]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slub.c
calculation of pgoff in do_linear_fault() uses mixed units
[net-next-2.6.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
9 */
10
11#include <linux/mm.h>
12#include <linux/module.h>
13#include <linux/bit_spinlock.h>
14#include <linux/interrupt.h>
15#include <linux/bitops.h>
16#include <linux/slab.h>
17#include <linux/seq_file.h>
18#include <linux/cpu.h>
19#include <linux/cpuset.h>
20#include <linux/mempolicy.h>
21#include <linux/ctype.h>
22#include <linux/kallsyms.h>
23
24/*
25 * Lock order:
26 * 1. slab_lock(page)
27 * 2. slab->list_lock
28 *
29 * The slab_lock protects operations on the object of a particular
30 * slab and its metadata in the page struct. If the slab lock
31 * has been taken then no allocations nor frees can be performed
32 * on the objects in the slab nor can the slab be added or removed
33 * from the partial or full lists since this would mean modifying
34 * the page_struct of the slab.
35 *
36 * The list_lock protects the partial and full list on each node and
37 * the partial slab counter. If taken then no new slabs may be added or
38 * removed from the lists nor make the number of partial slabs be modified.
39 * (Note that the total number of slabs is an atomic value that may be
40 * modified without taking the list lock).
41 *
42 * The list_lock is a centralized lock and thus we avoid taking it as
43 * much as possible. As long as SLUB does not have to handle partial
44 * slabs, operations can continue without any centralized lock. F.e.
45 * allocating a long series of objects that fill up slabs does not require
46 * the list lock.
47 *
48 * The lock order is sometimes inverted when we are trying to get a slab
49 * off a list. We take the list_lock and then look for a page on the list
50 * to use. While we do that objects in the slabs may be freed. We can
51 * only operate on the slab if we have also taken the slab_lock. So we use
52 * a slab_trylock() on the slab. If trylock was successful then no frees
53 * can occur anymore and we can use the slab for allocations etc. If the
54 * slab_trylock() does not succeed then frees are in progress in the slab and
55 * we must stay away from it for a while since we may cause a bouncing
56 * cacheline if we try to acquire the lock. So go onto the next slab.
57 * If all pages are busy then we may allocate a new slab instead of reusing
58 * a partial slab. A new slab has noone operating on it and thus there is
59 * no danger of cacheline contention.
60 *
61 * Interrupts are disabled during allocation and deallocation in order to
62 * make the slab allocator safe to use in the context of an irq. In addition
63 * interrupts are disabled to ensure that the processor does not change
64 * while handling per_cpu slabs, due to kernel preemption.
65 *
66 * SLUB assigns one slab for allocation to each processor.
67 * Allocations only occur from these slabs called cpu slabs.
68 *
672bba3a
CL
69 * Slabs with free elements are kept on a partial list and during regular
70 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 71 * freed then the slab will show up again on the partial lists.
672bba3a
CL
72 * We track full slabs for debugging purposes though because otherwise we
73 * cannot scan all objects.
81819f0f
CL
74 *
75 * Slabs are freed when they become empty. Teardown and setup is
76 * minimal so we rely on the page allocators per cpu caches for
77 * fast frees and allocs.
78 *
79 * Overloading of page flags that are otherwise used for LRU management.
80 *
4b6f0750
CL
81 * PageActive The slab is frozen and exempt from list processing.
82 * This means that the slab is dedicated to a purpose
83 * such as satisfying allocations for a specific
84 * processor. Objects may be freed in the slab while
85 * it is frozen but slab_free will then skip the usual
86 * list operations. It is up to the processor holding
87 * the slab to integrate the slab into the slab lists
88 * when the slab is no longer needed.
89 *
90 * One use of this flag is to mark slabs that are
91 * used for allocations. Then such a slab becomes a cpu
92 * slab. The cpu slab may be equipped with an additional
894b8788
CL
93 * lockless_freelist that allows lockless access to
94 * free objects in addition to the regular freelist
95 * that requires the slab lock.
81819f0f
CL
96 *
97 * PageError Slab requires special handling due to debug
98 * options set. This moves slab handling out of
894b8788 99 * the fast path and disables lockless freelists.
81819f0f
CL
100 */
101
5577bd8a
CL
102#define FROZEN (1 << PG_active)
103
104#ifdef CONFIG_SLUB_DEBUG
105#define SLABDEBUG (1 << PG_error)
106#else
107#define SLABDEBUG 0
108#endif
109
4b6f0750
CL
110static inline int SlabFrozen(struct page *page)
111{
5577bd8a 112 return page->flags & FROZEN;
4b6f0750
CL
113}
114
115static inline void SetSlabFrozen(struct page *page)
116{
5577bd8a 117 page->flags |= FROZEN;
4b6f0750
CL
118}
119
120static inline void ClearSlabFrozen(struct page *page)
121{
5577bd8a 122 page->flags &= ~FROZEN;
4b6f0750
CL
123}
124
35e5d7ee
CL
125static inline int SlabDebug(struct page *page)
126{
5577bd8a 127 return page->flags & SLABDEBUG;
35e5d7ee
CL
128}
129
130static inline void SetSlabDebug(struct page *page)
131{
5577bd8a 132 page->flags |= SLABDEBUG;
35e5d7ee
CL
133}
134
135static inline void ClearSlabDebug(struct page *page)
136{
5577bd8a 137 page->flags &= ~SLABDEBUG;
35e5d7ee
CL
138}
139
81819f0f
CL
140/*
141 * Issues still to be resolved:
142 *
143 * - The per cpu array is updated for each new slab and and is a remote
144 * cacheline for most nodes. This could become a bouncing cacheline given
672bba3a
CL
145 * enough frequent updates. There are 16 pointers in a cacheline, so at
146 * max 16 cpus could compete for the cacheline which may be okay.
81819f0f
CL
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
81819f0f
CL
150 * - Variable sizing of the per node arrays
151 */
152
153/* Enable to test recovery from slab corruption on boot */
154#undef SLUB_RESILIENCY_TEST
155
156#if PAGE_SHIFT <= 12
157
158/*
159 * Small page size. Make sure that we do not fragment memory
160 */
161#define DEFAULT_MAX_ORDER 1
162#define DEFAULT_MIN_OBJECTS 4
163
164#else
165
166/*
167 * Large page machines are customarily able to handle larger
168 * page orders.
169 */
170#define DEFAULT_MAX_ORDER 2
171#define DEFAULT_MIN_OBJECTS 8
172
173#endif
174
2086d26a
CL
175/*
176 * Mininum number of partial slabs. These will be left on the partial
177 * lists even if they are empty. kmem_cache_shrink may reclaim them.
178 */
e95eed57
CL
179#define MIN_PARTIAL 2
180
2086d26a
CL
181/*
182 * Maximum number of desirable partial slabs.
183 * The existence of more partial slabs makes kmem_cache_shrink
184 * sort the partial list by the number of objects in the.
185 */
186#define MAX_PARTIAL 10
187
81819f0f
CL
188#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
189 SLAB_POISON | SLAB_STORE_USER)
672bba3a 190
81819f0f
CL
191/*
192 * Set of flags that will prevent slab merging
193 */
194#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
195 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
196
197#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
198 SLAB_CACHE_DMA)
199
200#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 201#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
202#endif
203
204#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 205#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
206#endif
207
6300ea75
CL
208/*
209 * The page->inuse field is 16 bit thus we have this limitation
210 */
211#define MAX_OBJECTS_PER_SLAB 65535
212
81819f0f 213/* Internal SLUB flags */
1ceef402
CL
214#define __OBJECT_POISON 0x80000000 /* Poison object */
215#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f 216
65c02d4c
CL
217/* Not all arches define cache_line_size */
218#ifndef cache_line_size
219#define cache_line_size() L1_CACHE_BYTES
220#endif
221
81819f0f
CL
222static int kmem_size = sizeof(struct kmem_cache);
223
224#ifdef CONFIG_SMP
225static struct notifier_block slab_notifier;
226#endif
227
228static enum {
229 DOWN, /* No slab functionality available */
230 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 231 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
232 SYSFS /* Sysfs up */
233} slab_state = DOWN;
234
235/* A list of all slab caches on the system */
236static DECLARE_RWSEM(slub_lock);
5af328a5 237static LIST_HEAD(slab_caches);
81819f0f 238
02cbc874
CL
239/*
240 * Tracking user of a slab.
241 */
242struct track {
243 void *addr; /* Called from address */
244 int cpu; /* Was running on cpu */
245 int pid; /* Pid context */
246 unsigned long when; /* When did the operation occur */
247};
248
249enum track_item { TRACK_ALLOC, TRACK_FREE };
250
41ecc55b 251#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
81819f0f
CL
252static int sysfs_slab_add(struct kmem_cache *);
253static int sysfs_slab_alias(struct kmem_cache *, const char *);
254static void sysfs_slab_remove(struct kmem_cache *);
255#else
0c710013
CL
256static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
257static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
258 { return 0; }
259static inline void sysfs_slab_remove(struct kmem_cache *s) {}
81819f0f
CL
260#endif
261
262/********************************************************************
263 * Core slab cache functions
264 *******************************************************************/
265
266int slab_is_available(void)
267{
268 return slab_state >= UP;
269}
270
271static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
272{
273#ifdef CONFIG_NUMA
274 return s->node[node];
275#else
276 return &s->local_node;
277#endif
278}
279
02cbc874
CL
280static inline int check_valid_pointer(struct kmem_cache *s,
281 struct page *page, const void *object)
282{
283 void *base;
284
285 if (!object)
286 return 1;
287
288 base = page_address(page);
289 if (object < base || object >= base + s->objects * s->size ||
290 (object - base) % s->size) {
291 return 0;
292 }
293
294 return 1;
295}
296
7656c72b
CL
297/*
298 * Slow version of get and set free pointer.
299 *
300 * This version requires touching the cache lines of kmem_cache which
301 * we avoid to do in the fast alloc free paths. There we obtain the offset
302 * from the page struct.
303 */
304static inline void *get_freepointer(struct kmem_cache *s, void *object)
305{
306 return *(void **)(object + s->offset);
307}
308
309static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
310{
311 *(void **)(object + s->offset) = fp;
312}
313
314/* Loop over all objects in a slab */
315#define for_each_object(__p, __s, __addr) \
316 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
317 __p += (__s)->size)
318
319/* Scan freelist */
320#define for_each_free_object(__p, __s, __free) \
321 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
322
323/* Determine object index from a given position */
324static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
325{
326 return (p - addr) / s->size;
327}
328
41ecc55b
CL
329#ifdef CONFIG_SLUB_DEBUG
330/*
331 * Debug settings:
332 */
f0630fff
CL
333#ifdef CONFIG_SLUB_DEBUG_ON
334static int slub_debug = DEBUG_DEFAULT_FLAGS;
335#else
41ecc55b 336static int slub_debug;
f0630fff 337#endif
41ecc55b
CL
338
339static char *slub_debug_slabs;
340
81819f0f
CL
341/*
342 * Object debugging
343 */
344static void print_section(char *text, u8 *addr, unsigned int length)
345{
346 int i, offset;
347 int newline = 1;
348 char ascii[17];
349
350 ascii[16] = 0;
351
352 for (i = 0; i < length; i++) {
353 if (newline) {
24922684 354 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
355 newline = 0;
356 }
357 printk(" %02x", addr[i]);
358 offset = i % 16;
359 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
360 if (offset == 15) {
361 printk(" %s\n",ascii);
362 newline = 1;
363 }
364 }
365 if (!newline) {
366 i %= 16;
367 while (i < 16) {
368 printk(" ");
369 ascii[i] = ' ';
370 i++;
371 }
372 printk(" %s\n", ascii);
373 }
374}
375
81819f0f
CL
376static struct track *get_track(struct kmem_cache *s, void *object,
377 enum track_item alloc)
378{
379 struct track *p;
380
381 if (s->offset)
382 p = object + s->offset + sizeof(void *);
383 else
384 p = object + s->inuse;
385
386 return p + alloc;
387}
388
389static void set_track(struct kmem_cache *s, void *object,
390 enum track_item alloc, void *addr)
391{
392 struct track *p;
393
394 if (s->offset)
395 p = object + s->offset + sizeof(void *);
396 else
397 p = object + s->inuse;
398
399 p += alloc;
400 if (addr) {
401 p->addr = addr;
402 p->cpu = smp_processor_id();
403 p->pid = current ? current->pid : -1;
404 p->when = jiffies;
405 } else
406 memset(p, 0, sizeof(struct track));
407}
408
81819f0f
CL
409static void init_tracking(struct kmem_cache *s, void *object)
410{
24922684
CL
411 if (!(s->flags & SLAB_STORE_USER))
412 return;
413
414 set_track(s, object, TRACK_FREE, NULL);
415 set_track(s, object, TRACK_ALLOC, NULL);
81819f0f
CL
416}
417
418static void print_track(const char *s, struct track *t)
419{
420 if (!t->addr)
421 return;
422
24922684 423 printk(KERN_ERR "INFO: %s in ", s);
81819f0f 424 __print_symbol("%s", (unsigned long)t->addr);
24922684
CL
425 printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
426}
427
428static void print_tracking(struct kmem_cache *s, void *object)
429{
430 if (!(s->flags & SLAB_STORE_USER))
431 return;
432
433 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
434 print_track("Freed", get_track(s, object, TRACK_FREE));
435}
436
437static void print_page_info(struct page *page)
438{
439 printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
440 page, page->inuse, page->freelist, page->flags);
441
442}
443
444static void slab_bug(struct kmem_cache *s, char *fmt, ...)
445{
446 va_list args;
447 char buf[100];
448
449 va_start(args, fmt);
450 vsnprintf(buf, sizeof(buf), fmt, args);
451 va_end(args);
452 printk(KERN_ERR "========================================"
453 "=====================================\n");
454 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
455 printk(KERN_ERR "----------------------------------------"
456 "-------------------------------------\n\n");
81819f0f
CL
457}
458
24922684
CL
459static void slab_fix(struct kmem_cache *s, char *fmt, ...)
460{
461 va_list args;
462 char buf[100];
463
464 va_start(args, fmt);
465 vsnprintf(buf, sizeof(buf), fmt, args);
466 va_end(args);
467 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
468}
469
470static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
471{
472 unsigned int off; /* Offset of last byte */
24922684
CL
473 u8 *addr = page_address(page);
474
475 print_tracking(s, p);
476
477 print_page_info(page);
478
479 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
480 p, p - addr, get_freepointer(s, p));
481
482 if (p > addr + 16)
483 print_section("Bytes b4", p - 16, 16);
484
485 print_section("Object", p, min(s->objsize, 128));
81819f0f
CL
486
487 if (s->flags & SLAB_RED_ZONE)
488 print_section("Redzone", p + s->objsize,
489 s->inuse - s->objsize);
490
81819f0f
CL
491 if (s->offset)
492 off = s->offset + sizeof(void *);
493 else
494 off = s->inuse;
495
24922684 496 if (s->flags & SLAB_STORE_USER)
81819f0f 497 off += 2 * sizeof(struct track);
81819f0f
CL
498
499 if (off != s->size)
500 /* Beginning of the filler is the free pointer */
24922684
CL
501 print_section("Padding", p + off, s->size - off);
502
503 dump_stack();
81819f0f
CL
504}
505
506static void object_err(struct kmem_cache *s, struct page *page,
507 u8 *object, char *reason)
508{
24922684
CL
509 slab_bug(s, reason);
510 print_trailer(s, page, object);
81819f0f
CL
511}
512
24922684 513static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
514{
515 va_list args;
516 char buf[100];
517
24922684
CL
518 va_start(args, fmt);
519 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 520 va_end(args);
24922684
CL
521 slab_bug(s, fmt);
522 print_page_info(page);
81819f0f
CL
523 dump_stack();
524}
525
526static void init_object(struct kmem_cache *s, void *object, int active)
527{
528 u8 *p = object;
529
530 if (s->flags & __OBJECT_POISON) {
531 memset(p, POISON_FREE, s->objsize - 1);
532 p[s->objsize -1] = POISON_END;
533 }
534
535 if (s->flags & SLAB_RED_ZONE)
536 memset(p + s->objsize,
537 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
538 s->inuse - s->objsize);
539}
540
24922684 541static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
542{
543 while (bytes) {
544 if (*start != (u8)value)
24922684 545 return start;
81819f0f
CL
546 start++;
547 bytes--;
548 }
24922684
CL
549 return NULL;
550}
551
552static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
553 void *from, void *to)
554{
555 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
556 memset(from, data, to - from);
557}
558
559static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
560 u8 *object, char *what,
561 u8* start, unsigned int value, unsigned int bytes)
562{
563 u8 *fault;
564 u8 *end;
565
566 fault = check_bytes(start, value, bytes);
567 if (!fault)
568 return 1;
569
570 end = start + bytes;
571 while (end > fault && end[-1] == value)
572 end--;
573
574 slab_bug(s, "%s overwritten", what);
575 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
576 fault, end - 1, fault[0], value);
577 print_trailer(s, page, object);
578
579 restore_bytes(s, what, value, fault, end);
580 return 0;
81819f0f
CL
581}
582
81819f0f
CL
583/*
584 * Object layout:
585 *
586 * object address
587 * Bytes of the object to be managed.
588 * If the freepointer may overlay the object then the free
589 * pointer is the first word of the object.
672bba3a 590 *
81819f0f
CL
591 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
592 * 0xa5 (POISON_END)
593 *
594 * object + s->objsize
595 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
596 * Padding is extended by another word if Redzoning is enabled and
597 * objsize == inuse.
598 *
81819f0f
CL
599 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
600 * 0xcc (RED_ACTIVE) for objects in use.
601 *
602 * object + s->inuse
672bba3a
CL
603 * Meta data starts here.
604 *
81819f0f
CL
605 * A. Free pointer (if we cannot overwrite object on free)
606 * B. Tracking data for SLAB_STORE_USER
672bba3a
CL
607 * C. Padding to reach required alignment boundary or at mininum
608 * one word if debuggin is on to be able to detect writes
609 * before the word boundary.
610 *
611 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
612 *
613 * object + s->size
672bba3a 614 * Nothing is used beyond s->size.
81819f0f 615 *
672bba3a
CL
616 * If slabcaches are merged then the objsize and inuse boundaries are mostly
617 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
618 * may be used with merged slabcaches.
619 */
620
81819f0f
CL
621static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
622{
623 unsigned long off = s->inuse; /* The end of info */
624
625 if (s->offset)
626 /* Freepointer is placed after the object. */
627 off += sizeof(void *);
628
629 if (s->flags & SLAB_STORE_USER)
630 /* We also have user information there */
631 off += 2 * sizeof(struct track);
632
633 if (s->size == off)
634 return 1;
635
24922684
CL
636 return check_bytes_and_report(s, page, p, "Object padding",
637 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
638}
639
640static int slab_pad_check(struct kmem_cache *s, struct page *page)
641{
24922684
CL
642 u8 *start;
643 u8 *fault;
644 u8 *end;
645 int length;
646 int remainder;
81819f0f
CL
647
648 if (!(s->flags & SLAB_POISON))
649 return 1;
650
24922684
CL
651 start = page_address(page);
652 end = start + (PAGE_SIZE << s->order);
81819f0f 653 length = s->objects * s->size;
24922684 654 remainder = end - (start + length);
81819f0f
CL
655 if (!remainder)
656 return 1;
657
24922684
CL
658 fault = check_bytes(start + length, POISON_INUSE, remainder);
659 if (!fault)
660 return 1;
661 while (end > fault && end[-1] == POISON_INUSE)
662 end--;
663
664 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
665 print_section("Padding", start, length);
666
667 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
668 return 0;
81819f0f
CL
669}
670
671static int check_object(struct kmem_cache *s, struct page *page,
672 void *object, int active)
673{
674 u8 *p = object;
675 u8 *endobject = object + s->objsize;
676
677 if (s->flags & SLAB_RED_ZONE) {
678 unsigned int red =
679 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
680
24922684
CL
681 if (!check_bytes_and_report(s, page, object, "Redzone",
682 endobject, red, s->inuse - s->objsize))
81819f0f 683 return 0;
81819f0f 684 } else {
24922684
CL
685 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
686 check_bytes_and_report(s, page, p, "Alignment padding", endobject,
687 POISON_INUSE, s->inuse - s->objsize);
81819f0f
CL
688 }
689
690 if (s->flags & SLAB_POISON) {
691 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
692 (!check_bytes_and_report(s, page, p, "Poison", p,
693 POISON_FREE, s->objsize - 1) ||
694 !check_bytes_and_report(s, page, p, "Poison",
695 p + s->objsize -1, POISON_END, 1)))
81819f0f 696 return 0;
81819f0f
CL
697 /*
698 * check_pad_bytes cleans up on its own.
699 */
700 check_pad_bytes(s, page, p);
701 }
702
703 if (!s->offset && active)
704 /*
705 * Object and freepointer overlap. Cannot check
706 * freepointer while object is allocated.
707 */
708 return 1;
709
710 /* Check free pointer validity */
711 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
712 object_err(s, page, p, "Freepointer corrupt");
713 /*
714 * No choice but to zap it and thus loose the remainder
715 * of the free objects in this slab. May cause
672bba3a 716 * another error because the object count is now wrong.
81819f0f
CL
717 */
718 set_freepointer(s, p, NULL);
719 return 0;
720 }
721 return 1;
722}
723
724static int check_slab(struct kmem_cache *s, struct page *page)
725{
726 VM_BUG_ON(!irqs_disabled());
727
728 if (!PageSlab(page)) {
24922684 729 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
730 return 0;
731 }
732 if (page->offset * sizeof(void *) != s->offset) {
24922684
CL
733 slab_err(s, page, "Corrupted offset %lu",
734 (unsigned long)(page->offset * sizeof(void *)));
81819f0f
CL
735 return 0;
736 }
737 if (page->inuse > s->objects) {
24922684
CL
738 slab_err(s, page, "inuse %u > max %u",
739 s->name, page->inuse, s->objects);
81819f0f
CL
740 return 0;
741 }
742 /* Slab_pad_check fixes things up after itself */
743 slab_pad_check(s, page);
744 return 1;
745}
746
747/*
672bba3a
CL
748 * Determine if a certain object on a page is on the freelist. Must hold the
749 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
750 */
751static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
752{
753 int nr = 0;
754 void *fp = page->freelist;
755 void *object = NULL;
756
757 while (fp && nr <= s->objects) {
758 if (fp == search)
759 return 1;
760 if (!check_valid_pointer(s, page, fp)) {
761 if (object) {
762 object_err(s, page, object,
763 "Freechain corrupt");
764 set_freepointer(s, object, NULL);
765 break;
766 } else {
24922684 767 slab_err(s, page, "Freepointer corrupt");
81819f0f
CL
768 page->freelist = NULL;
769 page->inuse = s->objects;
24922684 770 slab_fix(s, "Freelist cleared");
81819f0f
CL
771 return 0;
772 }
773 break;
774 }
775 object = fp;
776 fp = get_freepointer(s, object);
777 nr++;
778 }
779
780 if (page->inuse != s->objects - nr) {
70d71228 781 slab_err(s, page, "Wrong object count. Counter is %d but "
24922684 782 "counted were %d", page->inuse, s->objects - nr);
81819f0f 783 page->inuse = s->objects - nr;
24922684 784 slab_fix(s, "Object count adjusted.");
81819f0f
CL
785 }
786 return search == NULL;
787}
788
3ec09742
CL
789static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
790{
791 if (s->flags & SLAB_TRACE) {
792 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
793 s->name,
794 alloc ? "alloc" : "free",
795 object, page->inuse,
796 page->freelist);
797
798 if (!alloc)
799 print_section("Object", (void *)object, s->objsize);
800
801 dump_stack();
802 }
803}
804
643b1138 805/*
672bba3a 806 * Tracking of fully allocated slabs for debugging purposes.
643b1138 807 */
e95eed57 808static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 809{
643b1138
CL
810 spin_lock(&n->list_lock);
811 list_add(&page->lru, &n->full);
812 spin_unlock(&n->list_lock);
813}
814
815static void remove_full(struct kmem_cache *s, struct page *page)
816{
817 struct kmem_cache_node *n;
818
819 if (!(s->flags & SLAB_STORE_USER))
820 return;
821
822 n = get_node(s, page_to_nid(page));
823
824 spin_lock(&n->list_lock);
825 list_del(&page->lru);
826 spin_unlock(&n->list_lock);
827}
828
3ec09742
CL
829static void setup_object_debug(struct kmem_cache *s, struct page *page,
830 void *object)
831{
832 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
833 return;
834
835 init_object(s, object, 0);
836 init_tracking(s, object);
837}
838
839static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
840 void *object, void *addr)
81819f0f
CL
841{
842 if (!check_slab(s, page))
843 goto bad;
844
845 if (object && !on_freelist(s, page, object)) {
24922684 846 object_err(s, page, object, "Object already allocated");
70d71228 847 goto bad;
81819f0f
CL
848 }
849
850 if (!check_valid_pointer(s, page, object)) {
851 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 852 goto bad;
81819f0f
CL
853 }
854
3ec09742 855 if (object && !check_object(s, page, object, 0))
81819f0f 856 goto bad;
81819f0f 857
3ec09742
CL
858 /* Success perform special debug activities for allocs */
859 if (s->flags & SLAB_STORE_USER)
860 set_track(s, object, TRACK_ALLOC, addr);
861 trace(s, page, object, 1);
862 init_object(s, object, 1);
81819f0f 863 return 1;
3ec09742 864
81819f0f
CL
865bad:
866 if (PageSlab(page)) {
867 /*
868 * If this is a slab page then lets do the best we can
869 * to avoid issues in the future. Marking all objects
672bba3a 870 * as used avoids touching the remaining objects.
81819f0f 871 */
24922684 872 slab_fix(s, "Marking all objects used");
81819f0f
CL
873 page->inuse = s->objects;
874 page->freelist = NULL;
875 /* Fix up fields that may be corrupted */
876 page->offset = s->offset / sizeof(void *);
877 }
878 return 0;
879}
880
3ec09742
CL
881static int free_debug_processing(struct kmem_cache *s, struct page *page,
882 void *object, void *addr)
81819f0f
CL
883{
884 if (!check_slab(s, page))
885 goto fail;
886
887 if (!check_valid_pointer(s, page, object)) {
70d71228 888 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
889 goto fail;
890 }
891
892 if (on_freelist(s, page, object)) {
24922684 893 object_err(s, page, object, "Object already free");
81819f0f
CL
894 goto fail;
895 }
896
897 if (!check_object(s, page, object, 1))
898 return 0;
899
900 if (unlikely(s != page->slab)) {
901 if (!PageSlab(page))
70d71228
CL
902 slab_err(s, page, "Attempt to free object(0x%p) "
903 "outside of slab", object);
81819f0f 904 else
70d71228 905 if (!page->slab) {
81819f0f 906 printk(KERN_ERR
70d71228 907 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 908 object);
70d71228
CL
909 dump_stack();
910 }
81819f0f 911 else
24922684
CL
912 object_err(s, page, object,
913 "page slab pointer corrupt.");
81819f0f
CL
914 goto fail;
915 }
3ec09742
CL
916
917 /* Special debug activities for freeing objects */
918 if (!SlabFrozen(page) && !page->freelist)
919 remove_full(s, page);
920 if (s->flags & SLAB_STORE_USER)
921 set_track(s, object, TRACK_FREE, addr);
922 trace(s, page, object, 0);
923 init_object(s, object, 0);
81819f0f 924 return 1;
3ec09742 925
81819f0f 926fail:
24922684 927 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
928 return 0;
929}
930
41ecc55b
CL
931static int __init setup_slub_debug(char *str)
932{
f0630fff
CL
933 slub_debug = DEBUG_DEFAULT_FLAGS;
934 if (*str++ != '=' || !*str)
935 /*
936 * No options specified. Switch on full debugging.
937 */
938 goto out;
939
940 if (*str == ',')
941 /*
942 * No options but restriction on slabs. This means full
943 * debugging for slabs matching a pattern.
944 */
945 goto check_slabs;
946
947 slub_debug = 0;
948 if (*str == '-')
949 /*
950 * Switch off all debugging measures.
951 */
952 goto out;
953
954 /*
955 * Determine which debug features should be switched on
956 */
957 for ( ;*str && *str != ','; str++) {
958 switch (tolower(*str)) {
959 case 'f':
960 slub_debug |= SLAB_DEBUG_FREE;
961 break;
962 case 'z':
963 slub_debug |= SLAB_RED_ZONE;
964 break;
965 case 'p':
966 slub_debug |= SLAB_POISON;
967 break;
968 case 'u':
969 slub_debug |= SLAB_STORE_USER;
970 break;
971 case 't':
972 slub_debug |= SLAB_TRACE;
973 break;
974 default:
975 printk(KERN_ERR "slub_debug option '%c' "
976 "unknown. skipped\n",*str);
977 }
41ecc55b
CL
978 }
979
f0630fff 980check_slabs:
41ecc55b
CL
981 if (*str == ',')
982 slub_debug_slabs = str + 1;
f0630fff 983out:
41ecc55b
CL
984 return 1;
985}
986
987__setup("slub_debug", setup_slub_debug);
988
ba0268a8
CL
989static unsigned long kmem_cache_flags(unsigned long objsize,
990 unsigned long flags, const char *name,
991 void (*ctor)(void *, struct kmem_cache *, unsigned long))
41ecc55b
CL
992{
993 /*
994 * The page->offset field is only 16 bit wide. This is an offset
995 * in units of words from the beginning of an object. If the slab
996 * size is bigger then we cannot move the free pointer behind the
997 * object anymore.
998 *
999 * On 32 bit platforms the limit is 256k. On 64bit platforms
1000 * the limit is 512k.
1001 *
c59def9f 1002 * Debugging or ctor may create a need to move the free
41ecc55b
CL
1003 * pointer. Fail if this happens.
1004 */
ba0268a8
CL
1005 if (objsize >= 65535 * sizeof(void *)) {
1006 BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
41ecc55b 1007 SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
ba0268a8
CL
1008 BUG_ON(ctor);
1009 } else {
41ecc55b
CL
1010 /*
1011 * Enable debugging if selected on the kernel commandline.
1012 */
1013 if (slub_debug && (!slub_debug_slabs ||
ba0268a8 1014 strncmp(slub_debug_slabs, name,
41ecc55b 1015 strlen(slub_debug_slabs)) == 0))
ba0268a8
CL
1016 flags |= slub_debug;
1017 }
1018
1019 return flags;
41ecc55b
CL
1020}
1021#else
3ec09742
CL
1022static inline void setup_object_debug(struct kmem_cache *s,
1023 struct page *page, void *object) {}
41ecc55b 1024
3ec09742
CL
1025static inline int alloc_debug_processing(struct kmem_cache *s,
1026 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1027
3ec09742
CL
1028static inline int free_debug_processing(struct kmem_cache *s,
1029 struct page *page, void *object, void *addr) { return 0; }
41ecc55b 1030
41ecc55b
CL
1031static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1032 { return 1; }
1033static inline int check_object(struct kmem_cache *s, struct page *page,
1034 void *object, int active) { return 1; }
3ec09742 1035static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1036static inline unsigned long kmem_cache_flags(unsigned long objsize,
1037 unsigned long flags, const char *name,
1038 void (*ctor)(void *, struct kmem_cache *, unsigned long))
1039{
1040 return flags;
1041}
41ecc55b
CL
1042#define slub_debug 0
1043#endif
81819f0f
CL
1044/*
1045 * Slab allocation and freeing
1046 */
1047static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1048{
1049 struct page * page;
1050 int pages = 1 << s->order;
1051
1052 if (s->order)
1053 flags |= __GFP_COMP;
1054
1055 if (s->flags & SLAB_CACHE_DMA)
1056 flags |= SLUB_DMA;
1057
1058 if (node == -1)
1059 page = alloc_pages(flags, s->order);
1060 else
1061 page = alloc_pages_node(node, flags, s->order);
1062
1063 if (!page)
1064 return NULL;
1065
1066 mod_zone_page_state(page_zone(page),
1067 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1068 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1069 pages);
1070
1071 return page;
1072}
1073
1074static void setup_object(struct kmem_cache *s, struct page *page,
1075 void *object)
1076{
3ec09742 1077 setup_object_debug(s, page, object);
4f104934 1078 if (unlikely(s->ctor))
a35afb83 1079 s->ctor(object, s, 0);
81819f0f
CL
1080}
1081
1082static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1083{
1084 struct page *page;
1085 struct kmem_cache_node *n;
1086 void *start;
1087 void *end;
1088 void *last;
1089 void *p;
1090
d07dbea4 1091 BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
81819f0f
CL
1092
1093 if (flags & __GFP_WAIT)
1094 local_irq_enable();
1095
1096 page = allocate_slab(s, flags & GFP_LEVEL_MASK, node);
1097 if (!page)
1098 goto out;
1099
1100 n = get_node(s, page_to_nid(page));
1101 if (n)
1102 atomic_long_inc(&n->nr_slabs);
1103 page->offset = s->offset / sizeof(void *);
1104 page->slab = s;
1105 page->flags |= 1 << PG_slab;
1106 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1107 SLAB_STORE_USER | SLAB_TRACE))
35e5d7ee 1108 SetSlabDebug(page);
81819f0f
CL
1109
1110 start = page_address(page);
1111 end = start + s->objects * s->size;
1112
1113 if (unlikely(s->flags & SLAB_POISON))
1114 memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1115
1116 last = start;
7656c72b 1117 for_each_object(p, s, start) {
81819f0f
CL
1118 setup_object(s, page, last);
1119 set_freepointer(s, last, p);
1120 last = p;
1121 }
1122 setup_object(s, page, last);
1123 set_freepointer(s, last, NULL);
1124
1125 page->freelist = start;
894b8788 1126 page->lockless_freelist = NULL;
81819f0f
CL
1127 page->inuse = 0;
1128out:
1129 if (flags & __GFP_WAIT)
1130 local_irq_disable();
1131 return page;
1132}
1133
1134static void __free_slab(struct kmem_cache *s, struct page *page)
1135{
1136 int pages = 1 << s->order;
1137
c59def9f 1138 if (unlikely(SlabDebug(page))) {
81819f0f
CL
1139 void *p;
1140
1141 slab_pad_check(s, page);
c59def9f 1142 for_each_object(p, s, page_address(page))
81819f0f 1143 check_object(s, page, p, 0);
2208b764 1144 ClearSlabDebug(page);
81819f0f
CL
1145 }
1146
1147 mod_zone_page_state(page_zone(page),
1148 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1149 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1150 - pages);
1151
1152 page->mapping = NULL;
1153 __free_pages(page, s->order);
1154}
1155
1156static void rcu_free_slab(struct rcu_head *h)
1157{
1158 struct page *page;
1159
1160 page = container_of((struct list_head *)h, struct page, lru);
1161 __free_slab(page->slab, page);
1162}
1163
1164static void free_slab(struct kmem_cache *s, struct page *page)
1165{
1166 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1167 /*
1168 * RCU free overloads the RCU head over the LRU
1169 */
1170 struct rcu_head *head = (void *)&page->lru;
1171
1172 call_rcu(head, rcu_free_slab);
1173 } else
1174 __free_slab(s, page);
1175}
1176
1177static void discard_slab(struct kmem_cache *s, struct page *page)
1178{
1179 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1180
1181 atomic_long_dec(&n->nr_slabs);
1182 reset_page_mapcount(page);
35e5d7ee 1183 __ClearPageSlab(page);
81819f0f
CL
1184 free_slab(s, page);
1185}
1186
1187/*
1188 * Per slab locking using the pagelock
1189 */
1190static __always_inline void slab_lock(struct page *page)
1191{
1192 bit_spin_lock(PG_locked, &page->flags);
1193}
1194
1195static __always_inline void slab_unlock(struct page *page)
1196{
1197 bit_spin_unlock(PG_locked, &page->flags);
1198}
1199
1200static __always_inline int slab_trylock(struct page *page)
1201{
1202 int rc = 1;
1203
1204 rc = bit_spin_trylock(PG_locked, &page->flags);
1205 return rc;
1206}
1207
1208/*
1209 * Management of partially allocated slabs
1210 */
e95eed57 1211static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
81819f0f 1212{
e95eed57
CL
1213 spin_lock(&n->list_lock);
1214 n->nr_partial++;
1215 list_add_tail(&page->lru, &n->partial);
1216 spin_unlock(&n->list_lock);
1217}
81819f0f 1218
e95eed57
CL
1219static void add_partial(struct kmem_cache_node *n, struct page *page)
1220{
81819f0f
CL
1221 spin_lock(&n->list_lock);
1222 n->nr_partial++;
1223 list_add(&page->lru, &n->partial);
1224 spin_unlock(&n->list_lock);
1225}
1226
1227static void remove_partial(struct kmem_cache *s,
1228 struct page *page)
1229{
1230 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1231
1232 spin_lock(&n->list_lock);
1233 list_del(&page->lru);
1234 n->nr_partial--;
1235 spin_unlock(&n->list_lock);
1236}
1237
1238/*
672bba3a 1239 * Lock slab and remove from the partial list.
81819f0f 1240 *
672bba3a 1241 * Must hold list_lock.
81819f0f 1242 */
4b6f0750 1243static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
81819f0f
CL
1244{
1245 if (slab_trylock(page)) {
1246 list_del(&page->lru);
1247 n->nr_partial--;
4b6f0750 1248 SetSlabFrozen(page);
81819f0f
CL
1249 return 1;
1250 }
1251 return 0;
1252}
1253
1254/*
672bba3a 1255 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1256 */
1257static struct page *get_partial_node(struct kmem_cache_node *n)
1258{
1259 struct page *page;
1260
1261 /*
1262 * Racy check. If we mistakenly see no partial slabs then we
1263 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1264 * partial slab and there is none available then get_partials()
1265 * will return NULL.
81819f0f
CL
1266 */
1267 if (!n || !n->nr_partial)
1268 return NULL;
1269
1270 spin_lock(&n->list_lock);
1271 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1272 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1273 goto out;
1274 page = NULL;
1275out:
1276 spin_unlock(&n->list_lock);
1277 return page;
1278}
1279
1280/*
672bba3a 1281 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1282 */
1283static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1284{
1285#ifdef CONFIG_NUMA
1286 struct zonelist *zonelist;
1287 struct zone **z;
1288 struct page *page;
1289
1290 /*
672bba3a
CL
1291 * The defrag ratio allows a configuration of the tradeoffs between
1292 * inter node defragmentation and node local allocations. A lower
1293 * defrag_ratio increases the tendency to do local allocations
1294 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1295 *
672bba3a
CL
1296 * If the defrag_ratio is set to 0 then kmalloc() always
1297 * returns node local objects. If the ratio is higher then kmalloc()
1298 * may return off node objects because partial slabs are obtained
1299 * from other nodes and filled up.
81819f0f
CL
1300 *
1301 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1302 * defrag_ratio = 1000) then every (well almost) allocation will
1303 * first attempt to defrag slab caches on other nodes. This means
1304 * scanning over all nodes to look for partial slabs which may be
1305 * expensive if we do it every time we are trying to find a slab
1306 * with available objects.
81819f0f
CL
1307 */
1308 if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1309 return NULL;
1310
1311 zonelist = &NODE_DATA(slab_node(current->mempolicy))
1312 ->node_zonelists[gfp_zone(flags)];
1313 for (z = zonelist->zones; *z; z++) {
1314 struct kmem_cache_node *n;
1315
1316 n = get_node(s, zone_to_nid(*z));
1317
1318 if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
e95eed57 1319 n->nr_partial > MIN_PARTIAL) {
81819f0f
CL
1320 page = get_partial_node(n);
1321 if (page)
1322 return page;
1323 }
1324 }
1325#endif
1326 return NULL;
1327}
1328
1329/*
1330 * Get a partial page, lock it and return it.
1331 */
1332static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1333{
1334 struct page *page;
1335 int searchnode = (node == -1) ? numa_node_id() : node;
1336
1337 page = get_partial_node(get_node(s, searchnode));
1338 if (page || (flags & __GFP_THISNODE))
1339 return page;
1340
1341 return get_any_partial(s, flags);
1342}
1343
1344/*
1345 * Move a page back to the lists.
1346 *
1347 * Must be called with the slab lock held.
1348 *
1349 * On exit the slab lock will have been dropped.
1350 */
4b6f0750 1351static void unfreeze_slab(struct kmem_cache *s, struct page *page)
81819f0f 1352{
e95eed57
CL
1353 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1354
4b6f0750 1355 ClearSlabFrozen(page);
81819f0f 1356 if (page->inuse) {
e95eed57 1357
81819f0f 1358 if (page->freelist)
e95eed57 1359 add_partial(n, page);
35e5d7ee 1360 else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
e95eed57 1361 add_full(n, page);
81819f0f 1362 slab_unlock(page);
e95eed57 1363
81819f0f 1364 } else {
e95eed57
CL
1365 if (n->nr_partial < MIN_PARTIAL) {
1366 /*
672bba3a
CL
1367 * Adding an empty slab to the partial slabs in order
1368 * to avoid page allocator overhead. This slab needs
1369 * to come after the other slabs with objects in
1370 * order to fill them up. That way the size of the
1371 * partial list stays small. kmem_cache_shrink can
1372 * reclaim empty slabs from the partial list.
e95eed57
CL
1373 */
1374 add_partial_tail(n, page);
1375 slab_unlock(page);
1376 } else {
1377 slab_unlock(page);
1378 discard_slab(s, page);
1379 }
81819f0f
CL
1380 }
1381}
1382
1383/*
1384 * Remove the cpu slab
1385 */
1386static void deactivate_slab(struct kmem_cache *s, struct page *page, int cpu)
1387{
894b8788
CL
1388 /*
1389 * Merge cpu freelist into freelist. Typically we get here
1390 * because both freelists are empty. So this is unlikely
1391 * to occur.
1392 */
1393 while (unlikely(page->lockless_freelist)) {
1394 void **object;
1395
1396 /* Retrieve object from cpu_freelist */
1397 object = page->lockless_freelist;
1398 page->lockless_freelist = page->lockless_freelist[page->offset];
1399
1400 /* And put onto the regular freelist */
1401 object[page->offset] = page->freelist;
1402 page->freelist = object;
1403 page->inuse--;
1404 }
81819f0f 1405 s->cpu_slab[cpu] = NULL;
4b6f0750 1406 unfreeze_slab(s, page);
81819f0f
CL
1407}
1408
0c710013 1409static inline void flush_slab(struct kmem_cache *s, struct page *page, int cpu)
81819f0f
CL
1410{
1411 slab_lock(page);
1412 deactivate_slab(s, page, cpu);
1413}
1414
1415/*
1416 * Flush cpu slab.
1417 * Called from IPI handler with interrupts disabled.
1418 */
0c710013 1419static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f
CL
1420{
1421 struct page *page = s->cpu_slab[cpu];
1422
1423 if (likely(page))
1424 flush_slab(s, page, cpu);
1425}
1426
1427static void flush_cpu_slab(void *d)
1428{
1429 struct kmem_cache *s = d;
1430 int cpu = smp_processor_id();
1431
1432 __flush_cpu_slab(s, cpu);
1433}
1434
1435static void flush_all(struct kmem_cache *s)
1436{
1437#ifdef CONFIG_SMP
1438 on_each_cpu(flush_cpu_slab, s, 1, 1);
1439#else
1440 unsigned long flags;
1441
1442 local_irq_save(flags);
1443 flush_cpu_slab(s);
1444 local_irq_restore(flags);
1445#endif
1446}
1447
1448/*
894b8788
CL
1449 * Slow path. The lockless freelist is empty or we need to perform
1450 * debugging duties.
1451 *
1452 * Interrupts are disabled.
81819f0f 1453 *
894b8788
CL
1454 * Processing is still very fast if new objects have been freed to the
1455 * regular freelist. In that case we simply take over the regular freelist
1456 * as the lockless freelist and zap the regular freelist.
81819f0f 1457 *
894b8788
CL
1458 * If that is not working then we fall back to the partial lists. We take the
1459 * first element of the freelist as the object to allocate now and move the
1460 * rest of the freelist to the lockless freelist.
81819f0f 1461 *
894b8788
CL
1462 * And if we were unable to get a new slab from the partial slab lists then
1463 * we need to allocate a new slab. This is slowest path since we may sleep.
81819f0f 1464 */
894b8788
CL
1465static void *__slab_alloc(struct kmem_cache *s,
1466 gfp_t gfpflags, int node, void *addr, struct page *page)
81819f0f 1467{
81819f0f 1468 void **object;
894b8788 1469 int cpu = smp_processor_id();
81819f0f 1470
81819f0f
CL
1471 if (!page)
1472 goto new_slab;
1473
1474 slab_lock(page);
1475 if (unlikely(node != -1 && page_to_nid(page) != node))
1476 goto another_slab;
894b8788 1477load_freelist:
81819f0f
CL
1478 object = page->freelist;
1479 if (unlikely(!object))
1480 goto another_slab;
35e5d7ee 1481 if (unlikely(SlabDebug(page)))
81819f0f
CL
1482 goto debug;
1483
894b8788
CL
1484 object = page->freelist;
1485 page->lockless_freelist = object[page->offset];
1486 page->inuse = s->objects;
1487 page->freelist = NULL;
81819f0f 1488 slab_unlock(page);
81819f0f
CL
1489 return object;
1490
1491another_slab:
1492 deactivate_slab(s, page, cpu);
1493
1494new_slab:
1495 page = get_partial(s, gfpflags, node);
894b8788 1496 if (page) {
81819f0f 1497 s->cpu_slab[cpu] = page;
894b8788 1498 goto load_freelist;
81819f0f
CL
1499 }
1500
1501 page = new_slab(s, gfpflags, node);
1502 if (page) {
1503 cpu = smp_processor_id();
1504 if (s->cpu_slab[cpu]) {
1505 /*
672bba3a
CL
1506 * Someone else populated the cpu_slab while we
1507 * enabled interrupts, or we have gotten scheduled
1508 * on another cpu. The page may not be on the
1509 * requested node even if __GFP_THISNODE was
1510 * specified. So we need to recheck.
81819f0f
CL
1511 */
1512 if (node == -1 ||
1513 page_to_nid(s->cpu_slab[cpu]) == node) {
1514 /*
1515 * Current cpuslab is acceptable and we
1516 * want the current one since its cache hot
1517 */
1518 discard_slab(s, page);
1519 page = s->cpu_slab[cpu];
1520 slab_lock(page);
894b8788 1521 goto load_freelist;
81819f0f 1522 }
672bba3a 1523 /* New slab does not fit our expectations */
81819f0f
CL
1524 flush_slab(s, s->cpu_slab[cpu], cpu);
1525 }
1526 slab_lock(page);
4b6f0750
CL
1527 SetSlabFrozen(page);
1528 s->cpu_slab[cpu] = page;
1529 goto load_freelist;
81819f0f 1530 }
81819f0f
CL
1531 return NULL;
1532debug:
894b8788 1533 object = page->freelist;
3ec09742 1534 if (!alloc_debug_processing(s, page, object, addr))
81819f0f 1535 goto another_slab;
894b8788
CL
1536
1537 page->inuse++;
1538 page->freelist = object[page->offset];
1539 slab_unlock(page);
1540 return object;
1541}
1542
1543/*
1544 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1545 * have the fastpath folded into their functions. So no function call
1546 * overhead for requests that can be satisfied on the fastpath.
1547 *
1548 * The fastpath works by first checking if the lockless freelist can be used.
1549 * If not then __slab_alloc is called for slow processing.
1550 *
1551 * Otherwise we can simply pick the next object from the lockless free list.
1552 */
1553static void __always_inline *slab_alloc(struct kmem_cache *s,
ce15fea8 1554 gfp_t gfpflags, int node, void *addr)
894b8788
CL
1555{
1556 struct page *page;
1557 void **object;
1558 unsigned long flags;
1559
1560 local_irq_save(flags);
1561 page = s->cpu_slab[smp_processor_id()];
1562 if (unlikely(!page || !page->lockless_freelist ||
1563 (node != -1 && page_to_nid(page) != node)))
1564
1565 object = __slab_alloc(s, gfpflags, node, addr, page);
1566
1567 else {
1568 object = page->lockless_freelist;
1569 page->lockless_freelist = object[page->offset];
1570 }
1571 local_irq_restore(flags);
d07dbea4
CL
1572
1573 if (unlikely((gfpflags & __GFP_ZERO) && object))
ce15fea8 1574 memset(object, 0, s->objsize);
d07dbea4 1575
894b8788 1576 return object;
81819f0f
CL
1577}
1578
1579void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1580{
ce15fea8 1581 return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
81819f0f
CL
1582}
1583EXPORT_SYMBOL(kmem_cache_alloc);
1584
1585#ifdef CONFIG_NUMA
1586void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1587{
ce15fea8 1588 return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
81819f0f
CL
1589}
1590EXPORT_SYMBOL(kmem_cache_alloc_node);
1591#endif
1592
1593/*
894b8788
CL
1594 * Slow patch handling. This may still be called frequently since objects
1595 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1596 *
894b8788
CL
1597 * So we still attempt to reduce cache line usage. Just take the slab
1598 * lock and free the item. If there is no additional partial page
1599 * handling required then we can return immediately.
81819f0f 1600 */
894b8788 1601static void __slab_free(struct kmem_cache *s, struct page *page,
77c5e2d0 1602 void *x, void *addr)
81819f0f
CL
1603{
1604 void *prior;
1605 void **object = (void *)x;
81819f0f 1606
81819f0f
CL
1607 slab_lock(page);
1608
35e5d7ee 1609 if (unlikely(SlabDebug(page)))
81819f0f
CL
1610 goto debug;
1611checks_ok:
1612 prior = object[page->offset] = page->freelist;
1613 page->freelist = object;
1614 page->inuse--;
1615
4b6f0750 1616 if (unlikely(SlabFrozen(page)))
81819f0f
CL
1617 goto out_unlock;
1618
1619 if (unlikely(!page->inuse))
1620 goto slab_empty;
1621
1622 /*
1623 * Objects left in the slab. If it
1624 * was not on the partial list before
1625 * then add it.
1626 */
1627 if (unlikely(!prior))
e95eed57 1628 add_partial(get_node(s, page_to_nid(page)), page);
81819f0f
CL
1629
1630out_unlock:
1631 slab_unlock(page);
81819f0f
CL
1632 return;
1633
1634slab_empty:
1635 if (prior)
1636 /*
672bba3a 1637 * Slab still on the partial list.
81819f0f
CL
1638 */
1639 remove_partial(s, page);
1640
1641 slab_unlock(page);
1642 discard_slab(s, page);
81819f0f
CL
1643 return;
1644
1645debug:
3ec09742 1646 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1647 goto out_unlock;
77c5e2d0 1648 goto checks_ok;
81819f0f
CL
1649}
1650
894b8788
CL
1651/*
1652 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1653 * can perform fastpath freeing without additional function calls.
1654 *
1655 * The fastpath is only possible if we are freeing to the current cpu slab
1656 * of this processor. This typically the case if we have just allocated
1657 * the item before.
1658 *
1659 * If fastpath is not possible then fall back to __slab_free where we deal
1660 * with all sorts of special processing.
1661 */
1662static void __always_inline slab_free(struct kmem_cache *s,
1663 struct page *page, void *x, void *addr)
1664{
1665 void **object = (void *)x;
1666 unsigned long flags;
1667
1668 local_irq_save(flags);
02febdf7 1669 debug_check_no_locks_freed(object, s->objsize);
894b8788
CL
1670 if (likely(page == s->cpu_slab[smp_processor_id()] &&
1671 !SlabDebug(page))) {
1672 object[page->offset] = page->lockless_freelist;
1673 page->lockless_freelist = object;
1674 } else
1675 __slab_free(s, page, x, addr);
1676
1677 local_irq_restore(flags);
1678}
1679
81819f0f
CL
1680void kmem_cache_free(struct kmem_cache *s, void *x)
1681{
77c5e2d0 1682 struct page *page;
81819f0f 1683
b49af68f 1684 page = virt_to_head_page(x);
81819f0f 1685
77c5e2d0 1686 slab_free(s, page, x, __builtin_return_address(0));
81819f0f
CL
1687}
1688EXPORT_SYMBOL(kmem_cache_free);
1689
1690/* Figure out on which slab object the object resides */
1691static struct page *get_object_page(const void *x)
1692{
b49af68f 1693 struct page *page = virt_to_head_page(x);
81819f0f
CL
1694
1695 if (!PageSlab(page))
1696 return NULL;
1697
1698 return page;
1699}
1700
1701/*
672bba3a
CL
1702 * Object placement in a slab is made very easy because we always start at
1703 * offset 0. If we tune the size of the object to the alignment then we can
1704 * get the required alignment by putting one properly sized object after
1705 * another.
81819f0f
CL
1706 *
1707 * Notice that the allocation order determines the sizes of the per cpu
1708 * caches. Each processor has always one slab available for allocations.
1709 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1710 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1711 * locking overhead.
81819f0f
CL
1712 */
1713
1714/*
1715 * Mininum / Maximum order of slab pages. This influences locking overhead
1716 * and slab fragmentation. A higher order reduces the number of partial slabs
1717 * and increases the number of allocations possible without having to
1718 * take the list_lock.
1719 */
1720static int slub_min_order;
1721static int slub_max_order = DEFAULT_MAX_ORDER;
81819f0f
CL
1722static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1723
1724/*
1725 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1726 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1727 */
1728static int slub_nomerge;
1729
81819f0f
CL
1730/*
1731 * Calculate the order of allocation given an slab object size.
1732 *
672bba3a
CL
1733 * The order of allocation has significant impact on performance and other
1734 * system components. Generally order 0 allocations should be preferred since
1735 * order 0 does not cause fragmentation in the page allocator. Larger objects
1736 * be problematic to put into order 0 slabs because there may be too much
1737 * unused space left. We go to a higher order if more than 1/8th of the slab
1738 * would be wasted.
1739 *
1740 * In order to reach satisfactory performance we must ensure that a minimum
1741 * number of objects is in one slab. Otherwise we may generate too much
1742 * activity on the partial lists which requires taking the list_lock. This is
1743 * less a concern for large slabs though which are rarely used.
81819f0f 1744 *
672bba3a
CL
1745 * slub_max_order specifies the order where we begin to stop considering the
1746 * number of objects in a slab as critical. If we reach slub_max_order then
1747 * we try to keep the page order as low as possible. So we accept more waste
1748 * of space in favor of a small page order.
81819f0f 1749 *
672bba3a
CL
1750 * Higher order allocations also allow the placement of more objects in a
1751 * slab and thereby reduce object handling overhead. If the user has
1752 * requested a higher mininum order then we start with that one instead of
1753 * the smallest order which will fit the object.
81819f0f 1754 */
5e6d444e
CL
1755static inline int slab_order(int size, int min_objects,
1756 int max_order, int fract_leftover)
81819f0f
CL
1757{
1758 int order;
1759 int rem;
6300ea75 1760 int min_order = slub_min_order;
81819f0f 1761
6300ea75
CL
1762 /*
1763 * If we would create too many object per slab then reduce
1764 * the slab order even if it goes below slub_min_order.
1765 */
1766 while (min_order > 0 &&
1767 (PAGE_SIZE << min_order) >= MAX_OBJECTS_PER_SLAB * size)
1768 min_order--;
1769
1770 for (order = max(min_order,
5e6d444e
CL
1771 fls(min_objects * size - 1) - PAGE_SHIFT);
1772 order <= max_order; order++) {
81819f0f 1773
5e6d444e 1774 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1775
5e6d444e 1776 if (slab_size < min_objects * size)
81819f0f
CL
1777 continue;
1778
1779 rem = slab_size % size;
1780
5e6d444e 1781 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1782 break;
1783
6300ea75
CL
1784 /* If the next size is too high then exit now */
1785 if (slab_size * 2 >= MAX_OBJECTS_PER_SLAB * size)
1786 break;
81819f0f 1787 }
672bba3a 1788
81819f0f
CL
1789 return order;
1790}
1791
5e6d444e
CL
1792static inline int calculate_order(int size)
1793{
1794 int order;
1795 int min_objects;
1796 int fraction;
1797
1798 /*
1799 * Attempt to find best configuration for a slab. This
1800 * works by first attempting to generate a layout with
1801 * the best configuration and backing off gradually.
1802 *
1803 * First we reduce the acceptable waste in a slab. Then
1804 * we reduce the minimum objects required in a slab.
1805 */
1806 min_objects = slub_min_objects;
1807 while (min_objects > 1) {
1808 fraction = 8;
1809 while (fraction >= 4) {
1810 order = slab_order(size, min_objects,
1811 slub_max_order, fraction);
1812 if (order <= slub_max_order)
1813 return order;
1814 fraction /= 2;
1815 }
1816 min_objects /= 2;
1817 }
1818
1819 /*
1820 * We were unable to place multiple objects in a slab. Now
1821 * lets see if we can place a single object there.
1822 */
1823 order = slab_order(size, 1, slub_max_order, 1);
1824 if (order <= slub_max_order)
1825 return order;
1826
1827 /*
1828 * Doh this slab cannot be placed using slub_max_order.
1829 */
1830 order = slab_order(size, 1, MAX_ORDER, 1);
1831 if (order <= MAX_ORDER)
1832 return order;
1833 return -ENOSYS;
1834}
1835
81819f0f 1836/*
672bba3a 1837 * Figure out what the alignment of the objects will be.
81819f0f
CL
1838 */
1839static unsigned long calculate_alignment(unsigned long flags,
1840 unsigned long align, unsigned long size)
1841{
1842 /*
1843 * If the user wants hardware cache aligned objects then
1844 * follow that suggestion if the object is sufficiently
1845 * large.
1846 *
1847 * The hardware cache alignment cannot override the
1848 * specified alignment though. If that is greater
1849 * then use it.
1850 */
5af60839 1851 if ((flags & SLAB_HWCACHE_ALIGN) &&
65c02d4c
CL
1852 size > cache_line_size() / 2)
1853 return max_t(unsigned long, align, cache_line_size());
81819f0f
CL
1854
1855 if (align < ARCH_SLAB_MINALIGN)
1856 return ARCH_SLAB_MINALIGN;
1857
1858 return ALIGN(align, sizeof(void *));
1859}
1860
1861static void init_kmem_cache_node(struct kmem_cache_node *n)
1862{
1863 n->nr_partial = 0;
1864 atomic_long_set(&n->nr_slabs, 0);
1865 spin_lock_init(&n->list_lock);
1866 INIT_LIST_HEAD(&n->partial);
8ab1372f 1867#ifdef CONFIG_SLUB_DEBUG
643b1138 1868 INIT_LIST_HEAD(&n->full);
8ab1372f 1869#endif
81819f0f
CL
1870}
1871
1872#ifdef CONFIG_NUMA
1873/*
1874 * No kmalloc_node yet so do it by hand. We know that this is the first
1875 * slab on the node for this slabcache. There are no concurrent accesses
1876 * possible.
1877 *
1878 * Note that this function only works on the kmalloc_node_cache
1879 * when allocating for the kmalloc_node_cache.
1880 */
1cd7daa5
AB
1881static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
1882 int node)
81819f0f
CL
1883{
1884 struct page *page;
1885 struct kmem_cache_node *n;
1886
1887 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
1888
a2f92ee7 1889 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
1890
1891 BUG_ON(!page);
a2f92ee7
CL
1892 if (page_to_nid(page) != node) {
1893 printk(KERN_ERR "SLUB: Unable to allocate memory from "
1894 "node %d\n", node);
1895 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
1896 "in order to be able to continue\n");
1897 }
1898
81819f0f
CL
1899 n = page->freelist;
1900 BUG_ON(!n);
1901 page->freelist = get_freepointer(kmalloc_caches, n);
1902 page->inuse++;
1903 kmalloc_caches->node[node] = n;
8ab1372f 1904#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
1905 init_object(kmalloc_caches, n, 1);
1906 init_tracking(kmalloc_caches, n);
8ab1372f 1907#endif
81819f0f
CL
1908 init_kmem_cache_node(n);
1909 atomic_long_inc(&n->nr_slabs);
e95eed57 1910 add_partial(n, page);
dbc55faa
CL
1911
1912 /*
1913 * new_slab() disables interupts. If we do not reenable interrupts here
1914 * then bootup would continue with interrupts disabled.
1915 */
1916 local_irq_enable();
81819f0f
CL
1917 return n;
1918}
1919
1920static void free_kmem_cache_nodes(struct kmem_cache *s)
1921{
1922 int node;
1923
1924 for_each_online_node(node) {
1925 struct kmem_cache_node *n = s->node[node];
1926 if (n && n != &s->local_node)
1927 kmem_cache_free(kmalloc_caches, n);
1928 s->node[node] = NULL;
1929 }
1930}
1931
1932static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1933{
1934 int node;
1935 int local_node;
1936
1937 if (slab_state >= UP)
1938 local_node = page_to_nid(virt_to_page(s));
1939 else
1940 local_node = 0;
1941
1942 for_each_online_node(node) {
1943 struct kmem_cache_node *n;
1944
1945 if (local_node == node)
1946 n = &s->local_node;
1947 else {
1948 if (slab_state == DOWN) {
1949 n = early_kmem_cache_node_alloc(gfpflags,
1950 node);
1951 continue;
1952 }
1953 n = kmem_cache_alloc_node(kmalloc_caches,
1954 gfpflags, node);
1955
1956 if (!n) {
1957 free_kmem_cache_nodes(s);
1958 return 0;
1959 }
1960
1961 }
1962 s->node[node] = n;
1963 init_kmem_cache_node(n);
1964 }
1965 return 1;
1966}
1967#else
1968static void free_kmem_cache_nodes(struct kmem_cache *s)
1969{
1970}
1971
1972static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
1973{
1974 init_kmem_cache_node(&s->local_node);
1975 return 1;
1976}
1977#endif
1978
1979/*
1980 * calculate_sizes() determines the order and the distribution of data within
1981 * a slab object.
1982 */
1983static int calculate_sizes(struct kmem_cache *s)
1984{
1985 unsigned long flags = s->flags;
1986 unsigned long size = s->objsize;
1987 unsigned long align = s->align;
1988
1989 /*
1990 * Determine if we can poison the object itself. If the user of
1991 * the slab may touch the object after free or before allocation
1992 * then we should never poison the object itself.
1993 */
1994 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 1995 !s->ctor)
81819f0f
CL
1996 s->flags |= __OBJECT_POISON;
1997 else
1998 s->flags &= ~__OBJECT_POISON;
1999
2000 /*
2001 * Round up object size to the next word boundary. We can only
2002 * place the free pointer at word boundaries and this determines
2003 * the possible location of the free pointer.
2004 */
2005 size = ALIGN(size, sizeof(void *));
2006
41ecc55b 2007#ifdef CONFIG_SLUB_DEBUG
81819f0f 2008 /*
672bba3a 2009 * If we are Redzoning then check if there is some space between the
81819f0f 2010 * end of the object and the free pointer. If not then add an
672bba3a 2011 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2012 */
2013 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2014 size += sizeof(void *);
41ecc55b 2015#endif
81819f0f
CL
2016
2017 /*
672bba3a
CL
2018 * With that we have determined the number of bytes in actual use
2019 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2020 */
2021 s->inuse = size;
2022
2023 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2024 s->ctor)) {
81819f0f
CL
2025 /*
2026 * Relocate free pointer after the object if it is not
2027 * permitted to overwrite the first word of the object on
2028 * kmem_cache_free.
2029 *
2030 * This is the case if we do RCU, have a constructor or
2031 * destructor or are poisoning the objects.
2032 */
2033 s->offset = size;
2034 size += sizeof(void *);
2035 }
2036
c12b3c62 2037#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2038 if (flags & SLAB_STORE_USER)
2039 /*
2040 * Need to store information about allocs and frees after
2041 * the object.
2042 */
2043 size += 2 * sizeof(struct track);
2044
be7b3fbc 2045 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2046 /*
2047 * Add some empty padding so that we can catch
2048 * overwrites from earlier objects rather than let
2049 * tracking information or the free pointer be
2050 * corrupted if an user writes before the start
2051 * of the object.
2052 */
2053 size += sizeof(void *);
41ecc55b 2054#endif
672bba3a 2055
81819f0f
CL
2056 /*
2057 * Determine the alignment based on various parameters that the
65c02d4c
CL
2058 * user specified and the dynamic determination of cache line size
2059 * on bootup.
81819f0f
CL
2060 */
2061 align = calculate_alignment(flags, align, s->objsize);
2062
2063 /*
2064 * SLUB stores one object immediately after another beginning from
2065 * offset 0. In order to align the objects we have to simply size
2066 * each object to conform to the alignment.
2067 */
2068 size = ALIGN(size, align);
2069 s->size = size;
2070
2071 s->order = calculate_order(size);
2072 if (s->order < 0)
2073 return 0;
2074
2075 /*
2076 * Determine the number of objects per slab
2077 */
2078 s->objects = (PAGE_SIZE << s->order) / size;
2079
2080 /*
2081 * Verify that the number of objects is within permitted limits.
2082 * The page->inuse field is only 16 bit wide! So we cannot have
2083 * more than 64k objects per slab.
2084 */
6300ea75 2085 if (!s->objects || s->objects > MAX_OBJECTS_PER_SLAB)
81819f0f
CL
2086 return 0;
2087 return 1;
2088
2089}
2090
81819f0f
CL
2091static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2092 const char *name, size_t size,
2093 size_t align, unsigned long flags,
c59def9f 2094 void (*ctor)(void *, struct kmem_cache *, unsigned long))
81819f0f
CL
2095{
2096 memset(s, 0, kmem_size);
2097 s->name = name;
2098 s->ctor = ctor;
81819f0f 2099 s->objsize = size;
81819f0f 2100 s->align = align;
ba0268a8 2101 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f
CL
2102
2103 if (!calculate_sizes(s))
2104 goto error;
2105
2106 s->refcount = 1;
2107#ifdef CONFIG_NUMA
2108 s->defrag_ratio = 100;
2109#endif
2110
2111 if (init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2112 return 1;
2113error:
2114 if (flags & SLAB_PANIC)
2115 panic("Cannot create slab %s size=%lu realsize=%u "
2116 "order=%u offset=%u flags=%lx\n",
2117 s->name, (unsigned long)size, s->size, s->order,
2118 s->offset, flags);
2119 return 0;
2120}
81819f0f
CL
2121
2122/*
2123 * Check if a given pointer is valid
2124 */
2125int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2126{
2127 struct page * page;
81819f0f
CL
2128
2129 page = get_object_page(object);
2130
2131 if (!page || s != page->slab)
2132 /* No slab or wrong slab */
2133 return 0;
2134
abcd08a6 2135 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2136 return 0;
2137
2138 /*
2139 * We could also check if the object is on the slabs freelist.
2140 * But this would be too expensive and it seems that the main
2141 * purpose of kmem_ptr_valid is to check if the object belongs
2142 * to a certain slab.
2143 */
2144 return 1;
2145}
2146EXPORT_SYMBOL(kmem_ptr_validate);
2147
2148/*
2149 * Determine the size of a slab object
2150 */
2151unsigned int kmem_cache_size(struct kmem_cache *s)
2152{
2153 return s->objsize;
2154}
2155EXPORT_SYMBOL(kmem_cache_size);
2156
2157const char *kmem_cache_name(struct kmem_cache *s)
2158{
2159 return s->name;
2160}
2161EXPORT_SYMBOL(kmem_cache_name);
2162
2163/*
672bba3a
CL
2164 * Attempt to free all slabs on a node. Return the number of slabs we
2165 * were unable to free.
81819f0f
CL
2166 */
2167static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2168 struct list_head *list)
2169{
2170 int slabs_inuse = 0;
2171 unsigned long flags;
2172 struct page *page, *h;
2173
2174 spin_lock_irqsave(&n->list_lock, flags);
2175 list_for_each_entry_safe(page, h, list, lru)
2176 if (!page->inuse) {
2177 list_del(&page->lru);
2178 discard_slab(s, page);
2179 } else
2180 slabs_inuse++;
2181 spin_unlock_irqrestore(&n->list_lock, flags);
2182 return slabs_inuse;
2183}
2184
2185/*
672bba3a 2186 * Release all resources used by a slab cache.
81819f0f 2187 */
0c710013 2188static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2189{
2190 int node;
2191
2192 flush_all(s);
2193
2194 /* Attempt to free all objects */
2195 for_each_online_node(node) {
2196 struct kmem_cache_node *n = get_node(s, node);
2197
2086d26a 2198 n->nr_partial -= free_list(s, n, &n->partial);
81819f0f
CL
2199 if (atomic_long_read(&n->nr_slabs))
2200 return 1;
2201 }
2202 free_kmem_cache_nodes(s);
2203 return 0;
2204}
2205
2206/*
2207 * Close a cache and release the kmem_cache structure
2208 * (must be used for caches created using kmem_cache_create)
2209 */
2210void kmem_cache_destroy(struct kmem_cache *s)
2211{
2212 down_write(&slub_lock);
2213 s->refcount--;
2214 if (!s->refcount) {
2215 list_del(&s->list);
a0e1d1be 2216 up_write(&slub_lock);
81819f0f
CL
2217 if (kmem_cache_close(s))
2218 WARN_ON(1);
2219 sysfs_slab_remove(s);
2220 kfree(s);
a0e1d1be
CL
2221 } else
2222 up_write(&slub_lock);
81819f0f
CL
2223}
2224EXPORT_SYMBOL(kmem_cache_destroy);
2225
2226/********************************************************************
2227 * Kmalloc subsystem
2228 *******************************************************************/
2229
aadb4bc4 2230struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
81819f0f
CL
2231EXPORT_SYMBOL(kmalloc_caches);
2232
2233#ifdef CONFIG_ZONE_DMA
aadb4bc4 2234static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
81819f0f
CL
2235#endif
2236
2237static int __init setup_slub_min_order(char *str)
2238{
2239 get_option (&str, &slub_min_order);
2240
2241 return 1;
2242}
2243
2244__setup("slub_min_order=", setup_slub_min_order);
2245
2246static int __init setup_slub_max_order(char *str)
2247{
2248 get_option (&str, &slub_max_order);
2249
2250 return 1;
2251}
2252
2253__setup("slub_max_order=", setup_slub_max_order);
2254
2255static int __init setup_slub_min_objects(char *str)
2256{
2257 get_option (&str, &slub_min_objects);
2258
2259 return 1;
2260}
2261
2262__setup("slub_min_objects=", setup_slub_min_objects);
2263
2264static int __init setup_slub_nomerge(char *str)
2265{
2266 slub_nomerge = 1;
2267 return 1;
2268}
2269
2270__setup("slub_nomerge", setup_slub_nomerge);
2271
81819f0f
CL
2272static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2273 const char *name, int size, gfp_t gfp_flags)
2274{
2275 unsigned int flags = 0;
2276
2277 if (gfp_flags & SLUB_DMA)
2278 flags = SLAB_CACHE_DMA;
2279
2280 down_write(&slub_lock);
2281 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
c59def9f 2282 flags, NULL))
81819f0f
CL
2283 goto panic;
2284
2285 list_add(&s->list, &slab_caches);
2286 up_write(&slub_lock);
2287 if (sysfs_slab_add(s))
2288 goto panic;
2289 return s;
2290
2291panic:
2292 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2293}
2294
2e443fd0 2295#ifdef CONFIG_ZONE_DMA
1ceef402
CL
2296
2297static void sysfs_add_func(struct work_struct *w)
2298{
2299 struct kmem_cache *s;
2300
2301 down_write(&slub_lock);
2302 list_for_each_entry(s, &slab_caches, list) {
2303 if (s->flags & __SYSFS_ADD_DEFERRED) {
2304 s->flags &= ~__SYSFS_ADD_DEFERRED;
2305 sysfs_slab_add(s);
2306 }
2307 }
2308 up_write(&slub_lock);
2309}
2310
2311static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2312
2e443fd0
CL
2313static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2314{
2315 struct kmem_cache *s;
2e443fd0
CL
2316 char *text;
2317 size_t realsize;
2318
2319 s = kmalloc_caches_dma[index];
2320 if (s)
2321 return s;
2322
2323 /* Dynamically create dma cache */
1ceef402
CL
2324 if (flags & __GFP_WAIT)
2325 down_write(&slub_lock);
2326 else {
2327 if (!down_write_trylock(&slub_lock))
2328 goto out;
2329 }
2330
2331 if (kmalloc_caches_dma[index])
2332 goto unlock_out;
2e443fd0 2333
7b55f620 2334 realsize = kmalloc_caches[index].objsize;
1ceef402
CL
2335 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2336 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2337
2338 if (!s || !text || !kmem_cache_open(s, flags, text,
2339 realsize, ARCH_KMALLOC_MINALIGN,
2340 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2341 kfree(s);
2342 kfree(text);
2343 goto unlock_out;
dfce8648 2344 }
1ceef402
CL
2345
2346 list_add(&s->list, &slab_caches);
2347 kmalloc_caches_dma[index] = s;
2348
2349 schedule_work(&sysfs_add_work);
2350
2351unlock_out:
dfce8648 2352 up_write(&slub_lock);
1ceef402 2353out:
dfce8648 2354 return kmalloc_caches_dma[index];
2e443fd0
CL
2355}
2356#endif
2357
f1b26339
CL
2358/*
2359 * Conversion table for small slabs sizes / 8 to the index in the
2360 * kmalloc array. This is necessary for slabs < 192 since we have non power
2361 * of two cache sizes there. The size of larger slabs can be determined using
2362 * fls.
2363 */
2364static s8 size_index[24] = {
2365 3, /* 8 */
2366 4, /* 16 */
2367 5, /* 24 */
2368 5, /* 32 */
2369 6, /* 40 */
2370 6, /* 48 */
2371 6, /* 56 */
2372 6, /* 64 */
2373 1, /* 72 */
2374 1, /* 80 */
2375 1, /* 88 */
2376 1, /* 96 */
2377 7, /* 104 */
2378 7, /* 112 */
2379 7, /* 120 */
2380 7, /* 128 */
2381 2, /* 136 */
2382 2, /* 144 */
2383 2, /* 152 */
2384 2, /* 160 */
2385 2, /* 168 */
2386 2, /* 176 */
2387 2, /* 184 */
2388 2 /* 192 */
2389};
2390
81819f0f
CL
2391static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2392{
f1b26339 2393 int index;
81819f0f 2394
f1b26339
CL
2395 if (size <= 192) {
2396 if (!size)
2397 return ZERO_SIZE_PTR;
81819f0f 2398
f1b26339 2399 index = size_index[(size - 1) / 8];
aadb4bc4 2400 } else
f1b26339 2401 index = fls(size - 1);
81819f0f
CL
2402
2403#ifdef CONFIG_ZONE_DMA
f1b26339 2404 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2405 return dma_kmalloc_cache(index, flags);
f1b26339 2406
81819f0f
CL
2407#endif
2408 return &kmalloc_caches[index];
2409}
2410
2411void *__kmalloc(size_t size, gfp_t flags)
2412{
aadb4bc4 2413 struct kmem_cache *s;
81819f0f 2414
aadb4bc4
CL
2415 if (unlikely(size > PAGE_SIZE / 2))
2416 return (void *)__get_free_pages(flags | __GFP_COMP,
2417 get_order(size));
2418
2419 s = get_slab(size, flags);
2420
2421 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2422 return s;
2423
ce15fea8 2424 return slab_alloc(s, flags, -1, __builtin_return_address(0));
81819f0f
CL
2425}
2426EXPORT_SYMBOL(__kmalloc);
2427
2428#ifdef CONFIG_NUMA
2429void *__kmalloc_node(size_t size, gfp_t flags, int node)
2430{
aadb4bc4 2431 struct kmem_cache *s;
81819f0f 2432
aadb4bc4
CL
2433 if (unlikely(size > PAGE_SIZE / 2))
2434 return (void *)__get_free_pages(flags | __GFP_COMP,
2435 get_order(size));
2436
2437 s = get_slab(size, flags);
2438
2439 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2440 return s;
2441
ce15fea8 2442 return slab_alloc(s, flags, node, __builtin_return_address(0));
81819f0f
CL
2443}
2444EXPORT_SYMBOL(__kmalloc_node);
2445#endif
2446
2447size_t ksize(const void *object)
2448{
272c1d21 2449 struct page *page;
81819f0f
CL
2450 struct kmem_cache *s;
2451
2408c550 2452 if (unlikely(ZERO_OR_NULL_PTR(object)))
272c1d21
CL
2453 return 0;
2454
2455 page = get_object_page(object);
81819f0f
CL
2456 BUG_ON(!page);
2457 s = page->slab;
2458 BUG_ON(!s);
2459
2460 /*
2461 * Debugging requires use of the padding between object
2462 * and whatever may come after it.
2463 */
2464 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2465 return s->objsize;
2466
2467 /*
2468 * If we have the need to store the freelist pointer
2469 * back there or track user information then we can
2470 * only use the space before that information.
2471 */
2472 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2473 return s->inuse;
2474
2475 /*
2476 * Else we can use all the padding etc for the allocation
2477 */
2478 return s->size;
2479}
2480EXPORT_SYMBOL(ksize);
2481
2482void kfree(const void *x)
2483{
81819f0f
CL
2484 struct page *page;
2485
2408c550 2486 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2487 return;
2488
b49af68f 2489 page = virt_to_head_page(x);
aadb4bc4
CL
2490 if (unlikely(!PageSlab(page))) {
2491 put_page(page);
2492 return;
2493 }
2494 slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
81819f0f
CL
2495}
2496EXPORT_SYMBOL(kfree);
2497
2086d26a 2498/*
672bba3a
CL
2499 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2500 * the remaining slabs by the number of items in use. The slabs with the
2501 * most items in use come first. New allocations will then fill those up
2502 * and thus they can be removed from the partial lists.
2503 *
2504 * The slabs with the least items are placed last. This results in them
2505 * being allocated from last increasing the chance that the last objects
2506 * are freed in them.
2086d26a
CL
2507 */
2508int kmem_cache_shrink(struct kmem_cache *s)
2509{
2510 int node;
2511 int i;
2512 struct kmem_cache_node *n;
2513 struct page *page;
2514 struct page *t;
2515 struct list_head *slabs_by_inuse =
2516 kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2517 unsigned long flags;
2518
2519 if (!slabs_by_inuse)
2520 return -ENOMEM;
2521
2522 flush_all(s);
2523 for_each_online_node(node) {
2524 n = get_node(s, node);
2525
2526 if (!n->nr_partial)
2527 continue;
2528
2529 for (i = 0; i < s->objects; i++)
2530 INIT_LIST_HEAD(slabs_by_inuse + i);
2531
2532 spin_lock_irqsave(&n->list_lock, flags);
2533
2534 /*
672bba3a 2535 * Build lists indexed by the items in use in each slab.
2086d26a 2536 *
672bba3a
CL
2537 * Note that concurrent frees may occur while we hold the
2538 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2539 */
2540 list_for_each_entry_safe(page, t, &n->partial, lru) {
2541 if (!page->inuse && slab_trylock(page)) {
2542 /*
2543 * Must hold slab lock here because slab_free
2544 * may have freed the last object and be
2545 * waiting to release the slab.
2546 */
2547 list_del(&page->lru);
2548 n->nr_partial--;
2549 slab_unlock(page);
2550 discard_slab(s, page);
2551 } else {
fcda3d89
CL
2552 list_move(&page->lru,
2553 slabs_by_inuse + page->inuse);
2086d26a
CL
2554 }
2555 }
2556
2086d26a 2557 /*
672bba3a
CL
2558 * Rebuild the partial list with the slabs filled up most
2559 * first and the least used slabs at the end.
2086d26a
CL
2560 */
2561 for (i = s->objects - 1; i >= 0; i--)
2562 list_splice(slabs_by_inuse + i, n->partial.prev);
2563
2086d26a
CL
2564 spin_unlock_irqrestore(&n->list_lock, flags);
2565 }
2566
2567 kfree(slabs_by_inuse);
2568 return 0;
2569}
2570EXPORT_SYMBOL(kmem_cache_shrink);
2571
81819f0f
CL
2572/********************************************************************
2573 * Basic setup of slabs
2574 *******************************************************************/
2575
2576void __init kmem_cache_init(void)
2577{
2578 int i;
4b356be0 2579 int caches = 0;
81819f0f
CL
2580
2581#ifdef CONFIG_NUMA
2582 /*
2583 * Must first have the slab cache available for the allocations of the
672bba3a 2584 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
2585 * kmem_cache_open for slab_state == DOWN.
2586 */
2587 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2588 sizeof(struct kmem_cache_node), GFP_KERNEL);
8ffa6875 2589 kmalloc_caches[0].refcount = -1;
4b356be0 2590 caches++;
81819f0f
CL
2591#endif
2592
2593 /* Able to allocate the per node structures */
2594 slab_state = PARTIAL;
2595
2596 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
2597 if (KMALLOC_MIN_SIZE <= 64) {
2598 create_kmalloc_cache(&kmalloc_caches[1],
81819f0f 2599 "kmalloc-96", 96, GFP_KERNEL);
4b356be0
CL
2600 caches++;
2601 }
2602 if (KMALLOC_MIN_SIZE <= 128) {
2603 create_kmalloc_cache(&kmalloc_caches[2],
81819f0f 2604 "kmalloc-192", 192, GFP_KERNEL);
4b356be0
CL
2605 caches++;
2606 }
81819f0f 2607
aadb4bc4 2608 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
81819f0f
CL
2609 create_kmalloc_cache(&kmalloc_caches[i],
2610 "kmalloc", 1 << i, GFP_KERNEL);
4b356be0
CL
2611 caches++;
2612 }
81819f0f 2613
f1b26339
CL
2614
2615 /*
2616 * Patch up the size_index table if we have strange large alignment
2617 * requirements for the kmalloc array. This is only the case for
2618 * mips it seems. The standard arches will not generate any code here.
2619 *
2620 * Largest permitted alignment is 256 bytes due to the way we
2621 * handle the index determination for the smaller caches.
2622 *
2623 * Make sure that nothing crazy happens if someone starts tinkering
2624 * around with ARCH_KMALLOC_MINALIGN
2625 */
2626 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2627 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2628
12ad6843 2629 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
2630 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2631
81819f0f
CL
2632 slab_state = UP;
2633
2634 /* Provide the correct kmalloc names now that the caches are up */
aadb4bc4 2635 for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
81819f0f
CL
2636 kmalloc_caches[i]. name =
2637 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2638
2639#ifdef CONFIG_SMP
2640 register_cpu_notifier(&slab_notifier);
2641#endif
2642
bcf889f9
CL
2643 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2644 nr_cpu_ids * sizeof(struct page *);
81819f0f
CL
2645
2646 printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
2647 " CPUs=%d, Nodes=%d\n",
2648 caches, cache_line_size(),
81819f0f
CL
2649 slub_min_order, slub_max_order, slub_min_objects,
2650 nr_cpu_ids, nr_node_ids);
2651}
2652
2653/*
2654 * Find a mergeable slab cache
2655 */
2656static int slab_unmergeable(struct kmem_cache *s)
2657{
2658 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2659 return 1;
2660
c59def9f 2661 if (s->ctor)
81819f0f
CL
2662 return 1;
2663
8ffa6875
CL
2664 /*
2665 * We may have set a slab to be unmergeable during bootstrap.
2666 */
2667 if (s->refcount < 0)
2668 return 1;
2669
81819f0f
CL
2670 return 0;
2671}
2672
2673static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 2674 size_t align, unsigned long flags, const char *name,
c59def9f 2675 void (*ctor)(void *, struct kmem_cache *, unsigned long))
81819f0f 2676{
5b95a4ac 2677 struct kmem_cache *s;
81819f0f
CL
2678
2679 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2680 return NULL;
2681
c59def9f 2682 if (ctor)
81819f0f
CL
2683 return NULL;
2684
2685 size = ALIGN(size, sizeof(void *));
2686 align = calculate_alignment(flags, align, size);
2687 size = ALIGN(size, align);
ba0268a8 2688 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 2689
5b95a4ac 2690 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
2691 if (slab_unmergeable(s))
2692 continue;
2693
2694 if (size > s->size)
2695 continue;
2696
ba0268a8 2697 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
2698 continue;
2699 /*
2700 * Check if alignment is compatible.
2701 * Courtesy of Adrian Drzewiecki
2702 */
2703 if ((s->size & ~(align -1)) != s->size)
2704 continue;
2705
2706 if (s->size - size >= sizeof(void *))
2707 continue;
2708
2709 return s;
2710 }
2711 return NULL;
2712}
2713
2714struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2715 size_t align, unsigned long flags,
20c2df83 2716 void (*ctor)(void *, struct kmem_cache *, unsigned long))
81819f0f
CL
2717{
2718 struct kmem_cache *s;
2719
2720 down_write(&slub_lock);
ba0268a8 2721 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
2722 if (s) {
2723 s->refcount++;
2724 /*
2725 * Adjust the object sizes so that we clear
2726 * the complete object on kzalloc.
2727 */
2728 s->objsize = max(s->objsize, (int)size);
2729 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 2730 up_write(&slub_lock);
81819f0f
CL
2731 if (sysfs_slab_alias(s, name))
2732 goto err;
a0e1d1be
CL
2733 return s;
2734 }
2735 s = kmalloc(kmem_size, GFP_KERNEL);
2736 if (s) {
2737 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 2738 size, align, flags, ctor)) {
81819f0f 2739 list_add(&s->list, &slab_caches);
a0e1d1be
CL
2740 up_write(&slub_lock);
2741 if (sysfs_slab_add(s))
2742 goto err;
2743 return s;
2744 }
2745 kfree(s);
81819f0f
CL
2746 }
2747 up_write(&slub_lock);
81819f0f
CL
2748
2749err:
81819f0f
CL
2750 if (flags & SLAB_PANIC)
2751 panic("Cannot create slabcache %s\n", name);
2752 else
2753 s = NULL;
2754 return s;
2755}
2756EXPORT_SYMBOL(kmem_cache_create);
2757
81819f0f 2758#ifdef CONFIG_SMP
81819f0f 2759/*
672bba3a
CL
2760 * Use the cpu notifier to insure that the cpu slabs are flushed when
2761 * necessary.
81819f0f
CL
2762 */
2763static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
2764 unsigned long action, void *hcpu)
2765{
2766 long cpu = (long)hcpu;
5b95a4ac
CL
2767 struct kmem_cache *s;
2768 unsigned long flags;
81819f0f
CL
2769
2770 switch (action) {
2771 case CPU_UP_CANCELED:
8bb78442 2772 case CPU_UP_CANCELED_FROZEN:
81819f0f 2773 case CPU_DEAD:
8bb78442 2774 case CPU_DEAD_FROZEN:
5b95a4ac
CL
2775 down_read(&slub_lock);
2776 list_for_each_entry(s, &slab_caches, list) {
2777 local_irq_save(flags);
2778 __flush_cpu_slab(s, cpu);
2779 local_irq_restore(flags);
2780 }
2781 up_read(&slub_lock);
81819f0f
CL
2782 break;
2783 default:
2784 break;
2785 }
2786 return NOTIFY_OK;
2787}
2788
2789static struct notifier_block __cpuinitdata slab_notifier =
2790 { &slab_cpuup_callback, NULL, 0 };
2791
2792#endif
2793
81819f0f
CL
2794void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
2795{
aadb4bc4
CL
2796 struct kmem_cache *s;
2797
2798 if (unlikely(size > PAGE_SIZE / 2))
2799 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2800 get_order(size));
2801 s = get_slab(size, gfpflags);
81819f0f 2802
2408c550 2803 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 2804 return s;
81819f0f 2805
ce15fea8 2806 return slab_alloc(s, gfpflags, -1, caller);
81819f0f
CL
2807}
2808
2809void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
2810 int node, void *caller)
2811{
aadb4bc4
CL
2812 struct kmem_cache *s;
2813
2814 if (unlikely(size > PAGE_SIZE / 2))
2815 return (void *)__get_free_pages(gfpflags | __GFP_COMP,
2816 get_order(size));
2817 s = get_slab(size, gfpflags);
81819f0f 2818
2408c550 2819 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 2820 return s;
81819f0f 2821
ce15fea8 2822 return slab_alloc(s, gfpflags, node, caller);
81819f0f
CL
2823}
2824
41ecc55b 2825#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
434e245d
CL
2826static int validate_slab(struct kmem_cache *s, struct page *page,
2827 unsigned long *map)
53e15af0
CL
2828{
2829 void *p;
2830 void *addr = page_address(page);
53e15af0
CL
2831
2832 if (!check_slab(s, page) ||
2833 !on_freelist(s, page, NULL))
2834 return 0;
2835
2836 /* Now we know that a valid freelist exists */
2837 bitmap_zero(map, s->objects);
2838
7656c72b
CL
2839 for_each_free_object(p, s, page->freelist) {
2840 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
2841 if (!check_object(s, page, p, 0))
2842 return 0;
2843 }
2844
7656c72b
CL
2845 for_each_object(p, s, addr)
2846 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
2847 if (!check_object(s, page, p, 1))
2848 return 0;
2849 return 1;
2850}
2851
434e245d
CL
2852static void validate_slab_slab(struct kmem_cache *s, struct page *page,
2853 unsigned long *map)
53e15af0
CL
2854{
2855 if (slab_trylock(page)) {
434e245d 2856 validate_slab(s, page, map);
53e15af0
CL
2857 slab_unlock(page);
2858 } else
2859 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
2860 s->name, page);
2861
2862 if (s->flags & DEBUG_DEFAULT_FLAGS) {
35e5d7ee
CL
2863 if (!SlabDebug(page))
2864 printk(KERN_ERR "SLUB %s: SlabDebug not set "
53e15af0
CL
2865 "on slab 0x%p\n", s->name, page);
2866 } else {
35e5d7ee
CL
2867 if (SlabDebug(page))
2868 printk(KERN_ERR "SLUB %s: SlabDebug set on "
53e15af0
CL
2869 "slab 0x%p\n", s->name, page);
2870 }
2871}
2872
434e245d
CL
2873static int validate_slab_node(struct kmem_cache *s,
2874 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
2875{
2876 unsigned long count = 0;
2877 struct page *page;
2878 unsigned long flags;
2879
2880 spin_lock_irqsave(&n->list_lock, flags);
2881
2882 list_for_each_entry(page, &n->partial, lru) {
434e245d 2883 validate_slab_slab(s, page, map);
53e15af0
CL
2884 count++;
2885 }
2886 if (count != n->nr_partial)
2887 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
2888 "counter=%ld\n", s->name, count, n->nr_partial);
2889
2890 if (!(s->flags & SLAB_STORE_USER))
2891 goto out;
2892
2893 list_for_each_entry(page, &n->full, lru) {
434e245d 2894 validate_slab_slab(s, page, map);
53e15af0
CL
2895 count++;
2896 }
2897 if (count != atomic_long_read(&n->nr_slabs))
2898 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
2899 "counter=%ld\n", s->name, count,
2900 atomic_long_read(&n->nr_slabs));
2901
2902out:
2903 spin_unlock_irqrestore(&n->list_lock, flags);
2904 return count;
2905}
2906
434e245d 2907static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
2908{
2909 int node;
2910 unsigned long count = 0;
434e245d
CL
2911 unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
2912 sizeof(unsigned long), GFP_KERNEL);
2913
2914 if (!map)
2915 return -ENOMEM;
53e15af0
CL
2916
2917 flush_all(s);
2918 for_each_online_node(node) {
2919 struct kmem_cache_node *n = get_node(s, node);
2920
434e245d 2921 count += validate_slab_node(s, n, map);
53e15af0 2922 }
434e245d 2923 kfree(map);
53e15af0
CL
2924 return count;
2925}
2926
b3459709
CL
2927#ifdef SLUB_RESILIENCY_TEST
2928static void resiliency_test(void)
2929{
2930 u8 *p;
2931
2932 printk(KERN_ERR "SLUB resiliency testing\n");
2933 printk(KERN_ERR "-----------------------\n");
2934 printk(KERN_ERR "A. Corruption after allocation\n");
2935
2936 p = kzalloc(16, GFP_KERNEL);
2937 p[16] = 0x12;
2938 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
2939 " 0x12->0x%p\n\n", p + 16);
2940
2941 validate_slab_cache(kmalloc_caches + 4);
2942
2943 /* Hmmm... The next two are dangerous */
2944 p = kzalloc(32, GFP_KERNEL);
2945 p[32 + sizeof(void *)] = 0x34;
2946 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
2947 " 0x34 -> -0x%p\n", p);
2948 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2949
2950 validate_slab_cache(kmalloc_caches + 5);
2951 p = kzalloc(64, GFP_KERNEL);
2952 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
2953 *p = 0x56;
2954 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
2955 p);
2956 printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
2957 validate_slab_cache(kmalloc_caches + 6);
2958
2959 printk(KERN_ERR "\nB. Corruption after free\n");
2960 p = kzalloc(128, GFP_KERNEL);
2961 kfree(p);
2962 *p = 0x78;
2963 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
2964 validate_slab_cache(kmalloc_caches + 7);
2965
2966 p = kzalloc(256, GFP_KERNEL);
2967 kfree(p);
2968 p[50] = 0x9a;
2969 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
2970 validate_slab_cache(kmalloc_caches + 8);
2971
2972 p = kzalloc(512, GFP_KERNEL);
2973 kfree(p);
2974 p[512] = 0xab;
2975 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
2976 validate_slab_cache(kmalloc_caches + 9);
2977}
2978#else
2979static void resiliency_test(void) {};
2980#endif
2981
88a420e4 2982/*
672bba3a 2983 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
2984 * and freed.
2985 */
2986
2987struct location {
2988 unsigned long count;
2989 void *addr;
45edfa58
CL
2990 long long sum_time;
2991 long min_time;
2992 long max_time;
2993 long min_pid;
2994 long max_pid;
2995 cpumask_t cpus;
2996 nodemask_t nodes;
88a420e4
CL
2997};
2998
2999struct loc_track {
3000 unsigned long max;
3001 unsigned long count;
3002 struct location *loc;
3003};
3004
3005static void free_loc_track(struct loc_track *t)
3006{
3007 if (t->max)
3008 free_pages((unsigned long)t->loc,
3009 get_order(sizeof(struct location) * t->max));
3010}
3011
68dff6a9 3012static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3013{
3014 struct location *l;
3015 int order;
3016
88a420e4
CL
3017 order = get_order(sizeof(struct location) * max);
3018
68dff6a9 3019 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3020 if (!l)
3021 return 0;
3022
3023 if (t->count) {
3024 memcpy(l, t->loc, sizeof(struct location) * t->count);
3025 free_loc_track(t);
3026 }
3027 t->max = max;
3028 t->loc = l;
3029 return 1;
3030}
3031
3032static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3033 const struct track *track)
88a420e4
CL
3034{
3035 long start, end, pos;
3036 struct location *l;
3037 void *caddr;
45edfa58 3038 unsigned long age = jiffies - track->when;
88a420e4
CL
3039
3040 start = -1;
3041 end = t->count;
3042
3043 for ( ; ; ) {
3044 pos = start + (end - start + 1) / 2;
3045
3046 /*
3047 * There is nothing at "end". If we end up there
3048 * we need to add something to before end.
3049 */
3050 if (pos == end)
3051 break;
3052
3053 caddr = t->loc[pos].addr;
45edfa58
CL
3054 if (track->addr == caddr) {
3055
3056 l = &t->loc[pos];
3057 l->count++;
3058 if (track->when) {
3059 l->sum_time += age;
3060 if (age < l->min_time)
3061 l->min_time = age;
3062 if (age > l->max_time)
3063 l->max_time = age;
3064
3065 if (track->pid < l->min_pid)
3066 l->min_pid = track->pid;
3067 if (track->pid > l->max_pid)
3068 l->max_pid = track->pid;
3069
3070 cpu_set(track->cpu, l->cpus);
3071 }
3072 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3073 return 1;
3074 }
3075
45edfa58 3076 if (track->addr < caddr)
88a420e4
CL
3077 end = pos;
3078 else
3079 start = pos;
3080 }
3081
3082 /*
672bba3a 3083 * Not found. Insert new tracking element.
88a420e4 3084 */
68dff6a9 3085 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3086 return 0;
3087
3088 l = t->loc + pos;
3089 if (pos < t->count)
3090 memmove(l + 1, l,
3091 (t->count - pos) * sizeof(struct location));
3092 t->count++;
3093 l->count = 1;
45edfa58
CL
3094 l->addr = track->addr;
3095 l->sum_time = age;
3096 l->min_time = age;
3097 l->max_time = age;
3098 l->min_pid = track->pid;
3099 l->max_pid = track->pid;
3100 cpus_clear(l->cpus);
3101 cpu_set(track->cpu, l->cpus);
3102 nodes_clear(l->nodes);
3103 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3104 return 1;
3105}
3106
3107static void process_slab(struct loc_track *t, struct kmem_cache *s,
3108 struct page *page, enum track_item alloc)
3109{
3110 void *addr = page_address(page);
7656c72b 3111 DECLARE_BITMAP(map, s->objects);
88a420e4
CL
3112 void *p;
3113
3114 bitmap_zero(map, s->objects);
7656c72b
CL
3115 for_each_free_object(p, s, page->freelist)
3116 set_bit(slab_index(p, s, addr), map);
88a420e4 3117
7656c72b 3118 for_each_object(p, s, addr)
45edfa58
CL
3119 if (!test_bit(slab_index(p, s, addr), map))
3120 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3121}
3122
3123static int list_locations(struct kmem_cache *s, char *buf,
3124 enum track_item alloc)
3125{
3126 int n = 0;
3127 unsigned long i;
68dff6a9 3128 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3129 int node;
3130
68dff6a9
CL
3131 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3132 GFP_KERNEL))
3133 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3134
3135 /* Push back cpu slabs */
3136 flush_all(s);
3137
3138 for_each_online_node(node) {
3139 struct kmem_cache_node *n = get_node(s, node);
3140 unsigned long flags;
3141 struct page *page;
3142
9e86943b 3143 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3144 continue;
3145
3146 spin_lock_irqsave(&n->list_lock, flags);
3147 list_for_each_entry(page, &n->partial, lru)
3148 process_slab(&t, s, page, alloc);
3149 list_for_each_entry(page, &n->full, lru)
3150 process_slab(&t, s, page, alloc);
3151 spin_unlock_irqrestore(&n->list_lock, flags);
3152 }
3153
3154 for (i = 0; i < t.count; i++) {
45edfa58 3155 struct location *l = &t.loc[i];
88a420e4
CL
3156
3157 if (n > PAGE_SIZE - 100)
3158 break;
45edfa58
CL
3159 n += sprintf(buf + n, "%7ld ", l->count);
3160
3161 if (l->addr)
3162 n += sprint_symbol(buf + n, (unsigned long)l->addr);
88a420e4
CL
3163 else
3164 n += sprintf(buf + n, "<not-available>");
45edfa58
CL
3165
3166 if (l->sum_time != l->min_time) {
3167 unsigned long remainder;
3168
3169 n += sprintf(buf + n, " age=%ld/%ld/%ld",
3170 l->min_time,
3171 div_long_long_rem(l->sum_time, l->count, &remainder),
3172 l->max_time);
3173 } else
3174 n += sprintf(buf + n, " age=%ld",
3175 l->min_time);
3176
3177 if (l->min_pid != l->max_pid)
3178 n += sprintf(buf + n, " pid=%ld-%ld",
3179 l->min_pid, l->max_pid);
3180 else
3181 n += sprintf(buf + n, " pid=%ld",
3182 l->min_pid);
3183
84966343
CL
3184 if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3185 n < PAGE_SIZE - 60) {
45edfa58
CL
3186 n += sprintf(buf + n, " cpus=");
3187 n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3188 l->cpus);
3189 }
3190
84966343
CL
3191 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3192 n < PAGE_SIZE - 60) {
45edfa58
CL
3193 n += sprintf(buf + n, " nodes=");
3194 n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3195 l->nodes);
3196 }
3197
88a420e4
CL
3198 n += sprintf(buf + n, "\n");
3199 }
3200
3201 free_loc_track(&t);
3202 if (!t.count)
3203 n += sprintf(buf, "No data\n");
3204 return n;
3205}
3206
81819f0f
CL
3207static unsigned long count_partial(struct kmem_cache_node *n)
3208{
3209 unsigned long flags;
3210 unsigned long x = 0;
3211 struct page *page;
3212
3213 spin_lock_irqsave(&n->list_lock, flags);
3214 list_for_each_entry(page, &n->partial, lru)
3215 x += page->inuse;
3216 spin_unlock_irqrestore(&n->list_lock, flags);
3217 return x;
3218}
3219
3220enum slab_stat_type {
3221 SL_FULL,
3222 SL_PARTIAL,
3223 SL_CPU,
3224 SL_OBJECTS
3225};
3226
3227#define SO_FULL (1 << SL_FULL)
3228#define SO_PARTIAL (1 << SL_PARTIAL)
3229#define SO_CPU (1 << SL_CPU)
3230#define SO_OBJECTS (1 << SL_OBJECTS)
3231
3232static unsigned long slab_objects(struct kmem_cache *s,
3233 char *buf, unsigned long flags)
3234{
3235 unsigned long total = 0;
3236 int cpu;
3237 int node;
3238 int x;
3239 unsigned long *nodes;
3240 unsigned long *per_cpu;
3241
3242 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3243 per_cpu = nodes + nr_node_ids;
3244
3245 for_each_possible_cpu(cpu) {
3246 struct page *page = s->cpu_slab[cpu];
3247 int node;
3248
3249 if (page) {
3250 node = page_to_nid(page);
3251 if (flags & SO_CPU) {
3252 int x = 0;
3253
3254 if (flags & SO_OBJECTS)
3255 x = page->inuse;
3256 else
3257 x = 1;
3258 total += x;
3259 nodes[node] += x;
3260 }
3261 per_cpu[node]++;
3262 }
3263 }
3264
3265 for_each_online_node(node) {
3266 struct kmem_cache_node *n = get_node(s, node);
3267
3268 if (flags & SO_PARTIAL) {
3269 if (flags & SO_OBJECTS)
3270 x = count_partial(n);
3271 else
3272 x = n->nr_partial;
3273 total += x;
3274 nodes[node] += x;
3275 }
3276
3277 if (flags & SO_FULL) {
9e86943b 3278 int full_slabs = atomic_long_read(&n->nr_slabs)
81819f0f
CL
3279 - per_cpu[node]
3280 - n->nr_partial;
3281
3282 if (flags & SO_OBJECTS)
3283 x = full_slabs * s->objects;
3284 else
3285 x = full_slabs;
3286 total += x;
3287 nodes[node] += x;
3288 }
3289 }
3290
3291 x = sprintf(buf, "%lu", total);
3292#ifdef CONFIG_NUMA
3293 for_each_online_node(node)
3294 if (nodes[node])
3295 x += sprintf(buf + x, " N%d=%lu",
3296 node, nodes[node]);
3297#endif
3298 kfree(nodes);
3299 return x + sprintf(buf + x, "\n");
3300}
3301
3302static int any_slab_objects(struct kmem_cache *s)
3303{
3304 int node;
3305 int cpu;
3306
3307 for_each_possible_cpu(cpu)
3308 if (s->cpu_slab[cpu])
3309 return 1;
3310
3311 for_each_node(node) {
3312 struct kmem_cache_node *n = get_node(s, node);
3313
9e86943b 3314 if (n->nr_partial || atomic_long_read(&n->nr_slabs))
81819f0f
CL
3315 return 1;
3316 }
3317 return 0;
3318}
3319
3320#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3321#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3322
3323struct slab_attribute {
3324 struct attribute attr;
3325 ssize_t (*show)(struct kmem_cache *s, char *buf);
3326 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3327};
3328
3329#define SLAB_ATTR_RO(_name) \
3330 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3331
3332#define SLAB_ATTR(_name) \
3333 static struct slab_attribute _name##_attr = \
3334 __ATTR(_name, 0644, _name##_show, _name##_store)
3335
81819f0f
CL
3336static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3337{
3338 return sprintf(buf, "%d\n", s->size);
3339}
3340SLAB_ATTR_RO(slab_size);
3341
3342static ssize_t align_show(struct kmem_cache *s, char *buf)
3343{
3344 return sprintf(buf, "%d\n", s->align);
3345}
3346SLAB_ATTR_RO(align);
3347
3348static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3349{
3350 return sprintf(buf, "%d\n", s->objsize);
3351}
3352SLAB_ATTR_RO(object_size);
3353
3354static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3355{
3356 return sprintf(buf, "%d\n", s->objects);
3357}
3358SLAB_ATTR_RO(objs_per_slab);
3359
3360static ssize_t order_show(struct kmem_cache *s, char *buf)
3361{
3362 return sprintf(buf, "%d\n", s->order);
3363}
3364SLAB_ATTR_RO(order);
3365
3366static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3367{
3368 if (s->ctor) {
3369 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3370
3371 return n + sprintf(buf + n, "\n");
3372 }
3373 return 0;
3374}
3375SLAB_ATTR_RO(ctor);
3376
81819f0f
CL
3377static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3378{
3379 return sprintf(buf, "%d\n", s->refcount - 1);
3380}
3381SLAB_ATTR_RO(aliases);
3382
3383static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3384{
3385 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3386}
3387SLAB_ATTR_RO(slabs);
3388
3389static ssize_t partial_show(struct kmem_cache *s, char *buf)
3390{
3391 return slab_objects(s, buf, SO_PARTIAL);
3392}
3393SLAB_ATTR_RO(partial);
3394
3395static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3396{
3397 return slab_objects(s, buf, SO_CPU);
3398}
3399SLAB_ATTR_RO(cpu_slabs);
3400
3401static ssize_t objects_show(struct kmem_cache *s, char *buf)
3402{
3403 return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3404}
3405SLAB_ATTR_RO(objects);
3406
3407static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3408{
3409 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3410}
3411
3412static ssize_t sanity_checks_store(struct kmem_cache *s,
3413 const char *buf, size_t length)
3414{
3415 s->flags &= ~SLAB_DEBUG_FREE;
3416 if (buf[0] == '1')
3417 s->flags |= SLAB_DEBUG_FREE;
3418 return length;
3419}
3420SLAB_ATTR(sanity_checks);
3421
3422static ssize_t trace_show(struct kmem_cache *s, char *buf)
3423{
3424 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3425}
3426
3427static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3428 size_t length)
3429{
3430 s->flags &= ~SLAB_TRACE;
3431 if (buf[0] == '1')
3432 s->flags |= SLAB_TRACE;
3433 return length;
3434}
3435SLAB_ATTR(trace);
3436
3437static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3438{
3439 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3440}
3441
3442static ssize_t reclaim_account_store(struct kmem_cache *s,
3443 const char *buf, size_t length)
3444{
3445 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3446 if (buf[0] == '1')
3447 s->flags |= SLAB_RECLAIM_ACCOUNT;
3448 return length;
3449}
3450SLAB_ATTR(reclaim_account);
3451
3452static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3453{
5af60839 3454 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
3455}
3456SLAB_ATTR_RO(hwcache_align);
3457
3458#ifdef CONFIG_ZONE_DMA
3459static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3460{
3461 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3462}
3463SLAB_ATTR_RO(cache_dma);
3464#endif
3465
3466static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3467{
3468 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3469}
3470SLAB_ATTR_RO(destroy_by_rcu);
3471
3472static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3473{
3474 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3475}
3476
3477static ssize_t red_zone_store(struct kmem_cache *s,
3478 const char *buf, size_t length)
3479{
3480 if (any_slab_objects(s))
3481 return -EBUSY;
3482
3483 s->flags &= ~SLAB_RED_ZONE;
3484 if (buf[0] == '1')
3485 s->flags |= SLAB_RED_ZONE;
3486 calculate_sizes(s);
3487 return length;
3488}
3489SLAB_ATTR(red_zone);
3490
3491static ssize_t poison_show(struct kmem_cache *s, char *buf)
3492{
3493 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3494}
3495
3496static ssize_t poison_store(struct kmem_cache *s,
3497 const char *buf, size_t length)
3498{
3499 if (any_slab_objects(s))
3500 return -EBUSY;
3501
3502 s->flags &= ~SLAB_POISON;
3503 if (buf[0] == '1')
3504 s->flags |= SLAB_POISON;
3505 calculate_sizes(s);
3506 return length;
3507}
3508SLAB_ATTR(poison);
3509
3510static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3511{
3512 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3513}
3514
3515static ssize_t store_user_store(struct kmem_cache *s,
3516 const char *buf, size_t length)
3517{
3518 if (any_slab_objects(s))
3519 return -EBUSY;
3520
3521 s->flags &= ~SLAB_STORE_USER;
3522 if (buf[0] == '1')
3523 s->flags |= SLAB_STORE_USER;
3524 calculate_sizes(s);
3525 return length;
3526}
3527SLAB_ATTR(store_user);
3528
53e15af0
CL
3529static ssize_t validate_show(struct kmem_cache *s, char *buf)
3530{
3531 return 0;
3532}
3533
3534static ssize_t validate_store(struct kmem_cache *s,
3535 const char *buf, size_t length)
3536{
434e245d
CL
3537 int ret = -EINVAL;
3538
3539 if (buf[0] == '1') {
3540 ret = validate_slab_cache(s);
3541 if (ret >= 0)
3542 ret = length;
3543 }
3544 return ret;
53e15af0
CL
3545}
3546SLAB_ATTR(validate);
3547
2086d26a
CL
3548static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3549{
3550 return 0;
3551}
3552
3553static ssize_t shrink_store(struct kmem_cache *s,
3554 const char *buf, size_t length)
3555{
3556 if (buf[0] == '1') {
3557 int rc = kmem_cache_shrink(s);
3558
3559 if (rc)
3560 return rc;
3561 } else
3562 return -EINVAL;
3563 return length;
3564}
3565SLAB_ATTR(shrink);
3566
88a420e4
CL
3567static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3568{
3569 if (!(s->flags & SLAB_STORE_USER))
3570 return -ENOSYS;
3571 return list_locations(s, buf, TRACK_ALLOC);
3572}
3573SLAB_ATTR_RO(alloc_calls);
3574
3575static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3576{
3577 if (!(s->flags & SLAB_STORE_USER))
3578 return -ENOSYS;
3579 return list_locations(s, buf, TRACK_FREE);
3580}
3581SLAB_ATTR_RO(free_calls);
3582
81819f0f
CL
3583#ifdef CONFIG_NUMA
3584static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3585{
3586 return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3587}
3588
3589static ssize_t defrag_ratio_store(struct kmem_cache *s,
3590 const char *buf, size_t length)
3591{
3592 int n = simple_strtoul(buf, NULL, 10);
3593
3594 if (n < 100)
3595 s->defrag_ratio = n * 10;
3596 return length;
3597}
3598SLAB_ATTR(defrag_ratio);
3599#endif
3600
3601static struct attribute * slab_attrs[] = {
3602 &slab_size_attr.attr,
3603 &object_size_attr.attr,
3604 &objs_per_slab_attr.attr,
3605 &order_attr.attr,
3606 &objects_attr.attr,
3607 &slabs_attr.attr,
3608 &partial_attr.attr,
3609 &cpu_slabs_attr.attr,
3610 &ctor_attr.attr,
81819f0f
CL
3611 &aliases_attr.attr,
3612 &align_attr.attr,
3613 &sanity_checks_attr.attr,
3614 &trace_attr.attr,
3615 &hwcache_align_attr.attr,
3616 &reclaim_account_attr.attr,
3617 &destroy_by_rcu_attr.attr,
3618 &red_zone_attr.attr,
3619 &poison_attr.attr,
3620 &store_user_attr.attr,
53e15af0 3621 &validate_attr.attr,
2086d26a 3622 &shrink_attr.attr,
88a420e4
CL
3623 &alloc_calls_attr.attr,
3624 &free_calls_attr.attr,
81819f0f
CL
3625#ifdef CONFIG_ZONE_DMA
3626 &cache_dma_attr.attr,
3627#endif
3628#ifdef CONFIG_NUMA
3629 &defrag_ratio_attr.attr,
3630#endif
3631 NULL
3632};
3633
3634static struct attribute_group slab_attr_group = {
3635 .attrs = slab_attrs,
3636};
3637
3638static ssize_t slab_attr_show(struct kobject *kobj,
3639 struct attribute *attr,
3640 char *buf)
3641{
3642 struct slab_attribute *attribute;
3643 struct kmem_cache *s;
3644 int err;
3645
3646 attribute = to_slab_attr(attr);
3647 s = to_slab(kobj);
3648
3649 if (!attribute->show)
3650 return -EIO;
3651
3652 err = attribute->show(s, buf);
3653
3654 return err;
3655}
3656
3657static ssize_t slab_attr_store(struct kobject *kobj,
3658 struct attribute *attr,
3659 const char *buf, size_t len)
3660{
3661 struct slab_attribute *attribute;
3662 struct kmem_cache *s;
3663 int err;
3664
3665 attribute = to_slab_attr(attr);
3666 s = to_slab(kobj);
3667
3668 if (!attribute->store)
3669 return -EIO;
3670
3671 err = attribute->store(s, buf, len);
3672
3673 return err;
3674}
3675
3676static struct sysfs_ops slab_sysfs_ops = {
3677 .show = slab_attr_show,
3678 .store = slab_attr_store,
3679};
3680
3681static struct kobj_type slab_ktype = {
3682 .sysfs_ops = &slab_sysfs_ops,
3683};
3684
3685static int uevent_filter(struct kset *kset, struct kobject *kobj)
3686{
3687 struct kobj_type *ktype = get_ktype(kobj);
3688
3689 if (ktype == &slab_ktype)
3690 return 1;
3691 return 0;
3692}
3693
3694static struct kset_uevent_ops slab_uevent_ops = {
3695 .filter = uevent_filter,
3696};
3697
5af328a5 3698static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
81819f0f
CL
3699
3700#define ID_STR_LENGTH 64
3701
3702/* Create a unique string id for a slab cache:
3703 * format
3704 * :[flags-]size:[memory address of kmemcache]
3705 */
3706static char *create_unique_id(struct kmem_cache *s)
3707{
3708 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3709 char *p = name;
3710
3711 BUG_ON(!name);
3712
3713 *p++ = ':';
3714 /*
3715 * First flags affecting slabcache operations. We will only
3716 * get here for aliasable slabs so we do not need to support
3717 * too many flags. The flags here must cover all flags that
3718 * are matched during merging to guarantee that the id is
3719 * unique.
3720 */
3721 if (s->flags & SLAB_CACHE_DMA)
3722 *p++ = 'd';
3723 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3724 *p++ = 'a';
3725 if (s->flags & SLAB_DEBUG_FREE)
3726 *p++ = 'F';
3727 if (p != name + 1)
3728 *p++ = '-';
3729 p += sprintf(p, "%07d", s->size);
3730 BUG_ON(p > name + ID_STR_LENGTH - 1);
3731 return name;
3732}
3733
3734static int sysfs_slab_add(struct kmem_cache *s)
3735{
3736 int err;
3737 const char *name;
3738 int unmergeable;
3739
3740 if (slab_state < SYSFS)
3741 /* Defer until later */
3742 return 0;
3743
3744 unmergeable = slab_unmergeable(s);
3745 if (unmergeable) {
3746 /*
3747 * Slabcache can never be merged so we can use the name proper.
3748 * This is typically the case for debug situations. In that
3749 * case we can catch duplicate names easily.
3750 */
0f9008ef 3751 sysfs_remove_link(&slab_subsys.kobj, s->name);
81819f0f
CL
3752 name = s->name;
3753 } else {
3754 /*
3755 * Create a unique name for the slab as a target
3756 * for the symlinks.
3757 */
3758 name = create_unique_id(s);
3759 }
3760
3761 kobj_set_kset_s(s, slab_subsys);
3762 kobject_set_name(&s->kobj, name);
3763 kobject_init(&s->kobj);
3764 err = kobject_add(&s->kobj);
3765 if (err)
3766 return err;
3767
3768 err = sysfs_create_group(&s->kobj, &slab_attr_group);
3769 if (err)
3770 return err;
3771 kobject_uevent(&s->kobj, KOBJ_ADD);
3772 if (!unmergeable) {
3773 /* Setup first alias */
3774 sysfs_slab_alias(s, s->name);
3775 kfree(name);
3776 }
3777 return 0;
3778}
3779
3780static void sysfs_slab_remove(struct kmem_cache *s)
3781{
3782 kobject_uevent(&s->kobj, KOBJ_REMOVE);
3783 kobject_del(&s->kobj);
3784}
3785
3786/*
3787 * Need to buffer aliases during bootup until sysfs becomes
3788 * available lest we loose that information.
3789 */
3790struct saved_alias {
3791 struct kmem_cache *s;
3792 const char *name;
3793 struct saved_alias *next;
3794};
3795
5af328a5 3796static struct saved_alias *alias_list;
81819f0f
CL
3797
3798static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
3799{
3800 struct saved_alias *al;
3801
3802 if (slab_state == SYSFS) {
3803 /*
3804 * If we have a leftover link then remove it.
3805 */
0f9008ef
LT
3806 sysfs_remove_link(&slab_subsys.kobj, name);
3807 return sysfs_create_link(&slab_subsys.kobj,
81819f0f
CL
3808 &s->kobj, name);
3809 }
3810
3811 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
3812 if (!al)
3813 return -ENOMEM;
3814
3815 al->s = s;
3816 al->name = name;
3817 al->next = alias_list;
3818 alias_list = al;
3819 return 0;
3820}
3821
3822static int __init slab_sysfs_init(void)
3823{
5b95a4ac 3824 struct kmem_cache *s;
81819f0f
CL
3825 int err;
3826
3827 err = subsystem_register(&slab_subsys);
3828 if (err) {
3829 printk(KERN_ERR "Cannot register slab subsystem.\n");
3830 return -ENOSYS;
3831 }
3832
26a7bd03
CL
3833 slab_state = SYSFS;
3834
5b95a4ac 3835 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 3836 err = sysfs_slab_add(s);
5d540fb7
CL
3837 if (err)
3838 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
3839 " to sysfs\n", s->name);
26a7bd03 3840 }
81819f0f
CL
3841
3842 while (alias_list) {
3843 struct saved_alias *al = alias_list;
3844
3845 alias_list = alias_list->next;
3846 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
3847 if (err)
3848 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
3849 " %s to sysfs\n", s->name);
81819f0f
CL
3850 kfree(al);
3851 }
3852
3853 resiliency_test();
3854 return 0;
3855}
3856
3857__initcall(slab_sysfs_init);
81819f0f 3858#endif