]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slub.c
slub: improve kmem_cache_destroy() error message
[net-next-2.6.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
b9049e23 23#include <linux/memory.h>
81819f0f
CL
24
25/*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
672bba3a
CL
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 72 * freed then the slab will show up again on the partial lists.
672bba3a
CL
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
81819f0f
CL
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
4b6f0750
CL
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
dfb4f096 94 * freelist that allows lockless access to
894b8788
CL
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
81819f0f
CL
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
894b8788 100 * the fast path and disables lockless freelists.
81819f0f
CL
101 */
102
5577bd8a
CL
103#define FROZEN (1 << PG_active)
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG (1 << PG_error)
107#else
108#define SLABDEBUG 0
109#endif
110
4b6f0750
CL
111static inline int SlabFrozen(struct page *page)
112{
5577bd8a 113 return page->flags & FROZEN;
4b6f0750
CL
114}
115
116static inline void SetSlabFrozen(struct page *page)
117{
5577bd8a 118 page->flags |= FROZEN;
4b6f0750
CL
119}
120
121static inline void ClearSlabFrozen(struct page *page)
122{
5577bd8a 123 page->flags &= ~FROZEN;
4b6f0750
CL
124}
125
35e5d7ee
CL
126static inline int SlabDebug(struct page *page)
127{
5577bd8a 128 return page->flags & SLABDEBUG;
35e5d7ee
CL
129}
130
131static inline void SetSlabDebug(struct page *page)
132{
5577bd8a 133 page->flags |= SLABDEBUG;
35e5d7ee
CL
134}
135
136static inline void ClearSlabDebug(struct page *page)
137{
5577bd8a 138 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
139}
140
81819f0f
CL
141/*
142 * Issues still to be resolved:
143 *
81819f0f
CL
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
81819f0f
CL
146 * - Variable sizing of the per node arrays
147 */
148
149/* Enable to test recovery from slab corruption on boot */
150#undef SLUB_RESILIENCY_TEST
151
152#if PAGE_SHIFT <= 12
153
154/*
155 * Small page size. Make sure that we do not fragment memory
156 */
157#define DEFAULT_MAX_ORDER 1
158#define DEFAULT_MIN_OBJECTS 4
159
160#else
161
162/*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166#define DEFAULT_MAX_ORDER 2
167#define DEFAULT_MIN_OBJECTS 8
168
169#endif
170
2086d26a
CL
171/*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
76be8950 175#define MIN_PARTIAL 5
e95eed57 176
2086d26a
CL
177/*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182#define MAX_PARTIAL 10
183
81819f0f
CL
184#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
672bba3a 186
81819f0f
CL
187/*
188 * Set of flags that will prevent slab merging
189 */
190#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 197#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
198#endif
199
200#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 201#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
202#endif
203
204/* Internal SLUB flags */
1ceef402
CL
205#define __OBJECT_POISON 0x80000000 /* Poison object */
206#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
71c7a06f
CL
207#define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208#define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
81819f0f 209
65c02d4c
CL
210/* Not all arches define cache_line_size */
211#ifndef cache_line_size
212#define cache_line_size() L1_CACHE_BYTES
213#endif
214
81819f0f
CL
215static int kmem_size = sizeof(struct kmem_cache);
216
217#ifdef CONFIG_SMP
218static struct notifier_block slab_notifier;
219#endif
220
221static enum {
222 DOWN, /* No slab functionality available */
223 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 224 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
225 SYSFS /* Sysfs up */
226} slab_state = DOWN;
227
228/* A list of all slab caches on the system */
229static DECLARE_RWSEM(slub_lock);
5af328a5 230static LIST_HEAD(slab_caches);
81819f0f 231
02cbc874
CL
232/*
233 * Tracking user of a slab.
234 */
235struct track {
236 void *addr; /* Called from address */
237 int cpu; /* Was running on cpu */
238 int pid; /* Pid context */
239 unsigned long when; /* When did the operation occur */
240};
241
242enum track_item { TRACK_ALLOC, TRACK_FREE };
243
41ecc55b 244#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
245static int sysfs_slab_add(struct kmem_cache *);
246static int sysfs_slab_alias(struct kmem_cache *, const char *);
247static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 248
81819f0f 249#else
0c710013
CL
250static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
251static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
252 { return 0; }
151c602f
CL
253static inline void sysfs_slab_remove(struct kmem_cache *s)
254{
255 kfree(s);
256}
8ff12cfc 257
81819f0f
CL
258#endif
259
8ff12cfc
CL
260static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
261{
262#ifdef CONFIG_SLUB_STATS
263 c->stat[si]++;
264#endif
265}
266
81819f0f
CL
267/********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
270
271int slab_is_available(void)
272{
273 return slab_state >= UP;
274}
275
276static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
277{
278#ifdef CONFIG_NUMA
279 return s->node[node];
280#else
281 return &s->local_node;
282#endif
283}
284
dfb4f096
CL
285static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
286{
4c93c355
CL
287#ifdef CONFIG_SMP
288 return s->cpu_slab[cpu];
289#else
290 return &s->cpu_slab;
291#endif
dfb4f096
CL
292}
293
6446faa2 294/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
295static inline int check_valid_pointer(struct kmem_cache *s,
296 struct page *page, const void *object)
297{
298 void *base;
299
a973e9dd 300 if (!object)
02cbc874
CL
301 return 1;
302
a973e9dd 303 base = page_address(page);
02cbc874
CL
304 if (object < base || object >= base + s->objects * s->size ||
305 (object - base) % s->size) {
306 return 0;
307 }
308
309 return 1;
310}
311
7656c72b
CL
312/*
313 * Slow version of get and set free pointer.
314 *
315 * This version requires touching the cache lines of kmem_cache which
316 * we avoid to do in the fast alloc free paths. There we obtain the offset
317 * from the page struct.
318 */
319static inline void *get_freepointer(struct kmem_cache *s, void *object)
320{
321 return *(void **)(object + s->offset);
322}
323
324static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
325{
326 *(void **)(object + s->offset) = fp;
327}
328
329/* Loop over all objects in a slab */
330#define for_each_object(__p, __s, __addr) \
331 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
332 __p += (__s)->size)
333
334/* Scan freelist */
335#define for_each_free_object(__p, __s, __free) \
a973e9dd 336 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
337
338/* Determine object index from a given position */
339static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
340{
341 return (p - addr) / s->size;
342}
343
41ecc55b
CL
344#ifdef CONFIG_SLUB_DEBUG
345/*
346 * Debug settings:
347 */
f0630fff
CL
348#ifdef CONFIG_SLUB_DEBUG_ON
349static int slub_debug = DEBUG_DEFAULT_FLAGS;
350#else
41ecc55b 351static int slub_debug;
f0630fff 352#endif
41ecc55b
CL
353
354static char *slub_debug_slabs;
355
81819f0f
CL
356/*
357 * Object debugging
358 */
359static void print_section(char *text, u8 *addr, unsigned int length)
360{
361 int i, offset;
362 int newline = 1;
363 char ascii[17];
364
365 ascii[16] = 0;
366
367 for (i = 0; i < length; i++) {
368 if (newline) {
24922684 369 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
370 newline = 0;
371 }
06428780 372 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
373 offset = i % 16;
374 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
375 if (offset == 15) {
06428780 376 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
377 newline = 1;
378 }
379 }
380 if (!newline) {
381 i %= 16;
382 while (i < 16) {
06428780 383 printk(KERN_CONT " ");
81819f0f
CL
384 ascii[i] = ' ';
385 i++;
386 }
06428780 387 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
388 }
389}
390
81819f0f
CL
391static struct track *get_track(struct kmem_cache *s, void *object,
392 enum track_item alloc)
393{
394 struct track *p;
395
396 if (s->offset)
397 p = object + s->offset + sizeof(void *);
398 else
399 p = object + s->inuse;
400
401 return p + alloc;
402}
403
404static void set_track(struct kmem_cache *s, void *object,
405 enum track_item alloc, void *addr)
406{
407 struct track *p;
408
409 if (s->offset)
410 p = object + s->offset + sizeof(void *);
411 else
412 p = object + s->inuse;
413
414 p += alloc;
415 if (addr) {
416 p->addr = addr;
417 p->cpu = smp_processor_id();
418 p->pid = current ? current->pid : -1;
419 p->when = jiffies;
420 } else
421 memset(p, 0, sizeof(struct track));
422}
423
81819f0f
CL
424static void init_tracking(struct kmem_cache *s, void *object)
425{
24922684
CL
426 if (!(s->flags & SLAB_STORE_USER))
427 return;
428
429 set_track(s, object, TRACK_FREE, NULL);
430 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
431}
432
433static void print_track(const char *s, struct track *t)
434{
435 if (!t->addr)
436 return;
437
24922684 438 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 439 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
440 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
441}
442
443static void print_tracking(struct kmem_cache *s, void *object)
444{
445 if (!(s->flags & SLAB_STORE_USER))
446 return;
447
448 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
449 print_track("Freed", get_track(s, object, TRACK_FREE));
450}
451
452static void print_page_info(struct page *page)
453{
454 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
455 page, page->inuse, page->freelist, page->flags);
456
457}
458
459static void slab_bug(struct kmem_cache *s, char *fmt, ...)
460{
461 va_list args;
462 char buf[100];
463
464 va_start(args, fmt);
465 vsnprintf(buf, sizeof(buf), fmt, args);
466 va_end(args);
467 printk(KERN_ERR "========================================"
468 "=====================================\n");
469 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
470 printk(KERN_ERR "----------------------------------------"
471 "-------------------------------------\n\n");
81819f0f
CL
472}
473
24922684
CL
474static void slab_fix(struct kmem_cache *s, char *fmt, ...)
475{
476 va_list args;
477 char buf[100];
478
479 va_start(args, fmt);
480 vsnprintf(buf, sizeof(buf), fmt, args);
481 va_end(args);
482 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
483}
484
485static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
486{
487 unsigned int off; /* Offset of last byte */
a973e9dd 488 u8 *addr = page_address(page);
24922684
CL
489
490 print_tracking(s, p);
491
492 print_page_info(page);
493
494 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
495 p, p - addr, get_freepointer(s, p));
496
497 if (p > addr + 16)
498 print_section("Bytes b4", p - 16, 16);
499
500 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
501
502 if (s->flags & SLAB_RED_ZONE)
503 print_section("Redzone", p + s->objsize,
504 s->inuse - s->objsize);
505
81819f0f
CL
506 if (s->offset)
507 off = s->offset + sizeof(void *);
508 else
509 off = s->inuse;
510
24922684 511 if (s->flags & SLAB_STORE_USER)
81819f0f 512 off += 2 * sizeof(struct track);
81819f0f
CL
513
514 if (off != s->size)
515 /* Beginning of the filler is the free pointer */
24922684
CL
516 print_section("Padding", p + off, s->size - off);
517
518 dump_stack();
81819f0f
CL
519}
520
521static void object_err(struct kmem_cache *s, struct page *page,
522 u8 *object, char *reason)
523{
3dc50637 524 slab_bug(s, "%s", reason);
24922684 525 print_trailer(s, page, object);
81819f0f
CL
526}
527
24922684 528static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
529{
530 va_list args;
531 char buf[100];
532
24922684
CL
533 va_start(args, fmt);
534 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 535 va_end(args);
3dc50637 536 slab_bug(s, "%s", buf);
24922684 537 print_page_info(page);
81819f0f
CL
538 dump_stack();
539}
540
541static void init_object(struct kmem_cache *s, void *object, int active)
542{
543 u8 *p = object;
544
545 if (s->flags & __OBJECT_POISON) {
546 memset(p, POISON_FREE, s->objsize - 1);
06428780 547 p[s->objsize - 1] = POISON_END;
81819f0f
CL
548 }
549
550 if (s->flags & SLAB_RED_ZONE)
551 memset(p + s->objsize,
552 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
553 s->inuse - s->objsize);
554}
555
24922684 556static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
557{
558 while (bytes) {
559 if (*start != (u8)value)
24922684 560 return start;
81819f0f
CL
561 start++;
562 bytes--;
563 }
24922684
CL
564 return NULL;
565}
566
567static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
568 void *from, void *to)
569{
570 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
571 memset(from, data, to - from);
572}
573
574static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
575 u8 *object, char *what,
06428780 576 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
577{
578 u8 *fault;
579 u8 *end;
580
581 fault = check_bytes(start, value, bytes);
582 if (!fault)
583 return 1;
584
585 end = start + bytes;
586 while (end > fault && end[-1] == value)
587 end--;
588
589 slab_bug(s, "%s overwritten", what);
590 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
591 fault, end - 1, fault[0], value);
592 print_trailer(s, page, object);
593
594 restore_bytes(s, what, value, fault, end);
595 return 0;
81819f0f
CL
596}
597
81819f0f
CL
598/*
599 * Object layout:
600 *
601 * object address
602 * Bytes of the object to be managed.
603 * If the freepointer may overlay the object then the free
604 * pointer is the first word of the object.
672bba3a 605 *
81819f0f
CL
606 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
607 * 0xa5 (POISON_END)
608 *
609 * object + s->objsize
610 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
611 * Padding is extended by another word if Redzoning is enabled and
612 * objsize == inuse.
613 *
81819f0f
CL
614 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
615 * 0xcc (RED_ACTIVE) for objects in use.
616 *
617 * object + s->inuse
672bba3a
CL
618 * Meta data starts here.
619 *
81819f0f
CL
620 * A. Free pointer (if we cannot overwrite object on free)
621 * B. Tracking data for SLAB_STORE_USER
672bba3a 622 * C. Padding to reach required alignment boundary or at mininum
6446faa2 623 * one word if debugging is on to be able to detect writes
672bba3a
CL
624 * before the word boundary.
625 *
626 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
627 *
628 * object + s->size
672bba3a 629 * Nothing is used beyond s->size.
81819f0f 630 *
672bba3a
CL
631 * If slabcaches are merged then the objsize and inuse boundaries are mostly
632 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
633 * may be used with merged slabcaches.
634 */
635
81819f0f
CL
636static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
637{
638 unsigned long off = s->inuse; /* The end of info */
639
640 if (s->offset)
641 /* Freepointer is placed after the object. */
642 off += sizeof(void *);
643
644 if (s->flags & SLAB_STORE_USER)
645 /* We also have user information there */
646 off += 2 * sizeof(struct track);
647
648 if (s->size == off)
649 return 1;
650
24922684
CL
651 return check_bytes_and_report(s, page, p, "Object padding",
652 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
653}
654
655static int slab_pad_check(struct kmem_cache *s, struct page *page)
656{
24922684
CL
657 u8 *start;
658 u8 *fault;
659 u8 *end;
660 int length;
661 int remainder;
81819f0f
CL
662
663 if (!(s->flags & SLAB_POISON))
664 return 1;
665
a973e9dd 666 start = page_address(page);
24922684 667 end = start + (PAGE_SIZE << s->order);
81819f0f 668 length = s->objects * s->size;
24922684 669 remainder = end - (start + length);
81819f0f
CL
670 if (!remainder)
671 return 1;
672
24922684
CL
673 fault = check_bytes(start + length, POISON_INUSE, remainder);
674 if (!fault)
675 return 1;
676 while (end > fault && end[-1] == POISON_INUSE)
677 end--;
678
679 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
680 print_section("Padding", start, length);
681
682 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
683 return 0;
81819f0f
CL
684}
685
686static int check_object(struct kmem_cache *s, struct page *page,
687 void *object, int active)
688{
689 u8 *p = object;
690 u8 *endobject = object + s->objsize;
691
692 if (s->flags & SLAB_RED_ZONE) {
693 unsigned int red =
694 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
695
24922684
CL
696 if (!check_bytes_and_report(s, page, object, "Redzone",
697 endobject, red, s->inuse - s->objsize))
81819f0f 698 return 0;
81819f0f 699 } else {
3adbefee
IM
700 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
701 check_bytes_and_report(s, page, p, "Alignment padding",
702 endobject, POISON_INUSE, s->inuse - s->objsize);
703 }
81819f0f
CL
704 }
705
706 if (s->flags & SLAB_POISON) {
707 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
708 (!check_bytes_and_report(s, page, p, "Poison", p,
709 POISON_FREE, s->objsize - 1) ||
710 !check_bytes_and_report(s, page, p, "Poison",
06428780 711 p + s->objsize - 1, POISON_END, 1)))
81819f0f 712 return 0;
81819f0f
CL
713 /*
714 * check_pad_bytes cleans up on its own.
715 */
716 check_pad_bytes(s, page, p);
717 }
718
719 if (!s->offset && active)
720 /*
721 * Object and freepointer overlap. Cannot check
722 * freepointer while object is allocated.
723 */
724 return 1;
725
726 /* Check free pointer validity */
727 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
728 object_err(s, page, p, "Freepointer corrupt");
729 /*
730 * No choice but to zap it and thus loose the remainder
731 * of the free objects in this slab. May cause
672bba3a 732 * another error because the object count is now wrong.
81819f0f 733 */
a973e9dd 734 set_freepointer(s, p, NULL);
81819f0f
CL
735 return 0;
736 }
737 return 1;
738}
739
740static int check_slab(struct kmem_cache *s, struct page *page)
741{
742 VM_BUG_ON(!irqs_disabled());
743
744 if (!PageSlab(page)) {
24922684 745 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
746 return 0;
747 }
81819f0f 748 if (page->inuse > s->objects) {
24922684
CL
749 slab_err(s, page, "inuse %u > max %u",
750 s->name, page->inuse, s->objects);
81819f0f
CL
751 return 0;
752 }
753 /* Slab_pad_check fixes things up after itself */
754 slab_pad_check(s, page);
755 return 1;
756}
757
758/*
672bba3a
CL
759 * Determine if a certain object on a page is on the freelist. Must hold the
760 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
761 */
762static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
763{
764 int nr = 0;
765 void *fp = page->freelist;
766 void *object = NULL;
767
a973e9dd 768 while (fp && nr <= s->objects) {
81819f0f
CL
769 if (fp == search)
770 return 1;
771 if (!check_valid_pointer(s, page, fp)) {
772 if (object) {
773 object_err(s, page, object,
774 "Freechain corrupt");
a973e9dd 775 set_freepointer(s, object, NULL);
81819f0f
CL
776 break;
777 } else {
24922684 778 slab_err(s, page, "Freepointer corrupt");
a973e9dd 779 page->freelist = NULL;
81819f0f 780 page->inuse = s->objects;
24922684 781 slab_fix(s, "Freelist cleared");
81819f0f
CL
782 return 0;
783 }
784 break;
785 }
786 object = fp;
787 fp = get_freepointer(s, object);
788 nr++;
789 }
790
791 if (page->inuse != s->objects - nr) {
70d71228 792 slab_err(s, page, "Wrong object count. Counter is %d but "
24922684 793 "counted were %d", page->inuse, s->objects - nr);
81819f0f 794 page->inuse = s->objects - nr;
24922684 795 slab_fix(s, "Object count adjusted.");
81819f0f
CL
796 }
797 return search == NULL;
798}
799
3ec09742
CL
800static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
801{
802 if (s->flags & SLAB_TRACE) {
803 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
804 s->name,
805 alloc ? "alloc" : "free",
806 object, page->inuse,
807 page->freelist);
808
809 if (!alloc)
810 print_section("Object", (void *)object, s->objsize);
811
812 dump_stack();
813 }
814}
815
643b1138 816/*
672bba3a 817 * Tracking of fully allocated slabs for debugging purposes.
643b1138 818 */
e95eed57 819static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 820{
643b1138
CL
821 spin_lock(&n->list_lock);
822 list_add(&page->lru, &n->full);
823 spin_unlock(&n->list_lock);
824}
825
826static void remove_full(struct kmem_cache *s, struct page *page)
827{
828 struct kmem_cache_node *n;
829
830 if (!(s->flags & SLAB_STORE_USER))
831 return;
832
833 n = get_node(s, page_to_nid(page));
834
835 spin_lock(&n->list_lock);
836 list_del(&page->lru);
837 spin_unlock(&n->list_lock);
838}
839
0f389ec6
CL
840/* Tracking of the number of slabs for debugging purposes */
841static inline unsigned long slabs_node(struct kmem_cache *s, int node)
842{
843 struct kmem_cache_node *n = get_node(s, node);
844
845 return atomic_long_read(&n->nr_slabs);
846}
847
848static inline void inc_slabs_node(struct kmem_cache *s, int node)
849{
850 struct kmem_cache_node *n = get_node(s, node);
851
852 /*
853 * May be called early in order to allocate a slab for the
854 * kmem_cache_node structure. Solve the chicken-egg
855 * dilemma by deferring the increment of the count during
856 * bootstrap (see early_kmem_cache_node_alloc).
857 */
858 if (!NUMA_BUILD || n)
859 atomic_long_inc(&n->nr_slabs);
860}
861static inline void dec_slabs_node(struct kmem_cache *s, int node)
862{
863 struct kmem_cache_node *n = get_node(s, node);
864
865 atomic_long_dec(&n->nr_slabs);
866}
867
868/* Object debug checks for alloc/free paths */
3ec09742
CL
869static void setup_object_debug(struct kmem_cache *s, struct page *page,
870 void *object)
871{
872 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
873 return;
874
875 init_object(s, object, 0);
876 init_tracking(s, object);
877}
878
879static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
880 void *object, void *addr)
81819f0f
CL
881{
882 if (!check_slab(s, page))
883 goto bad;
884
d692ef6d 885 if (!on_freelist(s, page, object)) {
24922684 886 object_err(s, page, object, "Object already allocated");
70d71228 887 goto bad;
81819f0f
CL
888 }
889
890 if (!check_valid_pointer(s, page, object)) {
891 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 892 goto bad;
81819f0f
CL
893 }
894
d692ef6d 895 if (!check_object(s, page, object, 0))
81819f0f 896 goto bad;
81819f0f 897
3ec09742
CL
898 /* Success perform special debug activities for allocs */
899 if (s->flags & SLAB_STORE_USER)
900 set_track(s, object, TRACK_ALLOC, addr);
901 trace(s, page, object, 1);
902 init_object(s, object, 1);
81819f0f 903 return 1;
3ec09742 904
81819f0f
CL
905bad:
906 if (PageSlab(page)) {
907 /*
908 * If this is a slab page then lets do the best we can
909 * to avoid issues in the future. Marking all objects
672bba3a 910 * as used avoids touching the remaining objects.
81819f0f 911 */
24922684 912 slab_fix(s, "Marking all objects used");
81819f0f 913 page->inuse = s->objects;
a973e9dd 914 page->freelist = NULL;
81819f0f
CL
915 }
916 return 0;
917}
918
3ec09742
CL
919static int free_debug_processing(struct kmem_cache *s, struct page *page,
920 void *object, void *addr)
81819f0f
CL
921{
922 if (!check_slab(s, page))
923 goto fail;
924
925 if (!check_valid_pointer(s, page, object)) {
70d71228 926 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
927 goto fail;
928 }
929
930 if (on_freelist(s, page, object)) {
24922684 931 object_err(s, page, object, "Object already free");
81819f0f
CL
932 goto fail;
933 }
934
935 if (!check_object(s, page, object, 1))
936 return 0;
937
938 if (unlikely(s != page->slab)) {
3adbefee 939 if (!PageSlab(page)) {
70d71228
CL
940 slab_err(s, page, "Attempt to free object(0x%p) "
941 "outside of slab", object);
3adbefee 942 } else if (!page->slab) {
81819f0f 943 printk(KERN_ERR
70d71228 944 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 945 object);
70d71228 946 dump_stack();
06428780 947 } else
24922684
CL
948 object_err(s, page, object,
949 "page slab pointer corrupt.");
81819f0f
CL
950 goto fail;
951 }
3ec09742
CL
952
953 /* Special debug activities for freeing objects */
a973e9dd 954 if (!SlabFrozen(page) && !page->freelist)
3ec09742
CL
955 remove_full(s, page);
956 if (s->flags & SLAB_STORE_USER)
957 set_track(s, object, TRACK_FREE, addr);
958 trace(s, page, object, 0);
959 init_object(s, object, 0);
81819f0f 960 return 1;
3ec09742 961
81819f0f 962fail:
24922684 963 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
964 return 0;
965}
966
41ecc55b
CL
967static int __init setup_slub_debug(char *str)
968{
f0630fff
CL
969 slub_debug = DEBUG_DEFAULT_FLAGS;
970 if (*str++ != '=' || !*str)
971 /*
972 * No options specified. Switch on full debugging.
973 */
974 goto out;
975
976 if (*str == ',')
977 /*
978 * No options but restriction on slabs. This means full
979 * debugging for slabs matching a pattern.
980 */
981 goto check_slabs;
982
983 slub_debug = 0;
984 if (*str == '-')
985 /*
986 * Switch off all debugging measures.
987 */
988 goto out;
989
990 /*
991 * Determine which debug features should be switched on
992 */
06428780 993 for (; *str && *str != ','; str++) {
f0630fff
CL
994 switch (tolower(*str)) {
995 case 'f':
996 slub_debug |= SLAB_DEBUG_FREE;
997 break;
998 case 'z':
999 slub_debug |= SLAB_RED_ZONE;
1000 break;
1001 case 'p':
1002 slub_debug |= SLAB_POISON;
1003 break;
1004 case 'u':
1005 slub_debug |= SLAB_STORE_USER;
1006 break;
1007 case 't':
1008 slub_debug |= SLAB_TRACE;
1009 break;
1010 default:
1011 printk(KERN_ERR "slub_debug option '%c' "
06428780 1012 "unknown. skipped\n", *str);
f0630fff 1013 }
41ecc55b
CL
1014 }
1015
f0630fff 1016check_slabs:
41ecc55b
CL
1017 if (*str == ',')
1018 slub_debug_slabs = str + 1;
f0630fff 1019out:
41ecc55b
CL
1020 return 1;
1021}
1022
1023__setup("slub_debug", setup_slub_debug);
1024
ba0268a8
CL
1025static unsigned long kmem_cache_flags(unsigned long objsize,
1026 unsigned long flags, const char *name,
4ba9b9d0 1027 void (*ctor)(struct kmem_cache *, void *))
41ecc55b
CL
1028{
1029 /*
e153362a 1030 * Enable debugging if selected on the kernel commandline.
41ecc55b 1031 */
e153362a
CL
1032 if (slub_debug && (!slub_debug_slabs ||
1033 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1034 flags |= slub_debug;
ba0268a8
CL
1035
1036 return flags;
41ecc55b
CL
1037}
1038#else
3ec09742
CL
1039static inline void setup_object_debug(struct kmem_cache *s,
1040 struct page *page, void *object) {}
41ecc55b 1041
3ec09742
CL
1042static inline int alloc_debug_processing(struct kmem_cache *s,
1043 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1044
3ec09742
CL
1045static inline int free_debug_processing(struct kmem_cache *s,
1046 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1047
41ecc55b
CL
1048static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1049 { return 1; }
1050static inline int check_object(struct kmem_cache *s, struct page *page,
1051 void *object, int active) { return 1; }
3ec09742 1052static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1053static inline unsigned long kmem_cache_flags(unsigned long objsize,
1054 unsigned long flags, const char *name,
4ba9b9d0 1055 void (*ctor)(struct kmem_cache *, void *))
ba0268a8
CL
1056{
1057 return flags;
1058}
41ecc55b 1059#define slub_debug 0
0f389ec6
CL
1060
1061static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1062 { return 0; }
1063static inline void inc_slabs_node(struct kmem_cache *s, int node) {}
1064static inline void dec_slabs_node(struct kmem_cache *s, int node) {}
41ecc55b 1065#endif
81819f0f
CL
1066/*
1067 * Slab allocation and freeing
1068 */
1069static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1070{
06428780 1071 struct page *page;
81819f0f
CL
1072 int pages = 1 << s->order;
1073
b7a49f0d 1074 flags |= s->allocflags;
e12ba74d 1075
81819f0f
CL
1076 if (node == -1)
1077 page = alloc_pages(flags, s->order);
1078 else
1079 page = alloc_pages_node(node, flags, s->order);
1080
1081 if (!page)
1082 return NULL;
1083
1084 mod_zone_page_state(page_zone(page),
1085 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1086 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1087 pages);
1088
1089 return page;
1090}
1091
1092static void setup_object(struct kmem_cache *s, struct page *page,
1093 void *object)
1094{
3ec09742 1095 setup_object_debug(s, page, object);
4f104934 1096 if (unlikely(s->ctor))
4ba9b9d0 1097 s->ctor(s, object);
81819f0f
CL
1098}
1099
1100static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1101{
1102 struct page *page;
81819f0f 1103 void *start;
81819f0f
CL
1104 void *last;
1105 void *p;
1106
6cb06229 1107 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1108
6cb06229
CL
1109 page = allocate_slab(s,
1110 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1111 if (!page)
1112 goto out;
1113
0f389ec6 1114 inc_slabs_node(s, page_to_nid(page));
81819f0f
CL
1115 page->slab = s;
1116 page->flags |= 1 << PG_slab;
1117 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1118 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1119 SetSlabDebug(page);
81819f0f
CL
1120
1121 start = page_address(page);
81819f0f
CL
1122
1123 if (unlikely(s->flags & SLAB_POISON))
1124 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1125
1126 last = start;
7656c72b 1127 for_each_object(p, s, start) {
81819f0f
CL
1128 setup_object(s, page, last);
1129 set_freepointer(s, last, p);
1130 last = p;
1131 }
1132 setup_object(s, page, last);
a973e9dd 1133 set_freepointer(s, last, NULL);
81819f0f
CL
1134
1135 page->freelist = start;
1136 page->inuse = 0;
1137out:
81819f0f
CL
1138 return page;
1139}
1140
1141static void __free_slab(struct kmem_cache *s, struct page *page)
1142{
1143 int pages = 1 << s->order;
1144
c59def9f 1145 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1146 void *p;
1147
1148 slab_pad_check(s, page);
a973e9dd 1149 for_each_object(p, s, page_address(page))
81819f0f 1150 check_object(s, page, p, 0);
2208b764 1151 ClearSlabDebug(page);
81819f0f
CL
1152 }
1153
1154 mod_zone_page_state(page_zone(page),
1155 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1156 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1157 -pages);
81819f0f 1158
49bd5221
CL
1159 __ClearPageSlab(page);
1160 reset_page_mapcount(page);
81819f0f
CL
1161 __free_pages(page, s->order);
1162}
1163
1164static void rcu_free_slab(struct rcu_head *h)
1165{
1166 struct page *page;
1167
1168 page = container_of((struct list_head *)h, struct page, lru);
1169 __free_slab(page->slab, page);
1170}
1171
1172static void free_slab(struct kmem_cache *s, struct page *page)
1173{
1174 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1175 /*
1176 * RCU free overloads the RCU head over the LRU
1177 */
1178 struct rcu_head *head = (void *)&page->lru;
1179
1180 call_rcu(head, rcu_free_slab);
1181 } else
1182 __free_slab(s, page);
1183}
1184
1185static void discard_slab(struct kmem_cache *s, struct page *page)
1186{
0f389ec6 1187 dec_slabs_node(s, page_to_nid(page));
81819f0f
CL
1188 free_slab(s, page);
1189}
1190
1191/*
1192 * Per slab locking using the pagelock
1193 */
1194static __always_inline void slab_lock(struct page *page)
1195{
1196 bit_spin_lock(PG_locked, &page->flags);
1197}
1198
1199static __always_inline void slab_unlock(struct page *page)
1200{
a76d3546 1201 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1202}
1203
1204static __always_inline int slab_trylock(struct page *page)
1205{
1206 int rc = 1;
1207
1208 rc = bit_spin_trylock(PG_locked, &page->flags);
1209 return rc;
1210}
1211
1212/*
1213 * Management of partially allocated slabs
1214 */
7c2e132c
CL
1215static void add_partial(struct kmem_cache_node *n,
1216 struct page *page, int tail)
81819f0f 1217{
e95eed57
CL
1218 spin_lock(&n->list_lock);
1219 n->nr_partial++;
7c2e132c
CL
1220 if (tail)
1221 list_add_tail(&page->lru, &n->partial);
1222 else
1223 list_add(&page->lru, &n->partial);
81819f0f
CL
1224 spin_unlock(&n->list_lock);
1225}
1226
1227static void remove_partial(struct kmem_cache *s,
1228 struct page *page)
1229{
1230 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1231
1232 spin_lock(&n->list_lock);
1233 list_del(&page->lru);
1234 n->nr_partial--;
1235 spin_unlock(&n->list_lock);
1236}
1237
1238/*
672bba3a 1239 * Lock slab and remove from the partial list.
81819f0f 1240 *
672bba3a 1241 * Must hold list_lock.
81819f0f 1242 */
4b6f0750 1243static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1244{
1245 if (slab_trylock(page)) {
1246 list_del(&page->lru);
1247 n->nr_partial--;
4b6f0750 1248 SetSlabFrozen(page);
81819f0f
CL
1249 return 1;
1250 }
1251 return 0;
1252}
1253
1254/*
672bba3a 1255 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1256 */
1257static struct page *get_partial_node(struct kmem_cache_node *n)
1258{
1259 struct page *page;
1260
1261 /*
1262 * Racy check. If we mistakenly see no partial slabs then we
1263 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1264 * partial slab and there is none available then get_partials()
1265 * will return NULL.
81819f0f
CL
1266 */
1267 if (!n || !n->nr_partial)
1268 return NULL;
1269
1270 spin_lock(&n->list_lock);
1271 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1272 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1273 goto out;
1274 page = NULL;
1275out:
1276 spin_unlock(&n->list_lock);
1277 return page;
1278}
1279
1280/*
672bba3a 1281 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1282 */
1283static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1284{
1285#ifdef CONFIG_NUMA
1286 struct zonelist *zonelist;
1287 struct zone **z;
1288 struct page *page;
1289
1290 /*
672bba3a
CL
1291 * The defrag ratio allows a configuration of the tradeoffs between
1292 * inter node defragmentation and node local allocations. A lower
1293 * defrag_ratio increases the tendency to do local allocations
1294 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1295 *
672bba3a
CL
1296 * If the defrag_ratio is set to 0 then kmalloc() always
1297 * returns node local objects. If the ratio is higher then kmalloc()
1298 * may return off node objects because partial slabs are obtained
1299 * from other nodes and filled up.
81819f0f 1300 *
6446faa2 1301 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1302 * defrag_ratio = 1000) then every (well almost) allocation will
1303 * first attempt to defrag slab caches on other nodes. This means
1304 * scanning over all nodes to look for partial slabs which may be
1305 * expensive if we do it every time we are trying to find a slab
1306 * with available objects.
81819f0f 1307 */
9824601e
CL
1308 if (!s->remote_node_defrag_ratio ||
1309 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1310 return NULL;
1311
3adbefee
IM
1312 zonelist = &NODE_DATA(
1313 slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
81819f0f
CL
1314 for (z = zonelist->zones; *z; z++) {
1315 struct kmem_cache_node *n;
1316
1317 n = get_node(s, zone_to_nid(*z));
1318
1319 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1320 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1321 page = get_partial_node(n);
1322 if (page)
1323 return page;
1324 }
1325 }
1326#endif
1327 return NULL;
1328}
1329
1330/*
1331 * Get a partial page, lock it and return it.
1332 */
1333static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1334{
1335 struct page *page;
1336 int searchnode = (node == -1) ? numa_node_id() : node;
1337
1338 page = get_partial_node(get_node(s, searchnode));
1339 if (page || (flags & __GFP_THISNODE))
1340 return page;
1341
1342 return get_any_partial(s, flags);
1343}
1344
1345/*
1346 * Move a page back to the lists.
1347 *
1348 * Must be called with the slab lock held.
1349 *
1350 * On exit the slab lock will have been dropped.
1351 */
7c2e132c 1352static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1353{
e95eed57 1354 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1355 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1356
4b6f0750 1357 ClearSlabFrozen(page);
81819f0f 1358 if (page->inuse) {
e95eed57 1359
a973e9dd 1360 if (page->freelist) {
7c2e132c 1361 add_partial(n, page, tail);
8ff12cfc
CL
1362 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1363 } else {
1364 stat(c, DEACTIVATE_FULL);
1365 if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1366 add_full(n, page);
1367 }
81819f0f
CL
1368 slab_unlock(page);
1369 } else {
8ff12cfc 1370 stat(c, DEACTIVATE_EMPTY);
e95eed57
CL
1371 if (n->nr_partial < MIN_PARTIAL) {
1372 /*
672bba3a
CL
1373 * Adding an empty slab to the partial slabs in order
1374 * to avoid page allocator overhead. This slab needs
1375 * to come after the other slabs with objects in
6446faa2
CL
1376 * so that the others get filled first. That way the
1377 * size of the partial list stays small.
1378 *
1379 * kmem_cache_shrink can reclaim any empty slabs from the
1380 * partial list.
e95eed57 1381 */
7c2e132c 1382 add_partial(n, page, 1);
e95eed57
CL
1383 slab_unlock(page);
1384 } else {
1385 slab_unlock(page);
8ff12cfc 1386 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1387 discard_slab(s, page);
1388 }
81819f0f
CL
1389 }
1390}
1391
1392/*
1393 * Remove the cpu slab
1394 */
dfb4f096 1395static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1396{
dfb4f096 1397 struct page *page = c->page;
7c2e132c 1398 int tail = 1;
8ff12cfc 1399
b773ad73 1400 if (page->freelist)
8ff12cfc 1401 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1402 /*
6446faa2 1403 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1404 * because both freelists are empty. So this is unlikely
1405 * to occur.
1406 */
a973e9dd 1407 while (unlikely(c->freelist)) {
894b8788
CL
1408 void **object;
1409
7c2e132c
CL
1410 tail = 0; /* Hot objects. Put the slab first */
1411
894b8788 1412 /* Retrieve object from cpu_freelist */
dfb4f096 1413 object = c->freelist;
b3fba8da 1414 c->freelist = c->freelist[c->offset];
894b8788
CL
1415
1416 /* And put onto the regular freelist */
b3fba8da 1417 object[c->offset] = page->freelist;
894b8788
CL
1418 page->freelist = object;
1419 page->inuse--;
1420 }
dfb4f096 1421 c->page = NULL;
7c2e132c 1422 unfreeze_slab(s, page, tail);
81819f0f
CL
1423}
1424
dfb4f096 1425static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1426{
8ff12cfc 1427 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1428 slab_lock(c->page);
1429 deactivate_slab(s, c);
81819f0f
CL
1430}
1431
1432/*
1433 * Flush cpu slab.
6446faa2 1434 *
81819f0f
CL
1435 * Called from IPI handler with interrupts disabled.
1436 */
0c710013 1437static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1438{
dfb4f096 1439 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1440
dfb4f096
CL
1441 if (likely(c && c->page))
1442 flush_slab(s, c);
81819f0f
CL
1443}
1444
1445static void flush_cpu_slab(void *d)
1446{
1447 struct kmem_cache *s = d;
81819f0f 1448
dfb4f096 1449 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1450}
1451
1452static void flush_all(struct kmem_cache *s)
1453{
1454#ifdef CONFIG_SMP
1455 on_each_cpu(flush_cpu_slab, s, 1, 1);
1456#else
1457 unsigned long flags;
1458
1459 local_irq_save(flags);
1460 flush_cpu_slab(s);
1461 local_irq_restore(flags);
1462#endif
1463}
1464
dfb4f096
CL
1465/*
1466 * Check if the objects in a per cpu structure fit numa
1467 * locality expectations.
1468 */
1469static inline int node_match(struct kmem_cache_cpu *c, int node)
1470{
1471#ifdef CONFIG_NUMA
1472 if (node != -1 && c->node != node)
1473 return 0;
1474#endif
1475 return 1;
1476}
1477
81819f0f 1478/*
894b8788
CL
1479 * Slow path. The lockless freelist is empty or we need to perform
1480 * debugging duties.
1481 *
1482 * Interrupts are disabled.
81819f0f 1483 *
894b8788
CL
1484 * Processing is still very fast if new objects have been freed to the
1485 * regular freelist. In that case we simply take over the regular freelist
1486 * as the lockless freelist and zap the regular freelist.
81819f0f 1487 *
894b8788
CL
1488 * If that is not working then we fall back to the partial lists. We take the
1489 * first element of the freelist as the object to allocate now and move the
1490 * rest of the freelist to the lockless freelist.
81819f0f 1491 *
894b8788 1492 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1493 * we need to allocate a new slab. This is the slowest path since it involves
1494 * a call to the page allocator and the setup of a new slab.
81819f0f 1495 */
894b8788 1496static void *__slab_alloc(struct kmem_cache *s,
dfb4f096 1497 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
81819f0f 1498{
81819f0f 1499 void **object;
dfb4f096 1500 struct page *new;
81819f0f 1501
e72e9c23
LT
1502 /* We handle __GFP_ZERO in the caller */
1503 gfpflags &= ~__GFP_ZERO;
1504
dfb4f096 1505 if (!c->page)
81819f0f
CL
1506 goto new_slab;
1507
dfb4f096
CL
1508 slab_lock(c->page);
1509 if (unlikely(!node_match(c, node)))
81819f0f 1510 goto another_slab;
6446faa2 1511
8ff12cfc 1512 stat(c, ALLOC_REFILL);
6446faa2 1513
894b8788 1514load_freelist:
dfb4f096 1515 object = c->page->freelist;
a973e9dd 1516 if (unlikely(!object))
81819f0f 1517 goto another_slab;
dfb4f096 1518 if (unlikely(SlabDebug(c->page)))
81819f0f
CL
1519 goto debug;
1520
b3fba8da 1521 c->freelist = object[c->offset];
dfb4f096 1522 c->page->inuse = s->objects;
a973e9dd 1523 c->page->freelist = NULL;
dfb4f096 1524 c->node = page_to_nid(c->page);
1f84260c 1525unlock_out:
dfb4f096 1526 slab_unlock(c->page);
8ff12cfc 1527 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1528 return object;
1529
1530another_slab:
dfb4f096 1531 deactivate_slab(s, c);
81819f0f
CL
1532
1533new_slab:
dfb4f096
CL
1534 new = get_partial(s, gfpflags, node);
1535 if (new) {
1536 c->page = new;
8ff12cfc 1537 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1538 goto load_freelist;
81819f0f
CL
1539 }
1540
b811c202
CL
1541 if (gfpflags & __GFP_WAIT)
1542 local_irq_enable();
1543
dfb4f096 1544 new = new_slab(s, gfpflags, node);
b811c202
CL
1545
1546 if (gfpflags & __GFP_WAIT)
1547 local_irq_disable();
1548
dfb4f096
CL
1549 if (new) {
1550 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1551 stat(c, ALLOC_SLAB);
05aa3450 1552 if (c->page)
dfb4f096 1553 flush_slab(s, c);
dfb4f096
CL
1554 slab_lock(new);
1555 SetSlabFrozen(new);
1556 c->page = new;
4b6f0750 1557 goto load_freelist;
81819f0f 1558 }
00e962c5 1559
71c7a06f
CL
1560 /*
1561 * No memory available.
1562 *
1563 * If the slab uses higher order allocs but the object is
1564 * smaller than a page size then we can fallback in emergencies
1565 * to the page allocator via kmalloc_large. The page allocator may
1566 * have failed to obtain a higher order page and we can try to
1567 * allocate a single page if the object fits into a single page.
1568 * That is only possible if certain conditions are met that are being
1569 * checked when a slab is created.
1570 */
caeab084
CL
1571 if (!(gfpflags & __GFP_NORETRY) &&
1572 (s->flags & __PAGE_ALLOC_FALLBACK)) {
1573 if (gfpflags & __GFP_WAIT)
1574 local_irq_enable();
1575 object = kmalloc_large(s->objsize, gfpflags);
1576 if (gfpflags & __GFP_WAIT)
1577 local_irq_disable();
1578 return object;
1579 }
71c7a06f 1580 return NULL;
81819f0f 1581debug:
dfb4f096 1582 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1583 goto another_slab;
894b8788 1584
dfb4f096 1585 c->page->inuse++;
b3fba8da 1586 c->page->freelist = object[c->offset];
ee3c72a1 1587 c->node = -1;
1f84260c 1588 goto unlock_out;
894b8788
CL
1589}
1590
1591/*
1592 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1593 * have the fastpath folded into their functions. So no function call
1594 * overhead for requests that can be satisfied on the fastpath.
1595 *
1596 * The fastpath works by first checking if the lockless freelist can be used.
1597 * If not then __slab_alloc is called for slow processing.
1598 *
1599 * Otherwise we can simply pick the next object from the lockless free list.
1600 */
06428780 1601static __always_inline void *slab_alloc(struct kmem_cache *s,
ce15fea8 1602 gfp_t gfpflags, int node, void *addr)
894b8788 1603{
894b8788 1604 void **object;
dfb4f096 1605 struct kmem_cache_cpu *c;
1f84260c
CL
1606 unsigned long flags;
1607
894b8788 1608 local_irq_save(flags);
dfb4f096 1609 c = get_cpu_slab(s, smp_processor_id());
a973e9dd 1610 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1611
dfb4f096 1612 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1613
1614 else {
dfb4f096 1615 object = c->freelist;
b3fba8da 1616 c->freelist = object[c->offset];
8ff12cfc 1617 stat(c, ALLOC_FASTPATH);
894b8788
CL
1618 }
1619 local_irq_restore(flags);
d07dbea4
CL
1620
1621 if (unlikely((gfpflags & __GFP_ZERO) && object))
42a9fdbb 1622 memset(object, 0, c->objsize);
d07dbea4 1623
894b8788 1624 return object;
81819f0f
CL
1625}
1626
1627void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1628{
ce15fea8 1629 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1630}
1631EXPORT_SYMBOL(kmem_cache_alloc);
1632
1633#ifdef CONFIG_NUMA
1634void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1635{
ce15fea8 1636 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1637}
1638EXPORT_SYMBOL(kmem_cache_alloc_node);
1639#endif
1640
1641/*
894b8788
CL
1642 * Slow patch handling. This may still be called frequently since objects
1643 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1644 *
894b8788
CL
1645 * So we still attempt to reduce cache line usage. Just take the slab
1646 * lock and free the item. If there is no additional partial page
1647 * handling required then we can return immediately.
81819f0f 1648 */
894b8788 1649static void __slab_free(struct kmem_cache *s, struct page *page,
b3fba8da 1650 void *x, void *addr, unsigned int offset)
81819f0f
CL
1651{
1652 void *prior;
1653 void **object = (void *)x;
8ff12cfc 1654 struct kmem_cache_cpu *c;
81819f0f 1655
8ff12cfc
CL
1656 c = get_cpu_slab(s, raw_smp_processor_id());
1657 stat(c, FREE_SLOWPATH);
81819f0f
CL
1658 slab_lock(page);
1659
35e5d7ee 1660 if (unlikely(SlabDebug(page)))
81819f0f 1661 goto debug;
6446faa2 1662
81819f0f 1663checks_ok:
b3fba8da 1664 prior = object[offset] = page->freelist;
81819f0f
CL
1665 page->freelist = object;
1666 page->inuse--;
1667
8ff12cfc
CL
1668 if (unlikely(SlabFrozen(page))) {
1669 stat(c, FREE_FROZEN);
81819f0f 1670 goto out_unlock;
8ff12cfc 1671 }
81819f0f
CL
1672
1673 if (unlikely(!page->inuse))
1674 goto slab_empty;
1675
1676 /*
6446faa2 1677 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1678 * then add it.
1679 */
a973e9dd 1680 if (unlikely(!prior)) {
7c2e132c 1681 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1682 stat(c, FREE_ADD_PARTIAL);
1683 }
81819f0f
CL
1684
1685out_unlock:
1686 slab_unlock(page);
81819f0f
CL
1687 return;
1688
1689slab_empty:
a973e9dd 1690 if (prior) {
81819f0f 1691 /*
672bba3a 1692 * Slab still on the partial list.
81819f0f
CL
1693 */
1694 remove_partial(s, page);
8ff12cfc
CL
1695 stat(c, FREE_REMOVE_PARTIAL);
1696 }
81819f0f 1697 slab_unlock(page);
8ff12cfc 1698 stat(c, FREE_SLAB);
81819f0f 1699 discard_slab(s, page);
81819f0f
CL
1700 return;
1701
1702debug:
3ec09742 1703 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1704 goto out_unlock;
77c5e2d0 1705 goto checks_ok;
81819f0f
CL
1706}
1707
894b8788
CL
1708/*
1709 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1710 * can perform fastpath freeing without additional function calls.
1711 *
1712 * The fastpath is only possible if we are freeing to the current cpu slab
1713 * of this processor. This typically the case if we have just allocated
1714 * the item before.
1715 *
1716 * If fastpath is not possible then fall back to __slab_free where we deal
1717 * with all sorts of special processing.
1718 */
06428780 1719static __always_inline void slab_free(struct kmem_cache *s,
894b8788
CL
1720 struct page *page, void *x, void *addr)
1721{
1722 void **object = (void *)x;
dfb4f096 1723 struct kmem_cache_cpu *c;
1f84260c
CL
1724 unsigned long flags;
1725
894b8788 1726 local_irq_save(flags);
dfb4f096 1727 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1728 debug_check_no_locks_freed(object, c->objsize);
ee3c72a1 1729 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1730 object[c->offset] = c->freelist;
dfb4f096 1731 c->freelist = object;
8ff12cfc 1732 stat(c, FREE_FASTPATH);
894b8788 1733 } else
b3fba8da 1734 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1735
1736 local_irq_restore(flags);
1737}
1738
81819f0f
CL
1739void kmem_cache_free(struct kmem_cache *s, void *x)
1740{
77c5e2d0 1741 struct page *page;
81819f0f 1742
b49af68f 1743 page = virt_to_head_page(x);
81819f0f 1744
77c5e2d0 1745 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1746}
1747EXPORT_SYMBOL(kmem_cache_free);
1748
1749/* Figure out on which slab object the object resides */
1750static struct page *get_object_page(const void *x)
1751{
b49af68f 1752 struct page *page = virt_to_head_page(x);
81819f0f
CL
1753
1754 if (!PageSlab(page))
1755 return NULL;
1756
1757 return page;
1758}
1759
1760/*
672bba3a
CL
1761 * Object placement in a slab is made very easy because we always start at
1762 * offset 0. If we tune the size of the object to the alignment then we can
1763 * get the required alignment by putting one properly sized object after
1764 * another.
81819f0f
CL
1765 *
1766 * Notice that the allocation order determines the sizes of the per cpu
1767 * caches. Each processor has always one slab available for allocations.
1768 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1769 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1770 * locking overhead.
81819f0f
CL
1771 */
1772
1773/*
1774 * Mininum / Maximum order of slab pages. This influences locking overhead
1775 * and slab fragmentation. A higher order reduces the number of partial slabs
1776 * and increases the number of allocations possible without having to
1777 * take the list_lock.
1778 */
1779static int slub_min_order;
1780static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1781static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1782
1783/*
1784 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1785 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1786 */
1787static int slub_nomerge;
1788
81819f0f
CL
1789/*
1790 * Calculate the order of allocation given an slab object size.
1791 *
672bba3a
CL
1792 * The order of allocation has significant impact on performance and other
1793 * system components. Generally order 0 allocations should be preferred since
1794 * order 0 does not cause fragmentation in the page allocator. Larger objects
1795 * be problematic to put into order 0 slabs because there may be too much
1796 * unused space left. We go to a higher order if more than 1/8th of the slab
1797 * would be wasted.
1798 *
1799 * In order to reach satisfactory performance we must ensure that a minimum
1800 * number of objects is in one slab. Otherwise we may generate too much
1801 * activity on the partial lists which requires taking the list_lock. This is
1802 * less a concern for large slabs though which are rarely used.
81819f0f 1803 *
672bba3a
CL
1804 * slub_max_order specifies the order where we begin to stop considering the
1805 * number of objects in a slab as critical. If we reach slub_max_order then
1806 * we try to keep the page order as low as possible. So we accept more waste
1807 * of space in favor of a small page order.
81819f0f 1808 *
672bba3a
CL
1809 * Higher order allocations also allow the placement of more objects in a
1810 * slab and thereby reduce object handling overhead. If the user has
1811 * requested a higher mininum order then we start with that one instead of
1812 * the smallest order which will fit the object.
81819f0f 1813 */
5e6d444e
CL
1814static inline int slab_order(int size, int min_objects,
1815 int max_order, int fract_leftover)
81819f0f
CL
1816{
1817 int order;
1818 int rem;
6300ea75 1819 int min_order = slub_min_order;
81819f0f 1820
6300ea75 1821 for (order = max(min_order,
5e6d444e
CL
1822 fls(min_objects * size - 1) - PAGE_SHIFT);
1823 order <= max_order; order++) {
81819f0f 1824
5e6d444e 1825 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1826
5e6d444e 1827 if (slab_size < min_objects * size)
81819f0f
CL
1828 continue;
1829
1830 rem = slab_size % size;
1831
5e6d444e 1832 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1833 break;
1834
1835 }
672bba3a 1836
81819f0f
CL
1837 return order;
1838}
1839
5e6d444e
CL
1840static inline int calculate_order(int size)
1841{
1842 int order;
1843 int min_objects;
1844 int fraction;
1845
1846 /*
1847 * Attempt to find best configuration for a slab. This
1848 * works by first attempting to generate a layout with
1849 * the best configuration and backing off gradually.
1850 *
1851 * First we reduce the acceptable waste in a slab. Then
1852 * we reduce the minimum objects required in a slab.
1853 */
1854 min_objects = slub_min_objects;
1855 while (min_objects > 1) {
1856 fraction = 8;
1857 while (fraction >= 4) {
1858 order = slab_order(size, min_objects,
1859 slub_max_order, fraction);
1860 if (order <= slub_max_order)
1861 return order;
1862 fraction /= 2;
1863 }
1864 min_objects /= 2;
1865 }
1866
1867 /*
1868 * We were unable to place multiple objects in a slab. Now
1869 * lets see if we can place a single object there.
1870 */
1871 order = slab_order(size, 1, slub_max_order, 1);
1872 if (order <= slub_max_order)
1873 return order;
1874
1875 /*
1876 * Doh this slab cannot be placed using slub_max_order.
1877 */
1878 order = slab_order(size, 1, MAX_ORDER, 1);
1879 if (order <= MAX_ORDER)
1880 return order;
1881 return -ENOSYS;
1882}
1883
81819f0f 1884/*
672bba3a 1885 * Figure out what the alignment of the objects will be.
81819f0f
CL
1886 */
1887static unsigned long calculate_alignment(unsigned long flags,
1888 unsigned long align, unsigned long size)
1889{
1890 /*
6446faa2
CL
1891 * If the user wants hardware cache aligned objects then follow that
1892 * suggestion if the object is sufficiently large.
81819f0f 1893 *
6446faa2
CL
1894 * The hardware cache alignment cannot override the specified
1895 * alignment though. If that is greater then use it.
81819f0f 1896 */
b6210386
NP
1897 if (flags & SLAB_HWCACHE_ALIGN) {
1898 unsigned long ralign = cache_line_size();
1899 while (size <= ralign / 2)
1900 ralign /= 2;
1901 align = max(align, ralign);
1902 }
81819f0f
CL
1903
1904 if (align < ARCH_SLAB_MINALIGN)
b6210386 1905 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1906
1907 return ALIGN(align, sizeof(void *));
1908}
1909
dfb4f096
CL
1910static void init_kmem_cache_cpu(struct kmem_cache *s,
1911 struct kmem_cache_cpu *c)
1912{
1913 c->page = NULL;
a973e9dd 1914 c->freelist = NULL;
dfb4f096 1915 c->node = 0;
42a9fdbb
CL
1916 c->offset = s->offset / sizeof(void *);
1917 c->objsize = s->objsize;
62f75532
PE
1918#ifdef CONFIG_SLUB_STATS
1919 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1920#endif
dfb4f096
CL
1921}
1922
81819f0f
CL
1923static void init_kmem_cache_node(struct kmem_cache_node *n)
1924{
1925 n->nr_partial = 0;
81819f0f
CL
1926 spin_lock_init(&n->list_lock);
1927 INIT_LIST_HEAD(&n->partial);
8ab1372f 1928#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1929 atomic_long_set(&n->nr_slabs, 0);
643b1138 1930 INIT_LIST_HEAD(&n->full);
8ab1372f 1931#endif
81819f0f
CL
1932}
1933
4c93c355
CL
1934#ifdef CONFIG_SMP
1935/*
1936 * Per cpu array for per cpu structures.
1937 *
1938 * The per cpu array places all kmem_cache_cpu structures from one processor
1939 * close together meaning that it becomes possible that multiple per cpu
1940 * structures are contained in one cacheline. This may be particularly
1941 * beneficial for the kmalloc caches.
1942 *
1943 * A desktop system typically has around 60-80 slabs. With 100 here we are
1944 * likely able to get per cpu structures for all caches from the array defined
1945 * here. We must be able to cover all kmalloc caches during bootstrap.
1946 *
1947 * If the per cpu array is exhausted then fall back to kmalloc
1948 * of individual cachelines. No sharing is possible then.
1949 */
1950#define NR_KMEM_CACHE_CPU 100
1951
1952static DEFINE_PER_CPU(struct kmem_cache_cpu,
1953 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1954
1955static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1956static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1957
1958static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1959 int cpu, gfp_t flags)
1960{
1961 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1962
1963 if (c)
1964 per_cpu(kmem_cache_cpu_free, cpu) =
1965 (void *)c->freelist;
1966 else {
1967 /* Table overflow: So allocate ourselves */
1968 c = kmalloc_node(
1969 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1970 flags, cpu_to_node(cpu));
1971 if (!c)
1972 return NULL;
1973 }
1974
1975 init_kmem_cache_cpu(s, c);
1976 return c;
1977}
1978
1979static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1980{
1981 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1982 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1983 kfree(c);
1984 return;
1985 }
1986 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1987 per_cpu(kmem_cache_cpu_free, cpu) = c;
1988}
1989
1990static void free_kmem_cache_cpus(struct kmem_cache *s)
1991{
1992 int cpu;
1993
1994 for_each_online_cpu(cpu) {
1995 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1996
1997 if (c) {
1998 s->cpu_slab[cpu] = NULL;
1999 free_kmem_cache_cpu(c, cpu);
2000 }
2001 }
2002}
2003
2004static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2005{
2006 int cpu;
2007
2008 for_each_online_cpu(cpu) {
2009 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2010
2011 if (c)
2012 continue;
2013
2014 c = alloc_kmem_cache_cpu(s, cpu, flags);
2015 if (!c) {
2016 free_kmem_cache_cpus(s);
2017 return 0;
2018 }
2019 s->cpu_slab[cpu] = c;
2020 }
2021 return 1;
2022}
2023
2024/*
2025 * Initialize the per cpu array.
2026 */
2027static void init_alloc_cpu_cpu(int cpu)
2028{
2029 int i;
2030
2031 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2032 return;
2033
2034 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2035 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2036
2037 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2038}
2039
2040static void __init init_alloc_cpu(void)
2041{
2042 int cpu;
2043
2044 for_each_online_cpu(cpu)
2045 init_alloc_cpu_cpu(cpu);
2046 }
2047
2048#else
2049static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2050static inline void init_alloc_cpu(void) {}
2051
2052static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2053{
2054 init_kmem_cache_cpu(s, &s->cpu_slab);
2055 return 1;
2056}
2057#endif
2058
81819f0f
CL
2059#ifdef CONFIG_NUMA
2060/*
2061 * No kmalloc_node yet so do it by hand. We know that this is the first
2062 * slab on the node for this slabcache. There are no concurrent accesses
2063 * possible.
2064 *
2065 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2066 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2067 * memory on a fresh node that has no slab structures yet.
81819f0f 2068 */
1cd7daa5
AB
2069static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2070 int node)
81819f0f
CL
2071{
2072 struct page *page;
2073 struct kmem_cache_node *n;
ba84c73c 2074 unsigned long flags;
81819f0f
CL
2075
2076 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2077
a2f92ee7 2078 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2079
2080 BUG_ON(!page);
a2f92ee7
CL
2081 if (page_to_nid(page) != node) {
2082 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2083 "node %d\n", node);
2084 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2085 "in order to be able to continue\n");
2086 }
2087
81819f0f
CL
2088 n = page->freelist;
2089 BUG_ON(!n);
2090 page->freelist = get_freepointer(kmalloc_caches, n);
2091 page->inuse++;
2092 kmalloc_caches->node[node] = n;
8ab1372f 2093#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2094 init_object(kmalloc_caches, n, 1);
2095 init_tracking(kmalloc_caches, n);
8ab1372f 2096#endif
81819f0f 2097 init_kmem_cache_node(n);
0f389ec6 2098 inc_slabs_node(kmalloc_caches, node);
6446faa2 2099
ba84c73c 2100 /*
2101 * lockdep requires consistent irq usage for each lock
2102 * so even though there cannot be a race this early in
2103 * the boot sequence, we still disable irqs.
2104 */
2105 local_irq_save(flags);
7c2e132c 2106 add_partial(n, page, 0);
ba84c73c 2107 local_irq_restore(flags);
81819f0f
CL
2108 return n;
2109}
2110
2111static void free_kmem_cache_nodes(struct kmem_cache *s)
2112{
2113 int node;
2114
f64dc58c 2115 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2116 struct kmem_cache_node *n = s->node[node];
2117 if (n && n != &s->local_node)
2118 kmem_cache_free(kmalloc_caches, n);
2119 s->node[node] = NULL;
2120 }
2121}
2122
2123static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2124{
2125 int node;
2126 int local_node;
2127
2128 if (slab_state >= UP)
2129 local_node = page_to_nid(virt_to_page(s));
2130 else
2131 local_node = 0;
2132
f64dc58c 2133 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2134 struct kmem_cache_node *n;
2135
2136 if (local_node == node)
2137 n = &s->local_node;
2138 else {
2139 if (slab_state == DOWN) {
2140 n = early_kmem_cache_node_alloc(gfpflags,
2141 node);
2142 continue;
2143 }
2144 n = kmem_cache_alloc_node(kmalloc_caches,
2145 gfpflags, node);
2146
2147 if (!n) {
2148 free_kmem_cache_nodes(s);
2149 return 0;
2150 }
2151
2152 }
2153 s->node[node] = n;
2154 init_kmem_cache_node(n);
2155 }
2156 return 1;
2157}
2158#else
2159static void free_kmem_cache_nodes(struct kmem_cache *s)
2160{
2161}
2162
2163static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2164{
2165 init_kmem_cache_node(&s->local_node);
2166 return 1;
2167}
2168#endif
2169
2170/*
2171 * calculate_sizes() determines the order and the distribution of data within
2172 * a slab object.
2173 */
2174static int calculate_sizes(struct kmem_cache *s)
2175{
2176 unsigned long flags = s->flags;
2177 unsigned long size = s->objsize;
2178 unsigned long align = s->align;
2179
d8b42bf5
CL
2180 /*
2181 * Round up object size to the next word boundary. We can only
2182 * place the free pointer at word boundaries and this determines
2183 * the possible location of the free pointer.
2184 */
2185 size = ALIGN(size, sizeof(void *));
2186
2187#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2188 /*
2189 * Determine if we can poison the object itself. If the user of
2190 * the slab may touch the object after free or before allocation
2191 * then we should never poison the object itself.
2192 */
2193 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2194 !s->ctor)
81819f0f
CL
2195 s->flags |= __OBJECT_POISON;
2196 else
2197 s->flags &= ~__OBJECT_POISON;
2198
81819f0f
CL
2199
2200 /*
672bba3a 2201 * If we are Redzoning then check if there is some space between the
81819f0f 2202 * end of the object and the free pointer. If not then add an
672bba3a 2203 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2204 */
2205 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2206 size += sizeof(void *);
41ecc55b 2207#endif
81819f0f
CL
2208
2209 /*
672bba3a
CL
2210 * With that we have determined the number of bytes in actual use
2211 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2212 */
2213 s->inuse = size;
2214
2215 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2216 s->ctor)) {
81819f0f
CL
2217 /*
2218 * Relocate free pointer after the object if it is not
2219 * permitted to overwrite the first word of the object on
2220 * kmem_cache_free.
2221 *
2222 * This is the case if we do RCU, have a constructor or
2223 * destructor or are poisoning the objects.
2224 */
2225 s->offset = size;
2226 size += sizeof(void *);
2227 }
2228
c12b3c62 2229#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2230 if (flags & SLAB_STORE_USER)
2231 /*
2232 * Need to store information about allocs and frees after
2233 * the object.
2234 */
2235 size += 2 * sizeof(struct track);
2236
be7b3fbc 2237 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2238 /*
2239 * Add some empty padding so that we can catch
2240 * overwrites from earlier objects rather than let
2241 * tracking information or the free pointer be
2242 * corrupted if an user writes before the start
2243 * of the object.
2244 */
2245 size += sizeof(void *);
41ecc55b 2246#endif
672bba3a 2247
81819f0f
CL
2248 /*
2249 * Determine the alignment based on various parameters that the
65c02d4c
CL
2250 * user specified and the dynamic determination of cache line size
2251 * on bootup.
81819f0f
CL
2252 */
2253 align = calculate_alignment(flags, align, s->objsize);
2254
2255 /*
2256 * SLUB stores one object immediately after another beginning from
2257 * offset 0. In order to align the objects we have to simply size
2258 * each object to conform to the alignment.
2259 */
2260 size = ALIGN(size, align);
2261 s->size = size;
2262
71c7a06f
CL
2263 if ((flags & __KMALLOC_CACHE) &&
2264 PAGE_SIZE / size < slub_min_objects) {
2265 /*
2266 * Kmalloc cache that would not have enough objects in
2267 * an order 0 page. Kmalloc slabs can fallback to
2268 * page allocator order 0 allocs so take a reasonably large
2269 * order that will allows us a good number of objects.
2270 */
2271 s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
2272 s->flags |= __PAGE_ALLOC_FALLBACK;
2273 s->allocflags |= __GFP_NOWARN;
2274 } else
2275 s->order = calculate_order(size);
2276
81819f0f
CL
2277 if (s->order < 0)
2278 return 0;
2279
b7a49f0d
CL
2280 s->allocflags = 0;
2281 if (s->order)
2282 s->allocflags |= __GFP_COMP;
2283
2284 if (s->flags & SLAB_CACHE_DMA)
2285 s->allocflags |= SLUB_DMA;
2286
2287 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2288 s->allocflags |= __GFP_RECLAIMABLE;
2289
81819f0f
CL
2290 /*
2291 * Determine the number of objects per slab
2292 */
2293 s->objects = (PAGE_SIZE << s->order) / size;
2294
b3fba8da 2295 return !!s->objects;
81819f0f
CL
2296
2297}
2298
81819f0f
CL
2299static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2300 const char *name, size_t size,
2301 size_t align, unsigned long flags,
4ba9b9d0 2302 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
2303{
2304 memset(s, 0, kmem_size);
2305 s->name = name;
2306 s->ctor = ctor;
81819f0f 2307 s->objsize = size;
81819f0f 2308 s->align = align;
ba0268a8 2309 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f
CL
2310
2311 if (!calculate_sizes(s))
2312 goto error;
2313
2314 s->refcount = 1;
2315#ifdef CONFIG_NUMA
9824601e 2316 s->remote_node_defrag_ratio = 100;
81819f0f 2317#endif
dfb4f096
CL
2318 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2319 goto error;
81819f0f 2320
dfb4f096 2321 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2322 return 1;
4c93c355 2323 free_kmem_cache_nodes(s);
81819f0f
CL
2324error:
2325 if (flags & SLAB_PANIC)
2326 panic("Cannot create slab %s size=%lu realsize=%u "
2327 "order=%u offset=%u flags=%lx\n",
2328 s->name, (unsigned long)size, s->size, s->order,
2329 s->offset, flags);
2330 return 0;
2331}
81819f0f
CL
2332
2333/*
2334 * Check if a given pointer is valid
2335 */
2336int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2337{
06428780 2338 struct page *page;
81819f0f
CL
2339
2340 page = get_object_page(object);
2341
2342 if (!page || s != page->slab)
2343 /* No slab or wrong slab */
2344 return 0;
2345
abcd08a6 2346 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2347 return 0;
2348
2349 /*
2350 * We could also check if the object is on the slabs freelist.
2351 * But this would be too expensive and it seems that the main
6446faa2 2352 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2353 * to a certain slab.
2354 */
2355 return 1;
2356}
2357EXPORT_SYMBOL(kmem_ptr_validate);
2358
2359/*
2360 * Determine the size of a slab object
2361 */
2362unsigned int kmem_cache_size(struct kmem_cache *s)
2363{
2364 return s->objsize;
2365}
2366EXPORT_SYMBOL(kmem_cache_size);
2367
2368const char *kmem_cache_name(struct kmem_cache *s)
2369{
2370 return s->name;
2371}
2372EXPORT_SYMBOL(kmem_cache_name);
2373
2374/*
672bba3a
CL
2375 * Attempt to free all slabs on a node. Return the number of slabs we
2376 * were unable to free.
81819f0f
CL
2377 */
2378static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2379 struct list_head *list)
2380{
2381 int slabs_inuse = 0;
2382 unsigned long flags;
2383 struct page *page, *h;
2384
2385 spin_lock_irqsave(&n->list_lock, flags);
2386 list_for_each_entry_safe(page, h, list, lru)
2387 if (!page->inuse) {
2388 list_del(&page->lru);
2389 discard_slab(s, page);
2390 } else
2391 slabs_inuse++;
2392 spin_unlock_irqrestore(&n->list_lock, flags);
2393 return slabs_inuse;
2394}
2395
2396/*
672bba3a 2397 * Release all resources used by a slab cache.
81819f0f 2398 */
0c710013 2399static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2400{
2401 int node;
2402
2403 flush_all(s);
2404
2405 /* Attempt to free all objects */
4c93c355 2406 free_kmem_cache_cpus(s);
f64dc58c 2407 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2408 struct kmem_cache_node *n = get_node(s, node);
2409
2086d26a 2410 n->nr_partial -= free_list(s, n, &n->partial);
0f389ec6 2411 if (slabs_node(s, node))
81819f0f
CL
2412 return 1;
2413 }
2414 free_kmem_cache_nodes(s);
2415 return 0;
2416}
2417
2418/*
2419 * Close a cache and release the kmem_cache structure
2420 * (must be used for caches created using kmem_cache_create)
2421 */
2422void kmem_cache_destroy(struct kmem_cache *s)
2423{
2424 down_write(&slub_lock);
2425 s->refcount--;
2426 if (!s->refcount) {
2427 list_del(&s->list);
a0e1d1be 2428 up_write(&slub_lock);
d629d819
PE
2429 if (kmem_cache_close(s)) {
2430 printk(KERN_ERR "SLUB %s: %s called for cache that "
2431 "still has objects.\n", s->name, __func__);
2432 dump_stack();
2433 }
81819f0f 2434 sysfs_slab_remove(s);
a0e1d1be
CL
2435 } else
2436 up_write(&slub_lock);
81819f0f
CL
2437}
2438EXPORT_SYMBOL(kmem_cache_destroy);
2439
2440/********************************************************************
2441 * Kmalloc subsystem
2442 *******************************************************************/
2443
331dc558 2444struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
81819f0f
CL
2445EXPORT_SYMBOL(kmalloc_caches);
2446
81819f0f
CL
2447static int __init setup_slub_min_order(char *str)
2448{
06428780 2449 get_option(&str, &slub_min_order);
81819f0f
CL
2450
2451 return 1;
2452}
2453
2454__setup("slub_min_order=", setup_slub_min_order);
2455
2456static int __init setup_slub_max_order(char *str)
2457{
06428780 2458 get_option(&str, &slub_max_order);
81819f0f
CL
2459
2460 return 1;
2461}
2462
2463__setup("slub_max_order=", setup_slub_max_order);
2464
2465static int __init setup_slub_min_objects(char *str)
2466{
06428780 2467 get_option(&str, &slub_min_objects);
81819f0f
CL
2468
2469 return 1;
2470}
2471
2472__setup("slub_min_objects=", setup_slub_min_objects);
2473
2474static int __init setup_slub_nomerge(char *str)
2475{
2476 slub_nomerge = 1;
2477 return 1;
2478}
2479
2480__setup("slub_nomerge", setup_slub_nomerge);
2481
81819f0f
CL
2482static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2483 const char *name, int size, gfp_t gfp_flags)
2484{
2485 unsigned int flags = 0;
2486
2487 if (gfp_flags & SLUB_DMA)
2488 flags = SLAB_CACHE_DMA;
2489
2490 down_write(&slub_lock);
2491 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
71c7a06f 2492 flags | __KMALLOC_CACHE, NULL))
81819f0f
CL
2493 goto panic;
2494
2495 list_add(&s->list, &slab_caches);
2496 up_write(&slub_lock);
2497 if (sysfs_slab_add(s))
2498 goto panic;
2499 return s;
2500
2501panic:
2502 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2503}
2504
2e443fd0 2505#ifdef CONFIG_ZONE_DMA
4097d601 2506static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
1ceef402
CL
2507
2508static void sysfs_add_func(struct work_struct *w)
2509{
2510 struct kmem_cache *s;
2511
2512 down_write(&slub_lock);
2513 list_for_each_entry(s, &slab_caches, list) {
2514 if (s->flags & __SYSFS_ADD_DEFERRED) {
2515 s->flags &= ~__SYSFS_ADD_DEFERRED;
2516 sysfs_slab_add(s);
2517 }
2518 }
2519 up_write(&slub_lock);
2520}
2521
2522static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2523
2e443fd0
CL
2524static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2525{
2526 struct kmem_cache *s;
2e443fd0
CL
2527 char *text;
2528 size_t realsize;
2529
2530 s = kmalloc_caches_dma[index];
2531 if (s)
2532 return s;
2533
2534 /* Dynamically create dma cache */
1ceef402
CL
2535 if (flags & __GFP_WAIT)
2536 down_write(&slub_lock);
2537 else {
2538 if (!down_write_trylock(&slub_lock))
2539 goto out;
2540 }
2541
2542 if (kmalloc_caches_dma[index])
2543 goto unlock_out;
2e443fd0 2544
7b55f620 2545 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2546 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2547 (unsigned int)realsize);
1ceef402
CL
2548 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2549
2550 if (!s || !text || !kmem_cache_open(s, flags, text,
2551 realsize, ARCH_KMALLOC_MINALIGN,
2552 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2553 kfree(s);
2554 kfree(text);
2555 goto unlock_out;
dfce8648 2556 }
1ceef402
CL
2557
2558 list_add(&s->list, &slab_caches);
2559 kmalloc_caches_dma[index] = s;
2560
2561 schedule_work(&sysfs_add_work);
2562
2563unlock_out:
dfce8648 2564 up_write(&slub_lock);
1ceef402 2565out:
dfce8648 2566 return kmalloc_caches_dma[index];
2e443fd0
CL
2567}
2568#endif
2569
f1b26339
CL
2570/*
2571 * Conversion table for small slabs sizes / 8 to the index in the
2572 * kmalloc array. This is necessary for slabs < 192 since we have non power
2573 * of two cache sizes there. The size of larger slabs can be determined using
2574 * fls.
2575 */
2576static s8 size_index[24] = {
2577 3, /* 8 */
2578 4, /* 16 */
2579 5, /* 24 */
2580 5, /* 32 */
2581 6, /* 40 */
2582 6, /* 48 */
2583 6, /* 56 */
2584 6, /* 64 */
2585 1, /* 72 */
2586 1, /* 80 */
2587 1, /* 88 */
2588 1, /* 96 */
2589 7, /* 104 */
2590 7, /* 112 */
2591 7, /* 120 */
2592 7, /* 128 */
2593 2, /* 136 */
2594 2, /* 144 */
2595 2, /* 152 */
2596 2, /* 160 */
2597 2, /* 168 */
2598 2, /* 176 */
2599 2, /* 184 */
2600 2 /* 192 */
2601};
2602
81819f0f
CL
2603static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2604{
f1b26339 2605 int index;
81819f0f 2606
f1b26339
CL
2607 if (size <= 192) {
2608 if (!size)
2609 return ZERO_SIZE_PTR;
81819f0f 2610
f1b26339 2611 index = size_index[(size - 1) / 8];
aadb4bc4 2612 } else
f1b26339 2613 index = fls(size - 1);
81819f0f
CL
2614
2615#ifdef CONFIG_ZONE_DMA
f1b26339 2616 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2617 return dma_kmalloc_cache(index, flags);
f1b26339 2618
81819f0f
CL
2619#endif
2620 return &kmalloc_caches[index];
2621}
2622
2623void *__kmalloc(size_t size, gfp_t flags)
2624{
aadb4bc4 2625 struct kmem_cache *s;
81819f0f 2626
331dc558 2627 if (unlikely(size > PAGE_SIZE))
eada35ef 2628 return kmalloc_large(size, flags);
aadb4bc4
CL
2629
2630 s = get_slab(size, flags);
2631
2632 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2633 return s;
2634
ce15fea8 2635 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2636}
2637EXPORT_SYMBOL(__kmalloc);
2638
f619cfe1
CL
2639static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2640{
2641 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2642 get_order(size));
2643
2644 if (page)
2645 return page_address(page);
2646 else
2647 return NULL;
2648}
2649
81819f0f
CL
2650#ifdef CONFIG_NUMA
2651void *__kmalloc_node(size_t size, gfp_t flags, int node)
2652{
aadb4bc4 2653 struct kmem_cache *s;
81819f0f 2654
331dc558 2655 if (unlikely(size > PAGE_SIZE))
f619cfe1 2656 return kmalloc_large_node(size, flags, node);
aadb4bc4
CL
2657
2658 s = get_slab(size, flags);
2659
2660 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2661 return s;
2662
ce15fea8 2663 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2664}
2665EXPORT_SYMBOL(__kmalloc_node);
2666#endif
2667
2668size_t ksize(const void *object)
2669{
272c1d21 2670 struct page *page;
81819f0f
CL
2671 struct kmem_cache *s;
2672
ef8b4520 2673 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2674 return 0;
2675
294a80a8 2676 page = virt_to_head_page(object);
294a80a8
VN
2677
2678 if (unlikely(!PageSlab(page)))
2679 return PAGE_SIZE << compound_order(page);
2680
81819f0f 2681 s = page->slab;
81819f0f 2682
ae20bfda 2683#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2684 /*
2685 * Debugging requires use of the padding between object
2686 * and whatever may come after it.
2687 */
2688 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2689 return s->objsize;
2690
ae20bfda 2691#endif
81819f0f
CL
2692 /*
2693 * If we have the need to store the freelist pointer
2694 * back there or track user information then we can
2695 * only use the space before that information.
2696 */
2697 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2698 return s->inuse;
81819f0f
CL
2699 /*
2700 * Else we can use all the padding etc for the allocation
2701 */
2702 return s->size;
2703}
2704EXPORT_SYMBOL(ksize);
2705
2706void kfree(const void *x)
2707{
81819f0f 2708 struct page *page;
5bb983b0 2709 void *object = (void *)x;
81819f0f 2710
2408c550 2711 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2712 return;
2713
b49af68f 2714 page = virt_to_head_page(x);
aadb4bc4
CL
2715 if (unlikely(!PageSlab(page))) {
2716 put_page(page);
2717 return;
2718 }
5bb983b0 2719 slab_free(page->slab, page, object, __builtin_return_address(0));
81819f0f
CL
2720}
2721EXPORT_SYMBOL(kfree);
2722
2086d26a 2723/*
672bba3a
CL
2724 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2725 * the remaining slabs by the number of items in use. The slabs with the
2726 * most items in use come first. New allocations will then fill those up
2727 * and thus they can be removed from the partial lists.
2728 *
2729 * The slabs with the least items are placed last. This results in them
2730 * being allocated from last increasing the chance that the last objects
2731 * are freed in them.
2086d26a
CL
2732 */
2733int kmem_cache_shrink(struct kmem_cache *s)
2734{
2735 int node;
2736 int i;
2737 struct kmem_cache_node *n;
2738 struct page *page;
2739 struct page *t;
2740 struct list_head *slabs_by_inuse =
2741 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2742 unsigned long flags;
2743
2744 if (!slabs_by_inuse)
2745 return -ENOMEM;
2746
2747 flush_all(s);
f64dc58c 2748 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2749 n = get_node(s, node);
2750
2751 if (!n->nr_partial)
2752 continue;
2753
2754 for (i = 0; i < s->objects; i++)
2755 INIT_LIST_HEAD(slabs_by_inuse + i);
2756
2757 spin_lock_irqsave(&n->list_lock, flags);
2758
2759 /*
672bba3a 2760 * Build lists indexed by the items in use in each slab.
2086d26a 2761 *
672bba3a
CL
2762 * Note that concurrent frees may occur while we hold the
2763 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2764 */
2765 list_for_each_entry_safe(page, t, &n->partial, lru) {
2766 if (!page->inuse && slab_trylock(page)) {
2767 /*
2768 * Must hold slab lock here because slab_free
2769 * may have freed the last object and be
2770 * waiting to release the slab.
2771 */
2772 list_del(&page->lru);
2773 n->nr_partial--;
2774 slab_unlock(page);
2775 discard_slab(s, page);
2776 } else {
fcda3d89
CL
2777 list_move(&page->lru,
2778 slabs_by_inuse + page->inuse);
2086d26a
CL
2779 }
2780 }
2781
2086d26a 2782 /*
672bba3a
CL
2783 * Rebuild the partial list with the slabs filled up most
2784 * first and the least used slabs at the end.
2086d26a
CL
2785 */
2786 for (i = s->objects - 1; i >= 0; i--)
2787 list_splice(slabs_by_inuse + i, n->partial.prev);
2788
2086d26a
CL
2789 spin_unlock_irqrestore(&n->list_lock, flags);
2790 }
2791
2792 kfree(slabs_by_inuse);
2793 return 0;
2794}
2795EXPORT_SYMBOL(kmem_cache_shrink);
2796
b9049e23
YG
2797#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2798static int slab_mem_going_offline_callback(void *arg)
2799{
2800 struct kmem_cache *s;
2801
2802 down_read(&slub_lock);
2803 list_for_each_entry(s, &slab_caches, list)
2804 kmem_cache_shrink(s);
2805 up_read(&slub_lock);
2806
2807 return 0;
2808}
2809
2810static void slab_mem_offline_callback(void *arg)
2811{
2812 struct kmem_cache_node *n;
2813 struct kmem_cache *s;
2814 struct memory_notify *marg = arg;
2815 int offline_node;
2816
2817 offline_node = marg->status_change_nid;
2818
2819 /*
2820 * If the node still has available memory. we need kmem_cache_node
2821 * for it yet.
2822 */
2823 if (offline_node < 0)
2824 return;
2825
2826 down_read(&slub_lock);
2827 list_for_each_entry(s, &slab_caches, list) {
2828 n = get_node(s, offline_node);
2829 if (n) {
2830 /*
2831 * if n->nr_slabs > 0, slabs still exist on the node
2832 * that is going down. We were unable to free them,
2833 * and offline_pages() function shoudn't call this
2834 * callback. So, we must fail.
2835 */
0f389ec6 2836 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2837
2838 s->node[offline_node] = NULL;
2839 kmem_cache_free(kmalloc_caches, n);
2840 }
2841 }
2842 up_read(&slub_lock);
2843}
2844
2845static int slab_mem_going_online_callback(void *arg)
2846{
2847 struct kmem_cache_node *n;
2848 struct kmem_cache *s;
2849 struct memory_notify *marg = arg;
2850 int nid = marg->status_change_nid;
2851 int ret = 0;
2852
2853 /*
2854 * If the node's memory is already available, then kmem_cache_node is
2855 * already created. Nothing to do.
2856 */
2857 if (nid < 0)
2858 return 0;
2859
2860 /*
2861 * We are bringing a node online. No memory is availabe yet. We must
2862 * allocate a kmem_cache_node structure in order to bring the node
2863 * online.
2864 */
2865 down_read(&slub_lock);
2866 list_for_each_entry(s, &slab_caches, list) {
2867 /*
2868 * XXX: kmem_cache_alloc_node will fallback to other nodes
2869 * since memory is not yet available from the node that
2870 * is brought up.
2871 */
2872 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2873 if (!n) {
2874 ret = -ENOMEM;
2875 goto out;
2876 }
2877 init_kmem_cache_node(n);
2878 s->node[nid] = n;
2879 }
2880out:
2881 up_read(&slub_lock);
2882 return ret;
2883}
2884
2885static int slab_memory_callback(struct notifier_block *self,
2886 unsigned long action, void *arg)
2887{
2888 int ret = 0;
2889
2890 switch (action) {
2891 case MEM_GOING_ONLINE:
2892 ret = slab_mem_going_online_callback(arg);
2893 break;
2894 case MEM_GOING_OFFLINE:
2895 ret = slab_mem_going_offline_callback(arg);
2896 break;
2897 case MEM_OFFLINE:
2898 case MEM_CANCEL_ONLINE:
2899 slab_mem_offline_callback(arg);
2900 break;
2901 case MEM_ONLINE:
2902 case MEM_CANCEL_OFFLINE:
2903 break;
2904 }
2905
2906 ret = notifier_from_errno(ret);
2907 return ret;
2908}
2909
2910#endif /* CONFIG_MEMORY_HOTPLUG */
2911
81819f0f
CL
2912/********************************************************************
2913 * Basic setup of slabs
2914 *******************************************************************/
2915
2916void __init kmem_cache_init(void)
2917{
2918 int i;
4b356be0 2919 int caches = 0;
81819f0f 2920
4c93c355
CL
2921 init_alloc_cpu();
2922
81819f0f
CL
2923#ifdef CONFIG_NUMA
2924 /*
2925 * Must first have the slab cache available for the allocations of the
672bba3a 2926 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2927 * kmem_cache_open for slab_state == DOWN.
2928 */
2929 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2930 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2931 kmalloc_caches[0].refcount = -1;
4b356be0 2932 caches++;
b9049e23
YG
2933
2934 hotplug_memory_notifier(slab_memory_callback, 1);
81819f0f
CL
2935#endif
2936
2937 /* Able to allocate the per node structures */
2938 slab_state = PARTIAL;
2939
2940 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2941 if (KMALLOC_MIN_SIZE <= 64) {
2942 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2943 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
2944 caches++;
2945 }
2946 if (KMALLOC_MIN_SIZE <= 128) {
2947 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2948 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
2949 caches++;
2950 }
81819f0f 2951
331dc558 2952 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
81819f0f
CL
2953 create_kmalloc_cache(&kmalloc_caches[i],
2954 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
2955 caches++;
2956 }
81819f0f 2957
f1b26339
CL
2958
2959 /*
2960 * Patch up the size_index table if we have strange large alignment
2961 * requirements for the kmalloc array. This is only the case for
6446faa2 2962 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
2963 *
2964 * Largest permitted alignment is 256 bytes due to the way we
2965 * handle the index determination for the smaller caches.
2966 *
2967 * Make sure that nothing crazy happens if someone starts tinkering
2968 * around with ARCH_KMALLOC_MINALIGN
2969 */
2970 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2971 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2972
12ad6843 2973 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
2974 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2975
81819f0f
CL
2976 slab_state = UP;
2977
2978 /* Provide the correct kmalloc names now that the caches are up */
331dc558 2979 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
81819f0f
CL
2980 kmalloc_caches[i]. name =
2981 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2982
2983#ifdef CONFIG_SMP
2984 register_cpu_notifier(&slab_notifier);
4c93c355
CL
2985 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2986 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2987#else
2988 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
2989#endif
2990
3adbefee
IM
2991 printk(KERN_INFO
2992 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
2993 " CPUs=%d, Nodes=%d\n",
2994 caches, cache_line_size(),
81819f0f
CL
2995 slub_min_order, slub_max_order, slub_min_objects,
2996 nr_cpu_ids, nr_node_ids);
2997}
2998
2999/*
3000 * Find a mergeable slab cache
3001 */
3002static int slab_unmergeable(struct kmem_cache *s)
3003{
3004 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3005 return 1;
3006
331dc558 3007 if ((s->flags & __PAGE_ALLOC_FALLBACK))
71c7a06f
CL
3008 return 1;
3009
c59def9f 3010 if (s->ctor)
81819f0f
CL
3011 return 1;
3012
8ffa6875
CL
3013 /*
3014 * We may have set a slab to be unmergeable during bootstrap.
3015 */
3016 if (s->refcount < 0)
3017 return 1;
3018
81819f0f
CL
3019 return 0;
3020}
3021
3022static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3023 size_t align, unsigned long flags, const char *name,
4ba9b9d0 3024 void (*ctor)(struct kmem_cache *, void *))
81819f0f 3025{
5b95a4ac 3026 struct kmem_cache *s;
81819f0f
CL
3027
3028 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3029 return NULL;
3030
c59def9f 3031 if (ctor)
81819f0f
CL
3032 return NULL;
3033
3034 size = ALIGN(size, sizeof(void *));
3035 align = calculate_alignment(flags, align, size);
3036 size = ALIGN(size, align);
ba0268a8 3037 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3038
5b95a4ac 3039 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3040 if (slab_unmergeable(s))
3041 continue;
3042
3043 if (size > s->size)
3044 continue;
3045
ba0268a8 3046 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3047 continue;
3048 /*
3049 * Check if alignment is compatible.
3050 * Courtesy of Adrian Drzewiecki
3051 */
06428780 3052 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3053 continue;
3054
3055 if (s->size - size >= sizeof(void *))
3056 continue;
3057
3058 return s;
3059 }
3060 return NULL;
3061}
3062
3063struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3064 size_t align, unsigned long flags,
4ba9b9d0 3065 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
3066{
3067 struct kmem_cache *s;
3068
3069 down_write(&slub_lock);
ba0268a8 3070 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3071 if (s) {
42a9fdbb
CL
3072 int cpu;
3073
81819f0f
CL
3074 s->refcount++;
3075 /*
3076 * Adjust the object sizes so that we clear
3077 * the complete object on kzalloc.
3078 */
3079 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3080
3081 /*
3082 * And then we need to update the object size in the
3083 * per cpu structures
3084 */
3085 for_each_online_cpu(cpu)
3086 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3087
81819f0f 3088 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3089 up_write(&slub_lock);
6446faa2 3090
81819f0f
CL
3091 if (sysfs_slab_alias(s, name))
3092 goto err;
a0e1d1be
CL
3093 return s;
3094 }
6446faa2 3095
a0e1d1be
CL
3096 s = kmalloc(kmem_size, GFP_KERNEL);
3097 if (s) {
3098 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3099 size, align, flags, ctor)) {
81819f0f 3100 list_add(&s->list, &slab_caches);
a0e1d1be
CL
3101 up_write(&slub_lock);
3102 if (sysfs_slab_add(s))
3103 goto err;
3104 return s;
3105 }
3106 kfree(s);
81819f0f
CL
3107 }
3108 up_write(&slub_lock);
81819f0f
CL
3109
3110err:
81819f0f
CL
3111 if (flags & SLAB_PANIC)
3112 panic("Cannot create slabcache %s\n", name);
3113 else
3114 s = NULL;
3115 return s;
3116}
3117EXPORT_SYMBOL(kmem_cache_create);
3118
81819f0f 3119#ifdef CONFIG_SMP
81819f0f 3120/*
672bba3a
CL
3121 * Use the cpu notifier to insure that the cpu slabs are flushed when
3122 * necessary.
81819f0f
CL
3123 */
3124static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3125 unsigned long action, void *hcpu)
3126{
3127 long cpu = (long)hcpu;
5b95a4ac
CL
3128 struct kmem_cache *s;
3129 unsigned long flags;
81819f0f
CL
3130
3131 switch (action) {
4c93c355
CL
3132 case CPU_UP_PREPARE:
3133 case CPU_UP_PREPARE_FROZEN:
3134 init_alloc_cpu_cpu(cpu);
3135 down_read(&slub_lock);
3136 list_for_each_entry(s, &slab_caches, list)
3137 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3138 GFP_KERNEL);
3139 up_read(&slub_lock);
3140 break;
3141
81819f0f 3142 case CPU_UP_CANCELED:
8bb78442 3143 case CPU_UP_CANCELED_FROZEN:
81819f0f 3144 case CPU_DEAD:
8bb78442 3145 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3146 down_read(&slub_lock);
3147 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3148 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3149
5b95a4ac
CL
3150 local_irq_save(flags);
3151 __flush_cpu_slab(s, cpu);
3152 local_irq_restore(flags);
4c93c355
CL
3153 free_kmem_cache_cpu(c, cpu);
3154 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3155 }
3156 up_read(&slub_lock);
81819f0f
CL
3157 break;
3158 default:
3159 break;
3160 }
3161 return NOTIFY_OK;
3162}
3163
06428780 3164static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3165 .notifier_call = slab_cpuup_callback
06428780 3166};
81819f0f
CL
3167
3168#endif
3169
81819f0f
CL
3170void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3171{
aadb4bc4
CL
3172 struct kmem_cache *s;
3173
331dc558 3174 if (unlikely(size > PAGE_SIZE))
eada35ef
PE
3175 return kmalloc_large(size, gfpflags);
3176
aadb4bc4 3177 s = get_slab(size, gfpflags);
81819f0f 3178
2408c550 3179 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3180 return s;
81819f0f 3181
ce15fea8 3182 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3183}
3184
3185void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3186 int node, void *caller)
3187{
aadb4bc4
CL
3188 struct kmem_cache *s;
3189
331dc558 3190 if (unlikely(size > PAGE_SIZE))
f619cfe1 3191 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3192
aadb4bc4 3193 s = get_slab(size, gfpflags);
81819f0f 3194
2408c550 3195 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3196 return s;
81819f0f 3197
ce15fea8 3198 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3199}
3200
5b06c853
CL
3201#if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
3202static unsigned long count_partial(struct kmem_cache_node *n)
3203{
3204 unsigned long flags;
3205 unsigned long x = 0;
3206 struct page *page;
3207
3208 spin_lock_irqsave(&n->list_lock, flags);
3209 list_for_each_entry(page, &n->partial, lru)
3210 x += page->inuse;
3211 spin_unlock_irqrestore(&n->list_lock, flags);
3212 return x;
3213}
3214#endif
3215
41ecc55b 3216#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
434e245d
CL
3217static int validate_slab(struct kmem_cache *s, struct page *page,
3218 unsigned long *map)
53e15af0
CL
3219{
3220 void *p;
a973e9dd 3221 void *addr = page_address(page);
53e15af0
CL
3222
3223 if (!check_slab(s, page) ||
3224 !on_freelist(s, page, NULL))
3225 return 0;
3226
3227 /* Now we know that a valid freelist exists */
3228 bitmap_zero(map, s->objects);
3229
7656c72b
CL
3230 for_each_free_object(p, s, page->freelist) {
3231 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3232 if (!check_object(s, page, p, 0))
3233 return 0;
3234 }
3235
7656c72b
CL
3236 for_each_object(p, s, addr)
3237 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3238 if (!check_object(s, page, p, 1))
3239 return 0;
3240 return 1;
3241}
3242
434e245d
CL
3243static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3244 unsigned long *map)
53e15af0
CL
3245{
3246 if (slab_trylock(page)) {
434e245d 3247 validate_slab(s, page, map);
53e15af0
CL
3248 slab_unlock(page);
3249 } else
3250 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3251 s->name, page);
3252
3253 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
3254 if (!SlabDebug(page))
3255 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
3256 "on slab 0x%p\n", s->name, page);
3257 } else {
35e5d7ee
CL
3258 if (SlabDebug(page))
3259 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
3260 "slab 0x%p\n", s->name, page);
3261 }
3262}
3263
434e245d
CL
3264static int validate_slab_node(struct kmem_cache *s,
3265 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3266{
3267 unsigned long count = 0;
3268 struct page *page;
3269 unsigned long flags;
3270
3271 spin_lock_irqsave(&n->list_lock, flags);
3272
3273 list_for_each_entry(page, &n->partial, lru) {
434e245d 3274 validate_slab_slab(s, page, map);
53e15af0
CL
3275 count++;
3276 }
3277 if (count != n->nr_partial)
3278 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3279 "counter=%ld\n", s->name, count, n->nr_partial);
3280
3281 if (!(s->flags & SLAB_STORE_USER))
3282 goto out;
3283
3284 list_for_each_entry(page, &n->full, lru) {
434e245d 3285 validate_slab_slab(s, page, map);
53e15af0
CL
3286 count++;
3287 }
3288 if (count != atomic_long_read(&n->nr_slabs))
3289 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3290 "counter=%ld\n", s->name, count,
3291 atomic_long_read(&n->nr_slabs));
3292
3293out:
3294 spin_unlock_irqrestore(&n->list_lock, flags);
3295 return count;
3296}
3297
434e245d 3298static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3299{
3300 int node;
3301 unsigned long count = 0;
434e245d
CL
3302 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3303 sizeof(unsigned long), GFP_KERNEL);
3304
3305 if (!map)
3306 return -ENOMEM;
53e15af0
CL
3307
3308 flush_all(s);
f64dc58c 3309 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3310 struct kmem_cache_node *n = get_node(s, node);
3311
434e245d 3312 count += validate_slab_node(s, n, map);
53e15af0 3313 }
434e245d 3314 kfree(map);
53e15af0
CL
3315 return count;
3316}
3317
b3459709
CL
3318#ifdef SLUB_RESILIENCY_TEST
3319static void resiliency_test(void)
3320{
3321 u8 *p;
3322
3323 printk(KERN_ERR "SLUB resiliency testing\n");
3324 printk(KERN_ERR "-----------------------\n");
3325 printk(KERN_ERR "A. Corruption after allocation\n");
3326
3327 p = kzalloc(16, GFP_KERNEL);
3328 p[16] = 0x12;
3329 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3330 " 0x12->0x%p\n\n", p + 16);
3331
3332 validate_slab_cache(kmalloc_caches + 4);
3333
3334 /* Hmmm... The next two are dangerous */
3335 p = kzalloc(32, GFP_KERNEL);
3336 p[32 + sizeof(void *)] = 0x34;
3337 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3338 " 0x34 -> -0x%p\n", p);
3339 printk(KERN_ERR
3340 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3341
3342 validate_slab_cache(kmalloc_caches + 5);
3343 p = kzalloc(64, GFP_KERNEL);
3344 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3345 *p = 0x56;
3346 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3347 p);
3adbefee
IM
3348 printk(KERN_ERR
3349 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3350 validate_slab_cache(kmalloc_caches + 6);
3351
3352 printk(KERN_ERR "\nB. Corruption after free\n");
3353 p = kzalloc(128, GFP_KERNEL);
3354 kfree(p);
3355 *p = 0x78;
3356 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3357 validate_slab_cache(kmalloc_caches + 7);
3358
3359 p = kzalloc(256, GFP_KERNEL);
3360 kfree(p);
3361 p[50] = 0x9a;
3adbefee
IM
3362 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3363 p);
b3459709
CL
3364 validate_slab_cache(kmalloc_caches + 8);
3365
3366 p = kzalloc(512, GFP_KERNEL);
3367 kfree(p);
3368 p[512] = 0xab;
3369 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3370 validate_slab_cache(kmalloc_caches + 9);
3371}
3372#else
3373static void resiliency_test(void) {};
3374#endif
3375
88a420e4 3376/*
672bba3a 3377 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3378 * and freed.
3379 */
3380
3381struct location {
3382 unsigned long count;
3383 void *addr;
45edfa58
CL
3384 long long sum_time;
3385 long min_time;
3386 long max_time;
3387 long min_pid;
3388 long max_pid;
3389 cpumask_t cpus;
3390 nodemask_t nodes;
88a420e4
CL
3391};
3392
3393struct loc_track {
3394 unsigned long max;
3395 unsigned long count;
3396 struct location *loc;
3397};
3398
3399static void free_loc_track(struct loc_track *t)
3400{
3401 if (t->max)
3402 free_pages((unsigned long)t->loc,
3403 get_order(sizeof(struct location) * t->max));
3404}
3405
68dff6a9 3406static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3407{
3408 struct location *l;
3409 int order;
3410
88a420e4
CL
3411 order = get_order(sizeof(struct location) * max);
3412
68dff6a9 3413 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3414 if (!l)
3415 return 0;
3416
3417 if (t->count) {
3418 memcpy(l, t->loc, sizeof(struct location) * t->count);
3419 free_loc_track(t);
3420 }
3421 t->max = max;
3422 t->loc = l;
3423 return 1;
3424}
3425
3426static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3427 const struct track *track)
88a420e4
CL
3428{
3429 long start, end, pos;
3430 struct location *l;
3431 void *caddr;
45edfa58 3432 unsigned long age = jiffies - track->when;
88a420e4
CL
3433
3434 start = -1;
3435 end = t->count;
3436
3437 for ( ; ; ) {
3438 pos = start + (end - start + 1) / 2;
3439
3440 /*
3441 * There is nothing at "end". If we end up there
3442 * we need to add something to before end.
3443 */
3444 if (pos == end)
3445 break;
3446
3447 caddr = t->loc[pos].addr;
45edfa58
CL
3448 if (track->addr == caddr) {
3449
3450 l = &t->loc[pos];
3451 l->count++;
3452 if (track->when) {
3453 l->sum_time += age;
3454 if (age < l->min_time)
3455 l->min_time = age;
3456 if (age > l->max_time)
3457 l->max_time = age;
3458
3459 if (track->pid < l->min_pid)
3460 l->min_pid = track->pid;
3461 if (track->pid > l->max_pid)
3462 l->max_pid = track->pid;
3463
3464 cpu_set(track->cpu, l->cpus);
3465 }
3466 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3467 return 1;
3468 }
3469
45edfa58 3470 if (track->addr < caddr)
88a420e4
CL
3471 end = pos;
3472 else
3473 start = pos;
3474 }
3475
3476 /*
672bba3a 3477 * Not found. Insert new tracking element.
88a420e4 3478 */
68dff6a9 3479 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3480 return 0;
3481
3482 l = t->loc + pos;
3483 if (pos < t->count)
3484 memmove(l + 1, l,
3485 (t->count - pos) * sizeof(struct location));
3486 t->count++;
3487 l->count = 1;
45edfa58
CL
3488 l->addr = track->addr;
3489 l->sum_time = age;
3490 l->min_time = age;
3491 l->max_time = age;
3492 l->min_pid = track->pid;
3493 l->max_pid = track->pid;
3494 cpus_clear(l->cpus);
3495 cpu_set(track->cpu, l->cpus);
3496 nodes_clear(l->nodes);
3497 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3498 return 1;
3499}
3500
3501static void process_slab(struct loc_track *t, struct kmem_cache *s,
3502 struct page *page, enum track_item alloc)
3503{
a973e9dd 3504 void *addr = page_address(page);
7656c72b 3505 DECLARE_BITMAP(map, s->objects);
88a420e4
CL
3506 void *p;
3507
3508 bitmap_zero(map, s->objects);
7656c72b
CL
3509 for_each_free_object(p, s, page->freelist)
3510 set_bit(slab_index(p, s, addr), map);
88a420e4 3511
7656c72b 3512 for_each_object(p, s, addr)
45edfa58
CL
3513 if (!test_bit(slab_index(p, s, addr), map))
3514 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3515}
3516
3517static int list_locations(struct kmem_cache *s, char *buf,
3518 enum track_item alloc)
3519{
e374d483 3520 int len = 0;
88a420e4 3521 unsigned long i;
68dff6a9 3522 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3523 int node;
3524
68dff6a9 3525 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3526 GFP_TEMPORARY))
68dff6a9 3527 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3528
3529 /* Push back cpu slabs */
3530 flush_all(s);
3531
f64dc58c 3532 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3533 struct kmem_cache_node *n = get_node(s, node);
3534 unsigned long flags;
3535 struct page *page;
3536
9e86943b 3537 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3538 continue;
3539
3540 spin_lock_irqsave(&n->list_lock, flags);
3541 list_for_each_entry(page, &n->partial, lru)
3542 process_slab(&t, s, page, alloc);
3543 list_for_each_entry(page, &n->full, lru)
3544 process_slab(&t, s, page, alloc);
3545 spin_unlock_irqrestore(&n->list_lock, flags);
3546 }
3547
3548 for (i = 0; i < t.count; i++) {
45edfa58 3549 struct location *l = &t.loc[i];
88a420e4 3550
e374d483 3551 if (len > PAGE_SIZE - 100)
88a420e4 3552 break;
e374d483 3553 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3554
3555 if (l->addr)
e374d483 3556 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3557 else
e374d483 3558 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3559
3560 if (l->sum_time != l->min_time) {
3561 unsigned long remainder;
3562
e374d483 3563 len += sprintf(buf + len, " age=%ld/%ld/%ld",
45edfa58
CL
3564 l->min_time,
3565 div_long_long_rem(l->sum_time, l->count, &remainder),
3566 l->max_time);
3567 } else
e374d483 3568 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3569 l->min_time);
3570
3571 if (l->min_pid != l->max_pid)
e374d483 3572 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3573 l->min_pid, l->max_pid);
3574 else
e374d483 3575 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3576 l->min_pid);
3577
84966343 3578 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
e374d483
HH
3579 len < PAGE_SIZE - 60) {
3580 len += sprintf(buf + len, " cpus=");
3581 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3582 l->cpus);
3583 }
3584
84966343 3585 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3586 len < PAGE_SIZE - 60) {
3587 len += sprintf(buf + len, " nodes=");
3588 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3589 l->nodes);
3590 }
3591
e374d483 3592 len += sprintf(buf + len, "\n");
88a420e4
CL
3593 }
3594
3595 free_loc_track(&t);
3596 if (!t.count)
e374d483
HH
3597 len += sprintf(buf, "No data\n");
3598 return len;
88a420e4
CL
3599}
3600
81819f0f
CL
3601enum slab_stat_type {
3602 SL_FULL,
3603 SL_PARTIAL,
3604 SL_CPU,
3605 SL_OBJECTS
3606};
3607
3608#define SO_FULL (1 << SL_FULL)
3609#define SO_PARTIAL (1 << SL_PARTIAL)
3610#define SO_CPU (1 << SL_CPU)
3611#define SO_OBJECTS (1 << SL_OBJECTS)
3612
62e5c4b4
CG
3613static ssize_t show_slab_objects(struct kmem_cache *s,
3614 char *buf, unsigned long flags)
81819f0f
CL
3615{
3616 unsigned long total = 0;
3617 int cpu;
3618 int node;
3619 int x;
3620 unsigned long *nodes;
3621 unsigned long *per_cpu;
3622
3623 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3624 if (!nodes)
3625 return -ENOMEM;
81819f0f
CL
3626 per_cpu = nodes + nr_node_ids;
3627
3628 for_each_possible_cpu(cpu) {
dfb4f096
CL
3629 struct page *page;
3630 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 3631
dfb4f096
CL
3632 if (!c)
3633 continue;
3634
3635 page = c->page;
ee3c72a1
CL
3636 node = c->node;
3637 if (node < 0)
3638 continue;
81819f0f 3639 if (page) {
81819f0f 3640 if (flags & SO_CPU) {
81819f0f
CL
3641 if (flags & SO_OBJECTS)
3642 x = page->inuse;
3643 else
3644 x = 1;
3645 total += x;
ee3c72a1 3646 nodes[node] += x;
81819f0f 3647 }
ee3c72a1 3648 per_cpu[node]++;
81819f0f
CL
3649 }
3650 }
3651
f64dc58c 3652 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3653 struct kmem_cache_node *n = get_node(s, node);
3654
3655 if (flags & SO_PARTIAL) {
3656 if (flags & SO_OBJECTS)
3657 x = count_partial(n);
3658 else
3659 x = n->nr_partial;
3660 total += x;
3661 nodes[node] += x;
3662 }
3663
3664 if (flags & SO_FULL) {
9e86943b 3665 int full_slabs = atomic_long_read(&n->nr_slabs)
81819f0f
CL
3666 - per_cpu[node]
3667 - n->nr_partial;
3668
3669 if (flags & SO_OBJECTS)
3670 x = full_slabs * s->objects;
3671 else
3672 x = full_slabs;
3673 total += x;
3674 nodes[node] += x;
3675 }
3676 }
3677
3678 x = sprintf(buf, "%lu", total);
3679#ifdef CONFIG_NUMA
f64dc58c 3680 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3681 if (nodes[node])
3682 x += sprintf(buf + x, " N%d=%lu",
3683 node, nodes[node]);
3684#endif
3685 kfree(nodes);
3686 return x + sprintf(buf + x, "\n");
3687}
3688
3689static int any_slab_objects(struct kmem_cache *s)
3690{
3691 int node;
3692 int cpu;
3693
dfb4f096
CL
3694 for_each_possible_cpu(cpu) {
3695 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3696
3697 if (c && c->page)
81819f0f 3698 return 1;
dfb4f096 3699 }
81819f0f 3700
dfb4f096 3701 for_each_online_node(node) {
81819f0f
CL
3702 struct kmem_cache_node *n = get_node(s, node);
3703
dfb4f096
CL
3704 if (!n)
3705 continue;
3706
9e86943b 3707 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
81819f0f
CL
3708 return 1;
3709 }
3710 return 0;
3711}
3712
3713#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3714#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3715
3716struct slab_attribute {
3717 struct attribute attr;
3718 ssize_t (*show)(struct kmem_cache *s, char *buf);
3719 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3720};
3721
3722#define SLAB_ATTR_RO(_name) \
3723 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3724
3725#define SLAB_ATTR(_name) \
3726 static struct slab_attribute _name##_attr = \
3727 __ATTR(_name, 0644, _name##_show, _name##_store)
3728
81819f0f
CL
3729static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3730{
3731 return sprintf(buf, "%d\n", s->size);
3732}
3733SLAB_ATTR_RO(slab_size);
3734
3735static ssize_t align_show(struct kmem_cache *s, char *buf)
3736{
3737 return sprintf(buf, "%d\n", s->align);
3738}
3739SLAB_ATTR_RO(align);
3740
3741static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3742{
3743 return sprintf(buf, "%d\n", s->objsize);
3744}
3745SLAB_ATTR_RO(object_size);
3746
3747static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3748{
3749 return sprintf(buf, "%d\n", s->objects);
3750}
3751SLAB_ATTR_RO(objs_per_slab);
3752
3753static ssize_t order_show(struct kmem_cache *s, char *buf)
3754{
3755 return sprintf(buf, "%d\n", s->order);
3756}
3757SLAB_ATTR_RO(order);
3758
3759static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3760{
3761 if (s->ctor) {
3762 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3763
3764 return n + sprintf(buf + n, "\n");
3765 }
3766 return 0;
3767}
3768SLAB_ATTR_RO(ctor);
3769
81819f0f
CL
3770static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3771{
3772 return sprintf(buf, "%d\n", s->refcount - 1);
3773}
3774SLAB_ATTR_RO(aliases);
3775
3776static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3777{
d9acf4b7 3778 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
81819f0f
CL
3779}
3780SLAB_ATTR_RO(slabs);
3781
3782static ssize_t partial_show(struct kmem_cache *s, char *buf)
3783{
d9acf4b7 3784 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3785}
3786SLAB_ATTR_RO(partial);
3787
3788static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3789{
d9acf4b7 3790 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3791}
3792SLAB_ATTR_RO(cpu_slabs);
3793
3794static ssize_t objects_show(struct kmem_cache *s, char *buf)
3795{
d9acf4b7 3796 return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
81819f0f
CL
3797}
3798SLAB_ATTR_RO(objects);
3799
3800static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3801{
3802 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3803}
3804
3805static ssize_t sanity_checks_store(struct kmem_cache *s,
3806 const char *buf, size_t length)
3807{
3808 s->flags &= ~SLAB_DEBUG_FREE;
3809 if (buf[0] == '1')
3810 s->flags |= SLAB_DEBUG_FREE;
3811 return length;
3812}
3813SLAB_ATTR(sanity_checks);
3814
3815static ssize_t trace_show(struct kmem_cache *s, char *buf)
3816{
3817 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3818}
3819
3820static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3821 size_t length)
3822{
3823 s->flags &= ~SLAB_TRACE;
3824 if (buf[0] == '1')
3825 s->flags |= SLAB_TRACE;
3826 return length;
3827}
3828SLAB_ATTR(trace);
3829
3830static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3831{
3832 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3833}
3834
3835static ssize_t reclaim_account_store(struct kmem_cache *s,
3836 const char *buf, size_t length)
3837{
3838 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3839 if (buf[0] == '1')
3840 s->flags |= SLAB_RECLAIM_ACCOUNT;
3841 return length;
3842}
3843SLAB_ATTR(reclaim_account);
3844
3845static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3846{
5af60839 3847 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3848}
3849SLAB_ATTR_RO(hwcache_align);
3850
3851#ifdef CONFIG_ZONE_DMA
3852static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3853{
3854 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3855}
3856SLAB_ATTR_RO(cache_dma);
3857#endif
3858
3859static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3860{
3861 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3862}
3863SLAB_ATTR_RO(destroy_by_rcu);
3864
3865static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3866{
3867 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3868}
3869
3870static ssize_t red_zone_store(struct kmem_cache *s,
3871 const char *buf, size_t length)
3872{
3873 if (any_slab_objects(s))
3874 return -EBUSY;
3875
3876 s->flags &= ~SLAB_RED_ZONE;
3877 if (buf[0] == '1')
3878 s->flags |= SLAB_RED_ZONE;
3879 calculate_sizes(s);
3880 return length;
3881}
3882SLAB_ATTR(red_zone);
3883
3884static ssize_t poison_show(struct kmem_cache *s, char *buf)
3885{
3886 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3887}
3888
3889static ssize_t poison_store(struct kmem_cache *s,
3890 const char *buf, size_t length)
3891{
3892 if (any_slab_objects(s))
3893 return -EBUSY;
3894
3895 s->flags &= ~SLAB_POISON;
3896 if (buf[0] == '1')
3897 s->flags |= SLAB_POISON;
3898 calculate_sizes(s);
3899 return length;
3900}
3901SLAB_ATTR(poison);
3902
3903static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3904{
3905 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3906}
3907
3908static ssize_t store_user_store(struct kmem_cache *s,
3909 const char *buf, size_t length)
3910{
3911 if (any_slab_objects(s))
3912 return -EBUSY;
3913
3914 s->flags &= ~SLAB_STORE_USER;
3915 if (buf[0] == '1')
3916 s->flags |= SLAB_STORE_USER;
3917 calculate_sizes(s);
3918 return length;
3919}
3920SLAB_ATTR(store_user);
3921
53e15af0
CL
3922static ssize_t validate_show(struct kmem_cache *s, char *buf)
3923{
3924 return 0;
3925}
3926
3927static ssize_t validate_store(struct kmem_cache *s,
3928 const char *buf, size_t length)
3929{
434e245d
CL
3930 int ret = -EINVAL;
3931
3932 if (buf[0] == '1') {
3933 ret = validate_slab_cache(s);
3934 if (ret >= 0)
3935 ret = length;
3936 }
3937 return ret;
53e15af0
CL
3938}
3939SLAB_ATTR(validate);
3940
2086d26a
CL
3941static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3942{
3943 return 0;
3944}
3945
3946static ssize_t shrink_store(struct kmem_cache *s,
3947 const char *buf, size_t length)
3948{
3949 if (buf[0] == '1') {
3950 int rc = kmem_cache_shrink(s);
3951
3952 if (rc)
3953 return rc;
3954 } else
3955 return -EINVAL;
3956 return length;
3957}
3958SLAB_ATTR(shrink);
3959
88a420e4
CL
3960static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3961{
3962 if (!(s->flags & SLAB_STORE_USER))
3963 return -ENOSYS;
3964 return list_locations(s, buf, TRACK_ALLOC);
3965}
3966SLAB_ATTR_RO(alloc_calls);
3967
3968static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3969{
3970 if (!(s->flags & SLAB_STORE_USER))
3971 return -ENOSYS;
3972 return list_locations(s, buf, TRACK_FREE);
3973}
3974SLAB_ATTR_RO(free_calls);
3975
81819f0f 3976#ifdef CONFIG_NUMA
9824601e 3977static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 3978{
9824601e 3979 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
3980}
3981
9824601e 3982static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
3983 const char *buf, size_t length)
3984{
3985 int n = simple_strtoul(buf, NULL, 10);
3986
3987 if (n < 100)
9824601e 3988 s->remote_node_defrag_ratio = n * 10;
81819f0f
CL
3989 return length;
3990}
9824601e 3991SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
3992#endif
3993
8ff12cfc 3994#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
3995static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
3996{
3997 unsigned long sum = 0;
3998 int cpu;
3999 int len;
4000 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4001
4002 if (!data)
4003 return -ENOMEM;
4004
4005 for_each_online_cpu(cpu) {
4006 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4007
4008 data[cpu] = x;
4009 sum += x;
4010 }
4011
4012 len = sprintf(buf, "%lu", sum);
4013
50ef37b9 4014#ifdef CONFIG_SMP
8ff12cfc
CL
4015 for_each_online_cpu(cpu) {
4016 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4017 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4018 }
50ef37b9 4019#endif
8ff12cfc
CL
4020 kfree(data);
4021 return len + sprintf(buf + len, "\n");
4022}
4023
4024#define STAT_ATTR(si, text) \
4025static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4026{ \
4027 return show_stat(s, buf, si); \
4028} \
4029SLAB_ATTR_RO(text); \
4030
4031STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4032STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4033STAT_ATTR(FREE_FASTPATH, free_fastpath);
4034STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4035STAT_ATTR(FREE_FROZEN, free_frozen);
4036STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4037STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4038STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4039STAT_ATTR(ALLOC_SLAB, alloc_slab);
4040STAT_ATTR(ALLOC_REFILL, alloc_refill);
4041STAT_ATTR(FREE_SLAB, free_slab);
4042STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4043STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4044STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4045STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4046STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4047STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4048
4049#endif
4050
06428780 4051static struct attribute *slab_attrs[] = {
81819f0f
CL
4052 &slab_size_attr.attr,
4053 &object_size_attr.attr,
4054 &objs_per_slab_attr.attr,
4055 &order_attr.attr,
4056 &objects_attr.attr,
4057 &slabs_attr.attr,
4058 &partial_attr.attr,
4059 &cpu_slabs_attr.attr,
4060 &ctor_attr.attr,
81819f0f
CL
4061 &aliases_attr.attr,
4062 &align_attr.attr,
4063 &sanity_checks_attr.attr,
4064 &trace_attr.attr,
4065 &hwcache_align_attr.attr,
4066 &reclaim_account_attr.attr,
4067 &destroy_by_rcu_attr.attr,
4068 &red_zone_attr.attr,
4069 &poison_attr.attr,
4070 &store_user_attr.attr,
53e15af0 4071 &validate_attr.attr,
2086d26a 4072 &shrink_attr.attr,
88a420e4
CL
4073 &alloc_calls_attr.attr,
4074 &free_calls_attr.attr,
81819f0f
CL
4075#ifdef CONFIG_ZONE_DMA
4076 &cache_dma_attr.attr,
4077#endif
4078#ifdef CONFIG_NUMA
9824601e 4079 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4080#endif
4081#ifdef CONFIG_SLUB_STATS
4082 &alloc_fastpath_attr.attr,
4083 &alloc_slowpath_attr.attr,
4084 &free_fastpath_attr.attr,
4085 &free_slowpath_attr.attr,
4086 &free_frozen_attr.attr,
4087 &free_add_partial_attr.attr,
4088 &free_remove_partial_attr.attr,
4089 &alloc_from_partial_attr.attr,
4090 &alloc_slab_attr.attr,
4091 &alloc_refill_attr.attr,
4092 &free_slab_attr.attr,
4093 &cpuslab_flush_attr.attr,
4094 &deactivate_full_attr.attr,
4095 &deactivate_empty_attr.attr,
4096 &deactivate_to_head_attr.attr,
4097 &deactivate_to_tail_attr.attr,
4098 &deactivate_remote_frees_attr.attr,
81819f0f
CL
4099#endif
4100 NULL
4101};
4102
4103static struct attribute_group slab_attr_group = {
4104 .attrs = slab_attrs,
4105};
4106
4107static ssize_t slab_attr_show(struct kobject *kobj,
4108 struct attribute *attr,
4109 char *buf)
4110{
4111 struct slab_attribute *attribute;
4112 struct kmem_cache *s;
4113 int err;
4114
4115 attribute = to_slab_attr(attr);
4116 s = to_slab(kobj);
4117
4118 if (!attribute->show)
4119 return -EIO;
4120
4121 err = attribute->show(s, buf);
4122
4123 return err;
4124}
4125
4126static ssize_t slab_attr_store(struct kobject *kobj,
4127 struct attribute *attr,
4128 const char *buf, size_t len)
4129{
4130 struct slab_attribute *attribute;
4131 struct kmem_cache *s;
4132 int err;
4133
4134 attribute = to_slab_attr(attr);
4135 s = to_slab(kobj);
4136
4137 if (!attribute->store)
4138 return -EIO;
4139
4140 err = attribute->store(s, buf, len);
4141
4142 return err;
4143}
4144
151c602f
CL
4145static void kmem_cache_release(struct kobject *kobj)
4146{
4147 struct kmem_cache *s = to_slab(kobj);
4148
4149 kfree(s);
4150}
4151
81819f0f
CL
4152static struct sysfs_ops slab_sysfs_ops = {
4153 .show = slab_attr_show,
4154 .store = slab_attr_store,
4155};
4156
4157static struct kobj_type slab_ktype = {
4158 .sysfs_ops = &slab_sysfs_ops,
151c602f 4159 .release = kmem_cache_release
81819f0f
CL
4160};
4161
4162static int uevent_filter(struct kset *kset, struct kobject *kobj)
4163{
4164 struct kobj_type *ktype = get_ktype(kobj);
4165
4166 if (ktype == &slab_ktype)
4167 return 1;
4168 return 0;
4169}
4170
4171static struct kset_uevent_ops slab_uevent_ops = {
4172 .filter = uevent_filter,
4173};
4174
27c3a314 4175static struct kset *slab_kset;
81819f0f
CL
4176
4177#define ID_STR_LENGTH 64
4178
4179/* Create a unique string id for a slab cache:
6446faa2
CL
4180 *
4181 * Format :[flags-]size
81819f0f
CL
4182 */
4183static char *create_unique_id(struct kmem_cache *s)
4184{
4185 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4186 char *p = name;
4187
4188 BUG_ON(!name);
4189
4190 *p++ = ':';
4191 /*
4192 * First flags affecting slabcache operations. We will only
4193 * get here for aliasable slabs so we do not need to support
4194 * too many flags. The flags here must cover all flags that
4195 * are matched during merging to guarantee that the id is
4196 * unique.
4197 */
4198 if (s->flags & SLAB_CACHE_DMA)
4199 *p++ = 'd';
4200 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4201 *p++ = 'a';
4202 if (s->flags & SLAB_DEBUG_FREE)
4203 *p++ = 'F';
4204 if (p != name + 1)
4205 *p++ = '-';
4206 p += sprintf(p, "%07d", s->size);
4207 BUG_ON(p > name + ID_STR_LENGTH - 1);
4208 return name;
4209}
4210
4211static int sysfs_slab_add(struct kmem_cache *s)
4212{
4213 int err;
4214 const char *name;
4215 int unmergeable;
4216
4217 if (slab_state < SYSFS)
4218 /* Defer until later */
4219 return 0;
4220
4221 unmergeable = slab_unmergeable(s);
4222 if (unmergeable) {
4223 /*
4224 * Slabcache can never be merged so we can use the name proper.
4225 * This is typically the case for debug situations. In that
4226 * case we can catch duplicate names easily.
4227 */
27c3a314 4228 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4229 name = s->name;
4230 } else {
4231 /*
4232 * Create a unique name for the slab as a target
4233 * for the symlinks.
4234 */
4235 name = create_unique_id(s);
4236 }
4237
27c3a314 4238 s->kobj.kset = slab_kset;
1eada11c
GKH
4239 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4240 if (err) {
4241 kobject_put(&s->kobj);
81819f0f 4242 return err;
1eada11c 4243 }
81819f0f
CL
4244
4245 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4246 if (err)
4247 return err;
4248 kobject_uevent(&s->kobj, KOBJ_ADD);
4249 if (!unmergeable) {
4250 /* Setup first alias */
4251 sysfs_slab_alias(s, s->name);
4252 kfree(name);
4253 }
4254 return 0;
4255}
4256
4257static void sysfs_slab_remove(struct kmem_cache *s)
4258{
4259 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4260 kobject_del(&s->kobj);
151c602f 4261 kobject_put(&s->kobj);
81819f0f
CL
4262}
4263
4264/*
4265 * Need to buffer aliases during bootup until sysfs becomes
4266 * available lest we loose that information.
4267 */
4268struct saved_alias {
4269 struct kmem_cache *s;
4270 const char *name;
4271 struct saved_alias *next;
4272};
4273
5af328a5 4274static struct saved_alias *alias_list;
81819f0f
CL
4275
4276static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4277{
4278 struct saved_alias *al;
4279
4280 if (slab_state == SYSFS) {
4281 /*
4282 * If we have a leftover link then remove it.
4283 */
27c3a314
GKH
4284 sysfs_remove_link(&slab_kset->kobj, name);
4285 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4286 }
4287
4288 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4289 if (!al)
4290 return -ENOMEM;
4291
4292 al->s = s;
4293 al->name = name;
4294 al->next = alias_list;
4295 alias_list = al;
4296 return 0;
4297}
4298
4299static int __init slab_sysfs_init(void)
4300{
5b95a4ac 4301 struct kmem_cache *s;
81819f0f
CL
4302 int err;
4303
0ff21e46 4304 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4305 if (!slab_kset) {
81819f0f
CL
4306 printk(KERN_ERR "Cannot register slab subsystem.\n");
4307 return -ENOSYS;
4308 }
4309
26a7bd03
CL
4310 slab_state = SYSFS;
4311
5b95a4ac 4312 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4313 err = sysfs_slab_add(s);
5d540fb7
CL
4314 if (err)
4315 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4316 " to sysfs\n", s->name);
26a7bd03 4317 }
81819f0f
CL
4318
4319 while (alias_list) {
4320 struct saved_alias *al = alias_list;
4321
4322 alias_list = alias_list->next;
4323 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4324 if (err)
4325 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4326 " %s to sysfs\n", s->name);
81819f0f
CL
4327 kfree(al);
4328 }
4329
4330 resiliency_test();
4331 return 0;
4332}
4333
4334__initcall(slab_sysfs_init);
81819f0f 4335#endif
57ed3eda
PE
4336
4337/*
4338 * The /proc/slabinfo ABI
4339 */
158a9624
LT
4340#ifdef CONFIG_SLABINFO
4341
4342ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4343 size_t count, loff_t *ppos)
4344{
4345 return -EINVAL;
4346}
4347
57ed3eda
PE
4348
4349static void print_slabinfo_header(struct seq_file *m)
4350{
4351 seq_puts(m, "slabinfo - version: 2.1\n");
4352 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4353 "<objperslab> <pagesperslab>");
4354 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4355 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4356 seq_putc(m, '\n');
4357}
4358
4359static void *s_start(struct seq_file *m, loff_t *pos)
4360{
4361 loff_t n = *pos;
4362
4363 down_read(&slub_lock);
4364 if (!n)
4365 print_slabinfo_header(m);
4366
4367 return seq_list_start(&slab_caches, *pos);
4368}
4369
4370static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4371{
4372 return seq_list_next(p, &slab_caches, pos);
4373}
4374
4375static void s_stop(struct seq_file *m, void *p)
4376{
4377 up_read(&slub_lock);
4378}
4379
4380static int s_show(struct seq_file *m, void *p)
4381{
4382 unsigned long nr_partials = 0;
4383 unsigned long nr_slabs = 0;
4384 unsigned long nr_inuse = 0;
4385 unsigned long nr_objs;
4386 struct kmem_cache *s;
4387 int node;
4388
4389 s = list_entry(p, struct kmem_cache, list);
4390
4391 for_each_online_node(node) {
4392 struct kmem_cache_node *n = get_node(s, node);
4393
4394 if (!n)
4395 continue;
4396
4397 nr_partials += n->nr_partial;
4398 nr_slabs += atomic_long_read(&n->nr_slabs);
4399 nr_inuse += count_partial(n);
4400 }
4401
4402 nr_objs = nr_slabs * s->objects;
4403 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4404
4405 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4406 nr_objs, s->size, s->objects, (1 << s->order));
4407 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4408 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4409 0UL);
4410 seq_putc(m, '\n');
4411 return 0;
4412}
4413
4414const struct seq_operations slabinfo_op = {
4415 .start = s_start,
4416 .next = s_next,
4417 .stop = s_stop,
4418 .show = s_show,
4419};
4420
158a9624 4421#endif /* CONFIG_SLABINFO */