ec
DK
4297/*
4298 * Post the struct inode info into an on-disk inode location in the
4299 * buffer-cache. This gobbles the caller's reference to the
4300 * buffer_head in the inode location struct.
4301 *
4302 * The caller must have write access to iloc->bh.
4303 */
617ba13b 4304static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4305 struct inode *inode,
617ba13b 4306 struct ext4_iloc *iloc)
ac27a0ec 4307{
617ba13b
MC
4308 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4309 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4310 struct buffer_head *bh = iloc->bh;
4311 int err = 0, rc, block;
4312
4313 /* For fields not not tracking in the in-memory inode,
4314 * initialise them to zero for new inodes. */
617ba13b
MC
4315 if (ei->i_state & EXT4_STATE_NEW)
4316 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4317
ff9ddf7e 4318 ext4_get_inode_flags(ei);
ac27a0ec 4319 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4320 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4321 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4322 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4323/*
4324 * Fix up interoperability with old kernels. Otherwise, old inodes get
4325 * re-used with the upper 16 bits of the uid/gid intact
4326 */
af5bc92d 4327 if (!ei->i_dtime) {
ac27a0ec
DK
4328 raw_inode->i_uid_high =
4329 cpu_to_le16(high_16_bits(inode->i_uid));
4330 raw_inode->i_gid_high =
4331 cpu_to_le16(high_16_bits(inode->i_gid));
4332 } else {
4333 raw_inode->i_uid_high = 0;
4334 raw_inode->i_gid_high = 0;
4335 }
4336 } else {
4337 raw_inode->i_uid_low =
4338 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4339 raw_inode->i_gid_low =
4340 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4341 raw_inode->i_uid_high = 0;
4342 raw_inode->i_gid_high = 0;
4343 }
4344 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4345
4346 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4347 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4348 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4349 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4350
0fc1b451
AK
4351 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4352 goto out_brelse;
ac27a0ec 4353 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4354 /* clear the migrate flag in the raw_inode */
4355 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4356 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4357 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4358 raw_inode->i_file_acl_high =
4359 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4360 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4361 ext4_isize_set(raw_inode, ei->i_disksize);
4362 if (ei->i_disksize > 0x7fffffffULL) {
4363 struct super_block *sb = inode->i_sb;
4364 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4365 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4366 EXT4_SB(sb)->s_es->s_rev_level ==
4367 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4368 /* If this is the first large file
4369 * created, add a flag to the superblock.
4370 */
4371 err = ext4_journal_get_write_access(handle,
4372 EXT4_SB(sb)->s_sbh);
4373 if (err)
4374 goto out_brelse;
4375 ext4_update_dynamic_rev(sb);
4376 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4377 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4378 sb->s_dirt = 1;
0390131b
FM
4379 ext4_handle_sync(handle);
4380 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4381 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4382 }
4383 }
4384 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4385 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4386 if (old_valid_dev(inode->i_rdev)) {
4387 raw_inode->i_block[0] =
4388 cpu_to_le32(old_encode_dev(inode->i_rdev));
4389 raw_inode->i_block[1] = 0;
4390 } else {
4391 raw_inode->i_block[0] = 0;
4392 raw_inode->i_block[1] =
4393 cpu_to_le32(new_encode_dev(inode->i_rdev));
4394 raw_inode->i_block[2] = 0;
4395 }
617ba13b 4396 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4397 raw_inode->i_block[block] = ei->i_data[block];
4398
25ec56b5
JNC
4399 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4400 if (ei->i_extra_isize) {
4401 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4402 raw_inode->i_version_hi =
4403 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4404 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4405 }
4406
0390131b
FM
4407 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4408 rc = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
4409 if (!err)
4410 err = rc;
617ba13b 4411 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4412
4413out_brelse:
af5bc92d 4414 brelse(bh);
617ba13b 4415 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4416 return err;
4417}
4418
4419/*
617ba13b 4420 * ext4_write_inode()
ac27a0ec
DK
4421 *
4422 * We are called from a few places:
4423 *
4424 * - Within generic_file_write() for O_SYNC files.
4425 * Here, there will be no transaction running. We wait for any running
4426 * trasnaction to commit.
4427 *
4428 * - Within sys_sync(), kupdate and such.
4429 * We wait on commit, if tol to.
4430 *
4431 * - Within prune_icache() (PF_MEMALLOC == true)
4432 * Here we simply return. We can't afford to block kswapd on the
4433 * journal commit.
4434 *
4435 * In all cases it is actually safe for us to return without doing anything,
4436 * because the inode has been copied into a raw inode buffer in
617ba13b 4437 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4438 * knfsd.
4439 *
4440 * Note that we are absolutely dependent upon all inode dirtiers doing the
4441 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4442 * which we are interested.
4443 *
4444 * It would be a bug for them to not do this. The code:
4445 *
4446 * mark_inode_dirty(inode)
4447 * stuff();
4448 * inode->i_size = expr;
4449 *
4450 * is in error because a kswapd-driven write_inode() could occur while
4451 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4452 * will no longer be on the superblock's dirty inode list.
4453 */
617ba13b 4454int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4455{
4456 if (current->flags & PF_MEMALLOC)
4457 return 0;
4458
617ba13b 4459 if (ext4_journal_current_handle()) {
b38bd33a 4460 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4461 dump_stack();
4462 return -EIO;
4463 }
4464
4465 if (!wait)
4466 return 0;
4467
617ba13b 4468 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4469}
4470
0390131b
FM
4471int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4472{
4473 int err = 0;
4474
4475 mark_buffer_dirty(bh);
4476 if (inode && inode_needs_sync(inode)) {
4477 sync_dirty_buffer(bh);
4478 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4479 ext4_error(inode->i_sb, __func__,
4480 "IO error syncing inode, "
4481 "inode=%lu, block=%llu",
4482 inode->i_ino,
4483 (unsigned long long)bh->b_blocknr);
4484 err = -EIO;
4485 }
4486 }
4487 return err;
4488}
4489
ac27a0ec 4490/*
617ba13b 4491 * ext4_setattr()
ac27a0ec
DK
4492 *
4493 * Called from notify_change.
4494 *
4495 * We want to trap VFS attempts to truncate the file as soon as
4496 * possible. In particular, we want to make sure that when the VFS
4497 * shrinks i_size, we put the inode on the orphan list and modify
4498 * i_disksize immediately, so that during the subsequent flushing of
4499 * dirty pages and freeing of disk blocks, we can guarantee that any
4500 * commit will leave the blocks being flushed in an unused state on
4501 * disk. (On recovery, the inode will get truncated and the blocks will
4502 * be freed, so we have a strong guarantee that no future commit will
4503 * leave these blocks visible to the user.)
4504 *
678aaf48
JK
4505 * Another thing we have to assure is that if we are in ordered mode
4506 * and inode is still attached to the committing transaction, we must
4507 * we start writeout of all the dirty pages which are being truncated.
4508 * This way we are sure that all the data written in the previous
4509 * transaction are already on disk (truncate waits for pages under
4510 * writeback).
4511 *
4512 * Called with inode->i_mutex down.
ac27a0ec 4513 */
617ba13b 4514int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4515{
4516 struct inode *inode = dentry->d_inode;
4517 int error, rc = 0;
4518 const unsigned int ia_valid = attr->ia_valid;
4519
4520 error = inode_change_ok(inode, attr);
4521 if (error)
4522 return error;
4523
4524 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4525 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4526 handle_t *handle;
4527
4528 /* (user+group)*(old+new) structure, inode write (sb,
4529 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4530 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4531 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4532 if (IS_ERR(handle)) {
4533 error = PTR_ERR(handle);
4534 goto err_out;
4535 }
4536 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4537 if (error) {
617ba13b 4538 ext4_journal_stop(handle);
ac27a0ec
DK
4539 return error;
4540 }
4541 /* Update corresponding info in inode so that everything is in
4542 * one transaction */
4543 if (attr->ia_valid & ATTR_UID)
4544 inode->i_uid = attr->ia_uid;
4545 if (attr->ia_valid & ATTR_GID)
4546 inode->i_gid = attr->ia_gid;
617ba13b
MC
4547 error = ext4_mark_inode_dirty(handle, inode);
4548 ext4_journal_stop(handle);
ac27a0ec
DK
4549 }
4550
e2b46574
ES
4551 if (attr->ia_valid & ATTR_SIZE) {
4552 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4553 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4554
4555 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4556 error = -EFBIG;
4557 goto err_out;
4558 }
4559 }
4560 }
4561
ac27a0ec
DK
4562 if (S_ISREG(inode->i_mode) &&
4563 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4564 handle_t *handle;
4565
617ba13b 4566 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4567 if (IS_ERR(handle)) {
4568 error = PTR_ERR(handle);
4569 goto err_out;
4570 }
4571
617ba13b
MC
4572 error = ext4_orphan_add(handle, inode);
4573 EXT4_I(inode)->i_disksize = attr->ia_size;
4574 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4575 if (!error)
4576 error = rc;
617ba13b 4577 ext4_journal_stop(handle);
678aaf48
JK
4578
4579 if (ext4_should_order_data(inode)) {
4580 error = ext4_begin_ordered_truncate(inode,
4581 attr->ia_size);
4582 if (error) {
4583 /* Do as much error cleanup as possible */
4584 handle = ext4_journal_start(inode, 3);
4585 if (IS_ERR(handle)) {
4586 ext4_orphan_del(NULL, inode);
4587 goto err_out;
4588 }
4589 ext4_orphan_del(handle, inode);
4590 ext4_journal_stop(handle);
4591 goto err_out;
4592 }
4593 }
ac27a0ec
DK
4594 }
4595
4596 rc = inode_setattr(inode, attr);
4597
617ba13b 4598 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4599 * transaction handle at all, we need to clean up the in-core
4600 * orphan list manually. */
4601 if (inode->i_nlink)
617ba13b 4602 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4603
4604 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4605 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4606
4607err_out:
617ba13b 4608 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4609 if (!error)
4610 error = rc;
4611 return error;
4612}
4613
3e3398a0
MC
4614int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4615 struct kstat *stat)
4616{
4617 struct inode *inode;
4618 unsigned long delalloc_blocks;
4619
4620 inode = dentry->d_inode;
4621 generic_fillattr(inode, stat);
4622
4623 /*
4624 * We can't update i_blocks if the block allocation is delayed
4625 * otherwise in the case of system crash before the real block
4626 * allocation is done, we will have i_blocks inconsistent with
4627 * on-disk file blocks.
4628 * We always keep i_blocks updated together with real
4629 * allocation. But to not confuse with user, stat
4630 * will return the blocks that include the delayed allocation
4631 * blocks for this file.
4632 */
4633 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4634 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4635 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4636
4637 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4638 return 0;
4639}
ac27a0ec 4640
a02908f1
MC
4641static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4642 int chunk)
4643{
4644 int indirects;
4645
4646 /* if nrblocks are contiguous */
4647 if (chunk) {
4648 /*
4649 * With N contiguous data blocks, it need at most
4650 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4651 * 2 dindirect blocks
4652 * 1 tindirect block
4653 */
4654 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4655 return indirects + 3;
4656 }
4657 /*
4658 * if nrblocks are not contiguous, worse case, each block touch
4659 * a indirect block, and each indirect block touch a double indirect
4660 * block, plus a triple indirect block
4661 */
4662 indirects = nrblocks * 2 + 1;
4663 return indirects;
4664}
4665
4666static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4667{
4668 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
4669 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4670 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4671}
ac51d837 4672
ac27a0ec 4673/*
a02908f1
MC
4674 * Account for index blocks, block groups bitmaps and block group
4675 * descriptor blocks if modify datablocks and index blocks
4676 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4677 *
a02908f1
MC
4678 * If datablocks are discontiguous, they are possible to spread over
4679 * different block groups too. If they are contiugous, with flexbg,
4680 * they could still across block group boundary.
ac27a0ec 4681 *
a02908f1
MC
4682 * Also account for superblock, inode, quota and xattr blocks
4683 */
4684int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4685{
4686 int groups, gdpblocks;
4687 int idxblocks;
4688 int ret = 0;
4689
4690 /*
4691 * How many index blocks need to touch to modify nrblocks?
4692 * The "Chunk" flag indicating whether the nrblocks is
4693 * physically contiguous on disk
4694 *
4695 * For Direct IO and fallocate, they calls get_block to allocate
4696 * one single extent at a time, so they could set the "Chunk" flag
4697 */
4698 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4699
4700 ret = idxblocks;
4701
4702 /*
4703 * Now let's see how many group bitmaps and group descriptors need
4704 * to account
4705 */
4706 groups = idxblocks;
4707 if (chunk)
4708 groups += 1;
4709 else
4710 groups += nrblocks;
4711
4712 gdpblocks = groups;
4713 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4714 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4715 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4716 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4717
4718 /* bitmaps and block group descriptor blocks */
4719 ret += groups + gdpblocks;
4720
4721 /* Blocks for super block, inode, quota and xattr blocks */
4722 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4723
4724 return ret;
4725}
4726
4727/*
4728 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4729 * the modification of a single pages into a single transaction,
4730 * which may include multiple chunks of block allocations.
ac27a0ec 4731 *
525f4ed8 4732 * This could be called via ext4_write_begin()
ac27a0ec 4733 *
525f4ed8 4734 * We need to consider the worse case, when
a02908f1 4735 * one new block per extent.
ac27a0ec 4736 */
a86c6181 4737int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4738{
617ba13b 4739 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4740 int ret;
4741
a02908f1 4742 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4743
a02908f1 4744 /* Account for data blocks for journalled mode */
617ba13b 4745 if (ext4_should_journal_data(inode))
a02908f1 4746 ret += bpp;
ac27a0ec
DK
4747 return ret;
4748}
f3bd1f3f
MC
4749
4750/*
4751 * Calculate the journal credits for a chunk of data modification.
4752 *
4753 * This is called from DIO, fallocate or whoever calling
4754 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4755 *
4756 * journal buffers for data blocks are not included here, as DIO
4757 * and fallocate do no need to journal data buffers.
4758 */
4759int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4760{
4761 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4762}
4763
ac27a0ec 4764/*
617ba13b 4765 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4766 * Give this, we know that the caller already has write access to iloc->bh.
4767 */
617ba13b
MC
4768int ext4_mark_iloc_dirty(handle_t *handle,
4769 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4770{
4771 int err = 0;
4772
25ec56b5
JNC
4773 if (test_opt(inode->i_sb, I_VERSION))
4774 inode_inc_iversion(inode);
4775
ac27a0ec
DK
4776 /* the do_update_inode consumes one bh->b_count */
4777 get_bh(iloc->bh);
4778
dab291af 4779 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 4780 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4781 put_bh(iloc->bh);
4782 return err;
4783}
4784
4785/*
4786 * On success, We end up with an outstanding reference count against
4787 * iloc->bh. This _must_ be cleaned up later.
4788 */
4789
4790int
617ba13b
MC
4791ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4792 struct ext4_iloc *iloc)
ac27a0ec 4793{
0390131b
FM
4794 int err;
4795
4796 err = ext4_get_inode_loc(inode, iloc);
4797 if (!err) {
4798 BUFFER_TRACE(iloc->bh, "get_write_access");
4799 err = ext4_journal_get_write_access(handle, iloc->bh);
4800 if (err) {
4801 brelse(iloc->bh);
4802 iloc->bh = NULL;
ac27a0ec
DK
4803 }
4804 }
617ba13b 4805 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4806 return err;
4807}
4808
6dd4ee7c
KS
4809/*
4810 * Expand an inode by new_extra_isize bytes.
4811 * Returns 0 on success or negative error number on failure.
4812 */
1d03ec98
AK
4813static int ext4_expand_extra_isize(struct inode *inode,
4814 unsigned int new_extra_isize,
4815 struct ext4_iloc iloc,
4816 handle_t *handle)
6dd4ee7c
KS
4817{
4818 struct ext4_inode *raw_inode;
4819 struct ext4_xattr_ibody_header *header;
4820 struct ext4_xattr_entry *entry;
4821
4822 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4823 return 0;
4824
4825 raw_inode = ext4_raw_inode(&iloc);
4826
4827 header = IHDR(inode, raw_inode);
4828 entry = IFIRST(header);
4829
4830 /* No extended attributes present */
4831 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4832 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4833 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4834 new_extra_isize);
4835 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4836 return 0;
4837 }
4838
4839 /* try to expand with EAs present */
4840 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4841 raw_inode, handle);
4842}
4843
ac27a0ec
DK
4844/*
4845 * What we do here is to mark the in-core inode as clean with respect to inode
4846 * dirtiness (it may still be data-dirty).
4847 * This means that the in-core inode may be reaped by prune_icache
4848 * without having to perform any I/O. This is a very good thing,
4849 * because *any* task may call prune_icache - even ones which
4850 * have a transaction open against a different journal.
4851 *
4852 * Is this cheating? Not really. Sure, we haven't written the
4853 * inode out, but prune_icache isn't a user-visible syncing function.
4854 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4855 * we start and wait on commits.
4856 *
4857 * Is this efficient/effective? Well, we're being nice to the system
4858 * by cleaning up our inodes proactively so they can be reaped
4859 * without I/O. But we are potentially leaving up to five seconds'
4860 * worth of inodes floating about which prune_icache wants us to
4861 * write out. One way to fix that would be to get prune_icache()
4862 * to do a write_super() to free up some memory. It has the desired
4863 * effect.
4864 */
617ba13b 4865int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4866{
617ba13b 4867 struct ext4_iloc iloc;
6dd4ee7c
KS
4868 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4869 static unsigned int mnt_count;
4870 int err, ret;
ac27a0ec
DK
4871
4872 might_sleep();
617ba13b 4873 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4874 if (ext4_handle_valid(handle) &&
4875 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
4876 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4877 /*
4878 * We need extra buffer credits since we may write into EA block
4879 * with this same handle. If journal_extend fails, then it will
4880 * only result in a minor loss of functionality for that inode.
4881 * If this is felt to be critical, then e2fsck should be run to
4882 * force a large enough s_min_extra_isize.
4883 */
4884 if ((jbd2_journal_extend(handle,
4885 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4886 ret = ext4_expand_extra_isize(inode,
4887 sbi->s_want_extra_isize,
4888 iloc, handle);
4889 if (ret) {
4890 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
4891 if (mnt_count !=
4892 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 4893 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
4894 "Unable to expand inode %lu. Delete"
4895 " some EAs or run e2fsck.",
4896 inode->i_ino);
c1bddad9
AK
4897 mnt_count =
4898 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4899 }
4900 }
4901 }
4902 }
ac27a0ec 4903 if (!err)
617ba13b 4904 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4905 return err;
4906}
4907
4908/*
617ba13b 4909 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4910 *
4911 * We're really interested in the case where a file is being extended.
4912 * i_size has been changed by generic_commit_write() and we thus need
4913 * to include the updated inode in the current transaction.
4914 *
4915 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4916 * are allocated to the file.
4917 *
4918 * If the inode is marked synchronous, we don't honour that here - doing
4919 * so would cause a commit on atime updates, which we don't bother doing.
4920 * We handle synchronous inodes at the highest possible level.
4921 */
617ba13b 4922void ext4_dirty_inode(struct inode *inode)
ac27a0ec 4923{
617ba13b 4924 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
4925 handle_t *handle;
4926
0390131b
FM
4927 if (!ext4_handle_valid(current_handle)) {
4928 ext4_mark_inode_dirty(current_handle, inode);
4929 return;
4930 }
4931
617ba13b 4932 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4933 if (IS_ERR(handle))
4934 goto out;
4935 if (current_handle &&
4936 current_handle->h_transaction != handle->h_transaction) {
4937 /* This task has a transaction open against a different fs */
4938 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 4939 __func__);
ac27a0ec
DK
4940 } else {
4941 jbd_debug(5, "marking dirty. outer handle=%p\n",
4942 current_handle);
617ba13b 4943 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4944 }
617ba13b 4945 ext4_journal_stop(handle);
ac27a0ec
DK
4946out:
4947 return;
4948}
4949
4950#if 0
4951/*
4952 * Bind an inode's backing buffer_head into this transaction, to prevent
4953 * it from being flushed to disk early. Unlike
617ba13b 4954 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4955 * returns no iloc structure, so the caller needs to repeat the iloc
4956 * lookup to mark the inode dirty later.
4957 */
617ba13b 4958static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4959{
617ba13b 4960 struct ext4_iloc iloc;
ac27a0ec
DK
4961
4962 int err = 0;
4963 if (handle) {
617ba13b 4964 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4965 if (!err) {
4966 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4967 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4968 if (!err)
0390131b
FM
4969 err = ext4_handle_dirty_metadata(handle,
4970 inode,
4971 iloc.bh);
ac27a0ec
DK
4972 brelse(iloc.bh);
4973 }
4974 }
617ba13b 4975 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4976 return err;
4977}
4978#endif
4979
617ba13b 4980int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4981{
4982 journal_t *journal;
4983 handle_t *handle;
4984 int err;
4985
4986 /*
4987 * We have to be very careful here: changing a data block's
4988 * journaling status dynamically is dangerous. If we write a
4989 * data block to the journal, change the status and then delete
4990 * that block, we risk forgetting to revoke the old log record
4991 * from the journal and so a subsequent replay can corrupt data.
4992 * So, first we make sure that the journal is empty and that
4993 * nobody is changing anything.
4994 */
4995
617ba13b 4996 journal = EXT4_JOURNAL(inode);
0390131b
FM
4997 if (!journal)
4998 return 0;
d699594d 4999 if (is_journal_aborted(journal))
ac27a0ec
DK
5000 return -EROFS;
5001
dab291af
MC
5002 jbd2_journal_lock_updates(journal);
5003 jbd2_journal_flush(journal);
ac27a0ec
DK
5004
5005 /*
5006 * OK, there are no updates running now, and all cached data is
5007 * synced to disk. We are now in a completely consistent state
5008 * which doesn't have anything in the journal, and we know that
5009 * no filesystem updates are running, so it is safe to modify
5010 * the inode's in-core data-journaling state flag now.
5011 */
5012
5013 if (val)
617ba13b 5014 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5015 else
617ba13b
MC
5016 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5017 ext4_set_aops(inode);
ac27a0ec 5018
dab291af 5019 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5020
5021 /* Finally we can mark the inode as dirty. */
5022
617ba13b 5023 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5024 if (IS_ERR(handle))
5025 return PTR_ERR(handle);
5026
617ba13b 5027 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5028 ext4_handle_sync(handle);
617ba13b
MC
5029 ext4_journal_stop(handle);
5030 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5031
5032 return err;
5033}
2e9ee850
AK
5034
5035static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5036{
5037 return !buffer_mapped(bh);
5038}
5039
5040int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
5041{
5042 loff_t size;
5043 unsigned long len;
5044 int ret = -EINVAL;
79f0be8d 5045 void *fsdata;
2e9ee850
AK
5046 struct file *file = vma->vm_file;
5047 struct inode *inode = file->f_path.dentry->d_inode;
5048 struct address_space *mapping = inode->i_mapping;
5049
5050 /*
5051 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5052 * get i_mutex because we are already holding mmap_sem.
5053 */
5054 down_read(&inode->i_alloc_sem);
5055 size = i_size_read(inode);
5056 if (page->mapping != mapping || size <= page_offset(page)
5057 || !PageUptodate(page)) {
5058 /* page got truncated from under us? */
5059 goto out_unlock;
5060 }
5061 ret = 0;
5062 if (PageMappedToDisk(page))
5063 goto out_unlock;
5064
5065 if (page->index == size >> PAGE_CACHE_SHIFT)
5066 len = size & ~PAGE_CACHE_MASK;
5067 else
5068 len = PAGE_CACHE_SIZE;
5069
5070 if (page_has_buffers(page)) {
5071 /* return if we have all the buffers mapped */
5072 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5073 ext4_bh_unmapped))
5074 goto out_unlock;
5075 }
5076 /*
5077 * OK, we need to fill the hole... Do write_begin write_end
5078 * to do block allocation/reservation.We are not holding
5079 * inode.i__mutex here. That allow * parallel write_begin,
5080 * write_end call. lock_page prevent this from happening
5081 * on the same page though
5082 */
5083 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5084 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5085 if (ret < 0)
5086 goto out_unlock;
5087 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5088 len, len, page, fsdata);
2e9ee850
AK
5089 if (ret < 0)
5090 goto out_unlock;
5091 ret = 0;
5092out_unlock:
5093 up_read(&inode->i_alloc_sem);
5094 return ret;
5095}