]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmscan.c
mm: remove CONFIG_UNEVICTABLE_LRU config option
[net-next-2.6.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
a79311c1
RR
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
1da177e4 58 /* This context's GFP mask */
6daa0e28 59 gfp_t gfp_mask;
1da177e4
LT
60
61 int may_writepage;
62
a6dc60f8
JW
63 /* Can mapped pages be reclaimed? */
64 int may_unmap;
f1fd1067 65
2e2e4259
KM
66 /* Can pages be swapped as part of reclaim? */
67 int may_swap;
68
1da177e4
LT
69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 * In this context, it doesn't matter that we scan the
72 * whole list at once. */
73 int swap_cluster_max;
d6277db4
RW
74
75 int swappiness;
408d8544
NP
76
77 int all_unreclaimable;
5ad333eb
AW
78
79 int order;
66e1707b
BS
80
81 /* Which cgroup do we reclaim from */
82 struct mem_cgroup *mem_cgroup;
83
327c0e96
KH
84 /*
85 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 * are scanned.
87 */
88 nodemask_t *nodemask;
89
66e1707b
BS
90 /* Pluggable isolate pages callback */
91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 unsigned long *scanned, int order, int mode,
93 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 94 int active, int file);
1da177e4
LT
95};
96
1da177e4
LT
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
bd1e22b8 131long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
00f0b825 136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 137#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 138#else
e72e2bd6 139#define scanning_global_lru(sc) (1)
91a45470
KH
140#endif
141
6e901571
KM
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144{
e72e2bd6 145 if (!scanning_global_lru(sc))
3e2f41f1
KM
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
6e901571
KM
148 return &zone->reclaim_stat;
149}
150
c9f299d9
KM
151static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
152 enum lru_list lru)
153{
e72e2bd6 154 if (!scanning_global_lru(sc))
a3d8e054
KM
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
c9f299d9
KM
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
1da177e4
LT
161/*
162 * Add a shrinker callback to be called from the vm
163 */
8e1f936b 164void register_shrinker(struct shrinker *shrinker)
1da177e4 165{
8e1f936b
RR
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
1da177e4 170}
8e1f936b 171EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
172
173/*
174 * Remove one
175 */
8e1f936b 176void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
177{
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
1da177e4 181}
8e1f936b 182EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
183ff22b 193 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
b15e0905
AM
201 *
202 * Returns the number of slab objects which we shrunk.
1da177e4 203 */
69e05944
AM
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
1da177e4
LT
206{
207 struct shrinker *shrinker;
69e05944 208 unsigned long ret = 0;
1da177e4
LT
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 214 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
8e1f936b 219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
220
221 delta = (4 * scanned) / shrinker->seeks;
ea164d73 222 delta *= max_pass;
1da177e4
LT
223 do_div(delta, lru_pages + 1);
224 shrinker->nr += delta;
ea164d73 225 if (shrinker->nr < 0) {
88c3bd70
DR
226 printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 "delete nr=%ld\n",
228 shrinker->shrink, shrinker->nr);
ea164d73
AA
229 shrinker->nr = max_pass;
230 }
231
232 /*
233 * Avoid risking looping forever due to too large nr value:
234 * never try to free more than twice the estimate number of
235 * freeable entries.
236 */
237 if (shrinker->nr > max_pass * 2)
238 shrinker->nr = max_pass * 2;
1da177e4
LT
239
240 total_scan = shrinker->nr;
241 shrinker->nr = 0;
242
243 while (total_scan >= SHRINK_BATCH) {
244 long this_scan = SHRINK_BATCH;
245 int shrink_ret;
b15e0905 246 int nr_before;
1da177e4 247
8e1f936b
RR
248 nr_before = (*shrinker->shrink)(0, gfp_mask);
249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
250 if (shrink_ret == -1)
251 break;
b15e0905
AM
252 if (shrink_ret < nr_before)
253 ret += nr_before - shrink_ret;
f8891e5e 254 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
255 total_scan -= this_scan;
256
257 cond_resched();
258 }
259
260 shrinker->nr += total_scan;
261 }
262 up_read(&shrinker_rwsem);
b15e0905 263 return ret;
1da177e4
LT
264}
265
266/* Called without lock on whether page is mapped, so answer is unstable */
267static inline int page_mapping_inuse(struct page *page)
268{
269 struct address_space *mapping;
270
271 /* Page is in somebody's page tables. */
272 if (page_mapped(page))
273 return 1;
274
275 /* Be more reluctant to reclaim swapcache than pagecache */
276 if (PageSwapCache(page))
277 return 1;
278
279 mapping = page_mapping(page);
280 if (!mapping)
281 return 0;
282
283 /* File is mmap'd by somebody? */
284 return mapping_mapped(mapping);
285}
286
287static inline int is_page_cache_freeable(struct page *page)
288{
266cf658 289 return page_count(page) - !!page_has_private(page) == 2;
1da177e4
LT
290}
291
292static int may_write_to_queue(struct backing_dev_info *bdi)
293{
930d9152 294 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
295 return 1;
296 if (!bdi_write_congested(bdi))
297 return 1;
298 if (bdi == current->backing_dev_info)
299 return 1;
300 return 0;
301}
302
303/*
304 * We detected a synchronous write error writing a page out. Probably
305 * -ENOSPC. We need to propagate that into the address_space for a subsequent
306 * fsync(), msync() or close().
307 *
308 * The tricky part is that after writepage we cannot touch the mapping: nothing
309 * prevents it from being freed up. But we have a ref on the page and once
310 * that page is locked, the mapping is pinned.
311 *
312 * We're allowed to run sleeping lock_page() here because we know the caller has
313 * __GFP_FS.
314 */
315static void handle_write_error(struct address_space *mapping,
316 struct page *page, int error)
317{
318 lock_page(page);
3e9f45bd
GC
319 if (page_mapping(page) == mapping)
320 mapping_set_error(mapping, error);
1da177e4
LT
321 unlock_page(page);
322}
323
c661b078
AW
324/* Request for sync pageout. */
325enum pageout_io {
326 PAGEOUT_IO_ASYNC,
327 PAGEOUT_IO_SYNC,
328};
329
04e62a29
CL
330/* possible outcome of pageout() */
331typedef enum {
332 /* failed to write page out, page is locked */
333 PAGE_KEEP,
334 /* move page to the active list, page is locked */
335 PAGE_ACTIVATE,
336 /* page has been sent to the disk successfully, page is unlocked */
337 PAGE_SUCCESS,
338 /* page is clean and locked */
339 PAGE_CLEAN,
340} pageout_t;
341
1da177e4 342/*
1742f19f
AM
343 * pageout is called by shrink_page_list() for each dirty page.
344 * Calls ->writepage().
1da177e4 345 */
c661b078
AW
346static pageout_t pageout(struct page *page, struct address_space *mapping,
347 enum pageout_io sync_writeback)
1da177e4
LT
348{
349 /*
350 * If the page is dirty, only perform writeback if that write
351 * will be non-blocking. To prevent this allocation from being
352 * stalled by pagecache activity. But note that there may be
353 * stalls if we need to run get_block(). We could test
354 * PagePrivate for that.
355 *
356 * If this process is currently in generic_file_write() against
357 * this page's queue, we can perform writeback even if that
358 * will block.
359 *
360 * If the page is swapcache, write it back even if that would
361 * block, for some throttling. This happens by accident, because
362 * swap_backing_dev_info is bust: it doesn't reflect the
363 * congestion state of the swapdevs. Easy to fix, if needed.
364 * See swapfile.c:page_queue_congested().
365 */
366 if (!is_page_cache_freeable(page))
367 return PAGE_KEEP;
368 if (!mapping) {
369 /*
370 * Some data journaling orphaned pages can have
371 * page->mapping == NULL while being dirty with clean buffers.
372 */
266cf658 373 if (page_has_private(page)) {
1da177e4
LT
374 if (try_to_free_buffers(page)) {
375 ClearPageDirty(page);
d40cee24 376 printk("%s: orphaned page\n", __func__);
1da177e4
LT
377 return PAGE_CLEAN;
378 }
379 }
380 return PAGE_KEEP;
381 }
382 if (mapping->a_ops->writepage == NULL)
383 return PAGE_ACTIVATE;
384 if (!may_write_to_queue(mapping->backing_dev_info))
385 return PAGE_KEEP;
386
387 if (clear_page_dirty_for_io(page)) {
388 int res;
389 struct writeback_control wbc = {
390 .sync_mode = WB_SYNC_NONE,
391 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
392 .range_start = 0,
393 .range_end = LLONG_MAX,
1da177e4
LT
394 .nonblocking = 1,
395 .for_reclaim = 1,
396 };
397
398 SetPageReclaim(page);
399 res = mapping->a_ops->writepage(page, &wbc);
400 if (res < 0)
401 handle_write_error(mapping, page, res);
994fc28c 402 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
403 ClearPageReclaim(page);
404 return PAGE_ACTIVATE;
405 }
c661b078
AW
406
407 /*
408 * Wait on writeback if requested to. This happens when
409 * direct reclaiming a large contiguous area and the
410 * first attempt to free a range of pages fails.
411 */
412 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
413 wait_on_page_writeback(page);
414
1da177e4
LT
415 if (!PageWriteback(page)) {
416 /* synchronous write or broken a_ops? */
417 ClearPageReclaim(page);
418 }
e129b5c2 419 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
420 return PAGE_SUCCESS;
421 }
422
423 return PAGE_CLEAN;
424}
425
a649fd92 426/*
e286781d
NP
427 * Same as remove_mapping, but if the page is removed from the mapping, it
428 * gets returned with a refcount of 0.
a649fd92 429 */
e286781d 430static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 431{
28e4d965
NP
432 BUG_ON(!PageLocked(page));
433 BUG_ON(mapping != page_mapping(page));
49d2e9cc 434
19fd6231 435 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 436 /*
0fd0e6b0
NP
437 * The non racy check for a busy page.
438 *
439 * Must be careful with the order of the tests. When someone has
440 * a ref to the page, it may be possible that they dirty it then
441 * drop the reference. So if PageDirty is tested before page_count
442 * here, then the following race may occur:
443 *
444 * get_user_pages(&page);
445 * [user mapping goes away]
446 * write_to(page);
447 * !PageDirty(page) [good]
448 * SetPageDirty(page);
449 * put_page(page);
450 * !page_count(page) [good, discard it]
451 *
452 * [oops, our write_to data is lost]
453 *
454 * Reversing the order of the tests ensures such a situation cannot
455 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
456 * load is not satisfied before that of page->_count.
457 *
458 * Note that if SetPageDirty is always performed via set_page_dirty,
459 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 460 */
e286781d 461 if (!page_freeze_refs(page, 2))
49d2e9cc 462 goto cannot_free;
e286781d
NP
463 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
464 if (unlikely(PageDirty(page))) {
465 page_unfreeze_refs(page, 2);
49d2e9cc 466 goto cannot_free;
e286781d 467 }
49d2e9cc
CL
468
469 if (PageSwapCache(page)) {
470 swp_entry_t swap = { .val = page_private(page) };
471 __delete_from_swap_cache(page);
19fd6231 472 spin_unlock_irq(&mapping->tree_lock);
e767e056 473 mem_cgroup_uncharge_swapcache(page, swap);
49d2e9cc 474 swap_free(swap);
e286781d
NP
475 } else {
476 __remove_from_page_cache(page);
19fd6231 477 spin_unlock_irq(&mapping->tree_lock);
e767e056 478 mem_cgroup_uncharge_cache_page(page);
49d2e9cc
CL
479 }
480
49d2e9cc
CL
481 return 1;
482
483cannot_free:
19fd6231 484 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
485 return 0;
486}
487
e286781d
NP
488/*
489 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
490 * someone else has a ref on the page, abort and return 0. If it was
491 * successfully detached, return 1. Assumes the caller has a single ref on
492 * this page.
493 */
494int remove_mapping(struct address_space *mapping, struct page *page)
495{
496 if (__remove_mapping(mapping, page)) {
497 /*
498 * Unfreezing the refcount with 1 rather than 2 effectively
499 * drops the pagecache ref for us without requiring another
500 * atomic operation.
501 */
502 page_unfreeze_refs(page, 1);
503 return 1;
504 }
505 return 0;
506}
507
894bc310
LS
508/**
509 * putback_lru_page - put previously isolated page onto appropriate LRU list
510 * @page: page to be put back to appropriate lru list
511 *
512 * Add previously isolated @page to appropriate LRU list.
513 * Page may still be unevictable for other reasons.
514 *
515 * lru_lock must not be held, interrupts must be enabled.
516 */
894bc310
LS
517void putback_lru_page(struct page *page)
518{
519 int lru;
520 int active = !!TestClearPageActive(page);
bbfd28ee 521 int was_unevictable = PageUnevictable(page);
894bc310
LS
522
523 VM_BUG_ON(PageLRU(page));
524
525redo:
526 ClearPageUnevictable(page);
527
528 if (page_evictable(page, NULL)) {
529 /*
530 * For evictable pages, we can use the cache.
531 * In event of a race, worst case is we end up with an
532 * unevictable page on [in]active list.
533 * We know how to handle that.
534 */
535 lru = active + page_is_file_cache(page);
536 lru_cache_add_lru(page, lru);
537 } else {
538 /*
539 * Put unevictable pages directly on zone's unevictable
540 * list.
541 */
542 lru = LRU_UNEVICTABLE;
543 add_page_to_unevictable_list(page);
544 }
894bc310
LS
545
546 /*
547 * page's status can change while we move it among lru. If an evictable
548 * page is on unevictable list, it never be freed. To avoid that,
549 * check after we added it to the list, again.
550 */
551 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
552 if (!isolate_lru_page(page)) {
553 put_page(page);
554 goto redo;
555 }
556 /* This means someone else dropped this page from LRU
557 * So, it will be freed or putback to LRU again. There is
558 * nothing to do here.
559 */
560 }
561
bbfd28ee
LS
562 if (was_unevictable && lru != LRU_UNEVICTABLE)
563 count_vm_event(UNEVICTABLE_PGRESCUED);
564 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
565 count_vm_event(UNEVICTABLE_PGCULLED);
566
894bc310
LS
567 put_page(page); /* drop ref from isolate */
568}
569
1da177e4 570/*
1742f19f 571 * shrink_page_list() returns the number of reclaimed pages
1da177e4 572 */
1742f19f 573static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
574 struct scan_control *sc,
575 enum pageout_io sync_writeback)
1da177e4
LT
576{
577 LIST_HEAD(ret_pages);
578 struct pagevec freed_pvec;
579 int pgactivate = 0;
05ff5137 580 unsigned long nr_reclaimed = 0;
1da177e4
LT
581
582 cond_resched();
583
584 pagevec_init(&freed_pvec, 1);
585 while (!list_empty(page_list)) {
586 struct address_space *mapping;
587 struct page *page;
588 int may_enter_fs;
589 int referenced;
590
591 cond_resched();
592
593 page = lru_to_page(page_list);
594 list_del(&page->lru);
595
529ae9aa 596 if (!trylock_page(page))
1da177e4
LT
597 goto keep;
598
725d704e 599 VM_BUG_ON(PageActive(page));
1da177e4
LT
600
601 sc->nr_scanned++;
80e43426 602
b291f000
NP
603 if (unlikely(!page_evictable(page, NULL)))
604 goto cull_mlocked;
894bc310 605
a6dc60f8 606 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
607 goto keep_locked;
608
1da177e4
LT
609 /* Double the slab pressure for mapped and swapcache pages */
610 if (page_mapped(page) || PageSwapCache(page))
611 sc->nr_scanned++;
612
c661b078
AW
613 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
614 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
615
616 if (PageWriteback(page)) {
617 /*
618 * Synchronous reclaim is performed in two passes,
619 * first an asynchronous pass over the list to
620 * start parallel writeback, and a second synchronous
621 * pass to wait for the IO to complete. Wait here
622 * for any page for which writeback has already
623 * started.
624 */
625 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
626 wait_on_page_writeback(page);
4dd4b920 627 else
c661b078
AW
628 goto keep_locked;
629 }
1da177e4 630
bed7161a 631 referenced = page_referenced(page, 1, sc->mem_cgroup);
1da177e4 632 /* In active use or really unfreeable? Activate it. */
5ad333eb
AW
633 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
634 referenced && page_mapping_inuse(page))
1da177e4
LT
635 goto activate_locked;
636
1da177e4
LT
637 /*
638 * Anonymous process memory has backing store?
639 * Try to allocate it some swap space here.
640 */
b291f000 641 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
642 if (!(sc->gfp_mask & __GFP_IO))
643 goto keep_locked;
ac47b003 644 if (!add_to_swap(page))
1da177e4 645 goto activate_locked;
63eb6b93 646 may_enter_fs = 1;
b291f000 647 }
1da177e4
LT
648
649 mapping = page_mapping(page);
1da177e4
LT
650
651 /*
652 * The page is mapped into the page tables of one or more
653 * processes. Try to unmap it here.
654 */
655 if (page_mapped(page) && mapping) {
a48d07af 656 switch (try_to_unmap(page, 0)) {
1da177e4
LT
657 case SWAP_FAIL:
658 goto activate_locked;
659 case SWAP_AGAIN:
660 goto keep_locked;
b291f000
NP
661 case SWAP_MLOCK:
662 goto cull_mlocked;
1da177e4
LT
663 case SWAP_SUCCESS:
664 ; /* try to free the page below */
665 }
666 }
667
668 if (PageDirty(page)) {
5ad333eb 669 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 670 goto keep_locked;
4dd4b920 671 if (!may_enter_fs)
1da177e4 672 goto keep_locked;
52a8363e 673 if (!sc->may_writepage)
1da177e4
LT
674 goto keep_locked;
675
676 /* Page is dirty, try to write it out here */
c661b078 677 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
678 case PAGE_KEEP:
679 goto keep_locked;
680 case PAGE_ACTIVATE:
681 goto activate_locked;
682 case PAGE_SUCCESS:
4dd4b920 683 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
684 goto keep;
685 /*
686 * A synchronous write - probably a ramdisk. Go
687 * ahead and try to reclaim the page.
688 */
529ae9aa 689 if (!trylock_page(page))
1da177e4
LT
690 goto keep;
691 if (PageDirty(page) || PageWriteback(page))
692 goto keep_locked;
693 mapping = page_mapping(page);
694 case PAGE_CLEAN:
695 ; /* try to free the page below */
696 }
697 }
698
699 /*
700 * If the page has buffers, try to free the buffer mappings
701 * associated with this page. If we succeed we try to free
702 * the page as well.
703 *
704 * We do this even if the page is PageDirty().
705 * try_to_release_page() does not perform I/O, but it is
706 * possible for a page to have PageDirty set, but it is actually
707 * clean (all its buffers are clean). This happens if the
708 * buffers were written out directly, with submit_bh(). ext3
894bc310 709 * will do this, as well as the blockdev mapping.
1da177e4
LT
710 * try_to_release_page() will discover that cleanness and will
711 * drop the buffers and mark the page clean - it can be freed.
712 *
713 * Rarely, pages can have buffers and no ->mapping. These are
714 * the pages which were not successfully invalidated in
715 * truncate_complete_page(). We try to drop those buffers here
716 * and if that worked, and the page is no longer mapped into
717 * process address space (page_count == 1) it can be freed.
718 * Otherwise, leave the page on the LRU so it is swappable.
719 */
266cf658 720 if (page_has_private(page)) {
1da177e4
LT
721 if (!try_to_release_page(page, sc->gfp_mask))
722 goto activate_locked;
e286781d
NP
723 if (!mapping && page_count(page) == 1) {
724 unlock_page(page);
725 if (put_page_testzero(page))
726 goto free_it;
727 else {
728 /*
729 * rare race with speculative reference.
730 * the speculative reference will free
731 * this page shortly, so we may
732 * increment nr_reclaimed here (and
733 * leave it off the LRU).
734 */
735 nr_reclaimed++;
736 continue;
737 }
738 }
1da177e4
LT
739 }
740
e286781d 741 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 742 goto keep_locked;
1da177e4 743
a978d6f5
NP
744 /*
745 * At this point, we have no other references and there is
746 * no way to pick any more up (removed from LRU, removed
747 * from pagecache). Can use non-atomic bitops now (and
748 * we obviously don't have to worry about waking up a process
749 * waiting on the page lock, because there are no references.
750 */
751 __clear_page_locked(page);
e286781d 752free_it:
05ff5137 753 nr_reclaimed++;
e286781d
NP
754 if (!pagevec_add(&freed_pvec, page)) {
755 __pagevec_free(&freed_pvec);
756 pagevec_reinit(&freed_pvec);
757 }
1da177e4
LT
758 continue;
759
b291f000 760cull_mlocked:
63d6c5ad
HD
761 if (PageSwapCache(page))
762 try_to_free_swap(page);
b291f000
NP
763 unlock_page(page);
764 putback_lru_page(page);
765 continue;
766
1da177e4 767activate_locked:
68a22394
RR
768 /* Not a candidate for swapping, so reclaim swap space. */
769 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 770 try_to_free_swap(page);
894bc310 771 VM_BUG_ON(PageActive(page));
1da177e4
LT
772 SetPageActive(page);
773 pgactivate++;
774keep_locked:
775 unlock_page(page);
776keep:
777 list_add(&page->lru, &ret_pages);
b291f000 778 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
779 }
780 list_splice(&ret_pages, page_list);
781 if (pagevec_count(&freed_pvec))
e286781d 782 __pagevec_free(&freed_pvec);
f8891e5e 783 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 784 return nr_reclaimed;
1da177e4
LT
785}
786
5ad333eb
AW
787/* LRU Isolation modes. */
788#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
789#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
790#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
791
792/*
793 * Attempt to remove the specified page from its LRU. Only take this page
794 * if it is of the appropriate PageActive status. Pages which are being
795 * freed elsewhere are also ignored.
796 *
797 * page: page to consider
798 * mode: one of the LRU isolation modes defined above
799 *
800 * returns 0 on success, -ve errno on failure.
801 */
4f98a2fe 802int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
803{
804 int ret = -EINVAL;
805
806 /* Only take pages on the LRU. */
807 if (!PageLRU(page))
808 return ret;
809
810 /*
811 * When checking the active state, we need to be sure we are
812 * dealing with comparible boolean values. Take the logical not
813 * of each.
814 */
815 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
816 return ret;
817
4f98a2fe
RR
818 if (mode != ISOLATE_BOTH && (!page_is_file_cache(page) != !file))
819 return ret;
820
894bc310
LS
821 /*
822 * When this function is being called for lumpy reclaim, we
823 * initially look into all LRU pages, active, inactive and
824 * unevictable; only give shrink_page_list evictable pages.
825 */
826 if (PageUnevictable(page))
827 return ret;
828
5ad333eb 829 ret = -EBUSY;
08e552c6 830
5ad333eb
AW
831 if (likely(get_page_unless_zero(page))) {
832 /*
833 * Be careful not to clear PageLRU until after we're
834 * sure the page is not being freed elsewhere -- the
835 * page release code relies on it.
836 */
837 ClearPageLRU(page);
838 ret = 0;
08e552c6 839 mem_cgroup_del_lru(page);
5ad333eb
AW
840 }
841
842 return ret;
843}
844
1da177e4
LT
845/*
846 * zone->lru_lock is heavily contended. Some of the functions that
847 * shrink the lists perform better by taking out a batch of pages
848 * and working on them outside the LRU lock.
849 *
850 * For pagecache intensive workloads, this function is the hottest
851 * spot in the kernel (apart from copy_*_user functions).
852 *
853 * Appropriate locks must be held before calling this function.
854 *
855 * @nr_to_scan: The number of pages to look through on the list.
856 * @src: The LRU list to pull pages off.
857 * @dst: The temp list to put pages on to.
858 * @scanned: The number of pages that were scanned.
5ad333eb
AW
859 * @order: The caller's attempted allocation order
860 * @mode: One of the LRU isolation modes
4f98a2fe 861 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
862 *
863 * returns how many pages were moved onto *@dst.
864 */
69e05944
AM
865static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
866 struct list_head *src, struct list_head *dst,
4f98a2fe 867 unsigned long *scanned, int order, int mode, int file)
1da177e4 868{
69e05944 869 unsigned long nr_taken = 0;
c9b02d97 870 unsigned long scan;
1da177e4 871
c9b02d97 872 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
873 struct page *page;
874 unsigned long pfn;
875 unsigned long end_pfn;
876 unsigned long page_pfn;
877 int zone_id;
878
1da177e4
LT
879 page = lru_to_page(src);
880 prefetchw_prev_lru_page(page, src, flags);
881
725d704e 882 VM_BUG_ON(!PageLRU(page));
8d438f96 883
4f98a2fe 884 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
885 case 0:
886 list_move(&page->lru, dst);
7c8ee9a8 887 nr_taken++;
5ad333eb
AW
888 break;
889
890 case -EBUSY:
891 /* else it is being freed elsewhere */
892 list_move(&page->lru, src);
893 continue;
46453a6e 894
5ad333eb
AW
895 default:
896 BUG();
897 }
898
899 if (!order)
900 continue;
901
902 /*
903 * Attempt to take all pages in the order aligned region
904 * surrounding the tag page. Only take those pages of
905 * the same active state as that tag page. We may safely
906 * round the target page pfn down to the requested order
907 * as the mem_map is guarenteed valid out to MAX_ORDER,
908 * where that page is in a different zone we will detect
909 * it from its zone id and abort this block scan.
910 */
911 zone_id = page_zone_id(page);
912 page_pfn = page_to_pfn(page);
913 pfn = page_pfn & ~((1 << order) - 1);
914 end_pfn = pfn + (1 << order);
915 for (; pfn < end_pfn; pfn++) {
916 struct page *cursor_page;
917
918 /* The target page is in the block, ignore it. */
919 if (unlikely(pfn == page_pfn))
920 continue;
921
922 /* Avoid holes within the zone. */
923 if (unlikely(!pfn_valid_within(pfn)))
924 break;
925
926 cursor_page = pfn_to_page(pfn);
4f98a2fe 927
5ad333eb
AW
928 /* Check that we have not crossed a zone boundary. */
929 if (unlikely(page_zone_id(cursor_page) != zone_id))
930 continue;
4f98a2fe 931 switch (__isolate_lru_page(cursor_page, mode, file)) {
5ad333eb
AW
932 case 0:
933 list_move(&cursor_page->lru, dst);
934 nr_taken++;
935 scan++;
936 break;
937
938 case -EBUSY:
939 /* else it is being freed elsewhere */
940 list_move(&cursor_page->lru, src);
941 default:
894bc310 942 break; /* ! on LRU or wrong list */
5ad333eb
AW
943 }
944 }
1da177e4
LT
945 }
946
947 *scanned = scan;
948 return nr_taken;
949}
950
66e1707b
BS
951static unsigned long isolate_pages_global(unsigned long nr,
952 struct list_head *dst,
953 unsigned long *scanned, int order,
954 int mode, struct zone *z,
955 struct mem_cgroup *mem_cont,
4f98a2fe 956 int active, int file)
66e1707b 957{
4f98a2fe 958 int lru = LRU_BASE;
66e1707b 959 if (active)
4f98a2fe
RR
960 lru += LRU_ACTIVE;
961 if (file)
962 lru += LRU_FILE;
963 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
964 mode, !!file);
66e1707b
BS
965}
966
5ad333eb
AW
967/*
968 * clear_active_flags() is a helper for shrink_active_list(), clearing
969 * any active bits from the pages in the list.
970 */
4f98a2fe
RR
971static unsigned long clear_active_flags(struct list_head *page_list,
972 unsigned int *count)
5ad333eb
AW
973{
974 int nr_active = 0;
4f98a2fe 975 int lru;
5ad333eb
AW
976 struct page *page;
977
4f98a2fe
RR
978 list_for_each_entry(page, page_list, lru) {
979 lru = page_is_file_cache(page);
5ad333eb 980 if (PageActive(page)) {
4f98a2fe 981 lru += LRU_ACTIVE;
5ad333eb
AW
982 ClearPageActive(page);
983 nr_active++;
984 }
4f98a2fe
RR
985 count[lru]++;
986 }
5ad333eb
AW
987
988 return nr_active;
989}
990
62695a84
NP
991/**
992 * isolate_lru_page - tries to isolate a page from its LRU list
993 * @page: page to isolate from its LRU list
994 *
995 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
996 * vmstat statistic corresponding to whatever LRU list the page was on.
997 *
998 * Returns 0 if the page was removed from an LRU list.
999 * Returns -EBUSY if the page was not on an LRU list.
1000 *
1001 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1002 * the active list, it will have PageActive set. If it was found on
1003 * the unevictable list, it will have the PageUnevictable bit set. That flag
1004 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1005 *
1006 * The vmstat statistic corresponding to the list on which the page was
1007 * found will be decremented.
1008 *
1009 * Restrictions:
1010 * (1) Must be called with an elevated refcount on the page. This is a
1011 * fundamentnal difference from isolate_lru_pages (which is called
1012 * without a stable reference).
1013 * (2) the lru_lock must not be held.
1014 * (3) interrupts must be enabled.
1015 */
1016int isolate_lru_page(struct page *page)
1017{
1018 int ret = -EBUSY;
1019
1020 if (PageLRU(page)) {
1021 struct zone *zone = page_zone(page);
1022
1023 spin_lock_irq(&zone->lru_lock);
1024 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1025 int lru = page_lru(page);
62695a84
NP
1026 ret = 0;
1027 ClearPageLRU(page);
4f98a2fe 1028
4f98a2fe 1029 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1030 }
1031 spin_unlock_irq(&zone->lru_lock);
1032 }
1033 return ret;
1034}
1035
1da177e4 1036/*
1742f19f
AM
1037 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1038 * of reclaimed pages
1da177e4 1039 */
1742f19f 1040static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1041 struct zone *zone, struct scan_control *sc,
1042 int priority, int file)
1da177e4
LT
1043{
1044 LIST_HEAD(page_list);
1045 struct pagevec pvec;
69e05944 1046 unsigned long nr_scanned = 0;
05ff5137 1047 unsigned long nr_reclaimed = 0;
6e901571 1048 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
78dc583d
KM
1049 int lumpy_reclaim = 0;
1050
1051 /*
1052 * If we need a large contiguous chunk of memory, or have
1053 * trouble getting a small set of contiguous pages, we
1054 * will reclaim both active and inactive pages.
1055 *
1056 * We use the same threshold as pageout congestion_wait below.
1057 */
1058 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1059 lumpy_reclaim = 1;
1060 else if (sc->order && priority < DEF_PRIORITY - 2)
1061 lumpy_reclaim = 1;
1da177e4
LT
1062
1063 pagevec_init(&pvec, 1);
1064
1065 lru_add_drain();
1066 spin_lock_irq(&zone->lru_lock);
69e05944 1067 do {
1da177e4 1068 struct page *page;
69e05944
AM
1069 unsigned long nr_taken;
1070 unsigned long nr_scan;
1071 unsigned long nr_freed;
5ad333eb 1072 unsigned long nr_active;
4f98a2fe 1073 unsigned int count[NR_LRU_LISTS] = { 0, };
78dc583d 1074 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
1da177e4 1075
66e1707b 1076 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
4f98a2fe
RR
1077 &page_list, &nr_scan, sc->order, mode,
1078 zone, sc->mem_cgroup, 0, file);
1079 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1080 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1081
4f98a2fe
RR
1082 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1083 -count[LRU_ACTIVE_FILE]);
1084 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1085 -count[LRU_INACTIVE_FILE]);
1086 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1087 -count[LRU_ACTIVE_ANON]);
1088 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1089 -count[LRU_INACTIVE_ANON]);
1090
e72e2bd6 1091 if (scanning_global_lru(sc))
1cfb419b 1092 zone->pages_scanned += nr_scan;
3e2f41f1
KM
1093
1094 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1095 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1096 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1097 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1098
1da177e4
LT
1099 spin_unlock_irq(&zone->lru_lock);
1100
69e05944 1101 nr_scanned += nr_scan;
c661b078
AW
1102 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1103
1104 /*
1105 * If we are direct reclaiming for contiguous pages and we do
1106 * not reclaim everything in the list, try again and wait
1107 * for IO to complete. This will stall high-order allocations
1108 * but that should be acceptable to the caller
1109 */
1110 if (nr_freed < nr_taken && !current_is_kswapd() &&
78dc583d 1111 lumpy_reclaim) {
c661b078
AW
1112 congestion_wait(WRITE, HZ/10);
1113
1114 /*
1115 * The attempt at page out may have made some
1116 * of the pages active, mark them inactive again.
1117 */
4f98a2fe 1118 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1119 count_vm_events(PGDEACTIVATE, nr_active);
1120
1121 nr_freed += shrink_page_list(&page_list, sc,
1122 PAGEOUT_IO_SYNC);
1123 }
1124
05ff5137 1125 nr_reclaimed += nr_freed;
a74609fa
NP
1126 local_irq_disable();
1127 if (current_is_kswapd()) {
f8891e5e
CL
1128 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
1129 __count_vm_events(KSWAPD_STEAL, nr_freed);
e72e2bd6 1130 } else if (scanning_global_lru(sc))
f8891e5e 1131 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
1cfb419b 1132
918d3f90 1133 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa 1134
fb8d14e1
WF
1135 if (nr_taken == 0)
1136 goto done;
1137
a74609fa 1138 spin_lock(&zone->lru_lock);
1da177e4
LT
1139 /*
1140 * Put back any unfreeable pages.
1141 */
1142 while (!list_empty(&page_list)) {
894bc310 1143 int lru;
1da177e4 1144 page = lru_to_page(&page_list);
725d704e 1145 VM_BUG_ON(PageLRU(page));
1da177e4 1146 list_del(&page->lru);
894bc310
LS
1147 if (unlikely(!page_evictable(page, NULL))) {
1148 spin_unlock_irq(&zone->lru_lock);
1149 putback_lru_page(page);
1150 spin_lock_irq(&zone->lru_lock);
1151 continue;
1152 }
1153 SetPageLRU(page);
1154 lru = page_lru(page);
1155 add_page_to_lru_list(zone, page, lru);
3e2f41f1 1156 if (PageActive(page)) {
4f98a2fe 1157 int file = !!page_is_file_cache(page);
6e901571 1158 reclaim_stat->recent_rotated[file]++;
4f98a2fe 1159 }
1da177e4
LT
1160 if (!pagevec_add(&pvec, page)) {
1161 spin_unlock_irq(&zone->lru_lock);
1162 __pagevec_release(&pvec);
1163 spin_lock_irq(&zone->lru_lock);
1164 }
1165 }
69e05944 1166 } while (nr_scanned < max_scan);
fb8d14e1 1167 spin_unlock(&zone->lru_lock);
1da177e4 1168done:
fb8d14e1 1169 local_irq_enable();
1da177e4 1170 pagevec_release(&pvec);
05ff5137 1171 return nr_reclaimed;
1da177e4
LT
1172}
1173
3bb1a852
MB
1174/*
1175 * We are about to scan this zone at a certain priority level. If that priority
1176 * level is smaller (ie: more urgent) than the previous priority, then note
1177 * that priority level within the zone. This is done so that when the next
1178 * process comes in to scan this zone, it will immediately start out at this
1179 * priority level rather than having to build up its own scanning priority.
1180 * Here, this priority affects only the reclaim-mapped threshold.
1181 */
1182static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1183{
1184 if (priority < zone->prev_priority)
1185 zone->prev_priority = priority;
1186}
1187
1da177e4
LT
1188/*
1189 * This moves pages from the active list to the inactive list.
1190 *
1191 * We move them the other way if the page is referenced by one or more
1192 * processes, from rmap.
1193 *
1194 * If the pages are mostly unmapped, the processing is fast and it is
1195 * appropriate to hold zone->lru_lock across the whole operation. But if
1196 * the pages are mapped, the processing is slow (page_referenced()) so we
1197 * should drop zone->lru_lock around each page. It's impossible to balance
1198 * this, so instead we remove the pages from the LRU while processing them.
1199 * It is safe to rely on PG_active against the non-LRU pages in here because
1200 * nobody will play with that bit on a non-LRU page.
1201 *
1202 * The downside is that we have to touch page->_count against each page.
1203 * But we had to alter page->flags anyway.
1204 */
1cfb419b
KH
1205
1206
1742f19f 1207static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1208 struct scan_control *sc, int priority, int file)
1da177e4 1209{
69e05944 1210 unsigned long pgmoved;
69e05944 1211 unsigned long pgscanned;
1da177e4 1212 LIST_HEAD(l_hold); /* The pages which were snipped off */
b69408e8 1213 LIST_HEAD(l_inactive);
1da177e4
LT
1214 struct page *page;
1215 struct pagevec pvec;
4f98a2fe 1216 enum lru_list lru;
6e901571 1217 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1da177e4
LT
1218
1219 lru_add_drain();
1220 spin_lock_irq(&zone->lru_lock);
66e1707b
BS
1221 pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1222 ISOLATE_ACTIVE, zone,
4f98a2fe 1223 sc->mem_cgroup, 1, file);
1cfb419b
KH
1224 /*
1225 * zone->pages_scanned is used for detect zone's oom
1226 * mem_cgroup remembers nr_scan by itself.
1227 */
e72e2bd6 1228 if (scanning_global_lru(sc)) {
1cfb419b 1229 zone->pages_scanned += pgscanned;
4f98a2fe 1230 }
3e2f41f1 1231 reclaim_stat->recent_scanned[!!file] += pgmoved;
1cfb419b 1232
4f98a2fe
RR
1233 if (file)
1234 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -pgmoved);
1235 else
1236 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -pgmoved);
1da177e4
LT
1237 spin_unlock_irq(&zone->lru_lock);
1238
af166777 1239 pgmoved = 0; /* count referenced (mapping) mapped pages */
1da177e4
LT
1240 while (!list_empty(&l_hold)) {
1241 cond_resched();
1242 page = lru_to_page(&l_hold);
1243 list_del(&page->lru);
7e9cd484 1244
894bc310
LS
1245 if (unlikely(!page_evictable(page, NULL))) {
1246 putback_lru_page(page);
1247 continue;
1248 }
1249
7e9cd484
RR
1250 /* page_referenced clears PageReferenced */
1251 if (page_mapping_inuse(page) &&
1252 page_referenced(page, 0, sc->mem_cgroup))
1253 pgmoved++;
1254
1da177e4
LT
1255 list_add(&page->lru, &l_inactive);
1256 }
1257
b555749a
AM
1258 /*
1259 * Move the pages to the [file or anon] inactive list.
1260 */
1261 pagevec_init(&pvec, 1);
b555749a
AM
1262 lru = LRU_BASE + file * LRU_FILE;
1263
2a1dc509 1264 spin_lock_irq(&zone->lru_lock);
556adecb 1265 /*
7e9cd484
RR
1266 * Count referenced pages from currently used mappings as
1267 * rotated, even though they are moved to the inactive list.
1268 * This helps balance scan pressure between file and anonymous
1269 * pages in get_scan_ratio.
1270 */
3e2f41f1 1271 reclaim_stat->recent_rotated[!!file] += pgmoved;
556adecb 1272
af166777 1273 pgmoved = 0; /* count pages moved to inactive list */
1da177e4
LT
1274 while (!list_empty(&l_inactive)) {
1275 page = lru_to_page(&l_inactive);
1276 prefetchw_prev_lru_page(page, &l_inactive, flags);
725d704e 1277 VM_BUG_ON(PageLRU(page));
8d438f96 1278 SetPageLRU(page);
725d704e 1279 VM_BUG_ON(!PageActive(page));
4c84cacf
NP
1280 ClearPageActive(page);
1281
4f98a2fe 1282 list_move(&page->lru, &zone->lru[lru].list);
08e552c6 1283 mem_cgroup_add_lru_list(page, lru);
1da177e4
LT
1284 pgmoved++;
1285 if (!pagevec_add(&pvec, page)) {
1da177e4 1286 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1287 if (buffer_heads_over_limit)
1288 pagevec_strip(&pvec);
1289 __pagevec_release(&pvec);
1290 spin_lock_irq(&zone->lru_lock);
1291 }
1292 }
4f98a2fe 1293 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
f8891e5e 1294 __count_zone_vm_events(PGREFILL, zone, pgscanned);
af166777 1295 __count_vm_events(PGDEACTIVATE, pgmoved);
f8891e5e 1296 spin_unlock_irq(&zone->lru_lock);
2443462b
JW
1297 if (buffer_heads_over_limit)
1298 pagevec_strip(&pvec);
a74609fa 1299 pagevec_release(&pvec);
1da177e4
LT
1300}
1301
14797e23 1302static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1303{
1304 unsigned long active, inactive;
1305
1306 active = zone_page_state(zone, NR_ACTIVE_ANON);
1307 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1308
1309 if (inactive * zone->inactive_ratio < active)
1310 return 1;
1311
1312 return 0;
1313}
1314
14797e23
KM
1315/**
1316 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1317 * @zone: zone to check
1318 * @sc: scan control of this context
1319 *
1320 * Returns true if the zone does not have enough inactive anon pages,
1321 * meaning some active anon pages need to be deactivated.
1322 */
1323static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1324{
1325 int low;
1326
e72e2bd6 1327 if (scanning_global_lru(sc))
14797e23
KM
1328 low = inactive_anon_is_low_global(zone);
1329 else
c772be93 1330 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1331 return low;
1332}
1333
56e49d21
RR
1334static int inactive_file_is_low_global(struct zone *zone)
1335{
1336 unsigned long active, inactive;
1337
1338 active = zone_page_state(zone, NR_ACTIVE_FILE);
1339 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1340
1341 return (active > inactive);
1342}
1343
1344/**
1345 * inactive_file_is_low - check if file pages need to be deactivated
1346 * @zone: zone to check
1347 * @sc: scan control of this context
1348 *
1349 * When the system is doing streaming IO, memory pressure here
1350 * ensures that active file pages get deactivated, until more
1351 * than half of the file pages are on the inactive list.
1352 *
1353 * Once we get to that situation, protect the system's working
1354 * set from being evicted by disabling active file page aging.
1355 *
1356 * This uses a different ratio than the anonymous pages, because
1357 * the page cache uses a use-once replacement algorithm.
1358 */
1359static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1360{
1361 int low;
1362
1363 if (scanning_global_lru(sc))
1364 low = inactive_file_is_low_global(zone);
1365 else
1366 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1367 return low;
1368}
1369
4f98a2fe 1370static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1371 struct zone *zone, struct scan_control *sc, int priority)
1372{
4f98a2fe
RR
1373 int file = is_file_lru(lru);
1374
56e49d21 1375 if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
556adecb
RR
1376 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1377 return 0;
1378 }
1379
14797e23 1380 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
4f98a2fe 1381 shrink_active_list(nr_to_scan, zone, sc, priority, file);
b69408e8
CL
1382 return 0;
1383 }
33c120ed 1384 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1385}
1386
1387/*
1388 * Determine how aggressively the anon and file LRU lists should be
1389 * scanned. The relative value of each set of LRU lists is determined
1390 * by looking at the fraction of the pages scanned we did rotate back
1391 * onto the active list instead of evict.
1392 *
1393 * percent[0] specifies how much pressure to put on ram/swap backed
1394 * memory, while percent[1] determines pressure on the file LRUs.
1395 */
1396static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1397 unsigned long *percent)
1398{
1399 unsigned long anon, file, free;
1400 unsigned long anon_prio, file_prio;
1401 unsigned long ap, fp;
6e901571 1402 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
4f98a2fe 1403
4f98a2fe 1404 /* If we have no swap space, do not bother scanning anon pages. */
2e2e4259 1405 if (!sc->may_swap || (nr_swap_pages <= 0)) {
4f98a2fe
RR
1406 percent[0] = 0;
1407 percent[1] = 100;
1408 return;
1409 }
1410
c9f299d9
KM
1411 anon = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
1412 zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
1413 file = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
1414 zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1415
e72e2bd6 1416 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1417 free = zone_page_state(zone, NR_FREE_PAGES);
1418 /* If we have very few page cache pages,
1419 force-scan anon pages. */
41858966 1420 if (unlikely(file + free <= high_wmark_pages(zone))) {
eeee9a8c
KM
1421 percent[0] = 100;
1422 percent[1] = 0;
1423 return;
1424 }
4f98a2fe
RR
1425 }
1426
1427 /*
1428 * OK, so we have swap space and a fair amount of page cache
1429 * pages. We use the recently rotated / recently scanned
1430 * ratios to determine how valuable each cache is.
1431 *
1432 * Because workloads change over time (and to avoid overflow)
1433 * we keep these statistics as a floating average, which ends
1434 * up weighing recent references more than old ones.
1435 *
1436 * anon in [0], file in [1]
1437 */
6e901571 1438 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
4f98a2fe 1439 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1440 reclaim_stat->recent_scanned[0] /= 2;
1441 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1442 spin_unlock_irq(&zone->lru_lock);
1443 }
1444
6e901571 1445 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
4f98a2fe 1446 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1447 reclaim_stat->recent_scanned[1] /= 2;
1448 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1449 spin_unlock_irq(&zone->lru_lock);
1450 }
1451
1452 /*
1453 * With swappiness at 100, anonymous and file have the same priority.
1454 * This scanning priority is essentially the inverse of IO cost.
1455 */
1456 anon_prio = sc->swappiness;
1457 file_prio = 200 - sc->swappiness;
1458
1459 /*
00d8089c
RR
1460 * The amount of pressure on anon vs file pages is inversely
1461 * proportional to the fraction of recently scanned pages on
1462 * each list that were recently referenced and in active use.
4f98a2fe 1463 */
6e901571
KM
1464 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1465 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1466
6e901571
KM
1467 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1468 fp /= reclaim_stat->recent_rotated[1] + 1;
4f98a2fe
RR
1469
1470 /* Normalize to percentages */
1471 percent[0] = 100 * ap / (ap + fp + 1);
1472 percent[1] = 100 - percent[0];
b69408e8
CL
1473}
1474
6e08a369
WF
1475/*
1476 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1477 * until we collected @swap_cluster_max pages to scan.
1478 */
1479static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1480 unsigned long *nr_saved_scan,
1481 unsigned long swap_cluster_max)
1482{
1483 unsigned long nr;
1484
1485 *nr_saved_scan += nr_to_scan;
1486 nr = *nr_saved_scan;
1487
1488 if (nr >= swap_cluster_max)
1489 *nr_saved_scan = 0;
1490 else
1491 nr = 0;
1492
1493 return nr;
1494}
4f98a2fe 1495
1da177e4
LT
1496/*
1497 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1498 */
a79311c1 1499static void shrink_zone(int priority, struct zone *zone,
05ff5137 1500 struct scan_control *sc)
1da177e4 1501{
b69408e8 1502 unsigned long nr[NR_LRU_LISTS];
8695949a 1503 unsigned long nr_to_scan;
4f98a2fe 1504 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1505 enum lru_list l;
01dbe5c9
KM
1506 unsigned long nr_reclaimed = sc->nr_reclaimed;
1507 unsigned long swap_cluster_max = sc->swap_cluster_max;
1da177e4 1508
4f98a2fe
RR
1509 get_scan_ratio(zone, sc, percent);
1510
894bc310 1511 for_each_evictable_lru(l) {
9439c1c9 1512 int file = is_file_lru(l);
8713e012 1513 unsigned long scan;
e0f79b8f 1514
f272b7bc 1515 scan = zone_nr_pages(zone, sc, l);
9439c1c9
KM
1516 if (priority) {
1517 scan >>= priority;
1518 scan = (scan * percent[file]) / 100;
1519 }
6e08a369
WF
1520 if (scanning_global_lru(sc))
1521 nr[l] = nr_scan_try_batch(scan,
1522 &zone->lru[l].nr_saved_scan,
1523 swap_cluster_max);
1524 else
9439c1c9 1525 nr[l] = scan;
1cfb419b 1526 }
1da177e4 1527
556adecb
RR
1528 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1529 nr[LRU_INACTIVE_FILE]) {
894bc310 1530 for_each_evictable_lru(l) {
b69408e8 1531 if (nr[l]) {
01dbe5c9 1532 nr_to_scan = min(nr[l], swap_cluster_max);
b69408e8 1533 nr[l] -= nr_to_scan;
1da177e4 1534
01dbe5c9
KM
1535 nr_reclaimed += shrink_list(l, nr_to_scan,
1536 zone, sc, priority);
b69408e8 1537 }
1da177e4 1538 }
a79311c1
RR
1539 /*
1540 * On large memory systems, scan >> priority can become
1541 * really large. This is fine for the starting priority;
1542 * we want to put equal scanning pressure on each zone.
1543 * However, if the VM has a harder time of freeing pages,
1544 * with multiple processes reclaiming pages, the total
1545 * freeing target can get unreasonably large.
1546 */
01dbe5c9 1547 if (nr_reclaimed > swap_cluster_max &&
a79311c1
RR
1548 priority < DEF_PRIORITY && !current_is_kswapd())
1549 break;
1da177e4
LT
1550 }
1551
01dbe5c9
KM
1552 sc->nr_reclaimed = nr_reclaimed;
1553
556adecb
RR
1554 /*
1555 * Even if we did not try to evict anon pages at all, we want to
1556 * rebalance the anon lru active/inactive ratio.
1557 */
69c85481 1558 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
556adecb
RR
1559 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1560
232ea4d6 1561 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1562}
1563
1564/*
1565 * This is the direct reclaim path, for page-allocating processes. We only
1566 * try to reclaim pages from zones which will satisfy the caller's allocation
1567 * request.
1568 *
41858966
MG
1569 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1570 * Because:
1da177e4
LT
1571 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1572 * allocation or
41858966
MG
1573 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1574 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1575 * zone defense algorithm.
1da177e4 1576 *
1da177e4
LT
1577 * If a zone is deemed to be full of pinned pages then just give it a light
1578 * scan then give up on it.
1579 */
a79311c1 1580static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1581 struct scan_control *sc)
1da177e4 1582{
54a6eb5c 1583 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
dd1a239f 1584 struct zoneref *z;
54a6eb5c 1585 struct zone *zone;
1cfb419b 1586
408d8544 1587 sc->all_unreclaimable = 1;
327c0e96
KH
1588 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1589 sc->nodemask) {
f3fe6512 1590 if (!populated_zone(zone))
1da177e4 1591 continue;
1cfb419b
KH
1592 /*
1593 * Take care memory controller reclaiming has small influence
1594 * to global LRU.
1595 */
e72e2bd6 1596 if (scanning_global_lru(sc)) {
1cfb419b
KH
1597 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1598 continue;
1599 note_zone_scanning_priority(zone, priority);
1da177e4 1600
1cfb419b
KH
1601 if (zone_is_all_unreclaimable(zone) &&
1602 priority != DEF_PRIORITY)
1603 continue; /* Let kswapd poll it */
1604 sc->all_unreclaimable = 0;
1605 } else {
1606 /*
1607 * Ignore cpuset limitation here. We just want to reduce
1608 * # of used pages by us regardless of memory shortage.
1609 */
1610 sc->all_unreclaimable = 0;
1611 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1612 priority);
1613 }
408d8544 1614
a79311c1 1615 shrink_zone(priority, zone, sc);
1da177e4
LT
1616 }
1617}
4f98a2fe 1618
1da177e4
LT
1619/*
1620 * This is the main entry point to direct page reclaim.
1621 *
1622 * If a full scan of the inactive list fails to free enough memory then we
1623 * are "out of memory" and something needs to be killed.
1624 *
1625 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1626 * high - the zone may be full of dirty or under-writeback pages, which this
1627 * caller can't do much about. We kick pdflush and take explicit naps in the
1628 * hope that some of these pages can be written. But if the allocating task
1629 * holds filesystem locks which prevent writeout this might not work, and the
1630 * allocation attempt will fail.
a41f24ea
NA
1631 *
1632 * returns: 0, if no pages reclaimed
1633 * else, the number of pages reclaimed
1da177e4 1634 */
dac1d27b 1635static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1636 struct scan_control *sc)
1da177e4
LT
1637{
1638 int priority;
c700be3d 1639 unsigned long ret = 0;
69e05944 1640 unsigned long total_scanned = 0;
1da177e4 1641 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1642 unsigned long lru_pages = 0;
dd1a239f 1643 struct zoneref *z;
54a6eb5c 1644 struct zone *zone;
dd1a239f 1645 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1da177e4 1646
873b4771
KK
1647 delayacct_freepages_start();
1648
e72e2bd6 1649 if (scanning_global_lru(sc))
1cfb419b
KH
1650 count_vm_event(ALLOCSTALL);
1651 /*
1652 * mem_cgroup will not do shrink_slab.
1653 */
e72e2bd6 1654 if (scanning_global_lru(sc)) {
54a6eb5c 1655 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1656
1cfb419b
KH
1657 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1658 continue;
1da177e4 1659
4f98a2fe 1660 lru_pages += zone_lru_pages(zone);
1cfb419b 1661 }
1da177e4
LT
1662 }
1663
1664 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1665 sc->nr_scanned = 0;
f7b7fd8f
RR
1666 if (!priority)
1667 disable_swap_token();
a79311c1 1668 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1669 /*
1670 * Don't shrink slabs when reclaiming memory from
1671 * over limit cgroups
1672 */
e72e2bd6 1673 if (scanning_global_lru(sc)) {
dd1a239f 1674 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1675 if (reclaim_state) {
a79311c1 1676 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1677 reclaim_state->reclaimed_slab = 0;
1678 }
1da177e4 1679 }
66e1707b 1680 total_scanned += sc->nr_scanned;
a79311c1
RR
1681 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1682 ret = sc->nr_reclaimed;
1da177e4
LT
1683 goto out;
1684 }
1685
1686 /*
1687 * Try to write back as many pages as we just scanned. This
1688 * tends to cause slow streaming writers to write data to the
1689 * disk smoothly, at the dirtying rate, which is nice. But
1690 * that's undesirable in laptop mode, where we *want* lumpy
1691 * writeout. So in laptop mode, write out the whole world.
1692 */
66e1707b
BS
1693 if (total_scanned > sc->swap_cluster_max +
1694 sc->swap_cluster_max / 2) {
687a21ce 1695 wakeup_pdflush(laptop_mode ? 0 : total_scanned);
66e1707b 1696 sc->may_writepage = 1;
1da177e4
LT
1697 }
1698
1699 /* Take a nap, wait for some writeback to complete */
4dd4b920 1700 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1701 congestion_wait(WRITE, HZ/10);
1da177e4 1702 }
87547ee9 1703 /* top priority shrink_zones still had more to do? don't OOM, then */
e72e2bd6 1704 if (!sc->all_unreclaimable && scanning_global_lru(sc))
a79311c1 1705 ret = sc->nr_reclaimed;
1da177e4 1706out:
3bb1a852
MB
1707 /*
1708 * Now that we've scanned all the zones at this priority level, note
1709 * that level within the zone so that the next thread which performs
1710 * scanning of this zone will immediately start out at this priority
1711 * level. This affects only the decision whether or not to bring
1712 * mapped pages onto the inactive list.
1713 */
1714 if (priority < 0)
1715 priority = 0;
1da177e4 1716
e72e2bd6 1717 if (scanning_global_lru(sc)) {
54a6eb5c 1718 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1719
1720 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1721 continue;
1722
1723 zone->prev_priority = priority;
1724 }
1725 } else
1726 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1727
873b4771
KK
1728 delayacct_freepages_end();
1729
1da177e4
LT
1730 return ret;
1731}
1732
dac1d27b 1733unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 1734 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b
BS
1735{
1736 struct scan_control sc = {
1737 .gfp_mask = gfp_mask,
1738 .may_writepage = !laptop_mode,
1739 .swap_cluster_max = SWAP_CLUSTER_MAX,
a6dc60f8 1740 .may_unmap = 1,
2e2e4259 1741 .may_swap = 1,
66e1707b
BS
1742 .swappiness = vm_swappiness,
1743 .order = order,
1744 .mem_cgroup = NULL,
1745 .isolate_pages = isolate_pages_global,
327c0e96 1746 .nodemask = nodemask,
66e1707b
BS
1747 };
1748
dd1a239f 1749 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1750}
1751
00f0b825 1752#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1753
e1a1cd59 1754unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
1755 gfp_t gfp_mask,
1756 bool noswap,
1757 unsigned int swappiness)
66e1707b
BS
1758{
1759 struct scan_control sc = {
66e1707b 1760 .may_writepage = !laptop_mode,
a6dc60f8 1761 .may_unmap = 1,
2e2e4259 1762 .may_swap = !noswap,
66e1707b 1763 .swap_cluster_max = SWAP_CLUSTER_MAX,
a7885eb8 1764 .swappiness = swappiness,
66e1707b
BS
1765 .order = 0,
1766 .mem_cgroup = mem_cont,
1767 .isolate_pages = mem_cgroup_isolate_pages,
327c0e96 1768 .nodemask = NULL, /* we don't care the placement */
66e1707b 1769 };
dac1d27b 1770 struct zonelist *zonelist;
66e1707b 1771
dd1a239f
MG
1772 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1773 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1774 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1775 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1776}
1777#endif
1778
1da177e4
LT
1779/*
1780 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 1781 * they are all at high_wmark_pages(zone).
1da177e4 1782 *
1da177e4
LT
1783 * Returns the number of pages which were actually freed.
1784 *
1785 * There is special handling here for zones which are full of pinned pages.
1786 * This can happen if the pages are all mlocked, or if they are all used by
1787 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1788 * What we do is to detect the case where all pages in the zone have been
1789 * scanned twice and there has been zero successful reclaim. Mark the zone as
1790 * dead and from now on, only perform a short scan. Basically we're polling
1791 * the zone for when the problem goes away.
1792 *
1793 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
1794 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1795 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1796 * lower zones regardless of the number of free pages in the lower zones. This
1797 * interoperates with the page allocator fallback scheme to ensure that aging
1798 * of pages is balanced across the zones.
1da177e4 1799 */
d6277db4 1800static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1801{
1da177e4
LT
1802 int all_zones_ok;
1803 int priority;
1804 int i;
69e05944 1805 unsigned long total_scanned;
1da177e4 1806 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1807 struct scan_control sc = {
1808 .gfp_mask = GFP_KERNEL,
a6dc60f8 1809 .may_unmap = 1,
2e2e4259 1810 .may_swap = 1,
d6277db4
RW
1811 .swap_cluster_max = SWAP_CLUSTER_MAX,
1812 .swappiness = vm_swappiness,
5ad333eb 1813 .order = order,
66e1707b
BS
1814 .mem_cgroup = NULL,
1815 .isolate_pages = isolate_pages_global,
179e9639 1816 };
3bb1a852
MB
1817 /*
1818 * temp_priority is used to remember the scanning priority at which
41858966
MG
1819 * this zone was successfully refilled to
1820 * free_pages == high_wmark_pages(zone).
3bb1a852
MB
1821 */
1822 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1823
1824loop_again:
1825 total_scanned = 0;
a79311c1 1826 sc.nr_reclaimed = 0;
c0bbbc73 1827 sc.may_writepage = !laptop_mode;
f8891e5e 1828 count_vm_event(PAGEOUTRUN);
1da177e4 1829
3bb1a852
MB
1830 for (i = 0; i < pgdat->nr_zones; i++)
1831 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1832
1833 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1834 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1835 unsigned long lru_pages = 0;
1836
f7b7fd8f
RR
1837 /* The swap token gets in the way of swapout... */
1838 if (!priority)
1839 disable_swap_token();
1840
1da177e4
LT
1841 all_zones_ok = 1;
1842
d6277db4
RW
1843 /*
1844 * Scan in the highmem->dma direction for the highest
1845 * zone which needs scanning
1846 */
1847 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1848 struct zone *zone = pgdat->node_zones + i;
1da177e4 1849
d6277db4
RW
1850 if (!populated_zone(zone))
1851 continue;
1da177e4 1852
e815af95
DR
1853 if (zone_is_all_unreclaimable(zone) &&
1854 priority != DEF_PRIORITY)
d6277db4 1855 continue;
1da177e4 1856
556adecb
RR
1857 /*
1858 * Do some background aging of the anon list, to give
1859 * pages a chance to be referenced before reclaiming.
1860 */
14797e23 1861 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
1862 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1863 &sc, priority, 0);
1864
41858966
MG
1865 if (!zone_watermark_ok(zone, order,
1866 high_wmark_pages(zone), 0, 0)) {
d6277db4 1867 end_zone = i;
e1dbeda6 1868 break;
1da177e4 1869 }
1da177e4 1870 }
e1dbeda6
AM
1871 if (i < 0)
1872 goto out;
1873
1da177e4
LT
1874 for (i = 0; i <= end_zone; i++) {
1875 struct zone *zone = pgdat->node_zones + i;
1876
4f98a2fe 1877 lru_pages += zone_lru_pages(zone);
1da177e4
LT
1878 }
1879
1880 /*
1881 * Now scan the zone in the dma->highmem direction, stopping
1882 * at the last zone which needs scanning.
1883 *
1884 * We do this because the page allocator works in the opposite
1885 * direction. This prevents the page allocator from allocating
1886 * pages behind kswapd's direction of progress, which would
1887 * cause too much scanning of the lower zones.
1888 */
1889 for (i = 0; i <= end_zone; i++) {
1890 struct zone *zone = pgdat->node_zones + i;
b15e0905 1891 int nr_slab;
1da177e4 1892
f3fe6512 1893 if (!populated_zone(zone))
1da177e4
LT
1894 continue;
1895
e815af95
DR
1896 if (zone_is_all_unreclaimable(zone) &&
1897 priority != DEF_PRIORITY)
1da177e4
LT
1898 continue;
1899
41858966
MG
1900 if (!zone_watermark_ok(zone, order,
1901 high_wmark_pages(zone), end_zone, 0))
d6277db4 1902 all_zones_ok = 0;
3bb1a852 1903 temp_priority[i] = priority;
1da177e4 1904 sc.nr_scanned = 0;
3bb1a852 1905 note_zone_scanning_priority(zone, priority);
32a4330d
RR
1906 /*
1907 * We put equal pressure on every zone, unless one
1908 * zone has way too many pages free already.
1909 */
41858966
MG
1910 if (!zone_watermark_ok(zone, order,
1911 8*high_wmark_pages(zone), end_zone, 0))
a79311c1 1912 shrink_zone(priority, zone, &sc);
1da177e4 1913 reclaim_state->reclaimed_slab = 0;
b15e0905
AM
1914 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1915 lru_pages);
a79311c1 1916 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 1917 total_scanned += sc.nr_scanned;
e815af95 1918 if (zone_is_all_unreclaimable(zone))
1da177e4 1919 continue;
b15e0905 1920 if (nr_slab == 0 && zone->pages_scanned >=
4f98a2fe 1921 (zone_lru_pages(zone) * 6))
e815af95
DR
1922 zone_set_flag(zone,
1923 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
1924 /*
1925 * If we've done a decent amount of scanning and
1926 * the reclaim ratio is low, start doing writepage
1927 * even in laptop mode
1928 */
1929 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 1930 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4
LT
1931 sc.may_writepage = 1;
1932 }
1da177e4
LT
1933 if (all_zones_ok)
1934 break; /* kswapd: all done */
1935 /*
1936 * OK, kswapd is getting into trouble. Take a nap, then take
1937 * another pass across the zones.
1938 */
4dd4b920 1939 if (total_scanned && priority < DEF_PRIORITY - 2)
3fcfab16 1940 congestion_wait(WRITE, HZ/10);
1da177e4
LT
1941
1942 /*
1943 * We do this so kswapd doesn't build up large priorities for
1944 * example when it is freeing in parallel with allocators. It
1945 * matches the direct reclaim path behaviour in terms of impact
1946 * on zone->*_priority.
1947 */
a79311c1 1948 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
1949 break;
1950 }
1951out:
3bb1a852
MB
1952 /*
1953 * Note within each zone the priority level at which this zone was
1954 * brought into a happy state. So that the next thread which scans this
1955 * zone will start out at that priority level.
1956 */
1da177e4
LT
1957 for (i = 0; i < pgdat->nr_zones; i++) {
1958 struct zone *zone = pgdat->node_zones + i;
1959
3bb1a852 1960 zone->prev_priority = temp_priority[i];
1da177e4
LT
1961 }
1962 if (!all_zones_ok) {
1963 cond_resched();
8357376d
RW
1964
1965 try_to_freeze();
1966
73ce02e9
KM
1967 /*
1968 * Fragmentation may mean that the system cannot be
1969 * rebalanced for high-order allocations in all zones.
1970 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1971 * it means the zones have been fully scanned and are still
1972 * not balanced. For high-order allocations, there is
1973 * little point trying all over again as kswapd may
1974 * infinite loop.
1975 *
1976 * Instead, recheck all watermarks at order-0 as they
1977 * are the most important. If watermarks are ok, kswapd will go
1978 * back to sleep. High-order users can still perform direct
1979 * reclaim if they wish.
1980 */
1981 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
1982 order = sc.order = 0;
1983
1da177e4
LT
1984 goto loop_again;
1985 }
1986
a79311c1 1987 return sc.nr_reclaimed;
1da177e4
LT
1988}
1989
1990/*
1991 * The background pageout daemon, started as a kernel thread
4f98a2fe 1992 * from the init process.
1da177e4
LT
1993 *
1994 * This basically trickles out pages so that we have _some_
1995 * free memory available even if there is no other activity
1996 * that frees anything up. This is needed for things like routing
1997 * etc, where we otherwise might have all activity going on in
1998 * asynchronous contexts that cannot page things out.
1999 *
2000 * If there are applications that are active memory-allocators
2001 * (most normal use), this basically shouldn't matter.
2002 */
2003static int kswapd(void *p)
2004{
2005 unsigned long order;
2006 pg_data_t *pgdat = (pg_data_t*)p;
2007 struct task_struct *tsk = current;
2008 DEFINE_WAIT(wait);
2009 struct reclaim_state reclaim_state = {
2010 .reclaimed_slab = 0,
2011 };
a70f7302 2012 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2013
cf40bd16
NP
2014 lockdep_set_current_reclaim_state(GFP_KERNEL);
2015
174596a0 2016 if (!cpumask_empty(cpumask))
c5f59f08 2017 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2018 current->reclaim_state = &reclaim_state;
2019
2020 /*
2021 * Tell the memory management that we're a "memory allocator",
2022 * and that if we need more memory we should get access to it
2023 * regardless (see "__alloc_pages()"). "kswapd" should
2024 * never get caught in the normal page freeing logic.
2025 *
2026 * (Kswapd normally doesn't need memory anyway, but sometimes
2027 * you need a small amount of memory in order to be able to
2028 * page out something else, and this flag essentially protects
2029 * us from recursively trying to free more memory as we're
2030 * trying to free the first piece of memory in the first place).
2031 */
930d9152 2032 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2033 set_freezable();
1da177e4
LT
2034
2035 order = 0;
2036 for ( ; ; ) {
2037 unsigned long new_order;
3e1d1d28 2038
1da177e4
LT
2039 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2040 new_order = pgdat->kswapd_max_order;
2041 pgdat->kswapd_max_order = 0;
2042 if (order < new_order) {
2043 /*
2044 * Don't sleep if someone wants a larger 'order'
2045 * allocation
2046 */
2047 order = new_order;
2048 } else {
b1296cc4
RW
2049 if (!freezing(current))
2050 schedule();
2051
1da177e4
LT
2052 order = pgdat->kswapd_max_order;
2053 }
2054 finish_wait(&pgdat->kswapd_wait, &wait);
2055
b1296cc4
RW
2056 if (!try_to_freeze()) {
2057 /* We can speed up thawing tasks if we don't call
2058 * balance_pgdat after returning from the refrigerator
2059 */
2060 balance_pgdat(pgdat, order);
2061 }
1da177e4
LT
2062 }
2063 return 0;
2064}
2065
2066/*
2067 * A zone is low on free memory, so wake its kswapd task to service it.
2068 */
2069void wakeup_kswapd(struct zone *zone, int order)
2070{
2071 pg_data_t *pgdat;
2072
f3fe6512 2073 if (!populated_zone(zone))
1da177e4
LT
2074 return;
2075
2076 pgdat = zone->zone_pgdat;
41858966 2077 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
1da177e4
LT
2078 return;
2079 if (pgdat->kswapd_max_order < order)
2080 pgdat->kswapd_max_order = order;
02a0e53d 2081 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2082 return;
8d0986e2 2083 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2084 return;
8d0986e2 2085 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2086}
2087
4f98a2fe
RR
2088unsigned long global_lru_pages(void)
2089{
2090 return global_page_state(NR_ACTIVE_ANON)
2091 + global_page_state(NR_ACTIVE_FILE)
2092 + global_page_state(NR_INACTIVE_ANON)
2093 + global_page_state(NR_INACTIVE_FILE);
2094}
2095
c6f37f12 2096#ifdef CONFIG_HIBERNATION
1da177e4 2097/*
d6277db4 2098 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
d979677c 2099 * from LRU lists system-wide, for given pass and priority.
d6277db4
RW
2100 *
2101 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2102 */
d979677c 2103static void shrink_all_zones(unsigned long nr_pages, int prio,
e07aa05b 2104 int pass, struct scan_control *sc)
d6277db4
RW
2105{
2106 struct zone *zone;
d979677c 2107 unsigned long nr_reclaimed = 0;
d6277db4 2108
ee99c71c 2109 for_each_populated_zone(zone) {
0cb57258 2110 enum lru_list l;
d6277db4 2111
e815af95 2112 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
d6277db4
RW
2113 continue;
2114
894bc310 2115 for_each_evictable_lru(l) {
0cb57258
JW
2116 enum zone_stat_item ls = NR_LRU_BASE + l;
2117 unsigned long lru_pages = zone_page_state(zone, ls);
2118
894bc310 2119 /* For pass = 0, we don't shrink the active list */
0cb57258
JW
2120 if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2121 l == LRU_ACTIVE_FILE))
b69408e8
CL
2122 continue;
2123
6e08a369
WF
2124 zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1;
2125 if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) {
0cb57258
JW
2126 unsigned long nr_to_scan;
2127
6e08a369 2128 zone->lru[l].nr_saved_scan = 0;
0cb57258 2129 nr_to_scan = min(nr_pages, lru_pages);
d979677c 2130 nr_reclaimed += shrink_list(l, nr_to_scan, zone,
b69408e8 2131 sc, prio);
d979677c 2132 if (nr_reclaimed >= nr_pages) {
a21e2553 2133 sc->nr_reclaimed += nr_reclaimed;
d979677c
MK
2134 return;
2135 }
d6277db4
RW
2136 }
2137 }
d6277db4 2138 }
a21e2553 2139 sc->nr_reclaimed += nr_reclaimed;
d6277db4
RW
2140}
2141
2142/*
2143 * Try to free `nr_pages' of memory, system-wide, and return the number of
2144 * freed pages.
2145 *
2146 * Rather than trying to age LRUs the aim is to preserve the overall
2147 * LRU order by reclaiming preferentially
2148 * inactive > active > active referenced > active mapped
1da177e4 2149 */
69e05944 2150unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 2151{
d6277db4 2152 unsigned long lru_pages, nr_slab;
d6277db4
RW
2153 int pass;
2154 struct reclaim_state reclaim_state;
d6277db4
RW
2155 struct scan_control sc = {
2156 .gfp_mask = GFP_KERNEL,
a6dc60f8 2157 .may_unmap = 0,
d6277db4 2158 .may_writepage = 1,
66e1707b 2159 .isolate_pages = isolate_pages_global,
a21e2553 2160 .nr_reclaimed = 0,
1da177e4
LT
2161 };
2162
2163 current->reclaim_state = &reclaim_state;
69e05944 2164
4f98a2fe 2165 lru_pages = global_lru_pages();
972d1a7b 2166 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
2167 /* If slab caches are huge, it's better to hit them first */
2168 while (nr_slab >= lru_pages) {
2169 reclaim_state.reclaimed_slab = 0;
2170 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2171 if (!reclaim_state.reclaimed_slab)
1da177e4 2172 break;
d6277db4 2173
d979677c
MK
2174 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2175 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2176 goto out;
2177
2178 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 2179 }
d6277db4
RW
2180
2181 /*
2182 * We try to shrink LRUs in 5 passes:
2183 * 0 = Reclaim from inactive_list only
2184 * 1 = Reclaim from active list but don't reclaim mapped
2185 * 2 = 2nd pass of type 1
2186 * 3 = Reclaim mapped (normal reclaim)
2187 * 4 = 2nd pass of type 3
2188 */
2189 for (pass = 0; pass < 5; pass++) {
2190 int prio;
2191
d6277db4 2192 /* Force reclaiming mapped pages in the passes #3 and #4 */
3049103d 2193 if (pass > 2)
a6dc60f8 2194 sc.may_unmap = 1;
d6277db4
RW
2195
2196 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
d979677c 2197 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
d6277db4 2198
d6277db4 2199 sc.nr_scanned = 0;
9786bf84 2200 sc.swap_cluster_max = nr_to_scan;
d979677c
MK
2201 shrink_all_zones(nr_to_scan, prio, pass, &sc);
2202 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2203 goto out;
2204
2205 reclaim_state.reclaimed_slab = 0;
76395d37 2206 shrink_slab(sc.nr_scanned, sc.gfp_mask,
4f98a2fe 2207 global_lru_pages());
d979677c
MK
2208 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2209 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2210 goto out;
2211
2212 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
3fcfab16 2213 congestion_wait(WRITE, HZ / 10);
d6277db4 2214 }
248a0301 2215 }
d6277db4
RW
2216
2217 /*
d979677c
MK
2218 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2219 * something in slab caches
d6277db4 2220 */
d979677c 2221 if (!sc.nr_reclaimed) {
d6277db4
RW
2222 do {
2223 reclaim_state.reclaimed_slab = 0;
4f98a2fe 2224 shrink_slab(nr_pages, sc.gfp_mask, global_lru_pages());
d979677c
MK
2225 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2226 } while (sc.nr_reclaimed < nr_pages &&
2227 reclaim_state.reclaimed_slab > 0);
76395d37 2228 }
d6277db4 2229
d979677c 2230
d6277db4 2231out:
1da177e4 2232 current->reclaim_state = NULL;
d6277db4 2233
d979677c 2234 return sc.nr_reclaimed;
1da177e4 2235}
c6f37f12 2236#endif /* CONFIG_HIBERNATION */
1da177e4 2237
1da177e4
LT
2238/* It's optimal to keep kswapds on the same CPUs as their memory, but
2239 not required for correctness. So if the last cpu in a node goes
2240 away, we get changed to run anywhere: as the first one comes back,
2241 restore their cpu bindings. */
9c7b216d 2242static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2243 unsigned long action, void *hcpu)
1da177e4 2244{
58c0a4a7 2245 int nid;
1da177e4 2246
8bb78442 2247 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2248 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2249 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2250 const struct cpumask *mask;
2251
2252 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2253
3e597945 2254 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2255 /* One of our CPUs online: restore mask */
c5f59f08 2256 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2257 }
2258 }
2259 return NOTIFY_OK;
2260}
1da177e4 2261
3218ae14
YG
2262/*
2263 * This kswapd start function will be called by init and node-hot-add.
2264 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2265 */
2266int kswapd_run(int nid)
2267{
2268 pg_data_t *pgdat = NODE_DATA(nid);
2269 int ret = 0;
2270
2271 if (pgdat->kswapd)
2272 return 0;
2273
2274 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2275 if (IS_ERR(pgdat->kswapd)) {
2276 /* failure at boot is fatal */
2277 BUG_ON(system_state == SYSTEM_BOOTING);
2278 printk("Failed to start kswapd on node %d\n",nid);
2279 ret = -1;
2280 }
2281 return ret;
2282}
2283
1da177e4
LT
2284static int __init kswapd_init(void)
2285{
3218ae14 2286 int nid;
69e05944 2287
1da177e4 2288 swap_setup();
9422ffba 2289 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2290 kswapd_run(nid);
1da177e4
LT
2291 hotcpu_notifier(cpu_callback, 0);
2292 return 0;
2293}
2294
2295module_init(kswapd_init)
9eeff239
CL
2296
2297#ifdef CONFIG_NUMA
2298/*
2299 * Zone reclaim mode
2300 *
2301 * If non-zero call zone_reclaim when the number of free pages falls below
2302 * the watermarks.
9eeff239
CL
2303 */
2304int zone_reclaim_mode __read_mostly;
2305
1b2ffb78 2306#define RECLAIM_OFF 0
7d03431c 2307#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2308#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2309#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2310
a92f7126
CL
2311/*
2312 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2313 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2314 * a zone.
2315 */
2316#define ZONE_RECLAIM_PRIORITY 4
2317
9614634f
CL
2318/*
2319 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2320 * occur.
2321 */
2322int sysctl_min_unmapped_ratio = 1;
2323
0ff38490
CL
2324/*
2325 * If the number of slab pages in a zone grows beyond this percentage then
2326 * slab reclaim needs to occur.
2327 */
2328int sysctl_min_slab_ratio = 5;
2329
9eeff239
CL
2330/*
2331 * Try to free up some pages from this zone through reclaim.
2332 */
179e9639 2333static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2334{
7fb2d46d 2335 /* Minimum pages needed in order to stay on node */
69e05944 2336 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2337 struct task_struct *p = current;
2338 struct reclaim_state reclaim_state;
8695949a 2339 int priority;
179e9639
AM
2340 struct scan_control sc = {
2341 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2342 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 2343 .may_swap = 1,
69e05944
AM
2344 .swap_cluster_max = max_t(unsigned long, nr_pages,
2345 SWAP_CLUSTER_MAX),
179e9639 2346 .gfp_mask = gfp_mask,
d6277db4 2347 .swappiness = vm_swappiness,
bd2f6199 2348 .order = order,
66e1707b 2349 .isolate_pages = isolate_pages_global,
179e9639 2350 };
83e33a47 2351 unsigned long slab_reclaimable;
9eeff239
CL
2352
2353 disable_swap_token();
9eeff239 2354 cond_resched();
d4f7796e
CL
2355 /*
2356 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2357 * and we also need to be able to write out pages for RECLAIM_WRITE
2358 * and RECLAIM_SWAP.
2359 */
2360 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2361 reclaim_state.reclaimed_slab = 0;
2362 p->reclaim_state = &reclaim_state;
c84db23c 2363
0ff38490
CL
2364 if (zone_page_state(zone, NR_FILE_PAGES) -
2365 zone_page_state(zone, NR_FILE_MAPPED) >
2366 zone->min_unmapped_pages) {
2367 /*
2368 * Free memory by calling shrink zone with increasing
2369 * priorities until we have enough memory freed.
2370 */
2371 priority = ZONE_RECLAIM_PRIORITY;
2372 do {
3bb1a852 2373 note_zone_scanning_priority(zone, priority);
a79311c1 2374 shrink_zone(priority, zone, &sc);
0ff38490 2375 priority--;
a79311c1 2376 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2377 }
c84db23c 2378
83e33a47
CL
2379 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2380 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2381 /*
7fb2d46d 2382 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2383 * many pages were freed in this zone. So we take the current
2384 * number of slab pages and shake the slab until it is reduced
2385 * by the same nr_pages that we used for reclaiming unmapped
2386 * pages.
2a16e3f4 2387 *
0ff38490
CL
2388 * Note that shrink_slab will free memory on all zones and may
2389 * take a long time.
2a16e3f4 2390 */
0ff38490 2391 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2392 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2393 slab_reclaimable - nr_pages)
0ff38490 2394 ;
83e33a47
CL
2395
2396 /*
2397 * Update nr_reclaimed by the number of slab pages we
2398 * reclaimed from this zone.
2399 */
a79311c1 2400 sc.nr_reclaimed += slab_reclaimable -
83e33a47 2401 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2402 }
2403
9eeff239 2404 p->reclaim_state = NULL;
d4f7796e 2405 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
a79311c1 2406 return sc.nr_reclaimed >= nr_pages;
9eeff239 2407}
179e9639
AM
2408
2409int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2410{
179e9639 2411 int node_id;
d773ed6b 2412 int ret;
179e9639
AM
2413
2414 /*
0ff38490
CL
2415 * Zone reclaim reclaims unmapped file backed pages and
2416 * slab pages if we are over the defined limits.
34aa1330 2417 *
9614634f
CL
2418 * A small portion of unmapped file backed pages is needed for
2419 * file I/O otherwise pages read by file I/O will be immediately
2420 * thrown out if the zone is overallocated. So we do not reclaim
2421 * if less than a specified percentage of the zone is used by
2422 * unmapped file backed pages.
179e9639 2423 */
34aa1330 2424 if (zone_page_state(zone, NR_FILE_PAGES) -
0ff38490
CL
2425 zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2426 && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2427 <= zone->min_slab_pages)
9614634f 2428 return 0;
179e9639 2429
d773ed6b
DR
2430 if (zone_is_all_unreclaimable(zone))
2431 return 0;
2432
179e9639 2433 /*
d773ed6b 2434 * Do not scan if the allocation should not be delayed.
179e9639 2435 */
d773ed6b 2436 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
179e9639
AM
2437 return 0;
2438
2439 /*
2440 * Only run zone reclaim on the local zone or on zones that do not
2441 * have associated processors. This will favor the local processor
2442 * over remote processors and spread off node memory allocations
2443 * as wide as possible.
2444 */
89fa3024 2445 node_id = zone_to_nid(zone);
37c0708d 2446 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
179e9639 2447 return 0;
d773ed6b
DR
2448
2449 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2450 return 0;
2451 ret = __zone_reclaim(zone, gfp_mask, order);
2452 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2453
2454 return ret;
179e9639 2455}
9eeff239 2456#endif
894bc310 2457
894bc310
LS
2458/*
2459 * page_evictable - test whether a page is evictable
2460 * @page: the page to test
2461 * @vma: the VMA in which the page is or will be mapped, may be NULL
2462 *
2463 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2464 * lists vs unevictable list. The vma argument is !NULL when called from the
2465 * fault path to determine how to instantate a new page.
894bc310
LS
2466 *
2467 * Reasons page might not be evictable:
ba9ddf49 2468 * (1) page's mapping marked unevictable
b291f000 2469 * (2) page is part of an mlocked VMA
ba9ddf49 2470 *
894bc310
LS
2471 */
2472int page_evictable(struct page *page, struct vm_area_struct *vma)
2473{
2474
ba9ddf49
LS
2475 if (mapping_unevictable(page_mapping(page)))
2476 return 0;
2477
b291f000
NP
2478 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2479 return 0;
894bc310
LS
2480
2481 return 1;
2482}
89e004ea
LS
2483
2484/**
2485 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2486 * @page: page to check evictability and move to appropriate lru list
2487 * @zone: zone page is in
2488 *
2489 * Checks a page for evictability and moves the page to the appropriate
2490 * zone lru list.
2491 *
2492 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2493 * have PageUnevictable set.
2494 */
2495static void check_move_unevictable_page(struct page *page, struct zone *zone)
2496{
2497 VM_BUG_ON(PageActive(page));
2498
2499retry:
2500 ClearPageUnevictable(page);
2501 if (page_evictable(page, NULL)) {
2502 enum lru_list l = LRU_INACTIVE_ANON + page_is_file_cache(page);
af936a16 2503
89e004ea
LS
2504 __dec_zone_state(zone, NR_UNEVICTABLE);
2505 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2506 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2507 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2508 __count_vm_event(UNEVICTABLE_PGRESCUED);
2509 } else {
2510 /*
2511 * rotate unevictable list
2512 */
2513 SetPageUnevictable(page);
2514 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2515 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2516 if (page_evictable(page, NULL))
2517 goto retry;
2518 }
2519}
2520
2521/**
2522 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2523 * @mapping: struct address_space to scan for evictable pages
2524 *
2525 * Scan all pages in mapping. Check unevictable pages for
2526 * evictability and move them to the appropriate zone lru list.
2527 */
2528void scan_mapping_unevictable_pages(struct address_space *mapping)
2529{
2530 pgoff_t next = 0;
2531 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2532 PAGE_CACHE_SHIFT;
2533 struct zone *zone;
2534 struct pagevec pvec;
2535
2536 if (mapping->nrpages == 0)
2537 return;
2538
2539 pagevec_init(&pvec, 0);
2540 while (next < end &&
2541 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2542 int i;
2543 int pg_scanned = 0;
2544
2545 zone = NULL;
2546
2547 for (i = 0; i < pagevec_count(&pvec); i++) {
2548 struct page *page = pvec.pages[i];
2549 pgoff_t page_index = page->index;
2550 struct zone *pagezone = page_zone(page);
2551
2552 pg_scanned++;
2553 if (page_index > next)
2554 next = page_index;
2555 next++;
2556
2557 if (pagezone != zone) {
2558 if (zone)
2559 spin_unlock_irq(&zone->lru_lock);
2560 zone = pagezone;
2561 spin_lock_irq(&zone->lru_lock);
2562 }
2563
2564 if (PageLRU(page) && PageUnevictable(page))
2565 check_move_unevictable_page(page, zone);
2566 }
2567 if (zone)
2568 spin_unlock_irq(&zone->lru_lock);
2569 pagevec_release(&pvec);
2570
2571 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2572 }
2573
2574}
af936a16
LS
2575
2576/**
2577 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2578 * @zone - zone of which to scan the unevictable list
2579 *
2580 * Scan @zone's unevictable LRU lists to check for pages that have become
2581 * evictable. Move those that have to @zone's inactive list where they
2582 * become candidates for reclaim, unless shrink_inactive_zone() decides
2583 * to reactivate them. Pages that are still unevictable are rotated
2584 * back onto @zone's unevictable list.
2585 */
2586#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2587static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2588{
2589 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2590 unsigned long scan;
2591 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2592
2593 while (nr_to_scan > 0) {
2594 unsigned long batch_size = min(nr_to_scan,
2595 SCAN_UNEVICTABLE_BATCH_SIZE);
2596
2597 spin_lock_irq(&zone->lru_lock);
2598 for (scan = 0; scan < batch_size; scan++) {
2599 struct page *page = lru_to_page(l_unevictable);
2600
2601 if (!trylock_page(page))
2602 continue;
2603
2604 prefetchw_prev_lru_page(page, l_unevictable, flags);
2605
2606 if (likely(PageLRU(page) && PageUnevictable(page)))
2607 check_move_unevictable_page(page, zone);
2608
2609 unlock_page(page);
2610 }
2611 spin_unlock_irq(&zone->lru_lock);
2612
2613 nr_to_scan -= batch_size;
2614 }
2615}
2616
2617
2618/**
2619 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2620 *
2621 * A really big hammer: scan all zones' unevictable LRU lists to check for
2622 * pages that have become evictable. Move those back to the zones'
2623 * inactive list where they become candidates for reclaim.
2624 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2625 * and we add swap to the system. As such, it runs in the context of a task
2626 * that has possibly/probably made some previously unevictable pages
2627 * evictable.
2628 */
ff30153b 2629static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2630{
2631 struct zone *zone;
2632
2633 for_each_zone(zone) {
2634 scan_zone_unevictable_pages(zone);
2635 }
2636}
2637
2638/*
2639 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2640 * all nodes' unevictable lists for evictable pages
2641 */
2642unsigned long scan_unevictable_pages;
2643
2644int scan_unevictable_handler(struct ctl_table *table, int write,
2645 struct file *file, void __user *buffer,
2646 size_t *length, loff_t *ppos)
2647{
2648 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2649
2650 if (write && *(unsigned long *)table->data)
2651 scan_all_zones_unevictable_pages();
2652
2653 scan_unevictable_pages = 0;
2654 return 0;
2655}
2656
2657/*
2658 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2659 * a specified node's per zone unevictable lists for evictable pages.
2660 */
2661
2662static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2663 struct sysdev_attribute *attr,
2664 char *buf)
2665{
2666 return sprintf(buf, "0\n"); /* always zero; should fit... */
2667}
2668
2669static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2670 struct sysdev_attribute *attr,
2671 const char *buf, size_t count)
2672{
2673 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2674 struct zone *zone;
2675 unsigned long res;
2676 unsigned long req = strict_strtoul(buf, 10, &res);
2677
2678 if (!req)
2679 return 1; /* zero is no-op */
2680
2681 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2682 if (!populated_zone(zone))
2683 continue;
2684 scan_zone_unevictable_pages(zone);
2685 }
2686 return 1;
2687}
2688
2689
2690static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2691 read_scan_unevictable_node,
2692 write_scan_unevictable_node);
2693
2694int scan_unevictable_register_node(struct node *node)
2695{
2696 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2697}
2698
2699void scan_unevictable_unregister_node(struct node *node)
2700{
2701 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2702}
2703