]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/bio.c
block: limit vec count in bio_kmalloc() and bio_alloc_map_data()
[net-next-2.6.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/mempool.h>
27#include <linux/workqueue.h>
f1970baf 28#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 29
55782138 30#include <trace/events/block.h>
0bfc2455 31
392ddc32
JA
32/*
33 * Test patch to inline a certain number of bi_io_vec's inside the bio
34 * itself, to shrink a bio data allocation from two mempool calls to one
35 */
36#define BIO_INLINE_VECS 4
37
6feef531 38static mempool_t *bio_split_pool __read_mostly;
1da177e4 39
1da177e4
LT
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
1da177e4 45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
bb799ca0 46struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
1da177e4
LT
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
51d654e1 55struct bio_set *fs_bio_set;
1da177e4 56
bb799ca0
JA
57/*
58 * Our slab pool management
59 */
60struct bio_slab {
61 struct kmem_cache *slab;
62 unsigned int slab_ref;
63 unsigned int slab_size;
64 char name[8];
65};
66static DEFINE_MUTEX(bio_slab_lock);
67static struct bio_slab *bio_slabs;
68static unsigned int bio_slab_nr, bio_slab_max;
69
70static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
71{
72 unsigned int sz = sizeof(struct bio) + extra_size;
73 struct kmem_cache *slab = NULL;
74 struct bio_slab *bslab;
75 unsigned int i, entry = -1;
76
77 mutex_lock(&bio_slab_lock);
78
79 i = 0;
80 while (i < bio_slab_nr) {
f06f135d 81 bslab = &bio_slabs[i];
bb799ca0
JA
82
83 if (!bslab->slab && entry == -1)
84 entry = i;
85 else if (bslab->slab_size == sz) {
86 slab = bslab->slab;
87 bslab->slab_ref++;
88 break;
89 }
90 i++;
91 }
92
93 if (slab)
94 goto out_unlock;
95
96 if (bio_slab_nr == bio_slab_max && entry == -1) {
97 bio_slab_max <<= 1;
98 bio_slabs = krealloc(bio_slabs,
99 bio_slab_max * sizeof(struct bio_slab),
100 GFP_KERNEL);
101 if (!bio_slabs)
102 goto out_unlock;
103 }
104 if (entry == -1)
105 entry = bio_slab_nr++;
106
107 bslab = &bio_slabs[entry];
108
109 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
110 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
111 if (!slab)
112 goto out_unlock;
113
114 printk("bio: create slab <%s> at %d\n", bslab->name, entry);
115 bslab->slab = slab;
116 bslab->slab_ref = 1;
117 bslab->slab_size = sz;
118out_unlock:
119 mutex_unlock(&bio_slab_lock);
120 return slab;
121}
122
123static void bio_put_slab(struct bio_set *bs)
124{
125 struct bio_slab *bslab = NULL;
126 unsigned int i;
127
128 mutex_lock(&bio_slab_lock);
129
130 for (i = 0; i < bio_slab_nr; i++) {
131 if (bs->bio_slab == bio_slabs[i].slab) {
132 bslab = &bio_slabs[i];
133 break;
134 }
135 }
136
137 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
138 goto out;
139
140 WARN_ON(!bslab->slab_ref);
141
142 if (--bslab->slab_ref)
143 goto out;
144
145 kmem_cache_destroy(bslab->slab);
146 bslab->slab = NULL;
147
148out:
149 mutex_unlock(&bio_slab_lock);
150}
151
7ba1ba12
MP
152unsigned int bvec_nr_vecs(unsigned short idx)
153{
154 return bvec_slabs[idx].nr_vecs;
155}
156
bb799ca0
JA
157void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
158{
159 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
160
161 if (idx == BIOVEC_MAX_IDX)
162 mempool_free(bv, bs->bvec_pool);
163 else {
164 struct biovec_slab *bvs = bvec_slabs + idx;
165
166 kmem_cache_free(bvs->slab, bv);
167 }
168}
169
7ff9345f
JA
170struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
171 struct bio_set *bs)
1da177e4
LT
172{
173 struct bio_vec *bvl;
1da177e4 174
7ff9345f
JA
175 /*
176 * see comment near bvec_array define!
177 */
178 switch (nr) {
179 case 1:
180 *idx = 0;
181 break;
182 case 2 ... 4:
183 *idx = 1;
184 break;
185 case 5 ... 16:
186 *idx = 2;
187 break;
188 case 17 ... 64:
189 *idx = 3;
190 break;
191 case 65 ... 128:
192 *idx = 4;
193 break;
194 case 129 ... BIO_MAX_PAGES:
195 *idx = 5;
196 break;
197 default:
198 return NULL;
199 }
200
201 /*
202 * idx now points to the pool we want to allocate from. only the
203 * 1-vec entry pool is mempool backed.
204 */
205 if (*idx == BIOVEC_MAX_IDX) {
206fallback:
207 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
208 } else {
209 struct biovec_slab *bvs = bvec_slabs + *idx;
210 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
211
0a0d96b0 212 /*
7ff9345f
JA
213 * Make this allocation restricted and don't dump info on
214 * allocation failures, since we'll fallback to the mempool
215 * in case of failure.
0a0d96b0 216 */
7ff9345f 217 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 218
0a0d96b0 219 /*
7ff9345f
JA
220 * Try a slab allocation. If this fails and __GFP_WAIT
221 * is set, retry with the 1-entry mempool
0a0d96b0 222 */
7ff9345f
JA
223 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
225 *idx = BIOVEC_MAX_IDX;
226 goto fallback;
227 }
228 }
229
1da177e4
LT
230 return bvl;
231}
232
7ff9345f 233void bio_free(struct bio *bio, struct bio_set *bs)
1da177e4 234{
bb799ca0 235 void *p;
1da177e4 236
392ddc32 237 if (bio_has_allocated_vec(bio))
bb799ca0 238 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
1da177e4 239
7ba1ba12 240 if (bio_integrity(bio))
7878cba9 241 bio_integrity_free(bio, bs);
7ba1ba12 242
bb799ca0
JA
243 /*
244 * If we have front padding, adjust the bio pointer before freeing
245 */
246 p = bio;
247 if (bs->front_pad)
248 p -= bs->front_pad;
249
250 mempool_free(p, bs->bio_pool);
3676347a 251}
a112a71d 252EXPORT_SYMBOL(bio_free);
3676347a 253
858119e1 254void bio_init(struct bio *bio)
1da177e4 255{
2b94de55 256 memset(bio, 0, sizeof(*bio));
1da177e4 257 bio->bi_flags = 1 << BIO_UPTODATE;
c7c22e4d 258 bio->bi_comp_cpu = -1;
1da177e4 259 atomic_set(&bio->bi_cnt, 1);
1da177e4 260}
a112a71d 261EXPORT_SYMBOL(bio_init);
1da177e4
LT
262
263/**
264 * bio_alloc_bioset - allocate a bio for I/O
265 * @gfp_mask: the GFP_ mask given to the slab allocator
266 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 267 * @bs: the bio_set to allocate from.
1da177e4
LT
268 *
269 * Description:
db18efac 270 * bio_alloc_bioset will try its own mempool to satisfy the allocation.
1da177e4 271 * If %__GFP_WAIT is set then we will block on the internal pool waiting
db18efac 272 * for a &struct bio to become free.
1da177e4 273 *
af901ca1 274 * Note that the caller must set ->bi_destructor on successful return
bb799ca0
JA
275 * of a bio, to do the appropriate freeing of the bio once the reference
276 * count drops to zero.
1da177e4 277 **/
dd0fc66f 278struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 279{
451a9ebf 280 unsigned long idx = BIO_POOL_NONE;
34053979 281 struct bio_vec *bvl = NULL;
451a9ebf
TH
282 struct bio *bio;
283 void *p;
284
285 p = mempool_alloc(bs->bio_pool, gfp_mask);
286 if (unlikely(!p))
287 return NULL;
288 bio = p + bs->front_pad;
1da177e4 289
34053979
IM
290 bio_init(bio);
291
292 if (unlikely(!nr_iovecs))
293 goto out_set;
294
295 if (nr_iovecs <= BIO_INLINE_VECS) {
296 bvl = bio->bi_inline_vecs;
297 nr_iovecs = BIO_INLINE_VECS;
298 } else {
299 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
300 if (unlikely(!bvl))
301 goto err_free;
302
303 nr_iovecs = bvec_nr_vecs(idx);
1da177e4 304 }
451a9ebf 305out_set:
34053979
IM
306 bio->bi_flags |= idx << BIO_POOL_OFFSET;
307 bio->bi_max_vecs = nr_iovecs;
34053979 308 bio->bi_io_vec = bvl;
1da177e4 309 return bio;
34053979
IM
310
311err_free:
451a9ebf 312 mempool_free(p, bs->bio_pool);
34053979 313 return NULL;
1da177e4 314}
a112a71d 315EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 316
451a9ebf
TH
317static void bio_fs_destructor(struct bio *bio)
318{
319 bio_free(bio, fs_bio_set);
320}
321
322/**
323 * bio_alloc - allocate a new bio, memory pool backed
324 * @gfp_mask: allocation mask to use
325 * @nr_iovecs: number of iovecs
326 *
5f04eeb8
AB
327 * bio_alloc will allocate a bio and associated bio_vec array that can hold
328 * at least @nr_iovecs entries. Allocations will be done from the
329 * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
330 *
331 * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
332 * a bio. This is due to the mempool guarantees. To make this work, callers
333 * must never allocate more than 1 bio at a time from this pool. Callers
334 * that need to allocate more than 1 bio must always submit the previously
335 * allocated bio for IO before attempting to allocate a new one. Failure to
336 * do so can cause livelocks under memory pressure.
451a9ebf
TH
337 *
338 * RETURNS:
339 * Pointer to new bio on success, NULL on failure.
340 */
341struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
342{
343 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
344
345 if (bio)
346 bio->bi_destructor = bio_fs_destructor;
347
348 return bio;
349}
a112a71d 350EXPORT_SYMBOL(bio_alloc);
451a9ebf
TH
351
352static void bio_kmalloc_destructor(struct bio *bio)
353{
354 if (bio_integrity(bio))
7878cba9 355 bio_integrity_free(bio, fs_bio_set);
451a9ebf
TH
356 kfree(bio);
357}
358
86c824b9 359/**
5f04eeb8 360 * bio_kmalloc - allocate a bio for I/O using kmalloc()
86c824b9
JA
361 * @gfp_mask: the GFP_ mask given to the slab allocator
362 * @nr_iovecs: number of iovecs to pre-allocate
363 *
364 * Description:
5f04eeb8
AB
365 * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
366 * %__GFP_WAIT, the allocation is guaranteed to succeed.
86c824b9
JA
367 *
368 **/
0a0d96b0
JA
369struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
370{
451a9ebf 371 struct bio *bio;
0a0d96b0 372
f3f63c1c
JA
373 if (nr_iovecs > UIO_MAXIOV)
374 return NULL;
375
451a9ebf
TH
376 bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
377 gfp_mask);
378 if (unlikely(!bio))
379 return NULL;
380
381 bio_init(bio);
382 bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
383 bio->bi_max_vecs = nr_iovecs;
384 bio->bi_io_vec = bio->bi_inline_vecs;
385 bio->bi_destructor = bio_kmalloc_destructor;
0a0d96b0
JA
386
387 return bio;
388}
a112a71d 389EXPORT_SYMBOL(bio_kmalloc);
0a0d96b0 390
1da177e4
LT
391void zero_fill_bio(struct bio *bio)
392{
393 unsigned long flags;
394 struct bio_vec *bv;
395 int i;
396
397 bio_for_each_segment(bv, bio, i) {
398 char *data = bvec_kmap_irq(bv, &flags);
399 memset(data, 0, bv->bv_len);
400 flush_dcache_page(bv->bv_page);
401 bvec_kunmap_irq(data, &flags);
402 }
403}
404EXPORT_SYMBOL(zero_fill_bio);
405
406/**
407 * bio_put - release a reference to a bio
408 * @bio: bio to release reference to
409 *
410 * Description:
411 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 412 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
413 **/
414void bio_put(struct bio *bio)
415{
416 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
417
418 /*
419 * last put frees it
420 */
421 if (atomic_dec_and_test(&bio->bi_cnt)) {
422 bio->bi_next = NULL;
423 bio->bi_destructor(bio);
424 }
425}
a112a71d 426EXPORT_SYMBOL(bio_put);
1da177e4 427
165125e1 428inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
429{
430 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
431 blk_recount_segments(q, bio);
432
433 return bio->bi_phys_segments;
434}
a112a71d 435EXPORT_SYMBOL(bio_phys_segments);
1da177e4 436
1da177e4
LT
437/**
438 * __bio_clone - clone a bio
439 * @bio: destination bio
440 * @bio_src: bio to clone
441 *
442 * Clone a &bio. Caller will own the returned bio, but not
443 * the actual data it points to. Reference count of returned
444 * bio will be one.
445 */
858119e1 446void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 447{
e525e153
AM
448 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
449 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 450
5d84070e
JA
451 /*
452 * most users will be overriding ->bi_bdev with a new target,
453 * so we don't set nor calculate new physical/hw segment counts here
454 */
1da177e4
LT
455 bio->bi_sector = bio_src->bi_sector;
456 bio->bi_bdev = bio_src->bi_bdev;
457 bio->bi_flags |= 1 << BIO_CLONED;
458 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
459 bio->bi_vcnt = bio_src->bi_vcnt;
460 bio->bi_size = bio_src->bi_size;
a5453be4 461 bio->bi_idx = bio_src->bi_idx;
1da177e4 462}
a112a71d 463EXPORT_SYMBOL(__bio_clone);
1da177e4
LT
464
465/**
466 * bio_clone - clone a bio
467 * @bio: bio to clone
468 * @gfp_mask: allocation priority
469 *
470 * Like __bio_clone, only also allocates the returned bio
471 */
dd0fc66f 472struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
473{
474 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
475
7ba1ba12
MP
476 if (!b)
477 return NULL;
478
479 b->bi_destructor = bio_fs_destructor;
480 __bio_clone(b, bio);
481
482 if (bio_integrity(bio)) {
483 int ret;
484
7878cba9 485 ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
7ba1ba12 486
059ea331
LZ
487 if (ret < 0) {
488 bio_put(b);
7ba1ba12 489 return NULL;
059ea331 490 }
3676347a 491 }
1da177e4
LT
492
493 return b;
494}
a112a71d 495EXPORT_SYMBOL(bio_clone);
1da177e4
LT
496
497/**
498 * bio_get_nr_vecs - return approx number of vecs
499 * @bdev: I/O target
500 *
501 * Return the approximate number of pages we can send to this target.
502 * There's no guarantee that you will be able to fit this number of pages
503 * into a bio, it does not account for dynamic restrictions that vary
504 * on offset.
505 */
506int bio_get_nr_vecs(struct block_device *bdev)
507{
165125e1 508 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
509 int nr_pages;
510
ae03bf63 511 nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
8a78362c
MP
512 if (nr_pages > queue_max_segments(q))
513 nr_pages = queue_max_segments(q);
1da177e4
LT
514
515 return nr_pages;
516}
a112a71d 517EXPORT_SYMBOL(bio_get_nr_vecs);
1da177e4 518
165125e1 519static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
520 *page, unsigned int len, unsigned int offset,
521 unsigned short max_sectors)
1da177e4
LT
522{
523 int retried_segments = 0;
524 struct bio_vec *bvec;
525
526 /*
527 * cloned bio must not modify vec list
528 */
529 if (unlikely(bio_flagged(bio, BIO_CLONED)))
530 return 0;
531
80cfd548 532 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
533 return 0;
534
80cfd548
JA
535 /*
536 * For filesystems with a blocksize smaller than the pagesize
537 * we will often be called with the same page as last time and
538 * a consecutive offset. Optimize this special case.
539 */
540 if (bio->bi_vcnt > 0) {
541 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
542
543 if (page == prev->bv_page &&
544 offset == prev->bv_offset + prev->bv_len) {
1d616585 545 unsigned int prev_bv_len = prev->bv_len;
80cfd548 546 prev->bv_len += len;
cc371e66
AK
547
548 if (q->merge_bvec_fn) {
549 struct bvec_merge_data bvm = {
1d616585
DM
550 /* prev_bvec is already charged in
551 bi_size, discharge it in order to
552 simulate merging updated prev_bvec
553 as new bvec. */
cc371e66
AK
554 .bi_bdev = bio->bi_bdev,
555 .bi_sector = bio->bi_sector,
1d616585 556 .bi_size = bio->bi_size - prev_bv_len,
cc371e66
AK
557 .bi_rw = bio->bi_rw,
558 };
559
8bf8c376 560 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
cc371e66
AK
561 prev->bv_len -= len;
562 return 0;
563 }
80cfd548
JA
564 }
565
566 goto done;
567 }
568 }
569
570 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
571 return 0;
572
573 /*
574 * we might lose a segment or two here, but rather that than
575 * make this too complex.
576 */
577
8a78362c 578 while (bio->bi_phys_segments >= queue_max_segments(q)) {
1da177e4
LT
579
580 if (retried_segments)
581 return 0;
582
583 retried_segments = 1;
584 blk_recount_segments(q, bio);
585 }
586
587 /*
588 * setup the new entry, we might clear it again later if we
589 * cannot add the page
590 */
591 bvec = &bio->bi_io_vec[bio->bi_vcnt];
592 bvec->bv_page = page;
593 bvec->bv_len = len;
594 bvec->bv_offset = offset;
595
596 /*
597 * if queue has other restrictions (eg varying max sector size
598 * depending on offset), it can specify a merge_bvec_fn in the
599 * queue to get further control
600 */
601 if (q->merge_bvec_fn) {
cc371e66
AK
602 struct bvec_merge_data bvm = {
603 .bi_bdev = bio->bi_bdev,
604 .bi_sector = bio->bi_sector,
605 .bi_size = bio->bi_size,
606 .bi_rw = bio->bi_rw,
607 };
608
1da177e4
LT
609 /*
610 * merge_bvec_fn() returns number of bytes it can accept
611 * at this offset
612 */
8bf8c376 613 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
1da177e4
LT
614 bvec->bv_page = NULL;
615 bvec->bv_len = 0;
616 bvec->bv_offset = 0;
617 return 0;
618 }
619 }
620
621 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 622 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
623 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
624
625 bio->bi_vcnt++;
626 bio->bi_phys_segments++;
80cfd548 627 done:
1da177e4
LT
628 bio->bi_size += len;
629 return len;
630}
631
6e68af66
MC
632/**
633 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 634 * @q: the target queue
6e68af66
MC
635 * @bio: destination bio
636 * @page: page to add
637 * @len: vec entry length
638 * @offset: vec entry offset
639 *
640 * Attempt to add a page to the bio_vec maplist. This can fail for a
641 * number of reasons, such as the bio being full or target block
642 * device limitations. The target block device must allow bio's
643 * smaller than PAGE_SIZE, so it is always possible to add a single
644 * page to an empty bio. This should only be used by REQ_PC bios.
645 */
165125e1 646int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
647 unsigned int len, unsigned int offset)
648{
ae03bf63
MP
649 return __bio_add_page(q, bio, page, len, offset,
650 queue_max_hw_sectors(q));
6e68af66 651}
a112a71d 652EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 653
1da177e4
LT
654/**
655 * bio_add_page - attempt to add page to bio
656 * @bio: destination bio
657 * @page: page to add
658 * @len: vec entry length
659 * @offset: vec entry offset
660 *
661 * Attempt to add a page to the bio_vec maplist. This can fail for a
662 * number of reasons, such as the bio being full or target block
663 * device limitations. The target block device must allow bio's
664 * smaller than PAGE_SIZE, so it is always possible to add a single
665 * page to an empty bio.
666 */
667int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
668 unsigned int offset)
669{
defd94b7 670 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 671 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4 672}
a112a71d 673EXPORT_SYMBOL(bio_add_page);
1da177e4
LT
674
675struct bio_map_data {
676 struct bio_vec *iovecs;
c5dec1c3 677 struct sg_iovec *sgvecs;
152e283f
FT
678 int nr_sgvecs;
679 int is_our_pages;
1da177e4
LT
680};
681
c5dec1c3 682static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
683 struct sg_iovec *iov, int iov_count,
684 int is_our_pages)
1da177e4
LT
685{
686 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
687 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
688 bmd->nr_sgvecs = iov_count;
152e283f 689 bmd->is_our_pages = is_our_pages;
1da177e4
LT
690 bio->bi_private = bmd;
691}
692
693static void bio_free_map_data(struct bio_map_data *bmd)
694{
695 kfree(bmd->iovecs);
c5dec1c3 696 kfree(bmd->sgvecs);
1da177e4
LT
697 kfree(bmd);
698}
699
76029ff3
FT
700static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
701 gfp_t gfp_mask)
1da177e4 702{
f3f63c1c
JA
703 struct bio_map_data *bmd;
704
705 if (iov_count > UIO_MAXIOV)
706 return NULL;
1da177e4 707
f3f63c1c 708 bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
709 if (!bmd)
710 return NULL;
711
76029ff3 712 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
713 if (!bmd->iovecs) {
714 kfree(bmd);
715 return NULL;
716 }
717
76029ff3 718 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 719 if (bmd->sgvecs)
1da177e4
LT
720 return bmd;
721
c5dec1c3 722 kfree(bmd->iovecs);
1da177e4
LT
723 kfree(bmd);
724 return NULL;
725}
726
aefcc28a 727static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
ecb554a8
FT
728 struct sg_iovec *iov, int iov_count,
729 int to_user, int from_user, int do_free_page)
c5dec1c3
FT
730{
731 int ret = 0, i;
732 struct bio_vec *bvec;
733 int iov_idx = 0;
734 unsigned int iov_off = 0;
c5dec1c3
FT
735
736 __bio_for_each_segment(bvec, bio, i, 0) {
737 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 738 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
739
740 while (bv_len && iov_idx < iov_count) {
741 unsigned int bytes;
0e0c6212 742 char __user *iov_addr;
c5dec1c3
FT
743
744 bytes = min_t(unsigned int,
745 iov[iov_idx].iov_len - iov_off, bv_len);
746 iov_addr = iov[iov_idx].iov_base + iov_off;
747
748 if (!ret) {
ecb554a8 749 if (to_user)
c5dec1c3
FT
750 ret = copy_to_user(iov_addr, bv_addr,
751 bytes);
752
ecb554a8
FT
753 if (from_user)
754 ret = copy_from_user(bv_addr, iov_addr,
755 bytes);
756
c5dec1c3
FT
757 if (ret)
758 ret = -EFAULT;
759 }
760
761 bv_len -= bytes;
762 bv_addr += bytes;
763 iov_addr += bytes;
764 iov_off += bytes;
765
766 if (iov[iov_idx].iov_len == iov_off) {
767 iov_idx++;
768 iov_off = 0;
769 }
770 }
771
152e283f 772 if (do_free_page)
c5dec1c3
FT
773 __free_page(bvec->bv_page);
774 }
775
776 return ret;
777}
778
1da177e4
LT
779/**
780 * bio_uncopy_user - finish previously mapped bio
781 * @bio: bio being terminated
782 *
783 * Free pages allocated from bio_copy_user() and write back data
784 * to user space in case of a read.
785 */
786int bio_uncopy_user(struct bio *bio)
787{
788 struct bio_map_data *bmd = bio->bi_private;
81882766 789 int ret = 0;
1da177e4 790
81882766
FT
791 if (!bio_flagged(bio, BIO_NULL_MAPPED))
792 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
ecb554a8
FT
793 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
794 0, bmd->is_our_pages);
1da177e4
LT
795 bio_free_map_data(bmd);
796 bio_put(bio);
797 return ret;
798}
a112a71d 799EXPORT_SYMBOL(bio_uncopy_user);
1da177e4
LT
800
801/**
c5dec1c3 802 * bio_copy_user_iov - copy user data to bio
1da177e4 803 * @q: destination block queue
152e283f 804 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
805 * @iov: the iovec.
806 * @iov_count: number of elements in the iovec
1da177e4 807 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 808 * @gfp_mask: memory allocation flags
1da177e4
LT
809 *
810 * Prepares and returns a bio for indirect user io, bouncing data
811 * to/from kernel pages as necessary. Must be paired with
812 * call bio_uncopy_user() on io completion.
813 */
152e283f
FT
814struct bio *bio_copy_user_iov(struct request_queue *q,
815 struct rq_map_data *map_data,
816 struct sg_iovec *iov, int iov_count,
817 int write_to_vm, gfp_t gfp_mask)
1da177e4 818{
1da177e4
LT
819 struct bio_map_data *bmd;
820 struct bio_vec *bvec;
821 struct page *page;
822 struct bio *bio;
823 int i, ret;
c5dec1c3
FT
824 int nr_pages = 0;
825 unsigned int len = 0;
56c451f4 826 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 827
c5dec1c3
FT
828 for (i = 0; i < iov_count; i++) {
829 unsigned long uaddr;
830 unsigned long end;
831 unsigned long start;
832
833 uaddr = (unsigned long)iov[i].iov_base;
834 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
835 start = uaddr >> PAGE_SHIFT;
836
837 nr_pages += end - start;
838 len += iov[i].iov_len;
839 }
840
69838727
FT
841 if (offset)
842 nr_pages++;
843
a3bce90e 844 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
845 if (!bmd)
846 return ERR_PTR(-ENOMEM);
847
1da177e4 848 ret = -ENOMEM;
a9e9dc24 849 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
850 if (!bio)
851 goto out_bmd;
852
7b6d91da
CH
853 if (!write_to_vm)
854 bio->bi_rw |= REQ_WRITE;
1da177e4
LT
855
856 ret = 0;
56c451f4
FT
857
858 if (map_data) {
e623ddb4 859 nr_pages = 1 << map_data->page_order;
56c451f4
FT
860 i = map_data->offset / PAGE_SIZE;
861 }
1da177e4 862 while (len) {
e623ddb4 863 unsigned int bytes = PAGE_SIZE;
1da177e4 864
56c451f4
FT
865 bytes -= offset;
866
1da177e4
LT
867 if (bytes > len)
868 bytes = len;
869
152e283f 870 if (map_data) {
e623ddb4 871 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
872 ret = -ENOMEM;
873 break;
874 }
e623ddb4
FT
875
876 page = map_data->pages[i / nr_pages];
877 page += (i % nr_pages);
878
879 i++;
880 } else {
152e283f 881 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
882 if (!page) {
883 ret = -ENOMEM;
884 break;
885 }
1da177e4
LT
886 }
887
56c451f4 888 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 889 break;
1da177e4
LT
890
891 len -= bytes;
56c451f4 892 offset = 0;
1da177e4
LT
893 }
894
895 if (ret)
896 goto cleanup;
897
898 /*
899 * success
900 */
ecb554a8
FT
901 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
902 (map_data && map_data->from_user)) {
903 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
c5dec1c3
FT
904 if (ret)
905 goto cleanup;
1da177e4
LT
906 }
907
152e283f 908 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
909 return bio;
910cleanup:
152e283f
FT
911 if (!map_data)
912 bio_for_each_segment(bvec, bio, i)
913 __free_page(bvec->bv_page);
1da177e4
LT
914
915 bio_put(bio);
916out_bmd:
917 bio_free_map_data(bmd);
918 return ERR_PTR(ret);
919}
920
c5dec1c3
FT
921/**
922 * bio_copy_user - copy user data to bio
923 * @q: destination block queue
152e283f 924 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
925 * @uaddr: start of user address
926 * @len: length in bytes
927 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 928 * @gfp_mask: memory allocation flags
c5dec1c3
FT
929 *
930 * Prepares and returns a bio for indirect user io, bouncing data
931 * to/from kernel pages as necessary. Must be paired with
932 * call bio_uncopy_user() on io completion.
933 */
152e283f
FT
934struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
935 unsigned long uaddr, unsigned int len,
936 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
937{
938 struct sg_iovec iov;
939
940 iov.iov_base = (void __user *)uaddr;
941 iov.iov_len = len;
942
152e283f 943 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3 944}
a112a71d 945EXPORT_SYMBOL(bio_copy_user);
c5dec1c3 946
165125e1 947static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
948 struct block_device *bdev,
949 struct sg_iovec *iov, int iov_count,
a3bce90e 950 int write_to_vm, gfp_t gfp_mask)
1da177e4 951{
f1970baf
JB
952 int i, j;
953 int nr_pages = 0;
1da177e4
LT
954 struct page **pages;
955 struct bio *bio;
f1970baf
JB
956 int cur_page = 0;
957 int ret, offset;
1da177e4 958
f1970baf
JB
959 for (i = 0; i < iov_count; i++) {
960 unsigned long uaddr = (unsigned long)iov[i].iov_base;
961 unsigned long len = iov[i].iov_len;
962 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
963 unsigned long start = uaddr >> PAGE_SHIFT;
964
965 nr_pages += end - start;
966 /*
ad2d7225 967 * buffer must be aligned to at least hardsector size for now
f1970baf 968 */
ad2d7225 969 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
970 return ERR_PTR(-EINVAL);
971 }
972
973 if (!nr_pages)
1da177e4
LT
974 return ERR_PTR(-EINVAL);
975
a9e9dc24 976 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
977 if (!bio)
978 return ERR_PTR(-ENOMEM);
979
980 ret = -ENOMEM;
a3bce90e 981 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
982 if (!pages)
983 goto out;
984
f1970baf
JB
985 for (i = 0; i < iov_count; i++) {
986 unsigned long uaddr = (unsigned long)iov[i].iov_base;
987 unsigned long len = iov[i].iov_len;
988 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
989 unsigned long start = uaddr >> PAGE_SHIFT;
990 const int local_nr_pages = end - start;
991 const int page_limit = cur_page + local_nr_pages;
992
f5dd33c4
NP
993 ret = get_user_pages_fast(uaddr, local_nr_pages,
994 write_to_vm, &pages[cur_page]);
99172157
JA
995 if (ret < local_nr_pages) {
996 ret = -EFAULT;
f1970baf 997 goto out_unmap;
99172157 998 }
f1970baf
JB
999
1000 offset = uaddr & ~PAGE_MASK;
1001 for (j = cur_page; j < page_limit; j++) {
1002 unsigned int bytes = PAGE_SIZE - offset;
1003
1004 if (len <= 0)
1005 break;
1006
1007 if (bytes > len)
1008 bytes = len;
1009
1010 /*
1011 * sorry...
1012 */
defd94b7
MC
1013 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1014 bytes)
f1970baf
JB
1015 break;
1016
1017 len -= bytes;
1018 offset = 0;
1019 }
1da177e4 1020
f1970baf 1021 cur_page = j;
1da177e4 1022 /*
f1970baf 1023 * release the pages we didn't map into the bio, if any
1da177e4 1024 */
f1970baf
JB
1025 while (j < page_limit)
1026 page_cache_release(pages[j++]);
1da177e4
LT
1027 }
1028
1da177e4
LT
1029 kfree(pages);
1030
1031 /*
1032 * set data direction, and check if mapped pages need bouncing
1033 */
1034 if (!write_to_vm)
7b6d91da 1035 bio->bi_rw |= REQ_WRITE;
1da177e4 1036
f1970baf 1037 bio->bi_bdev = bdev;
1da177e4
LT
1038 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1039 return bio;
f1970baf
JB
1040
1041 out_unmap:
1042 for (i = 0; i < nr_pages; i++) {
1043 if(!pages[i])
1044 break;
1045 page_cache_release(pages[i]);
1046 }
1047 out:
1da177e4
LT
1048 kfree(pages);
1049 bio_put(bio);
1050 return ERR_PTR(ret);
1051}
1052
1053/**
1054 * bio_map_user - map user address into bio
165125e1 1055 * @q: the struct request_queue for the bio
1da177e4
LT
1056 * @bdev: destination block device
1057 * @uaddr: start of user address
1058 * @len: length in bytes
1059 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1060 * @gfp_mask: memory allocation flags
1da177e4
LT
1061 *
1062 * Map the user space address into a bio suitable for io to a block
1063 * device. Returns an error pointer in case of error.
1064 */
165125e1 1065struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1066 unsigned long uaddr, unsigned int len, int write_to_vm,
1067 gfp_t gfp_mask)
f1970baf
JB
1068{
1069 struct sg_iovec iov;
1070
3f70353e 1071 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1072 iov.iov_len = len;
1073
a3bce90e 1074 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf 1075}
a112a71d 1076EXPORT_SYMBOL(bio_map_user);
f1970baf
JB
1077
1078/**
1079 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1080 * @q: the struct request_queue for the bio
f1970baf
JB
1081 * @bdev: destination block device
1082 * @iov: the iovec.
1083 * @iov_count: number of elements in the iovec
1084 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1085 * @gfp_mask: memory allocation flags
f1970baf
JB
1086 *
1087 * Map the user space address into a bio suitable for io to a block
1088 * device. Returns an error pointer in case of error.
1089 */
165125e1 1090struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1091 struct sg_iovec *iov, int iov_count,
a3bce90e 1092 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1093{
1094 struct bio *bio;
1095
a3bce90e
FT
1096 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1097 gfp_mask);
1da177e4
LT
1098 if (IS_ERR(bio))
1099 return bio;
1100
1101 /*
1102 * subtle -- if __bio_map_user() ended up bouncing a bio,
1103 * it would normally disappear when its bi_end_io is run.
1104 * however, we need it for the unmap, so grab an extra
1105 * reference to it
1106 */
1107 bio_get(bio);
1108
0e75f906 1109 return bio;
1da177e4
LT
1110}
1111
1112static void __bio_unmap_user(struct bio *bio)
1113{
1114 struct bio_vec *bvec;
1115 int i;
1116
1117 /*
1118 * make sure we dirty pages we wrote to
1119 */
1120 __bio_for_each_segment(bvec, bio, i, 0) {
1121 if (bio_data_dir(bio) == READ)
1122 set_page_dirty_lock(bvec->bv_page);
1123
1124 page_cache_release(bvec->bv_page);
1125 }
1126
1127 bio_put(bio);
1128}
1129
1130/**
1131 * bio_unmap_user - unmap a bio
1132 * @bio: the bio being unmapped
1133 *
1134 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1135 * a process context.
1136 *
1137 * bio_unmap_user() may sleep.
1138 */
1139void bio_unmap_user(struct bio *bio)
1140{
1141 __bio_unmap_user(bio);
1142 bio_put(bio);
1143}
a112a71d 1144EXPORT_SYMBOL(bio_unmap_user);
1da177e4 1145
6712ecf8 1146static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1147{
b823825e 1148 bio_put(bio);
b823825e
JA
1149}
1150
165125e1 1151static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1152 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1153{
1154 unsigned long kaddr = (unsigned long)data;
1155 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1156 unsigned long start = kaddr >> PAGE_SHIFT;
1157 const int nr_pages = end - start;
1158 int offset, i;
1159 struct bio *bio;
1160
a9e9dc24 1161 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1162 if (!bio)
1163 return ERR_PTR(-ENOMEM);
1164
1165 offset = offset_in_page(kaddr);
1166 for (i = 0; i < nr_pages; i++) {
1167 unsigned int bytes = PAGE_SIZE - offset;
1168
1169 if (len <= 0)
1170 break;
1171
1172 if (bytes > len)
1173 bytes = len;
1174
defd94b7
MC
1175 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1176 offset) < bytes)
df46b9a4
MC
1177 break;
1178
1179 data += bytes;
1180 len -= bytes;
1181 offset = 0;
1182 }
1183
b823825e 1184 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1185 return bio;
1186}
1187
1188/**
1189 * bio_map_kern - map kernel address into bio
165125e1 1190 * @q: the struct request_queue for the bio
df46b9a4
MC
1191 * @data: pointer to buffer to map
1192 * @len: length in bytes
1193 * @gfp_mask: allocation flags for bio allocation
1194 *
1195 * Map the kernel address into a bio suitable for io to a block
1196 * device. Returns an error pointer in case of error.
1197 */
165125e1 1198struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1199 gfp_t gfp_mask)
df46b9a4
MC
1200{
1201 struct bio *bio;
1202
1203 bio = __bio_map_kern(q, data, len, gfp_mask);
1204 if (IS_ERR(bio))
1205 return bio;
1206
1207 if (bio->bi_size == len)
1208 return bio;
1209
1210 /*
1211 * Don't support partial mappings.
1212 */
1213 bio_put(bio);
1214 return ERR_PTR(-EINVAL);
1215}
a112a71d 1216EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1217
68154e90
FT
1218static void bio_copy_kern_endio(struct bio *bio, int err)
1219{
1220 struct bio_vec *bvec;
1221 const int read = bio_data_dir(bio) == READ;
76029ff3 1222 struct bio_map_data *bmd = bio->bi_private;
68154e90 1223 int i;
76029ff3 1224 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
1225
1226 __bio_for_each_segment(bvec, bio, i, 0) {
1227 char *addr = page_address(bvec->bv_page);
76029ff3 1228 int len = bmd->iovecs[i].bv_len;
68154e90 1229
4fc981ef 1230 if (read)
76029ff3 1231 memcpy(p, addr, len);
68154e90
FT
1232
1233 __free_page(bvec->bv_page);
76029ff3 1234 p += len;
68154e90
FT
1235 }
1236
76029ff3 1237 bio_free_map_data(bmd);
68154e90
FT
1238 bio_put(bio);
1239}
1240
1241/**
1242 * bio_copy_kern - copy kernel address into bio
1243 * @q: the struct request_queue for the bio
1244 * @data: pointer to buffer to copy
1245 * @len: length in bytes
1246 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1247 * @reading: data direction is READ
68154e90
FT
1248 *
1249 * copy the kernel address into a bio suitable for io to a block
1250 * device. Returns an error pointer in case of error.
1251 */
1252struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1253 gfp_t gfp_mask, int reading)
1254{
68154e90
FT
1255 struct bio *bio;
1256 struct bio_vec *bvec;
4d8ab62e 1257 int i;
68154e90 1258
4d8ab62e
FT
1259 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1260 if (IS_ERR(bio))
1261 return bio;
68154e90
FT
1262
1263 if (!reading) {
1264 void *p = data;
1265
1266 bio_for_each_segment(bvec, bio, i) {
1267 char *addr = page_address(bvec->bv_page);
1268
1269 memcpy(addr, p, bvec->bv_len);
1270 p += bvec->bv_len;
1271 }
1272 }
1273
68154e90 1274 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1275
68154e90 1276 return bio;
68154e90 1277}
a112a71d 1278EXPORT_SYMBOL(bio_copy_kern);
68154e90 1279
1da177e4
LT
1280/*
1281 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1282 * for performing direct-IO in BIOs.
1283 *
1284 * The problem is that we cannot run set_page_dirty() from interrupt context
1285 * because the required locks are not interrupt-safe. So what we can do is to
1286 * mark the pages dirty _before_ performing IO. And in interrupt context,
1287 * check that the pages are still dirty. If so, fine. If not, redirty them
1288 * in process context.
1289 *
1290 * We special-case compound pages here: normally this means reads into hugetlb
1291 * pages. The logic in here doesn't really work right for compound pages
1292 * because the VM does not uniformly chase down the head page in all cases.
1293 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1294 * handle them at all. So we skip compound pages here at an early stage.
1295 *
1296 * Note that this code is very hard to test under normal circumstances because
1297 * direct-io pins the pages with get_user_pages(). This makes
1298 * is_page_cache_freeable return false, and the VM will not clean the pages.
1299 * But other code (eg, pdflush) could clean the pages if they are mapped
1300 * pagecache.
1301 *
1302 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1303 * deferred bio dirtying paths.
1304 */
1305
1306/*
1307 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1308 */
1309void bio_set_pages_dirty(struct bio *bio)
1310{
1311 struct bio_vec *bvec = bio->bi_io_vec;
1312 int i;
1313
1314 for (i = 0; i < bio->bi_vcnt; i++) {
1315 struct page *page = bvec[i].bv_page;
1316
1317 if (page && !PageCompound(page))
1318 set_page_dirty_lock(page);
1319 }
1320}
1321
86b6c7a7 1322static void bio_release_pages(struct bio *bio)
1da177e4
LT
1323{
1324 struct bio_vec *bvec = bio->bi_io_vec;
1325 int i;
1326
1327 for (i = 0; i < bio->bi_vcnt; i++) {
1328 struct page *page = bvec[i].bv_page;
1329
1330 if (page)
1331 put_page(page);
1332 }
1333}
1334
1335/*
1336 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1337 * If they are, then fine. If, however, some pages are clean then they must
1338 * have been written out during the direct-IO read. So we take another ref on
1339 * the BIO and the offending pages and re-dirty the pages in process context.
1340 *
1341 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1342 * here on. It will run one page_cache_release() against each page and will
1343 * run one bio_put() against the BIO.
1344 */
1345
65f27f38 1346static void bio_dirty_fn(struct work_struct *work);
1da177e4 1347
65f27f38 1348static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1349static DEFINE_SPINLOCK(bio_dirty_lock);
1350static struct bio *bio_dirty_list;
1351
1352/*
1353 * This runs in process context
1354 */
65f27f38 1355static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1356{
1357 unsigned long flags;
1358 struct bio *bio;
1359
1360 spin_lock_irqsave(&bio_dirty_lock, flags);
1361 bio = bio_dirty_list;
1362 bio_dirty_list = NULL;
1363 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1364
1365 while (bio) {
1366 struct bio *next = bio->bi_private;
1367
1368 bio_set_pages_dirty(bio);
1369 bio_release_pages(bio);
1370 bio_put(bio);
1371 bio = next;
1372 }
1373}
1374
1375void bio_check_pages_dirty(struct bio *bio)
1376{
1377 struct bio_vec *bvec = bio->bi_io_vec;
1378 int nr_clean_pages = 0;
1379 int i;
1380
1381 for (i = 0; i < bio->bi_vcnt; i++) {
1382 struct page *page = bvec[i].bv_page;
1383
1384 if (PageDirty(page) || PageCompound(page)) {
1385 page_cache_release(page);
1386 bvec[i].bv_page = NULL;
1387 } else {
1388 nr_clean_pages++;
1389 }
1390 }
1391
1392 if (nr_clean_pages) {
1393 unsigned long flags;
1394
1395 spin_lock_irqsave(&bio_dirty_lock, flags);
1396 bio->bi_private = bio_dirty_list;
1397 bio_dirty_list = bio;
1398 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1399 schedule_work(&bio_dirty_work);
1400 } else {
1401 bio_put(bio);
1402 }
1403}
1404
2d4dc890
IL
1405#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1406void bio_flush_dcache_pages(struct bio *bi)
1407{
1408 int i;
1409 struct bio_vec *bvec;
1410
1411 bio_for_each_segment(bvec, bi, i)
1412 flush_dcache_page(bvec->bv_page);
1413}
1414EXPORT_SYMBOL(bio_flush_dcache_pages);
1415#endif
1416
1da177e4
LT
1417/**
1418 * bio_endio - end I/O on a bio
1419 * @bio: bio
1da177e4
LT
1420 * @error: error, if any
1421 *
1422 * Description:
6712ecf8 1423 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1424 * preferred way to end I/O on a bio, it takes care of clearing
1425 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1426 * established -Exxxx (-EIO, for instance) error values in case
1427 * something went wrong. Noone should call bi_end_io() directly on a
1428 * bio unless they own it and thus know that it has an end_io
1429 * function.
1da177e4 1430 **/
6712ecf8 1431void bio_endio(struct bio *bio, int error)
1da177e4
LT
1432{
1433 if (error)
1434 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1435 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1436 error = -EIO;
1da177e4 1437
5bb23a68 1438 if (bio->bi_end_io)
6712ecf8 1439 bio->bi_end_io(bio, error);
1da177e4 1440}
a112a71d 1441EXPORT_SYMBOL(bio_endio);
1da177e4
LT
1442
1443void bio_pair_release(struct bio_pair *bp)
1444{
1445 if (atomic_dec_and_test(&bp->cnt)) {
1446 struct bio *master = bp->bio1.bi_private;
1447
6712ecf8 1448 bio_endio(master, bp->error);
1da177e4
LT
1449 mempool_free(bp, bp->bio2.bi_private);
1450 }
1451}
a112a71d 1452EXPORT_SYMBOL(bio_pair_release);
1da177e4 1453
6712ecf8 1454static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1455{
1456 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1457
1458 if (err)
1459 bp->error = err;
1460
1da177e4 1461 bio_pair_release(bp);
1da177e4
LT
1462}
1463
6712ecf8 1464static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1465{
1466 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1467
1468 if (err)
1469 bp->error = err;
1470
1da177e4 1471 bio_pair_release(bp);
1da177e4
LT
1472}
1473
1474/*
c7eee1b8 1475 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1476 */
6feef531 1477struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1478{
6feef531 1479 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1480
1481 if (!bp)
1482 return bp;
1483
5f3ea37c 1484 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
2056a782
JA
1485 bi->bi_sector + first_sectors);
1486
1da177e4
LT
1487 BUG_ON(bi->bi_vcnt != 1);
1488 BUG_ON(bi->bi_idx != 0);
1489 atomic_set(&bp->cnt, 3);
1490 bp->error = 0;
1491 bp->bio1 = *bi;
1492 bp->bio2 = *bi;
1493 bp->bio2.bi_sector += first_sectors;
1494 bp->bio2.bi_size -= first_sectors << 9;
1495 bp->bio1.bi_size = first_sectors << 9;
1496
1497 bp->bv1 = bi->bi_io_vec[0];
1498 bp->bv2 = bi->bi_io_vec[0];
1499 bp->bv2.bv_offset += first_sectors << 9;
1500 bp->bv2.bv_len -= first_sectors << 9;
1501 bp->bv1.bv_len = first_sectors << 9;
1502
1503 bp->bio1.bi_io_vec = &bp->bv1;
1504 bp->bio2.bi_io_vec = &bp->bv2;
1505
a2eb0c10
N
1506 bp->bio1.bi_max_vecs = 1;
1507 bp->bio2.bi_max_vecs = 1;
1508
1da177e4
LT
1509 bp->bio1.bi_end_io = bio_pair_end_1;
1510 bp->bio2.bi_end_io = bio_pair_end_2;
1511
1512 bp->bio1.bi_private = bi;
6feef531 1513 bp->bio2.bi_private = bio_split_pool;
1da177e4 1514
7ba1ba12
MP
1515 if (bio_integrity(bi))
1516 bio_integrity_split(bi, bp, first_sectors);
1517
1da177e4
LT
1518 return bp;
1519}
a112a71d 1520EXPORT_SYMBOL(bio_split);
1da177e4 1521
ad3316bf
MP
1522/**
1523 * bio_sector_offset - Find hardware sector offset in bio
1524 * @bio: bio to inspect
1525 * @index: bio_vec index
1526 * @offset: offset in bv_page
1527 *
1528 * Return the number of hardware sectors between beginning of bio
1529 * and an end point indicated by a bio_vec index and an offset
1530 * within that vector's page.
1531 */
1532sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1533 unsigned int offset)
1534{
e1defc4f 1535 unsigned int sector_sz;
ad3316bf
MP
1536 struct bio_vec *bv;
1537 sector_t sectors;
1538 int i;
1539
e1defc4f 1540 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1541 sectors = 0;
1542
1543 if (index >= bio->bi_idx)
1544 index = bio->bi_vcnt - 1;
1545
1546 __bio_for_each_segment(bv, bio, i, 0) {
1547 if (i == index) {
1548 if (offset > bv->bv_offset)
1549 sectors += (offset - bv->bv_offset) / sector_sz;
1550 break;
1551 }
1552
1553 sectors += bv->bv_len / sector_sz;
1554 }
1555
1556 return sectors;
1557}
1558EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1559
1560/*
1561 * create memory pools for biovec's in a bio_set.
1562 * use the global biovec slabs created for general use.
1563 */
5972511b 1564static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1da177e4 1565{
7ff9345f 1566 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1567
7ff9345f
JA
1568 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1569 if (!bs->bvec_pool)
1570 return -ENOMEM;
1da177e4 1571
1da177e4
LT
1572 return 0;
1573}
1574
1575static void biovec_free_pools(struct bio_set *bs)
1576{
7ff9345f 1577 mempool_destroy(bs->bvec_pool);
1da177e4
LT
1578}
1579
1580void bioset_free(struct bio_set *bs)
1581{
1582 if (bs->bio_pool)
1583 mempool_destroy(bs->bio_pool);
1584
7878cba9 1585 bioset_integrity_free(bs);
1da177e4 1586 biovec_free_pools(bs);
bb799ca0 1587 bio_put_slab(bs);
1da177e4
LT
1588
1589 kfree(bs);
1590}
a112a71d 1591EXPORT_SYMBOL(bioset_free);
1da177e4 1592
bb799ca0
JA
1593/**
1594 * bioset_create - Create a bio_set
1595 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1596 * @front_pad: Number of bytes to allocate in front of the returned bio
1597 *
1598 * Description:
1599 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1600 * to ask for a number of bytes to be allocated in front of the bio.
1601 * Front pad allocation is useful for embedding the bio inside
1602 * another structure, to avoid allocating extra data to go with the bio.
1603 * Note that the bio must be embedded at the END of that structure always,
1604 * or things will break badly.
1605 */
1606struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1607{
392ddc32 1608 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1609 struct bio_set *bs;
1da177e4 1610
1b434498 1611 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1612 if (!bs)
1613 return NULL;
1614
bb799ca0 1615 bs->front_pad = front_pad;
1b434498 1616
392ddc32 1617 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1618 if (!bs->bio_slab) {
1619 kfree(bs);
1620 return NULL;
1621 }
1622
1623 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1624 if (!bs->bio_pool)
1625 goto bad;
1626
7878cba9
MP
1627 if (bioset_integrity_create(bs, pool_size))
1628 goto bad;
1629
bb799ca0 1630 if (!biovec_create_pools(bs, pool_size))
1da177e4
LT
1631 return bs;
1632
1633bad:
1634 bioset_free(bs);
1635 return NULL;
1636}
a112a71d 1637EXPORT_SYMBOL(bioset_create);
1da177e4
LT
1638
1639static void __init biovec_init_slabs(void)
1640{
1641 int i;
1642
1643 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1644 int size;
1645 struct biovec_slab *bvs = bvec_slabs + i;
1646
a7fcd37c
JA
1647#ifndef CONFIG_BLK_DEV_INTEGRITY
1648 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1649 bvs->slab = NULL;
1650 continue;
1651 }
1652#endif
1653
1da177e4
LT
1654 size = bvs->nr_vecs * sizeof(struct bio_vec);
1655 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1656 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1657 }
1658}
1659
1660static int __init init_bio(void)
1661{
bb799ca0
JA
1662 bio_slab_max = 2;
1663 bio_slab_nr = 0;
1664 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1665 if (!bio_slabs)
1666 panic("bio: can't allocate bios\n");
1da177e4 1667
7878cba9 1668 bio_integrity_init();
1da177e4
LT
1669 biovec_init_slabs();
1670
bb799ca0 1671 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
1672 if (!fs_bio_set)
1673 panic("bio: can't allocate bios\n");
1674
0eaae62a
MD
1675 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1676 sizeof(struct bio_pair));
1da177e4
LT
1677 if (!bio_split_pool)
1678 panic("bio: can't create split pool\n");
1679
1680 return 0;
1681}
1da177e4 1682subsys_initcall(init_bio);