]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmscan.c
oom: move oom_killer_enable()/oom_killer_disable to where they belong
[net-next-2.6.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
a79311c1
RR
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
1da177e4 58 /* This context's GFP mask */
6daa0e28 59 gfp_t gfp_mask;
1da177e4
LT
60
61 int may_writepage;
62
a6dc60f8
JW
63 /* Can mapped pages be reclaimed? */
64 int may_unmap;
f1fd1067 65
2e2e4259
KM
66 /* Can pages be swapped as part of reclaim? */
67 int may_swap;
68
1da177e4
LT
69 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
70 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
71 * In this context, it doesn't matter that we scan the
72 * whole list at once. */
73 int swap_cluster_max;
d6277db4
RW
74
75 int swappiness;
408d8544
NP
76
77 int all_unreclaimable;
5ad333eb
AW
78
79 int order;
66e1707b
BS
80
81 /* Which cgroup do we reclaim from */
82 struct mem_cgroup *mem_cgroup;
83
327c0e96
KH
84 /*
85 * Nodemask of nodes allowed by the caller. If NULL, all nodes
86 * are scanned.
87 */
88 nodemask_t *nodemask;
89
66e1707b
BS
90 /* Pluggable isolate pages callback */
91 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
92 unsigned long *scanned, int order, int mode,
93 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 94 int active, int file);
1da177e4
LT
95};
96
1da177e4
LT
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
bd1e22b8 131long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
00f0b825 136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 137#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 138#else
e72e2bd6 139#define scanning_global_lru(sc) (1)
91a45470
KH
140#endif
141
6e901571
KM
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144{
e72e2bd6 145 if (!scanning_global_lru(sc))
3e2f41f1
KM
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
6e901571
KM
148 return &zone->reclaim_stat;
149}
150
0b217676
VL
151static unsigned long zone_nr_lru_pages(struct zone *zone,
152 struct scan_control *sc, enum lru_list lru)
c9f299d9 153{
e72e2bd6 154 if (!scanning_global_lru(sc))
a3d8e054
KM
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
c9f299d9
KM
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
1da177e4
LT
161/*
162 * Add a shrinker callback to be called from the vm
163 */
8e1f936b 164void register_shrinker(struct shrinker *shrinker)
1da177e4 165{
8e1f936b
RR
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
1da177e4 170}
8e1f936b 171EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
172
173/*
174 * Remove one
175 */
8e1f936b 176void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
177{
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
1da177e4 181}
8e1f936b 182EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
183ff22b 193 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
b15e0905
AM
201 *
202 * Returns the number of slab objects which we shrunk.
1da177e4 203 */
69e05944
AM
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
1da177e4
LT
206{
207 struct shrinker *shrinker;
69e05944 208 unsigned long ret = 0;
1da177e4
LT
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 214 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
8e1f936b 219 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
220
221 delta = (4 * scanned) / shrinker->seeks;
ea164d73 222 delta *= max_pass;
1da177e4
LT
223 do_div(delta, lru_pages + 1);
224 shrinker->nr += delta;
ea164d73 225 if (shrinker->nr < 0) {
88c3bd70
DR
226 printk(KERN_ERR "shrink_slab: %pF negative objects to "
227 "delete nr=%ld\n",
228 shrinker->shrink, shrinker->nr);
ea164d73
AA
229 shrinker->nr = max_pass;
230 }
231
232 /*
233 * Avoid risking looping forever due to too large nr value:
234 * never try to free more than twice the estimate number of
235 * freeable entries.
236 */
237 if (shrinker->nr > max_pass * 2)
238 shrinker->nr = max_pass * 2;
1da177e4
LT
239
240 total_scan = shrinker->nr;
241 shrinker->nr = 0;
242
243 while (total_scan >= SHRINK_BATCH) {
244 long this_scan = SHRINK_BATCH;
245 int shrink_ret;
b15e0905 246 int nr_before;
1da177e4 247
8e1f936b
RR
248 nr_before = (*shrinker->shrink)(0, gfp_mask);
249 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
250 if (shrink_ret == -1)
251 break;
b15e0905
AM
252 if (shrink_ret < nr_before)
253 ret += nr_before - shrink_ret;
f8891e5e 254 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
255 total_scan -= this_scan;
256
257 cond_resched();
258 }
259
260 shrinker->nr += total_scan;
261 }
262 up_read(&shrinker_rwsem);
b15e0905 263 return ret;
1da177e4
LT
264}
265
266/* Called without lock on whether page is mapped, so answer is unstable */
267static inline int page_mapping_inuse(struct page *page)
268{
269 struct address_space *mapping;
270
271 /* Page is in somebody's page tables. */
272 if (page_mapped(page))
273 return 1;
274
275 /* Be more reluctant to reclaim swapcache than pagecache */
276 if (PageSwapCache(page))
277 return 1;
278
279 mapping = page_mapping(page);
280 if (!mapping)
281 return 0;
282
283 /* File is mmap'd by somebody? */
284 return mapping_mapped(mapping);
285}
286
287static inline int is_page_cache_freeable(struct page *page)
288{
ceddc3a5
JW
289 /*
290 * A freeable page cache page is referenced only by the caller
291 * that isolated the page, the page cache radix tree and
292 * optional buffer heads at page->private.
293 */
edcf4748 294 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
295}
296
297static int may_write_to_queue(struct backing_dev_info *bdi)
298{
930d9152 299 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
300 return 1;
301 if (!bdi_write_congested(bdi))
302 return 1;
303 if (bdi == current->backing_dev_info)
304 return 1;
305 return 0;
306}
307
308/*
309 * We detected a synchronous write error writing a page out. Probably
310 * -ENOSPC. We need to propagate that into the address_space for a subsequent
311 * fsync(), msync() or close().
312 *
313 * The tricky part is that after writepage we cannot touch the mapping: nothing
314 * prevents it from being freed up. But we have a ref on the page and once
315 * that page is locked, the mapping is pinned.
316 *
317 * We're allowed to run sleeping lock_page() here because we know the caller has
318 * __GFP_FS.
319 */
320static void handle_write_error(struct address_space *mapping,
321 struct page *page, int error)
322{
323 lock_page(page);
3e9f45bd
GC
324 if (page_mapping(page) == mapping)
325 mapping_set_error(mapping, error);
1da177e4
LT
326 unlock_page(page);
327}
328
c661b078
AW
329/* Request for sync pageout. */
330enum pageout_io {
331 PAGEOUT_IO_ASYNC,
332 PAGEOUT_IO_SYNC,
333};
334
04e62a29
CL
335/* possible outcome of pageout() */
336typedef enum {
337 /* failed to write page out, page is locked */
338 PAGE_KEEP,
339 /* move page to the active list, page is locked */
340 PAGE_ACTIVATE,
341 /* page has been sent to the disk successfully, page is unlocked */
342 PAGE_SUCCESS,
343 /* page is clean and locked */
344 PAGE_CLEAN,
345} pageout_t;
346
1da177e4 347/*
1742f19f
AM
348 * pageout is called by shrink_page_list() for each dirty page.
349 * Calls ->writepage().
1da177e4 350 */
c661b078
AW
351static pageout_t pageout(struct page *page, struct address_space *mapping,
352 enum pageout_io sync_writeback)
1da177e4
LT
353{
354 /*
355 * If the page is dirty, only perform writeback if that write
356 * will be non-blocking. To prevent this allocation from being
357 * stalled by pagecache activity. But note that there may be
358 * stalls if we need to run get_block(). We could test
359 * PagePrivate for that.
360 *
361 * If this process is currently in generic_file_write() against
362 * this page's queue, we can perform writeback even if that
363 * will block.
364 *
365 * If the page is swapcache, write it back even if that would
366 * block, for some throttling. This happens by accident, because
367 * swap_backing_dev_info is bust: it doesn't reflect the
368 * congestion state of the swapdevs. Easy to fix, if needed.
369 * See swapfile.c:page_queue_congested().
370 */
371 if (!is_page_cache_freeable(page))
372 return PAGE_KEEP;
373 if (!mapping) {
374 /*
375 * Some data journaling orphaned pages can have
376 * page->mapping == NULL while being dirty with clean buffers.
377 */
266cf658 378 if (page_has_private(page)) {
1da177e4
LT
379 if (try_to_free_buffers(page)) {
380 ClearPageDirty(page);
d40cee24 381 printk("%s: orphaned page\n", __func__);
1da177e4
LT
382 return PAGE_CLEAN;
383 }
384 }
385 return PAGE_KEEP;
386 }
387 if (mapping->a_ops->writepage == NULL)
388 return PAGE_ACTIVATE;
389 if (!may_write_to_queue(mapping->backing_dev_info))
390 return PAGE_KEEP;
391
392 if (clear_page_dirty_for_io(page)) {
393 int res;
394 struct writeback_control wbc = {
395 .sync_mode = WB_SYNC_NONE,
396 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
397 .range_start = 0,
398 .range_end = LLONG_MAX,
1da177e4
LT
399 .nonblocking = 1,
400 .for_reclaim = 1,
401 };
402
403 SetPageReclaim(page);
404 res = mapping->a_ops->writepage(page, &wbc);
405 if (res < 0)
406 handle_write_error(mapping, page, res);
994fc28c 407 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
408 ClearPageReclaim(page);
409 return PAGE_ACTIVATE;
410 }
c661b078
AW
411
412 /*
413 * Wait on writeback if requested to. This happens when
414 * direct reclaiming a large contiguous area and the
415 * first attempt to free a range of pages fails.
416 */
417 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
418 wait_on_page_writeback(page);
419
1da177e4
LT
420 if (!PageWriteback(page)) {
421 /* synchronous write or broken a_ops? */
422 ClearPageReclaim(page);
423 }
e129b5c2 424 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
425 return PAGE_SUCCESS;
426 }
427
428 return PAGE_CLEAN;
429}
430
a649fd92 431/*
e286781d
NP
432 * Same as remove_mapping, but if the page is removed from the mapping, it
433 * gets returned with a refcount of 0.
a649fd92 434 */
e286781d 435static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 436{
28e4d965
NP
437 BUG_ON(!PageLocked(page));
438 BUG_ON(mapping != page_mapping(page));
49d2e9cc 439
19fd6231 440 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 441 /*
0fd0e6b0
NP
442 * The non racy check for a busy page.
443 *
444 * Must be careful with the order of the tests. When someone has
445 * a ref to the page, it may be possible that they dirty it then
446 * drop the reference. So if PageDirty is tested before page_count
447 * here, then the following race may occur:
448 *
449 * get_user_pages(&page);
450 * [user mapping goes away]
451 * write_to(page);
452 * !PageDirty(page) [good]
453 * SetPageDirty(page);
454 * put_page(page);
455 * !page_count(page) [good, discard it]
456 *
457 * [oops, our write_to data is lost]
458 *
459 * Reversing the order of the tests ensures such a situation cannot
460 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
461 * load is not satisfied before that of page->_count.
462 *
463 * Note that if SetPageDirty is always performed via set_page_dirty,
464 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 465 */
e286781d 466 if (!page_freeze_refs(page, 2))
49d2e9cc 467 goto cannot_free;
e286781d
NP
468 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
469 if (unlikely(PageDirty(page))) {
470 page_unfreeze_refs(page, 2);
49d2e9cc 471 goto cannot_free;
e286781d 472 }
49d2e9cc
CL
473
474 if (PageSwapCache(page)) {
475 swp_entry_t swap = { .val = page_private(page) };
476 __delete_from_swap_cache(page);
19fd6231 477 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 478 swapcache_free(swap, page);
e286781d
NP
479 } else {
480 __remove_from_page_cache(page);
19fd6231 481 spin_unlock_irq(&mapping->tree_lock);
e767e056 482 mem_cgroup_uncharge_cache_page(page);
49d2e9cc
CL
483 }
484
49d2e9cc
CL
485 return 1;
486
487cannot_free:
19fd6231 488 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
489 return 0;
490}
491
e286781d
NP
492/*
493 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
494 * someone else has a ref on the page, abort and return 0. If it was
495 * successfully detached, return 1. Assumes the caller has a single ref on
496 * this page.
497 */
498int remove_mapping(struct address_space *mapping, struct page *page)
499{
500 if (__remove_mapping(mapping, page)) {
501 /*
502 * Unfreezing the refcount with 1 rather than 2 effectively
503 * drops the pagecache ref for us without requiring another
504 * atomic operation.
505 */
506 page_unfreeze_refs(page, 1);
507 return 1;
508 }
509 return 0;
510}
511
894bc310
LS
512/**
513 * putback_lru_page - put previously isolated page onto appropriate LRU list
514 * @page: page to be put back to appropriate lru list
515 *
516 * Add previously isolated @page to appropriate LRU list.
517 * Page may still be unevictable for other reasons.
518 *
519 * lru_lock must not be held, interrupts must be enabled.
520 */
894bc310
LS
521void putback_lru_page(struct page *page)
522{
523 int lru;
524 int active = !!TestClearPageActive(page);
bbfd28ee 525 int was_unevictable = PageUnevictable(page);
894bc310
LS
526
527 VM_BUG_ON(PageLRU(page));
528
529redo:
530 ClearPageUnevictable(page);
531
532 if (page_evictable(page, NULL)) {
533 /*
534 * For evictable pages, we can use the cache.
535 * In event of a race, worst case is we end up with an
536 * unevictable page on [in]active list.
537 * We know how to handle that.
538 */
401a8e1c 539 lru = active + page_lru_base_type(page);
894bc310
LS
540 lru_cache_add_lru(page, lru);
541 } else {
542 /*
543 * Put unevictable pages directly on zone's unevictable
544 * list.
545 */
546 lru = LRU_UNEVICTABLE;
547 add_page_to_unevictable_list(page);
548 }
894bc310
LS
549
550 /*
551 * page's status can change while we move it among lru. If an evictable
552 * page is on unevictable list, it never be freed. To avoid that,
553 * check after we added it to the list, again.
554 */
555 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
556 if (!isolate_lru_page(page)) {
557 put_page(page);
558 goto redo;
559 }
560 /* This means someone else dropped this page from LRU
561 * So, it will be freed or putback to LRU again. There is
562 * nothing to do here.
563 */
564 }
565
bbfd28ee
LS
566 if (was_unevictable && lru != LRU_UNEVICTABLE)
567 count_vm_event(UNEVICTABLE_PGRESCUED);
568 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
569 count_vm_event(UNEVICTABLE_PGCULLED);
570
894bc310
LS
571 put_page(page); /* drop ref from isolate */
572}
573
1da177e4 574/*
1742f19f 575 * shrink_page_list() returns the number of reclaimed pages
1da177e4 576 */
1742f19f 577static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
578 struct scan_control *sc,
579 enum pageout_io sync_writeback)
1da177e4
LT
580{
581 LIST_HEAD(ret_pages);
582 struct pagevec freed_pvec;
583 int pgactivate = 0;
05ff5137 584 unsigned long nr_reclaimed = 0;
6fe6b7e3 585 unsigned long vm_flags;
1da177e4
LT
586
587 cond_resched();
588
589 pagevec_init(&freed_pvec, 1);
590 while (!list_empty(page_list)) {
591 struct address_space *mapping;
592 struct page *page;
593 int may_enter_fs;
594 int referenced;
595
596 cond_resched();
597
598 page = lru_to_page(page_list);
599 list_del(&page->lru);
600
529ae9aa 601 if (!trylock_page(page))
1da177e4
LT
602 goto keep;
603
725d704e 604 VM_BUG_ON(PageActive(page));
1da177e4
LT
605
606 sc->nr_scanned++;
80e43426 607
b291f000
NP
608 if (unlikely(!page_evictable(page, NULL)))
609 goto cull_mlocked;
894bc310 610
a6dc60f8 611 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
612 goto keep_locked;
613
1da177e4
LT
614 /* Double the slab pressure for mapped and swapcache pages */
615 if (page_mapped(page) || PageSwapCache(page))
616 sc->nr_scanned++;
617
c661b078
AW
618 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
619 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
620
621 if (PageWriteback(page)) {
622 /*
623 * Synchronous reclaim is performed in two passes,
624 * first an asynchronous pass over the list to
625 * start parallel writeback, and a second synchronous
626 * pass to wait for the IO to complete. Wait here
627 * for any page for which writeback has already
628 * started.
629 */
630 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
631 wait_on_page_writeback(page);
4dd4b920 632 else
c661b078
AW
633 goto keep_locked;
634 }
1da177e4 635
6fe6b7e3
WF
636 referenced = page_referenced(page, 1,
637 sc->mem_cgroup, &vm_flags);
03ef83af
MK
638 /*
639 * In active use or really unfreeable? Activate it.
640 * If page which have PG_mlocked lost isoltation race,
641 * try_to_unmap moves it to unevictable list
642 */
5ad333eb 643 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
03ef83af
MK
644 referenced && page_mapping_inuse(page)
645 && !(vm_flags & VM_LOCKED))
1da177e4
LT
646 goto activate_locked;
647
1da177e4
LT
648 /*
649 * Anonymous process memory has backing store?
650 * Try to allocate it some swap space here.
651 */
b291f000 652 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
653 if (!(sc->gfp_mask & __GFP_IO))
654 goto keep_locked;
ac47b003 655 if (!add_to_swap(page))
1da177e4 656 goto activate_locked;
63eb6b93 657 may_enter_fs = 1;
b291f000 658 }
1da177e4
LT
659
660 mapping = page_mapping(page);
1da177e4
LT
661
662 /*
663 * The page is mapped into the page tables of one or more
664 * processes. Try to unmap it here.
665 */
666 if (page_mapped(page) && mapping) {
a48d07af 667 switch (try_to_unmap(page, 0)) {
1da177e4
LT
668 case SWAP_FAIL:
669 goto activate_locked;
670 case SWAP_AGAIN:
671 goto keep_locked;
b291f000
NP
672 case SWAP_MLOCK:
673 goto cull_mlocked;
1da177e4
LT
674 case SWAP_SUCCESS:
675 ; /* try to free the page below */
676 }
677 }
678
679 if (PageDirty(page)) {
5ad333eb 680 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 681 goto keep_locked;
4dd4b920 682 if (!may_enter_fs)
1da177e4 683 goto keep_locked;
52a8363e 684 if (!sc->may_writepage)
1da177e4
LT
685 goto keep_locked;
686
687 /* Page is dirty, try to write it out here */
c661b078 688 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
689 case PAGE_KEEP:
690 goto keep_locked;
691 case PAGE_ACTIVATE:
692 goto activate_locked;
693 case PAGE_SUCCESS:
4dd4b920 694 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
695 goto keep;
696 /*
697 * A synchronous write - probably a ramdisk. Go
698 * ahead and try to reclaim the page.
699 */
529ae9aa 700 if (!trylock_page(page))
1da177e4
LT
701 goto keep;
702 if (PageDirty(page) || PageWriteback(page))
703 goto keep_locked;
704 mapping = page_mapping(page);
705 case PAGE_CLEAN:
706 ; /* try to free the page below */
707 }
708 }
709
710 /*
711 * If the page has buffers, try to free the buffer mappings
712 * associated with this page. If we succeed we try to free
713 * the page as well.
714 *
715 * We do this even if the page is PageDirty().
716 * try_to_release_page() does not perform I/O, but it is
717 * possible for a page to have PageDirty set, but it is actually
718 * clean (all its buffers are clean). This happens if the
719 * buffers were written out directly, with submit_bh(). ext3
894bc310 720 * will do this, as well as the blockdev mapping.
1da177e4
LT
721 * try_to_release_page() will discover that cleanness and will
722 * drop the buffers and mark the page clean - it can be freed.
723 *
724 * Rarely, pages can have buffers and no ->mapping. These are
725 * the pages which were not successfully invalidated in
726 * truncate_complete_page(). We try to drop those buffers here
727 * and if that worked, and the page is no longer mapped into
728 * process address space (page_count == 1) it can be freed.
729 * Otherwise, leave the page on the LRU so it is swappable.
730 */
266cf658 731 if (page_has_private(page)) {
1da177e4
LT
732 if (!try_to_release_page(page, sc->gfp_mask))
733 goto activate_locked;
e286781d
NP
734 if (!mapping && page_count(page) == 1) {
735 unlock_page(page);
736 if (put_page_testzero(page))
737 goto free_it;
738 else {
739 /*
740 * rare race with speculative reference.
741 * the speculative reference will free
742 * this page shortly, so we may
743 * increment nr_reclaimed here (and
744 * leave it off the LRU).
745 */
746 nr_reclaimed++;
747 continue;
748 }
749 }
1da177e4
LT
750 }
751
e286781d 752 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 753 goto keep_locked;
1da177e4 754
a978d6f5
NP
755 /*
756 * At this point, we have no other references and there is
757 * no way to pick any more up (removed from LRU, removed
758 * from pagecache). Can use non-atomic bitops now (and
759 * we obviously don't have to worry about waking up a process
760 * waiting on the page lock, because there are no references.
761 */
762 __clear_page_locked(page);
e286781d 763free_it:
05ff5137 764 nr_reclaimed++;
e286781d
NP
765 if (!pagevec_add(&freed_pvec, page)) {
766 __pagevec_free(&freed_pvec);
767 pagevec_reinit(&freed_pvec);
768 }
1da177e4
LT
769 continue;
770
b291f000 771cull_mlocked:
63d6c5ad
HD
772 if (PageSwapCache(page))
773 try_to_free_swap(page);
b291f000
NP
774 unlock_page(page);
775 putback_lru_page(page);
776 continue;
777
1da177e4 778activate_locked:
68a22394
RR
779 /* Not a candidate for swapping, so reclaim swap space. */
780 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 781 try_to_free_swap(page);
894bc310 782 VM_BUG_ON(PageActive(page));
1da177e4
LT
783 SetPageActive(page);
784 pgactivate++;
785keep_locked:
786 unlock_page(page);
787keep:
788 list_add(&page->lru, &ret_pages);
b291f000 789 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
790 }
791 list_splice(&ret_pages, page_list);
792 if (pagevec_count(&freed_pvec))
e286781d 793 __pagevec_free(&freed_pvec);
f8891e5e 794 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 795 return nr_reclaimed;
1da177e4
LT
796}
797
5ad333eb
AW
798/* LRU Isolation modes. */
799#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
800#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
801#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
802
803/*
804 * Attempt to remove the specified page from its LRU. Only take this page
805 * if it is of the appropriate PageActive status. Pages which are being
806 * freed elsewhere are also ignored.
807 *
808 * page: page to consider
809 * mode: one of the LRU isolation modes defined above
810 *
811 * returns 0 on success, -ve errno on failure.
812 */
4f98a2fe 813int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
814{
815 int ret = -EINVAL;
816
817 /* Only take pages on the LRU. */
818 if (!PageLRU(page))
819 return ret;
820
821 /*
822 * When checking the active state, we need to be sure we are
823 * dealing with comparible boolean values. Take the logical not
824 * of each.
825 */
826 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
827 return ret;
828
6c0b1351 829 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
4f98a2fe
RR
830 return ret;
831
894bc310
LS
832 /*
833 * When this function is being called for lumpy reclaim, we
834 * initially look into all LRU pages, active, inactive and
835 * unevictable; only give shrink_page_list evictable pages.
836 */
837 if (PageUnevictable(page))
838 return ret;
839
5ad333eb 840 ret = -EBUSY;
08e552c6 841
5ad333eb
AW
842 if (likely(get_page_unless_zero(page))) {
843 /*
844 * Be careful not to clear PageLRU until after we're
845 * sure the page is not being freed elsewhere -- the
846 * page release code relies on it.
847 */
848 ClearPageLRU(page);
849 ret = 0;
850 }
851
852 return ret;
853}
854
1da177e4
LT
855/*
856 * zone->lru_lock is heavily contended. Some of the functions that
857 * shrink the lists perform better by taking out a batch of pages
858 * and working on them outside the LRU lock.
859 *
860 * For pagecache intensive workloads, this function is the hottest
861 * spot in the kernel (apart from copy_*_user functions).
862 *
863 * Appropriate locks must be held before calling this function.
864 *
865 * @nr_to_scan: The number of pages to look through on the list.
866 * @src: The LRU list to pull pages off.
867 * @dst: The temp list to put pages on to.
868 * @scanned: The number of pages that were scanned.
5ad333eb
AW
869 * @order: The caller's attempted allocation order
870 * @mode: One of the LRU isolation modes
4f98a2fe 871 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
872 *
873 * returns how many pages were moved onto *@dst.
874 */
69e05944
AM
875static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
876 struct list_head *src, struct list_head *dst,
4f98a2fe 877 unsigned long *scanned, int order, int mode, int file)
1da177e4 878{
69e05944 879 unsigned long nr_taken = 0;
c9b02d97 880 unsigned long scan;
1da177e4 881
c9b02d97 882 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
883 struct page *page;
884 unsigned long pfn;
885 unsigned long end_pfn;
886 unsigned long page_pfn;
887 int zone_id;
888
1da177e4
LT
889 page = lru_to_page(src);
890 prefetchw_prev_lru_page(page, src, flags);
891
725d704e 892 VM_BUG_ON(!PageLRU(page));
8d438f96 893
4f98a2fe 894 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
895 case 0:
896 list_move(&page->lru, dst);
2ffebca6 897 mem_cgroup_del_lru(page);
7c8ee9a8 898 nr_taken++;
5ad333eb
AW
899 break;
900
901 case -EBUSY:
902 /* else it is being freed elsewhere */
903 list_move(&page->lru, src);
2ffebca6 904 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 905 continue;
46453a6e 906
5ad333eb
AW
907 default:
908 BUG();
909 }
910
911 if (!order)
912 continue;
913
914 /*
915 * Attempt to take all pages in the order aligned region
916 * surrounding the tag page. Only take those pages of
917 * the same active state as that tag page. We may safely
918 * round the target page pfn down to the requested order
919 * as the mem_map is guarenteed valid out to MAX_ORDER,
920 * where that page is in a different zone we will detect
921 * it from its zone id and abort this block scan.
922 */
923 zone_id = page_zone_id(page);
924 page_pfn = page_to_pfn(page);
925 pfn = page_pfn & ~((1 << order) - 1);
926 end_pfn = pfn + (1 << order);
927 for (; pfn < end_pfn; pfn++) {
928 struct page *cursor_page;
929
930 /* The target page is in the block, ignore it. */
931 if (unlikely(pfn == page_pfn))
932 continue;
933
934 /* Avoid holes within the zone. */
935 if (unlikely(!pfn_valid_within(pfn)))
936 break;
937
938 cursor_page = pfn_to_page(pfn);
4f98a2fe 939
5ad333eb
AW
940 /* Check that we have not crossed a zone boundary. */
941 if (unlikely(page_zone_id(cursor_page) != zone_id))
942 continue;
de2e7567
MK
943
944 /*
945 * If we don't have enough swap space, reclaiming of
946 * anon page which don't already have a swap slot is
947 * pointless.
948 */
949 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
950 !PageSwapCache(cursor_page))
951 continue;
952
ee993b13 953 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 954 list_move(&cursor_page->lru, dst);
cb4cbcf6 955 mem_cgroup_del_lru(cursor_page);
5ad333eb
AW
956 nr_taken++;
957 scan++;
5ad333eb
AW
958 }
959 }
1da177e4
LT
960 }
961
962 *scanned = scan;
963 return nr_taken;
964}
965
66e1707b
BS
966static unsigned long isolate_pages_global(unsigned long nr,
967 struct list_head *dst,
968 unsigned long *scanned, int order,
969 int mode, struct zone *z,
970 struct mem_cgroup *mem_cont,
4f98a2fe 971 int active, int file)
66e1707b 972{
4f98a2fe 973 int lru = LRU_BASE;
66e1707b 974 if (active)
4f98a2fe
RR
975 lru += LRU_ACTIVE;
976 if (file)
977 lru += LRU_FILE;
978 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 979 mode, file);
66e1707b
BS
980}
981
5ad333eb
AW
982/*
983 * clear_active_flags() is a helper for shrink_active_list(), clearing
984 * any active bits from the pages in the list.
985 */
4f98a2fe
RR
986static unsigned long clear_active_flags(struct list_head *page_list,
987 unsigned int *count)
5ad333eb
AW
988{
989 int nr_active = 0;
4f98a2fe 990 int lru;
5ad333eb
AW
991 struct page *page;
992
4f98a2fe 993 list_for_each_entry(page, page_list, lru) {
401a8e1c 994 lru = page_lru_base_type(page);
5ad333eb 995 if (PageActive(page)) {
4f98a2fe 996 lru += LRU_ACTIVE;
5ad333eb
AW
997 ClearPageActive(page);
998 nr_active++;
999 }
4f98a2fe
RR
1000 count[lru]++;
1001 }
5ad333eb
AW
1002
1003 return nr_active;
1004}
1005
62695a84
NP
1006/**
1007 * isolate_lru_page - tries to isolate a page from its LRU list
1008 * @page: page to isolate from its LRU list
1009 *
1010 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1011 * vmstat statistic corresponding to whatever LRU list the page was on.
1012 *
1013 * Returns 0 if the page was removed from an LRU list.
1014 * Returns -EBUSY if the page was not on an LRU list.
1015 *
1016 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1017 * the active list, it will have PageActive set. If it was found on
1018 * the unevictable list, it will have the PageUnevictable bit set. That flag
1019 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1020 *
1021 * The vmstat statistic corresponding to the list on which the page was
1022 * found will be decremented.
1023 *
1024 * Restrictions:
1025 * (1) Must be called with an elevated refcount on the page. This is a
1026 * fundamentnal difference from isolate_lru_pages (which is called
1027 * without a stable reference).
1028 * (2) the lru_lock must not be held.
1029 * (3) interrupts must be enabled.
1030 */
1031int isolate_lru_page(struct page *page)
1032{
1033 int ret = -EBUSY;
1034
1035 if (PageLRU(page)) {
1036 struct zone *zone = page_zone(page);
1037
1038 spin_lock_irq(&zone->lru_lock);
1039 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1040 int lru = page_lru(page);
62695a84
NP
1041 ret = 0;
1042 ClearPageLRU(page);
4f98a2fe 1043
4f98a2fe 1044 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1045 }
1046 spin_unlock_irq(&zone->lru_lock);
1047 }
1048 return ret;
1049}
1050
35cd7815
RR
1051/*
1052 * Are there way too many processes in the direct reclaim path already?
1053 */
1054static int too_many_isolated(struct zone *zone, int file,
1055 struct scan_control *sc)
1056{
1057 unsigned long inactive, isolated;
1058
1059 if (current_is_kswapd())
1060 return 0;
1061
1062 if (!scanning_global_lru(sc))
1063 return 0;
1064
1065 if (file) {
1066 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1067 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1068 } else {
1069 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1070 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1071 }
1072
1073 return isolated > inactive;
1074}
1075
1da177e4 1076/*
1742f19f
AM
1077 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1078 * of reclaimed pages
1da177e4 1079 */
1742f19f 1080static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1081 struct zone *zone, struct scan_control *sc,
1082 int priority, int file)
1da177e4
LT
1083{
1084 LIST_HEAD(page_list);
1085 struct pagevec pvec;
69e05944 1086 unsigned long nr_scanned = 0;
05ff5137 1087 unsigned long nr_reclaimed = 0;
6e901571 1088 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
78dc583d
KM
1089 int lumpy_reclaim = 0;
1090
35cd7815
RR
1091 while (unlikely(too_many_isolated(zone, file, sc))) {
1092 congestion_wait(WRITE, HZ/10);
1093
1094 /* We are about to die and free our memory. Return now. */
1095 if (fatal_signal_pending(current))
1096 return SWAP_CLUSTER_MAX;
1097 }
1098
78dc583d
KM
1099 /*
1100 * If we need a large contiguous chunk of memory, or have
1101 * trouble getting a small set of contiguous pages, we
1102 * will reclaim both active and inactive pages.
1103 *
1104 * We use the same threshold as pageout congestion_wait below.
1105 */
1106 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1107 lumpy_reclaim = 1;
1108 else if (sc->order && priority < DEF_PRIORITY - 2)
1109 lumpy_reclaim = 1;
1da177e4
LT
1110
1111 pagevec_init(&pvec, 1);
1112
1113 lru_add_drain();
1114 spin_lock_irq(&zone->lru_lock);
69e05944 1115 do {
1da177e4 1116 struct page *page;
69e05944
AM
1117 unsigned long nr_taken;
1118 unsigned long nr_scan;
1119 unsigned long nr_freed;
5ad333eb 1120 unsigned long nr_active;
4f98a2fe 1121 unsigned int count[NR_LRU_LISTS] = { 0, };
78dc583d 1122 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
a731286d
KM
1123 unsigned long nr_anon;
1124 unsigned long nr_file;
1da177e4 1125
66e1707b 1126 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
4f98a2fe
RR
1127 &page_list, &nr_scan, sc->order, mode,
1128 zone, sc->mem_cgroup, 0, file);
b35ea17b
KM
1129
1130 if (scanning_global_lru(sc)) {
1131 zone->pages_scanned += nr_scan;
1132 if (current_is_kswapd())
1133 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1134 nr_scan);
1135 else
1136 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1137 nr_scan);
1138 }
1139
1140 if (nr_taken == 0)
1141 goto done;
1142
4f98a2fe 1143 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1144 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1145
4f98a2fe
RR
1146 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1147 -count[LRU_ACTIVE_FILE]);
1148 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1149 -count[LRU_INACTIVE_FILE]);
1150 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1151 -count[LRU_ACTIVE_ANON]);
1152 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1153 -count[LRU_INACTIVE_ANON]);
1154
a731286d
KM
1155 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1156 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1157 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1158 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
3e2f41f1
KM
1159
1160 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1161 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1162 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1163 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1164
1da177e4
LT
1165 spin_unlock_irq(&zone->lru_lock);
1166
69e05944 1167 nr_scanned += nr_scan;
c661b078
AW
1168 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1169
1170 /*
1171 * If we are direct reclaiming for contiguous pages and we do
1172 * not reclaim everything in the list, try again and wait
1173 * for IO to complete. This will stall high-order allocations
1174 * but that should be acceptable to the caller
1175 */
1176 if (nr_freed < nr_taken && !current_is_kswapd() &&
78dc583d 1177 lumpy_reclaim) {
8aa7e847 1178 congestion_wait(BLK_RW_ASYNC, HZ/10);
c661b078
AW
1179
1180 /*
1181 * The attempt at page out may have made some
1182 * of the pages active, mark them inactive again.
1183 */
4f98a2fe 1184 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1185 count_vm_events(PGDEACTIVATE, nr_active);
1186
1187 nr_freed += shrink_page_list(&page_list, sc,
1188 PAGEOUT_IO_SYNC);
1189 }
1190
05ff5137 1191 nr_reclaimed += nr_freed;
b35ea17b 1192
a74609fa 1193 local_irq_disable();
b35ea17b 1194 if (current_is_kswapd())
f8891e5e 1195 __count_vm_events(KSWAPD_STEAL, nr_freed);
918d3f90 1196 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa
NP
1197
1198 spin_lock(&zone->lru_lock);
1da177e4
LT
1199 /*
1200 * Put back any unfreeable pages.
1201 */
1202 while (!list_empty(&page_list)) {
894bc310 1203 int lru;
1da177e4 1204 page = lru_to_page(&page_list);
725d704e 1205 VM_BUG_ON(PageLRU(page));
1da177e4 1206 list_del(&page->lru);
894bc310
LS
1207 if (unlikely(!page_evictable(page, NULL))) {
1208 spin_unlock_irq(&zone->lru_lock);
1209 putback_lru_page(page);
1210 spin_lock_irq(&zone->lru_lock);
1211 continue;
1212 }
1213 SetPageLRU(page);
1214 lru = page_lru(page);
1215 add_page_to_lru_list(zone, page, lru);
74a1c48f 1216 if (is_active_lru(lru)) {
b7c46d15 1217 int file = is_file_lru(lru);
6e901571 1218 reclaim_stat->recent_rotated[file]++;
4f98a2fe 1219 }
1da177e4
LT
1220 if (!pagevec_add(&pvec, page)) {
1221 spin_unlock_irq(&zone->lru_lock);
1222 __pagevec_release(&pvec);
1223 spin_lock_irq(&zone->lru_lock);
1224 }
1225 }
a731286d
KM
1226 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1227 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1228
69e05944 1229 } while (nr_scanned < max_scan);
b35ea17b 1230
1da177e4 1231done:
b35ea17b 1232 spin_unlock_irq(&zone->lru_lock);
1da177e4 1233 pagevec_release(&pvec);
05ff5137 1234 return nr_reclaimed;
1da177e4
LT
1235}
1236
3bb1a852
MB
1237/*
1238 * We are about to scan this zone at a certain priority level. If that priority
1239 * level is smaller (ie: more urgent) than the previous priority, then note
1240 * that priority level within the zone. This is done so that when the next
1241 * process comes in to scan this zone, it will immediately start out at this
1242 * priority level rather than having to build up its own scanning priority.
1243 * Here, this priority affects only the reclaim-mapped threshold.
1244 */
1245static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1246{
1247 if (priority < zone->prev_priority)
1248 zone->prev_priority = priority;
1249}
1250
1da177e4
LT
1251/*
1252 * This moves pages from the active list to the inactive list.
1253 *
1254 * We move them the other way if the page is referenced by one or more
1255 * processes, from rmap.
1256 *
1257 * If the pages are mostly unmapped, the processing is fast and it is
1258 * appropriate to hold zone->lru_lock across the whole operation. But if
1259 * the pages are mapped, the processing is slow (page_referenced()) so we
1260 * should drop zone->lru_lock around each page. It's impossible to balance
1261 * this, so instead we remove the pages from the LRU while processing them.
1262 * It is safe to rely on PG_active against the non-LRU pages in here because
1263 * nobody will play with that bit on a non-LRU page.
1264 *
1265 * The downside is that we have to touch page->_count against each page.
1266 * But we had to alter page->flags anyway.
1267 */
1cfb419b 1268
3eb4140f
WF
1269static void move_active_pages_to_lru(struct zone *zone,
1270 struct list_head *list,
1271 enum lru_list lru)
1272{
1273 unsigned long pgmoved = 0;
1274 struct pagevec pvec;
1275 struct page *page;
1276
1277 pagevec_init(&pvec, 1);
1278
1279 while (!list_empty(list)) {
1280 page = lru_to_page(list);
3eb4140f
WF
1281
1282 VM_BUG_ON(PageLRU(page));
1283 SetPageLRU(page);
1284
3eb4140f
WF
1285 list_move(&page->lru, &zone->lru[lru].list);
1286 mem_cgroup_add_lru_list(page, lru);
1287 pgmoved++;
1288
1289 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1290 spin_unlock_irq(&zone->lru_lock);
1291 if (buffer_heads_over_limit)
1292 pagevec_strip(&pvec);
1293 __pagevec_release(&pvec);
1294 spin_lock_irq(&zone->lru_lock);
1295 }
1296 }
1297 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1298 if (!is_active_lru(lru))
1299 __count_vm_events(PGDEACTIVATE, pgmoved);
1300}
1cfb419b 1301
1742f19f 1302static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1303 struct scan_control *sc, int priority, int file)
1da177e4 1304{
44c241f1 1305 unsigned long nr_taken;
69e05944 1306 unsigned long pgscanned;
6fe6b7e3 1307 unsigned long vm_flags;
1da177e4 1308 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1309 LIST_HEAD(l_active);
b69408e8 1310 LIST_HEAD(l_inactive);
1da177e4 1311 struct page *page;
6e901571 1312 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1313 unsigned long nr_rotated = 0;
1da177e4
LT
1314
1315 lru_add_drain();
1316 spin_lock_irq(&zone->lru_lock);
44c241f1 1317 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
66e1707b 1318 ISOLATE_ACTIVE, zone,
4f98a2fe 1319 sc->mem_cgroup, 1, file);
1cfb419b
KH
1320 /*
1321 * zone->pages_scanned is used for detect zone's oom
1322 * mem_cgroup remembers nr_scan by itself.
1323 */
e72e2bd6 1324 if (scanning_global_lru(sc)) {
1cfb419b 1325 zone->pages_scanned += pgscanned;
4f98a2fe 1326 }
b7c46d15 1327 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1328
3eb4140f 1329 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1330 if (file)
44c241f1 1331 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1332 else
44c241f1 1333 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1334 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1335 spin_unlock_irq(&zone->lru_lock);
1336
1da177e4
LT
1337 while (!list_empty(&l_hold)) {
1338 cond_resched();
1339 page = lru_to_page(&l_hold);
1340 list_del(&page->lru);
7e9cd484 1341
894bc310
LS
1342 if (unlikely(!page_evictable(page, NULL))) {
1343 putback_lru_page(page);
1344 continue;
1345 }
1346
7e9cd484
RR
1347 /* page_referenced clears PageReferenced */
1348 if (page_mapping_inuse(page) &&
8cab4754 1349 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
44c241f1 1350 nr_rotated++;
8cab4754
WF
1351 /*
1352 * Identify referenced, file-backed active pages and
1353 * give them one more trip around the active list. So
1354 * that executable code get better chances to stay in
1355 * memory under moderate memory pressure. Anon pages
1356 * are not likely to be evicted by use-once streaming
1357 * IO, plus JVM can create lots of anon VM_EXEC pages,
1358 * so we ignore them here.
1359 */
1360 if ((vm_flags & VM_EXEC) && !PageAnon(page)) {
1361 list_add(&page->lru, &l_active);
1362 continue;
1363 }
1364 }
7e9cd484 1365
5205e56e 1366 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1367 list_add(&page->lru, &l_inactive);
1368 }
1369
b555749a 1370 /*
8cab4754 1371 * Move pages back to the lru list.
b555749a 1372 */
2a1dc509 1373 spin_lock_irq(&zone->lru_lock);
556adecb 1374 /*
8cab4754
WF
1375 * Count referenced pages from currently used mappings as rotated,
1376 * even though only some of them are actually re-activated. This
1377 * helps balance scan pressure between file and anonymous pages in
1378 * get_scan_ratio.
7e9cd484 1379 */
b7c46d15 1380 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1381
3eb4140f
WF
1382 move_active_pages_to_lru(zone, &l_active,
1383 LRU_ACTIVE + file * LRU_FILE);
1384 move_active_pages_to_lru(zone, &l_inactive,
1385 LRU_BASE + file * LRU_FILE);
a731286d 1386 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1387 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1388}
1389
14797e23 1390static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1391{
1392 unsigned long active, inactive;
1393
1394 active = zone_page_state(zone, NR_ACTIVE_ANON);
1395 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1396
1397 if (inactive * zone->inactive_ratio < active)
1398 return 1;
1399
1400 return 0;
1401}
1402
14797e23
KM
1403/**
1404 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1405 * @zone: zone to check
1406 * @sc: scan control of this context
1407 *
1408 * Returns true if the zone does not have enough inactive anon pages,
1409 * meaning some active anon pages need to be deactivated.
1410 */
1411static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1412{
1413 int low;
1414
e72e2bd6 1415 if (scanning_global_lru(sc))
14797e23
KM
1416 low = inactive_anon_is_low_global(zone);
1417 else
c772be93 1418 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1419 return low;
1420}
1421
56e49d21
RR
1422static int inactive_file_is_low_global(struct zone *zone)
1423{
1424 unsigned long active, inactive;
1425
1426 active = zone_page_state(zone, NR_ACTIVE_FILE);
1427 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1428
1429 return (active > inactive);
1430}
1431
1432/**
1433 * inactive_file_is_low - check if file pages need to be deactivated
1434 * @zone: zone to check
1435 * @sc: scan control of this context
1436 *
1437 * When the system is doing streaming IO, memory pressure here
1438 * ensures that active file pages get deactivated, until more
1439 * than half of the file pages are on the inactive list.
1440 *
1441 * Once we get to that situation, protect the system's working
1442 * set from being evicted by disabling active file page aging.
1443 *
1444 * This uses a different ratio than the anonymous pages, because
1445 * the page cache uses a use-once replacement algorithm.
1446 */
1447static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1448{
1449 int low;
1450
1451 if (scanning_global_lru(sc))
1452 low = inactive_file_is_low_global(zone);
1453 else
1454 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1455 return low;
1456}
1457
4f98a2fe 1458static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1459 struct zone *zone, struct scan_control *sc, int priority)
1460{
4f98a2fe
RR
1461 int file = is_file_lru(lru);
1462
56e49d21 1463 if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
556adecb
RR
1464 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1465 return 0;
1466 }
1467
14797e23 1468 if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
4f98a2fe 1469 shrink_active_list(nr_to_scan, zone, sc, priority, file);
b69408e8
CL
1470 return 0;
1471 }
33c120ed 1472 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1473}
1474
1475/*
1476 * Determine how aggressively the anon and file LRU lists should be
1477 * scanned. The relative value of each set of LRU lists is determined
1478 * by looking at the fraction of the pages scanned we did rotate back
1479 * onto the active list instead of evict.
1480 *
1481 * percent[0] specifies how much pressure to put on ram/swap backed
1482 * memory, while percent[1] determines pressure on the file LRUs.
1483 */
1484static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1485 unsigned long *percent)
1486{
1487 unsigned long anon, file, free;
1488 unsigned long anon_prio, file_prio;
1489 unsigned long ap, fp;
6e901571 1490 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
4f98a2fe 1491
0b217676
VL
1492 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1493 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1494 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1495 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1496
e72e2bd6 1497 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1498 free = zone_page_state(zone, NR_FREE_PAGES);
1499 /* If we have very few page cache pages,
1500 force-scan anon pages. */
41858966 1501 if (unlikely(file + free <= high_wmark_pages(zone))) {
eeee9a8c
KM
1502 percent[0] = 100;
1503 percent[1] = 0;
1504 return;
1505 }
4f98a2fe
RR
1506 }
1507
1508 /*
1509 * OK, so we have swap space and a fair amount of page cache
1510 * pages. We use the recently rotated / recently scanned
1511 * ratios to determine how valuable each cache is.
1512 *
1513 * Because workloads change over time (and to avoid overflow)
1514 * we keep these statistics as a floating average, which ends
1515 * up weighing recent references more than old ones.
1516 *
1517 * anon in [0], file in [1]
1518 */
6e901571 1519 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
4f98a2fe 1520 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1521 reclaim_stat->recent_scanned[0] /= 2;
1522 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1523 spin_unlock_irq(&zone->lru_lock);
1524 }
1525
6e901571 1526 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
4f98a2fe 1527 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1528 reclaim_stat->recent_scanned[1] /= 2;
1529 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1530 spin_unlock_irq(&zone->lru_lock);
1531 }
1532
1533 /*
1534 * With swappiness at 100, anonymous and file have the same priority.
1535 * This scanning priority is essentially the inverse of IO cost.
1536 */
1537 anon_prio = sc->swappiness;
1538 file_prio = 200 - sc->swappiness;
1539
1540 /*
00d8089c
RR
1541 * The amount of pressure on anon vs file pages is inversely
1542 * proportional to the fraction of recently scanned pages on
1543 * each list that were recently referenced and in active use.
4f98a2fe 1544 */
6e901571
KM
1545 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1546 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1547
6e901571
KM
1548 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1549 fp /= reclaim_stat->recent_rotated[1] + 1;
4f98a2fe
RR
1550
1551 /* Normalize to percentages */
1552 percent[0] = 100 * ap / (ap + fp + 1);
1553 percent[1] = 100 - percent[0];
b69408e8
CL
1554}
1555
6e08a369
WF
1556/*
1557 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1558 * until we collected @swap_cluster_max pages to scan.
1559 */
1560static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1561 unsigned long *nr_saved_scan,
1562 unsigned long swap_cluster_max)
1563{
1564 unsigned long nr;
1565
1566 *nr_saved_scan += nr_to_scan;
1567 nr = *nr_saved_scan;
1568
1569 if (nr >= swap_cluster_max)
1570 *nr_saved_scan = 0;
1571 else
1572 nr = 0;
1573
1574 return nr;
1575}
4f98a2fe 1576
1da177e4
LT
1577/*
1578 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1579 */
a79311c1 1580static void shrink_zone(int priority, struct zone *zone,
05ff5137 1581 struct scan_control *sc)
1da177e4 1582{
b69408e8 1583 unsigned long nr[NR_LRU_LISTS];
8695949a 1584 unsigned long nr_to_scan;
4f98a2fe 1585 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1586 enum lru_list l;
01dbe5c9
KM
1587 unsigned long nr_reclaimed = sc->nr_reclaimed;
1588 unsigned long swap_cluster_max = sc->swap_cluster_max;
9198e96c 1589 int noswap = 0;
1da177e4 1590
9198e96c
DN
1591 /* If we have no swap space, do not bother scanning anon pages. */
1592 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1593 noswap = 1;
1594 percent[0] = 0;
1595 percent[1] = 100;
1596 } else
1597 get_scan_ratio(zone, sc, percent);
4f98a2fe 1598
894bc310 1599 for_each_evictable_lru(l) {
9439c1c9 1600 int file = is_file_lru(l);
8713e012 1601 unsigned long scan;
e0f79b8f 1602
0b217676 1603 scan = zone_nr_lru_pages(zone, sc, l);
9198e96c 1604 if (priority || noswap) {
9439c1c9
KM
1605 scan >>= priority;
1606 scan = (scan * percent[file]) / 100;
1607 }
6e08a369
WF
1608 if (scanning_global_lru(sc))
1609 nr[l] = nr_scan_try_batch(scan,
1610 &zone->lru[l].nr_saved_scan,
1611 swap_cluster_max);
1612 else
9439c1c9 1613 nr[l] = scan;
1cfb419b 1614 }
1da177e4 1615
556adecb
RR
1616 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1617 nr[LRU_INACTIVE_FILE]) {
894bc310 1618 for_each_evictable_lru(l) {
b69408e8 1619 if (nr[l]) {
01dbe5c9 1620 nr_to_scan = min(nr[l], swap_cluster_max);
b69408e8 1621 nr[l] -= nr_to_scan;
1da177e4 1622
01dbe5c9
KM
1623 nr_reclaimed += shrink_list(l, nr_to_scan,
1624 zone, sc, priority);
b69408e8 1625 }
1da177e4 1626 }
a79311c1
RR
1627 /*
1628 * On large memory systems, scan >> priority can become
1629 * really large. This is fine for the starting priority;
1630 * we want to put equal scanning pressure on each zone.
1631 * However, if the VM has a harder time of freeing pages,
1632 * with multiple processes reclaiming pages, the total
1633 * freeing target can get unreasonably large.
1634 */
01dbe5c9 1635 if (nr_reclaimed > swap_cluster_max &&
a79311c1
RR
1636 priority < DEF_PRIORITY && !current_is_kswapd())
1637 break;
1da177e4
LT
1638 }
1639
01dbe5c9
KM
1640 sc->nr_reclaimed = nr_reclaimed;
1641
556adecb
RR
1642 /*
1643 * Even if we did not try to evict anon pages at all, we want to
1644 * rebalance the anon lru active/inactive ratio.
1645 */
69c85481 1646 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
556adecb
RR
1647 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1648
232ea4d6 1649 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1650}
1651
1652/*
1653 * This is the direct reclaim path, for page-allocating processes. We only
1654 * try to reclaim pages from zones which will satisfy the caller's allocation
1655 * request.
1656 *
41858966
MG
1657 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1658 * Because:
1da177e4
LT
1659 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1660 * allocation or
41858966
MG
1661 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1662 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1663 * zone defense algorithm.
1da177e4 1664 *
1da177e4
LT
1665 * If a zone is deemed to be full of pinned pages then just give it a light
1666 * scan then give up on it.
1667 */
a79311c1 1668static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1669 struct scan_control *sc)
1da177e4 1670{
54a6eb5c 1671 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
dd1a239f 1672 struct zoneref *z;
54a6eb5c 1673 struct zone *zone;
1cfb419b 1674
408d8544 1675 sc->all_unreclaimable = 1;
327c0e96
KH
1676 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1677 sc->nodemask) {
f3fe6512 1678 if (!populated_zone(zone))
1da177e4 1679 continue;
1cfb419b
KH
1680 /*
1681 * Take care memory controller reclaiming has small influence
1682 * to global LRU.
1683 */
e72e2bd6 1684 if (scanning_global_lru(sc)) {
1cfb419b
KH
1685 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1686 continue;
1687 note_zone_scanning_priority(zone, priority);
1da177e4 1688
1cfb419b
KH
1689 if (zone_is_all_unreclaimable(zone) &&
1690 priority != DEF_PRIORITY)
1691 continue; /* Let kswapd poll it */
1692 sc->all_unreclaimable = 0;
1693 } else {
1694 /*
1695 * Ignore cpuset limitation here. We just want to reduce
1696 * # of used pages by us regardless of memory shortage.
1697 */
1698 sc->all_unreclaimable = 0;
1699 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1700 priority);
1701 }
408d8544 1702
a79311c1 1703 shrink_zone(priority, zone, sc);
1da177e4
LT
1704 }
1705}
4f98a2fe 1706
1da177e4
LT
1707/*
1708 * This is the main entry point to direct page reclaim.
1709 *
1710 * If a full scan of the inactive list fails to free enough memory then we
1711 * are "out of memory" and something needs to be killed.
1712 *
1713 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1714 * high - the zone may be full of dirty or under-writeback pages, which this
1715 * caller can't do much about. We kick pdflush and take explicit naps in the
1716 * hope that some of these pages can be written. But if the allocating task
1717 * holds filesystem locks which prevent writeout this might not work, and the
1718 * allocation attempt will fail.
a41f24ea
NA
1719 *
1720 * returns: 0, if no pages reclaimed
1721 * else, the number of pages reclaimed
1da177e4 1722 */
dac1d27b 1723static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1724 struct scan_control *sc)
1da177e4
LT
1725{
1726 int priority;
c700be3d 1727 unsigned long ret = 0;
69e05944 1728 unsigned long total_scanned = 0;
1da177e4 1729 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1730 unsigned long lru_pages = 0;
dd1a239f 1731 struct zoneref *z;
54a6eb5c 1732 struct zone *zone;
dd1a239f 1733 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1da177e4 1734
873b4771
KK
1735 delayacct_freepages_start();
1736
e72e2bd6 1737 if (scanning_global_lru(sc))
1cfb419b
KH
1738 count_vm_event(ALLOCSTALL);
1739 /*
1740 * mem_cgroup will not do shrink_slab.
1741 */
e72e2bd6 1742 if (scanning_global_lru(sc)) {
54a6eb5c 1743 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1744
1cfb419b
KH
1745 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1746 continue;
1da177e4 1747
adea02a1 1748 lru_pages += zone_reclaimable_pages(zone);
1cfb419b 1749 }
1da177e4
LT
1750 }
1751
1752 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1753 sc->nr_scanned = 0;
f7b7fd8f
RR
1754 if (!priority)
1755 disable_swap_token();
a79311c1 1756 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1757 /*
1758 * Don't shrink slabs when reclaiming memory from
1759 * over limit cgroups
1760 */
e72e2bd6 1761 if (scanning_global_lru(sc)) {
dd1a239f 1762 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1763 if (reclaim_state) {
a79311c1 1764 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1765 reclaim_state->reclaimed_slab = 0;
1766 }
1da177e4 1767 }
66e1707b 1768 total_scanned += sc->nr_scanned;
a79311c1
RR
1769 if (sc->nr_reclaimed >= sc->swap_cluster_max) {
1770 ret = sc->nr_reclaimed;
1da177e4
LT
1771 goto out;
1772 }
1773
1774 /*
1775 * Try to write back as many pages as we just scanned. This
1776 * tends to cause slow streaming writers to write data to the
1777 * disk smoothly, at the dirtying rate, which is nice. But
1778 * that's undesirable in laptop mode, where we *want* lumpy
1779 * writeout. So in laptop mode, write out the whole world.
1780 */
66e1707b
BS
1781 if (total_scanned > sc->swap_cluster_max +
1782 sc->swap_cluster_max / 2) {
03ba3782 1783 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 1784 sc->may_writepage = 1;
1da177e4
LT
1785 }
1786
1787 /* Take a nap, wait for some writeback to complete */
4dd4b920 1788 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
8aa7e847 1789 congestion_wait(BLK_RW_ASYNC, HZ/10);
1da177e4 1790 }
87547ee9 1791 /* top priority shrink_zones still had more to do? don't OOM, then */
e72e2bd6 1792 if (!sc->all_unreclaimable && scanning_global_lru(sc))
a79311c1 1793 ret = sc->nr_reclaimed;
1da177e4 1794out:
3bb1a852
MB
1795 /*
1796 * Now that we've scanned all the zones at this priority level, note
1797 * that level within the zone so that the next thread which performs
1798 * scanning of this zone will immediately start out at this priority
1799 * level. This affects only the decision whether or not to bring
1800 * mapped pages onto the inactive list.
1801 */
1802 if (priority < 0)
1803 priority = 0;
1da177e4 1804
e72e2bd6 1805 if (scanning_global_lru(sc)) {
54a6eb5c 1806 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1807
1808 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1809 continue;
1810
1811 zone->prev_priority = priority;
1812 }
1813 } else
1814 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1815
873b4771
KK
1816 delayacct_freepages_end();
1817
1da177e4
LT
1818 return ret;
1819}
1820
dac1d27b 1821unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 1822 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b
BS
1823{
1824 struct scan_control sc = {
1825 .gfp_mask = gfp_mask,
1826 .may_writepage = !laptop_mode,
1827 .swap_cluster_max = SWAP_CLUSTER_MAX,
a6dc60f8 1828 .may_unmap = 1,
2e2e4259 1829 .may_swap = 1,
66e1707b
BS
1830 .swappiness = vm_swappiness,
1831 .order = order,
1832 .mem_cgroup = NULL,
1833 .isolate_pages = isolate_pages_global,
327c0e96 1834 .nodemask = nodemask,
66e1707b
BS
1835 };
1836
dd1a239f 1837 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1838}
1839
00f0b825 1840#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1841
e1a1cd59 1842unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
1843 gfp_t gfp_mask,
1844 bool noswap,
1845 unsigned int swappiness)
66e1707b
BS
1846{
1847 struct scan_control sc = {
66e1707b 1848 .may_writepage = !laptop_mode,
a6dc60f8 1849 .may_unmap = 1,
2e2e4259 1850 .may_swap = !noswap,
66e1707b 1851 .swap_cluster_max = SWAP_CLUSTER_MAX,
a7885eb8 1852 .swappiness = swappiness,
66e1707b
BS
1853 .order = 0,
1854 .mem_cgroup = mem_cont,
1855 .isolate_pages = mem_cgroup_isolate_pages,
327c0e96 1856 .nodemask = NULL, /* we don't care the placement */
66e1707b 1857 };
dac1d27b 1858 struct zonelist *zonelist;
66e1707b 1859
dd1a239f
MG
1860 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1861 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1862 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1863 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1864}
1865#endif
1866
1da177e4
LT
1867/*
1868 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 1869 * they are all at high_wmark_pages(zone).
1da177e4 1870 *
1da177e4
LT
1871 * Returns the number of pages which were actually freed.
1872 *
1873 * There is special handling here for zones which are full of pinned pages.
1874 * This can happen if the pages are all mlocked, or if they are all used by
1875 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1876 * What we do is to detect the case where all pages in the zone have been
1877 * scanned twice and there has been zero successful reclaim. Mark the zone as
1878 * dead and from now on, only perform a short scan. Basically we're polling
1879 * the zone for when the problem goes away.
1880 *
1881 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
1882 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1883 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1884 * lower zones regardless of the number of free pages in the lower zones. This
1885 * interoperates with the page allocator fallback scheme to ensure that aging
1886 * of pages is balanced across the zones.
1da177e4 1887 */
d6277db4 1888static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1889{
1da177e4
LT
1890 int all_zones_ok;
1891 int priority;
1892 int i;
69e05944 1893 unsigned long total_scanned;
1da177e4 1894 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1895 struct scan_control sc = {
1896 .gfp_mask = GFP_KERNEL,
a6dc60f8 1897 .may_unmap = 1,
2e2e4259 1898 .may_swap = 1,
d6277db4
RW
1899 .swap_cluster_max = SWAP_CLUSTER_MAX,
1900 .swappiness = vm_swappiness,
5ad333eb 1901 .order = order,
66e1707b
BS
1902 .mem_cgroup = NULL,
1903 .isolate_pages = isolate_pages_global,
179e9639 1904 };
3bb1a852
MB
1905 /*
1906 * temp_priority is used to remember the scanning priority at which
41858966
MG
1907 * this zone was successfully refilled to
1908 * free_pages == high_wmark_pages(zone).
3bb1a852
MB
1909 */
1910 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1911
1912loop_again:
1913 total_scanned = 0;
a79311c1 1914 sc.nr_reclaimed = 0;
c0bbbc73 1915 sc.may_writepage = !laptop_mode;
f8891e5e 1916 count_vm_event(PAGEOUTRUN);
1da177e4 1917
3bb1a852
MB
1918 for (i = 0; i < pgdat->nr_zones; i++)
1919 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1920
1921 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1922 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1923 unsigned long lru_pages = 0;
1924
f7b7fd8f
RR
1925 /* The swap token gets in the way of swapout... */
1926 if (!priority)
1927 disable_swap_token();
1928
1da177e4
LT
1929 all_zones_ok = 1;
1930
d6277db4
RW
1931 /*
1932 * Scan in the highmem->dma direction for the highest
1933 * zone which needs scanning
1934 */
1935 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1936 struct zone *zone = pgdat->node_zones + i;
1da177e4 1937
d6277db4
RW
1938 if (!populated_zone(zone))
1939 continue;
1da177e4 1940
e815af95
DR
1941 if (zone_is_all_unreclaimable(zone) &&
1942 priority != DEF_PRIORITY)
d6277db4 1943 continue;
1da177e4 1944
556adecb
RR
1945 /*
1946 * Do some background aging of the anon list, to give
1947 * pages a chance to be referenced before reclaiming.
1948 */
14797e23 1949 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
1950 shrink_active_list(SWAP_CLUSTER_MAX, zone,
1951 &sc, priority, 0);
1952
41858966
MG
1953 if (!zone_watermark_ok(zone, order,
1954 high_wmark_pages(zone), 0, 0)) {
d6277db4 1955 end_zone = i;
e1dbeda6 1956 break;
1da177e4 1957 }
1da177e4 1958 }
e1dbeda6
AM
1959 if (i < 0)
1960 goto out;
1961
1da177e4
LT
1962 for (i = 0; i <= end_zone; i++) {
1963 struct zone *zone = pgdat->node_zones + i;
1964
adea02a1 1965 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
1966 }
1967
1968 /*
1969 * Now scan the zone in the dma->highmem direction, stopping
1970 * at the last zone which needs scanning.
1971 *
1972 * We do this because the page allocator works in the opposite
1973 * direction. This prevents the page allocator from allocating
1974 * pages behind kswapd's direction of progress, which would
1975 * cause too much scanning of the lower zones.
1976 */
1977 for (i = 0; i <= end_zone; i++) {
1978 struct zone *zone = pgdat->node_zones + i;
b15e0905 1979 int nr_slab;
1da177e4 1980
f3fe6512 1981 if (!populated_zone(zone))
1da177e4
LT
1982 continue;
1983
e815af95
DR
1984 if (zone_is_all_unreclaimable(zone) &&
1985 priority != DEF_PRIORITY)
1da177e4
LT
1986 continue;
1987
41858966
MG
1988 if (!zone_watermark_ok(zone, order,
1989 high_wmark_pages(zone), end_zone, 0))
d6277db4 1990 all_zones_ok = 0;
3bb1a852 1991 temp_priority[i] = priority;
1da177e4 1992 sc.nr_scanned = 0;
3bb1a852 1993 note_zone_scanning_priority(zone, priority);
32a4330d
RR
1994 /*
1995 * We put equal pressure on every zone, unless one
1996 * zone has way too many pages free already.
1997 */
41858966
MG
1998 if (!zone_watermark_ok(zone, order,
1999 8*high_wmark_pages(zone), end_zone, 0))
a79311c1 2000 shrink_zone(priority, zone, &sc);
1da177e4 2001 reclaim_state->reclaimed_slab = 0;
b15e0905
AM
2002 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2003 lru_pages);
a79311c1 2004 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 2005 total_scanned += sc.nr_scanned;
e815af95 2006 if (zone_is_all_unreclaimable(zone))
1da177e4 2007 continue;
b15e0905 2008 if (nr_slab == 0 && zone->pages_scanned >=
adea02a1 2009 (zone_reclaimable_pages(zone) * 6))
e815af95
DR
2010 zone_set_flag(zone,
2011 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
2012 /*
2013 * If we've done a decent amount of scanning and
2014 * the reclaim ratio is low, start doing writepage
2015 * even in laptop mode
2016 */
2017 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2018 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4
LT
2019 sc.may_writepage = 1;
2020 }
1da177e4
LT
2021 if (all_zones_ok)
2022 break; /* kswapd: all done */
2023 /*
2024 * OK, kswapd is getting into trouble. Take a nap, then take
2025 * another pass across the zones.
2026 */
4dd4b920 2027 if (total_scanned && priority < DEF_PRIORITY - 2)
8aa7e847 2028 congestion_wait(BLK_RW_ASYNC, HZ/10);
1da177e4
LT
2029
2030 /*
2031 * We do this so kswapd doesn't build up large priorities for
2032 * example when it is freeing in parallel with allocators. It
2033 * matches the direct reclaim path behaviour in terms of impact
2034 * on zone->*_priority.
2035 */
a79311c1 2036 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2037 break;
2038 }
2039out:
3bb1a852
MB
2040 /*
2041 * Note within each zone the priority level at which this zone was
2042 * brought into a happy state. So that the next thread which scans this
2043 * zone will start out at that priority level.
2044 */
1da177e4
LT
2045 for (i = 0; i < pgdat->nr_zones; i++) {
2046 struct zone *zone = pgdat->node_zones + i;
2047
3bb1a852 2048 zone->prev_priority = temp_priority[i];
1da177e4
LT
2049 }
2050 if (!all_zones_ok) {
2051 cond_resched();
8357376d
RW
2052
2053 try_to_freeze();
2054
73ce02e9
KM
2055 /*
2056 * Fragmentation may mean that the system cannot be
2057 * rebalanced for high-order allocations in all zones.
2058 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2059 * it means the zones have been fully scanned and are still
2060 * not balanced. For high-order allocations, there is
2061 * little point trying all over again as kswapd may
2062 * infinite loop.
2063 *
2064 * Instead, recheck all watermarks at order-0 as they
2065 * are the most important. If watermarks are ok, kswapd will go
2066 * back to sleep. High-order users can still perform direct
2067 * reclaim if they wish.
2068 */
2069 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2070 order = sc.order = 0;
2071
1da177e4
LT
2072 goto loop_again;
2073 }
2074
a79311c1 2075 return sc.nr_reclaimed;
1da177e4
LT
2076}
2077
2078/*
2079 * The background pageout daemon, started as a kernel thread
4f98a2fe 2080 * from the init process.
1da177e4
LT
2081 *
2082 * This basically trickles out pages so that we have _some_
2083 * free memory available even if there is no other activity
2084 * that frees anything up. This is needed for things like routing
2085 * etc, where we otherwise might have all activity going on in
2086 * asynchronous contexts that cannot page things out.
2087 *
2088 * If there are applications that are active memory-allocators
2089 * (most normal use), this basically shouldn't matter.
2090 */
2091static int kswapd(void *p)
2092{
2093 unsigned long order;
2094 pg_data_t *pgdat = (pg_data_t*)p;
2095 struct task_struct *tsk = current;
2096 DEFINE_WAIT(wait);
2097 struct reclaim_state reclaim_state = {
2098 .reclaimed_slab = 0,
2099 };
a70f7302 2100 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2101
cf40bd16
NP
2102 lockdep_set_current_reclaim_state(GFP_KERNEL);
2103
174596a0 2104 if (!cpumask_empty(cpumask))
c5f59f08 2105 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2106 current->reclaim_state = &reclaim_state;
2107
2108 /*
2109 * Tell the memory management that we're a "memory allocator",
2110 * and that if we need more memory we should get access to it
2111 * regardless (see "__alloc_pages()"). "kswapd" should
2112 * never get caught in the normal page freeing logic.
2113 *
2114 * (Kswapd normally doesn't need memory anyway, but sometimes
2115 * you need a small amount of memory in order to be able to
2116 * page out something else, and this flag essentially protects
2117 * us from recursively trying to free more memory as we're
2118 * trying to free the first piece of memory in the first place).
2119 */
930d9152 2120 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2121 set_freezable();
1da177e4
LT
2122
2123 order = 0;
2124 for ( ; ; ) {
2125 unsigned long new_order;
3e1d1d28 2126
1da177e4
LT
2127 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2128 new_order = pgdat->kswapd_max_order;
2129 pgdat->kswapd_max_order = 0;
2130 if (order < new_order) {
2131 /*
2132 * Don't sleep if someone wants a larger 'order'
2133 * allocation
2134 */
2135 order = new_order;
2136 } else {
b1296cc4
RW
2137 if (!freezing(current))
2138 schedule();
2139
1da177e4
LT
2140 order = pgdat->kswapd_max_order;
2141 }
2142 finish_wait(&pgdat->kswapd_wait, &wait);
2143
b1296cc4
RW
2144 if (!try_to_freeze()) {
2145 /* We can speed up thawing tasks if we don't call
2146 * balance_pgdat after returning from the refrigerator
2147 */
2148 balance_pgdat(pgdat, order);
2149 }
1da177e4
LT
2150 }
2151 return 0;
2152}
2153
2154/*
2155 * A zone is low on free memory, so wake its kswapd task to service it.
2156 */
2157void wakeup_kswapd(struct zone *zone, int order)
2158{
2159 pg_data_t *pgdat;
2160
f3fe6512 2161 if (!populated_zone(zone))
1da177e4
LT
2162 return;
2163
2164 pgdat = zone->zone_pgdat;
41858966 2165 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
1da177e4
LT
2166 return;
2167 if (pgdat->kswapd_max_order < order)
2168 pgdat->kswapd_max_order = order;
02a0e53d 2169 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2170 return;
8d0986e2 2171 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2172 return;
8d0986e2 2173 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2174}
2175
adea02a1
WF
2176/*
2177 * The reclaimable count would be mostly accurate.
2178 * The less reclaimable pages may be
2179 * - mlocked pages, which will be moved to unevictable list when encountered
2180 * - mapped pages, which may require several travels to be reclaimed
2181 * - dirty pages, which is not "instantly" reclaimable
2182 */
2183unsigned long global_reclaimable_pages(void)
4f98a2fe 2184{
adea02a1
WF
2185 int nr;
2186
2187 nr = global_page_state(NR_ACTIVE_FILE) +
2188 global_page_state(NR_INACTIVE_FILE);
2189
2190 if (nr_swap_pages > 0)
2191 nr += global_page_state(NR_ACTIVE_ANON) +
2192 global_page_state(NR_INACTIVE_ANON);
2193
2194 return nr;
2195}
2196
2197unsigned long zone_reclaimable_pages(struct zone *zone)
2198{
2199 int nr;
2200
2201 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2202 zone_page_state(zone, NR_INACTIVE_FILE);
2203
2204 if (nr_swap_pages > 0)
2205 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2206 zone_page_state(zone, NR_INACTIVE_ANON);
2207
2208 return nr;
4f98a2fe
RR
2209}
2210
c6f37f12 2211#ifdef CONFIG_HIBERNATION
1da177e4 2212/*
d6277db4 2213 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
d979677c 2214 * from LRU lists system-wide, for given pass and priority.
d6277db4
RW
2215 *
2216 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2217 */
d979677c 2218static void shrink_all_zones(unsigned long nr_pages, int prio,
e07aa05b 2219 int pass, struct scan_control *sc)
d6277db4
RW
2220{
2221 struct zone *zone;
d979677c 2222 unsigned long nr_reclaimed = 0;
d6277db4 2223
ee99c71c 2224 for_each_populated_zone(zone) {
0cb57258 2225 enum lru_list l;
d6277db4 2226
e815af95 2227 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
d6277db4
RW
2228 continue;
2229
894bc310 2230 for_each_evictable_lru(l) {
0cb57258
JW
2231 enum zone_stat_item ls = NR_LRU_BASE + l;
2232 unsigned long lru_pages = zone_page_state(zone, ls);
2233
894bc310 2234 /* For pass = 0, we don't shrink the active list */
0cb57258
JW
2235 if (pass == 0 && (l == LRU_ACTIVE_ANON ||
2236 l == LRU_ACTIVE_FILE))
b69408e8
CL
2237 continue;
2238
6e08a369
WF
2239 zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1;
2240 if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) {
0cb57258
JW
2241 unsigned long nr_to_scan;
2242
6e08a369 2243 zone->lru[l].nr_saved_scan = 0;
0cb57258 2244 nr_to_scan = min(nr_pages, lru_pages);
d979677c 2245 nr_reclaimed += shrink_list(l, nr_to_scan, zone,
b69408e8 2246 sc, prio);
d979677c 2247 if (nr_reclaimed >= nr_pages) {
a21e2553 2248 sc->nr_reclaimed += nr_reclaimed;
d979677c
MK
2249 return;
2250 }
d6277db4
RW
2251 }
2252 }
d6277db4 2253 }
a21e2553 2254 sc->nr_reclaimed += nr_reclaimed;
d6277db4
RW
2255}
2256
2257/*
2258 * Try to free `nr_pages' of memory, system-wide, and return the number of
2259 * freed pages.
2260 *
2261 * Rather than trying to age LRUs the aim is to preserve the overall
2262 * LRU order by reclaiming preferentially
2263 * inactive > active > active referenced > active mapped
1da177e4 2264 */
69e05944 2265unsigned long shrink_all_memory(unsigned long nr_pages)
1da177e4 2266{
d6277db4 2267 unsigned long lru_pages, nr_slab;
d6277db4
RW
2268 int pass;
2269 struct reclaim_state reclaim_state;
d6277db4
RW
2270 struct scan_control sc = {
2271 .gfp_mask = GFP_KERNEL,
a6dc60f8 2272 .may_unmap = 0,
d6277db4 2273 .may_writepage = 1,
66e1707b 2274 .isolate_pages = isolate_pages_global,
a21e2553 2275 .nr_reclaimed = 0,
1da177e4
LT
2276 };
2277
2278 current->reclaim_state = &reclaim_state;
69e05944 2279
adea02a1 2280 lru_pages = global_reclaimable_pages();
972d1a7b 2281 nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
d6277db4
RW
2282 /* If slab caches are huge, it's better to hit them first */
2283 while (nr_slab >= lru_pages) {
2284 reclaim_state.reclaimed_slab = 0;
2285 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
2286 if (!reclaim_state.reclaimed_slab)
1da177e4 2287 break;
d6277db4 2288
d979677c
MK
2289 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2290 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2291 goto out;
2292
2293 nr_slab -= reclaim_state.reclaimed_slab;
1da177e4 2294 }
d6277db4
RW
2295
2296 /*
2297 * We try to shrink LRUs in 5 passes:
2298 * 0 = Reclaim from inactive_list only
2299 * 1 = Reclaim from active list but don't reclaim mapped
2300 * 2 = 2nd pass of type 1
2301 * 3 = Reclaim mapped (normal reclaim)
2302 * 4 = 2nd pass of type 3
2303 */
2304 for (pass = 0; pass < 5; pass++) {
2305 int prio;
2306
d6277db4 2307 /* Force reclaiming mapped pages in the passes #3 and #4 */
3049103d 2308 if (pass > 2)
a6dc60f8 2309 sc.may_unmap = 1;
d6277db4
RW
2310
2311 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
d979677c 2312 unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
d6277db4 2313
d6277db4 2314 sc.nr_scanned = 0;
9786bf84 2315 sc.swap_cluster_max = nr_to_scan;
d979677c
MK
2316 shrink_all_zones(nr_to_scan, prio, pass, &sc);
2317 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2318 goto out;
2319
2320 reclaim_state.reclaimed_slab = 0;
76395d37 2321 shrink_slab(sc.nr_scanned, sc.gfp_mask,
adea02a1 2322 global_reclaimable_pages());
d979677c
MK
2323 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2324 if (sc.nr_reclaimed >= nr_pages)
d6277db4
RW
2325 goto out;
2326
2327 if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
8aa7e847 2328 congestion_wait(BLK_RW_ASYNC, HZ / 10);
d6277db4 2329 }
248a0301 2330 }
d6277db4
RW
2331
2332 /*
d979677c
MK
2333 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2334 * something in slab caches
d6277db4 2335 */
d979677c 2336 if (!sc.nr_reclaimed) {
d6277db4
RW
2337 do {
2338 reclaim_state.reclaimed_slab = 0;
adea02a1
WF
2339 shrink_slab(nr_pages, sc.gfp_mask,
2340 global_reclaimable_pages());
d979677c
MK
2341 sc.nr_reclaimed += reclaim_state.reclaimed_slab;
2342 } while (sc.nr_reclaimed < nr_pages &&
2343 reclaim_state.reclaimed_slab > 0);
76395d37 2344 }
d6277db4 2345
d979677c 2346
d6277db4 2347out:
1da177e4 2348 current->reclaim_state = NULL;
d6277db4 2349
d979677c 2350 return sc.nr_reclaimed;
1da177e4 2351}
c6f37f12 2352#endif /* CONFIG_HIBERNATION */
1da177e4 2353
1da177e4
LT
2354/* It's optimal to keep kswapds on the same CPUs as their memory, but
2355 not required for correctness. So if the last cpu in a node goes
2356 away, we get changed to run anywhere: as the first one comes back,
2357 restore their cpu bindings. */
9c7b216d 2358static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2359 unsigned long action, void *hcpu)
1da177e4 2360{
58c0a4a7 2361 int nid;
1da177e4 2362
8bb78442 2363 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2364 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2365 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2366 const struct cpumask *mask;
2367
2368 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2369
3e597945 2370 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2371 /* One of our CPUs online: restore mask */
c5f59f08 2372 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2373 }
2374 }
2375 return NOTIFY_OK;
2376}
1da177e4 2377
3218ae14
YG
2378/*
2379 * This kswapd start function will be called by init and node-hot-add.
2380 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2381 */
2382int kswapd_run(int nid)
2383{
2384 pg_data_t *pgdat = NODE_DATA(nid);
2385 int ret = 0;
2386
2387 if (pgdat->kswapd)
2388 return 0;
2389
2390 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2391 if (IS_ERR(pgdat->kswapd)) {
2392 /* failure at boot is fatal */
2393 BUG_ON(system_state == SYSTEM_BOOTING);
2394 printk("Failed to start kswapd on node %d\n",nid);
2395 ret = -1;
2396 }
2397 return ret;
2398}
2399
1da177e4
LT
2400static int __init kswapd_init(void)
2401{
3218ae14 2402 int nid;
69e05944 2403
1da177e4 2404 swap_setup();
9422ffba 2405 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2406 kswapd_run(nid);
1da177e4
LT
2407 hotcpu_notifier(cpu_callback, 0);
2408 return 0;
2409}
2410
2411module_init(kswapd_init)
9eeff239
CL
2412
2413#ifdef CONFIG_NUMA
2414/*
2415 * Zone reclaim mode
2416 *
2417 * If non-zero call zone_reclaim when the number of free pages falls below
2418 * the watermarks.
9eeff239
CL
2419 */
2420int zone_reclaim_mode __read_mostly;
2421
1b2ffb78 2422#define RECLAIM_OFF 0
7d03431c 2423#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2424#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2425#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2426
a92f7126
CL
2427/*
2428 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2429 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2430 * a zone.
2431 */
2432#define ZONE_RECLAIM_PRIORITY 4
2433
9614634f
CL
2434/*
2435 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2436 * occur.
2437 */
2438int sysctl_min_unmapped_ratio = 1;
2439
0ff38490
CL
2440/*
2441 * If the number of slab pages in a zone grows beyond this percentage then
2442 * slab reclaim needs to occur.
2443 */
2444int sysctl_min_slab_ratio = 5;
2445
90afa5de
MG
2446static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2447{
2448 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2449 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2450 zone_page_state(zone, NR_ACTIVE_FILE);
2451
2452 /*
2453 * It's possible for there to be more file mapped pages than
2454 * accounted for by the pages on the file LRU lists because
2455 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2456 */
2457 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2458}
2459
2460/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2461static long zone_pagecache_reclaimable(struct zone *zone)
2462{
2463 long nr_pagecache_reclaimable;
2464 long delta = 0;
2465
2466 /*
2467 * If RECLAIM_SWAP is set, then all file pages are considered
2468 * potentially reclaimable. Otherwise, we have to worry about
2469 * pages like swapcache and zone_unmapped_file_pages() provides
2470 * a better estimate
2471 */
2472 if (zone_reclaim_mode & RECLAIM_SWAP)
2473 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2474 else
2475 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2476
2477 /* If we can't clean pages, remove dirty pages from consideration */
2478 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2479 delta += zone_page_state(zone, NR_FILE_DIRTY);
2480
2481 /* Watch for any possible underflows due to delta */
2482 if (unlikely(delta > nr_pagecache_reclaimable))
2483 delta = nr_pagecache_reclaimable;
2484
2485 return nr_pagecache_reclaimable - delta;
2486}
2487
9eeff239
CL
2488/*
2489 * Try to free up some pages from this zone through reclaim.
2490 */
179e9639 2491static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2492{
7fb2d46d 2493 /* Minimum pages needed in order to stay on node */
69e05944 2494 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2495 struct task_struct *p = current;
2496 struct reclaim_state reclaim_state;
8695949a 2497 int priority;
179e9639
AM
2498 struct scan_control sc = {
2499 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2500 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 2501 .may_swap = 1,
69e05944
AM
2502 .swap_cluster_max = max_t(unsigned long, nr_pages,
2503 SWAP_CLUSTER_MAX),
179e9639 2504 .gfp_mask = gfp_mask,
d6277db4 2505 .swappiness = vm_swappiness,
bd2f6199 2506 .order = order,
66e1707b 2507 .isolate_pages = isolate_pages_global,
179e9639 2508 };
83e33a47 2509 unsigned long slab_reclaimable;
9eeff239
CL
2510
2511 disable_swap_token();
9eeff239 2512 cond_resched();
d4f7796e
CL
2513 /*
2514 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2515 * and we also need to be able to write out pages for RECLAIM_WRITE
2516 * and RECLAIM_SWAP.
2517 */
2518 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2519 reclaim_state.reclaimed_slab = 0;
2520 p->reclaim_state = &reclaim_state;
c84db23c 2521
90afa5de 2522 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
2523 /*
2524 * Free memory by calling shrink zone with increasing
2525 * priorities until we have enough memory freed.
2526 */
2527 priority = ZONE_RECLAIM_PRIORITY;
2528 do {
3bb1a852 2529 note_zone_scanning_priority(zone, priority);
a79311c1 2530 shrink_zone(priority, zone, &sc);
0ff38490 2531 priority--;
a79311c1 2532 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2533 }
c84db23c 2534
83e33a47
CL
2535 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2536 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2537 /*
7fb2d46d 2538 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2539 * many pages were freed in this zone. So we take the current
2540 * number of slab pages and shake the slab until it is reduced
2541 * by the same nr_pages that we used for reclaiming unmapped
2542 * pages.
2a16e3f4 2543 *
0ff38490
CL
2544 * Note that shrink_slab will free memory on all zones and may
2545 * take a long time.
2a16e3f4 2546 */
0ff38490 2547 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2548 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2549 slab_reclaimable - nr_pages)
0ff38490 2550 ;
83e33a47
CL
2551
2552 /*
2553 * Update nr_reclaimed by the number of slab pages we
2554 * reclaimed from this zone.
2555 */
a79311c1 2556 sc.nr_reclaimed += slab_reclaimable -
83e33a47 2557 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2558 }
2559
9eeff239 2560 p->reclaim_state = NULL;
d4f7796e 2561 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
a79311c1 2562 return sc.nr_reclaimed >= nr_pages;
9eeff239 2563}
179e9639
AM
2564
2565int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2566{
179e9639 2567 int node_id;
d773ed6b 2568 int ret;
179e9639
AM
2569
2570 /*
0ff38490
CL
2571 * Zone reclaim reclaims unmapped file backed pages and
2572 * slab pages if we are over the defined limits.
34aa1330 2573 *
9614634f
CL
2574 * A small portion of unmapped file backed pages is needed for
2575 * file I/O otherwise pages read by file I/O will be immediately
2576 * thrown out if the zone is overallocated. So we do not reclaim
2577 * if less than a specified percentage of the zone is used by
2578 * unmapped file backed pages.
179e9639 2579 */
90afa5de
MG
2580 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2581 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 2582 return ZONE_RECLAIM_FULL;
179e9639 2583
d773ed6b 2584 if (zone_is_all_unreclaimable(zone))
fa5e084e 2585 return ZONE_RECLAIM_FULL;
d773ed6b 2586
179e9639 2587 /*
d773ed6b 2588 * Do not scan if the allocation should not be delayed.
179e9639 2589 */
d773ed6b 2590 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 2591 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
2592
2593 /*
2594 * Only run zone reclaim on the local zone or on zones that do not
2595 * have associated processors. This will favor the local processor
2596 * over remote processors and spread off node memory allocations
2597 * as wide as possible.
2598 */
89fa3024 2599 node_id = zone_to_nid(zone);
37c0708d 2600 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 2601 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
2602
2603 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
2604 return ZONE_RECLAIM_NOSCAN;
2605
d773ed6b
DR
2606 ret = __zone_reclaim(zone, gfp_mask, order);
2607 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2608
24cf7251
MG
2609 if (!ret)
2610 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2611
d773ed6b 2612 return ret;
179e9639 2613}
9eeff239 2614#endif
894bc310 2615
894bc310
LS
2616/*
2617 * page_evictable - test whether a page is evictable
2618 * @page: the page to test
2619 * @vma: the VMA in which the page is or will be mapped, may be NULL
2620 *
2621 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2622 * lists vs unevictable list. The vma argument is !NULL when called from the
2623 * fault path to determine how to instantate a new page.
894bc310
LS
2624 *
2625 * Reasons page might not be evictable:
ba9ddf49 2626 * (1) page's mapping marked unevictable
b291f000 2627 * (2) page is part of an mlocked VMA
ba9ddf49 2628 *
894bc310
LS
2629 */
2630int page_evictable(struct page *page, struct vm_area_struct *vma)
2631{
2632
ba9ddf49
LS
2633 if (mapping_unevictable(page_mapping(page)))
2634 return 0;
2635
b291f000
NP
2636 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2637 return 0;
894bc310
LS
2638
2639 return 1;
2640}
89e004ea
LS
2641
2642/**
2643 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2644 * @page: page to check evictability and move to appropriate lru list
2645 * @zone: zone page is in
2646 *
2647 * Checks a page for evictability and moves the page to the appropriate
2648 * zone lru list.
2649 *
2650 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2651 * have PageUnevictable set.
2652 */
2653static void check_move_unevictable_page(struct page *page, struct zone *zone)
2654{
2655 VM_BUG_ON(PageActive(page));
2656
2657retry:
2658 ClearPageUnevictable(page);
2659 if (page_evictable(page, NULL)) {
401a8e1c 2660 enum lru_list l = page_lru_base_type(page);
af936a16 2661
89e004ea
LS
2662 __dec_zone_state(zone, NR_UNEVICTABLE);
2663 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2664 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2665 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2666 __count_vm_event(UNEVICTABLE_PGRESCUED);
2667 } else {
2668 /*
2669 * rotate unevictable list
2670 */
2671 SetPageUnevictable(page);
2672 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2673 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2674 if (page_evictable(page, NULL))
2675 goto retry;
2676 }
2677}
2678
2679/**
2680 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2681 * @mapping: struct address_space to scan for evictable pages
2682 *
2683 * Scan all pages in mapping. Check unevictable pages for
2684 * evictability and move them to the appropriate zone lru list.
2685 */
2686void scan_mapping_unevictable_pages(struct address_space *mapping)
2687{
2688 pgoff_t next = 0;
2689 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2690 PAGE_CACHE_SHIFT;
2691 struct zone *zone;
2692 struct pagevec pvec;
2693
2694 if (mapping->nrpages == 0)
2695 return;
2696
2697 pagevec_init(&pvec, 0);
2698 while (next < end &&
2699 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2700 int i;
2701 int pg_scanned = 0;
2702
2703 zone = NULL;
2704
2705 for (i = 0; i < pagevec_count(&pvec); i++) {
2706 struct page *page = pvec.pages[i];
2707 pgoff_t page_index = page->index;
2708 struct zone *pagezone = page_zone(page);
2709
2710 pg_scanned++;
2711 if (page_index > next)
2712 next = page_index;
2713 next++;
2714
2715 if (pagezone != zone) {
2716 if (zone)
2717 spin_unlock_irq(&zone->lru_lock);
2718 zone = pagezone;
2719 spin_lock_irq(&zone->lru_lock);
2720 }
2721
2722 if (PageLRU(page) && PageUnevictable(page))
2723 check_move_unevictable_page(page, zone);
2724 }
2725 if (zone)
2726 spin_unlock_irq(&zone->lru_lock);
2727 pagevec_release(&pvec);
2728
2729 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2730 }
2731
2732}
af936a16
LS
2733
2734/**
2735 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2736 * @zone - zone of which to scan the unevictable list
2737 *
2738 * Scan @zone's unevictable LRU lists to check for pages that have become
2739 * evictable. Move those that have to @zone's inactive list where they
2740 * become candidates for reclaim, unless shrink_inactive_zone() decides
2741 * to reactivate them. Pages that are still unevictable are rotated
2742 * back onto @zone's unevictable list.
2743 */
2744#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2745static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2746{
2747 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2748 unsigned long scan;
2749 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2750
2751 while (nr_to_scan > 0) {
2752 unsigned long batch_size = min(nr_to_scan,
2753 SCAN_UNEVICTABLE_BATCH_SIZE);
2754
2755 spin_lock_irq(&zone->lru_lock);
2756 for (scan = 0; scan < batch_size; scan++) {
2757 struct page *page = lru_to_page(l_unevictable);
2758
2759 if (!trylock_page(page))
2760 continue;
2761
2762 prefetchw_prev_lru_page(page, l_unevictable, flags);
2763
2764 if (likely(PageLRU(page) && PageUnevictable(page)))
2765 check_move_unevictable_page(page, zone);
2766
2767 unlock_page(page);
2768 }
2769 spin_unlock_irq(&zone->lru_lock);
2770
2771 nr_to_scan -= batch_size;
2772 }
2773}
2774
2775
2776/**
2777 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2778 *
2779 * A really big hammer: scan all zones' unevictable LRU lists to check for
2780 * pages that have become evictable. Move those back to the zones'
2781 * inactive list where they become candidates for reclaim.
2782 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2783 * and we add swap to the system. As such, it runs in the context of a task
2784 * that has possibly/probably made some previously unevictable pages
2785 * evictable.
2786 */
ff30153b 2787static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2788{
2789 struct zone *zone;
2790
2791 for_each_zone(zone) {
2792 scan_zone_unevictable_pages(zone);
2793 }
2794}
2795
2796/*
2797 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2798 * all nodes' unevictable lists for evictable pages
2799 */
2800unsigned long scan_unevictable_pages;
2801
2802int scan_unevictable_handler(struct ctl_table *table, int write,
2803 struct file *file, void __user *buffer,
2804 size_t *length, loff_t *ppos)
2805{
2806 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
2807
2808 if (write && *(unsigned long *)table->data)
2809 scan_all_zones_unevictable_pages();
2810
2811 scan_unevictable_pages = 0;
2812 return 0;
2813}
2814
2815/*
2816 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2817 * a specified node's per zone unevictable lists for evictable pages.
2818 */
2819
2820static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2821 struct sysdev_attribute *attr,
2822 char *buf)
2823{
2824 return sprintf(buf, "0\n"); /* always zero; should fit... */
2825}
2826
2827static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2828 struct sysdev_attribute *attr,
2829 const char *buf, size_t count)
2830{
2831 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2832 struct zone *zone;
2833 unsigned long res;
2834 unsigned long req = strict_strtoul(buf, 10, &res);
2835
2836 if (!req)
2837 return 1; /* zero is no-op */
2838
2839 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2840 if (!populated_zone(zone))
2841 continue;
2842 scan_zone_unevictable_pages(zone);
2843 }
2844 return 1;
2845}
2846
2847
2848static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2849 read_scan_unevictable_node,
2850 write_scan_unevictable_node);
2851
2852int scan_unevictable_register_node(struct node *node)
2853{
2854 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2855}
2856
2857void scan_unevictable_unregister_node(struct node *node)
2858{
2859 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2860}
2861