]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slub.c
slabinfo: Support printout of the number of fallbacks
[net-next-2.6.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
3ac7fe5a 22#include <linux/debugobjects.h>
81819f0f 23#include <linux/kallsyms.h>
b9049e23 24#include <linux/memory.h>
f8bd2258 25#include <linux/math64.h>
81819f0f
CL
26
27/*
28 * Lock order:
29 * 1. slab_lock(page)
30 * 2. slab->list_lock
31 *
32 * The slab_lock protects operations on the object of a particular
33 * slab and its metadata in the page struct. If the slab lock
34 * has been taken then no allocations nor frees can be performed
35 * on the objects in the slab nor can the slab be added or removed
36 * from the partial or full lists since this would mean modifying
37 * the page_struct of the slab.
38 *
39 * The list_lock protects the partial and full list on each node and
40 * the partial slab counter. If taken then no new slabs may be added or
41 * removed from the lists nor make the number of partial slabs be modified.
42 * (Note that the total number of slabs is an atomic value that may be
43 * modified without taking the list lock).
44 *
45 * The list_lock is a centralized lock and thus we avoid taking it as
46 * much as possible. As long as SLUB does not have to handle partial
47 * slabs, operations can continue without any centralized lock. F.e.
48 * allocating a long series of objects that fill up slabs does not require
49 * the list lock.
50 *
51 * The lock order is sometimes inverted when we are trying to get a slab
52 * off a list. We take the list_lock and then look for a page on the list
53 * to use. While we do that objects in the slabs may be freed. We can
54 * only operate on the slab if we have also taken the slab_lock. So we use
55 * a slab_trylock() on the slab. If trylock was successful then no frees
56 * can occur anymore and we can use the slab for allocations etc. If the
57 * slab_trylock() does not succeed then frees are in progress in the slab and
58 * we must stay away from it for a while since we may cause a bouncing
59 * cacheline if we try to acquire the lock. So go onto the next slab.
60 * If all pages are busy then we may allocate a new slab instead of reusing
61 * a partial slab. A new slab has noone operating on it and thus there is
62 * no danger of cacheline contention.
63 *
64 * Interrupts are disabled during allocation and deallocation in order to
65 * make the slab allocator safe to use in the context of an irq. In addition
66 * interrupts are disabled to ensure that the processor does not change
67 * while handling per_cpu slabs, due to kernel preemption.
68 *
69 * SLUB assigns one slab for allocation to each processor.
70 * Allocations only occur from these slabs called cpu slabs.
71 *
672bba3a
CL
72 * Slabs with free elements are kept on a partial list and during regular
73 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 74 * freed then the slab will show up again on the partial lists.
672bba3a
CL
75 * We track full slabs for debugging purposes though because otherwise we
76 * cannot scan all objects.
81819f0f
CL
77 *
78 * Slabs are freed when they become empty. Teardown and setup is
79 * minimal so we rely on the page allocators per cpu caches for
80 * fast frees and allocs.
81 *
82 * Overloading of page flags that are otherwise used for LRU management.
83 *
4b6f0750
CL
84 * PageActive The slab is frozen and exempt from list processing.
85 * This means that the slab is dedicated to a purpose
86 * such as satisfying allocations for a specific
87 * processor. Objects may be freed in the slab while
88 * it is frozen but slab_free will then skip the usual
89 * list operations. It is up to the processor holding
90 * the slab to integrate the slab into the slab lists
91 * when the slab is no longer needed.
92 *
93 * One use of this flag is to mark slabs that are
94 * used for allocations. Then such a slab becomes a cpu
95 * slab. The cpu slab may be equipped with an additional
dfb4f096 96 * freelist that allows lockless access to
894b8788
CL
97 * free objects in addition to the regular freelist
98 * that requires the slab lock.
81819f0f
CL
99 *
100 * PageError Slab requires special handling due to debug
101 * options set. This moves slab handling out of
894b8788 102 * the fast path and disables lockless freelists.
81819f0f
CL
103 */
104
5577bd8a
CL
105#define FROZEN (1 << PG_active)
106
107#ifdef CONFIG_SLUB_DEBUG
108#define SLABDEBUG (1 << PG_error)
109#else
110#define SLABDEBUG 0
111#endif
112
4b6f0750
CL
113static inline int SlabFrozen(struct page *page)
114{
5577bd8a 115 return page->flags & FROZEN;
4b6f0750
CL
116}
117
118static inline void SetSlabFrozen(struct page *page)
119{
5577bd8a 120 page->flags |= FROZEN;
4b6f0750
CL
121}
122
123static inline void ClearSlabFrozen(struct page *page)
124{
5577bd8a 125 page->flags &= ~FROZEN;
4b6f0750
CL
126}
127
35e5d7ee
CL
128static inline int SlabDebug(struct page *page)
129{
5577bd8a 130 return page->flags & SLABDEBUG;
35e5d7ee
CL
131}
132
133static inline void SetSlabDebug(struct page *page)
134{
5577bd8a 135 page->flags |= SLABDEBUG;
35e5d7ee
CL
136}
137
138static inline void ClearSlabDebug(struct page *page)
139{
5577bd8a 140 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
141}
142
81819f0f
CL
143/*
144 * Issues still to be resolved:
145 *
81819f0f
CL
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 *
81819f0f
CL
148 * - Variable sizing of the per node arrays
149 */
150
151/* Enable to test recovery from slab corruption on boot */
152#undef SLUB_RESILIENCY_TEST
153
2086d26a
CL
154/*
155 * Mininum number of partial slabs. These will be left on the partial
156 * lists even if they are empty. kmem_cache_shrink may reclaim them.
157 */
76be8950 158#define MIN_PARTIAL 5
e95eed57 159
2086d26a
CL
160/*
161 * Maximum number of desirable partial slabs.
162 * The existence of more partial slabs makes kmem_cache_shrink
163 * sort the partial list by the number of objects in the.
164 */
165#define MAX_PARTIAL 10
166
81819f0f
CL
167#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
168 SLAB_POISON | SLAB_STORE_USER)
672bba3a 169
81819f0f
CL
170/*
171 * Set of flags that will prevent slab merging
172 */
173#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
174 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
175
176#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
177 SLAB_CACHE_DMA)
178
179#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 180#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
181#endif
182
183#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 184#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
185#endif
186
187/* Internal SLUB flags */
1ceef402
CL
188#define __OBJECT_POISON 0x80000000 /* Poison object */
189#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
190
191static int kmem_size = sizeof(struct kmem_cache);
192
193#ifdef CONFIG_SMP
194static struct notifier_block slab_notifier;
195#endif
196
197static enum {
198 DOWN, /* No slab functionality available */
199 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 200 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
201 SYSFS /* Sysfs up */
202} slab_state = DOWN;
203
204/* A list of all slab caches on the system */
205static DECLARE_RWSEM(slub_lock);
5af328a5 206static LIST_HEAD(slab_caches);
81819f0f 207
02cbc874
CL
208/*
209 * Tracking user of a slab.
210 */
211struct track {
212 void *addr; /* Called from address */
213 int cpu; /* Was running on cpu */
214 int pid; /* Pid context */
215 unsigned long when; /* When did the operation occur */
216};
217
218enum track_item { TRACK_ALLOC, TRACK_FREE };
219
41ecc55b 220#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
221static int sysfs_slab_add(struct kmem_cache *);
222static int sysfs_slab_alias(struct kmem_cache *, const char *);
223static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 224
81819f0f 225#else
0c710013
CL
226static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
227static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
228 { return 0; }
151c602f
CL
229static inline void sysfs_slab_remove(struct kmem_cache *s)
230{
231 kfree(s);
232}
8ff12cfc 233
81819f0f
CL
234#endif
235
8ff12cfc
CL
236static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
237{
238#ifdef CONFIG_SLUB_STATS
239 c->stat[si]++;
240#endif
241}
242
81819f0f
CL
243/********************************************************************
244 * Core slab cache functions
245 *******************************************************************/
246
247int slab_is_available(void)
248{
249 return slab_state >= UP;
250}
251
252static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
253{
254#ifdef CONFIG_NUMA
255 return s->node[node];
256#else
257 return &s->local_node;
258#endif
259}
260
dfb4f096
CL
261static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
262{
4c93c355
CL
263#ifdef CONFIG_SMP
264 return s->cpu_slab[cpu];
265#else
266 return &s->cpu_slab;
267#endif
dfb4f096
CL
268}
269
6446faa2 270/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
271static inline int check_valid_pointer(struct kmem_cache *s,
272 struct page *page, const void *object)
273{
274 void *base;
275
a973e9dd 276 if (!object)
02cbc874
CL
277 return 1;
278
a973e9dd 279 base = page_address(page);
39b26464 280 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
281 (object - base) % s->size) {
282 return 0;
283 }
284
285 return 1;
286}
287
7656c72b
CL
288/*
289 * Slow version of get and set free pointer.
290 *
291 * This version requires touching the cache lines of kmem_cache which
292 * we avoid to do in the fast alloc free paths. There we obtain the offset
293 * from the page struct.
294 */
295static inline void *get_freepointer(struct kmem_cache *s, void *object)
296{
297 return *(void **)(object + s->offset);
298}
299
300static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301{
302 *(void **)(object + s->offset) = fp;
303}
304
305/* Loop over all objects in a slab */
224a88be
CL
306#define for_each_object(__p, __s, __addr, __objects) \
307 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
308 __p += (__s)->size)
309
310/* Scan freelist */
311#define for_each_free_object(__p, __s, __free) \
a973e9dd 312 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
313
314/* Determine object index from a given position */
315static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
316{
317 return (p - addr) / s->size;
318}
319
834f3d11
CL
320static inline struct kmem_cache_order_objects oo_make(int order,
321 unsigned long size)
322{
323 struct kmem_cache_order_objects x = {
324 (order << 16) + (PAGE_SIZE << order) / size
325 };
326
327 return x;
328}
329
330static inline int oo_order(struct kmem_cache_order_objects x)
331{
332 return x.x >> 16;
333}
334
335static inline int oo_objects(struct kmem_cache_order_objects x)
336{
337 return x.x & ((1 << 16) - 1);
338}
339
41ecc55b
CL
340#ifdef CONFIG_SLUB_DEBUG
341/*
342 * Debug settings:
343 */
f0630fff
CL
344#ifdef CONFIG_SLUB_DEBUG_ON
345static int slub_debug = DEBUG_DEFAULT_FLAGS;
346#else
41ecc55b 347static int slub_debug;
f0630fff 348#endif
41ecc55b
CL
349
350static char *slub_debug_slabs;
351
81819f0f
CL
352/*
353 * Object debugging
354 */
355static void print_section(char *text, u8 *addr, unsigned int length)
356{
357 int i, offset;
358 int newline = 1;
359 char ascii[17];
360
361 ascii[16] = 0;
362
363 for (i = 0; i < length; i++) {
364 if (newline) {
24922684 365 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
366 newline = 0;
367 }
06428780 368 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
369 offset = i % 16;
370 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
371 if (offset == 15) {
06428780 372 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
373 newline = 1;
374 }
375 }
376 if (!newline) {
377 i %= 16;
378 while (i < 16) {
06428780 379 printk(KERN_CONT " ");
81819f0f
CL
380 ascii[i] = ' ';
381 i++;
382 }
06428780 383 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
384 }
385}
386
81819f0f
CL
387static struct track *get_track(struct kmem_cache *s, void *object,
388 enum track_item alloc)
389{
390 struct track *p;
391
392 if (s->offset)
393 p = object + s->offset + sizeof(void *);
394 else
395 p = object + s->inuse;
396
397 return p + alloc;
398}
399
400static void set_track(struct kmem_cache *s, void *object,
401 enum track_item alloc, void *addr)
402{
403 struct track *p;
404
405 if (s->offset)
406 p = object + s->offset + sizeof(void *);
407 else
408 p = object + s->inuse;
409
410 p += alloc;
411 if (addr) {
412 p->addr = addr;
413 p->cpu = smp_processor_id();
414 p->pid = current ? current->pid : -1;
415 p->when = jiffies;
416 } else
417 memset(p, 0, sizeof(struct track));
418}
419
81819f0f
CL
420static void init_tracking(struct kmem_cache *s, void *object)
421{
24922684
CL
422 if (!(s->flags & SLAB_STORE_USER))
423 return;
424
425 set_track(s, object, TRACK_FREE, NULL);
426 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
427}
428
429static void print_track(const char *s, struct track *t)
430{
431 if (!t->addr)
432 return;
433
24922684 434 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 435 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
436 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
437}
438
439static void print_tracking(struct kmem_cache *s, void *object)
440{
441 if (!(s->flags & SLAB_STORE_USER))
442 return;
443
444 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
445 print_track("Freed", get_track(s, object, TRACK_FREE));
446}
447
448static void print_page_info(struct page *page)
449{
39b26464
CL
450 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
451 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
452
453}
454
455static void slab_bug(struct kmem_cache *s, char *fmt, ...)
456{
457 va_list args;
458 char buf[100];
459
460 va_start(args, fmt);
461 vsnprintf(buf, sizeof(buf), fmt, args);
462 va_end(args);
463 printk(KERN_ERR "========================================"
464 "=====================================\n");
465 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
466 printk(KERN_ERR "----------------------------------------"
467 "-------------------------------------\n\n");
81819f0f
CL
468}
469
24922684
CL
470static void slab_fix(struct kmem_cache *s, char *fmt, ...)
471{
472 va_list args;
473 char buf[100];
474
475 va_start(args, fmt);
476 vsnprintf(buf, sizeof(buf), fmt, args);
477 va_end(args);
478 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
479}
480
481static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
482{
483 unsigned int off; /* Offset of last byte */
a973e9dd 484 u8 *addr = page_address(page);
24922684
CL
485
486 print_tracking(s, p);
487
488 print_page_info(page);
489
490 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
491 p, p - addr, get_freepointer(s, p));
492
493 if (p > addr + 16)
494 print_section("Bytes b4", p - 16, 16);
495
496 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
497
498 if (s->flags & SLAB_RED_ZONE)
499 print_section("Redzone", p + s->objsize,
500 s->inuse - s->objsize);
501
81819f0f
CL
502 if (s->offset)
503 off = s->offset + sizeof(void *);
504 else
505 off = s->inuse;
506
24922684 507 if (s->flags & SLAB_STORE_USER)
81819f0f 508 off += 2 * sizeof(struct track);
81819f0f
CL
509
510 if (off != s->size)
511 /* Beginning of the filler is the free pointer */
24922684
CL
512 print_section("Padding", p + off, s->size - off);
513
514 dump_stack();
81819f0f
CL
515}
516
517static void object_err(struct kmem_cache *s, struct page *page,
518 u8 *object, char *reason)
519{
3dc50637 520 slab_bug(s, "%s", reason);
24922684 521 print_trailer(s, page, object);
81819f0f
CL
522}
523
24922684 524static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
525{
526 va_list args;
527 char buf[100];
528
24922684
CL
529 va_start(args, fmt);
530 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 531 va_end(args);
3dc50637 532 slab_bug(s, "%s", buf);
24922684 533 print_page_info(page);
81819f0f
CL
534 dump_stack();
535}
536
537static void init_object(struct kmem_cache *s, void *object, int active)
538{
539 u8 *p = object;
540
541 if (s->flags & __OBJECT_POISON) {
542 memset(p, POISON_FREE, s->objsize - 1);
06428780 543 p[s->objsize - 1] = POISON_END;
81819f0f
CL
544 }
545
546 if (s->flags & SLAB_RED_ZONE)
547 memset(p + s->objsize,
548 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
549 s->inuse - s->objsize);
550}
551
24922684 552static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
553{
554 while (bytes) {
555 if (*start != (u8)value)
24922684 556 return start;
81819f0f
CL
557 start++;
558 bytes--;
559 }
24922684
CL
560 return NULL;
561}
562
563static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
564 void *from, void *to)
565{
566 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
567 memset(from, data, to - from);
568}
569
570static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
571 u8 *object, char *what,
06428780 572 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
573{
574 u8 *fault;
575 u8 *end;
576
577 fault = check_bytes(start, value, bytes);
578 if (!fault)
579 return 1;
580
581 end = start + bytes;
582 while (end > fault && end[-1] == value)
583 end--;
584
585 slab_bug(s, "%s overwritten", what);
586 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
587 fault, end - 1, fault[0], value);
588 print_trailer(s, page, object);
589
590 restore_bytes(s, what, value, fault, end);
591 return 0;
81819f0f
CL
592}
593
81819f0f
CL
594/*
595 * Object layout:
596 *
597 * object address
598 * Bytes of the object to be managed.
599 * If the freepointer may overlay the object then the free
600 * pointer is the first word of the object.
672bba3a 601 *
81819f0f
CL
602 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
603 * 0xa5 (POISON_END)
604 *
605 * object + s->objsize
606 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
607 * Padding is extended by another word if Redzoning is enabled and
608 * objsize == inuse.
609 *
81819f0f
CL
610 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
611 * 0xcc (RED_ACTIVE) for objects in use.
612 *
613 * object + s->inuse
672bba3a
CL
614 * Meta data starts here.
615 *
81819f0f
CL
616 * A. Free pointer (if we cannot overwrite object on free)
617 * B. Tracking data for SLAB_STORE_USER
672bba3a 618 * C. Padding to reach required alignment boundary or at mininum
6446faa2 619 * one word if debugging is on to be able to detect writes
672bba3a
CL
620 * before the word boundary.
621 *
622 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
623 *
624 * object + s->size
672bba3a 625 * Nothing is used beyond s->size.
81819f0f 626 *
672bba3a
CL
627 * If slabcaches are merged then the objsize and inuse boundaries are mostly
628 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
629 * may be used with merged slabcaches.
630 */
631
81819f0f
CL
632static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
633{
634 unsigned long off = s->inuse; /* The end of info */
635
636 if (s->offset)
637 /* Freepointer is placed after the object. */
638 off += sizeof(void *);
639
640 if (s->flags & SLAB_STORE_USER)
641 /* We also have user information there */
642 off += 2 * sizeof(struct track);
643
644 if (s->size == off)
645 return 1;
646
24922684
CL
647 return check_bytes_and_report(s, page, p, "Object padding",
648 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
649}
650
39b26464 651/* Check the pad bytes at the end of a slab page */
81819f0f
CL
652static int slab_pad_check(struct kmem_cache *s, struct page *page)
653{
24922684
CL
654 u8 *start;
655 u8 *fault;
656 u8 *end;
657 int length;
658 int remainder;
81819f0f
CL
659
660 if (!(s->flags & SLAB_POISON))
661 return 1;
662
a973e9dd 663 start = page_address(page);
834f3d11 664 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
665 end = start + length;
666 remainder = length % s->size;
81819f0f
CL
667 if (!remainder)
668 return 1;
669
39b26464 670 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
671 if (!fault)
672 return 1;
673 while (end > fault && end[-1] == POISON_INUSE)
674 end--;
675
676 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 677 print_section("Padding", end - remainder, remainder);
24922684
CL
678
679 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
680 return 0;
81819f0f
CL
681}
682
683static int check_object(struct kmem_cache *s, struct page *page,
684 void *object, int active)
685{
686 u8 *p = object;
687 u8 *endobject = object + s->objsize;
688
689 if (s->flags & SLAB_RED_ZONE) {
690 unsigned int red =
691 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
692
24922684
CL
693 if (!check_bytes_and_report(s, page, object, "Redzone",
694 endobject, red, s->inuse - s->objsize))
81819f0f 695 return 0;
81819f0f 696 } else {
3adbefee
IM
697 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
698 check_bytes_and_report(s, page, p, "Alignment padding",
699 endobject, POISON_INUSE, s->inuse - s->objsize);
700 }
81819f0f
CL
701 }
702
703 if (s->flags & SLAB_POISON) {
704 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
705 (!check_bytes_and_report(s, page, p, "Poison", p,
706 POISON_FREE, s->objsize - 1) ||
707 !check_bytes_and_report(s, page, p, "Poison",
06428780 708 p + s->objsize - 1, POISON_END, 1)))
81819f0f 709 return 0;
81819f0f
CL
710 /*
711 * check_pad_bytes cleans up on its own.
712 */
713 check_pad_bytes(s, page, p);
714 }
715
716 if (!s->offset && active)
717 /*
718 * Object and freepointer overlap. Cannot check
719 * freepointer while object is allocated.
720 */
721 return 1;
722
723 /* Check free pointer validity */
724 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
725 object_err(s, page, p, "Freepointer corrupt");
726 /*
727 * No choice but to zap it and thus loose the remainder
728 * of the free objects in this slab. May cause
672bba3a 729 * another error because the object count is now wrong.
81819f0f 730 */
a973e9dd 731 set_freepointer(s, p, NULL);
81819f0f
CL
732 return 0;
733 }
734 return 1;
735}
736
737static int check_slab(struct kmem_cache *s, struct page *page)
738{
39b26464
CL
739 int maxobj;
740
81819f0f
CL
741 VM_BUG_ON(!irqs_disabled());
742
743 if (!PageSlab(page)) {
24922684 744 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
745 return 0;
746 }
39b26464
CL
747
748 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
749 if (page->objects > maxobj) {
750 slab_err(s, page, "objects %u > max %u",
751 s->name, page->objects, maxobj);
752 return 0;
753 }
754 if (page->inuse > page->objects) {
24922684 755 slab_err(s, page, "inuse %u > max %u",
39b26464 756 s->name, page->inuse, page->objects);
81819f0f
CL
757 return 0;
758 }
759 /* Slab_pad_check fixes things up after itself */
760 slab_pad_check(s, page);
761 return 1;
762}
763
764/*
672bba3a
CL
765 * Determine if a certain object on a page is on the freelist. Must hold the
766 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
767 */
768static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
769{
770 int nr = 0;
771 void *fp = page->freelist;
772 void *object = NULL;
224a88be 773 unsigned long max_objects;
81819f0f 774
39b26464 775 while (fp && nr <= page->objects) {
81819f0f
CL
776 if (fp == search)
777 return 1;
778 if (!check_valid_pointer(s, page, fp)) {
779 if (object) {
780 object_err(s, page, object,
781 "Freechain corrupt");
a973e9dd 782 set_freepointer(s, object, NULL);
81819f0f
CL
783 break;
784 } else {
24922684 785 slab_err(s, page, "Freepointer corrupt");
a973e9dd 786 page->freelist = NULL;
39b26464 787 page->inuse = page->objects;
24922684 788 slab_fix(s, "Freelist cleared");
81819f0f
CL
789 return 0;
790 }
791 break;
792 }
793 object = fp;
794 fp = get_freepointer(s, object);
795 nr++;
796 }
797
224a88be
CL
798 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
799 if (max_objects > 65535)
800 max_objects = 65535;
801
802 if (page->objects != max_objects) {
803 slab_err(s, page, "Wrong number of objects. Found %d but "
804 "should be %d", page->objects, max_objects);
805 page->objects = max_objects;
806 slab_fix(s, "Number of objects adjusted.");
807 }
39b26464 808 if (page->inuse != page->objects - nr) {
70d71228 809 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
810 "counted were %d", page->inuse, page->objects - nr);
811 page->inuse = page->objects - nr;
24922684 812 slab_fix(s, "Object count adjusted.");
81819f0f
CL
813 }
814 return search == NULL;
815}
816
0121c619
CL
817static void trace(struct kmem_cache *s, struct page *page, void *object,
818 int alloc)
3ec09742
CL
819{
820 if (s->flags & SLAB_TRACE) {
821 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
822 s->name,
823 alloc ? "alloc" : "free",
824 object, page->inuse,
825 page->freelist);
826
827 if (!alloc)
828 print_section("Object", (void *)object, s->objsize);
829
830 dump_stack();
831 }
832}
833
643b1138 834/*
672bba3a 835 * Tracking of fully allocated slabs for debugging purposes.
643b1138 836 */
e95eed57 837static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 838{
643b1138
CL
839 spin_lock(&n->list_lock);
840 list_add(&page->lru, &n->full);
841 spin_unlock(&n->list_lock);
842}
843
844static void remove_full(struct kmem_cache *s, struct page *page)
845{
846 struct kmem_cache_node *n;
847
848 if (!(s->flags & SLAB_STORE_USER))
849 return;
850
851 n = get_node(s, page_to_nid(page));
852
853 spin_lock(&n->list_lock);
854 list_del(&page->lru);
855 spin_unlock(&n->list_lock);
856}
857
0f389ec6
CL
858/* Tracking of the number of slabs for debugging purposes */
859static inline unsigned long slabs_node(struct kmem_cache *s, int node)
860{
861 struct kmem_cache_node *n = get_node(s, node);
862
863 return atomic_long_read(&n->nr_slabs);
864}
865
205ab99d 866static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
867{
868 struct kmem_cache_node *n = get_node(s, node);
869
870 /*
871 * May be called early in order to allocate a slab for the
872 * kmem_cache_node structure. Solve the chicken-egg
873 * dilemma by deferring the increment of the count during
874 * bootstrap (see early_kmem_cache_node_alloc).
875 */
205ab99d 876 if (!NUMA_BUILD || n) {
0f389ec6 877 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
878 atomic_long_add(objects, &n->total_objects);
879 }
0f389ec6 880}
205ab99d 881static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
882{
883 struct kmem_cache_node *n = get_node(s, node);
884
885 atomic_long_dec(&n->nr_slabs);
205ab99d 886 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
887}
888
889/* Object debug checks for alloc/free paths */
3ec09742
CL
890static void setup_object_debug(struct kmem_cache *s, struct page *page,
891 void *object)
892{
893 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
894 return;
895
896 init_object(s, object, 0);
897 init_tracking(s, object);
898}
899
900static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
901 void *object, void *addr)
81819f0f
CL
902{
903 if (!check_slab(s, page))
904 goto bad;
905
d692ef6d 906 if (!on_freelist(s, page, object)) {
24922684 907 object_err(s, page, object, "Object already allocated");
70d71228 908 goto bad;
81819f0f
CL
909 }
910
911 if (!check_valid_pointer(s, page, object)) {
912 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 913 goto bad;
81819f0f
CL
914 }
915
d692ef6d 916 if (!check_object(s, page, object, 0))
81819f0f 917 goto bad;
81819f0f 918
3ec09742
CL
919 /* Success perform special debug activities for allocs */
920 if (s->flags & SLAB_STORE_USER)
921 set_track(s, object, TRACK_ALLOC, addr);
922 trace(s, page, object, 1);
923 init_object(s, object, 1);
81819f0f 924 return 1;
3ec09742 925
81819f0f
CL
926bad:
927 if (PageSlab(page)) {
928 /*
929 * If this is a slab page then lets do the best we can
930 * to avoid issues in the future. Marking all objects
672bba3a 931 * as used avoids touching the remaining objects.
81819f0f 932 */
24922684 933 slab_fix(s, "Marking all objects used");
39b26464 934 page->inuse = page->objects;
a973e9dd 935 page->freelist = NULL;
81819f0f
CL
936 }
937 return 0;
938}
939
3ec09742
CL
940static int free_debug_processing(struct kmem_cache *s, struct page *page,
941 void *object, void *addr)
81819f0f
CL
942{
943 if (!check_slab(s, page))
944 goto fail;
945
946 if (!check_valid_pointer(s, page, object)) {
70d71228 947 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
948 goto fail;
949 }
950
951 if (on_freelist(s, page, object)) {
24922684 952 object_err(s, page, object, "Object already free");
81819f0f
CL
953 goto fail;
954 }
955
956 if (!check_object(s, page, object, 1))
957 return 0;
958
959 if (unlikely(s != page->slab)) {
3adbefee 960 if (!PageSlab(page)) {
70d71228
CL
961 slab_err(s, page, "Attempt to free object(0x%p) "
962 "outside of slab", object);
3adbefee 963 } else if (!page->slab) {
81819f0f 964 printk(KERN_ERR
70d71228 965 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 966 object);
70d71228 967 dump_stack();
06428780 968 } else
24922684
CL
969 object_err(s, page, object,
970 "page slab pointer corrupt.");
81819f0f
CL
971 goto fail;
972 }
3ec09742
CL
973
974 /* Special debug activities for freeing objects */
a973e9dd 975 if (!SlabFrozen(page) && !page->freelist)
3ec09742
CL
976 remove_full(s, page);
977 if (s->flags & SLAB_STORE_USER)
978 set_track(s, object, TRACK_FREE, addr);
979 trace(s, page, object, 0);
980 init_object(s, object, 0);
81819f0f 981 return 1;
3ec09742 982
81819f0f 983fail:
24922684 984 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
985 return 0;
986}
987
41ecc55b
CL
988static int __init setup_slub_debug(char *str)
989{
f0630fff
CL
990 slub_debug = DEBUG_DEFAULT_FLAGS;
991 if (*str++ != '=' || !*str)
992 /*
993 * No options specified. Switch on full debugging.
994 */
995 goto out;
996
997 if (*str == ',')
998 /*
999 * No options but restriction on slabs. This means full
1000 * debugging for slabs matching a pattern.
1001 */
1002 goto check_slabs;
1003
1004 slub_debug = 0;
1005 if (*str == '-')
1006 /*
1007 * Switch off all debugging measures.
1008 */
1009 goto out;
1010
1011 /*
1012 * Determine which debug features should be switched on
1013 */
06428780 1014 for (; *str && *str != ','; str++) {
f0630fff
CL
1015 switch (tolower(*str)) {
1016 case 'f':
1017 slub_debug |= SLAB_DEBUG_FREE;
1018 break;
1019 case 'z':
1020 slub_debug |= SLAB_RED_ZONE;
1021 break;
1022 case 'p':
1023 slub_debug |= SLAB_POISON;
1024 break;
1025 case 'u':
1026 slub_debug |= SLAB_STORE_USER;
1027 break;
1028 case 't':
1029 slub_debug |= SLAB_TRACE;
1030 break;
1031 default:
1032 printk(KERN_ERR "slub_debug option '%c' "
06428780 1033 "unknown. skipped\n", *str);
f0630fff 1034 }
41ecc55b
CL
1035 }
1036
f0630fff 1037check_slabs:
41ecc55b
CL
1038 if (*str == ',')
1039 slub_debug_slabs = str + 1;
f0630fff 1040out:
41ecc55b
CL
1041 return 1;
1042}
1043
1044__setup("slub_debug", setup_slub_debug);
1045
ba0268a8
CL
1046static unsigned long kmem_cache_flags(unsigned long objsize,
1047 unsigned long flags, const char *name,
4ba9b9d0 1048 void (*ctor)(struct kmem_cache *, void *))
41ecc55b
CL
1049{
1050 /*
e153362a 1051 * Enable debugging if selected on the kernel commandline.
41ecc55b 1052 */
e153362a
CL
1053 if (slub_debug && (!slub_debug_slabs ||
1054 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1055 flags |= slub_debug;
ba0268a8
CL
1056
1057 return flags;
41ecc55b
CL
1058}
1059#else
3ec09742
CL
1060static inline void setup_object_debug(struct kmem_cache *s,
1061 struct page *page, void *object) {}
41ecc55b 1062
3ec09742
CL
1063static inline int alloc_debug_processing(struct kmem_cache *s,
1064 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1065
3ec09742
CL
1066static inline int free_debug_processing(struct kmem_cache *s,
1067 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1068
41ecc55b
CL
1069static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1070 { return 1; }
1071static inline int check_object(struct kmem_cache *s, struct page *page,
1072 void *object, int active) { return 1; }
3ec09742 1073static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1074static inline unsigned long kmem_cache_flags(unsigned long objsize,
1075 unsigned long flags, const char *name,
4ba9b9d0 1076 void (*ctor)(struct kmem_cache *, void *))
ba0268a8
CL
1077{
1078 return flags;
1079}
41ecc55b 1080#define slub_debug 0
0f389ec6
CL
1081
1082static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1083 { return 0; }
205ab99d
CL
1084static inline void inc_slabs_node(struct kmem_cache *s, int node,
1085 int objects) {}
1086static inline void dec_slabs_node(struct kmem_cache *s, int node,
1087 int objects) {}
41ecc55b 1088#endif
205ab99d 1089
81819f0f
CL
1090/*
1091 * Slab allocation and freeing
1092 */
65c3376a
CL
1093static inline struct page *alloc_slab_page(gfp_t flags, int node,
1094 struct kmem_cache_order_objects oo)
1095{
1096 int order = oo_order(oo);
1097
1098 if (node == -1)
1099 return alloc_pages(flags, order);
1100 else
1101 return alloc_pages_node(node, flags, order);
1102}
1103
81819f0f
CL
1104static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1105{
06428780 1106 struct page *page;
834f3d11 1107 struct kmem_cache_order_objects oo = s->oo;
81819f0f 1108
b7a49f0d 1109 flags |= s->allocflags;
e12ba74d 1110
65c3376a
CL
1111 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1112 oo);
1113 if (unlikely(!page)) {
1114 oo = s->min;
1115 /*
1116 * Allocation may have failed due to fragmentation.
1117 * Try a lower order alloc if possible
1118 */
1119 page = alloc_slab_page(flags, node, oo);
1120 if (!page)
1121 return NULL;
81819f0f 1122
65c3376a
CL
1123 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1124 }
834f3d11 1125 page->objects = oo_objects(oo);
81819f0f
CL
1126 mod_zone_page_state(page_zone(page),
1127 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1128 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1129 1 << oo_order(oo));
81819f0f
CL
1130
1131 return page;
1132}
1133
1134static void setup_object(struct kmem_cache *s, struct page *page,
1135 void *object)
1136{
3ec09742 1137 setup_object_debug(s, page, object);
4f104934 1138 if (unlikely(s->ctor))
4ba9b9d0 1139 s->ctor(s, object);
81819f0f
CL
1140}
1141
1142static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1143{
1144 struct page *page;
81819f0f 1145 void *start;
81819f0f
CL
1146 void *last;
1147 void *p;
1148
6cb06229 1149 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1150
6cb06229
CL
1151 page = allocate_slab(s,
1152 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1153 if (!page)
1154 goto out;
1155
205ab99d 1156 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1157 page->slab = s;
1158 page->flags |= 1 << PG_slab;
1159 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1160 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1161 SetSlabDebug(page);
81819f0f
CL
1162
1163 start = page_address(page);
81819f0f
CL
1164
1165 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1166 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1167
1168 last = start;
224a88be 1169 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1170 setup_object(s, page, last);
1171 set_freepointer(s, last, p);
1172 last = p;
1173 }
1174 setup_object(s, page, last);
a973e9dd 1175 set_freepointer(s, last, NULL);
81819f0f
CL
1176
1177 page->freelist = start;
1178 page->inuse = 0;
1179out:
81819f0f
CL
1180 return page;
1181}
1182
1183static void __free_slab(struct kmem_cache *s, struct page *page)
1184{
834f3d11
CL
1185 int order = compound_order(page);
1186 int pages = 1 << order;
81819f0f 1187
c59def9f 1188 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1189 void *p;
1190
1191 slab_pad_check(s, page);
224a88be
CL
1192 for_each_object(p, s, page_address(page),
1193 page->objects)
81819f0f 1194 check_object(s, page, p, 0);
2208b764 1195 ClearSlabDebug(page);
81819f0f
CL
1196 }
1197
1198 mod_zone_page_state(page_zone(page),
1199 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1200 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1201 -pages);
81819f0f 1202
49bd5221
CL
1203 __ClearPageSlab(page);
1204 reset_page_mapcount(page);
834f3d11 1205 __free_pages(page, order);
81819f0f
CL
1206}
1207
1208static void rcu_free_slab(struct rcu_head *h)
1209{
1210 struct page *page;
1211
1212 page = container_of((struct list_head *)h, struct page, lru);
1213 __free_slab(page->slab, page);
1214}
1215
1216static void free_slab(struct kmem_cache *s, struct page *page)
1217{
1218 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1219 /*
1220 * RCU free overloads the RCU head over the LRU
1221 */
1222 struct rcu_head *head = (void *)&page->lru;
1223
1224 call_rcu(head, rcu_free_slab);
1225 } else
1226 __free_slab(s, page);
1227}
1228
1229static void discard_slab(struct kmem_cache *s, struct page *page)
1230{
205ab99d 1231 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1232 free_slab(s, page);
1233}
1234
1235/*
1236 * Per slab locking using the pagelock
1237 */
1238static __always_inline void slab_lock(struct page *page)
1239{
1240 bit_spin_lock(PG_locked, &page->flags);
1241}
1242
1243static __always_inline void slab_unlock(struct page *page)
1244{
a76d3546 1245 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1246}
1247
1248static __always_inline int slab_trylock(struct page *page)
1249{
1250 int rc = 1;
1251
1252 rc = bit_spin_trylock(PG_locked, &page->flags);
1253 return rc;
1254}
1255
1256/*
1257 * Management of partially allocated slabs
1258 */
7c2e132c
CL
1259static void add_partial(struct kmem_cache_node *n,
1260 struct page *page, int tail)
81819f0f 1261{
e95eed57
CL
1262 spin_lock(&n->list_lock);
1263 n->nr_partial++;
7c2e132c
CL
1264 if (tail)
1265 list_add_tail(&page->lru, &n->partial);
1266 else
1267 list_add(&page->lru, &n->partial);
81819f0f
CL
1268 spin_unlock(&n->list_lock);
1269}
1270
0121c619 1271static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1272{
1273 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1274
1275 spin_lock(&n->list_lock);
1276 list_del(&page->lru);
1277 n->nr_partial--;
1278 spin_unlock(&n->list_lock);
1279}
1280
1281/*
672bba3a 1282 * Lock slab and remove from the partial list.
81819f0f 1283 *
672bba3a 1284 * Must hold list_lock.
81819f0f 1285 */
0121c619
CL
1286static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1287 struct page *page)
81819f0f
CL
1288{
1289 if (slab_trylock(page)) {
1290 list_del(&page->lru);
1291 n->nr_partial--;
4b6f0750 1292 SetSlabFrozen(page);
81819f0f
CL
1293 return 1;
1294 }
1295 return 0;
1296}
1297
1298/*
672bba3a 1299 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1300 */
1301static struct page *get_partial_node(struct kmem_cache_node *n)
1302{
1303 struct page *page;
1304
1305 /*
1306 * Racy check. If we mistakenly see no partial slabs then we
1307 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1308 * partial slab and there is none available then get_partials()
1309 * will return NULL.
81819f0f
CL
1310 */
1311 if (!n || !n->nr_partial)
1312 return NULL;
1313
1314 spin_lock(&n->list_lock);
1315 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1316 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1317 goto out;
1318 page = NULL;
1319out:
1320 spin_unlock(&n->list_lock);
1321 return page;
1322}
1323
1324/*
672bba3a 1325 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1326 */
1327static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1328{
1329#ifdef CONFIG_NUMA
1330 struct zonelist *zonelist;
dd1a239f 1331 struct zoneref *z;
54a6eb5c
MG
1332 struct zone *zone;
1333 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1334 struct page *page;
1335
1336 /*
672bba3a
CL
1337 * The defrag ratio allows a configuration of the tradeoffs between
1338 * inter node defragmentation and node local allocations. A lower
1339 * defrag_ratio increases the tendency to do local allocations
1340 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1341 *
672bba3a
CL
1342 * If the defrag_ratio is set to 0 then kmalloc() always
1343 * returns node local objects. If the ratio is higher then kmalloc()
1344 * may return off node objects because partial slabs are obtained
1345 * from other nodes and filled up.
81819f0f 1346 *
6446faa2 1347 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1348 * defrag_ratio = 1000) then every (well almost) allocation will
1349 * first attempt to defrag slab caches on other nodes. This means
1350 * scanning over all nodes to look for partial slabs which may be
1351 * expensive if we do it every time we are trying to find a slab
1352 * with available objects.
81819f0f 1353 */
9824601e
CL
1354 if (!s->remote_node_defrag_ratio ||
1355 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1356 return NULL;
1357
0e88460d 1358 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1359 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1360 struct kmem_cache_node *n;
1361
54a6eb5c 1362 n = get_node(s, zone_to_nid(zone));
81819f0f 1363
54a6eb5c 1364 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
e95eed57 1365 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1366 page = get_partial_node(n);
1367 if (page)
1368 return page;
1369 }
1370 }
1371#endif
1372 return NULL;
1373}
1374
1375/*
1376 * Get a partial page, lock it and return it.
1377 */
1378static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1379{
1380 struct page *page;
1381 int searchnode = (node == -1) ? numa_node_id() : node;
1382
1383 page = get_partial_node(get_node(s, searchnode));
1384 if (page || (flags & __GFP_THISNODE))
1385 return page;
1386
1387 return get_any_partial(s, flags);
1388}
1389
1390/*
1391 * Move a page back to the lists.
1392 *
1393 * Must be called with the slab lock held.
1394 *
1395 * On exit the slab lock will have been dropped.
1396 */
7c2e132c 1397static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1398{
e95eed57 1399 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1400 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1401
4b6f0750 1402 ClearSlabFrozen(page);
81819f0f 1403 if (page->inuse) {
e95eed57 1404
a973e9dd 1405 if (page->freelist) {
7c2e132c 1406 add_partial(n, page, tail);
8ff12cfc
CL
1407 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1408 } else {
1409 stat(c, DEACTIVATE_FULL);
1410 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1411 add_full(n, page);
1412 }
81819f0f
CL
1413 slab_unlock(page);
1414 } else {
8ff12cfc 1415 stat(c, DEACTIVATE_EMPTY);
e95eed57
CL
1416 if (n->nr_partial < MIN_PARTIAL) {
1417 /*
672bba3a
CL
1418 * Adding an empty slab to the partial slabs in order
1419 * to avoid page allocator overhead. This slab needs
1420 * to come after the other slabs with objects in
6446faa2
CL
1421 * so that the others get filled first. That way the
1422 * size of the partial list stays small.
1423 *
0121c619
CL
1424 * kmem_cache_shrink can reclaim any empty slabs from
1425 * the partial list.
e95eed57 1426 */
7c2e132c 1427 add_partial(n, page, 1);
e95eed57
CL
1428 slab_unlock(page);
1429 } else {
1430 slab_unlock(page);
8ff12cfc 1431 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1432 discard_slab(s, page);
1433 }
81819f0f
CL
1434 }
1435}
1436
1437/*
1438 * Remove the cpu slab
1439 */
dfb4f096 1440static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1441{
dfb4f096 1442 struct page *page = c->page;
7c2e132c 1443 int tail = 1;
8ff12cfc 1444
b773ad73 1445 if (page->freelist)
8ff12cfc 1446 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1447 /*
6446faa2 1448 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1449 * because both freelists are empty. So this is unlikely
1450 * to occur.
1451 */
a973e9dd 1452 while (unlikely(c->freelist)) {
894b8788
CL
1453 void **object;
1454
7c2e132c
CL
1455 tail = 0; /* Hot objects. Put the slab first */
1456
894b8788 1457 /* Retrieve object from cpu_freelist */
dfb4f096 1458 object = c->freelist;
b3fba8da 1459 c->freelist = c->freelist[c->offset];
894b8788
CL
1460
1461 /* And put onto the regular freelist */
b3fba8da 1462 object[c->offset] = page->freelist;
894b8788
CL
1463 page->freelist = object;
1464 page->inuse--;
1465 }
dfb4f096 1466 c->page = NULL;
7c2e132c 1467 unfreeze_slab(s, page, tail);
81819f0f
CL
1468}
1469
dfb4f096 1470static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1471{
8ff12cfc 1472 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1473 slab_lock(c->page);
1474 deactivate_slab(s, c);
81819f0f
CL
1475}
1476
1477/*
1478 * Flush cpu slab.
6446faa2 1479 *
81819f0f
CL
1480 * Called from IPI handler with interrupts disabled.
1481 */
0c710013 1482static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1483{
dfb4f096 1484 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1485
dfb4f096
CL
1486 if (likely(c && c->page))
1487 flush_slab(s, c);
81819f0f
CL
1488}
1489
1490static void flush_cpu_slab(void *d)
1491{
1492 struct kmem_cache *s = d;
81819f0f 1493
dfb4f096 1494 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1495}
1496
1497static void flush_all(struct kmem_cache *s)
1498{
1499#ifdef CONFIG_SMP
1500 on_each_cpu(flush_cpu_slab, s, 1, 1);
1501#else
1502 unsigned long flags;
1503
1504 local_irq_save(flags);
1505 flush_cpu_slab(s);
1506 local_irq_restore(flags);
1507#endif
1508}
1509
dfb4f096
CL
1510/*
1511 * Check if the objects in a per cpu structure fit numa
1512 * locality expectations.
1513 */
1514static inline int node_match(struct kmem_cache_cpu *c, int node)
1515{
1516#ifdef CONFIG_NUMA
1517 if (node != -1 && c->node != node)
1518 return 0;
1519#endif
1520 return 1;
1521}
1522
81819f0f 1523/*
894b8788
CL
1524 * Slow path. The lockless freelist is empty or we need to perform
1525 * debugging duties.
1526 *
1527 * Interrupts are disabled.
81819f0f 1528 *
894b8788
CL
1529 * Processing is still very fast if new objects have been freed to the
1530 * regular freelist. In that case we simply take over the regular freelist
1531 * as the lockless freelist and zap the regular freelist.
81819f0f 1532 *
894b8788
CL
1533 * If that is not working then we fall back to the partial lists. We take the
1534 * first element of the freelist as the object to allocate now and move the
1535 * rest of the freelist to the lockless freelist.
81819f0f 1536 *
894b8788 1537 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1538 * we need to allocate a new slab. This is the slowest path since it involves
1539 * a call to the page allocator and the setup of a new slab.
81819f0f 1540 */
894b8788 1541static void *__slab_alloc(struct kmem_cache *s,
dfb4f096 1542 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
81819f0f 1543{
81819f0f 1544 void **object;
dfb4f096 1545 struct page *new;
81819f0f 1546
e72e9c23
LT
1547 /* We handle __GFP_ZERO in the caller */
1548 gfpflags &= ~__GFP_ZERO;
1549
dfb4f096 1550 if (!c->page)
81819f0f
CL
1551 goto new_slab;
1552
dfb4f096
CL
1553 slab_lock(c->page);
1554 if (unlikely(!node_match(c, node)))
81819f0f 1555 goto another_slab;
6446faa2 1556
8ff12cfc 1557 stat(c, ALLOC_REFILL);
6446faa2 1558
894b8788 1559load_freelist:
dfb4f096 1560 object = c->page->freelist;
a973e9dd 1561 if (unlikely(!object))
81819f0f 1562 goto another_slab;
dfb4f096 1563 if (unlikely(SlabDebug(c->page)))
81819f0f
CL
1564 goto debug;
1565
b3fba8da 1566 c->freelist = object[c->offset];
39b26464 1567 c->page->inuse = c->page->objects;
a973e9dd 1568 c->page->freelist = NULL;
dfb4f096 1569 c->node = page_to_nid(c->page);
1f84260c 1570unlock_out:
dfb4f096 1571 slab_unlock(c->page);
8ff12cfc 1572 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1573 return object;
1574
1575another_slab:
dfb4f096 1576 deactivate_slab(s, c);
81819f0f
CL
1577
1578new_slab:
dfb4f096
CL
1579 new = get_partial(s, gfpflags, node);
1580 if (new) {
1581 c->page = new;
8ff12cfc 1582 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1583 goto load_freelist;
81819f0f
CL
1584 }
1585
b811c202
CL
1586 if (gfpflags & __GFP_WAIT)
1587 local_irq_enable();
1588
dfb4f096 1589 new = new_slab(s, gfpflags, node);
b811c202
CL
1590
1591 if (gfpflags & __GFP_WAIT)
1592 local_irq_disable();
1593
dfb4f096
CL
1594 if (new) {
1595 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1596 stat(c, ALLOC_SLAB);
05aa3450 1597 if (c->page)
dfb4f096 1598 flush_slab(s, c);
dfb4f096
CL
1599 slab_lock(new);
1600 SetSlabFrozen(new);
1601 c->page = new;
4b6f0750 1602 goto load_freelist;
81819f0f 1603 }
71c7a06f 1604 return NULL;
81819f0f 1605debug:
dfb4f096 1606 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1607 goto another_slab;
894b8788 1608
dfb4f096 1609 c->page->inuse++;
b3fba8da 1610 c->page->freelist = object[c->offset];
ee3c72a1 1611 c->node = -1;
1f84260c 1612 goto unlock_out;
894b8788
CL
1613}
1614
1615/*
1616 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1617 * have the fastpath folded into their functions. So no function call
1618 * overhead for requests that can be satisfied on the fastpath.
1619 *
1620 * The fastpath works by first checking if the lockless freelist can be used.
1621 * If not then __slab_alloc is called for slow processing.
1622 *
1623 * Otherwise we can simply pick the next object from the lockless free list.
1624 */
06428780 1625static __always_inline void *slab_alloc(struct kmem_cache *s,
ce15fea8 1626 gfp_t gfpflags, int node, void *addr)
894b8788 1627{
894b8788 1628 void **object;
dfb4f096 1629 struct kmem_cache_cpu *c;
1f84260c
CL
1630 unsigned long flags;
1631
894b8788 1632 local_irq_save(flags);
dfb4f096 1633 c = get_cpu_slab(s, smp_processor_id());
a973e9dd 1634 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1635
dfb4f096 1636 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1637
1638 else {
dfb4f096 1639 object = c->freelist;
b3fba8da 1640 c->freelist = object[c->offset];
8ff12cfc 1641 stat(c, ALLOC_FASTPATH);
894b8788
CL
1642 }
1643 local_irq_restore(flags);
d07dbea4
CL
1644
1645 if (unlikely((gfpflags & __GFP_ZERO) && object))
42a9fdbb 1646 memset(object, 0, c->objsize);
d07dbea4 1647
894b8788 1648 return object;
81819f0f
CL
1649}
1650
1651void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1652{
ce15fea8 1653 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1654}
1655EXPORT_SYMBOL(kmem_cache_alloc);
1656
1657#ifdef CONFIG_NUMA
1658void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1659{
ce15fea8 1660 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1661}
1662EXPORT_SYMBOL(kmem_cache_alloc_node);
1663#endif
1664
1665/*
894b8788
CL
1666 * Slow patch handling. This may still be called frequently since objects
1667 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1668 *
894b8788
CL
1669 * So we still attempt to reduce cache line usage. Just take the slab
1670 * lock and free the item. If there is no additional partial page
1671 * handling required then we can return immediately.
81819f0f 1672 */
894b8788 1673static void __slab_free(struct kmem_cache *s, struct page *page,
b3fba8da 1674 void *x, void *addr, unsigned int offset)
81819f0f
CL
1675{
1676 void *prior;
1677 void **object = (void *)x;
8ff12cfc 1678 struct kmem_cache_cpu *c;
81819f0f 1679
8ff12cfc
CL
1680 c = get_cpu_slab(s, raw_smp_processor_id());
1681 stat(c, FREE_SLOWPATH);
81819f0f
CL
1682 slab_lock(page);
1683
35e5d7ee 1684 if (unlikely(SlabDebug(page)))
81819f0f 1685 goto debug;
6446faa2 1686
81819f0f 1687checks_ok:
b3fba8da 1688 prior = object[offset] = page->freelist;
81819f0f
CL
1689 page->freelist = object;
1690 page->inuse--;
1691
8ff12cfc
CL
1692 if (unlikely(SlabFrozen(page))) {
1693 stat(c, FREE_FROZEN);
81819f0f 1694 goto out_unlock;
8ff12cfc 1695 }
81819f0f
CL
1696
1697 if (unlikely(!page->inuse))
1698 goto slab_empty;
1699
1700 /*
6446faa2 1701 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1702 * then add it.
1703 */
a973e9dd 1704 if (unlikely(!prior)) {
7c2e132c 1705 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1706 stat(c, FREE_ADD_PARTIAL);
1707 }
81819f0f
CL
1708
1709out_unlock:
1710 slab_unlock(page);
81819f0f
CL
1711 return;
1712
1713slab_empty:
a973e9dd 1714 if (prior) {
81819f0f 1715 /*
672bba3a 1716 * Slab still on the partial list.
81819f0f
CL
1717 */
1718 remove_partial(s, page);
8ff12cfc
CL
1719 stat(c, FREE_REMOVE_PARTIAL);
1720 }
81819f0f 1721 slab_unlock(page);
8ff12cfc 1722 stat(c, FREE_SLAB);
81819f0f 1723 discard_slab(s, page);
81819f0f
CL
1724 return;
1725
1726debug:
3ec09742 1727 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1728 goto out_unlock;
77c5e2d0 1729 goto checks_ok;
81819f0f
CL
1730}
1731
894b8788
CL
1732/*
1733 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1734 * can perform fastpath freeing without additional function calls.
1735 *
1736 * The fastpath is only possible if we are freeing to the current cpu slab
1737 * of this processor. This typically the case if we have just allocated
1738 * the item before.
1739 *
1740 * If fastpath is not possible then fall back to __slab_free where we deal
1741 * with all sorts of special processing.
1742 */
06428780 1743static __always_inline void slab_free(struct kmem_cache *s,
894b8788
CL
1744 struct page *page, void *x, void *addr)
1745{
1746 void **object = (void *)x;
dfb4f096 1747 struct kmem_cache_cpu *c;
1f84260c
CL
1748 unsigned long flags;
1749
894b8788 1750 local_irq_save(flags);
dfb4f096 1751 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1752 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a
TG
1753 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1754 debug_check_no_obj_freed(object, s->objsize);
ee3c72a1 1755 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1756 object[c->offset] = c->freelist;
dfb4f096 1757 c->freelist = object;
8ff12cfc 1758 stat(c, FREE_FASTPATH);
894b8788 1759 } else
b3fba8da 1760 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1761
1762 local_irq_restore(flags);
1763}
1764
81819f0f
CL
1765void kmem_cache_free(struct kmem_cache *s, void *x)
1766{
77c5e2d0 1767 struct page *page;
81819f0f 1768
b49af68f 1769 page = virt_to_head_page(x);
81819f0f 1770
77c5e2d0 1771 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1772}
1773EXPORT_SYMBOL(kmem_cache_free);
1774
1775/* Figure out on which slab object the object resides */
1776static struct page *get_object_page(const void *x)
1777{
b49af68f 1778 struct page *page = virt_to_head_page(x);
81819f0f
CL
1779
1780 if (!PageSlab(page))
1781 return NULL;
1782
1783 return page;
1784}
1785
1786/*
672bba3a
CL
1787 * Object placement in a slab is made very easy because we always start at
1788 * offset 0. If we tune the size of the object to the alignment then we can
1789 * get the required alignment by putting one properly sized object after
1790 * another.
81819f0f
CL
1791 *
1792 * Notice that the allocation order determines the sizes of the per cpu
1793 * caches. Each processor has always one slab available for allocations.
1794 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1795 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1796 * locking overhead.
81819f0f
CL
1797 */
1798
1799/*
1800 * Mininum / Maximum order of slab pages. This influences locking overhead
1801 * and slab fragmentation. A higher order reduces the number of partial slabs
1802 * and increases the number of allocations possible without having to
1803 * take the list_lock.
1804 */
1805static int slub_min_order;
114e9e89 1806static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1807static int slub_min_objects;
81819f0f
CL
1808
1809/*
1810 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1811 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1812 */
1813static int slub_nomerge;
1814
81819f0f
CL
1815/*
1816 * Calculate the order of allocation given an slab object size.
1817 *
672bba3a
CL
1818 * The order of allocation has significant impact on performance and other
1819 * system components. Generally order 0 allocations should be preferred since
1820 * order 0 does not cause fragmentation in the page allocator. Larger objects
1821 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1822 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1823 * would be wasted.
1824 *
1825 * In order to reach satisfactory performance we must ensure that a minimum
1826 * number of objects is in one slab. Otherwise we may generate too much
1827 * activity on the partial lists which requires taking the list_lock. This is
1828 * less a concern for large slabs though which are rarely used.
81819f0f 1829 *
672bba3a
CL
1830 * slub_max_order specifies the order where we begin to stop considering the
1831 * number of objects in a slab as critical. If we reach slub_max_order then
1832 * we try to keep the page order as low as possible. So we accept more waste
1833 * of space in favor of a small page order.
81819f0f 1834 *
672bba3a
CL
1835 * Higher order allocations also allow the placement of more objects in a
1836 * slab and thereby reduce object handling overhead. If the user has
1837 * requested a higher mininum order then we start with that one instead of
1838 * the smallest order which will fit the object.
81819f0f 1839 */
5e6d444e
CL
1840static inline int slab_order(int size, int min_objects,
1841 int max_order, int fract_leftover)
81819f0f
CL
1842{
1843 int order;
1844 int rem;
6300ea75 1845 int min_order = slub_min_order;
81819f0f 1846
39b26464
CL
1847 if ((PAGE_SIZE << min_order) / size > 65535)
1848 return get_order(size * 65535) - 1;
1849
6300ea75 1850 for (order = max(min_order,
5e6d444e
CL
1851 fls(min_objects * size - 1) - PAGE_SHIFT);
1852 order <= max_order; order++) {
81819f0f 1853
5e6d444e 1854 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1855
5e6d444e 1856 if (slab_size < min_objects * size)
81819f0f
CL
1857 continue;
1858
1859 rem = slab_size % size;
1860
5e6d444e 1861 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1862 break;
1863
1864 }
672bba3a 1865
81819f0f
CL
1866 return order;
1867}
1868
5e6d444e
CL
1869static inline int calculate_order(int size)
1870{
1871 int order;
1872 int min_objects;
1873 int fraction;
1874
1875 /*
1876 * Attempt to find best configuration for a slab. This
1877 * works by first attempting to generate a layout with
1878 * the best configuration and backing off gradually.
1879 *
1880 * First we reduce the acceptable waste in a slab. Then
1881 * we reduce the minimum objects required in a slab.
1882 */
1883 min_objects = slub_min_objects;
9b2cd506
CL
1884 if (!min_objects)
1885 min_objects = 4 * (fls(nr_cpu_ids) + 1);
5e6d444e 1886 while (min_objects > 1) {
c124f5b5 1887 fraction = 16;
5e6d444e
CL
1888 while (fraction >= 4) {
1889 order = slab_order(size, min_objects,
1890 slub_max_order, fraction);
1891 if (order <= slub_max_order)
1892 return order;
1893 fraction /= 2;
1894 }
1895 min_objects /= 2;
1896 }
1897
1898 /*
1899 * We were unable to place multiple objects in a slab. Now
1900 * lets see if we can place a single object there.
1901 */
1902 order = slab_order(size, 1, slub_max_order, 1);
1903 if (order <= slub_max_order)
1904 return order;
1905
1906 /*
1907 * Doh this slab cannot be placed using slub_max_order.
1908 */
1909 order = slab_order(size, 1, MAX_ORDER, 1);
1910 if (order <= MAX_ORDER)
1911 return order;
1912 return -ENOSYS;
1913}
1914
81819f0f 1915/*
672bba3a 1916 * Figure out what the alignment of the objects will be.
81819f0f
CL
1917 */
1918static unsigned long calculate_alignment(unsigned long flags,
1919 unsigned long align, unsigned long size)
1920{
1921 /*
6446faa2
CL
1922 * If the user wants hardware cache aligned objects then follow that
1923 * suggestion if the object is sufficiently large.
81819f0f 1924 *
6446faa2
CL
1925 * The hardware cache alignment cannot override the specified
1926 * alignment though. If that is greater then use it.
81819f0f 1927 */
b6210386
NP
1928 if (flags & SLAB_HWCACHE_ALIGN) {
1929 unsigned long ralign = cache_line_size();
1930 while (size <= ralign / 2)
1931 ralign /= 2;
1932 align = max(align, ralign);
1933 }
81819f0f
CL
1934
1935 if (align < ARCH_SLAB_MINALIGN)
b6210386 1936 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1937
1938 return ALIGN(align, sizeof(void *));
1939}
1940
dfb4f096
CL
1941static void init_kmem_cache_cpu(struct kmem_cache *s,
1942 struct kmem_cache_cpu *c)
1943{
1944 c->page = NULL;
a973e9dd 1945 c->freelist = NULL;
dfb4f096 1946 c->node = 0;
42a9fdbb
CL
1947 c->offset = s->offset / sizeof(void *);
1948 c->objsize = s->objsize;
62f75532
PE
1949#ifdef CONFIG_SLUB_STATS
1950 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1951#endif
dfb4f096
CL
1952}
1953
81819f0f
CL
1954static void init_kmem_cache_node(struct kmem_cache_node *n)
1955{
1956 n->nr_partial = 0;
81819f0f
CL
1957 spin_lock_init(&n->list_lock);
1958 INIT_LIST_HEAD(&n->partial);
8ab1372f 1959#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1960 atomic_long_set(&n->nr_slabs, 0);
643b1138 1961 INIT_LIST_HEAD(&n->full);
8ab1372f 1962#endif
81819f0f
CL
1963}
1964
4c93c355
CL
1965#ifdef CONFIG_SMP
1966/*
1967 * Per cpu array for per cpu structures.
1968 *
1969 * The per cpu array places all kmem_cache_cpu structures from one processor
1970 * close together meaning that it becomes possible that multiple per cpu
1971 * structures are contained in one cacheline. This may be particularly
1972 * beneficial for the kmalloc caches.
1973 *
1974 * A desktop system typically has around 60-80 slabs. With 100 here we are
1975 * likely able to get per cpu structures for all caches from the array defined
1976 * here. We must be able to cover all kmalloc caches during bootstrap.
1977 *
1978 * If the per cpu array is exhausted then fall back to kmalloc
1979 * of individual cachelines. No sharing is possible then.
1980 */
1981#define NR_KMEM_CACHE_CPU 100
1982
1983static DEFINE_PER_CPU(struct kmem_cache_cpu,
1984 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1985
1986static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1987static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1988
1989static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1990 int cpu, gfp_t flags)
1991{
1992 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1993
1994 if (c)
1995 per_cpu(kmem_cache_cpu_free, cpu) =
1996 (void *)c->freelist;
1997 else {
1998 /* Table overflow: So allocate ourselves */
1999 c = kmalloc_node(
2000 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2001 flags, cpu_to_node(cpu));
2002 if (!c)
2003 return NULL;
2004 }
2005
2006 init_kmem_cache_cpu(s, c);
2007 return c;
2008}
2009
2010static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2011{
2012 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2013 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2014 kfree(c);
2015 return;
2016 }
2017 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2018 per_cpu(kmem_cache_cpu_free, cpu) = c;
2019}
2020
2021static void free_kmem_cache_cpus(struct kmem_cache *s)
2022{
2023 int cpu;
2024
2025 for_each_online_cpu(cpu) {
2026 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2027
2028 if (c) {
2029 s->cpu_slab[cpu] = NULL;
2030 free_kmem_cache_cpu(c, cpu);
2031 }
2032 }
2033}
2034
2035static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2036{
2037 int cpu;
2038
2039 for_each_online_cpu(cpu) {
2040 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2041
2042 if (c)
2043 continue;
2044
2045 c = alloc_kmem_cache_cpu(s, cpu, flags);
2046 if (!c) {
2047 free_kmem_cache_cpus(s);
2048 return 0;
2049 }
2050 s->cpu_slab[cpu] = c;
2051 }
2052 return 1;
2053}
2054
2055/*
2056 * Initialize the per cpu array.
2057 */
2058static void init_alloc_cpu_cpu(int cpu)
2059{
2060 int i;
2061
2062 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2063 return;
2064
2065 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2066 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2067
2068 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2069}
2070
2071static void __init init_alloc_cpu(void)
2072{
2073 int cpu;
2074
2075 for_each_online_cpu(cpu)
2076 init_alloc_cpu_cpu(cpu);
2077 }
2078
2079#else
2080static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2081static inline void init_alloc_cpu(void) {}
2082
2083static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2084{
2085 init_kmem_cache_cpu(s, &s->cpu_slab);
2086 return 1;
2087}
2088#endif
2089
81819f0f
CL
2090#ifdef CONFIG_NUMA
2091/*
2092 * No kmalloc_node yet so do it by hand. We know that this is the first
2093 * slab on the node for this slabcache. There are no concurrent accesses
2094 * possible.
2095 *
2096 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2097 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2098 * memory on a fresh node that has no slab structures yet.
81819f0f 2099 */
1cd7daa5
AB
2100static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2101 int node)
81819f0f
CL
2102{
2103 struct page *page;
2104 struct kmem_cache_node *n;
ba84c73c 2105 unsigned long flags;
81819f0f
CL
2106
2107 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2108
a2f92ee7 2109 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2110
2111 BUG_ON(!page);
a2f92ee7
CL
2112 if (page_to_nid(page) != node) {
2113 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2114 "node %d\n", node);
2115 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2116 "in order to be able to continue\n");
2117 }
2118
81819f0f
CL
2119 n = page->freelist;
2120 BUG_ON(!n);
2121 page->freelist = get_freepointer(kmalloc_caches, n);
2122 page->inuse++;
2123 kmalloc_caches->node[node] = n;
8ab1372f 2124#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2125 init_object(kmalloc_caches, n, 1);
2126 init_tracking(kmalloc_caches, n);
8ab1372f 2127#endif
81819f0f 2128 init_kmem_cache_node(n);
205ab99d 2129 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2130
ba84c73c 2131 /*
2132 * lockdep requires consistent irq usage for each lock
2133 * so even though there cannot be a race this early in
2134 * the boot sequence, we still disable irqs.
2135 */
2136 local_irq_save(flags);
7c2e132c 2137 add_partial(n, page, 0);
ba84c73c 2138 local_irq_restore(flags);
81819f0f
CL
2139 return n;
2140}
2141
2142static void free_kmem_cache_nodes(struct kmem_cache *s)
2143{
2144 int node;
2145
f64dc58c 2146 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2147 struct kmem_cache_node *n = s->node[node];
2148 if (n && n != &s->local_node)
2149 kmem_cache_free(kmalloc_caches, n);
2150 s->node[node] = NULL;
2151 }
2152}
2153
2154static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2155{
2156 int node;
2157 int local_node;
2158
2159 if (slab_state >= UP)
2160 local_node = page_to_nid(virt_to_page(s));
2161 else
2162 local_node = 0;
2163
f64dc58c 2164 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2165 struct kmem_cache_node *n;
2166
2167 if (local_node == node)
2168 n = &s->local_node;
2169 else {
2170 if (slab_state == DOWN) {
2171 n = early_kmem_cache_node_alloc(gfpflags,
2172 node);
2173 continue;
2174 }
2175 n = kmem_cache_alloc_node(kmalloc_caches,
2176 gfpflags, node);
2177
2178 if (!n) {
2179 free_kmem_cache_nodes(s);
2180 return 0;
2181 }
2182
2183 }
2184 s->node[node] = n;
2185 init_kmem_cache_node(n);
2186 }
2187 return 1;
2188}
2189#else
2190static void free_kmem_cache_nodes(struct kmem_cache *s)
2191{
2192}
2193
2194static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2195{
2196 init_kmem_cache_node(&s->local_node);
2197 return 1;
2198}
2199#endif
2200
2201/*
2202 * calculate_sizes() determines the order and the distribution of data within
2203 * a slab object.
2204 */
06b285dc 2205static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2206{
2207 unsigned long flags = s->flags;
2208 unsigned long size = s->objsize;
2209 unsigned long align = s->align;
834f3d11 2210 int order;
81819f0f 2211
d8b42bf5
CL
2212 /*
2213 * Round up object size to the next word boundary. We can only
2214 * place the free pointer at word boundaries and this determines
2215 * the possible location of the free pointer.
2216 */
2217 size = ALIGN(size, sizeof(void *));
2218
2219#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2220 /*
2221 * Determine if we can poison the object itself. If the user of
2222 * the slab may touch the object after free or before allocation
2223 * then we should never poison the object itself.
2224 */
2225 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2226 !s->ctor)
81819f0f
CL
2227 s->flags |= __OBJECT_POISON;
2228 else
2229 s->flags &= ~__OBJECT_POISON;
2230
81819f0f
CL
2231
2232 /*
672bba3a 2233 * If we are Redzoning then check if there is some space between the
81819f0f 2234 * end of the object and the free pointer. If not then add an
672bba3a 2235 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2236 */
2237 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2238 size += sizeof(void *);
41ecc55b 2239#endif
81819f0f
CL
2240
2241 /*
672bba3a
CL
2242 * With that we have determined the number of bytes in actual use
2243 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2244 */
2245 s->inuse = size;
2246
2247 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2248 s->ctor)) {
81819f0f
CL
2249 /*
2250 * Relocate free pointer after the object if it is not
2251 * permitted to overwrite the first word of the object on
2252 * kmem_cache_free.
2253 *
2254 * This is the case if we do RCU, have a constructor or
2255 * destructor or are poisoning the objects.
2256 */
2257 s->offset = size;
2258 size += sizeof(void *);
2259 }
2260
c12b3c62 2261#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2262 if (flags & SLAB_STORE_USER)
2263 /*
2264 * Need to store information about allocs and frees after
2265 * the object.
2266 */
2267 size += 2 * sizeof(struct track);
2268
be7b3fbc 2269 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2270 /*
2271 * Add some empty padding so that we can catch
2272 * overwrites from earlier objects rather than let
2273 * tracking information or the free pointer be
2274 * corrupted if an user writes before the start
2275 * of the object.
2276 */
2277 size += sizeof(void *);
41ecc55b 2278#endif
672bba3a 2279
81819f0f
CL
2280 /*
2281 * Determine the alignment based on various parameters that the
65c02d4c
CL
2282 * user specified and the dynamic determination of cache line size
2283 * on bootup.
81819f0f
CL
2284 */
2285 align = calculate_alignment(flags, align, s->objsize);
2286
2287 /*
2288 * SLUB stores one object immediately after another beginning from
2289 * offset 0. In order to align the objects we have to simply size
2290 * each object to conform to the alignment.
2291 */
2292 size = ALIGN(size, align);
2293 s->size = size;
06b285dc
CL
2294 if (forced_order >= 0)
2295 order = forced_order;
2296 else
2297 order = calculate_order(size);
81819f0f 2298
834f3d11 2299 if (order < 0)
81819f0f
CL
2300 return 0;
2301
b7a49f0d 2302 s->allocflags = 0;
834f3d11 2303 if (order)
b7a49f0d
CL
2304 s->allocflags |= __GFP_COMP;
2305
2306 if (s->flags & SLAB_CACHE_DMA)
2307 s->allocflags |= SLUB_DMA;
2308
2309 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2310 s->allocflags |= __GFP_RECLAIMABLE;
2311
81819f0f
CL
2312 /*
2313 * Determine the number of objects per slab
2314 */
834f3d11 2315 s->oo = oo_make(order, size);
65c3376a 2316 s->min = oo_make(get_order(size), size);
205ab99d
CL
2317 if (oo_objects(s->oo) > oo_objects(s->max))
2318 s->max = s->oo;
81819f0f 2319
834f3d11 2320 return !!oo_objects(s->oo);
81819f0f
CL
2321
2322}
2323
81819f0f
CL
2324static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2325 const char *name, size_t size,
2326 size_t align, unsigned long flags,
4ba9b9d0 2327 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
2328{
2329 memset(s, 0, kmem_size);
2330 s->name = name;
2331 s->ctor = ctor;
81819f0f 2332 s->objsize = size;
81819f0f 2333 s->align = align;
ba0268a8 2334 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2335
06b285dc 2336 if (!calculate_sizes(s, -1))
81819f0f
CL
2337 goto error;
2338
2339 s->refcount = 1;
2340#ifdef CONFIG_NUMA
9824601e 2341 s->remote_node_defrag_ratio = 100;
81819f0f 2342#endif
dfb4f096
CL
2343 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2344 goto error;
81819f0f 2345
dfb4f096 2346 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2347 return 1;
4c93c355 2348 free_kmem_cache_nodes(s);
81819f0f
CL
2349error:
2350 if (flags & SLAB_PANIC)
2351 panic("Cannot create slab %s size=%lu realsize=%u "
2352 "order=%u offset=%u flags=%lx\n",
834f3d11 2353 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2354 s->offset, flags);
2355 return 0;
2356}
81819f0f
CL
2357
2358/*
2359 * Check if a given pointer is valid
2360 */
2361int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2362{
06428780 2363 struct page *page;
81819f0f
CL
2364
2365 page = get_object_page(object);
2366
2367 if (!page || s != page->slab)
2368 /* No slab or wrong slab */
2369 return 0;
2370
abcd08a6 2371 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2372 return 0;
2373
2374 /*
2375 * We could also check if the object is on the slabs freelist.
2376 * But this would be too expensive and it seems that the main
6446faa2 2377 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2378 * to a certain slab.
2379 */
2380 return 1;
2381}
2382EXPORT_SYMBOL(kmem_ptr_validate);
2383
2384/*
2385 * Determine the size of a slab object
2386 */
2387unsigned int kmem_cache_size(struct kmem_cache *s)
2388{
2389 return s->objsize;
2390}
2391EXPORT_SYMBOL(kmem_cache_size);
2392
2393const char *kmem_cache_name(struct kmem_cache *s)
2394{
2395 return s->name;
2396}
2397EXPORT_SYMBOL(kmem_cache_name);
2398
33b12c38
CL
2399static void list_slab_objects(struct kmem_cache *s, struct page *page,
2400 const char *text)
2401{
2402#ifdef CONFIG_SLUB_DEBUG
2403 void *addr = page_address(page);
2404 void *p;
2405 DECLARE_BITMAP(map, page->objects);
2406
2407 bitmap_zero(map, page->objects);
2408 slab_err(s, page, "%s", text);
2409 slab_lock(page);
2410 for_each_free_object(p, s, page->freelist)
2411 set_bit(slab_index(p, s, addr), map);
2412
2413 for_each_object(p, s, addr, page->objects) {
2414
2415 if (!test_bit(slab_index(p, s, addr), map)) {
2416 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2417 p, p - addr);
2418 print_tracking(s, p);
2419 }
2420 }
2421 slab_unlock(page);
2422#endif
2423}
2424
81819f0f 2425/*
599870b1 2426 * Attempt to free all partial slabs on a node.
81819f0f 2427 */
599870b1 2428static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2429{
81819f0f
CL
2430 unsigned long flags;
2431 struct page *page, *h;
2432
2433 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2434 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2435 if (!page->inuse) {
2436 list_del(&page->lru);
2437 discard_slab(s, page);
599870b1 2438 n->nr_partial--;
33b12c38
CL
2439 } else {
2440 list_slab_objects(s, page,
2441 "Objects remaining on kmem_cache_close()");
599870b1 2442 }
33b12c38 2443 }
81819f0f 2444 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2445}
2446
2447/*
672bba3a 2448 * Release all resources used by a slab cache.
81819f0f 2449 */
0c710013 2450static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2451{
2452 int node;
2453
2454 flush_all(s);
2455
2456 /* Attempt to free all objects */
4c93c355 2457 free_kmem_cache_cpus(s);
f64dc58c 2458 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2459 struct kmem_cache_node *n = get_node(s, node);
2460
599870b1
CL
2461 free_partial(s, n);
2462 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2463 return 1;
2464 }
2465 free_kmem_cache_nodes(s);
2466 return 0;
2467}
2468
2469/*
2470 * Close a cache and release the kmem_cache structure
2471 * (must be used for caches created using kmem_cache_create)
2472 */
2473void kmem_cache_destroy(struct kmem_cache *s)
2474{
2475 down_write(&slub_lock);
2476 s->refcount--;
2477 if (!s->refcount) {
2478 list_del(&s->list);
a0e1d1be 2479 up_write(&slub_lock);
d629d819
PE
2480 if (kmem_cache_close(s)) {
2481 printk(KERN_ERR "SLUB %s: %s called for cache that "
2482 "still has objects.\n", s->name, __func__);
2483 dump_stack();
2484 }
81819f0f 2485 sysfs_slab_remove(s);
a0e1d1be
CL
2486 } else
2487 up_write(&slub_lock);
81819f0f
CL
2488}
2489EXPORT_SYMBOL(kmem_cache_destroy);
2490
2491/********************************************************************
2492 * Kmalloc subsystem
2493 *******************************************************************/
2494
331dc558 2495struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
81819f0f
CL
2496EXPORT_SYMBOL(kmalloc_caches);
2497
81819f0f
CL
2498static int __init setup_slub_min_order(char *str)
2499{
06428780 2500 get_option(&str, &slub_min_order);
81819f0f
CL
2501
2502 return 1;
2503}
2504
2505__setup("slub_min_order=", setup_slub_min_order);
2506
2507static int __init setup_slub_max_order(char *str)
2508{
06428780 2509 get_option(&str, &slub_max_order);
81819f0f
CL
2510
2511 return 1;
2512}
2513
2514__setup("slub_max_order=", setup_slub_max_order);
2515
2516static int __init setup_slub_min_objects(char *str)
2517{
06428780 2518 get_option(&str, &slub_min_objects);
81819f0f
CL
2519
2520 return 1;
2521}
2522
2523__setup("slub_min_objects=", setup_slub_min_objects);
2524
2525static int __init setup_slub_nomerge(char *str)
2526{
2527 slub_nomerge = 1;
2528 return 1;
2529}
2530
2531__setup("slub_nomerge", setup_slub_nomerge);
2532
81819f0f
CL
2533static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2534 const char *name, int size, gfp_t gfp_flags)
2535{
2536 unsigned int flags = 0;
2537
2538 if (gfp_flags & SLUB_DMA)
2539 flags = SLAB_CACHE_DMA;
2540
2541 down_write(&slub_lock);
2542 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2543 flags, NULL))
81819f0f
CL
2544 goto panic;
2545
2546 list_add(&s->list, &slab_caches);
2547 up_write(&slub_lock);
2548 if (sysfs_slab_add(s))
2549 goto panic;
2550 return s;
2551
2552panic:
2553 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2554}
2555
2e443fd0 2556#ifdef CONFIG_ZONE_DMA
4097d601 2557static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
1ceef402
CL
2558
2559static void sysfs_add_func(struct work_struct *w)
2560{
2561 struct kmem_cache *s;
2562
2563 down_write(&slub_lock);
2564 list_for_each_entry(s, &slab_caches, list) {
2565 if (s->flags & __SYSFS_ADD_DEFERRED) {
2566 s->flags &= ~__SYSFS_ADD_DEFERRED;
2567 sysfs_slab_add(s);
2568 }
2569 }
2570 up_write(&slub_lock);
2571}
2572
2573static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2574
2e443fd0
CL
2575static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2576{
2577 struct kmem_cache *s;
2e443fd0
CL
2578 char *text;
2579 size_t realsize;
2580
2581 s = kmalloc_caches_dma[index];
2582 if (s)
2583 return s;
2584
2585 /* Dynamically create dma cache */
1ceef402
CL
2586 if (flags & __GFP_WAIT)
2587 down_write(&slub_lock);
2588 else {
2589 if (!down_write_trylock(&slub_lock))
2590 goto out;
2591 }
2592
2593 if (kmalloc_caches_dma[index])
2594 goto unlock_out;
2e443fd0 2595
7b55f620 2596 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2597 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2598 (unsigned int)realsize);
1ceef402
CL
2599 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2600
2601 if (!s || !text || !kmem_cache_open(s, flags, text,
2602 realsize, ARCH_KMALLOC_MINALIGN,
2603 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2604 kfree(s);
2605 kfree(text);
2606 goto unlock_out;
dfce8648 2607 }
1ceef402
CL
2608
2609 list_add(&s->list, &slab_caches);
2610 kmalloc_caches_dma[index] = s;
2611
2612 schedule_work(&sysfs_add_work);
2613
2614unlock_out:
dfce8648 2615 up_write(&slub_lock);
1ceef402 2616out:
dfce8648 2617 return kmalloc_caches_dma[index];
2e443fd0
CL
2618}
2619#endif
2620
f1b26339
CL
2621/*
2622 * Conversion table for small slabs sizes / 8 to the index in the
2623 * kmalloc array. This is necessary for slabs < 192 since we have non power
2624 * of two cache sizes there. The size of larger slabs can be determined using
2625 * fls.
2626 */
2627static s8 size_index[24] = {
2628 3, /* 8 */
2629 4, /* 16 */
2630 5, /* 24 */
2631 5, /* 32 */
2632 6, /* 40 */
2633 6, /* 48 */
2634 6, /* 56 */
2635 6, /* 64 */
2636 1, /* 72 */
2637 1, /* 80 */
2638 1, /* 88 */
2639 1, /* 96 */
2640 7, /* 104 */
2641 7, /* 112 */
2642 7, /* 120 */
2643 7, /* 128 */
2644 2, /* 136 */
2645 2, /* 144 */
2646 2, /* 152 */
2647 2, /* 160 */
2648 2, /* 168 */
2649 2, /* 176 */
2650 2, /* 184 */
2651 2 /* 192 */
2652};
2653
81819f0f
CL
2654static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2655{
f1b26339 2656 int index;
81819f0f 2657
f1b26339
CL
2658 if (size <= 192) {
2659 if (!size)
2660 return ZERO_SIZE_PTR;
81819f0f 2661
f1b26339 2662 index = size_index[(size - 1) / 8];
aadb4bc4 2663 } else
f1b26339 2664 index = fls(size - 1);
81819f0f
CL
2665
2666#ifdef CONFIG_ZONE_DMA
f1b26339 2667 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2668 return dma_kmalloc_cache(index, flags);
f1b26339 2669
81819f0f
CL
2670#endif
2671 return &kmalloc_caches[index];
2672}
2673
2674void *__kmalloc(size_t size, gfp_t flags)
2675{
aadb4bc4 2676 struct kmem_cache *s;
81819f0f 2677
331dc558 2678 if (unlikely(size > PAGE_SIZE))
eada35ef 2679 return kmalloc_large(size, flags);
aadb4bc4
CL
2680
2681 s = get_slab(size, flags);
2682
2683 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2684 return s;
2685
ce15fea8 2686 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2687}
2688EXPORT_SYMBOL(__kmalloc);
2689
f619cfe1
CL
2690static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2691{
2692 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2693 get_order(size));
2694
2695 if (page)
2696 return page_address(page);
2697 else
2698 return NULL;
2699}
2700
81819f0f
CL
2701#ifdef CONFIG_NUMA
2702void *__kmalloc_node(size_t size, gfp_t flags, int node)
2703{
aadb4bc4 2704 struct kmem_cache *s;
81819f0f 2705
331dc558 2706 if (unlikely(size > PAGE_SIZE))
f619cfe1 2707 return kmalloc_large_node(size, flags, node);
aadb4bc4
CL
2708
2709 s = get_slab(size, flags);
2710
2711 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2712 return s;
2713
ce15fea8 2714 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2715}
2716EXPORT_SYMBOL(__kmalloc_node);
2717#endif
2718
2719size_t ksize(const void *object)
2720{
272c1d21 2721 struct page *page;
81819f0f
CL
2722 struct kmem_cache *s;
2723
ef8b4520 2724 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2725 return 0;
2726
294a80a8 2727 page = virt_to_head_page(object);
294a80a8
VN
2728
2729 if (unlikely(!PageSlab(page)))
2730 return PAGE_SIZE << compound_order(page);
2731
81819f0f 2732 s = page->slab;
81819f0f 2733
ae20bfda 2734#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2735 /*
2736 * Debugging requires use of the padding between object
2737 * and whatever may come after it.
2738 */
2739 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2740 return s->objsize;
2741
ae20bfda 2742#endif
81819f0f
CL
2743 /*
2744 * If we have the need to store the freelist pointer
2745 * back there or track user information then we can
2746 * only use the space before that information.
2747 */
2748 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2749 return s->inuse;
81819f0f
CL
2750 /*
2751 * Else we can use all the padding etc for the allocation
2752 */
2753 return s->size;
2754}
2755EXPORT_SYMBOL(ksize);
2756
2757void kfree(const void *x)
2758{
81819f0f 2759 struct page *page;
5bb983b0 2760 void *object = (void *)x;
81819f0f 2761
2408c550 2762 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2763 return;
2764
b49af68f 2765 page = virt_to_head_page(x);
aadb4bc4
CL
2766 if (unlikely(!PageSlab(page))) {
2767 put_page(page);
2768 return;
2769 }
5bb983b0 2770 slab_free(page->slab, page, object, __builtin_return_address(0));
81819f0f
CL
2771}
2772EXPORT_SYMBOL(kfree);
2773
2086d26a 2774/*
672bba3a
CL
2775 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2776 * the remaining slabs by the number of items in use. The slabs with the
2777 * most items in use come first. New allocations will then fill those up
2778 * and thus they can be removed from the partial lists.
2779 *
2780 * The slabs with the least items are placed last. This results in them
2781 * being allocated from last increasing the chance that the last objects
2782 * are freed in them.
2086d26a
CL
2783 */
2784int kmem_cache_shrink(struct kmem_cache *s)
2785{
2786 int node;
2787 int i;
2788 struct kmem_cache_node *n;
2789 struct page *page;
2790 struct page *t;
205ab99d 2791 int objects = oo_objects(s->max);
2086d26a 2792 struct list_head *slabs_by_inuse =
834f3d11 2793 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2794 unsigned long flags;
2795
2796 if (!slabs_by_inuse)
2797 return -ENOMEM;
2798
2799 flush_all(s);
f64dc58c 2800 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2801 n = get_node(s, node);
2802
2803 if (!n->nr_partial)
2804 continue;
2805
834f3d11 2806 for (i = 0; i < objects; i++)
2086d26a
CL
2807 INIT_LIST_HEAD(slabs_by_inuse + i);
2808
2809 spin_lock_irqsave(&n->list_lock, flags);
2810
2811 /*
672bba3a 2812 * Build lists indexed by the items in use in each slab.
2086d26a 2813 *
672bba3a
CL
2814 * Note that concurrent frees may occur while we hold the
2815 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2816 */
2817 list_for_each_entry_safe(page, t, &n->partial, lru) {
2818 if (!page->inuse && slab_trylock(page)) {
2819 /*
2820 * Must hold slab lock here because slab_free
2821 * may have freed the last object and be
2822 * waiting to release the slab.
2823 */
2824 list_del(&page->lru);
2825 n->nr_partial--;
2826 slab_unlock(page);
2827 discard_slab(s, page);
2828 } else {
fcda3d89
CL
2829 list_move(&page->lru,
2830 slabs_by_inuse + page->inuse);
2086d26a
CL
2831 }
2832 }
2833
2086d26a 2834 /*
672bba3a
CL
2835 * Rebuild the partial list with the slabs filled up most
2836 * first and the least used slabs at the end.
2086d26a 2837 */
834f3d11 2838 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2839 list_splice(slabs_by_inuse + i, n->partial.prev);
2840
2086d26a
CL
2841 spin_unlock_irqrestore(&n->list_lock, flags);
2842 }
2843
2844 kfree(slabs_by_inuse);
2845 return 0;
2846}
2847EXPORT_SYMBOL(kmem_cache_shrink);
2848
b9049e23
YG
2849#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2850static int slab_mem_going_offline_callback(void *arg)
2851{
2852 struct kmem_cache *s;
2853
2854 down_read(&slub_lock);
2855 list_for_each_entry(s, &slab_caches, list)
2856 kmem_cache_shrink(s);
2857 up_read(&slub_lock);
2858
2859 return 0;
2860}
2861
2862static void slab_mem_offline_callback(void *arg)
2863{
2864 struct kmem_cache_node *n;
2865 struct kmem_cache *s;
2866 struct memory_notify *marg = arg;
2867 int offline_node;
2868
2869 offline_node = marg->status_change_nid;
2870
2871 /*
2872 * If the node still has available memory. we need kmem_cache_node
2873 * for it yet.
2874 */
2875 if (offline_node < 0)
2876 return;
2877
2878 down_read(&slub_lock);
2879 list_for_each_entry(s, &slab_caches, list) {
2880 n = get_node(s, offline_node);
2881 if (n) {
2882 /*
2883 * if n->nr_slabs > 0, slabs still exist on the node
2884 * that is going down. We were unable to free them,
2885 * and offline_pages() function shoudn't call this
2886 * callback. So, we must fail.
2887 */
0f389ec6 2888 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2889
2890 s->node[offline_node] = NULL;
2891 kmem_cache_free(kmalloc_caches, n);
2892 }
2893 }
2894 up_read(&slub_lock);
2895}
2896
2897static int slab_mem_going_online_callback(void *arg)
2898{
2899 struct kmem_cache_node *n;
2900 struct kmem_cache *s;
2901 struct memory_notify *marg = arg;
2902 int nid = marg->status_change_nid;
2903 int ret = 0;
2904
2905 /*
2906 * If the node's memory is already available, then kmem_cache_node is
2907 * already created. Nothing to do.
2908 */
2909 if (nid < 0)
2910 return 0;
2911
2912 /*
0121c619 2913 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2914 * allocate a kmem_cache_node structure in order to bring the node
2915 * online.
2916 */
2917 down_read(&slub_lock);
2918 list_for_each_entry(s, &slab_caches, list) {
2919 /*
2920 * XXX: kmem_cache_alloc_node will fallback to other nodes
2921 * since memory is not yet available from the node that
2922 * is brought up.
2923 */
2924 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2925 if (!n) {
2926 ret = -ENOMEM;
2927 goto out;
2928 }
2929 init_kmem_cache_node(n);
2930 s->node[nid] = n;
2931 }
2932out:
2933 up_read(&slub_lock);
2934 return ret;
2935}
2936
2937static int slab_memory_callback(struct notifier_block *self,
2938 unsigned long action, void *arg)
2939{
2940 int ret = 0;
2941
2942 switch (action) {
2943 case MEM_GOING_ONLINE:
2944 ret = slab_mem_going_online_callback(arg);
2945 break;
2946 case MEM_GOING_OFFLINE:
2947 ret = slab_mem_going_offline_callback(arg);
2948 break;
2949 case MEM_OFFLINE:
2950 case MEM_CANCEL_ONLINE:
2951 slab_mem_offline_callback(arg);
2952 break;
2953 case MEM_ONLINE:
2954 case MEM_CANCEL_OFFLINE:
2955 break;
2956 }
2957
2958 ret = notifier_from_errno(ret);
2959 return ret;
2960}
2961
2962#endif /* CONFIG_MEMORY_HOTPLUG */
2963
81819f0f
CL
2964/********************************************************************
2965 * Basic setup of slabs
2966 *******************************************************************/
2967
2968void __init kmem_cache_init(void)
2969{
2970 int i;
4b356be0 2971 int caches = 0;
81819f0f 2972
4c93c355
CL
2973 init_alloc_cpu();
2974
81819f0f
CL
2975#ifdef CONFIG_NUMA
2976 /*
2977 * Must first have the slab cache available for the allocations of the
672bba3a 2978 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2979 * kmem_cache_open for slab_state == DOWN.
2980 */
2981 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2982 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2983 kmalloc_caches[0].refcount = -1;
4b356be0 2984 caches++;
b9049e23 2985
0c40ba4f 2986 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
2987#endif
2988
2989 /* Able to allocate the per node structures */
2990 slab_state = PARTIAL;
2991
2992 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2993 if (KMALLOC_MIN_SIZE <= 64) {
2994 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2995 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
2996 caches++;
2997 }
2998 if (KMALLOC_MIN_SIZE <= 128) {
2999 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 3000 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
3001 caches++;
3002 }
81819f0f 3003
331dc558 3004 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
81819f0f
CL
3005 create_kmalloc_cache(&kmalloc_caches[i],
3006 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
3007 caches++;
3008 }
81819f0f 3009
f1b26339
CL
3010
3011 /*
3012 * Patch up the size_index table if we have strange large alignment
3013 * requirements for the kmalloc array. This is only the case for
6446faa2 3014 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3015 *
3016 * Largest permitted alignment is 256 bytes due to the way we
3017 * handle the index determination for the smaller caches.
3018 *
3019 * Make sure that nothing crazy happens if someone starts tinkering
3020 * around with ARCH_KMALLOC_MINALIGN
3021 */
3022 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3023 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3024
12ad6843 3025 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3026 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3027
81819f0f
CL
3028 slab_state = UP;
3029
3030 /* Provide the correct kmalloc names now that the caches are up */
331dc558 3031 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
81819f0f
CL
3032 kmalloc_caches[i]. name =
3033 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3034
3035#ifdef CONFIG_SMP
3036 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3037 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3038 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3039#else
3040 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3041#endif
3042
3adbefee
IM
3043 printk(KERN_INFO
3044 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3045 " CPUs=%d, Nodes=%d\n",
3046 caches, cache_line_size(),
81819f0f
CL
3047 slub_min_order, slub_max_order, slub_min_objects,
3048 nr_cpu_ids, nr_node_ids);
3049}
3050
3051/*
3052 * Find a mergeable slab cache
3053 */
3054static int slab_unmergeable(struct kmem_cache *s)
3055{
3056 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3057 return 1;
3058
c59def9f 3059 if (s->ctor)
81819f0f
CL
3060 return 1;
3061
8ffa6875
CL
3062 /*
3063 * We may have set a slab to be unmergeable during bootstrap.
3064 */
3065 if (s->refcount < 0)
3066 return 1;
3067
81819f0f
CL
3068 return 0;
3069}
3070
3071static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3072 size_t align, unsigned long flags, const char *name,
4ba9b9d0 3073 void (*ctor)(struct kmem_cache *, void *))
81819f0f 3074{
5b95a4ac 3075 struct kmem_cache *s;
81819f0f
CL
3076
3077 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3078 return NULL;
3079
c59def9f 3080 if (ctor)
81819f0f
CL
3081 return NULL;
3082
3083 size = ALIGN(size, sizeof(void *));
3084 align = calculate_alignment(flags, align, size);
3085 size = ALIGN(size, align);
ba0268a8 3086 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3087
5b95a4ac 3088 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3089 if (slab_unmergeable(s))
3090 continue;
3091
3092 if (size > s->size)
3093 continue;
3094
ba0268a8 3095 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3096 continue;
3097 /*
3098 * Check if alignment is compatible.
3099 * Courtesy of Adrian Drzewiecki
3100 */
06428780 3101 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3102 continue;
3103
3104 if (s->size - size >= sizeof(void *))
3105 continue;
3106
3107 return s;
3108 }
3109 return NULL;
3110}
3111
3112struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3113 size_t align, unsigned long flags,
4ba9b9d0 3114 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
3115{
3116 struct kmem_cache *s;
3117
3118 down_write(&slub_lock);
ba0268a8 3119 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3120 if (s) {
42a9fdbb
CL
3121 int cpu;
3122
81819f0f
CL
3123 s->refcount++;
3124 /*
3125 * Adjust the object sizes so that we clear
3126 * the complete object on kzalloc.
3127 */
3128 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3129
3130 /*
3131 * And then we need to update the object size in the
3132 * per cpu structures
3133 */
3134 for_each_online_cpu(cpu)
3135 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3136
81819f0f 3137 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3138 up_write(&slub_lock);
6446faa2 3139
81819f0f
CL
3140 if (sysfs_slab_alias(s, name))
3141 goto err;
a0e1d1be
CL
3142 return s;
3143 }
6446faa2 3144
a0e1d1be
CL
3145 s = kmalloc(kmem_size, GFP_KERNEL);
3146 if (s) {
3147 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3148 size, align, flags, ctor)) {
81819f0f 3149 list_add(&s->list, &slab_caches);
a0e1d1be
CL
3150 up_write(&slub_lock);
3151 if (sysfs_slab_add(s))
3152 goto err;
3153 return s;
3154 }
3155 kfree(s);
81819f0f
CL
3156 }
3157 up_write(&slub_lock);
81819f0f
CL
3158
3159err:
81819f0f
CL
3160 if (flags & SLAB_PANIC)
3161 panic("Cannot create slabcache %s\n", name);
3162 else
3163 s = NULL;
3164 return s;
3165}
3166EXPORT_SYMBOL(kmem_cache_create);
3167
81819f0f 3168#ifdef CONFIG_SMP
81819f0f 3169/*
672bba3a
CL
3170 * Use the cpu notifier to insure that the cpu slabs are flushed when
3171 * necessary.
81819f0f
CL
3172 */
3173static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3174 unsigned long action, void *hcpu)
3175{
3176 long cpu = (long)hcpu;
5b95a4ac
CL
3177 struct kmem_cache *s;
3178 unsigned long flags;
81819f0f
CL
3179
3180 switch (action) {
4c93c355
CL
3181 case CPU_UP_PREPARE:
3182 case CPU_UP_PREPARE_FROZEN:
3183 init_alloc_cpu_cpu(cpu);
3184 down_read(&slub_lock);
3185 list_for_each_entry(s, &slab_caches, list)
3186 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3187 GFP_KERNEL);
3188 up_read(&slub_lock);
3189 break;
3190
81819f0f 3191 case CPU_UP_CANCELED:
8bb78442 3192 case CPU_UP_CANCELED_FROZEN:
81819f0f 3193 case CPU_DEAD:
8bb78442 3194 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3195 down_read(&slub_lock);
3196 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3197 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3198
5b95a4ac
CL
3199 local_irq_save(flags);
3200 __flush_cpu_slab(s, cpu);
3201 local_irq_restore(flags);
4c93c355
CL
3202 free_kmem_cache_cpu(c, cpu);
3203 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3204 }
3205 up_read(&slub_lock);
81819f0f
CL
3206 break;
3207 default:
3208 break;
3209 }
3210 return NOTIFY_OK;
3211}
3212
06428780 3213static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3214 .notifier_call = slab_cpuup_callback
06428780 3215};
81819f0f
CL
3216
3217#endif
3218
81819f0f
CL
3219void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3220{
aadb4bc4
CL
3221 struct kmem_cache *s;
3222
331dc558 3223 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3224 return kmalloc_large(size, gfpflags);
3225
aadb4bc4 3226 s = get_slab(size, gfpflags);
81819f0f 3227
2408c550 3228 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3229 return s;
81819f0f 3230
ce15fea8 3231 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3232}
3233
3234void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3235 int node, void *caller)
3236{
aadb4bc4
CL
3237 struct kmem_cache *s;
3238
331dc558 3239 if (unlikely(size > PAGE_SIZE))
f619cfe1 3240 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3241
aadb4bc4 3242 s = get_slab(size, gfpflags);
81819f0f 3243
2408c550 3244 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3245 return s;
81819f0f 3246
ce15fea8 3247 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3248}
3249
5b06c853 3250#if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
205ab99d
CL
3251static unsigned long count_partial(struct kmem_cache_node *n,
3252 int (*get_count)(struct page *))
5b06c853
CL
3253{
3254 unsigned long flags;
3255 unsigned long x = 0;
3256 struct page *page;
3257
3258 spin_lock_irqsave(&n->list_lock, flags);
3259 list_for_each_entry(page, &n->partial, lru)
205ab99d 3260 x += get_count(page);
5b06c853
CL
3261 spin_unlock_irqrestore(&n->list_lock, flags);
3262 return x;
3263}
205ab99d
CL
3264
3265static int count_inuse(struct page *page)
3266{
3267 return page->inuse;
3268}
3269
3270static int count_total(struct page *page)
3271{
3272 return page->objects;
3273}
3274
3275static int count_free(struct page *page)
3276{
3277 return page->objects - page->inuse;
3278}
5b06c853
CL
3279#endif
3280
41ecc55b 3281#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
434e245d
CL
3282static int validate_slab(struct kmem_cache *s, struct page *page,
3283 unsigned long *map)
53e15af0
CL
3284{
3285 void *p;
a973e9dd 3286 void *addr = page_address(page);
53e15af0
CL
3287
3288 if (!check_slab(s, page) ||
3289 !on_freelist(s, page, NULL))
3290 return 0;
3291
3292 /* Now we know that a valid freelist exists */
39b26464 3293 bitmap_zero(map, page->objects);
53e15af0 3294
7656c72b
CL
3295 for_each_free_object(p, s, page->freelist) {
3296 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3297 if (!check_object(s, page, p, 0))
3298 return 0;
3299 }
3300
224a88be 3301 for_each_object(p, s, addr, page->objects)
7656c72b 3302 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3303 if (!check_object(s, page, p, 1))
3304 return 0;
3305 return 1;
3306}
3307
434e245d
CL
3308static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3309 unsigned long *map)
53e15af0
CL
3310{
3311 if (slab_trylock(page)) {
434e245d 3312 validate_slab(s, page, map);
53e15af0
CL
3313 slab_unlock(page);
3314 } else
3315 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3316 s->name, page);
3317
3318 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
3319 if (!SlabDebug(page))
3320 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
3321 "on slab 0x%p\n", s->name, page);
3322 } else {
35e5d7ee
CL
3323 if (SlabDebug(page))
3324 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
3325 "slab 0x%p\n", s->name, page);
3326 }
3327}
3328
434e245d
CL
3329static int validate_slab_node(struct kmem_cache *s,
3330 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3331{
3332 unsigned long count = 0;
3333 struct page *page;
3334 unsigned long flags;
3335
3336 spin_lock_irqsave(&n->list_lock, flags);
3337
3338 list_for_each_entry(page, &n->partial, lru) {
434e245d 3339 validate_slab_slab(s, page, map);
53e15af0
CL
3340 count++;
3341 }
3342 if (count != n->nr_partial)
3343 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3344 "counter=%ld\n", s->name, count, n->nr_partial);
3345
3346 if (!(s->flags & SLAB_STORE_USER))
3347 goto out;
3348
3349 list_for_each_entry(page, &n->full, lru) {
434e245d 3350 validate_slab_slab(s, page, map);
53e15af0
CL
3351 count++;
3352 }
3353 if (count != atomic_long_read(&n->nr_slabs))
3354 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3355 "counter=%ld\n", s->name, count,
3356 atomic_long_read(&n->nr_slabs));
3357
3358out:
3359 spin_unlock_irqrestore(&n->list_lock, flags);
3360 return count;
3361}
3362
434e245d 3363static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3364{
3365 int node;
3366 unsigned long count = 0;
205ab99d 3367 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3368 sizeof(unsigned long), GFP_KERNEL);
3369
3370 if (!map)
3371 return -ENOMEM;
53e15af0
CL
3372
3373 flush_all(s);
f64dc58c 3374 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3375 struct kmem_cache_node *n = get_node(s, node);
3376
434e245d 3377 count += validate_slab_node(s, n, map);
53e15af0 3378 }
434e245d 3379 kfree(map);
53e15af0
CL
3380 return count;
3381}
3382
b3459709
CL
3383#ifdef SLUB_RESILIENCY_TEST
3384static void resiliency_test(void)
3385{
3386 u8 *p;
3387
3388 printk(KERN_ERR "SLUB resiliency testing\n");
3389 printk(KERN_ERR "-----------------------\n");
3390 printk(KERN_ERR "A. Corruption after allocation\n");
3391
3392 p = kzalloc(16, GFP_KERNEL);
3393 p[16] = 0x12;
3394 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3395 " 0x12->0x%p\n\n", p + 16);
3396
3397 validate_slab_cache(kmalloc_caches + 4);
3398
3399 /* Hmmm... The next two are dangerous */
3400 p = kzalloc(32, GFP_KERNEL);
3401 p[32 + sizeof(void *)] = 0x34;
3402 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3403 " 0x34 -> -0x%p\n", p);
3404 printk(KERN_ERR
3405 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3406
3407 validate_slab_cache(kmalloc_caches + 5);
3408 p = kzalloc(64, GFP_KERNEL);
3409 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3410 *p = 0x56;
3411 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3412 p);
3adbefee
IM
3413 printk(KERN_ERR
3414 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3415 validate_slab_cache(kmalloc_caches + 6);
3416
3417 printk(KERN_ERR "\nB. Corruption after free\n");
3418 p = kzalloc(128, GFP_KERNEL);
3419 kfree(p);
3420 *p = 0x78;
3421 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3422 validate_slab_cache(kmalloc_caches + 7);
3423
3424 p = kzalloc(256, GFP_KERNEL);
3425 kfree(p);
3426 p[50] = 0x9a;
3adbefee
IM
3427 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3428 p);
b3459709
CL
3429 validate_slab_cache(kmalloc_caches + 8);
3430
3431 p = kzalloc(512, GFP_KERNEL);
3432 kfree(p);
3433 p[512] = 0xab;
3434 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3435 validate_slab_cache(kmalloc_caches + 9);
3436}
3437#else
3438static void resiliency_test(void) {};
3439#endif
3440
88a420e4 3441/*
672bba3a 3442 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3443 * and freed.
3444 */
3445
3446struct location {
3447 unsigned long count;
3448 void *addr;
45edfa58
CL
3449 long long sum_time;
3450 long min_time;
3451 long max_time;
3452 long min_pid;
3453 long max_pid;
3454 cpumask_t cpus;
3455 nodemask_t nodes;
88a420e4
CL
3456};
3457
3458struct loc_track {
3459 unsigned long max;
3460 unsigned long count;
3461 struct location *loc;
3462};
3463
3464static void free_loc_track(struct loc_track *t)
3465{
3466 if (t->max)
3467 free_pages((unsigned long)t->loc,
3468 get_order(sizeof(struct location) * t->max));
3469}
3470
68dff6a9 3471static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3472{
3473 struct location *l;
3474 int order;
3475
88a420e4
CL
3476 order = get_order(sizeof(struct location) * max);
3477
68dff6a9 3478 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3479 if (!l)
3480 return 0;
3481
3482 if (t->count) {
3483 memcpy(l, t->loc, sizeof(struct location) * t->count);
3484 free_loc_track(t);
3485 }
3486 t->max = max;
3487 t->loc = l;
3488 return 1;
3489}
3490
3491static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3492 const struct track *track)
88a420e4
CL
3493{
3494 long start, end, pos;
3495 struct location *l;
3496 void *caddr;
45edfa58 3497 unsigned long age = jiffies - track->when;
88a420e4
CL
3498
3499 start = -1;
3500 end = t->count;
3501
3502 for ( ; ; ) {
3503 pos = start + (end - start + 1) / 2;
3504
3505 /*
3506 * There is nothing at "end". If we end up there
3507 * we need to add something to before end.
3508 */
3509 if (pos == end)
3510 break;
3511
3512 caddr = t->loc[pos].addr;
45edfa58
CL
3513 if (track->addr == caddr) {
3514
3515 l = &t->loc[pos];
3516 l->count++;
3517 if (track->when) {
3518 l->sum_time += age;
3519 if (age < l->min_time)
3520 l->min_time = age;
3521 if (age > l->max_time)
3522 l->max_time = age;
3523
3524 if (track->pid < l->min_pid)
3525 l->min_pid = track->pid;
3526 if (track->pid > l->max_pid)
3527 l->max_pid = track->pid;
3528
3529 cpu_set(track->cpu, l->cpus);
3530 }
3531 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3532 return 1;
3533 }
3534
45edfa58 3535 if (track->addr < caddr)
88a420e4
CL
3536 end = pos;
3537 else
3538 start = pos;
3539 }
3540
3541 /*
672bba3a 3542 * Not found. Insert new tracking element.
88a420e4 3543 */
68dff6a9 3544 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3545 return 0;
3546
3547 l = t->loc + pos;
3548 if (pos < t->count)
3549 memmove(l + 1, l,
3550 (t->count - pos) * sizeof(struct location));
3551 t->count++;
3552 l->count = 1;
45edfa58
CL
3553 l->addr = track->addr;
3554 l->sum_time = age;
3555 l->min_time = age;
3556 l->max_time = age;
3557 l->min_pid = track->pid;
3558 l->max_pid = track->pid;
3559 cpus_clear(l->cpus);
3560 cpu_set(track->cpu, l->cpus);
3561 nodes_clear(l->nodes);
3562 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3563 return 1;
3564}
3565
3566static void process_slab(struct loc_track *t, struct kmem_cache *s,
3567 struct page *page, enum track_item alloc)
3568{
a973e9dd 3569 void *addr = page_address(page);
39b26464 3570 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3571 void *p;
3572
39b26464 3573 bitmap_zero(map, page->objects);
7656c72b
CL
3574 for_each_free_object(p, s, page->freelist)
3575 set_bit(slab_index(p, s, addr), map);
88a420e4 3576
224a88be 3577 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3578 if (!test_bit(slab_index(p, s, addr), map))
3579 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3580}
3581
3582static int list_locations(struct kmem_cache *s, char *buf,
3583 enum track_item alloc)
3584{
e374d483 3585 int len = 0;
88a420e4 3586 unsigned long i;
68dff6a9 3587 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3588 int node;
3589
68dff6a9 3590 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3591 GFP_TEMPORARY))
68dff6a9 3592 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3593
3594 /* Push back cpu slabs */
3595 flush_all(s);
3596
f64dc58c 3597 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3598 struct kmem_cache_node *n = get_node(s, node);
3599 unsigned long flags;
3600 struct page *page;
3601
9e86943b 3602 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3603 continue;
3604
3605 spin_lock_irqsave(&n->list_lock, flags);
3606 list_for_each_entry(page, &n->partial, lru)
3607 process_slab(&t, s, page, alloc);
3608 list_for_each_entry(page, &n->full, lru)
3609 process_slab(&t, s, page, alloc);
3610 spin_unlock_irqrestore(&n->list_lock, flags);
3611 }
3612
3613 for (i = 0; i < t.count; i++) {
45edfa58 3614 struct location *l = &t.loc[i];
88a420e4 3615
e374d483 3616 if (len > PAGE_SIZE - 100)
88a420e4 3617 break;
e374d483 3618 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3619
3620 if (l->addr)
e374d483 3621 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3622 else
e374d483 3623 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3624
3625 if (l->sum_time != l->min_time) {
e374d483 3626 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3627 l->min_time,
3628 (long)div_u64(l->sum_time, l->count),
3629 l->max_time);
45edfa58 3630 } else
e374d483 3631 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3632 l->min_time);
3633
3634 if (l->min_pid != l->max_pid)
e374d483 3635 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3636 l->min_pid, l->max_pid);
3637 else
e374d483 3638 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3639 l->min_pid);
3640
84966343 3641 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
e374d483
HH
3642 len < PAGE_SIZE - 60) {
3643 len += sprintf(buf + len, " cpus=");
3644 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3645 l->cpus);
3646 }
3647
84966343 3648 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3649 len < PAGE_SIZE - 60) {
3650 len += sprintf(buf + len, " nodes=");
3651 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3652 l->nodes);
3653 }
3654
e374d483 3655 len += sprintf(buf + len, "\n");
88a420e4
CL
3656 }
3657
3658 free_loc_track(&t);
3659 if (!t.count)
e374d483
HH
3660 len += sprintf(buf, "No data\n");
3661 return len;
88a420e4
CL
3662}
3663
81819f0f 3664enum slab_stat_type {
205ab99d
CL
3665 SL_ALL, /* All slabs */
3666 SL_PARTIAL, /* Only partially allocated slabs */
3667 SL_CPU, /* Only slabs used for cpu caches */
3668 SL_OBJECTS, /* Determine allocated objects not slabs */
3669 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3670};
3671
205ab99d 3672#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3673#define SO_PARTIAL (1 << SL_PARTIAL)
3674#define SO_CPU (1 << SL_CPU)
3675#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3676#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3677
62e5c4b4
CG
3678static ssize_t show_slab_objects(struct kmem_cache *s,
3679 char *buf, unsigned long flags)
81819f0f
CL
3680{
3681 unsigned long total = 0;
81819f0f
CL
3682 int node;
3683 int x;
3684 unsigned long *nodes;
3685 unsigned long *per_cpu;
3686
3687 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3688 if (!nodes)
3689 return -ENOMEM;
81819f0f
CL
3690 per_cpu = nodes + nr_node_ids;
3691
205ab99d
CL
3692 if (flags & SO_CPU) {
3693 int cpu;
81819f0f 3694
205ab99d
CL
3695 for_each_possible_cpu(cpu) {
3696 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3697
205ab99d
CL
3698 if (!c || c->node < 0)
3699 continue;
3700
3701 if (c->page) {
3702 if (flags & SO_TOTAL)
3703 x = c->page->objects;
3704 else if (flags & SO_OBJECTS)
3705 x = c->page->inuse;
81819f0f
CL
3706 else
3707 x = 1;
205ab99d 3708
81819f0f 3709 total += x;
205ab99d 3710 nodes[c->node] += x;
81819f0f 3711 }
205ab99d 3712 per_cpu[c->node]++;
81819f0f
CL
3713 }
3714 }
3715
205ab99d
CL
3716 if (flags & SO_ALL) {
3717 for_each_node_state(node, N_NORMAL_MEMORY) {
3718 struct kmem_cache_node *n = get_node(s, node);
3719
3720 if (flags & SO_TOTAL)
3721 x = atomic_long_read(&n->total_objects);
3722 else if (flags & SO_OBJECTS)
3723 x = atomic_long_read(&n->total_objects) -
3724 count_partial(n, count_free);
81819f0f 3725
81819f0f 3726 else
205ab99d 3727 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3728 total += x;
3729 nodes[node] += x;
3730 }
3731
205ab99d
CL
3732 } else if (flags & SO_PARTIAL) {
3733 for_each_node_state(node, N_NORMAL_MEMORY) {
3734 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3735
205ab99d
CL
3736 if (flags & SO_TOTAL)
3737 x = count_partial(n, count_total);
3738 else if (flags & SO_OBJECTS)
3739 x = count_partial(n, count_inuse);
81819f0f 3740 else
205ab99d 3741 x = n->nr_partial;
81819f0f
CL
3742 total += x;
3743 nodes[node] += x;
3744 }
3745 }
81819f0f
CL
3746 x = sprintf(buf, "%lu", total);
3747#ifdef CONFIG_NUMA
f64dc58c 3748 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3749 if (nodes[node])
3750 x += sprintf(buf + x, " N%d=%lu",
3751 node, nodes[node]);
3752#endif
3753 kfree(nodes);
3754 return x + sprintf(buf + x, "\n");
3755}
3756
3757static int any_slab_objects(struct kmem_cache *s)
3758{
3759 int node;
81819f0f 3760
dfb4f096 3761 for_each_online_node(node) {
81819f0f
CL
3762 struct kmem_cache_node *n = get_node(s, node);
3763
dfb4f096
CL
3764 if (!n)
3765 continue;
3766
31d33baf 3767 if (atomic_read(&n->total_objects))
81819f0f
CL
3768 return 1;
3769 }
3770 return 0;
3771}
3772
3773#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3774#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3775
3776struct slab_attribute {
3777 struct attribute attr;
3778 ssize_t (*show)(struct kmem_cache *s, char *buf);
3779 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3780};
3781
3782#define SLAB_ATTR_RO(_name) \
3783 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3784
3785#define SLAB_ATTR(_name) \
3786 static struct slab_attribute _name##_attr = \
3787 __ATTR(_name, 0644, _name##_show, _name##_store)
3788
81819f0f
CL
3789static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3790{
3791 return sprintf(buf, "%d\n", s->size);
3792}
3793SLAB_ATTR_RO(slab_size);
3794
3795static ssize_t align_show(struct kmem_cache *s, char *buf)
3796{
3797 return sprintf(buf, "%d\n", s->align);
3798}
3799SLAB_ATTR_RO(align);
3800
3801static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3802{
3803 return sprintf(buf, "%d\n", s->objsize);
3804}
3805SLAB_ATTR_RO(object_size);
3806
3807static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3808{
834f3d11 3809 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3810}
3811SLAB_ATTR_RO(objs_per_slab);
3812
06b285dc
CL
3813static ssize_t order_store(struct kmem_cache *s,
3814 const char *buf, size_t length)
3815{
0121c619
CL
3816 unsigned long order;
3817 int err;
3818
3819 err = strict_strtoul(buf, 10, &order);
3820 if (err)
3821 return err;
06b285dc
CL
3822
3823 if (order > slub_max_order || order < slub_min_order)
3824 return -EINVAL;
3825
3826 calculate_sizes(s, order);
3827 return length;
3828}
3829
81819f0f
CL
3830static ssize_t order_show(struct kmem_cache *s, char *buf)
3831{
834f3d11 3832 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3833}
06b285dc 3834SLAB_ATTR(order);
81819f0f
CL
3835
3836static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3837{
3838 if (s->ctor) {
3839 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3840
3841 return n + sprintf(buf + n, "\n");
3842 }
3843 return 0;
3844}
3845SLAB_ATTR_RO(ctor);
3846
81819f0f
CL
3847static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3848{
3849 return sprintf(buf, "%d\n", s->refcount - 1);
3850}
3851SLAB_ATTR_RO(aliases);
3852
3853static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3854{
205ab99d 3855 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3856}
3857SLAB_ATTR_RO(slabs);
3858
3859static ssize_t partial_show(struct kmem_cache *s, char *buf)
3860{
d9acf4b7 3861 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3862}
3863SLAB_ATTR_RO(partial);
3864
3865static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3866{
d9acf4b7 3867 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3868}
3869SLAB_ATTR_RO(cpu_slabs);
3870
3871static ssize_t objects_show(struct kmem_cache *s, char *buf)
3872{
205ab99d 3873 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3874}
3875SLAB_ATTR_RO(objects);
3876
205ab99d
CL
3877static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3878{
3879 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3880}
3881SLAB_ATTR_RO(objects_partial);
3882
3883static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3884{
3885 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3886}
3887SLAB_ATTR_RO(total_objects);
3888
81819f0f
CL
3889static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3890{
3891 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3892}
3893
3894static ssize_t sanity_checks_store(struct kmem_cache *s,
3895 const char *buf, size_t length)
3896{
3897 s->flags &= ~SLAB_DEBUG_FREE;
3898 if (buf[0] == '1')
3899 s->flags |= SLAB_DEBUG_FREE;
3900 return length;
3901}
3902SLAB_ATTR(sanity_checks);
3903
3904static ssize_t trace_show(struct kmem_cache *s, char *buf)
3905{
3906 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3907}
3908
3909static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3910 size_t length)
3911{
3912 s->flags &= ~SLAB_TRACE;
3913 if (buf[0] == '1')
3914 s->flags |= SLAB_TRACE;
3915 return length;
3916}
3917SLAB_ATTR(trace);
3918
3919static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3920{
3921 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3922}
3923
3924static ssize_t reclaim_account_store(struct kmem_cache *s,
3925 const char *buf, size_t length)
3926{
3927 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3928 if (buf[0] == '1')
3929 s->flags |= SLAB_RECLAIM_ACCOUNT;
3930 return length;
3931}
3932SLAB_ATTR(reclaim_account);
3933
3934static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3935{
5af60839 3936 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3937}
3938SLAB_ATTR_RO(hwcache_align);
3939
3940#ifdef CONFIG_ZONE_DMA
3941static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3942{
3943 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3944}
3945SLAB_ATTR_RO(cache_dma);
3946#endif
3947
3948static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3949{
3950 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3951}
3952SLAB_ATTR_RO(destroy_by_rcu);
3953
3954static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3955{
3956 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3957}
3958
3959static ssize_t red_zone_store(struct kmem_cache *s,
3960 const char *buf, size_t length)
3961{
3962 if (any_slab_objects(s))
3963 return -EBUSY;
3964
3965 s->flags &= ~SLAB_RED_ZONE;
3966 if (buf[0] == '1')
3967 s->flags |= SLAB_RED_ZONE;
06b285dc 3968 calculate_sizes(s, -1);
81819f0f
CL
3969 return length;
3970}
3971SLAB_ATTR(red_zone);
3972
3973static ssize_t poison_show(struct kmem_cache *s, char *buf)
3974{
3975 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3976}
3977
3978static ssize_t poison_store(struct kmem_cache *s,
3979 const char *buf, size_t length)
3980{
3981 if (any_slab_objects(s))
3982 return -EBUSY;
3983
3984 s->flags &= ~SLAB_POISON;
3985 if (buf[0] == '1')
3986 s->flags |= SLAB_POISON;
06b285dc 3987 calculate_sizes(s, -1);
81819f0f
CL
3988 return length;
3989}
3990SLAB_ATTR(poison);
3991
3992static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3993{
3994 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3995}
3996
3997static ssize_t store_user_store(struct kmem_cache *s,
3998 const char *buf, size_t length)
3999{
4000 if (any_slab_objects(s))
4001 return -EBUSY;
4002
4003 s->flags &= ~SLAB_STORE_USER;
4004 if (buf[0] == '1')
4005 s->flags |= SLAB_STORE_USER;
06b285dc 4006 calculate_sizes(s, -1);
81819f0f
CL
4007 return length;
4008}
4009SLAB_ATTR(store_user);
4010
53e15af0
CL
4011static ssize_t validate_show(struct kmem_cache *s, char *buf)
4012{
4013 return 0;
4014}
4015
4016static ssize_t validate_store(struct kmem_cache *s,
4017 const char *buf, size_t length)
4018{
434e245d
CL
4019 int ret = -EINVAL;
4020
4021 if (buf[0] == '1') {
4022 ret = validate_slab_cache(s);
4023 if (ret >= 0)
4024 ret = length;
4025 }
4026 return ret;
53e15af0
CL
4027}
4028SLAB_ATTR(validate);
4029
2086d26a
CL
4030static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4031{
4032 return 0;
4033}
4034
4035static ssize_t shrink_store(struct kmem_cache *s,
4036 const char *buf, size_t length)
4037{
4038 if (buf[0] == '1') {
4039 int rc = kmem_cache_shrink(s);
4040
4041 if (rc)
4042 return rc;
4043 } else
4044 return -EINVAL;
4045 return length;
4046}
4047SLAB_ATTR(shrink);
4048
88a420e4
CL
4049static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4050{
4051 if (!(s->flags & SLAB_STORE_USER))
4052 return -ENOSYS;
4053 return list_locations(s, buf, TRACK_ALLOC);
4054}
4055SLAB_ATTR_RO(alloc_calls);
4056
4057static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4058{
4059 if (!(s->flags & SLAB_STORE_USER))
4060 return -ENOSYS;
4061 return list_locations(s, buf, TRACK_FREE);
4062}
4063SLAB_ATTR_RO(free_calls);
4064
81819f0f 4065#ifdef CONFIG_NUMA
9824601e 4066static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4067{
9824601e 4068 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4069}
4070
9824601e 4071static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4072 const char *buf, size_t length)
4073{
0121c619
CL
4074 unsigned long ratio;
4075 int err;
4076
4077 err = strict_strtoul(buf, 10, &ratio);
4078 if (err)
4079 return err;
4080
4081 if (ratio < 100)
4082 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4083
81819f0f
CL
4084 return length;
4085}
9824601e 4086SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4087#endif
4088
8ff12cfc 4089#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4090static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4091{
4092 unsigned long sum = 0;
4093 int cpu;
4094 int len;
4095 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4096
4097 if (!data)
4098 return -ENOMEM;
4099
4100 for_each_online_cpu(cpu) {
4101 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4102
4103 data[cpu] = x;
4104 sum += x;
4105 }
4106
4107 len = sprintf(buf, "%lu", sum);
4108
50ef37b9 4109#ifdef CONFIG_SMP
8ff12cfc
CL
4110 for_each_online_cpu(cpu) {
4111 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4112 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4113 }
50ef37b9 4114#endif
8ff12cfc
CL
4115 kfree(data);
4116 return len + sprintf(buf + len, "\n");
4117}
4118
4119#define STAT_ATTR(si, text) \
4120static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4121{ \
4122 return show_stat(s, buf, si); \
4123} \
4124SLAB_ATTR_RO(text); \
4125
4126STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4127STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4128STAT_ATTR(FREE_FASTPATH, free_fastpath);
4129STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4130STAT_ATTR(FREE_FROZEN, free_frozen);
4131STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4132STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4133STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4134STAT_ATTR(ALLOC_SLAB, alloc_slab);
4135STAT_ATTR(ALLOC_REFILL, alloc_refill);
4136STAT_ATTR(FREE_SLAB, free_slab);
4137STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4138STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4139STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4140STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4141STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4142STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4143STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4144#endif
4145
06428780 4146static struct attribute *slab_attrs[] = {
81819f0f
CL
4147 &slab_size_attr.attr,
4148 &object_size_attr.attr,
4149 &objs_per_slab_attr.attr,
4150 &order_attr.attr,
4151 &objects_attr.attr,
205ab99d
CL
4152 &objects_partial_attr.attr,
4153 &total_objects_attr.attr,
81819f0f
CL
4154 &slabs_attr.attr,
4155 &partial_attr.attr,
4156 &cpu_slabs_attr.attr,
4157 &ctor_attr.attr,
81819f0f
CL
4158 &aliases_attr.attr,
4159 &align_attr.attr,
4160 &sanity_checks_attr.attr,
4161 &trace_attr.attr,
4162 &hwcache_align_attr.attr,
4163 &reclaim_account_attr.attr,
4164 &destroy_by_rcu_attr.attr,
4165 &red_zone_attr.attr,
4166 &poison_attr.attr,
4167 &store_user_attr.attr,
53e15af0 4168 &validate_attr.attr,
2086d26a 4169 &shrink_attr.attr,
88a420e4
CL
4170 &alloc_calls_attr.attr,
4171 &free_calls_attr.attr,
81819f0f
CL
4172#ifdef CONFIG_ZONE_DMA
4173 &cache_dma_attr.attr,
4174#endif
4175#ifdef CONFIG_NUMA
9824601e 4176 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4177#endif
4178#ifdef CONFIG_SLUB_STATS
4179 &alloc_fastpath_attr.attr,
4180 &alloc_slowpath_attr.attr,
4181 &free_fastpath_attr.attr,
4182 &free_slowpath_attr.attr,
4183 &free_frozen_attr.attr,
4184 &free_add_partial_attr.attr,
4185 &free_remove_partial_attr.attr,
4186 &alloc_from_partial_attr.attr,
4187 &alloc_slab_attr.attr,
4188 &alloc_refill_attr.attr,
4189 &free_slab_attr.attr,
4190 &cpuslab_flush_attr.attr,
4191 &deactivate_full_attr.attr,
4192 &deactivate_empty_attr.attr,
4193 &deactivate_to_head_attr.attr,
4194 &deactivate_to_tail_attr.attr,
4195 &deactivate_remote_frees_attr.attr,
65c3376a 4196 &order_fallback_attr.attr,
81819f0f
CL
4197#endif
4198 NULL
4199};
4200
4201static struct attribute_group slab_attr_group = {
4202 .attrs = slab_attrs,
4203};
4204
4205static ssize_t slab_attr_show(struct kobject *kobj,
4206 struct attribute *attr,
4207 char *buf)
4208{
4209 struct slab_attribute *attribute;
4210 struct kmem_cache *s;
4211 int err;
4212
4213 attribute = to_slab_attr(attr);
4214 s = to_slab(kobj);
4215
4216 if (!attribute->show)
4217 return -EIO;
4218
4219 err = attribute->show(s, buf);
4220
4221 return err;
4222}
4223
4224static ssize_t slab_attr_store(struct kobject *kobj,
4225 struct attribute *attr,
4226 const char *buf, size_t len)
4227{
4228 struct slab_attribute *attribute;
4229 struct kmem_cache *s;
4230 int err;
4231
4232 attribute = to_slab_attr(attr);
4233 s = to_slab(kobj);
4234
4235 if (!attribute->store)
4236 return -EIO;
4237
4238 err = attribute->store(s, buf, len);
4239
4240 return err;
4241}
4242
151c602f
CL
4243static void kmem_cache_release(struct kobject *kobj)
4244{
4245 struct kmem_cache *s = to_slab(kobj);
4246
4247 kfree(s);
4248}
4249
81819f0f
CL
4250static struct sysfs_ops slab_sysfs_ops = {
4251 .show = slab_attr_show,
4252 .store = slab_attr_store,
4253};
4254
4255static struct kobj_type slab_ktype = {
4256 .sysfs_ops = &slab_sysfs_ops,
151c602f 4257 .release = kmem_cache_release
81819f0f
CL
4258};
4259
4260static int uevent_filter(struct kset *kset, struct kobject *kobj)
4261{
4262 struct kobj_type *ktype = get_ktype(kobj);
4263
4264 if (ktype == &slab_ktype)
4265 return 1;
4266 return 0;
4267}
4268
4269static struct kset_uevent_ops slab_uevent_ops = {
4270 .filter = uevent_filter,
4271};
4272
27c3a314 4273static struct kset *slab_kset;
81819f0f
CL
4274
4275#define ID_STR_LENGTH 64
4276
4277/* Create a unique string id for a slab cache:
6446faa2
CL
4278 *
4279 * Format :[flags-]size
81819f0f
CL
4280 */
4281static char *create_unique_id(struct kmem_cache *s)
4282{
4283 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4284 char *p = name;
4285
4286 BUG_ON(!name);
4287
4288 *p++ = ':';
4289 /*
4290 * First flags affecting slabcache operations. We will only
4291 * get here for aliasable slabs so we do not need to support
4292 * too many flags. The flags here must cover all flags that
4293 * are matched during merging to guarantee that the id is
4294 * unique.
4295 */
4296 if (s->flags & SLAB_CACHE_DMA)
4297 *p++ = 'd';
4298 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4299 *p++ = 'a';
4300 if (s->flags & SLAB_DEBUG_FREE)
4301 *p++ = 'F';
4302 if (p != name + 1)
4303 *p++ = '-';
4304 p += sprintf(p, "%07d", s->size);
4305 BUG_ON(p > name + ID_STR_LENGTH - 1);
4306 return name;
4307}
4308
4309static int sysfs_slab_add(struct kmem_cache *s)
4310{
4311 int err;
4312 const char *name;
4313 int unmergeable;
4314
4315 if (slab_state < SYSFS)
4316 /* Defer until later */
4317 return 0;
4318
4319 unmergeable = slab_unmergeable(s);
4320 if (unmergeable) {
4321 /*
4322 * Slabcache can never be merged so we can use the name proper.
4323 * This is typically the case for debug situations. In that
4324 * case we can catch duplicate names easily.
4325 */
27c3a314 4326 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4327 name = s->name;
4328 } else {
4329 /*
4330 * Create a unique name for the slab as a target
4331 * for the symlinks.
4332 */
4333 name = create_unique_id(s);
4334 }
4335
27c3a314 4336 s->kobj.kset = slab_kset;
1eada11c
GKH
4337 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4338 if (err) {
4339 kobject_put(&s->kobj);
81819f0f 4340 return err;
1eada11c 4341 }
81819f0f
CL
4342
4343 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4344 if (err)
4345 return err;
4346 kobject_uevent(&s->kobj, KOBJ_ADD);
4347 if (!unmergeable) {
4348 /* Setup first alias */
4349 sysfs_slab_alias(s, s->name);
4350 kfree(name);
4351 }
4352 return 0;
4353}
4354
4355static void sysfs_slab_remove(struct kmem_cache *s)
4356{
4357 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4358 kobject_del(&s->kobj);
151c602f 4359 kobject_put(&s->kobj);
81819f0f
CL
4360}
4361
4362/*
4363 * Need to buffer aliases during bootup until sysfs becomes
4364 * available lest we loose that information.
4365 */
4366struct saved_alias {
4367 struct kmem_cache *s;
4368 const char *name;
4369 struct saved_alias *next;
4370};
4371
5af328a5 4372static struct saved_alias *alias_list;
81819f0f
CL
4373
4374static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4375{
4376 struct saved_alias *al;
4377
4378 if (slab_state == SYSFS) {
4379 /*
4380 * If we have a leftover link then remove it.
4381 */
27c3a314
GKH
4382 sysfs_remove_link(&slab_kset->kobj, name);
4383 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4384 }
4385
4386 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4387 if (!al)
4388 return -ENOMEM;
4389
4390 al->s = s;
4391 al->name = name;
4392 al->next = alias_list;
4393 alias_list = al;
4394 return 0;
4395}
4396
4397static int __init slab_sysfs_init(void)
4398{
5b95a4ac 4399 struct kmem_cache *s;
81819f0f
CL
4400 int err;
4401
0ff21e46 4402 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4403 if (!slab_kset) {
81819f0f
CL
4404 printk(KERN_ERR "Cannot register slab subsystem.\n");
4405 return -ENOSYS;
4406 }
4407
26a7bd03
CL
4408 slab_state = SYSFS;
4409
5b95a4ac 4410 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4411 err = sysfs_slab_add(s);
5d540fb7
CL
4412 if (err)
4413 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4414 " to sysfs\n", s->name);
26a7bd03 4415 }
81819f0f
CL
4416
4417 while (alias_list) {
4418 struct saved_alias *al = alias_list;
4419
4420 alias_list = alias_list->next;
4421 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4422 if (err)
4423 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4424 " %s to sysfs\n", s->name);
81819f0f
CL
4425 kfree(al);
4426 }
4427
4428 resiliency_test();
4429 return 0;
4430}
4431
4432__initcall(slab_sysfs_init);
81819f0f 4433#endif
57ed3eda
PE
4434
4435/*
4436 * The /proc/slabinfo ABI
4437 */
158a9624
LT
4438#ifdef CONFIG_SLABINFO
4439
0121c619
CL
4440ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4441 size_t count, loff_t *ppos)
158a9624
LT
4442{
4443 return -EINVAL;
4444}
4445
57ed3eda
PE
4446
4447static void print_slabinfo_header(struct seq_file *m)
4448{
4449 seq_puts(m, "slabinfo - version: 2.1\n");
4450 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4451 "<objperslab> <pagesperslab>");
4452 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4453 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4454 seq_putc(m, '\n');
4455}
4456
4457static void *s_start(struct seq_file *m, loff_t *pos)
4458{
4459 loff_t n = *pos;
4460
4461 down_read(&slub_lock);
4462 if (!n)
4463 print_slabinfo_header(m);
4464
4465 return seq_list_start(&slab_caches, *pos);
4466}
4467
4468static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4469{
4470 return seq_list_next(p, &slab_caches, pos);
4471}
4472
4473static void s_stop(struct seq_file *m, void *p)
4474{
4475 up_read(&slub_lock);
4476}
4477
4478static int s_show(struct seq_file *m, void *p)
4479{
4480 unsigned long nr_partials = 0;
4481 unsigned long nr_slabs = 0;
4482 unsigned long nr_inuse = 0;
205ab99d
CL
4483 unsigned long nr_objs = 0;
4484 unsigned long nr_free = 0;
57ed3eda
PE
4485 struct kmem_cache *s;
4486 int node;
4487
4488 s = list_entry(p, struct kmem_cache, list);
4489
4490 for_each_online_node(node) {
4491 struct kmem_cache_node *n = get_node(s, node);
4492
4493 if (!n)
4494 continue;
4495
4496 nr_partials += n->nr_partial;
4497 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4498 nr_objs += atomic_long_read(&n->total_objects);
4499 nr_free += count_partial(n, count_free);
57ed3eda
PE
4500 }
4501
205ab99d 4502 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4503
4504 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4505 nr_objs, s->size, oo_objects(s->oo),
4506 (1 << oo_order(s->oo)));
57ed3eda
PE
4507 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4508 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4509 0UL);
4510 seq_putc(m, '\n');
4511 return 0;
4512}
4513
4514const struct seq_operations slabinfo_op = {
4515 .start = s_start,
4516 .next = s_next,
4517 .stop = s_stop,
4518 .show = s_show,
4519};
4520
158a9624 4521#endif /* CONFIG_SLABINFO */