]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slub.c
SLUB: rename defrag to remote_node_defrag_ratio
[net-next-2.6.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
b9049e23 23#include <linux/memory.h>
81819f0f
CL
24
25/*
26 * Lock order:
27 * 1. slab_lock(page)
28 * 2. slab->list_lock
29 *
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
36 *
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
42 *
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
47 * the list lock.
48 *
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
61 *
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
66 *
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
69 *
672bba3a
CL
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 72 * freed then the slab will show up again on the partial lists.
672bba3a
CL
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
81819f0f
CL
75 *
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
79 *
80 * Overloading of page flags that are otherwise used for LRU management.
81 *
4b6f0750
CL
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
90 *
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
dfb4f096 94 * freelist that allows lockless access to
894b8788
CL
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
81819f0f
CL
97 *
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
894b8788 100 * the fast path and disables lockless freelists.
81819f0f
CL
101 */
102
5577bd8a
CL
103#define FROZEN (1 << PG_active)
104
105#ifdef CONFIG_SLUB_DEBUG
106#define SLABDEBUG (1 << PG_error)
107#else
108#define SLABDEBUG 0
109#endif
110
4b6f0750
CL
111static inline int SlabFrozen(struct page *page)
112{
5577bd8a 113 return page->flags & FROZEN;
4b6f0750
CL
114}
115
116static inline void SetSlabFrozen(struct page *page)
117{
5577bd8a 118 page->flags |= FROZEN;
4b6f0750
CL
119}
120
121static inline void ClearSlabFrozen(struct page *page)
122{
5577bd8a 123 page->flags &= ~FROZEN;
4b6f0750
CL
124}
125
35e5d7ee
CL
126static inline int SlabDebug(struct page *page)
127{
5577bd8a 128 return page->flags & SLABDEBUG;
35e5d7ee
CL
129}
130
131static inline void SetSlabDebug(struct page *page)
132{
5577bd8a 133 page->flags |= SLABDEBUG;
35e5d7ee
CL
134}
135
136static inline void ClearSlabDebug(struct page *page)
137{
5577bd8a 138 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
139}
140
81819f0f
CL
141/*
142 * Issues still to be resolved:
143 *
81819f0f
CL
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
145 *
81819f0f
CL
146 * - Variable sizing of the per node arrays
147 */
148
149/* Enable to test recovery from slab corruption on boot */
150#undef SLUB_RESILIENCY_TEST
151
152#if PAGE_SHIFT <= 12
153
154/*
155 * Small page size. Make sure that we do not fragment memory
156 */
157#define DEFAULT_MAX_ORDER 1
158#define DEFAULT_MIN_OBJECTS 4
159
160#else
161
162/*
163 * Large page machines are customarily able to handle larger
164 * page orders.
165 */
166#define DEFAULT_MAX_ORDER 2
167#define DEFAULT_MIN_OBJECTS 8
168
169#endif
170
2086d26a
CL
171/*
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
174 */
76be8950 175#define MIN_PARTIAL 5
e95eed57 176
2086d26a
CL
177/*
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
181 */
182#define MAX_PARTIAL 10
183
81819f0f
CL
184#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
672bba3a 186
81819f0f
CL
187/*
188 * Set of flags that will prevent slab merging
189 */
190#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
192
193#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
194 SLAB_CACHE_DMA)
195
196#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 197#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
198#endif
199
200#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 201#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
202#endif
203
204/* Internal SLUB flags */
1ceef402
CL
205#define __OBJECT_POISON 0x80000000 /* Poison object */
206#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f 207
65c02d4c
CL
208/* Not all arches define cache_line_size */
209#ifndef cache_line_size
210#define cache_line_size() L1_CACHE_BYTES
211#endif
212
81819f0f
CL
213static int kmem_size = sizeof(struct kmem_cache);
214
215#ifdef CONFIG_SMP
216static struct notifier_block slab_notifier;
217#endif
218
219static enum {
220 DOWN, /* No slab functionality available */
221 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 222 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
223 SYSFS /* Sysfs up */
224} slab_state = DOWN;
225
226/* A list of all slab caches on the system */
227static DECLARE_RWSEM(slub_lock);
5af328a5 228static LIST_HEAD(slab_caches);
81819f0f 229
02cbc874
CL
230/*
231 * Tracking user of a slab.
232 */
233struct track {
234 void *addr; /* Called from address */
235 int cpu; /* Was running on cpu */
236 int pid; /* Pid context */
237 unsigned long when; /* When did the operation occur */
238};
239
240enum track_item { TRACK_ALLOC, TRACK_FREE };
241
41ecc55b 242#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
243static int sysfs_slab_add(struct kmem_cache *);
244static int sysfs_slab_alias(struct kmem_cache *, const char *);
245static void sysfs_slab_remove(struct kmem_cache *);
246#else
0c710013
CL
247static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
248static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
249 { return 0; }
151c602f
CL
250static inline void sysfs_slab_remove(struct kmem_cache *s)
251{
252 kfree(s);
253}
81819f0f
CL
254#endif
255
256/********************************************************************
257 * Core slab cache functions
258 *******************************************************************/
259
260int slab_is_available(void)
261{
262 return slab_state >= UP;
263}
264
265static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
266{
267#ifdef CONFIG_NUMA
268 return s->node[node];
269#else
270 return &s->local_node;
271#endif
272}
273
dfb4f096
CL
274static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
275{
4c93c355
CL
276#ifdef CONFIG_SMP
277 return s->cpu_slab[cpu];
278#else
279 return &s->cpu_slab;
280#endif
dfb4f096
CL
281}
282
02cbc874
CL
283static inline int check_valid_pointer(struct kmem_cache *s,
284 struct page *page, const void *object)
285{
286 void *base;
287
288 if (!object)
289 return 1;
290
291 base = page_address(page);
292 if (object < base || object >= base + s->objects * s->size ||
293 (object - base) % s->size) {
294 return 0;
295 }
296
297 return 1;
298}
299
7656c72b
CL
300/*
301 * Slow version of get and set free pointer.
302 *
303 * This version requires touching the cache lines of kmem_cache which
304 * we avoid to do in the fast alloc free paths. There we obtain the offset
305 * from the page struct.
306 */
307static inline void *get_freepointer(struct kmem_cache *s, void *object)
308{
309 return *(void **)(object + s->offset);
310}
311
312static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
313{
314 *(void **)(object + s->offset) = fp;
315}
316
317/* Loop over all objects in a slab */
318#define for_each_object(__p, __s, __addr) \
319 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
320 __p += (__s)->size)
321
322/* Scan freelist */
323#define for_each_free_object(__p, __s, __free) \
324 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
325
326/* Determine object index from a given position */
327static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
328{
329 return (p - addr) / s->size;
330}
331
41ecc55b
CL
332#ifdef CONFIG_SLUB_DEBUG
333/*
334 * Debug settings:
335 */
f0630fff
CL
336#ifdef CONFIG_SLUB_DEBUG_ON
337static int slub_debug = DEBUG_DEFAULT_FLAGS;
338#else
41ecc55b 339static int slub_debug;
f0630fff 340#endif
41ecc55b
CL
341
342static char *slub_debug_slabs;
343
81819f0f
CL
344/*
345 * Object debugging
346 */
347static void print_section(char *text, u8 *addr, unsigned int length)
348{
349 int i, offset;
350 int newline = 1;
351 char ascii[17];
352
353 ascii[16] = 0;
354
355 for (i = 0; i < length; i++) {
356 if (newline) {
24922684 357 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
358 newline = 0;
359 }
360 printk(" %02x", addr[i]);
361 offset = i % 16;
362 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
363 if (offset == 15) {
364 printk(" %s\n",ascii);
365 newline = 1;
366 }
367 }
368 if (!newline) {
369 i %= 16;
370 while (i < 16) {
371 printk(" ");
372 ascii[i] = ' ';
373 i++;
374 }
375 printk(" %s\n", ascii);
376 }
377}
378
81819f0f
CL
379static struct track *get_track(struct kmem_cache *s, void *object,
380 enum track_item alloc)
381{
382 struct track *p;
383
384 if (s->offset)
385 p = object + s->offset + sizeof(void *);
386 else
387 p = object + s->inuse;
388
389 return p + alloc;
390}
391
392static void set_track(struct kmem_cache *s, void *object,
393 enum track_item alloc, void *addr)
394{
395 struct track *p;
396
397 if (s->offset)
398 p = object + s->offset + sizeof(void *);
399 else
400 p = object + s->inuse;
401
402 p += alloc;
403 if (addr) {
404 p->addr = addr;
405 p->cpu = smp_processor_id();
406 p->pid = current ? current->pid : -1;
407 p->when = jiffies;
408 } else
409 memset(p, 0, sizeof(struct track));
410}
411
81819f0f
CL
412static void init_tracking(struct kmem_cache *s, void *object)
413{
24922684
CL
414 if (!(s->flags & SLAB_STORE_USER))
415 return;
416
417 set_track(s, object, TRACK_FREE, NULL);
418 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
419}
420
421static void print_track(const char *s, struct track *t)
422{
423 if (!t->addr)
424 return;
425
24922684 426 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 427 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
428 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
429}
430
431static void print_tracking(struct kmem_cache *s, void *object)
432{
433 if (!(s->flags & SLAB_STORE_USER))
434 return;
435
436 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
437 print_track("Freed", get_track(s, object, TRACK_FREE));
438}
439
440static void print_page_info(struct page *page)
441{
442 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
443 page, page->inuse, page->freelist, page->flags);
444
445}
446
447static void slab_bug(struct kmem_cache *s, char *fmt, ...)
448{
449 va_list args;
450 char buf[100];
451
452 va_start(args, fmt);
453 vsnprintf(buf, sizeof(buf), fmt, args);
454 va_end(args);
455 printk(KERN_ERR "========================================"
456 "=====================================\n");
457 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
458 printk(KERN_ERR "----------------------------------------"
459 "-------------------------------------\n\n");
81819f0f
CL
460}
461
24922684
CL
462static void slab_fix(struct kmem_cache *s, char *fmt, ...)
463{
464 va_list args;
465 char buf[100];
466
467 va_start(args, fmt);
468 vsnprintf(buf, sizeof(buf), fmt, args);
469 va_end(args);
470 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
471}
472
473static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
474{
475 unsigned int off; /* Offset of last byte */
24922684
CL
476 u8 *addr = page_address(page);
477
478 print_tracking(s, p);
479
480 print_page_info(page);
481
482 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
483 p, p - addr, get_freepointer(s, p));
484
485 if (p > addr + 16)
486 print_section("Bytes b4", p - 16, 16);
487
488 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
489
490 if (s->flags & SLAB_RED_ZONE)
491 print_section("Redzone", p + s->objsize,
492 s->inuse - s->objsize);
493
81819f0f
CL
494 if (s->offset)
495 off = s->offset + sizeof(void *);
496 else
497 off = s->inuse;
498
24922684 499 if (s->flags & SLAB_STORE_USER)
81819f0f 500 off += 2 * sizeof(struct track);
81819f0f
CL
501
502 if (off != s->size)
503 /* Beginning of the filler is the free pointer */
24922684
CL
504 print_section("Padding", p + off, s->size - off);
505
506 dump_stack();
81819f0f
CL
507}
508
509static void object_err(struct kmem_cache *s, struct page *page,
510 u8 *object, char *reason)
511{
24922684
CL
512 slab_bug(s, reason);
513 print_trailer(s, page, object);
81819f0f
CL
514}
515
24922684 516static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
517{
518 va_list args;
519 char buf[100];
520
24922684
CL
521 va_start(args, fmt);
522 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 523 va_end(args);
24922684
CL
524 slab_bug(s, fmt);
525 print_page_info(page);
81819f0f
CL
526 dump_stack();
527}
528
529static void init_object(struct kmem_cache *s, void *object, int active)
530{
531 u8 *p = object;
532
533 if (s->flags & __OBJECT_POISON) {
534 memset(p, POISON_FREE, s->objsize - 1);
535 p[s->objsize -1] = POISON_END;
536 }
537
538 if (s->flags & SLAB_RED_ZONE)
539 memset(p + s->objsize,
540 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
541 s->inuse - s->objsize);
542}
543
24922684 544static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
545{
546 while (bytes) {
547 if (*start != (u8)value)
24922684 548 return start;
81819f0f
CL
549 start++;
550 bytes--;
551 }
24922684
CL
552 return NULL;
553}
554
555static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
556 void *from, void *to)
557{
558 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
559 memset(from, data, to - from);
560}
561
562static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
563 u8 *object, char *what,
564 u8* start, unsigned int value, unsigned int bytes)
565{
566 u8 *fault;
567 u8 *end;
568
569 fault = check_bytes(start, value, bytes);
570 if (!fault)
571 return 1;
572
573 end = start + bytes;
574 while (end > fault && end[-1] == value)
575 end--;
576
577 slab_bug(s, "%s overwritten", what);
578 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
579 fault, end - 1, fault[0], value);
580 print_trailer(s, page, object);
581
582 restore_bytes(s, what, value, fault, end);
583 return 0;
81819f0f
CL
584}
585
81819f0f
CL
586/*
587 * Object layout:
588 *
589 * object address
590 * Bytes of the object to be managed.
591 * If the freepointer may overlay the object then the free
592 * pointer is the first word of the object.
672bba3a 593 *
81819f0f
CL
594 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
595 * 0xa5 (POISON_END)
596 *
597 * object + s->objsize
598 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
599 * Padding is extended by another word if Redzoning is enabled and
600 * objsize == inuse.
601 *
81819f0f
CL
602 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
603 * 0xcc (RED_ACTIVE) for objects in use.
604 *
605 * object + s->inuse
672bba3a
CL
606 * Meta data starts here.
607 *
81819f0f
CL
608 * A. Free pointer (if we cannot overwrite object on free)
609 * B. Tracking data for SLAB_STORE_USER
672bba3a
CL
610 * C. Padding to reach required alignment boundary or at mininum
611 * one word if debuggin is on to be able to detect writes
612 * before the word boundary.
613 *
614 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
615 *
616 * object + s->size
672bba3a 617 * Nothing is used beyond s->size.
81819f0f 618 *
672bba3a
CL
619 * If slabcaches are merged then the objsize and inuse boundaries are mostly
620 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
621 * may be used with merged slabcaches.
622 */
623
81819f0f
CL
624static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
625{
626 unsigned long off = s->inuse; /* The end of info */
627
628 if (s->offset)
629 /* Freepointer is placed after the object. */
630 off += sizeof(void *);
631
632 if (s->flags & SLAB_STORE_USER)
633 /* We also have user information there */
634 off += 2 * sizeof(struct track);
635
636 if (s->size == off)
637 return 1;
638
24922684
CL
639 return check_bytes_and_report(s, page, p, "Object padding",
640 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
641}
642
643static int slab_pad_check(struct kmem_cache *s, struct page *page)
644{
24922684
CL
645 u8 *start;
646 u8 *fault;
647 u8 *end;
648 int length;
649 int remainder;
81819f0f
CL
650
651 if (!(s->flags & SLAB_POISON))
652 return 1;
653
24922684
CL
654 start = page_address(page);
655 end = start + (PAGE_SIZE << s->order);
81819f0f 656 length = s->objects * s->size;
24922684 657 remainder = end - (start + length);
81819f0f
CL
658 if (!remainder)
659 return 1;
660
24922684
CL
661 fault = check_bytes(start + length, POISON_INUSE, remainder);
662 if (!fault)
663 return 1;
664 while (end > fault && end[-1] == POISON_INUSE)
665 end--;
666
667 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
668 print_section("Padding", start, length);
669
670 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
671 return 0;
81819f0f
CL
672}
673
674static int check_object(struct kmem_cache *s, struct page *page,
675 void *object, int active)
676{
677 u8 *p = object;
678 u8 *endobject = object + s->objsize;
679
680 if (s->flags & SLAB_RED_ZONE) {
681 unsigned int red =
682 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
683
24922684
CL
684 if (!check_bytes_and_report(s, page, object, "Redzone",
685 endobject, red, s->inuse - s->objsize))
81819f0f 686 return 0;
81819f0f 687 } else {
24922684
CL
688 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
689 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
690 POISON_INUSE, s->inuse - s->objsize);
81819f0f
CL
691 }
692
693 if (s->flags & SLAB_POISON) {
694 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
695 (!check_bytes_and_report(s, page, p, "Poison", p,
696 POISON_FREE, s->objsize - 1) ||
697 !check_bytes_and_report(s, page, p, "Poison",
698 p + s->objsize -1, POISON_END, 1)))
81819f0f 699 return 0;
81819f0f
CL
700 /*
701 * check_pad_bytes cleans up on its own.
702 */
703 check_pad_bytes(s, page, p);
704 }
705
706 if (!s->offset && active)
707 /*
708 * Object and freepointer overlap. Cannot check
709 * freepointer while object is allocated.
710 */
711 return 1;
712
713 /* Check free pointer validity */
714 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
715 object_err(s, page, p, "Freepointer corrupt");
716 /*
717 * No choice but to zap it and thus loose the remainder
718 * of the free objects in this slab. May cause
672bba3a 719 * another error because the object count is now wrong.
81819f0f
CL
720 */
721 set_freepointer(s, p, NULL);
722 return 0;
723 }
724 return 1;
725}
726
727static int check_slab(struct kmem_cache *s, struct page *page)
728{
729 VM_BUG_ON(!irqs_disabled());
730
731 if (!PageSlab(page)) {
24922684 732 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
733 return 0;
734 }
81819f0f 735 if (page->inuse > s->objects) {
24922684
CL
736 slab_err(s, page, "inuse %u > max %u",
737 s->name, page->inuse, s->objects);
81819f0f
CL
738 return 0;
739 }
740 /* Slab_pad_check fixes things up after itself */
741 slab_pad_check(s, page);
742 return 1;
743}
744
745/*
672bba3a
CL
746 * Determine if a certain object on a page is on the freelist. Must hold the
747 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
748 */
749static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
750{
751 int nr = 0;
752 void *fp = page->freelist;
753 void *object = NULL;
754
755 while (fp && nr <= s->objects) {
756 if (fp == search)
757 return 1;
758 if (!check_valid_pointer(s, page, fp)) {
759 if (object) {
760 object_err(s, page, object,
761 "Freechain corrupt");
762 set_freepointer(s, object, NULL);
763 break;
764 } else {
24922684 765 slab_err(s, page, "Freepointer corrupt");
81819f0f
CL
766 page->freelist = NULL;
767 page->inuse = s->objects;
24922684 768 slab_fix(s, "Freelist cleared");
81819f0f
CL
769 return 0;
770 }
771 break;
772 }
773 object = fp;
774 fp = get_freepointer(s, object);
775 nr++;
776 }
777
778 if (page->inuse != s->objects - nr) {
70d71228 779 slab_err(s, page, "Wrong object count. Counter is %d but "
24922684 780 "counted were %d", page->inuse, s->objects - nr);
81819f0f 781 page->inuse = s->objects - nr;
24922684 782 slab_fix(s, "Object count adjusted.");
81819f0f
CL
783 }
784 return search == NULL;
785}
786
3ec09742
CL
787static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
788{
789 if (s->flags & SLAB_TRACE) {
790 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
791 s->name,
792 alloc ? "alloc" : "free",
793 object, page->inuse,
794 page->freelist);
795
796 if (!alloc)
797 print_section("Object", (void *)object, s->objsize);
798
799 dump_stack();
800 }
801}
802
643b1138 803/*
672bba3a 804 * Tracking of fully allocated slabs for debugging purposes.
643b1138 805 */
e95eed57 806static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 807{
643b1138
CL
808 spin_lock(&n->list_lock);
809 list_add(&page->lru, &n->full);
810 spin_unlock(&n->list_lock);
811}
812
813static void remove_full(struct kmem_cache *s, struct page *page)
814{
815 struct kmem_cache_node *n;
816
817 if (!(s->flags & SLAB_STORE_USER))
818 return;
819
820 n = get_node(s, page_to_nid(page));
821
822 spin_lock(&n->list_lock);
823 list_del(&page->lru);
824 spin_unlock(&n->list_lock);
825}
826
3ec09742
CL
827static void setup_object_debug(struct kmem_cache *s, struct page *page,
828 void *object)
829{
830 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
831 return;
832
833 init_object(s, object, 0);
834 init_tracking(s, object);
835}
836
837static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
838 void *object, void *addr)
81819f0f
CL
839{
840 if (!check_slab(s, page))
841 goto bad;
842
843 if (object && !on_freelist(s, page, object)) {
24922684 844 object_err(s, page, object, "Object already allocated");
70d71228 845 goto bad;
81819f0f
CL
846 }
847
848 if (!check_valid_pointer(s, page, object)) {
849 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 850 goto bad;
81819f0f
CL
851 }
852
3ec09742 853 if (object && !check_object(s, page, object, 0))
81819f0f 854 goto bad;
81819f0f 855
3ec09742
CL
856 /* Success perform special debug activities for allocs */
857 if (s->flags & SLAB_STORE_USER)
858 set_track(s, object, TRACK_ALLOC, addr);
859 trace(s, page, object, 1);
860 init_object(s, object, 1);
81819f0f 861 return 1;
3ec09742 862
81819f0f
CL
863bad:
864 if (PageSlab(page)) {
865 /*
866 * If this is a slab page then lets do the best we can
867 * to avoid issues in the future. Marking all objects
672bba3a 868 * as used avoids touching the remaining objects.
81819f0f 869 */
24922684 870 slab_fix(s, "Marking all objects used");
81819f0f
CL
871 page->inuse = s->objects;
872 page->freelist = NULL;
81819f0f
CL
873 }
874 return 0;
875}
876
3ec09742
CL
877static int free_debug_processing(struct kmem_cache *s, struct page *page,
878 void *object, void *addr)
81819f0f
CL
879{
880 if (!check_slab(s, page))
881 goto fail;
882
883 if (!check_valid_pointer(s, page, object)) {
70d71228 884 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
885 goto fail;
886 }
887
888 if (on_freelist(s, page, object)) {
24922684 889 object_err(s, page, object, "Object already free");
81819f0f
CL
890 goto fail;
891 }
892
893 if (!check_object(s, page, object, 1))
894 return 0;
895
896 if (unlikely(s != page->slab)) {
897 if (!PageSlab(page))
70d71228
CL
898 slab_err(s, page, "Attempt to free object(0x%p) "
899 "outside of slab", object);
81819f0f 900 else
70d71228 901 if (!page->slab) {
81819f0f 902 printk(KERN_ERR
70d71228 903 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 904 object);
70d71228
CL
905 dump_stack();
906 }
81819f0f 907 else
24922684
CL
908 object_err(s, page, object,
909 "page slab pointer corrupt.");
81819f0f
CL
910 goto fail;
911 }
3ec09742
CL
912
913 /* Special debug activities for freeing objects */
914 if (!SlabFrozen(page) && !page->freelist)
915 remove_full(s, page);
916 if (s->flags & SLAB_STORE_USER)
917 set_track(s, object, TRACK_FREE, addr);
918 trace(s, page, object, 0);
919 init_object(s, object, 0);
81819f0f 920 return 1;
3ec09742 921
81819f0f 922fail:
24922684 923 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
924 return 0;
925}
926
41ecc55b
CL
927static int __init setup_slub_debug(char *str)
928{
f0630fff
CL
929 slub_debug = DEBUG_DEFAULT_FLAGS;
930 if (*str++ != '=' || !*str)
931 /*
932 * No options specified. Switch on full debugging.
933 */
934 goto out;
935
936 if (*str == ',')
937 /*
938 * No options but restriction on slabs. This means full
939 * debugging for slabs matching a pattern.
940 */
941 goto check_slabs;
942
943 slub_debug = 0;
944 if (*str == '-')
945 /*
946 * Switch off all debugging measures.
947 */
948 goto out;
949
950 /*
951 * Determine which debug features should be switched on
952 */
953 for ( ;*str && *str != ','; str++) {
954 switch (tolower(*str)) {
955 case 'f':
956 slub_debug |= SLAB_DEBUG_FREE;
957 break;
958 case 'z':
959 slub_debug |= SLAB_RED_ZONE;
960 break;
961 case 'p':
962 slub_debug |= SLAB_POISON;
963 break;
964 case 'u':
965 slub_debug |= SLAB_STORE_USER;
966 break;
967 case 't':
968 slub_debug |= SLAB_TRACE;
969 break;
970 default:
971 printk(KERN_ERR "slub_debug option '%c' "
972 "unknown. skipped\n",*str);
973 }
41ecc55b
CL
974 }
975
f0630fff 976check_slabs:
41ecc55b
CL
977 if (*str == ',')
978 slub_debug_slabs = str + 1;
f0630fff 979out:
41ecc55b
CL
980 return 1;
981}
982
983__setup("slub_debug", setup_slub_debug);
984
ba0268a8
CL
985static unsigned long kmem_cache_flags(unsigned long objsize,
986 unsigned long flags, const char *name,
4ba9b9d0 987 void (*ctor)(struct kmem_cache *, void *))
41ecc55b
CL
988{
989 /*
990 * The page->offset field is only 16 bit wide. This is an offset
991 * in units of words from the beginning of an object. If the slab
992 * size is bigger then we cannot move the free pointer behind the
993 * object anymore.
994 *
995 * On 32 bit platforms the limit is 256k. On 64bit platforms
996 * the limit is 512k.
997 *
c59def9f 998 * Debugging or ctor may create a need to move the free
41ecc55b
CL
999 * pointer. Fail if this happens.
1000 */
ba0268a8
CL
1001 if (objsize >= 65535 * sizeof(void *)) {
1002 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
41ecc55b 1003 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
ba0268a8
CL
1004 BUG_ON(ctor);
1005 } else {
41ecc55b
CL
1006 /*
1007 * Enable debugging if selected on the kernel commandline.
1008 */
1009 if (slub_debug && (!slub_debug_slabs ||
ba0268a8 1010 strncmp(slub_debug_slabs, name,
41ecc55b 1011 strlen(slub_debug_slabs)) == 0))
ba0268a8
CL
1012 flags |= slub_debug;
1013 }
1014
1015 return flags;
41ecc55b
CL
1016}
1017#else
3ec09742
CL
1018static inline void setup_object_debug(struct kmem_cache *s,
1019 struct page *page, void *object) {}
41ecc55b 1020
3ec09742
CL
1021static inline int alloc_debug_processing(struct kmem_cache *s,
1022 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1023
3ec09742
CL
1024static inline int free_debug_processing(struct kmem_cache *s,
1025 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1026
41ecc55b
CL
1027static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1028 { return 1; }
1029static inline int check_object(struct kmem_cache *s, struct page *page,
1030 void *object, int active) { return 1; }
3ec09742 1031static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1032static inline unsigned long kmem_cache_flags(unsigned long objsize,
1033 unsigned long flags, const char *name,
4ba9b9d0 1034 void (*ctor)(struct kmem_cache *, void *))
ba0268a8
CL
1035{
1036 return flags;
1037}
41ecc55b
CL
1038#define slub_debug 0
1039#endif
81819f0f
CL
1040/*
1041 * Slab allocation and freeing
1042 */
1043static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1044{
1045 struct page * page;
1046 int pages = 1 << s->order;
1047
1048 if (s->order)
1049 flags |= __GFP_COMP;
1050
1051 if (s->flags & SLAB_CACHE_DMA)
1052 flags |= SLUB_DMA;
1053
e12ba74d
MG
1054 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1055 flags |= __GFP_RECLAIMABLE;
1056
81819f0f
CL
1057 if (node == -1)
1058 page = alloc_pages(flags, s->order);
1059 else
1060 page = alloc_pages_node(node, flags, s->order);
1061
1062 if (!page)
1063 return NULL;
1064
1065 mod_zone_page_state(page_zone(page),
1066 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1067 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1068 pages);
1069
1070 return page;
1071}
1072
1073static void setup_object(struct kmem_cache *s, struct page *page,
1074 void *object)
1075{
3ec09742 1076 setup_object_debug(s, page, object);
4f104934 1077 if (unlikely(s->ctor))
4ba9b9d0 1078 s->ctor(s, object);
81819f0f
CL
1079}
1080
1081static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1082{
1083 struct page *page;
1084 struct kmem_cache_node *n;
1085 void *start;
81819f0f
CL
1086 void *last;
1087 void *p;
1088
6cb06229 1089 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1090
6cb06229
CL
1091 page = allocate_slab(s,
1092 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1093 if (!page)
1094 goto out;
1095
1096 n = get_node(s, page_to_nid(page));
1097 if (n)
1098 atomic_long_inc(&n->nr_slabs);
81819f0f
CL
1099 page->slab = s;
1100 page->flags |= 1 << PG_slab;
1101 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1102 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1103 SetSlabDebug(page);
81819f0f
CL
1104
1105 start = page_address(page);
81819f0f
CL
1106
1107 if (unlikely(s->flags & SLAB_POISON))
1108 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1109
1110 last = start;
7656c72b 1111 for_each_object(p, s, start) {
81819f0f
CL
1112 setup_object(s, page, last);
1113 set_freepointer(s, last, p);
1114 last = p;
1115 }
1116 setup_object(s, page, last);
1117 set_freepointer(s, last, NULL);
1118
1119 page->freelist = start;
1120 page->inuse = 0;
1121out:
81819f0f
CL
1122 return page;
1123}
1124
1125static void __free_slab(struct kmem_cache *s, struct page *page)
1126{
1127 int pages = 1 << s->order;
1128
c59def9f 1129 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1130 void *p;
1131
1132 slab_pad_check(s, page);
c59def9f 1133 for_each_object(p, s, page_address(page))
81819f0f 1134 check_object(s, page, p, 0);
2208b764 1135 ClearSlabDebug(page);
81819f0f
CL
1136 }
1137
1138 mod_zone_page_state(page_zone(page),
1139 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1140 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1141 - pages);
1142
81819f0f
CL
1143 __free_pages(page, s->order);
1144}
1145
1146static void rcu_free_slab(struct rcu_head *h)
1147{
1148 struct page *page;
1149
1150 page = container_of((struct list_head *)h, struct page, lru);
1151 __free_slab(page->slab, page);
1152}
1153
1154static void free_slab(struct kmem_cache *s, struct page *page)
1155{
1156 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1157 /*
1158 * RCU free overloads the RCU head over the LRU
1159 */
1160 struct rcu_head *head = (void *)&page->lru;
1161
1162 call_rcu(head, rcu_free_slab);
1163 } else
1164 __free_slab(s, page);
1165}
1166
1167static void discard_slab(struct kmem_cache *s, struct page *page)
1168{
1169 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1170
1171 atomic_long_dec(&n->nr_slabs);
1172 reset_page_mapcount(page);
35e5d7ee 1173 __ClearPageSlab(page);
81819f0f
CL
1174 free_slab(s, page);
1175}
1176
1177/*
1178 * Per slab locking using the pagelock
1179 */
1180static __always_inline void slab_lock(struct page *page)
1181{
1182 bit_spin_lock(PG_locked, &page->flags);
1183}
1184
1185static __always_inline void slab_unlock(struct page *page)
1186{
1187 bit_spin_unlock(PG_locked, &page->flags);
1188}
1189
1190static __always_inline int slab_trylock(struct page *page)
1191{
1192 int rc = 1;
1193
1194 rc = bit_spin_trylock(PG_locked, &page->flags);
1195 return rc;
1196}
1197
1198/*
1199 * Management of partially allocated slabs
1200 */
e95eed57 1201static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
81819f0f 1202{
e95eed57
CL
1203 spin_lock(&n->list_lock);
1204 n->nr_partial++;
1205 list_add_tail(&page->lru, &n->partial);
1206 spin_unlock(&n->list_lock);
1207}
81819f0f 1208
e95eed57
CL
1209static void add_partial(struct kmem_cache_node *n, struct page *page)
1210{
81819f0f
CL
1211 spin_lock(&n->list_lock);
1212 n->nr_partial++;
1213 list_add(&page->lru, &n->partial);
1214 spin_unlock(&n->list_lock);
1215}
1216
1217static void remove_partial(struct kmem_cache *s,
1218 struct page *page)
1219{
1220 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1221
1222 spin_lock(&n->list_lock);
1223 list_del(&page->lru);
1224 n->nr_partial--;
1225 spin_unlock(&n->list_lock);
1226}
1227
1228/*
672bba3a 1229 * Lock slab and remove from the partial list.
81819f0f 1230 *
672bba3a 1231 * Must hold list_lock.
81819f0f 1232 */
4b6f0750 1233static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1234{
1235 if (slab_trylock(page)) {
1236 list_del(&page->lru);
1237 n->nr_partial--;
4b6f0750 1238 SetSlabFrozen(page);
81819f0f
CL
1239 return 1;
1240 }
1241 return 0;
1242}
1243
1244/*
672bba3a 1245 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1246 */
1247static struct page *get_partial_node(struct kmem_cache_node *n)
1248{
1249 struct page *page;
1250
1251 /*
1252 * Racy check. If we mistakenly see no partial slabs then we
1253 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1254 * partial slab and there is none available then get_partials()
1255 * will return NULL.
81819f0f
CL
1256 */
1257 if (!n || !n->nr_partial)
1258 return NULL;
1259
1260 spin_lock(&n->list_lock);
1261 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1262 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1263 goto out;
1264 page = NULL;
1265out:
1266 spin_unlock(&n->list_lock);
1267 return page;
1268}
1269
1270/*
672bba3a 1271 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1272 */
1273static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1274{
1275#ifdef CONFIG_NUMA
1276 struct zonelist *zonelist;
1277 struct zone **z;
1278 struct page *page;
1279
1280 /*
672bba3a
CL
1281 * The defrag ratio allows a configuration of the tradeoffs between
1282 * inter node defragmentation and node local allocations. A lower
1283 * defrag_ratio increases the tendency to do local allocations
1284 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1285 *
672bba3a
CL
1286 * If the defrag_ratio is set to 0 then kmalloc() always
1287 * returns node local objects. If the ratio is higher then kmalloc()
1288 * may return off node objects because partial slabs are obtained
1289 * from other nodes and filled up.
81819f0f
CL
1290 *
1291 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1292 * defrag_ratio = 1000) then every (well almost) allocation will
1293 * first attempt to defrag slab caches on other nodes. This means
1294 * scanning over all nodes to look for partial slabs which may be
1295 * expensive if we do it every time we are trying to find a slab
1296 * with available objects.
81819f0f 1297 */
9824601e
CL
1298 if (!s->remote_node_defrag_ratio ||
1299 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1300 return NULL;
1301
1302 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1303 ->node_zonelists[gfp_zone(flags)];
1304 for (z = zonelist->zones; *z; z++) {
1305 struct kmem_cache_node *n;
1306
1307 n = get_node(s, zone_to_nid(*z));
1308
1309 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1310 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1311 page = get_partial_node(n);
1312 if (page)
1313 return page;
1314 }
1315 }
1316#endif
1317 return NULL;
1318}
1319
1320/*
1321 * Get a partial page, lock it and return it.
1322 */
1323static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1324{
1325 struct page *page;
1326 int searchnode = (node == -1) ? numa_node_id() : node;
1327
1328 page = get_partial_node(get_node(s, searchnode));
1329 if (page || (flags & __GFP_THISNODE))
1330 return page;
1331
1332 return get_any_partial(s, flags);
1333}
1334
1335/*
1336 * Move a page back to the lists.
1337 *
1338 * Must be called with the slab lock held.
1339 *
1340 * On exit the slab lock will have been dropped.
1341 */
4b6f0750 1342static void unfreeze_slab(struct kmem_cache *s, struct page *page)
81819f0f 1343{
e95eed57
CL
1344 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1345
4b6f0750 1346 ClearSlabFrozen(page);
81819f0f 1347 if (page->inuse) {
e95eed57 1348
81819f0f 1349 if (page->freelist)
e95eed57 1350 add_partial(n, page);
35e5d7ee 1351 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
e95eed57 1352 add_full(n, page);
81819f0f 1353 slab_unlock(page);
e95eed57 1354
81819f0f 1355 } else {
e95eed57
CL
1356 if (n->nr_partial < MIN_PARTIAL) {
1357 /*
672bba3a
CL
1358 * Adding an empty slab to the partial slabs in order
1359 * to avoid page allocator overhead. This slab needs
1360 * to come after the other slabs with objects in
1361 * order to fill them up. That way the size of the
1362 * partial list stays small. kmem_cache_shrink can
1363 * reclaim empty slabs from the partial list.
e95eed57
CL
1364 */
1365 add_partial_tail(n, page);
1366 slab_unlock(page);
1367 } else {
1368 slab_unlock(page);
1369 discard_slab(s, page);
1370 }
81819f0f
CL
1371 }
1372}
1373
1374/*
1375 * Remove the cpu slab
1376 */
dfb4f096 1377static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1378{
dfb4f096 1379 struct page *page = c->page;
894b8788
CL
1380 /*
1381 * Merge cpu freelist into freelist. Typically we get here
1382 * because both freelists are empty. So this is unlikely
1383 * to occur.
1384 */
dfb4f096 1385 while (unlikely(c->freelist)) {
894b8788
CL
1386 void **object;
1387
1388 /* Retrieve object from cpu_freelist */
dfb4f096 1389 object = c->freelist;
b3fba8da 1390 c->freelist = c->freelist[c->offset];
894b8788
CL
1391
1392 /* And put onto the regular freelist */
b3fba8da 1393 object[c->offset] = page->freelist;
894b8788
CL
1394 page->freelist = object;
1395 page->inuse--;
1396 }
dfb4f096 1397 c->page = NULL;
4b6f0750 1398 unfreeze_slab(s, page);
81819f0f
CL
1399}
1400
dfb4f096 1401static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1402{
dfb4f096
CL
1403 slab_lock(c->page);
1404 deactivate_slab(s, c);
81819f0f
CL
1405}
1406
1407/*
1408 * Flush cpu slab.
1409 * Called from IPI handler with interrupts disabled.
1410 */
0c710013 1411static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1412{
dfb4f096 1413 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1414
dfb4f096
CL
1415 if (likely(c && c->page))
1416 flush_slab(s, c);
81819f0f
CL
1417}
1418
1419static void flush_cpu_slab(void *d)
1420{
1421 struct kmem_cache *s = d;
81819f0f 1422
dfb4f096 1423 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1424}
1425
1426static void flush_all(struct kmem_cache *s)
1427{
1428#ifdef CONFIG_SMP
1429 on_each_cpu(flush_cpu_slab, s, 1, 1);
1430#else
1431 unsigned long flags;
1432
1433 local_irq_save(flags);
1434 flush_cpu_slab(s);
1435 local_irq_restore(flags);
1436#endif
1437}
1438
dfb4f096
CL
1439/*
1440 * Check if the objects in a per cpu structure fit numa
1441 * locality expectations.
1442 */
1443static inline int node_match(struct kmem_cache_cpu *c, int node)
1444{
1445#ifdef CONFIG_NUMA
1446 if (node != -1 && c->node != node)
1447 return 0;
1448#endif
1449 return 1;
1450}
1451
81819f0f 1452/*
894b8788
CL
1453 * Slow path. The lockless freelist is empty or we need to perform
1454 * debugging duties.
1455 *
1456 * Interrupts are disabled.
81819f0f 1457 *
894b8788
CL
1458 * Processing is still very fast if new objects have been freed to the
1459 * regular freelist. In that case we simply take over the regular freelist
1460 * as the lockless freelist and zap the regular freelist.
81819f0f 1461 *
894b8788
CL
1462 * If that is not working then we fall back to the partial lists. We take the
1463 * first element of the freelist as the object to allocate now and move the
1464 * rest of the freelist to the lockless freelist.
81819f0f 1465 *
894b8788
CL
1466 * And if we were unable to get a new slab from the partial slab lists then
1467 * we need to allocate a new slab. This is slowest path since we may sleep.
81819f0f 1468 */
894b8788 1469static void *__slab_alloc(struct kmem_cache *s,
dfb4f096 1470 gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
81819f0f 1471{
81819f0f 1472 void **object;
dfb4f096 1473 struct page *new;
81819f0f 1474
dfb4f096 1475 if (!c->page)
81819f0f
CL
1476 goto new_slab;
1477
dfb4f096
CL
1478 slab_lock(c->page);
1479 if (unlikely(!node_match(c, node)))
81819f0f 1480 goto another_slab;
894b8788 1481load_freelist:
dfb4f096 1482 object = c->page->freelist;
81819f0f
CL
1483 if (unlikely(!object))
1484 goto another_slab;
dfb4f096 1485 if (unlikely(SlabDebug(c->page)))
81819f0f
CL
1486 goto debug;
1487
dfb4f096 1488 object = c->page->freelist;
b3fba8da 1489 c->freelist = object[c->offset];
dfb4f096
CL
1490 c->page->inuse = s->objects;
1491 c->page->freelist = NULL;
1492 c->node = page_to_nid(c->page);
1493 slab_unlock(c->page);
81819f0f
CL
1494 return object;
1495
1496another_slab:
dfb4f096 1497 deactivate_slab(s, c);
81819f0f
CL
1498
1499new_slab:
dfb4f096
CL
1500 new = get_partial(s, gfpflags, node);
1501 if (new) {
1502 c->page = new;
894b8788 1503 goto load_freelist;
81819f0f
CL
1504 }
1505
b811c202
CL
1506 if (gfpflags & __GFP_WAIT)
1507 local_irq_enable();
1508
dfb4f096 1509 new = new_slab(s, gfpflags, node);
b811c202
CL
1510
1511 if (gfpflags & __GFP_WAIT)
1512 local_irq_disable();
1513
dfb4f096
CL
1514 if (new) {
1515 c = get_cpu_slab(s, smp_processor_id());
05aa3450 1516 if (c->page)
dfb4f096 1517 flush_slab(s, c);
dfb4f096
CL
1518 slab_lock(new);
1519 SetSlabFrozen(new);
1520 c->page = new;
4b6f0750 1521 goto load_freelist;
81819f0f 1522 }
81819f0f
CL
1523 return NULL;
1524debug:
dfb4f096
CL
1525 object = c->page->freelist;
1526 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1527 goto another_slab;
894b8788 1528
dfb4f096 1529 c->page->inuse++;
b3fba8da 1530 c->page->freelist = object[c->offset];
ee3c72a1 1531 c->node = -1;
dfb4f096 1532 slab_unlock(c->page);
894b8788
CL
1533 return object;
1534}
1535
1536/*
1537 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1538 * have the fastpath folded into their functions. So no function call
1539 * overhead for requests that can be satisfied on the fastpath.
1540 *
1541 * The fastpath works by first checking if the lockless freelist can be used.
1542 * If not then __slab_alloc is called for slow processing.
1543 *
1544 * Otherwise we can simply pick the next object from the lockless free list.
1545 */
1546static void __always_inline *slab_alloc(struct kmem_cache *s,
ce15fea8 1547 gfp_t gfpflags, int node, void *addr)
894b8788 1548{
894b8788
CL
1549 void **object;
1550 unsigned long flags;
dfb4f096 1551 struct kmem_cache_cpu *c;
894b8788
CL
1552
1553 local_irq_save(flags);
dfb4f096 1554 c = get_cpu_slab(s, smp_processor_id());
ee3c72a1 1555 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1556
dfb4f096 1557 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1558
1559 else {
dfb4f096 1560 object = c->freelist;
b3fba8da 1561 c->freelist = object[c->offset];
894b8788
CL
1562 }
1563 local_irq_restore(flags);
d07dbea4
CL
1564
1565 if (unlikely((gfpflags & __GFP_ZERO) && object))
42a9fdbb 1566 memset(object, 0, c->objsize);
d07dbea4 1567
894b8788 1568 return object;
81819f0f
CL
1569}
1570
1571void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1572{
ce15fea8 1573 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1574}
1575EXPORT_SYMBOL(kmem_cache_alloc);
1576
1577#ifdef CONFIG_NUMA
1578void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1579{
ce15fea8 1580 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1581}
1582EXPORT_SYMBOL(kmem_cache_alloc_node);
1583#endif
1584
1585/*
894b8788
CL
1586 * Slow patch handling. This may still be called frequently since objects
1587 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1588 *
894b8788
CL
1589 * So we still attempt to reduce cache line usage. Just take the slab
1590 * lock and free the item. If there is no additional partial page
1591 * handling required then we can return immediately.
81819f0f 1592 */
894b8788 1593static void __slab_free(struct kmem_cache *s, struct page *page,
b3fba8da 1594 void *x, void *addr, unsigned int offset)
81819f0f
CL
1595{
1596 void *prior;
1597 void **object = (void *)x;
81819f0f 1598
81819f0f
CL
1599 slab_lock(page);
1600
35e5d7ee 1601 if (unlikely(SlabDebug(page)))
81819f0f
CL
1602 goto debug;
1603checks_ok:
b3fba8da 1604 prior = object[offset] = page->freelist;
81819f0f
CL
1605 page->freelist = object;
1606 page->inuse--;
1607
4b6f0750 1608 if (unlikely(SlabFrozen(page)))
81819f0f
CL
1609 goto out_unlock;
1610
1611 if (unlikely(!page->inuse))
1612 goto slab_empty;
1613
1614 /*
1615 * Objects left in the slab. If it
1616 * was not on the partial list before
1617 * then add it.
1618 */
1619 if (unlikely(!prior))
76be8950 1620 add_partial_tail(get_node(s, page_to_nid(page)), page);
81819f0f
CL
1621
1622out_unlock:
1623 slab_unlock(page);
81819f0f
CL
1624 return;
1625
1626slab_empty:
1627 if (prior)
1628 /*
672bba3a 1629 * Slab still on the partial list.
81819f0f
CL
1630 */
1631 remove_partial(s, page);
1632
1633 slab_unlock(page);
1634 discard_slab(s, page);
81819f0f
CL
1635 return;
1636
1637debug:
3ec09742 1638 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1639 goto out_unlock;
77c5e2d0 1640 goto checks_ok;
81819f0f
CL
1641}
1642
894b8788
CL
1643/*
1644 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1645 * can perform fastpath freeing without additional function calls.
1646 *
1647 * The fastpath is only possible if we are freeing to the current cpu slab
1648 * of this processor. This typically the case if we have just allocated
1649 * the item before.
1650 *
1651 * If fastpath is not possible then fall back to __slab_free where we deal
1652 * with all sorts of special processing.
1653 */
1654static void __always_inline slab_free(struct kmem_cache *s,
1655 struct page *page, void *x, void *addr)
1656{
1657 void **object = (void *)x;
1658 unsigned long flags;
dfb4f096 1659 struct kmem_cache_cpu *c;
894b8788
CL
1660
1661 local_irq_save(flags);
02febdf7 1662 debug_check_no_locks_freed(object, s->objsize);
dfb4f096 1663 c = get_cpu_slab(s, smp_processor_id());
ee3c72a1 1664 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1665 object[c->offset] = c->freelist;
dfb4f096 1666 c->freelist = object;
894b8788 1667 } else
b3fba8da 1668 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1669
1670 local_irq_restore(flags);
1671}
1672
81819f0f
CL
1673void kmem_cache_free(struct kmem_cache *s, void *x)
1674{
77c5e2d0 1675 struct page *page;
81819f0f 1676
b49af68f 1677 page = virt_to_head_page(x);
81819f0f 1678
77c5e2d0 1679 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1680}
1681EXPORT_SYMBOL(kmem_cache_free);
1682
1683/* Figure out on which slab object the object resides */
1684static struct page *get_object_page(const void *x)
1685{
b49af68f 1686 struct page *page = virt_to_head_page(x);
81819f0f
CL
1687
1688 if (!PageSlab(page))
1689 return NULL;
1690
1691 return page;
1692}
1693
1694/*
672bba3a
CL
1695 * Object placement in a slab is made very easy because we always start at
1696 * offset 0. If we tune the size of the object to the alignment then we can
1697 * get the required alignment by putting one properly sized object after
1698 * another.
81819f0f
CL
1699 *
1700 * Notice that the allocation order determines the sizes of the per cpu
1701 * caches. Each processor has always one slab available for allocations.
1702 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1703 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1704 * locking overhead.
81819f0f
CL
1705 */
1706
1707/*
1708 * Mininum / Maximum order of slab pages. This influences locking overhead
1709 * and slab fragmentation. A higher order reduces the number of partial slabs
1710 * and increases the number of allocations possible without having to
1711 * take the list_lock.
1712 */
1713static int slub_min_order;
1714static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1715static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1716
1717/*
1718 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1719 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1720 */
1721static int slub_nomerge;
1722
81819f0f
CL
1723/*
1724 * Calculate the order of allocation given an slab object size.
1725 *
672bba3a
CL
1726 * The order of allocation has significant impact on performance and other
1727 * system components. Generally order 0 allocations should be preferred since
1728 * order 0 does not cause fragmentation in the page allocator. Larger objects
1729 * be problematic to put into order 0 slabs because there may be too much
1730 * unused space left. We go to a higher order if more than 1/8th of the slab
1731 * would be wasted.
1732 *
1733 * In order to reach satisfactory performance we must ensure that a minimum
1734 * number of objects is in one slab. Otherwise we may generate too much
1735 * activity on the partial lists which requires taking the list_lock. This is
1736 * less a concern for large slabs though which are rarely used.
81819f0f 1737 *
672bba3a
CL
1738 * slub_max_order specifies the order where we begin to stop considering the
1739 * number of objects in a slab as critical. If we reach slub_max_order then
1740 * we try to keep the page order as low as possible. So we accept more waste
1741 * of space in favor of a small page order.
81819f0f 1742 *
672bba3a
CL
1743 * Higher order allocations also allow the placement of more objects in a
1744 * slab and thereby reduce object handling overhead. If the user has
1745 * requested a higher mininum order then we start with that one instead of
1746 * the smallest order which will fit the object.
81819f0f 1747 */
5e6d444e
CL
1748static inline int slab_order(int size, int min_objects,
1749 int max_order, int fract_leftover)
81819f0f
CL
1750{
1751 int order;
1752 int rem;
6300ea75 1753 int min_order = slub_min_order;
81819f0f 1754
6300ea75 1755 for (order = max(min_order,
5e6d444e
CL
1756 fls(min_objects * size - 1) - PAGE_SHIFT);
1757 order <= max_order; order++) {
81819f0f 1758
5e6d444e 1759 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1760
5e6d444e 1761 if (slab_size < min_objects * size)
81819f0f
CL
1762 continue;
1763
1764 rem = slab_size % size;
1765
5e6d444e 1766 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1767 break;
1768
1769 }
672bba3a 1770
81819f0f
CL
1771 return order;
1772}
1773
5e6d444e
CL
1774static inline int calculate_order(int size)
1775{
1776 int order;
1777 int min_objects;
1778 int fraction;
1779
1780 /*
1781 * Attempt to find best configuration for a slab. This
1782 * works by first attempting to generate a layout with
1783 * the best configuration and backing off gradually.
1784 *
1785 * First we reduce the acceptable waste in a slab. Then
1786 * we reduce the minimum objects required in a slab.
1787 */
1788 min_objects = slub_min_objects;
1789 while (min_objects > 1) {
1790 fraction = 8;
1791 while (fraction >= 4) {
1792 order = slab_order(size, min_objects,
1793 slub_max_order, fraction);
1794 if (order <= slub_max_order)
1795 return order;
1796 fraction /= 2;
1797 }
1798 min_objects /= 2;
1799 }
1800
1801 /*
1802 * We were unable to place multiple objects in a slab. Now
1803 * lets see if we can place a single object there.
1804 */
1805 order = slab_order(size, 1, slub_max_order, 1);
1806 if (order <= slub_max_order)
1807 return order;
1808
1809 /*
1810 * Doh this slab cannot be placed using slub_max_order.
1811 */
1812 order = slab_order(size, 1, MAX_ORDER, 1);
1813 if (order <= MAX_ORDER)
1814 return order;
1815 return -ENOSYS;
1816}
1817
81819f0f 1818/*
672bba3a 1819 * Figure out what the alignment of the objects will be.
81819f0f
CL
1820 */
1821static unsigned long calculate_alignment(unsigned long flags,
1822 unsigned long align, unsigned long size)
1823{
1824 /*
1825 * If the user wants hardware cache aligned objects then
1826 * follow that suggestion if the object is sufficiently
1827 * large.
1828 *
1829 * The hardware cache alignment cannot override the
1830 * specified alignment though. If that is greater
1831 * then use it.
1832 */
5af60839 1833 if ((flags & SLAB_HWCACHE_ALIGN) &&
65c02d4c
CL
1834 size > cache_line_size() / 2)
1835 return max_t(unsigned long, align, cache_line_size());
81819f0f
CL
1836
1837 if (align < ARCH_SLAB_MINALIGN)
1838 return ARCH_SLAB_MINALIGN;
1839
1840 return ALIGN(align, sizeof(void *));
1841}
1842
dfb4f096
CL
1843static void init_kmem_cache_cpu(struct kmem_cache *s,
1844 struct kmem_cache_cpu *c)
1845{
1846 c->page = NULL;
1847 c->freelist = NULL;
1848 c->node = 0;
42a9fdbb
CL
1849 c->offset = s->offset / sizeof(void *);
1850 c->objsize = s->objsize;
dfb4f096
CL
1851}
1852
81819f0f
CL
1853static void init_kmem_cache_node(struct kmem_cache_node *n)
1854{
1855 n->nr_partial = 0;
1856 atomic_long_set(&n->nr_slabs, 0);
1857 spin_lock_init(&n->list_lock);
1858 INIT_LIST_HEAD(&n->partial);
8ab1372f 1859#ifdef CONFIG_SLUB_DEBUG
643b1138 1860 INIT_LIST_HEAD(&n->full);
8ab1372f 1861#endif
81819f0f
CL
1862}
1863
4c93c355
CL
1864#ifdef CONFIG_SMP
1865/*
1866 * Per cpu array for per cpu structures.
1867 *
1868 * The per cpu array places all kmem_cache_cpu structures from one processor
1869 * close together meaning that it becomes possible that multiple per cpu
1870 * structures are contained in one cacheline. This may be particularly
1871 * beneficial for the kmalloc caches.
1872 *
1873 * A desktop system typically has around 60-80 slabs. With 100 here we are
1874 * likely able to get per cpu structures for all caches from the array defined
1875 * here. We must be able to cover all kmalloc caches during bootstrap.
1876 *
1877 * If the per cpu array is exhausted then fall back to kmalloc
1878 * of individual cachelines. No sharing is possible then.
1879 */
1880#define NR_KMEM_CACHE_CPU 100
1881
1882static DEFINE_PER_CPU(struct kmem_cache_cpu,
1883 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1884
1885static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1886static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1887
1888static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1889 int cpu, gfp_t flags)
1890{
1891 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1892
1893 if (c)
1894 per_cpu(kmem_cache_cpu_free, cpu) =
1895 (void *)c->freelist;
1896 else {
1897 /* Table overflow: So allocate ourselves */
1898 c = kmalloc_node(
1899 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1900 flags, cpu_to_node(cpu));
1901 if (!c)
1902 return NULL;
1903 }
1904
1905 init_kmem_cache_cpu(s, c);
1906 return c;
1907}
1908
1909static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1910{
1911 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1912 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1913 kfree(c);
1914 return;
1915 }
1916 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1917 per_cpu(kmem_cache_cpu_free, cpu) = c;
1918}
1919
1920static void free_kmem_cache_cpus(struct kmem_cache *s)
1921{
1922 int cpu;
1923
1924 for_each_online_cpu(cpu) {
1925 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1926
1927 if (c) {
1928 s->cpu_slab[cpu] = NULL;
1929 free_kmem_cache_cpu(c, cpu);
1930 }
1931 }
1932}
1933
1934static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1935{
1936 int cpu;
1937
1938 for_each_online_cpu(cpu) {
1939 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1940
1941 if (c)
1942 continue;
1943
1944 c = alloc_kmem_cache_cpu(s, cpu, flags);
1945 if (!c) {
1946 free_kmem_cache_cpus(s);
1947 return 0;
1948 }
1949 s->cpu_slab[cpu] = c;
1950 }
1951 return 1;
1952}
1953
1954/*
1955 * Initialize the per cpu array.
1956 */
1957static void init_alloc_cpu_cpu(int cpu)
1958{
1959 int i;
1960
1961 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1962 return;
1963
1964 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1965 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1966
1967 cpu_set(cpu, kmem_cach_cpu_free_init_once);
1968}
1969
1970static void __init init_alloc_cpu(void)
1971{
1972 int cpu;
1973
1974 for_each_online_cpu(cpu)
1975 init_alloc_cpu_cpu(cpu);
1976 }
1977
1978#else
1979static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
1980static inline void init_alloc_cpu(void) {}
1981
1982static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1983{
1984 init_kmem_cache_cpu(s, &s->cpu_slab);
1985 return 1;
1986}
1987#endif
1988
81819f0f
CL
1989#ifdef CONFIG_NUMA
1990/*
1991 * No kmalloc_node yet so do it by hand. We know that this is the first
1992 * slab on the node for this slabcache. There are no concurrent accesses
1993 * possible.
1994 *
1995 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
1996 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
1997 * memory on a fresh node that has no slab structures yet.
81819f0f 1998 */
1cd7daa5
AB
1999static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
2000 int node)
81819f0f
CL
2001{
2002 struct page *page;
2003 struct kmem_cache_node *n;
2004
2005 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2006
a2f92ee7 2007 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2008
2009 BUG_ON(!page);
a2f92ee7
CL
2010 if (page_to_nid(page) != node) {
2011 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2012 "node %d\n", node);
2013 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2014 "in order to be able to continue\n");
2015 }
2016
81819f0f
CL
2017 n = page->freelist;
2018 BUG_ON(!n);
2019 page->freelist = get_freepointer(kmalloc_caches, n);
2020 page->inuse++;
2021 kmalloc_caches->node[node] = n;
8ab1372f 2022#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2023 init_object(kmalloc_caches, n, 1);
2024 init_tracking(kmalloc_caches, n);
8ab1372f 2025#endif
81819f0f
CL
2026 init_kmem_cache_node(n);
2027 atomic_long_inc(&n->nr_slabs);
e95eed57 2028 add_partial(n, page);
81819f0f
CL
2029 return n;
2030}
2031
2032static void free_kmem_cache_nodes(struct kmem_cache *s)
2033{
2034 int node;
2035
f64dc58c 2036 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2037 struct kmem_cache_node *n = s->node[node];
2038 if (n && n != &s->local_node)
2039 kmem_cache_free(kmalloc_caches, n);
2040 s->node[node] = NULL;
2041 }
2042}
2043
2044static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2045{
2046 int node;
2047 int local_node;
2048
2049 if (slab_state >= UP)
2050 local_node = page_to_nid(virt_to_page(s));
2051 else
2052 local_node = 0;
2053
f64dc58c 2054 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2055 struct kmem_cache_node *n;
2056
2057 if (local_node == node)
2058 n = &s->local_node;
2059 else {
2060 if (slab_state == DOWN) {
2061 n = early_kmem_cache_node_alloc(gfpflags,
2062 node);
2063 continue;
2064 }
2065 n = kmem_cache_alloc_node(kmalloc_caches,
2066 gfpflags, node);
2067
2068 if (!n) {
2069 free_kmem_cache_nodes(s);
2070 return 0;
2071 }
2072
2073 }
2074 s->node[node] = n;
2075 init_kmem_cache_node(n);
2076 }
2077 return 1;
2078}
2079#else
2080static void free_kmem_cache_nodes(struct kmem_cache *s)
2081{
2082}
2083
2084static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2085{
2086 init_kmem_cache_node(&s->local_node);
2087 return 1;
2088}
2089#endif
2090
2091/*
2092 * calculate_sizes() determines the order and the distribution of data within
2093 * a slab object.
2094 */
2095static int calculate_sizes(struct kmem_cache *s)
2096{
2097 unsigned long flags = s->flags;
2098 unsigned long size = s->objsize;
2099 unsigned long align = s->align;
2100
2101 /*
2102 * Determine if we can poison the object itself. If the user of
2103 * the slab may touch the object after free or before allocation
2104 * then we should never poison the object itself.
2105 */
2106 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2107 !s->ctor)
81819f0f
CL
2108 s->flags |= __OBJECT_POISON;
2109 else
2110 s->flags &= ~__OBJECT_POISON;
2111
2112 /*
2113 * Round up object size to the next word boundary. We can only
2114 * place the free pointer at word boundaries and this determines
2115 * the possible location of the free pointer.
2116 */
2117 size = ALIGN(size, sizeof(void *));
2118
41ecc55b 2119#ifdef CONFIG_SLUB_DEBUG
81819f0f 2120 /*
672bba3a 2121 * If we are Redzoning then check if there is some space between the
81819f0f 2122 * end of the object and the free pointer. If not then add an
672bba3a 2123 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2124 */
2125 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2126 size += sizeof(void *);
41ecc55b 2127#endif
81819f0f
CL
2128
2129 /*
672bba3a
CL
2130 * With that we have determined the number of bytes in actual use
2131 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2132 */
2133 s->inuse = size;
2134
2135 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2136 s->ctor)) {
81819f0f
CL
2137 /*
2138 * Relocate free pointer after the object if it is not
2139 * permitted to overwrite the first word of the object on
2140 * kmem_cache_free.
2141 *
2142 * This is the case if we do RCU, have a constructor or
2143 * destructor or are poisoning the objects.
2144 */
2145 s->offset = size;
2146 size += sizeof(void *);
2147 }
2148
c12b3c62 2149#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2150 if (flags & SLAB_STORE_USER)
2151 /*
2152 * Need to store information about allocs and frees after
2153 * the object.
2154 */
2155 size += 2 * sizeof(struct track);
2156
be7b3fbc 2157 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2158 /*
2159 * Add some empty padding so that we can catch
2160 * overwrites from earlier objects rather than let
2161 * tracking information or the free pointer be
2162 * corrupted if an user writes before the start
2163 * of the object.
2164 */
2165 size += sizeof(void *);
41ecc55b 2166#endif
672bba3a 2167
81819f0f
CL
2168 /*
2169 * Determine the alignment based on various parameters that the
65c02d4c
CL
2170 * user specified and the dynamic determination of cache line size
2171 * on bootup.
81819f0f
CL
2172 */
2173 align = calculate_alignment(flags, align, s->objsize);
2174
2175 /*
2176 * SLUB stores one object immediately after another beginning from
2177 * offset 0. In order to align the objects we have to simply size
2178 * each object to conform to the alignment.
2179 */
2180 size = ALIGN(size, align);
2181 s->size = size;
2182
2183 s->order = calculate_order(size);
2184 if (s->order < 0)
2185 return 0;
2186
2187 /*
2188 * Determine the number of objects per slab
2189 */
2190 s->objects = (PAGE_SIZE << s->order) / size;
2191
b3fba8da 2192 return !!s->objects;
81819f0f
CL
2193
2194}
2195
81819f0f
CL
2196static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2197 const char *name, size_t size,
2198 size_t align, unsigned long flags,
4ba9b9d0 2199 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
2200{
2201 memset(s, 0, kmem_size);
2202 s->name = name;
2203 s->ctor = ctor;
81819f0f 2204 s->objsize = size;
81819f0f 2205 s->align = align;
ba0268a8 2206 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f
CL
2207
2208 if (!calculate_sizes(s))
2209 goto error;
2210
2211 s->refcount = 1;
2212#ifdef CONFIG_NUMA
9824601e 2213 s->remote_node_defrag_ratio = 100;
81819f0f 2214#endif
dfb4f096
CL
2215 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2216 goto error;
81819f0f 2217
dfb4f096 2218 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2219 return 1;
4c93c355 2220 free_kmem_cache_nodes(s);
81819f0f
CL
2221error:
2222 if (flags & SLAB_PANIC)
2223 panic("Cannot create slab %s size=%lu realsize=%u "
2224 "order=%u offset=%u flags=%lx\n",
2225 s->name, (unsigned long)size, s->size, s->order,
2226 s->offset, flags);
2227 return 0;
2228}
81819f0f
CL
2229
2230/*
2231 * Check if a given pointer is valid
2232 */
2233int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2234{
2235 struct page * page;
81819f0f
CL
2236
2237 page = get_object_page(object);
2238
2239 if (!page || s != page->slab)
2240 /* No slab or wrong slab */
2241 return 0;
2242
abcd08a6 2243 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2244 return 0;
2245
2246 /*
2247 * We could also check if the object is on the slabs freelist.
2248 * But this would be too expensive and it seems that the main
2249 * purpose of kmem_ptr_valid is to check if the object belongs
2250 * to a certain slab.
2251 */
2252 return 1;
2253}
2254EXPORT_SYMBOL(kmem_ptr_validate);
2255
2256/*
2257 * Determine the size of a slab object
2258 */
2259unsigned int kmem_cache_size(struct kmem_cache *s)
2260{
2261 return s->objsize;
2262}
2263EXPORT_SYMBOL(kmem_cache_size);
2264
2265const char *kmem_cache_name(struct kmem_cache *s)
2266{
2267 return s->name;
2268}
2269EXPORT_SYMBOL(kmem_cache_name);
2270
2271/*
672bba3a
CL
2272 * Attempt to free all slabs on a node. Return the number of slabs we
2273 * were unable to free.
81819f0f
CL
2274 */
2275static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2276 struct list_head *list)
2277{
2278 int slabs_inuse = 0;
2279 unsigned long flags;
2280 struct page *page, *h;
2281
2282 spin_lock_irqsave(&n->list_lock, flags);
2283 list_for_each_entry_safe(page, h, list, lru)
2284 if (!page->inuse) {
2285 list_del(&page->lru);
2286 discard_slab(s, page);
2287 } else
2288 slabs_inuse++;
2289 spin_unlock_irqrestore(&n->list_lock, flags);
2290 return slabs_inuse;
2291}
2292
2293/*
672bba3a 2294 * Release all resources used by a slab cache.
81819f0f 2295 */
0c710013 2296static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2297{
2298 int node;
2299
2300 flush_all(s);
2301
2302 /* Attempt to free all objects */
4c93c355 2303 free_kmem_cache_cpus(s);
f64dc58c 2304 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2305 struct kmem_cache_node *n = get_node(s, node);
2306
2086d26a 2307 n->nr_partial -= free_list(s, n, &n->partial);
81819f0f
CL
2308 if (atomic_long_read(&n->nr_slabs))
2309 return 1;
2310 }
2311 free_kmem_cache_nodes(s);
2312 return 0;
2313}
2314
2315/*
2316 * Close a cache and release the kmem_cache structure
2317 * (must be used for caches created using kmem_cache_create)
2318 */
2319void kmem_cache_destroy(struct kmem_cache *s)
2320{
2321 down_write(&slub_lock);
2322 s->refcount--;
2323 if (!s->refcount) {
2324 list_del(&s->list);
a0e1d1be 2325 up_write(&slub_lock);
81819f0f
CL
2326 if (kmem_cache_close(s))
2327 WARN_ON(1);
2328 sysfs_slab_remove(s);
a0e1d1be
CL
2329 } else
2330 up_write(&slub_lock);
81819f0f
CL
2331}
2332EXPORT_SYMBOL(kmem_cache_destroy);
2333
2334/********************************************************************
2335 * Kmalloc subsystem
2336 *******************************************************************/
2337
aadb4bc4 2338struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
81819f0f
CL
2339EXPORT_SYMBOL(kmalloc_caches);
2340
2341#ifdef CONFIG_ZONE_DMA
aadb4bc4 2342static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
81819f0f
CL
2343#endif
2344
2345static int __init setup_slub_min_order(char *str)
2346{
2347 get_option (&str, &slub_min_order);
2348
2349 return 1;
2350}
2351
2352__setup("slub_min_order=", setup_slub_min_order);
2353
2354static int __init setup_slub_max_order(char *str)
2355{
2356 get_option (&str, &slub_max_order);
2357
2358 return 1;
2359}
2360
2361__setup("slub_max_order=", setup_slub_max_order);
2362
2363static int __init setup_slub_min_objects(char *str)
2364{
2365 get_option (&str, &slub_min_objects);
2366
2367 return 1;
2368}
2369
2370__setup("slub_min_objects=", setup_slub_min_objects);
2371
2372static int __init setup_slub_nomerge(char *str)
2373{
2374 slub_nomerge = 1;
2375 return 1;
2376}
2377
2378__setup("slub_nomerge", setup_slub_nomerge);
2379
81819f0f
CL
2380static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2381 const char *name, int size, gfp_t gfp_flags)
2382{
2383 unsigned int flags = 0;
2384
2385 if (gfp_flags & SLUB_DMA)
2386 flags = SLAB_CACHE_DMA;
2387
2388 down_write(&slub_lock);
2389 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
c59def9f 2390 flags, NULL))
81819f0f
CL
2391 goto panic;
2392
2393 list_add(&s->list, &slab_caches);
2394 up_write(&slub_lock);
2395 if (sysfs_slab_add(s))
2396 goto panic;
2397 return s;
2398
2399panic:
2400 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2401}
2402
2e443fd0 2403#ifdef CONFIG_ZONE_DMA
1ceef402
CL
2404
2405static void sysfs_add_func(struct work_struct *w)
2406{
2407 struct kmem_cache *s;
2408
2409 down_write(&slub_lock);
2410 list_for_each_entry(s, &slab_caches, list) {
2411 if (s->flags & __SYSFS_ADD_DEFERRED) {
2412 s->flags &= ~__SYSFS_ADD_DEFERRED;
2413 sysfs_slab_add(s);
2414 }
2415 }
2416 up_write(&slub_lock);
2417}
2418
2419static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2420
2e443fd0
CL
2421static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2422{
2423 struct kmem_cache *s;
2e443fd0
CL
2424 char *text;
2425 size_t realsize;
2426
2427 s = kmalloc_caches_dma[index];
2428 if (s)
2429 return s;
2430
2431 /* Dynamically create dma cache */
1ceef402
CL
2432 if (flags & __GFP_WAIT)
2433 down_write(&slub_lock);
2434 else {
2435 if (!down_write_trylock(&slub_lock))
2436 goto out;
2437 }
2438
2439 if (kmalloc_caches_dma[index])
2440 goto unlock_out;
2e443fd0 2441
7b55f620 2442 realsize = kmalloc_caches[index].objsize;
1ceef402
CL
2443 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2444 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2445
2446 if (!s || !text || !kmem_cache_open(s, flags, text,
2447 realsize, ARCH_KMALLOC_MINALIGN,
2448 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2449 kfree(s);
2450 kfree(text);
2451 goto unlock_out;
dfce8648 2452 }
1ceef402
CL
2453
2454 list_add(&s->list, &slab_caches);
2455 kmalloc_caches_dma[index] = s;
2456
2457 schedule_work(&sysfs_add_work);
2458
2459unlock_out:
dfce8648 2460 up_write(&slub_lock);
1ceef402 2461out:
dfce8648 2462 return kmalloc_caches_dma[index];
2e443fd0
CL
2463}
2464#endif
2465
f1b26339
CL
2466/*
2467 * Conversion table for small slabs sizes / 8 to the index in the
2468 * kmalloc array. This is necessary for slabs < 192 since we have non power
2469 * of two cache sizes there. The size of larger slabs can be determined using
2470 * fls.
2471 */
2472static s8 size_index[24] = {
2473 3, /* 8 */
2474 4, /* 16 */
2475 5, /* 24 */
2476 5, /* 32 */
2477 6, /* 40 */
2478 6, /* 48 */
2479 6, /* 56 */
2480 6, /* 64 */
2481 1, /* 72 */
2482 1, /* 80 */
2483 1, /* 88 */
2484 1, /* 96 */
2485 7, /* 104 */
2486 7, /* 112 */
2487 7, /* 120 */
2488 7, /* 128 */
2489 2, /* 136 */
2490 2, /* 144 */
2491 2, /* 152 */
2492 2, /* 160 */
2493 2, /* 168 */
2494 2, /* 176 */
2495 2, /* 184 */
2496 2 /* 192 */
2497};
2498
81819f0f
CL
2499static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2500{
f1b26339 2501 int index;
81819f0f 2502
f1b26339
CL
2503 if (size <= 192) {
2504 if (!size)
2505 return ZERO_SIZE_PTR;
81819f0f 2506
f1b26339 2507 index = size_index[(size - 1) / 8];
aadb4bc4 2508 } else
f1b26339 2509 index = fls(size - 1);
81819f0f
CL
2510
2511#ifdef CONFIG_ZONE_DMA
f1b26339 2512 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2513 return dma_kmalloc_cache(index, flags);
f1b26339 2514
81819f0f
CL
2515#endif
2516 return &kmalloc_caches[index];
2517}
2518
2519void *__kmalloc(size_t size, gfp_t flags)
2520{
aadb4bc4 2521 struct kmem_cache *s;
81819f0f 2522
aadb4bc4
CL
2523 if (unlikely(size > PAGE_SIZE / 2))
2524 return (void *)__get_free_pages(flags | __GFP_COMP,
2525 get_order(size));
2526
2527 s = get_slab(size, flags);
2528
2529 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2530 return s;
2531
ce15fea8 2532 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2533}
2534EXPORT_SYMBOL(__kmalloc);
2535
2536#ifdef CONFIG_NUMA
2537void *__kmalloc_node(size_t size, gfp_t flags, int node)
2538{
aadb4bc4 2539 struct kmem_cache *s;
81819f0f 2540
aadb4bc4
CL
2541 if (unlikely(size > PAGE_SIZE / 2))
2542 return (void *)__get_free_pages(flags | __GFP_COMP,
2543 get_order(size));
2544
2545 s = get_slab(size, flags);
2546
2547 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2548 return s;
2549
ce15fea8 2550 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2551}
2552EXPORT_SYMBOL(__kmalloc_node);
2553#endif
2554
2555size_t ksize(const void *object)
2556{
272c1d21 2557 struct page *page;
81819f0f
CL
2558 struct kmem_cache *s;
2559
ef8b4520
CL
2560 BUG_ON(!object);
2561 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2562 return 0;
2563
294a80a8 2564 page = virt_to_head_page(object);
81819f0f 2565 BUG_ON(!page);
294a80a8
VN
2566
2567 if (unlikely(!PageSlab(page)))
2568 return PAGE_SIZE << compound_order(page);
2569
81819f0f
CL
2570 s = page->slab;
2571 BUG_ON(!s);
2572
2573 /*
2574 * Debugging requires use of the padding between object
2575 * and whatever may come after it.
2576 */
2577 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2578 return s->objsize;
2579
2580 /*
2581 * If we have the need to store the freelist pointer
2582 * back there or track user information then we can
2583 * only use the space before that information.
2584 */
2585 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2586 return s->inuse;
2587
2588 /*
2589 * Else we can use all the padding etc for the allocation
2590 */
2591 return s->size;
2592}
2593EXPORT_SYMBOL(ksize);
2594
2595void kfree(const void *x)
2596{
81819f0f
CL
2597 struct page *page;
2598
2408c550 2599 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2600 return;
2601
b49af68f 2602 page = virt_to_head_page(x);
aadb4bc4
CL
2603 if (unlikely(!PageSlab(page))) {
2604 put_page(page);
2605 return;
2606 }
2607 slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
81819f0f
CL
2608}
2609EXPORT_SYMBOL(kfree);
2610
f61396ae
CL
2611static unsigned long count_partial(struct kmem_cache_node *n)
2612{
2613 unsigned long flags;
2614 unsigned long x = 0;
2615 struct page *page;
2616
2617 spin_lock_irqsave(&n->list_lock, flags);
2618 list_for_each_entry(page, &n->partial, lru)
2619 x += page->inuse;
2620 spin_unlock_irqrestore(&n->list_lock, flags);
2621 return x;
2622}
2623
2086d26a 2624/*
672bba3a
CL
2625 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2626 * the remaining slabs by the number of items in use. The slabs with the
2627 * most items in use come first. New allocations will then fill those up
2628 * and thus they can be removed from the partial lists.
2629 *
2630 * The slabs with the least items are placed last. This results in them
2631 * being allocated from last increasing the chance that the last objects
2632 * are freed in them.
2086d26a
CL
2633 */
2634int kmem_cache_shrink(struct kmem_cache *s)
2635{
2636 int node;
2637 int i;
2638 struct kmem_cache_node *n;
2639 struct page *page;
2640 struct page *t;
2641 struct list_head *slabs_by_inuse =
2642 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2643 unsigned long flags;
2644
2645 if (!slabs_by_inuse)
2646 return -ENOMEM;
2647
2648 flush_all(s);
f64dc58c 2649 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2650 n = get_node(s, node);
2651
2652 if (!n->nr_partial)
2653 continue;
2654
2655 for (i = 0; i < s->objects; i++)
2656 INIT_LIST_HEAD(slabs_by_inuse + i);
2657
2658 spin_lock_irqsave(&n->list_lock, flags);
2659
2660 /*
672bba3a 2661 * Build lists indexed by the items in use in each slab.
2086d26a 2662 *
672bba3a
CL
2663 * Note that concurrent frees may occur while we hold the
2664 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2665 */
2666 list_for_each_entry_safe(page, t, &n->partial, lru) {
2667 if (!page->inuse && slab_trylock(page)) {
2668 /*
2669 * Must hold slab lock here because slab_free
2670 * may have freed the last object and be
2671 * waiting to release the slab.
2672 */
2673 list_del(&page->lru);
2674 n->nr_partial--;
2675 slab_unlock(page);
2676 discard_slab(s, page);
2677 } else {
fcda3d89
CL
2678 list_move(&page->lru,
2679 slabs_by_inuse + page->inuse);
2086d26a
CL
2680 }
2681 }
2682
2086d26a 2683 /*
672bba3a
CL
2684 * Rebuild the partial list with the slabs filled up most
2685 * first and the least used slabs at the end.
2086d26a
CL
2686 */
2687 for (i = s->objects - 1; i >= 0; i--)
2688 list_splice(slabs_by_inuse + i, n->partial.prev);
2689
2086d26a
CL
2690 spin_unlock_irqrestore(&n->list_lock, flags);
2691 }
2692
2693 kfree(slabs_by_inuse);
2694 return 0;
2695}
2696EXPORT_SYMBOL(kmem_cache_shrink);
2697
b9049e23
YG
2698#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2699static int slab_mem_going_offline_callback(void *arg)
2700{
2701 struct kmem_cache *s;
2702
2703 down_read(&slub_lock);
2704 list_for_each_entry(s, &slab_caches, list)
2705 kmem_cache_shrink(s);
2706 up_read(&slub_lock);
2707
2708 return 0;
2709}
2710
2711static void slab_mem_offline_callback(void *arg)
2712{
2713 struct kmem_cache_node *n;
2714 struct kmem_cache *s;
2715 struct memory_notify *marg = arg;
2716 int offline_node;
2717
2718 offline_node = marg->status_change_nid;
2719
2720 /*
2721 * If the node still has available memory. we need kmem_cache_node
2722 * for it yet.
2723 */
2724 if (offline_node < 0)
2725 return;
2726
2727 down_read(&slub_lock);
2728 list_for_each_entry(s, &slab_caches, list) {
2729 n = get_node(s, offline_node);
2730 if (n) {
2731 /*
2732 * if n->nr_slabs > 0, slabs still exist on the node
2733 * that is going down. We were unable to free them,
2734 * and offline_pages() function shoudn't call this
2735 * callback. So, we must fail.
2736 */
27bb628a 2737 BUG_ON(atomic_long_read(&n->nr_slabs));
b9049e23
YG
2738
2739 s->node[offline_node] = NULL;
2740 kmem_cache_free(kmalloc_caches, n);
2741 }
2742 }
2743 up_read(&slub_lock);
2744}
2745
2746static int slab_mem_going_online_callback(void *arg)
2747{
2748 struct kmem_cache_node *n;
2749 struct kmem_cache *s;
2750 struct memory_notify *marg = arg;
2751 int nid = marg->status_change_nid;
2752 int ret = 0;
2753
2754 /*
2755 * If the node's memory is already available, then kmem_cache_node is
2756 * already created. Nothing to do.
2757 */
2758 if (nid < 0)
2759 return 0;
2760
2761 /*
2762 * We are bringing a node online. No memory is availabe yet. We must
2763 * allocate a kmem_cache_node structure in order to bring the node
2764 * online.
2765 */
2766 down_read(&slub_lock);
2767 list_for_each_entry(s, &slab_caches, list) {
2768 /*
2769 * XXX: kmem_cache_alloc_node will fallback to other nodes
2770 * since memory is not yet available from the node that
2771 * is brought up.
2772 */
2773 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2774 if (!n) {
2775 ret = -ENOMEM;
2776 goto out;
2777 }
2778 init_kmem_cache_node(n);
2779 s->node[nid] = n;
2780 }
2781out:
2782 up_read(&slub_lock);
2783 return ret;
2784}
2785
2786static int slab_memory_callback(struct notifier_block *self,
2787 unsigned long action, void *arg)
2788{
2789 int ret = 0;
2790
2791 switch (action) {
2792 case MEM_GOING_ONLINE:
2793 ret = slab_mem_going_online_callback(arg);
2794 break;
2795 case MEM_GOING_OFFLINE:
2796 ret = slab_mem_going_offline_callback(arg);
2797 break;
2798 case MEM_OFFLINE:
2799 case MEM_CANCEL_ONLINE:
2800 slab_mem_offline_callback(arg);
2801 break;
2802 case MEM_ONLINE:
2803 case MEM_CANCEL_OFFLINE:
2804 break;
2805 }
2806
2807 ret = notifier_from_errno(ret);
2808 return ret;
2809}
2810
2811#endif /* CONFIG_MEMORY_HOTPLUG */
2812
81819f0f
CL
2813/********************************************************************
2814 * Basic setup of slabs
2815 *******************************************************************/
2816
2817void __init kmem_cache_init(void)
2818{
2819 int i;
4b356be0 2820 int caches = 0;
81819f0f 2821
4c93c355
CL
2822 init_alloc_cpu();
2823
81819f0f
CL
2824#ifdef CONFIG_NUMA
2825 /*
2826 * Must first have the slab cache available for the allocations of the
672bba3a 2827 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2828 * kmem_cache_open for slab_state == DOWN.
2829 */
2830 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2831 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2832 kmalloc_caches[0].refcount = -1;
4b356be0 2833 caches++;
b9049e23
YG
2834
2835 hotplug_memory_notifier(slab_memory_callback, 1);
81819f0f
CL
2836#endif
2837
2838 /* Able to allocate the per node structures */
2839 slab_state = PARTIAL;
2840
2841 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2842 if (KMALLOC_MIN_SIZE <= 64) {
2843 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2844 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
2845 caches++;
2846 }
2847 if (KMALLOC_MIN_SIZE <= 128) {
2848 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2849 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
2850 caches++;
2851 }
81819f0f 2852
aadb4bc4 2853 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
81819f0f
CL
2854 create_kmalloc_cache(&kmalloc_caches[i],
2855 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
2856 caches++;
2857 }
81819f0f 2858
f1b26339
CL
2859
2860 /*
2861 * Patch up the size_index table if we have strange large alignment
2862 * requirements for the kmalloc array. This is only the case for
2863 * mips it seems. The standard arches will not generate any code here.
2864 *
2865 * Largest permitted alignment is 256 bytes due to the way we
2866 * handle the index determination for the smaller caches.
2867 *
2868 * Make sure that nothing crazy happens if someone starts tinkering
2869 * around with ARCH_KMALLOC_MINALIGN
2870 */
2871 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2872 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2873
12ad6843 2874 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
2875 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2876
81819f0f
CL
2877 slab_state = UP;
2878
2879 /* Provide the correct kmalloc names now that the caches are up */
aadb4bc4 2880 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
81819f0f
CL
2881 kmalloc_caches[i]. name =
2882 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2883
2884#ifdef CONFIG_SMP
2885 register_cpu_notifier(&slab_notifier);
4c93c355
CL
2886 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2887 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2888#else
2889 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
2890#endif
2891
81819f0f
CL
2892
2893 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
2894 " CPUs=%d, Nodes=%d\n",
2895 caches, cache_line_size(),
81819f0f
CL
2896 slub_min_order, slub_max_order, slub_min_objects,
2897 nr_cpu_ids, nr_node_ids);
2898}
2899
2900/*
2901 * Find a mergeable slab cache
2902 */
2903static int slab_unmergeable(struct kmem_cache *s)
2904{
2905 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2906 return 1;
2907
c59def9f 2908 if (s->ctor)
81819f0f
CL
2909 return 1;
2910
8ffa6875
CL
2911 /*
2912 * We may have set a slab to be unmergeable during bootstrap.
2913 */
2914 if (s->refcount < 0)
2915 return 1;
2916
81819f0f
CL
2917 return 0;
2918}
2919
2920static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 2921 size_t align, unsigned long flags, const char *name,
4ba9b9d0 2922 void (*ctor)(struct kmem_cache *, void *))
81819f0f 2923{
5b95a4ac 2924 struct kmem_cache *s;
81819f0f
CL
2925
2926 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2927 return NULL;
2928
c59def9f 2929 if (ctor)
81819f0f
CL
2930 return NULL;
2931
2932 size = ALIGN(size, sizeof(void *));
2933 align = calculate_alignment(flags, align, size);
2934 size = ALIGN(size, align);
ba0268a8 2935 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 2936
5b95a4ac 2937 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
2938 if (slab_unmergeable(s))
2939 continue;
2940
2941 if (size > s->size)
2942 continue;
2943
ba0268a8 2944 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
2945 continue;
2946 /*
2947 * Check if alignment is compatible.
2948 * Courtesy of Adrian Drzewiecki
2949 */
2950 if ((s->size & ~(align -1)) != s->size)
2951 continue;
2952
2953 if (s->size - size >= sizeof(void *))
2954 continue;
2955
2956 return s;
2957 }
2958 return NULL;
2959}
2960
2961struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2962 size_t align, unsigned long flags,
4ba9b9d0 2963 void (*ctor)(struct kmem_cache *, void *))
81819f0f
CL
2964{
2965 struct kmem_cache *s;
2966
2967 down_write(&slub_lock);
ba0268a8 2968 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 2969 if (s) {
42a9fdbb
CL
2970 int cpu;
2971
81819f0f
CL
2972 s->refcount++;
2973 /*
2974 * Adjust the object sizes so that we clear
2975 * the complete object on kzalloc.
2976 */
2977 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
2978
2979 /*
2980 * And then we need to update the object size in the
2981 * per cpu structures
2982 */
2983 for_each_online_cpu(cpu)
2984 get_cpu_slab(s, cpu)->objsize = s->objsize;
81819f0f 2985 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 2986 up_write(&slub_lock);
81819f0f
CL
2987 if (sysfs_slab_alias(s, name))
2988 goto err;
a0e1d1be
CL
2989 return s;
2990 }
2991 s = kmalloc(kmem_size, GFP_KERNEL);
2992 if (s) {
2993 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 2994 size, align, flags, ctor)) {
81819f0f 2995 list_add(&s->list, &slab_caches);
a0e1d1be
CL
2996 up_write(&slub_lock);
2997 if (sysfs_slab_add(s))
2998 goto err;
2999 return s;
3000 }
3001 kfree(s);
81819f0f
CL
3002 }
3003 up_write(&slub_lock);
81819f0f
CL
3004
3005err:
81819f0f
CL
3006 if (flags & SLAB_PANIC)
3007 panic("Cannot create slabcache %s\n", name);
3008 else
3009 s = NULL;
3010 return s;
3011}
3012EXPORT_SYMBOL(kmem_cache_create);
3013
81819f0f 3014#ifdef CONFIG_SMP
81819f0f 3015/*
672bba3a
CL
3016 * Use the cpu notifier to insure that the cpu slabs are flushed when
3017 * necessary.
81819f0f
CL
3018 */
3019static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3020 unsigned long action, void *hcpu)
3021{
3022 long cpu = (long)hcpu;
5b95a4ac
CL
3023 struct kmem_cache *s;
3024 unsigned long flags;
81819f0f
CL
3025
3026 switch (action) {
4c93c355
CL
3027 case CPU_UP_PREPARE:
3028 case CPU_UP_PREPARE_FROZEN:
3029 init_alloc_cpu_cpu(cpu);
3030 down_read(&slub_lock);
3031 list_for_each_entry(s, &slab_caches, list)
3032 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3033 GFP_KERNEL);
3034 up_read(&slub_lock);
3035 break;
3036
81819f0f 3037 case CPU_UP_CANCELED:
8bb78442 3038 case CPU_UP_CANCELED_FROZEN:
81819f0f 3039 case CPU_DEAD:
8bb78442 3040 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3041 down_read(&slub_lock);
3042 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3043 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3044
5b95a4ac
CL
3045 local_irq_save(flags);
3046 __flush_cpu_slab(s, cpu);
3047 local_irq_restore(flags);
4c93c355
CL
3048 free_kmem_cache_cpu(c, cpu);
3049 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3050 }
3051 up_read(&slub_lock);
81819f0f
CL
3052 break;
3053 default:
3054 break;
3055 }
3056 return NOTIFY_OK;
3057}
3058
3059static struct notifier_block __cpuinitdata slab_notifier =
3060 { &slab_cpuup_callback, NULL, 0 };
3061
3062#endif
3063
81819f0f
CL
3064void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3065{
aadb4bc4
CL
3066 struct kmem_cache *s;
3067
3068 if (unlikely(size > PAGE_SIZE / 2))
3069 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3070 get_order(size));
3071 s = get_slab(size, gfpflags);
81819f0f 3072
2408c550 3073 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3074 return s;
81819f0f 3075
ce15fea8 3076 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
3077}
3078
3079void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3080 int node, void *caller)
3081{
aadb4bc4
CL
3082 struct kmem_cache *s;
3083
3084 if (unlikely(size > PAGE_SIZE / 2))
3085 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3086 get_order(size));
3087 s = get_slab(size, gfpflags);
81819f0f 3088
2408c550 3089 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3090 return s;
81819f0f 3091
ce15fea8 3092 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
3093}
3094
41ecc55b 3095#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
434e245d
CL
3096static int validate_slab(struct kmem_cache *s, struct page *page,
3097 unsigned long *map)
53e15af0
CL
3098{
3099 void *p;
3100 void *addr = page_address(page);
53e15af0
CL
3101
3102 if (!check_slab(s, page) ||
3103 !on_freelist(s, page, NULL))
3104 return 0;
3105
3106 /* Now we know that a valid freelist exists */
3107 bitmap_zero(map, s->objects);
3108
7656c72b
CL
3109 for_each_free_object(p, s, page->freelist) {
3110 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3111 if (!check_object(s, page, p, 0))
3112 return 0;
3113 }
3114
7656c72b
CL
3115 for_each_object(p, s, addr)
3116 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3117 if (!check_object(s, page, p, 1))
3118 return 0;
3119 return 1;
3120}
3121
434e245d
CL
3122static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3123 unsigned long *map)
53e15af0
CL
3124{
3125 if (slab_trylock(page)) {
434e245d 3126 validate_slab(s, page, map);
53e15af0
CL
3127 slab_unlock(page);
3128 } else
3129 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3130 s->name, page);
3131
3132 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
3133 if (!SlabDebug(page))
3134 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
3135 "on slab 0x%p\n", s->name, page);
3136 } else {
35e5d7ee
CL
3137 if (SlabDebug(page))
3138 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
3139 "slab 0x%p\n", s->name, page);
3140 }
3141}
3142
434e245d
CL
3143static int validate_slab_node(struct kmem_cache *s,
3144 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3145{
3146 unsigned long count = 0;
3147 struct page *page;
3148 unsigned long flags;
3149
3150 spin_lock_irqsave(&n->list_lock, flags);
3151
3152 list_for_each_entry(page, &n->partial, lru) {
434e245d 3153 validate_slab_slab(s, page, map);
53e15af0
CL
3154 count++;
3155 }
3156 if (count != n->nr_partial)
3157 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3158 "counter=%ld\n", s->name, count, n->nr_partial);
3159
3160 if (!(s->flags & SLAB_STORE_USER))
3161 goto out;
3162
3163 list_for_each_entry(page, &n->full, lru) {
434e245d 3164 validate_slab_slab(s, page, map);
53e15af0
CL
3165 count++;
3166 }
3167 if (count != atomic_long_read(&n->nr_slabs))
3168 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3169 "counter=%ld\n", s->name, count,
3170 atomic_long_read(&n->nr_slabs));
3171
3172out:
3173 spin_unlock_irqrestore(&n->list_lock, flags);
3174 return count;
3175}
3176
434e245d 3177static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3178{
3179 int node;
3180 unsigned long count = 0;
434e245d
CL
3181 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3182 sizeof(unsigned long), GFP_KERNEL);
3183
3184 if (!map)
3185 return -ENOMEM;
53e15af0
CL
3186
3187 flush_all(s);
f64dc58c 3188 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3189 struct kmem_cache_node *n = get_node(s, node);
3190
434e245d 3191 count += validate_slab_node(s, n, map);
53e15af0 3192 }
434e245d 3193 kfree(map);
53e15af0
CL
3194 return count;
3195}
3196
b3459709
CL
3197#ifdef SLUB_RESILIENCY_TEST
3198static void resiliency_test(void)
3199{
3200 u8 *p;
3201
3202 printk(KERN_ERR "SLUB resiliency testing\n");
3203 printk(KERN_ERR "-----------------------\n");
3204 printk(KERN_ERR "A. Corruption after allocation\n");
3205
3206 p = kzalloc(16, GFP_KERNEL);
3207 p[16] = 0x12;
3208 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3209 " 0x12->0x%p\n\n", p + 16);
3210
3211 validate_slab_cache(kmalloc_caches + 4);
3212
3213 /* Hmmm... The next two are dangerous */
3214 p = kzalloc(32, GFP_KERNEL);
3215 p[32 + sizeof(void *)] = 0x34;
3216 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3217 " 0x34 -> -0x%p\n", p);
3218 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3219
3220 validate_slab_cache(kmalloc_caches + 5);
3221 p = kzalloc(64, GFP_KERNEL);
3222 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3223 *p = 0x56;
3224 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3225 p);
3226 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3227 validate_slab_cache(kmalloc_caches + 6);
3228
3229 printk(KERN_ERR "\nB. Corruption after free\n");
3230 p = kzalloc(128, GFP_KERNEL);
3231 kfree(p);
3232 *p = 0x78;
3233 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3234 validate_slab_cache(kmalloc_caches + 7);
3235
3236 p = kzalloc(256, GFP_KERNEL);
3237 kfree(p);
3238 p[50] = 0x9a;
3239 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3240 validate_slab_cache(kmalloc_caches + 8);
3241
3242 p = kzalloc(512, GFP_KERNEL);
3243 kfree(p);
3244 p[512] = 0xab;
3245 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3246 validate_slab_cache(kmalloc_caches + 9);
3247}
3248#else
3249static void resiliency_test(void) {};
3250#endif
3251
88a420e4 3252/*
672bba3a 3253 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3254 * and freed.
3255 */
3256
3257struct location {
3258 unsigned long count;
3259 void *addr;
45edfa58
CL
3260 long long sum_time;
3261 long min_time;
3262 long max_time;
3263 long min_pid;
3264 long max_pid;
3265 cpumask_t cpus;
3266 nodemask_t nodes;
88a420e4
CL
3267};
3268
3269struct loc_track {
3270 unsigned long max;
3271 unsigned long count;
3272 struct location *loc;
3273};
3274
3275static void free_loc_track(struct loc_track *t)
3276{
3277 if (t->max)
3278 free_pages((unsigned long)t->loc,
3279 get_order(sizeof(struct location) * t->max));
3280}
3281
68dff6a9 3282static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3283{
3284 struct location *l;
3285 int order;
3286
88a420e4
CL
3287 order = get_order(sizeof(struct location) * max);
3288
68dff6a9 3289 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3290 if (!l)
3291 return 0;
3292
3293 if (t->count) {
3294 memcpy(l, t->loc, sizeof(struct location) * t->count);
3295 free_loc_track(t);
3296 }
3297 t->max = max;
3298 t->loc = l;
3299 return 1;
3300}
3301
3302static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3303 const struct track *track)
88a420e4
CL
3304{
3305 long start, end, pos;
3306 struct location *l;
3307 void *caddr;
45edfa58 3308 unsigned long age = jiffies - track->when;
88a420e4
CL
3309
3310 start = -1;
3311 end = t->count;
3312
3313 for ( ; ; ) {
3314 pos = start + (end - start + 1) / 2;
3315
3316 /*
3317 * There is nothing at "end". If we end up there
3318 * we need to add something to before end.
3319 */
3320 if (pos == end)
3321 break;
3322
3323 caddr = t->loc[pos].addr;
45edfa58
CL
3324 if (track->addr == caddr) {
3325
3326 l = &t->loc[pos];
3327 l->count++;
3328 if (track->when) {
3329 l->sum_time += age;
3330 if (age < l->min_time)
3331 l->min_time = age;
3332 if (age > l->max_time)
3333 l->max_time = age;
3334
3335 if (track->pid < l->min_pid)
3336 l->min_pid = track->pid;
3337 if (track->pid > l->max_pid)
3338 l->max_pid = track->pid;
3339
3340 cpu_set(track->cpu, l->cpus);
3341 }
3342 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3343 return 1;
3344 }
3345
45edfa58 3346 if (track->addr < caddr)
88a420e4
CL
3347 end = pos;
3348 else
3349 start = pos;
3350 }
3351
3352 /*
672bba3a 3353 * Not found. Insert new tracking element.
88a420e4 3354 */
68dff6a9 3355 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3356 return 0;
3357
3358 l = t->loc + pos;
3359 if (pos < t->count)
3360 memmove(l + 1, l,
3361 (t->count - pos) * sizeof(struct location));
3362 t->count++;
3363 l->count = 1;
45edfa58
CL
3364 l->addr = track->addr;
3365 l->sum_time = age;
3366 l->min_time = age;
3367 l->max_time = age;
3368 l->min_pid = track->pid;
3369 l->max_pid = track->pid;
3370 cpus_clear(l->cpus);
3371 cpu_set(track->cpu, l->cpus);
3372 nodes_clear(l->nodes);
3373 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3374 return 1;
3375}
3376
3377static void process_slab(struct loc_track *t, struct kmem_cache *s,
3378 struct page *page, enum track_item alloc)
3379{
3380 void *addr = page_address(page);
7656c72b 3381 DECLARE_BITMAP(map, s->objects);
88a420e4
CL
3382 void *p;
3383
3384 bitmap_zero(map, s->objects);
7656c72b
CL
3385 for_each_free_object(p, s, page->freelist)
3386 set_bit(slab_index(p, s, addr), map);
88a420e4 3387
7656c72b 3388 for_each_object(p, s, addr)
45edfa58
CL
3389 if (!test_bit(slab_index(p, s, addr), map))
3390 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3391}
3392
3393static int list_locations(struct kmem_cache *s, char *buf,
3394 enum track_item alloc)
3395{
e374d483 3396 int len = 0;
88a420e4 3397 unsigned long i;
68dff6a9 3398 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3399 int node;
3400
68dff6a9 3401 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3402 GFP_TEMPORARY))
68dff6a9 3403 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3404
3405 /* Push back cpu slabs */
3406 flush_all(s);
3407
f64dc58c 3408 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3409 struct kmem_cache_node *n = get_node(s, node);
3410 unsigned long flags;
3411 struct page *page;
3412
9e86943b 3413 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3414 continue;
3415
3416 spin_lock_irqsave(&n->list_lock, flags);
3417 list_for_each_entry(page, &n->partial, lru)
3418 process_slab(&t, s, page, alloc);
3419 list_for_each_entry(page, &n->full, lru)
3420 process_slab(&t, s, page, alloc);
3421 spin_unlock_irqrestore(&n->list_lock, flags);
3422 }
3423
3424 for (i = 0; i < t.count; i++) {
45edfa58 3425 struct location *l = &t.loc[i];
88a420e4 3426
e374d483 3427 if (len > PAGE_SIZE - 100)
88a420e4 3428 break;
e374d483 3429 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3430
3431 if (l->addr)
e374d483 3432 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3433 else
e374d483 3434 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3435
3436 if (l->sum_time != l->min_time) {
3437 unsigned long remainder;
3438
e374d483 3439 len += sprintf(buf + len, " age=%ld/%ld/%ld",
45edfa58
CL
3440 l->min_time,
3441 div_long_long_rem(l->sum_time, l->count, &remainder),
3442 l->max_time);
3443 } else
e374d483 3444 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3445 l->min_time);
3446
3447 if (l->min_pid != l->max_pid)
e374d483 3448 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3449 l->min_pid, l->max_pid);
3450 else
e374d483 3451 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3452 l->min_pid);
3453
84966343 3454 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
e374d483
HH
3455 len < PAGE_SIZE - 60) {
3456 len += sprintf(buf + len, " cpus=");
3457 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3458 l->cpus);
3459 }
3460
84966343 3461 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3462 len < PAGE_SIZE - 60) {
3463 len += sprintf(buf + len, " nodes=");
3464 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3465 l->nodes);
3466 }
3467
e374d483 3468 len += sprintf(buf + len, "\n");
88a420e4
CL
3469 }
3470
3471 free_loc_track(&t);
3472 if (!t.count)
e374d483
HH
3473 len += sprintf(buf, "No data\n");
3474 return len;
88a420e4
CL
3475}
3476
81819f0f
CL
3477enum slab_stat_type {
3478 SL_FULL,
3479 SL_PARTIAL,
3480 SL_CPU,
3481 SL_OBJECTS
3482};
3483
3484#define SO_FULL (1 << SL_FULL)
3485#define SO_PARTIAL (1 << SL_PARTIAL)
3486#define SO_CPU (1 << SL_CPU)
3487#define SO_OBJECTS (1 << SL_OBJECTS)
3488
3489static unsigned long slab_objects(struct kmem_cache *s,
3490 char *buf, unsigned long flags)
3491{
3492 unsigned long total = 0;
3493 int cpu;
3494 int node;
3495 int x;
3496 unsigned long *nodes;
3497 unsigned long *per_cpu;
3498
3499 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3500 per_cpu = nodes + nr_node_ids;
3501
3502 for_each_possible_cpu(cpu) {
dfb4f096
CL
3503 struct page *page;
3504 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 3505
dfb4f096
CL
3506 if (!c)
3507 continue;
3508
3509 page = c->page;
ee3c72a1
CL
3510 node = c->node;
3511 if (node < 0)
3512 continue;
81819f0f 3513 if (page) {
81819f0f 3514 if (flags & SO_CPU) {
81819f0f
CL
3515 if (flags & SO_OBJECTS)
3516 x = page->inuse;
3517 else
3518 x = 1;
3519 total += x;
ee3c72a1 3520 nodes[node] += x;
81819f0f 3521 }
ee3c72a1 3522 per_cpu[node]++;
81819f0f
CL
3523 }
3524 }
3525
f64dc58c 3526 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3527 struct kmem_cache_node *n = get_node(s, node);
3528
3529 if (flags & SO_PARTIAL) {
3530 if (flags & SO_OBJECTS)
3531 x = count_partial(n);
3532 else
3533 x = n->nr_partial;
3534 total += x;
3535 nodes[node] += x;
3536 }
3537
3538 if (flags & SO_FULL) {
9e86943b 3539 int full_slabs = atomic_long_read(&n->nr_slabs)
81819f0f
CL
3540 - per_cpu[node]
3541 - n->nr_partial;
3542
3543 if (flags & SO_OBJECTS)
3544 x = full_slabs * s->objects;
3545 else
3546 x = full_slabs;
3547 total += x;
3548 nodes[node] += x;
3549 }
3550 }
3551
3552 x = sprintf(buf, "%lu", total);
3553#ifdef CONFIG_NUMA
f64dc58c 3554 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3555 if (nodes[node])
3556 x += sprintf(buf + x, " N%d=%lu",
3557 node, nodes[node]);
3558#endif
3559 kfree(nodes);
3560 return x + sprintf(buf + x, "\n");
3561}
3562
3563static int any_slab_objects(struct kmem_cache *s)
3564{
3565 int node;
3566 int cpu;
3567
dfb4f096
CL
3568 for_each_possible_cpu(cpu) {
3569 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3570
3571 if (c && c->page)
81819f0f 3572 return 1;
dfb4f096 3573 }
81819f0f 3574
dfb4f096 3575 for_each_online_node(node) {
81819f0f
CL
3576 struct kmem_cache_node *n = get_node(s, node);
3577
dfb4f096
CL
3578 if (!n)
3579 continue;
3580
9e86943b 3581 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
81819f0f
CL
3582 return 1;
3583 }
3584 return 0;
3585}
3586
3587#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3588#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3589
3590struct slab_attribute {
3591 struct attribute attr;
3592 ssize_t (*show)(struct kmem_cache *s, char *buf);
3593 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3594};
3595
3596#define SLAB_ATTR_RO(_name) \
3597 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3598
3599#define SLAB_ATTR(_name) \
3600 static struct slab_attribute _name##_attr = \
3601 __ATTR(_name, 0644, _name##_show, _name##_store)
3602
81819f0f
CL
3603static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3604{
3605 return sprintf(buf, "%d\n", s->size);
3606}
3607SLAB_ATTR_RO(slab_size);
3608
3609static ssize_t align_show(struct kmem_cache *s, char *buf)
3610{
3611 return sprintf(buf, "%d\n", s->align);
3612}
3613SLAB_ATTR_RO(align);
3614
3615static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3616{
3617 return sprintf(buf, "%d\n", s->objsize);
3618}
3619SLAB_ATTR_RO(object_size);
3620
3621static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3622{
3623 return sprintf(buf, "%d\n", s->objects);
3624}
3625SLAB_ATTR_RO(objs_per_slab);
3626
3627static ssize_t order_show(struct kmem_cache *s, char *buf)
3628{
3629 return sprintf(buf, "%d\n", s->order);
3630}
3631SLAB_ATTR_RO(order);
3632
3633static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3634{
3635 if (s->ctor) {
3636 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3637
3638 return n + sprintf(buf + n, "\n");
3639 }
3640 return 0;
3641}
3642SLAB_ATTR_RO(ctor);
3643
81819f0f
CL
3644static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3645{
3646 return sprintf(buf, "%d\n", s->refcount - 1);
3647}
3648SLAB_ATTR_RO(aliases);
3649
3650static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3651{
3652 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3653}
3654SLAB_ATTR_RO(slabs);
3655
3656static ssize_t partial_show(struct kmem_cache *s, char *buf)
3657{
3658 return slab_objects(s, buf, SO_PARTIAL);
3659}
3660SLAB_ATTR_RO(partial);
3661
3662static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3663{
3664 return slab_objects(s, buf, SO_CPU);
3665}
3666SLAB_ATTR_RO(cpu_slabs);
3667
3668static ssize_t objects_show(struct kmem_cache *s, char *buf)
3669{
3670 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3671}
3672SLAB_ATTR_RO(objects);
3673
3674static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3675{
3676 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3677}
3678
3679static ssize_t sanity_checks_store(struct kmem_cache *s,
3680 const char *buf, size_t length)
3681{
3682 s->flags &= ~SLAB_DEBUG_FREE;
3683 if (buf[0] == '1')
3684 s->flags |= SLAB_DEBUG_FREE;
3685 return length;
3686}
3687SLAB_ATTR(sanity_checks);
3688
3689static ssize_t trace_show(struct kmem_cache *s, char *buf)
3690{
3691 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3692}
3693
3694static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3695 size_t length)
3696{
3697 s->flags &= ~SLAB_TRACE;
3698 if (buf[0] == '1')
3699 s->flags |= SLAB_TRACE;
3700 return length;
3701}
3702SLAB_ATTR(trace);
3703
3704static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3705{
3706 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3707}
3708
3709static ssize_t reclaim_account_store(struct kmem_cache *s,
3710 const char *buf, size_t length)
3711{
3712 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3713 if (buf[0] == '1')
3714 s->flags |= SLAB_RECLAIM_ACCOUNT;
3715 return length;
3716}
3717SLAB_ATTR(reclaim_account);
3718
3719static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3720{
5af60839 3721 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3722}
3723SLAB_ATTR_RO(hwcache_align);
3724
3725#ifdef CONFIG_ZONE_DMA
3726static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3727{
3728 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3729}
3730SLAB_ATTR_RO(cache_dma);
3731#endif
3732
3733static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3734{
3735 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3736}
3737SLAB_ATTR_RO(destroy_by_rcu);
3738
3739static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3740{
3741 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3742}
3743
3744static ssize_t red_zone_store(struct kmem_cache *s,
3745 const char *buf, size_t length)
3746{
3747 if (any_slab_objects(s))
3748 return -EBUSY;
3749
3750 s->flags &= ~SLAB_RED_ZONE;
3751 if (buf[0] == '1')
3752 s->flags |= SLAB_RED_ZONE;
3753 calculate_sizes(s);
3754 return length;
3755}
3756SLAB_ATTR(red_zone);
3757
3758static ssize_t poison_show(struct kmem_cache *s, char *buf)
3759{
3760 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3761}
3762
3763static ssize_t poison_store(struct kmem_cache *s,
3764 const char *buf, size_t length)
3765{
3766 if (any_slab_objects(s))
3767 return -EBUSY;
3768
3769 s->flags &= ~SLAB_POISON;
3770 if (buf[0] == '1')
3771 s->flags |= SLAB_POISON;
3772 calculate_sizes(s);
3773 return length;
3774}
3775SLAB_ATTR(poison);
3776
3777static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3778{
3779 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3780}
3781
3782static ssize_t store_user_store(struct kmem_cache *s,
3783 const char *buf, size_t length)
3784{
3785 if (any_slab_objects(s))
3786 return -EBUSY;
3787
3788 s->flags &= ~SLAB_STORE_USER;
3789 if (buf[0] == '1')
3790 s->flags |= SLAB_STORE_USER;
3791 calculate_sizes(s);
3792 return length;
3793}
3794SLAB_ATTR(store_user);
3795
53e15af0
CL
3796static ssize_t validate_show(struct kmem_cache *s, char *buf)
3797{
3798 return 0;
3799}
3800
3801static ssize_t validate_store(struct kmem_cache *s,
3802 const char *buf, size_t length)
3803{
434e245d
CL
3804 int ret = -EINVAL;
3805
3806 if (buf[0] == '1') {
3807 ret = validate_slab_cache(s);
3808 if (ret >= 0)
3809 ret = length;
3810 }
3811 return ret;
53e15af0
CL
3812}
3813SLAB_ATTR(validate);
3814
2086d26a
CL
3815static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3816{
3817 return 0;
3818}
3819
3820static ssize_t shrink_store(struct kmem_cache *s,
3821 const char *buf, size_t length)
3822{
3823 if (buf[0] == '1') {
3824 int rc = kmem_cache_shrink(s);
3825
3826 if (rc)
3827 return rc;
3828 } else
3829 return -EINVAL;
3830 return length;
3831}
3832SLAB_ATTR(shrink);
3833
88a420e4
CL
3834static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3835{
3836 if (!(s->flags & SLAB_STORE_USER))
3837 return -ENOSYS;
3838 return list_locations(s, buf, TRACK_ALLOC);
3839}
3840SLAB_ATTR_RO(alloc_calls);
3841
3842static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3843{
3844 if (!(s->flags & SLAB_STORE_USER))
3845 return -ENOSYS;
3846 return list_locations(s, buf, TRACK_FREE);
3847}
3848SLAB_ATTR_RO(free_calls);
3849
81819f0f 3850#ifdef CONFIG_NUMA
9824601e 3851static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 3852{
9824601e 3853 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
3854}
3855
9824601e 3856static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
3857 const char *buf, size_t length)
3858{
3859 int n = simple_strtoul(buf, NULL, 10);
3860
3861 if (n < 100)
9824601e 3862 s->remote_node_defrag_ratio = n * 10;
81819f0f
CL
3863 return length;
3864}
9824601e 3865SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
3866#endif
3867
3868static struct attribute * slab_attrs[] = {
3869 &slab_size_attr.attr,
3870 &object_size_attr.attr,
3871 &objs_per_slab_attr.attr,
3872 &order_attr.attr,
3873 &objects_attr.attr,
3874 &slabs_attr.attr,
3875 &partial_attr.attr,
3876 &cpu_slabs_attr.attr,
3877 &ctor_attr.attr,
81819f0f
CL
3878 &aliases_attr.attr,
3879 &align_attr.attr,
3880 &sanity_checks_attr.attr,
3881 &trace_attr.attr,
3882 &hwcache_align_attr.attr,
3883 &reclaim_account_attr.attr,
3884 &destroy_by_rcu_attr.attr,
3885 &red_zone_attr.attr,
3886 &poison_attr.attr,
3887 &store_user_attr.attr,
53e15af0 3888 &validate_attr.attr,
2086d26a 3889 &shrink_attr.attr,
88a420e4
CL
3890 &alloc_calls_attr.attr,
3891 &free_calls_attr.attr,
81819f0f
CL
3892#ifdef CONFIG_ZONE_DMA
3893 &cache_dma_attr.attr,
3894#endif
3895#ifdef CONFIG_NUMA
9824601e 3896 &remote_node_defrag_ratio_attr.attr,
81819f0f
CL
3897#endif
3898 NULL
3899};
3900
3901static struct attribute_group slab_attr_group = {
3902 .attrs = slab_attrs,
3903};
3904
3905static ssize_t slab_attr_show(struct kobject *kobj,
3906 struct attribute *attr,
3907 char *buf)
3908{
3909 struct slab_attribute *attribute;
3910 struct kmem_cache *s;
3911 int err;
3912
3913 attribute = to_slab_attr(attr);
3914 s = to_slab(kobj);
3915
3916 if (!attribute->show)
3917 return -EIO;
3918
3919 err = attribute->show(s, buf);
3920
3921 return err;
3922}
3923
3924static ssize_t slab_attr_store(struct kobject *kobj,
3925 struct attribute *attr,
3926 const char *buf, size_t len)
3927{
3928 struct slab_attribute *attribute;
3929 struct kmem_cache *s;
3930 int err;
3931
3932 attribute = to_slab_attr(attr);
3933 s = to_slab(kobj);
3934
3935 if (!attribute->store)
3936 return -EIO;
3937
3938 err = attribute->store(s, buf, len);
3939
3940 return err;
3941}
3942
151c602f
CL
3943static void kmem_cache_release(struct kobject *kobj)
3944{
3945 struct kmem_cache *s = to_slab(kobj);
3946
3947 kfree(s);
3948}
3949
81819f0f
CL
3950static struct sysfs_ops slab_sysfs_ops = {
3951 .show = slab_attr_show,
3952 .store = slab_attr_store,
3953};
3954
3955static struct kobj_type slab_ktype = {
3956 .sysfs_ops = &slab_sysfs_ops,
151c602f 3957 .release = kmem_cache_release
81819f0f
CL
3958};
3959
3960static int uevent_filter(struct kset *kset, struct kobject *kobj)
3961{
3962 struct kobj_type *ktype = get_ktype(kobj);
3963
3964 if (ktype == &slab_ktype)
3965 return 1;
3966 return 0;
3967}
3968
3969static struct kset_uevent_ops slab_uevent_ops = {
3970 .filter = uevent_filter,
3971};
3972
27c3a314 3973static struct kset *slab_kset;
81819f0f
CL
3974
3975#define ID_STR_LENGTH 64
3976
3977/* Create a unique string id for a slab cache:
3978 * format
3979 * :[flags-]size:[memory address of kmemcache]
3980 */
3981static char *create_unique_id(struct kmem_cache *s)
3982{
3983 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3984 char *p = name;
3985
3986 BUG_ON(!name);
3987
3988 *p++ = ':';
3989 /*
3990 * First flags affecting slabcache operations. We will only
3991 * get here for aliasable slabs so we do not need to support
3992 * too many flags. The flags here must cover all flags that
3993 * are matched during merging to guarantee that the id is
3994 * unique.
3995 */
3996 if (s->flags & SLAB_CACHE_DMA)
3997 *p++ = 'd';
3998 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3999 *p++ = 'a';
4000 if (s->flags & SLAB_DEBUG_FREE)
4001 *p++ = 'F';
4002 if (p != name + 1)
4003 *p++ = '-';
4004 p += sprintf(p, "%07d", s->size);
4005 BUG_ON(p > name + ID_STR_LENGTH - 1);
4006 return name;
4007}
4008
4009static int sysfs_slab_add(struct kmem_cache *s)
4010{
4011 int err;
4012 const char *name;
4013 int unmergeable;
4014
4015 if (slab_state < SYSFS)
4016 /* Defer until later */
4017 return 0;
4018
4019 unmergeable = slab_unmergeable(s);
4020 if (unmergeable) {
4021 /*
4022 * Slabcache can never be merged so we can use the name proper.
4023 * This is typically the case for debug situations. In that
4024 * case we can catch duplicate names easily.
4025 */
27c3a314 4026 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4027 name = s->name;
4028 } else {
4029 /*
4030 * Create a unique name for the slab as a target
4031 * for the symlinks.
4032 */
4033 name = create_unique_id(s);
4034 }
4035
27c3a314 4036 s->kobj.kset = slab_kset;
1eada11c
GKH
4037 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4038 if (err) {
4039 kobject_put(&s->kobj);
81819f0f 4040 return err;
1eada11c 4041 }
81819f0f
CL
4042
4043 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4044 if (err)
4045 return err;
4046 kobject_uevent(&s->kobj, KOBJ_ADD);
4047 if (!unmergeable) {
4048 /* Setup first alias */
4049 sysfs_slab_alias(s, s->name);
4050 kfree(name);
4051 }
4052 return 0;
4053}
4054
4055static void sysfs_slab_remove(struct kmem_cache *s)
4056{
4057 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4058 kobject_del(&s->kobj);
151c602f 4059 kobject_put(&s->kobj);
81819f0f
CL
4060}
4061
4062/*
4063 * Need to buffer aliases during bootup until sysfs becomes
4064 * available lest we loose that information.
4065 */
4066struct saved_alias {
4067 struct kmem_cache *s;
4068 const char *name;
4069 struct saved_alias *next;
4070};
4071
5af328a5 4072static struct saved_alias *alias_list;
81819f0f
CL
4073
4074static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4075{
4076 struct saved_alias *al;
4077
4078 if (slab_state == SYSFS) {
4079 /*
4080 * If we have a leftover link then remove it.
4081 */
27c3a314
GKH
4082 sysfs_remove_link(&slab_kset->kobj, name);
4083 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4084 }
4085
4086 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4087 if (!al)
4088 return -ENOMEM;
4089
4090 al->s = s;
4091 al->name = name;
4092 al->next = alias_list;
4093 alias_list = al;
4094 return 0;
4095}
4096
4097static int __init slab_sysfs_init(void)
4098{
5b95a4ac 4099 struct kmem_cache *s;
81819f0f
CL
4100 int err;
4101
0ff21e46 4102 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4103 if (!slab_kset) {
81819f0f
CL
4104 printk(KERN_ERR "Cannot register slab subsystem.\n");
4105 return -ENOSYS;
4106 }
4107
26a7bd03
CL
4108 slab_state = SYSFS;
4109
5b95a4ac 4110 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4111 err = sysfs_slab_add(s);
5d540fb7
CL
4112 if (err)
4113 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4114 " to sysfs\n", s->name);
26a7bd03 4115 }
81819f0f
CL
4116
4117 while (alias_list) {
4118 struct saved_alias *al = alias_list;
4119
4120 alias_list = alias_list->next;
4121 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4122 if (err)
4123 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4124 " %s to sysfs\n", s->name);
81819f0f
CL
4125 kfree(al);
4126 }
4127
4128 resiliency_test();
4129 return 0;
4130}
4131
4132__initcall(slab_sysfs_init);
81819f0f 4133#endif
57ed3eda
PE
4134
4135/*
4136 * The /proc/slabinfo ABI
4137 */
158a9624
LT
4138#ifdef CONFIG_SLABINFO
4139
4140ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4141 size_t count, loff_t *ppos)
4142{
4143 return -EINVAL;
4144}
4145
57ed3eda
PE
4146
4147static void print_slabinfo_header(struct seq_file *m)
4148{
4149 seq_puts(m, "slabinfo - version: 2.1\n");
4150 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4151 "<objperslab> <pagesperslab>");
4152 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4153 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4154 seq_putc(m, '\n');
4155}
4156
4157static void *s_start(struct seq_file *m, loff_t *pos)
4158{
4159 loff_t n = *pos;
4160
4161 down_read(&slub_lock);
4162 if (!n)
4163 print_slabinfo_header(m);
4164
4165 return seq_list_start(&slab_caches, *pos);
4166}
4167
4168static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4169{
4170 return seq_list_next(p, &slab_caches, pos);
4171}
4172
4173static void s_stop(struct seq_file *m, void *p)
4174{
4175 up_read(&slub_lock);
4176}
4177
4178static int s_show(struct seq_file *m, void *p)
4179{
4180 unsigned long nr_partials = 0;
4181 unsigned long nr_slabs = 0;
4182 unsigned long nr_inuse = 0;
4183 unsigned long nr_objs;
4184 struct kmem_cache *s;
4185 int node;
4186
4187 s = list_entry(p, struct kmem_cache, list);
4188
4189 for_each_online_node(node) {
4190 struct kmem_cache_node *n = get_node(s, node);
4191
4192 if (!n)
4193 continue;
4194
4195 nr_partials += n->nr_partial;
4196 nr_slabs += atomic_long_read(&n->nr_slabs);
4197 nr_inuse += count_partial(n);
4198 }
4199
4200 nr_objs = nr_slabs * s->objects;
4201 nr_inuse += (nr_slabs - nr_partials) * s->objects;
4202
4203 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4204 nr_objs, s->size, s->objects, (1 << s->order));
4205 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4206 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4207 0UL);
4208 seq_putc(m, '\n');
4209 return 0;
4210}
4211
4212const struct seq_operations slabinfo_op = {
4213 .start = s_start,
4214 .next = s_next,
4215 .stop = s_stop,
4216 .show = s_show,
4217};
4218
158a9624 4219#endif /* CONFIG_SLABINFO */