]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/bio.c
cfq-iosched: get rid of the need for __GFP_NOFAIL in cfq_find_alloc_queue()
[net-next-2.6.git] / fs / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/slab.h>
23#include <linux/init.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/mempool.h>
27#include <linux/workqueue.h>
f1970baf 28#include <scsi/sg.h> /* for struct sg_iovec */
1da177e4 29
55782138 30#include <trace/events/block.h>
0bfc2455 31
392ddc32
JA
32/*
33 * Test patch to inline a certain number of bi_io_vec's inside the bio
34 * itself, to shrink a bio data allocation from two mempool calls to one
35 */
36#define BIO_INLINE_VECS 4
37
6feef531 38static mempool_t *bio_split_pool __read_mostly;
1da177e4 39
1da177e4
LT
40/*
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
44 */
1da177e4 45#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
bb799ca0 46struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
1da177e4
LT
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
48};
49#undef BV
50
1da177e4
LT
51/*
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
54 */
51d654e1 55struct bio_set *fs_bio_set;
1da177e4 56
bb799ca0
JA
57/*
58 * Our slab pool management
59 */
60struct bio_slab {
61 struct kmem_cache *slab;
62 unsigned int slab_ref;
63 unsigned int slab_size;
64 char name[8];
65};
66static DEFINE_MUTEX(bio_slab_lock);
67static struct bio_slab *bio_slabs;
68static unsigned int bio_slab_nr, bio_slab_max;
69
70static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
71{
72 unsigned int sz = sizeof(struct bio) + extra_size;
73 struct kmem_cache *slab = NULL;
74 struct bio_slab *bslab;
75 unsigned int i, entry = -1;
76
77 mutex_lock(&bio_slab_lock);
78
79 i = 0;
80 while (i < bio_slab_nr) {
81 struct bio_slab *bslab = &bio_slabs[i];
82
83 if (!bslab->slab && entry == -1)
84 entry = i;
85 else if (bslab->slab_size == sz) {
86 slab = bslab->slab;
87 bslab->slab_ref++;
88 break;
89 }
90 i++;
91 }
92
93 if (slab)
94 goto out_unlock;
95
96 if (bio_slab_nr == bio_slab_max && entry == -1) {
97 bio_slab_max <<= 1;
98 bio_slabs = krealloc(bio_slabs,
99 bio_slab_max * sizeof(struct bio_slab),
100 GFP_KERNEL);
101 if (!bio_slabs)
102 goto out_unlock;
103 }
104 if (entry == -1)
105 entry = bio_slab_nr++;
106
107 bslab = &bio_slabs[entry];
108
109 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
110 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
111 if (!slab)
112 goto out_unlock;
113
114 printk("bio: create slab <%s> at %d\n", bslab->name, entry);
115 bslab->slab = slab;
116 bslab->slab_ref = 1;
117 bslab->slab_size = sz;
118out_unlock:
119 mutex_unlock(&bio_slab_lock);
120 return slab;
121}
122
123static void bio_put_slab(struct bio_set *bs)
124{
125 struct bio_slab *bslab = NULL;
126 unsigned int i;
127
128 mutex_lock(&bio_slab_lock);
129
130 for (i = 0; i < bio_slab_nr; i++) {
131 if (bs->bio_slab == bio_slabs[i].slab) {
132 bslab = &bio_slabs[i];
133 break;
134 }
135 }
136
137 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
138 goto out;
139
140 WARN_ON(!bslab->slab_ref);
141
142 if (--bslab->slab_ref)
143 goto out;
144
145 kmem_cache_destroy(bslab->slab);
146 bslab->slab = NULL;
147
148out:
149 mutex_unlock(&bio_slab_lock);
150}
151
7ba1ba12
MP
152unsigned int bvec_nr_vecs(unsigned short idx)
153{
154 return bvec_slabs[idx].nr_vecs;
155}
156
bb799ca0
JA
157void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
158{
159 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
160
161 if (idx == BIOVEC_MAX_IDX)
162 mempool_free(bv, bs->bvec_pool);
163 else {
164 struct biovec_slab *bvs = bvec_slabs + idx;
165
166 kmem_cache_free(bvs->slab, bv);
167 }
168}
169
7ff9345f
JA
170struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
171 struct bio_set *bs)
1da177e4
LT
172{
173 struct bio_vec *bvl;
1da177e4 174
7ff9345f
JA
175 /*
176 * see comment near bvec_array define!
177 */
178 switch (nr) {
179 case 1:
180 *idx = 0;
181 break;
182 case 2 ... 4:
183 *idx = 1;
184 break;
185 case 5 ... 16:
186 *idx = 2;
187 break;
188 case 17 ... 64:
189 *idx = 3;
190 break;
191 case 65 ... 128:
192 *idx = 4;
193 break;
194 case 129 ... BIO_MAX_PAGES:
195 *idx = 5;
196 break;
197 default:
198 return NULL;
199 }
200
201 /*
202 * idx now points to the pool we want to allocate from. only the
203 * 1-vec entry pool is mempool backed.
204 */
205 if (*idx == BIOVEC_MAX_IDX) {
206fallback:
207 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
208 } else {
209 struct biovec_slab *bvs = bvec_slabs + *idx;
210 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
211
0a0d96b0 212 /*
7ff9345f
JA
213 * Make this allocation restricted and don't dump info on
214 * allocation failures, since we'll fallback to the mempool
215 * in case of failure.
0a0d96b0 216 */
7ff9345f 217 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 218
0a0d96b0 219 /*
7ff9345f
JA
220 * Try a slab allocation. If this fails and __GFP_WAIT
221 * is set, retry with the 1-entry mempool
0a0d96b0 222 */
7ff9345f
JA
223 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
225 *idx = BIOVEC_MAX_IDX;
226 goto fallback;
227 }
228 }
229
1da177e4
LT
230 return bvl;
231}
232
7ff9345f 233void bio_free(struct bio *bio, struct bio_set *bs)
1da177e4 234{
bb799ca0 235 void *p;
1da177e4 236
392ddc32 237 if (bio_has_allocated_vec(bio))
bb799ca0 238 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
1da177e4 239
7ba1ba12 240 if (bio_integrity(bio))
6d2a78e7 241 bio_integrity_free(bio);
7ba1ba12 242
bb799ca0
JA
243 /*
244 * If we have front padding, adjust the bio pointer before freeing
245 */
246 p = bio;
247 if (bs->front_pad)
248 p -= bs->front_pad;
249
250 mempool_free(p, bs->bio_pool);
3676347a
PO
251}
252
858119e1 253void bio_init(struct bio *bio)
1da177e4 254{
2b94de55 255 memset(bio, 0, sizeof(*bio));
1da177e4 256 bio->bi_flags = 1 << BIO_UPTODATE;
c7c22e4d 257 bio->bi_comp_cpu = -1;
1da177e4 258 atomic_set(&bio->bi_cnt, 1);
1da177e4
LT
259}
260
261/**
262 * bio_alloc_bioset - allocate a bio for I/O
263 * @gfp_mask: the GFP_ mask given to the slab allocator
264 * @nr_iovecs: number of iovecs to pre-allocate
0a0d96b0 265 * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
1da177e4
LT
266 *
267 * Description:
0a0d96b0 268 * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
1da177e4 269 * If %__GFP_WAIT is set then we will block on the internal pool waiting
0a0d96b0
JA
270 * for a &struct bio to become free. If a %NULL @bs is passed in, we will
271 * fall back to just using @kmalloc to allocate the required memory.
1da177e4 272 *
bb799ca0
JA
273 * Note that the caller must set ->bi_destructor on succesful return
274 * of a bio, to do the appropriate freeing of the bio once the reference
275 * count drops to zero.
1da177e4 276 **/
dd0fc66f 277struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
1da177e4 278{
451a9ebf 279 unsigned long idx = BIO_POOL_NONE;
34053979 280 struct bio_vec *bvl = NULL;
451a9ebf
TH
281 struct bio *bio;
282 void *p;
283
284 p = mempool_alloc(bs->bio_pool, gfp_mask);
285 if (unlikely(!p))
286 return NULL;
287 bio = p + bs->front_pad;
1da177e4 288
34053979
IM
289 bio_init(bio);
290
291 if (unlikely(!nr_iovecs))
292 goto out_set;
293
294 if (nr_iovecs <= BIO_INLINE_VECS) {
295 bvl = bio->bi_inline_vecs;
296 nr_iovecs = BIO_INLINE_VECS;
297 } else {
298 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
299 if (unlikely(!bvl))
300 goto err_free;
301
302 nr_iovecs = bvec_nr_vecs(idx);
1da177e4 303 }
451a9ebf 304out_set:
34053979
IM
305 bio->bi_flags |= idx << BIO_POOL_OFFSET;
306 bio->bi_max_vecs = nr_iovecs;
34053979 307 bio->bi_io_vec = bvl;
1da177e4 308 return bio;
34053979
IM
309
310err_free:
451a9ebf 311 mempool_free(p, bs->bio_pool);
34053979 312 return NULL;
1da177e4
LT
313}
314
451a9ebf
TH
315static void bio_fs_destructor(struct bio *bio)
316{
317 bio_free(bio, fs_bio_set);
318}
319
320/**
321 * bio_alloc - allocate a new bio, memory pool backed
322 * @gfp_mask: allocation mask to use
323 * @nr_iovecs: number of iovecs
324 *
325 * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask
326 * contains __GFP_WAIT, the allocation is guaranteed to succeed.
327 *
328 * RETURNS:
329 * Pointer to new bio on success, NULL on failure.
330 */
331struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
332{
333 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
334
335 if (bio)
336 bio->bi_destructor = bio_fs_destructor;
337
338 return bio;
339}
340
341static void bio_kmalloc_destructor(struct bio *bio)
342{
343 if (bio_integrity(bio))
344 bio_integrity_free(bio);
345 kfree(bio);
346}
347
86c824b9
JA
348/**
349 * bio_alloc - allocate a bio for I/O
350 * @gfp_mask: the GFP_ mask given to the slab allocator
351 * @nr_iovecs: number of iovecs to pre-allocate
352 *
353 * Description:
354 * bio_alloc will allocate a bio and associated bio_vec array that can hold
355 * at least @nr_iovecs entries. Allocations will be done from the
356 * fs_bio_set. Also see @bio_alloc_bioset.
357 *
358 * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
359 * a bio. This is due to the mempool guarantees. To make this work, callers
76d93ff3 360 * must never allocate more than 1 bio at a time from this pool. Callers
86c824b9 361 * that need to allocate more than 1 bio must always submit the previously
76d93ff3 362 * allocated bio for IO before attempting to allocate a new one. Failure to
86c824b9
JA
363 * do so can cause livelocks under memory pressure.
364 *
365 **/
0a0d96b0
JA
366struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
367{
451a9ebf 368 struct bio *bio;
0a0d96b0 369
451a9ebf
TH
370 bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
371 gfp_mask);
372 if (unlikely(!bio))
373 return NULL;
374
375 bio_init(bio);
376 bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
377 bio->bi_max_vecs = nr_iovecs;
378 bio->bi_io_vec = bio->bi_inline_vecs;
379 bio->bi_destructor = bio_kmalloc_destructor;
0a0d96b0
JA
380
381 return bio;
382}
383
1da177e4
LT
384void zero_fill_bio(struct bio *bio)
385{
386 unsigned long flags;
387 struct bio_vec *bv;
388 int i;
389
390 bio_for_each_segment(bv, bio, i) {
391 char *data = bvec_kmap_irq(bv, &flags);
392 memset(data, 0, bv->bv_len);
393 flush_dcache_page(bv->bv_page);
394 bvec_kunmap_irq(data, &flags);
395 }
396}
397EXPORT_SYMBOL(zero_fill_bio);
398
399/**
400 * bio_put - release a reference to a bio
401 * @bio: bio to release reference to
402 *
403 * Description:
404 * Put a reference to a &struct bio, either one you have gotten with
405 * bio_alloc or bio_get. The last put of a bio will free it.
406 **/
407void bio_put(struct bio *bio)
408{
409 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
410
411 /*
412 * last put frees it
413 */
414 if (atomic_dec_and_test(&bio->bi_cnt)) {
415 bio->bi_next = NULL;
416 bio->bi_destructor(bio);
417 }
418}
419
165125e1 420inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
421{
422 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
423 blk_recount_segments(q, bio);
424
425 return bio->bi_phys_segments;
426}
427
1da177e4
LT
428/**
429 * __bio_clone - clone a bio
430 * @bio: destination bio
431 * @bio_src: bio to clone
432 *
433 * Clone a &bio. Caller will own the returned bio, but not
434 * the actual data it points to. Reference count of returned
435 * bio will be one.
436 */
858119e1 437void __bio_clone(struct bio *bio, struct bio *bio_src)
1da177e4 438{
e525e153
AM
439 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
440 bio_src->bi_max_vecs * sizeof(struct bio_vec));
1da177e4 441
5d84070e
JA
442 /*
443 * most users will be overriding ->bi_bdev with a new target,
444 * so we don't set nor calculate new physical/hw segment counts here
445 */
1da177e4
LT
446 bio->bi_sector = bio_src->bi_sector;
447 bio->bi_bdev = bio_src->bi_bdev;
448 bio->bi_flags |= 1 << BIO_CLONED;
449 bio->bi_rw = bio_src->bi_rw;
1da177e4
LT
450 bio->bi_vcnt = bio_src->bi_vcnt;
451 bio->bi_size = bio_src->bi_size;
a5453be4 452 bio->bi_idx = bio_src->bi_idx;
1da177e4
LT
453}
454
455/**
456 * bio_clone - clone a bio
457 * @bio: bio to clone
458 * @gfp_mask: allocation priority
459 *
460 * Like __bio_clone, only also allocates the returned bio
461 */
dd0fc66f 462struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
463{
464 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
465
7ba1ba12
MP
466 if (!b)
467 return NULL;
468
469 b->bi_destructor = bio_fs_destructor;
470 __bio_clone(b, bio);
471
472 if (bio_integrity(bio)) {
473 int ret;
474
6d2a78e7 475 ret = bio_integrity_clone(b, bio, gfp_mask);
7ba1ba12 476
059ea331
LZ
477 if (ret < 0) {
478 bio_put(b);
7ba1ba12 479 return NULL;
059ea331 480 }
3676347a 481 }
1da177e4
LT
482
483 return b;
484}
485
486/**
487 * bio_get_nr_vecs - return approx number of vecs
488 * @bdev: I/O target
489 *
490 * Return the approximate number of pages we can send to this target.
491 * There's no guarantee that you will be able to fit this number of pages
492 * into a bio, it does not account for dynamic restrictions that vary
493 * on offset.
494 */
495int bio_get_nr_vecs(struct block_device *bdev)
496{
165125e1 497 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
498 int nr_pages;
499
ae03bf63
MP
500 nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
501 if (nr_pages > queue_max_phys_segments(q))
502 nr_pages = queue_max_phys_segments(q);
503 if (nr_pages > queue_max_hw_segments(q))
504 nr_pages = queue_max_hw_segments(q);
1da177e4
LT
505
506 return nr_pages;
507}
508
165125e1 509static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
defd94b7
MC
510 *page, unsigned int len, unsigned int offset,
511 unsigned short max_sectors)
1da177e4
LT
512{
513 int retried_segments = 0;
514 struct bio_vec *bvec;
515
516 /*
517 * cloned bio must not modify vec list
518 */
519 if (unlikely(bio_flagged(bio, BIO_CLONED)))
520 return 0;
521
80cfd548 522 if (((bio->bi_size + len) >> 9) > max_sectors)
1da177e4
LT
523 return 0;
524
80cfd548
JA
525 /*
526 * For filesystems with a blocksize smaller than the pagesize
527 * we will often be called with the same page as last time and
528 * a consecutive offset. Optimize this special case.
529 */
530 if (bio->bi_vcnt > 0) {
531 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
532
533 if (page == prev->bv_page &&
534 offset == prev->bv_offset + prev->bv_len) {
535 prev->bv_len += len;
cc371e66
AK
536
537 if (q->merge_bvec_fn) {
538 struct bvec_merge_data bvm = {
539 .bi_bdev = bio->bi_bdev,
540 .bi_sector = bio->bi_sector,
541 .bi_size = bio->bi_size,
542 .bi_rw = bio->bi_rw,
543 };
544
545 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
546 prev->bv_len -= len;
547 return 0;
548 }
80cfd548
JA
549 }
550
551 goto done;
552 }
553 }
554
555 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
556 return 0;
557
558 /*
559 * we might lose a segment or two here, but rather that than
560 * make this too complex.
561 */
562
ae03bf63
MP
563 while (bio->bi_phys_segments >= queue_max_phys_segments(q)
564 || bio->bi_phys_segments >= queue_max_hw_segments(q)) {
1da177e4
LT
565
566 if (retried_segments)
567 return 0;
568
569 retried_segments = 1;
570 blk_recount_segments(q, bio);
571 }
572
573 /*
574 * setup the new entry, we might clear it again later if we
575 * cannot add the page
576 */
577 bvec = &bio->bi_io_vec[bio->bi_vcnt];
578 bvec->bv_page = page;
579 bvec->bv_len = len;
580 bvec->bv_offset = offset;
581
582 /*
583 * if queue has other restrictions (eg varying max sector size
584 * depending on offset), it can specify a merge_bvec_fn in the
585 * queue to get further control
586 */
587 if (q->merge_bvec_fn) {
cc371e66
AK
588 struct bvec_merge_data bvm = {
589 .bi_bdev = bio->bi_bdev,
590 .bi_sector = bio->bi_sector,
591 .bi_size = bio->bi_size,
592 .bi_rw = bio->bi_rw,
593 };
594
1da177e4
LT
595 /*
596 * merge_bvec_fn() returns number of bytes it can accept
597 * at this offset
598 */
cc371e66 599 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
1da177e4
LT
600 bvec->bv_page = NULL;
601 bvec->bv_len = 0;
602 bvec->bv_offset = 0;
603 return 0;
604 }
605 }
606
607 /* If we may be able to merge these biovecs, force a recount */
b8b3e16c 608 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
1da177e4
LT
609 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
610
611 bio->bi_vcnt++;
612 bio->bi_phys_segments++;
80cfd548 613 done:
1da177e4
LT
614 bio->bi_size += len;
615 return len;
616}
617
6e68af66
MC
618/**
619 * bio_add_pc_page - attempt to add page to bio
fddfdeaf 620 * @q: the target queue
6e68af66
MC
621 * @bio: destination bio
622 * @page: page to add
623 * @len: vec entry length
624 * @offset: vec entry offset
625 *
626 * Attempt to add a page to the bio_vec maplist. This can fail for a
627 * number of reasons, such as the bio being full or target block
628 * device limitations. The target block device must allow bio's
629 * smaller than PAGE_SIZE, so it is always possible to add a single
630 * page to an empty bio. This should only be used by REQ_PC bios.
631 */
165125e1 632int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
6e68af66
MC
633 unsigned int len, unsigned int offset)
634{
ae03bf63
MP
635 return __bio_add_page(q, bio, page, len, offset,
636 queue_max_hw_sectors(q));
6e68af66
MC
637}
638
1da177e4
LT
639/**
640 * bio_add_page - attempt to add page to bio
641 * @bio: destination bio
642 * @page: page to add
643 * @len: vec entry length
644 * @offset: vec entry offset
645 *
646 * Attempt to add a page to the bio_vec maplist. This can fail for a
647 * number of reasons, such as the bio being full or target block
648 * device limitations. The target block device must allow bio's
649 * smaller than PAGE_SIZE, so it is always possible to add a single
650 * page to an empty bio.
651 */
652int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
653 unsigned int offset)
654{
defd94b7 655 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae03bf63 656 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
1da177e4
LT
657}
658
659struct bio_map_data {
660 struct bio_vec *iovecs;
c5dec1c3 661 struct sg_iovec *sgvecs;
152e283f
FT
662 int nr_sgvecs;
663 int is_our_pages;
1da177e4
LT
664};
665
c5dec1c3 666static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
152e283f
FT
667 struct sg_iovec *iov, int iov_count,
668 int is_our_pages)
1da177e4
LT
669{
670 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
c5dec1c3
FT
671 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
672 bmd->nr_sgvecs = iov_count;
152e283f 673 bmd->is_our_pages = is_our_pages;
1da177e4
LT
674 bio->bi_private = bmd;
675}
676
677static void bio_free_map_data(struct bio_map_data *bmd)
678{
679 kfree(bmd->iovecs);
c5dec1c3 680 kfree(bmd->sgvecs);
1da177e4
LT
681 kfree(bmd);
682}
683
76029ff3
FT
684static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
685 gfp_t gfp_mask)
1da177e4 686{
76029ff3 687 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
1da177e4
LT
688
689 if (!bmd)
690 return NULL;
691
76029ff3 692 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
c5dec1c3
FT
693 if (!bmd->iovecs) {
694 kfree(bmd);
695 return NULL;
696 }
697
76029ff3 698 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
c5dec1c3 699 if (bmd->sgvecs)
1da177e4
LT
700 return bmd;
701
c5dec1c3 702 kfree(bmd->iovecs);
1da177e4
LT
703 kfree(bmd);
704 return NULL;
705}
706
aefcc28a 707static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
152e283f
FT
708 struct sg_iovec *iov, int iov_count, int uncopy,
709 int do_free_page)
c5dec1c3
FT
710{
711 int ret = 0, i;
712 struct bio_vec *bvec;
713 int iov_idx = 0;
714 unsigned int iov_off = 0;
715 int read = bio_data_dir(bio) == READ;
716
717 __bio_for_each_segment(bvec, bio, i, 0) {
718 char *bv_addr = page_address(bvec->bv_page);
aefcc28a 719 unsigned int bv_len = iovecs[i].bv_len;
c5dec1c3
FT
720
721 while (bv_len && iov_idx < iov_count) {
722 unsigned int bytes;
0e0c6212 723 char __user *iov_addr;
c5dec1c3
FT
724
725 bytes = min_t(unsigned int,
726 iov[iov_idx].iov_len - iov_off, bv_len);
727 iov_addr = iov[iov_idx].iov_base + iov_off;
728
729 if (!ret) {
730 if (!read && !uncopy)
731 ret = copy_from_user(bv_addr, iov_addr,
732 bytes);
733 if (read && uncopy)
734 ret = copy_to_user(iov_addr, bv_addr,
735 bytes);
736
737 if (ret)
738 ret = -EFAULT;
739 }
740
741 bv_len -= bytes;
742 bv_addr += bytes;
743 iov_addr += bytes;
744 iov_off += bytes;
745
746 if (iov[iov_idx].iov_len == iov_off) {
747 iov_idx++;
748 iov_off = 0;
749 }
750 }
751
152e283f 752 if (do_free_page)
c5dec1c3
FT
753 __free_page(bvec->bv_page);
754 }
755
756 return ret;
757}
758
1da177e4
LT
759/**
760 * bio_uncopy_user - finish previously mapped bio
761 * @bio: bio being terminated
762 *
763 * Free pages allocated from bio_copy_user() and write back data
764 * to user space in case of a read.
765 */
766int bio_uncopy_user(struct bio *bio)
767{
768 struct bio_map_data *bmd = bio->bi_private;
81882766 769 int ret = 0;
1da177e4 770
81882766
FT
771 if (!bio_flagged(bio, BIO_NULL_MAPPED))
772 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
773 bmd->nr_sgvecs, 1, bmd->is_our_pages);
1da177e4
LT
774 bio_free_map_data(bmd);
775 bio_put(bio);
776 return ret;
777}
778
779/**
c5dec1c3 780 * bio_copy_user_iov - copy user data to bio
1da177e4 781 * @q: destination block queue
152e283f 782 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
783 * @iov: the iovec.
784 * @iov_count: number of elements in the iovec
1da177e4 785 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 786 * @gfp_mask: memory allocation flags
1da177e4
LT
787 *
788 * Prepares and returns a bio for indirect user io, bouncing data
789 * to/from kernel pages as necessary. Must be paired with
790 * call bio_uncopy_user() on io completion.
791 */
152e283f
FT
792struct bio *bio_copy_user_iov(struct request_queue *q,
793 struct rq_map_data *map_data,
794 struct sg_iovec *iov, int iov_count,
795 int write_to_vm, gfp_t gfp_mask)
1da177e4 796{
1da177e4
LT
797 struct bio_map_data *bmd;
798 struct bio_vec *bvec;
799 struct page *page;
800 struct bio *bio;
801 int i, ret;
c5dec1c3
FT
802 int nr_pages = 0;
803 unsigned int len = 0;
56c451f4 804 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
1da177e4 805
c5dec1c3
FT
806 for (i = 0; i < iov_count; i++) {
807 unsigned long uaddr;
808 unsigned long end;
809 unsigned long start;
810
811 uaddr = (unsigned long)iov[i].iov_base;
812 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
813 start = uaddr >> PAGE_SHIFT;
814
815 nr_pages += end - start;
816 len += iov[i].iov_len;
817 }
818
69838727
FT
819 if (offset)
820 nr_pages++;
821
a3bce90e 822 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
1da177e4
LT
823 if (!bmd)
824 return ERR_PTR(-ENOMEM);
825
1da177e4 826 ret = -ENOMEM;
a9e9dc24 827 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
828 if (!bio)
829 goto out_bmd;
830
831 bio->bi_rw |= (!write_to_vm << BIO_RW);
832
833 ret = 0;
56c451f4
FT
834
835 if (map_data) {
e623ddb4 836 nr_pages = 1 << map_data->page_order;
56c451f4
FT
837 i = map_data->offset / PAGE_SIZE;
838 }
1da177e4 839 while (len) {
e623ddb4 840 unsigned int bytes = PAGE_SIZE;
1da177e4 841
56c451f4
FT
842 bytes -= offset;
843
1da177e4
LT
844 if (bytes > len)
845 bytes = len;
846
152e283f 847 if (map_data) {
e623ddb4 848 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
849 ret = -ENOMEM;
850 break;
851 }
e623ddb4
FT
852
853 page = map_data->pages[i / nr_pages];
854 page += (i % nr_pages);
855
856 i++;
857 } else {
152e283f 858 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
859 if (!page) {
860 ret = -ENOMEM;
861 break;
862 }
1da177e4
LT
863 }
864
56c451f4 865 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 866 break;
1da177e4
LT
867
868 len -= bytes;
56c451f4 869 offset = 0;
1da177e4
LT
870 }
871
872 if (ret)
873 goto cleanup;
874
875 /*
876 * success
877 */
97ae77a1 878 if (!write_to_vm && (!map_data || !map_data->null_mapped)) {
152e283f 879 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
c5dec1c3
FT
880 if (ret)
881 goto cleanup;
1da177e4
LT
882 }
883
152e283f 884 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
1da177e4
LT
885 return bio;
886cleanup:
152e283f
FT
887 if (!map_data)
888 bio_for_each_segment(bvec, bio, i)
889 __free_page(bvec->bv_page);
1da177e4
LT
890
891 bio_put(bio);
892out_bmd:
893 bio_free_map_data(bmd);
894 return ERR_PTR(ret);
895}
896
c5dec1c3
FT
897/**
898 * bio_copy_user - copy user data to bio
899 * @q: destination block queue
152e283f 900 * @map_data: pointer to the rq_map_data holding pages (if necessary)
c5dec1c3
FT
901 * @uaddr: start of user address
902 * @len: length in bytes
903 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 904 * @gfp_mask: memory allocation flags
c5dec1c3
FT
905 *
906 * Prepares and returns a bio for indirect user io, bouncing data
907 * to/from kernel pages as necessary. Must be paired with
908 * call bio_uncopy_user() on io completion.
909 */
152e283f
FT
910struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
911 unsigned long uaddr, unsigned int len,
912 int write_to_vm, gfp_t gfp_mask)
c5dec1c3
FT
913{
914 struct sg_iovec iov;
915
916 iov.iov_base = (void __user *)uaddr;
917 iov.iov_len = len;
918
152e283f 919 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
c5dec1c3
FT
920}
921
165125e1 922static struct bio *__bio_map_user_iov(struct request_queue *q,
f1970baf
JB
923 struct block_device *bdev,
924 struct sg_iovec *iov, int iov_count,
a3bce90e 925 int write_to_vm, gfp_t gfp_mask)
1da177e4 926{
f1970baf
JB
927 int i, j;
928 int nr_pages = 0;
1da177e4
LT
929 struct page **pages;
930 struct bio *bio;
f1970baf
JB
931 int cur_page = 0;
932 int ret, offset;
1da177e4 933
f1970baf
JB
934 for (i = 0; i < iov_count; i++) {
935 unsigned long uaddr = (unsigned long)iov[i].iov_base;
936 unsigned long len = iov[i].iov_len;
937 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
938 unsigned long start = uaddr >> PAGE_SHIFT;
939
940 nr_pages += end - start;
941 /*
ad2d7225 942 * buffer must be aligned to at least hardsector size for now
f1970baf 943 */
ad2d7225 944 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
945 return ERR_PTR(-EINVAL);
946 }
947
948 if (!nr_pages)
1da177e4
LT
949 return ERR_PTR(-EINVAL);
950
a9e9dc24 951 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
952 if (!bio)
953 return ERR_PTR(-ENOMEM);
954
955 ret = -ENOMEM;
a3bce90e 956 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
957 if (!pages)
958 goto out;
959
f1970baf
JB
960 for (i = 0; i < iov_count; i++) {
961 unsigned long uaddr = (unsigned long)iov[i].iov_base;
962 unsigned long len = iov[i].iov_len;
963 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
964 unsigned long start = uaddr >> PAGE_SHIFT;
965 const int local_nr_pages = end - start;
966 const int page_limit = cur_page + local_nr_pages;
967
f5dd33c4
NP
968 ret = get_user_pages_fast(uaddr, local_nr_pages,
969 write_to_vm, &pages[cur_page]);
99172157
JA
970 if (ret < local_nr_pages) {
971 ret = -EFAULT;
f1970baf 972 goto out_unmap;
99172157 973 }
f1970baf
JB
974
975 offset = uaddr & ~PAGE_MASK;
976 for (j = cur_page; j < page_limit; j++) {
977 unsigned int bytes = PAGE_SIZE - offset;
978
979 if (len <= 0)
980 break;
981
982 if (bytes > len)
983 bytes = len;
984
985 /*
986 * sorry...
987 */
defd94b7
MC
988 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
989 bytes)
f1970baf
JB
990 break;
991
992 len -= bytes;
993 offset = 0;
994 }
1da177e4 995
f1970baf 996 cur_page = j;
1da177e4 997 /*
f1970baf 998 * release the pages we didn't map into the bio, if any
1da177e4 999 */
f1970baf
JB
1000 while (j < page_limit)
1001 page_cache_release(pages[j++]);
1da177e4
LT
1002 }
1003
1da177e4
LT
1004 kfree(pages);
1005
1006 /*
1007 * set data direction, and check if mapped pages need bouncing
1008 */
1009 if (!write_to_vm)
1010 bio->bi_rw |= (1 << BIO_RW);
1011
f1970baf 1012 bio->bi_bdev = bdev;
1da177e4
LT
1013 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1014 return bio;
f1970baf
JB
1015
1016 out_unmap:
1017 for (i = 0; i < nr_pages; i++) {
1018 if(!pages[i])
1019 break;
1020 page_cache_release(pages[i]);
1021 }
1022 out:
1da177e4
LT
1023 kfree(pages);
1024 bio_put(bio);
1025 return ERR_PTR(ret);
1026}
1027
1028/**
1029 * bio_map_user - map user address into bio
165125e1 1030 * @q: the struct request_queue for the bio
1da177e4
LT
1031 * @bdev: destination block device
1032 * @uaddr: start of user address
1033 * @len: length in bytes
1034 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1035 * @gfp_mask: memory allocation flags
1da177e4
LT
1036 *
1037 * Map the user space address into a bio suitable for io to a block
1038 * device. Returns an error pointer in case of error.
1039 */
165125e1 1040struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
a3bce90e
FT
1041 unsigned long uaddr, unsigned int len, int write_to_vm,
1042 gfp_t gfp_mask)
f1970baf
JB
1043{
1044 struct sg_iovec iov;
1045
3f70353e 1046 iov.iov_base = (void __user *)uaddr;
f1970baf
JB
1047 iov.iov_len = len;
1048
a3bce90e 1049 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
f1970baf
JB
1050}
1051
1052/**
1053 * bio_map_user_iov - map user sg_iovec table into bio
165125e1 1054 * @q: the struct request_queue for the bio
f1970baf
JB
1055 * @bdev: destination block device
1056 * @iov: the iovec.
1057 * @iov_count: number of elements in the iovec
1058 * @write_to_vm: bool indicating writing to pages or not
a3bce90e 1059 * @gfp_mask: memory allocation flags
f1970baf
JB
1060 *
1061 * Map the user space address into a bio suitable for io to a block
1062 * device. Returns an error pointer in case of error.
1063 */
165125e1 1064struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
f1970baf 1065 struct sg_iovec *iov, int iov_count,
a3bce90e 1066 int write_to_vm, gfp_t gfp_mask)
1da177e4
LT
1067{
1068 struct bio *bio;
1069
a3bce90e
FT
1070 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1071 gfp_mask);
1da177e4
LT
1072 if (IS_ERR(bio))
1073 return bio;
1074
1075 /*
1076 * subtle -- if __bio_map_user() ended up bouncing a bio,
1077 * it would normally disappear when its bi_end_io is run.
1078 * however, we need it for the unmap, so grab an extra
1079 * reference to it
1080 */
1081 bio_get(bio);
1082
0e75f906 1083 return bio;
1da177e4
LT
1084}
1085
1086static void __bio_unmap_user(struct bio *bio)
1087{
1088 struct bio_vec *bvec;
1089 int i;
1090
1091 /*
1092 * make sure we dirty pages we wrote to
1093 */
1094 __bio_for_each_segment(bvec, bio, i, 0) {
1095 if (bio_data_dir(bio) == READ)
1096 set_page_dirty_lock(bvec->bv_page);
1097
1098 page_cache_release(bvec->bv_page);
1099 }
1100
1101 bio_put(bio);
1102}
1103
1104/**
1105 * bio_unmap_user - unmap a bio
1106 * @bio: the bio being unmapped
1107 *
1108 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1109 * a process context.
1110 *
1111 * bio_unmap_user() may sleep.
1112 */
1113void bio_unmap_user(struct bio *bio)
1114{
1115 __bio_unmap_user(bio);
1116 bio_put(bio);
1117}
1118
6712ecf8 1119static void bio_map_kern_endio(struct bio *bio, int err)
b823825e 1120{
b823825e 1121 bio_put(bio);
b823825e
JA
1122}
1123
1124
165125e1 1125static struct bio *__bio_map_kern(struct request_queue *q, void *data,
27496a8c 1126 unsigned int len, gfp_t gfp_mask)
df46b9a4
MC
1127{
1128 unsigned long kaddr = (unsigned long)data;
1129 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1130 unsigned long start = kaddr >> PAGE_SHIFT;
1131 const int nr_pages = end - start;
1132 int offset, i;
1133 struct bio *bio;
1134
a9e9dc24 1135 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1136 if (!bio)
1137 return ERR_PTR(-ENOMEM);
1138
1139 offset = offset_in_page(kaddr);
1140 for (i = 0; i < nr_pages; i++) {
1141 unsigned int bytes = PAGE_SIZE - offset;
1142
1143 if (len <= 0)
1144 break;
1145
1146 if (bytes > len)
1147 bytes = len;
1148
defd94b7
MC
1149 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1150 offset) < bytes)
df46b9a4
MC
1151 break;
1152
1153 data += bytes;
1154 len -= bytes;
1155 offset = 0;
1156 }
1157
b823825e 1158 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1159 return bio;
1160}
1161
1162/**
1163 * bio_map_kern - map kernel address into bio
165125e1 1164 * @q: the struct request_queue for the bio
df46b9a4
MC
1165 * @data: pointer to buffer to map
1166 * @len: length in bytes
1167 * @gfp_mask: allocation flags for bio allocation
1168 *
1169 * Map the kernel address into a bio suitable for io to a block
1170 * device. Returns an error pointer in case of error.
1171 */
165125e1 1172struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
27496a8c 1173 gfp_t gfp_mask)
df46b9a4
MC
1174{
1175 struct bio *bio;
1176
1177 bio = __bio_map_kern(q, data, len, gfp_mask);
1178 if (IS_ERR(bio))
1179 return bio;
1180
1181 if (bio->bi_size == len)
1182 return bio;
1183
1184 /*
1185 * Don't support partial mappings.
1186 */
1187 bio_put(bio);
1188 return ERR_PTR(-EINVAL);
1189}
1190
68154e90
FT
1191static void bio_copy_kern_endio(struct bio *bio, int err)
1192{
1193 struct bio_vec *bvec;
1194 const int read = bio_data_dir(bio) == READ;
76029ff3 1195 struct bio_map_data *bmd = bio->bi_private;
68154e90 1196 int i;
76029ff3 1197 char *p = bmd->sgvecs[0].iov_base;
68154e90
FT
1198
1199 __bio_for_each_segment(bvec, bio, i, 0) {
1200 char *addr = page_address(bvec->bv_page);
76029ff3 1201 int len = bmd->iovecs[i].bv_len;
68154e90 1202
4fc981ef 1203 if (read)
76029ff3 1204 memcpy(p, addr, len);
68154e90
FT
1205
1206 __free_page(bvec->bv_page);
76029ff3 1207 p += len;
68154e90
FT
1208 }
1209
76029ff3 1210 bio_free_map_data(bmd);
68154e90
FT
1211 bio_put(bio);
1212}
1213
1214/**
1215 * bio_copy_kern - copy kernel address into bio
1216 * @q: the struct request_queue for the bio
1217 * @data: pointer to buffer to copy
1218 * @len: length in bytes
1219 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1220 * @reading: data direction is READ
68154e90
FT
1221 *
1222 * copy the kernel address into a bio suitable for io to a block
1223 * device. Returns an error pointer in case of error.
1224 */
1225struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1226 gfp_t gfp_mask, int reading)
1227{
68154e90
FT
1228 struct bio *bio;
1229 struct bio_vec *bvec;
4d8ab62e 1230 int i;
68154e90 1231
4d8ab62e
FT
1232 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1233 if (IS_ERR(bio))
1234 return bio;
68154e90
FT
1235
1236 if (!reading) {
1237 void *p = data;
1238
1239 bio_for_each_segment(bvec, bio, i) {
1240 char *addr = page_address(bvec->bv_page);
1241
1242 memcpy(addr, p, bvec->bv_len);
1243 p += bvec->bv_len;
1244 }
1245 }
1246
68154e90 1247 bio->bi_end_io = bio_copy_kern_endio;
76029ff3 1248
68154e90 1249 return bio;
68154e90
FT
1250}
1251
1da177e4
LT
1252/*
1253 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1254 * for performing direct-IO in BIOs.
1255 *
1256 * The problem is that we cannot run set_page_dirty() from interrupt context
1257 * because the required locks are not interrupt-safe. So what we can do is to
1258 * mark the pages dirty _before_ performing IO. And in interrupt context,
1259 * check that the pages are still dirty. If so, fine. If not, redirty them
1260 * in process context.
1261 *
1262 * We special-case compound pages here: normally this means reads into hugetlb
1263 * pages. The logic in here doesn't really work right for compound pages
1264 * because the VM does not uniformly chase down the head page in all cases.
1265 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1266 * handle them at all. So we skip compound pages here at an early stage.
1267 *
1268 * Note that this code is very hard to test under normal circumstances because
1269 * direct-io pins the pages with get_user_pages(). This makes
1270 * is_page_cache_freeable return false, and the VM will not clean the pages.
1271 * But other code (eg, pdflush) could clean the pages if they are mapped
1272 * pagecache.
1273 *
1274 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1275 * deferred bio dirtying paths.
1276 */
1277
1278/*
1279 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1280 */
1281void bio_set_pages_dirty(struct bio *bio)
1282{
1283 struct bio_vec *bvec = bio->bi_io_vec;
1284 int i;
1285
1286 for (i = 0; i < bio->bi_vcnt; i++) {
1287 struct page *page = bvec[i].bv_page;
1288
1289 if (page && !PageCompound(page))
1290 set_page_dirty_lock(page);
1291 }
1292}
1293
86b6c7a7 1294static void bio_release_pages(struct bio *bio)
1da177e4
LT
1295{
1296 struct bio_vec *bvec = bio->bi_io_vec;
1297 int i;
1298
1299 for (i = 0; i < bio->bi_vcnt; i++) {
1300 struct page *page = bvec[i].bv_page;
1301
1302 if (page)
1303 put_page(page);
1304 }
1305}
1306
1307/*
1308 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1309 * If they are, then fine. If, however, some pages are clean then they must
1310 * have been written out during the direct-IO read. So we take another ref on
1311 * the BIO and the offending pages and re-dirty the pages in process context.
1312 *
1313 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1314 * here on. It will run one page_cache_release() against each page and will
1315 * run one bio_put() against the BIO.
1316 */
1317
65f27f38 1318static void bio_dirty_fn(struct work_struct *work);
1da177e4 1319
65f27f38 1320static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1321static DEFINE_SPINLOCK(bio_dirty_lock);
1322static struct bio *bio_dirty_list;
1323
1324/*
1325 * This runs in process context
1326 */
65f27f38 1327static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1328{
1329 unsigned long flags;
1330 struct bio *bio;
1331
1332 spin_lock_irqsave(&bio_dirty_lock, flags);
1333 bio = bio_dirty_list;
1334 bio_dirty_list = NULL;
1335 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1336
1337 while (bio) {
1338 struct bio *next = bio->bi_private;
1339
1340 bio_set_pages_dirty(bio);
1341 bio_release_pages(bio);
1342 bio_put(bio);
1343 bio = next;
1344 }
1345}
1346
1347void bio_check_pages_dirty(struct bio *bio)
1348{
1349 struct bio_vec *bvec = bio->bi_io_vec;
1350 int nr_clean_pages = 0;
1351 int i;
1352
1353 for (i = 0; i < bio->bi_vcnt; i++) {
1354 struct page *page = bvec[i].bv_page;
1355
1356 if (PageDirty(page) || PageCompound(page)) {
1357 page_cache_release(page);
1358 bvec[i].bv_page = NULL;
1359 } else {
1360 nr_clean_pages++;
1361 }
1362 }
1363
1364 if (nr_clean_pages) {
1365 unsigned long flags;
1366
1367 spin_lock_irqsave(&bio_dirty_lock, flags);
1368 bio->bi_private = bio_dirty_list;
1369 bio_dirty_list = bio;
1370 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1371 schedule_work(&bio_dirty_work);
1372 } else {
1373 bio_put(bio);
1374 }
1375}
1376
1377/**
1378 * bio_endio - end I/O on a bio
1379 * @bio: bio
1da177e4
LT
1380 * @error: error, if any
1381 *
1382 * Description:
6712ecf8 1383 * bio_endio() will end I/O on the whole bio. bio_endio() is the
5bb23a68
N
1384 * preferred way to end I/O on a bio, it takes care of clearing
1385 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1386 * established -Exxxx (-EIO, for instance) error values in case
1387 * something went wrong. Noone should call bi_end_io() directly on a
1388 * bio unless they own it and thus know that it has an end_io
1389 * function.
1da177e4 1390 **/
6712ecf8 1391void bio_endio(struct bio *bio, int error)
1da177e4
LT
1392{
1393 if (error)
1394 clear_bit(BIO_UPTODATE, &bio->bi_flags);
9cc54d40
N
1395 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1396 error = -EIO;
1da177e4 1397
5bb23a68 1398 if (bio->bi_end_io)
6712ecf8 1399 bio->bi_end_io(bio, error);
1da177e4
LT
1400}
1401
1402void bio_pair_release(struct bio_pair *bp)
1403{
1404 if (atomic_dec_and_test(&bp->cnt)) {
1405 struct bio *master = bp->bio1.bi_private;
1406
6712ecf8 1407 bio_endio(master, bp->error);
1da177e4
LT
1408 mempool_free(bp, bp->bio2.bi_private);
1409 }
1410}
1411
6712ecf8 1412static void bio_pair_end_1(struct bio *bi, int err)
1da177e4
LT
1413{
1414 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1415
1416 if (err)
1417 bp->error = err;
1418
1da177e4 1419 bio_pair_release(bp);
1da177e4
LT
1420}
1421
6712ecf8 1422static void bio_pair_end_2(struct bio *bi, int err)
1da177e4
LT
1423{
1424 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1425
1426 if (err)
1427 bp->error = err;
1428
1da177e4 1429 bio_pair_release(bp);
1da177e4
LT
1430}
1431
1432/*
c7eee1b8 1433 * split a bio - only worry about a bio with a single page in its iovec
1da177e4 1434 */
6feef531 1435struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1da177e4 1436{
6feef531 1437 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1da177e4
LT
1438
1439 if (!bp)
1440 return bp;
1441
5f3ea37c 1442 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
2056a782
JA
1443 bi->bi_sector + first_sectors);
1444
1da177e4
LT
1445 BUG_ON(bi->bi_vcnt != 1);
1446 BUG_ON(bi->bi_idx != 0);
1447 atomic_set(&bp->cnt, 3);
1448 bp->error = 0;
1449 bp->bio1 = *bi;
1450 bp->bio2 = *bi;
1451 bp->bio2.bi_sector += first_sectors;
1452 bp->bio2.bi_size -= first_sectors << 9;
1453 bp->bio1.bi_size = first_sectors << 9;
1454
1455 bp->bv1 = bi->bi_io_vec[0];
1456 bp->bv2 = bi->bi_io_vec[0];
1457 bp->bv2.bv_offset += first_sectors << 9;
1458 bp->bv2.bv_len -= first_sectors << 9;
1459 bp->bv1.bv_len = first_sectors << 9;
1460
1461 bp->bio1.bi_io_vec = &bp->bv1;
1462 bp->bio2.bi_io_vec = &bp->bv2;
1463
a2eb0c10
N
1464 bp->bio1.bi_max_vecs = 1;
1465 bp->bio2.bi_max_vecs = 1;
1466
1da177e4
LT
1467 bp->bio1.bi_end_io = bio_pair_end_1;
1468 bp->bio2.bi_end_io = bio_pair_end_2;
1469
1470 bp->bio1.bi_private = bi;
6feef531 1471 bp->bio2.bi_private = bio_split_pool;
1da177e4 1472
7ba1ba12
MP
1473 if (bio_integrity(bi))
1474 bio_integrity_split(bi, bp, first_sectors);
1475
1da177e4
LT
1476 return bp;
1477}
1478
ad3316bf
MP
1479/**
1480 * bio_sector_offset - Find hardware sector offset in bio
1481 * @bio: bio to inspect
1482 * @index: bio_vec index
1483 * @offset: offset in bv_page
1484 *
1485 * Return the number of hardware sectors between beginning of bio
1486 * and an end point indicated by a bio_vec index and an offset
1487 * within that vector's page.
1488 */
1489sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1490 unsigned int offset)
1491{
e1defc4f 1492 unsigned int sector_sz;
ad3316bf
MP
1493 struct bio_vec *bv;
1494 sector_t sectors;
1495 int i;
1496
e1defc4f 1497 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
ad3316bf
MP
1498 sectors = 0;
1499
1500 if (index >= bio->bi_idx)
1501 index = bio->bi_vcnt - 1;
1502
1503 __bio_for_each_segment(bv, bio, i, 0) {
1504 if (i == index) {
1505 if (offset > bv->bv_offset)
1506 sectors += (offset - bv->bv_offset) / sector_sz;
1507 break;
1508 }
1509
1510 sectors += bv->bv_len / sector_sz;
1511 }
1512
1513 return sectors;
1514}
1515EXPORT_SYMBOL(bio_sector_offset);
1da177e4
LT
1516
1517/*
1518 * create memory pools for biovec's in a bio_set.
1519 * use the global biovec slabs created for general use.
1520 */
5972511b 1521static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1da177e4 1522{
7ff9345f 1523 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1da177e4 1524
7ff9345f
JA
1525 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1526 if (!bs->bvec_pool)
1527 return -ENOMEM;
1da177e4 1528
1da177e4
LT
1529 return 0;
1530}
1531
1532static void biovec_free_pools(struct bio_set *bs)
1533{
7ff9345f 1534 mempool_destroy(bs->bvec_pool);
1da177e4
LT
1535}
1536
1537void bioset_free(struct bio_set *bs)
1538{
1539 if (bs->bio_pool)
1540 mempool_destroy(bs->bio_pool);
1541
1542 biovec_free_pools(bs);
bb799ca0 1543 bio_put_slab(bs);
1da177e4
LT
1544
1545 kfree(bs);
1546}
1547
bb799ca0
JA
1548/**
1549 * bioset_create - Create a bio_set
1550 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1551 * @front_pad: Number of bytes to allocate in front of the returned bio
1552 *
1553 * Description:
1554 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1555 * to ask for a number of bytes to be allocated in front of the bio.
1556 * Front pad allocation is useful for embedding the bio inside
1557 * another structure, to avoid allocating extra data to go with the bio.
1558 * Note that the bio must be embedded at the END of that structure always,
1559 * or things will break badly.
1560 */
1561struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1da177e4 1562{
392ddc32 1563 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1564 struct bio_set *bs;
1da177e4 1565
1b434498 1566 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1567 if (!bs)
1568 return NULL;
1569
bb799ca0 1570 bs->front_pad = front_pad;
1b434498 1571
392ddc32 1572 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1573 if (!bs->bio_slab) {
1574 kfree(bs);
1575 return NULL;
1576 }
1577
1578 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1579 if (!bs->bio_pool)
1580 goto bad;
1581
bb799ca0 1582 if (!biovec_create_pools(bs, pool_size))
1da177e4
LT
1583 return bs;
1584
1585bad:
1586 bioset_free(bs);
1587 return NULL;
1588}
1589
1590static void __init biovec_init_slabs(void)
1591{
1592 int i;
1593
1594 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1595 int size;
1596 struct biovec_slab *bvs = bvec_slabs + i;
1597
a7fcd37c
JA
1598#ifndef CONFIG_BLK_DEV_INTEGRITY
1599 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1600 bvs->slab = NULL;
1601 continue;
1602 }
1603#endif
1604
1da177e4
LT
1605 size = bvs->nr_vecs * sizeof(struct bio_vec);
1606 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1607 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1608 }
1609}
1610
1611static int __init init_bio(void)
1612{
bb799ca0
JA
1613 bio_slab_max = 2;
1614 bio_slab_nr = 0;
1615 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1616 if (!bio_slabs)
1617 panic("bio: can't allocate bios\n");
1da177e4
LT
1618
1619 biovec_init_slabs();
1620
bb799ca0 1621 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
1622 if (!fs_bio_set)
1623 panic("bio: can't allocate bios\n");
1624
0eaae62a
MD
1625 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1626 sizeof(struct bio_pair));
1da177e4
LT
1627 if (!bio_split_pool)
1628 panic("bio: can't create split pool\n");
1629
1630 return 0;
1631}
1632
1633subsys_initcall(init_bio);
1634
1635EXPORT_SYMBOL(bio_alloc);
0a0d96b0 1636EXPORT_SYMBOL(bio_kmalloc);
1da177e4 1637EXPORT_SYMBOL(bio_put);
3676347a 1638EXPORT_SYMBOL(bio_free);
1da177e4
LT
1639EXPORT_SYMBOL(bio_endio);
1640EXPORT_SYMBOL(bio_init);
1641EXPORT_SYMBOL(__bio_clone);
1642EXPORT_SYMBOL(bio_clone);
1643EXPORT_SYMBOL(bio_phys_segments);
1da177e4 1644EXPORT_SYMBOL(bio_add_page);
6e68af66 1645EXPORT_SYMBOL(bio_add_pc_page);
1da177e4 1646EXPORT_SYMBOL(bio_get_nr_vecs);
40044ce0
JA
1647EXPORT_SYMBOL(bio_map_user);
1648EXPORT_SYMBOL(bio_unmap_user);
df46b9a4 1649EXPORT_SYMBOL(bio_map_kern);
68154e90 1650EXPORT_SYMBOL(bio_copy_kern);
1da177e4
LT
1651EXPORT_SYMBOL(bio_pair_release);
1652EXPORT_SYMBOL(bio_split);
1da177e4
LT
1653EXPORT_SYMBOL(bio_copy_user);
1654EXPORT_SYMBOL(bio_uncopy_user);
1655EXPORT_SYMBOL(bioset_create);
1656EXPORT_SYMBOL(bioset_free);
1657EXPORT_SYMBOL(bio_alloc_bioset);