]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
[PATCH] Replace min_unmapped_ratio by min_unmapped_pages in struct zone
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
e7eebaf6 110#include <linux/rtmutex.h>
1da177e4
LT
111
112#include <asm/uaccess.h>
113#include <asm/cacheflush.h>
114#include <asm/tlbflush.h>
115#include <asm/page.h>
116
117/*
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 176 SLAB_CACHE_DMA | \
1da177e4
LT
177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 180#else
ac2b898c 181# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
fa5b08d5 206typedef unsigned int kmem_bufctl_t;
1da177e4
LT
207#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
209#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 211
1da177e4
LT
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
b28a02de
PE
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
1da177e4
LT
226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
b28a02de 245 struct rcu_head head;
343e0d7a 246 struct kmem_cache *cachep;
b28a02de 247 void *addr;
1da177e4
LT
248};
249
250/*
251 * struct array_cache
252 *
1da177e4
LT
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
e498be7d 267 spinlock_t lock;
a737b3e2
AM
268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
273 */
1da177e4
LT
274};
275
a737b3e2
AM
276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
1da177e4
LT
279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
b28a02de 283 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
284};
285
286/*
e498be7d 287 * The slab lists for all objects.
1da177e4
LT
288 */
289struct kmem_list3 {
b28a02de
PE
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
b28a02de 294 unsigned int free_limit;
2e1217cf 295 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
35386e3b
CL
299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
1da177e4
LT
301};
302
e498be7d
CL
303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define CACHE_CACHE 0
309#define SIZE_AC 1
310#define SIZE_L3 (1 + MAX_NUMNODES)
311
ed11d9eb
CL
312static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
2ed3a4ef 316static int enable_cpucache(struct kmem_cache *cachep);
ed11d9eb
CL
317static void cache_reap(void *unused);
318
e498be7d 319/*
a737b3e2
AM
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 322 */
7243cc05 323static __always_inline int index_of(const size_t size)
e498be7d 324{
5ec8a847
SR
325 extern void __bad_size(void);
326
e498be7d
CL
327 if (__builtin_constant_p(size)) {
328 int i = 0;
329
330#define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
335#include "linux/kmalloc_sizes.h"
336#undef CACHE
5ec8a847 337 __bad_size();
7243cc05 338 } else
5ec8a847 339 __bad_size();
e498be7d
CL
340 return 0;
341}
342
e0a42726
IM
343static int slab_early_init = 1;
344
e498be7d
CL
345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 347
5295a74c 348static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
349{
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
2e1217cf 355 parent->colour_next = 0;
e498be7d
CL
356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
359}
360
a737b3e2
AM
361#define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
365 } while (0)
366
a737b3e2
AM
367#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
e498be7d
CL
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
1da177e4
LT
373
374/*
343e0d7a 375 * struct kmem_cache
1da177e4
LT
376 *
377 * manages a cache.
378 */
b28a02de 379
2109a2d1 380struct kmem_cache {
1da177e4 381/* 1) per-cpu data, touched during every alloc/free */
b28a02de 382 struct array_cache *array[NR_CPUS];
b5d8ca7c 383/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
b5d8ca7c 387
3dafccf2 388 unsigned int buffer_size;
b5d8ca7c 389/* 3) touched by every alloc & free from the backend */
b28a02de 390 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 391
a737b3e2
AM
392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
1da177e4 394
b5d8ca7c 395/* 4) cache_grow/shrink */
1da177e4 396 /* order of pgs per slab (2^n) */
b28a02de 397 unsigned int gfporder;
1da177e4
LT
398
399 /* force GFP flags, e.g. GFP_DMA */
b28a02de 400 gfp_t gfpflags;
1da177e4 401
a737b3e2 402 size_t colour; /* cache colouring range */
b28a02de 403 unsigned int colour_off; /* colour offset */
343e0d7a 404 struct kmem_cache *slabp_cache;
b28a02de 405 unsigned int slab_size;
a737b3e2 406 unsigned int dflags; /* dynamic flags */
1da177e4
LT
407
408 /* constructor func */
343e0d7a 409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
410
411 /* de-constructor func */
343e0d7a 412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 413
b5d8ca7c 414/* 5) cache creation/removal */
b28a02de
PE
415 const char *name;
416 struct list_head next;
1da177e4 417
b5d8ca7c 418/* 6) statistics */
1da177e4 419#if STATS
b28a02de
PE
420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
423 unsigned long grown;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
fb7faf33 429 unsigned long node_overflow;
b28a02de
PE
430 atomic_t allochit;
431 atomic_t allocmiss;
432 atomic_t freehit;
433 atomic_t freemiss;
1da177e4
LT
434#endif
435#if DEBUG
3dafccf2
MS
436 /*
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
441 */
442 int obj_offset;
443 int obj_size;
1da177e4
LT
444#endif
445};
446
447#define CFLGS_OFF_SLAB (0x80000000UL)
448#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449
450#define BATCHREFILL_LIMIT 16
a737b3e2
AM
451/*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
1da177e4 454 *
dc6f3f27 455 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
456 * which could lock up otherwise freeable slabs.
457 */
458#define REAPTIMEOUT_CPUC (2*HZ)
459#define REAPTIMEOUT_LIST3 (4*HZ)
460
461#if STATS
462#define STATS_INC_ACTIVE(x) ((x)->num_active++)
463#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 466#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
467#define STATS_SET_HIGH(x) \
468 do { \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
471 } while (0)
1da177e4
LT
472#define STATS_INC_ERR(x) ((x)->errors++)
473#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 474#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 475#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
476#define STATS_SET_FREEABLE(x, i) \
477 do { \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
480 } while (0)
1da177e4
LT
481#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485#else
486#define STATS_INC_ACTIVE(x) do { } while (0)
487#define STATS_DEC_ACTIVE(x) do { } while (0)
488#define STATS_INC_ALLOCED(x) do { } while (0)
489#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 490#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
491#define STATS_SET_HIGH(x) do { } while (0)
492#define STATS_INC_ERR(x) do { } while (0)
493#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 494#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 495#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 496#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
497#define STATS_INC_ALLOCHIT(x) do { } while (0)
498#define STATS_INC_ALLOCMISS(x) do { } while (0)
499#define STATS_INC_FREEHIT(x) do { } while (0)
500#define STATS_INC_FREEMISS(x) do { } while (0)
501#endif
502
503#if DEBUG
1da177e4 504
a737b3e2
AM
505/*
506 * memory layout of objects:
1da177e4 507 * 0 : objp
3dafccf2 508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
3dafccf2 511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 512 * redzone word.
3dafccf2
MS
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
1da177e4 517 */
343e0d7a 518static int obj_offset(struct kmem_cache *cachep)
1da177e4 519{
3dafccf2 520 return cachep->obj_offset;
1da177e4
LT
521}
522
343e0d7a 523static int obj_size(struct kmem_cache *cachep)
1da177e4 524{
3dafccf2 525 return cachep->obj_size;
1da177e4
LT
526}
527
343e0d7a 528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
532}
533
343e0d7a 534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 538 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 539 2 * BYTES_PER_WORD);
3dafccf2 540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
541}
542
343e0d7a 543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
547}
548
549#else
550
3dafccf2
MS
551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
a737b3e2
AM
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
1da177e4
LT
562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
a737b3e2
AM
581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
1da177e4 585 */
065d41cb
PE
586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
84097518
NP
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
ddc2e812 595 BUG_ON(!PageSlab(page));
065d41cb
PE
596 return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601 page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
84097518
NP
606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
ddc2e812 608 BUG_ON(!PageSlab(page));
065d41cb
PE
609 return (struct slab *)page->lru.prev;
610}
1da177e4 611
6ed5eb22
PE
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622}
623
8fea4e96
PE
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
a737b3e2
AM
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
1da177e4
LT
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
b28a02de 656 {NULL,}
1da177e4
LT
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
b28a02de 661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 662static struct arraycache_init initarray_generic =
b28a02de 663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
664
665/* internal cache of cache description objs */
343e0d7a 666static struct kmem_cache cache_cache = {
b28a02de
PE
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
343e0d7a 670 .buffer_size = sizeof(struct kmem_cache),
b28a02de 671 .name = "kmem_cache",
1da177e4 672#if DEBUG
343e0d7a 673 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
674#endif
675};
676
056c6241
RT
677#define BAD_ALIEN_MAGIC 0x01020304ul
678
f1aaee53
AV
679#ifdef CONFIG_LOCKDEP
680
681/*
682 * Slab sometimes uses the kmalloc slabs to store the slab headers
683 * for other slabs "off slab".
684 * The locking for this is tricky in that it nests within the locks
685 * of all other slabs in a few places; to deal with this special
686 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
687 *
688 * We set lock class for alien array caches which are up during init.
689 * The lock annotation will be lost if all cpus of a node goes down and
690 * then comes back up during hotplug
f1aaee53 691 */
056c6241
RT
692static struct lock_class_key on_slab_l3_key;
693static struct lock_class_key on_slab_alc_key;
694
695static inline void init_lock_keys(void)
f1aaee53 696
f1aaee53
AV
697{
698 int q;
056c6241
RT
699 struct cache_sizes *s = malloc_sizes;
700
701 while (s->cs_size != ULONG_MAX) {
702 for_each_node(q) {
703 struct array_cache **alc;
704 int r;
705 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
706 if (!l3 || OFF_SLAB(s->cs_cachep))
707 continue;
708 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
709 alc = l3->alien;
710 /*
711 * FIXME: This check for BAD_ALIEN_MAGIC
712 * should go away when common slab code is taught to
713 * work even without alien caches.
714 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
715 * for alloc_alien_cache,
716 */
717 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
718 continue;
719 for_each_node(r) {
720 if (alc[r])
721 lockdep_set_class(&alc[r]->lock,
722 &on_slab_alc_key);
723 }
724 }
725 s++;
f1aaee53
AV
726 }
727}
f1aaee53 728#else
056c6241 729static inline void init_lock_keys(void)
f1aaee53
AV
730{
731}
732#endif
733
1da177e4 734/* Guard access to the cache-chain. */
fc0abb14 735static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
736static struct list_head cache_chain;
737
738/*
a737b3e2
AM
739 * vm_enough_memory() looks at this to determine how many slab-allocated pages
740 * are possibly freeable under pressure
1da177e4
LT
741 *
742 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
743 */
744atomic_t slab_reclaim_pages;
1da177e4
LT
745
746/*
747 * chicken and egg problem: delay the per-cpu array allocation
748 * until the general caches are up.
749 */
750static enum {
751 NONE,
e498be7d
CL
752 PARTIAL_AC,
753 PARTIAL_L3,
1da177e4
LT
754 FULL
755} g_cpucache_up;
756
39d24e64
MK
757/*
758 * used by boot code to determine if it can use slab based allocator
759 */
760int slab_is_available(void)
761{
762 return g_cpucache_up == FULL;
763}
764
1da177e4
LT
765static DEFINE_PER_CPU(struct work_struct, reap_work);
766
343e0d7a 767static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
768{
769 return cachep->array[smp_processor_id()];
770}
771
a737b3e2
AM
772static inline struct kmem_cache *__find_general_cachep(size_t size,
773 gfp_t gfpflags)
1da177e4
LT
774{
775 struct cache_sizes *csizep = malloc_sizes;
776
777#if DEBUG
778 /* This happens if someone tries to call
b28a02de
PE
779 * kmem_cache_create(), or __kmalloc(), before
780 * the generic caches are initialized.
781 */
c7e43c78 782 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
783#endif
784 while (size > csizep->cs_size)
785 csizep++;
786
787 /*
0abf40c1 788 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
789 * has cs_{dma,}cachep==NULL. Thus no special case
790 * for large kmalloc calls required.
791 */
792 if (unlikely(gfpflags & GFP_DMA))
793 return csizep->cs_dmacachep;
794 return csizep->cs_cachep;
795}
796
b221385b 797static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
798{
799 return __find_general_cachep(size, gfpflags);
800}
97e2bde4 801
fbaccacf 802static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 803{
fbaccacf
SR
804 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
805}
1da177e4 806
a737b3e2
AM
807/*
808 * Calculate the number of objects and left-over bytes for a given buffer size.
809 */
fbaccacf
SR
810static void cache_estimate(unsigned long gfporder, size_t buffer_size,
811 size_t align, int flags, size_t *left_over,
812 unsigned int *num)
813{
814 int nr_objs;
815 size_t mgmt_size;
816 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 817
fbaccacf
SR
818 /*
819 * The slab management structure can be either off the slab or
820 * on it. For the latter case, the memory allocated for a
821 * slab is used for:
822 *
823 * - The struct slab
824 * - One kmem_bufctl_t for each object
825 * - Padding to respect alignment of @align
826 * - @buffer_size bytes for each object
827 *
828 * If the slab management structure is off the slab, then the
829 * alignment will already be calculated into the size. Because
830 * the slabs are all pages aligned, the objects will be at the
831 * correct alignment when allocated.
832 */
833 if (flags & CFLGS_OFF_SLAB) {
834 mgmt_size = 0;
835 nr_objs = slab_size / buffer_size;
836
837 if (nr_objs > SLAB_LIMIT)
838 nr_objs = SLAB_LIMIT;
839 } else {
840 /*
841 * Ignore padding for the initial guess. The padding
842 * is at most @align-1 bytes, and @buffer_size is at
843 * least @align. In the worst case, this result will
844 * be one greater than the number of objects that fit
845 * into the memory allocation when taking the padding
846 * into account.
847 */
848 nr_objs = (slab_size - sizeof(struct slab)) /
849 (buffer_size + sizeof(kmem_bufctl_t));
850
851 /*
852 * This calculated number will be either the right
853 * amount, or one greater than what we want.
854 */
855 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
856 > slab_size)
857 nr_objs--;
858
859 if (nr_objs > SLAB_LIMIT)
860 nr_objs = SLAB_LIMIT;
861
862 mgmt_size = slab_mgmt_size(nr_objs, align);
863 }
864 *num = nr_objs;
865 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
866}
867
868#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
869
a737b3e2
AM
870static void __slab_error(const char *function, struct kmem_cache *cachep,
871 char *msg)
1da177e4
LT
872{
873 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 874 function, cachep->name, msg);
1da177e4
LT
875 dump_stack();
876}
877
8fce4d8e
CL
878#ifdef CONFIG_NUMA
879/*
880 * Special reaping functions for NUMA systems called from cache_reap().
881 * These take care of doing round robin flushing of alien caches (containing
882 * objects freed on different nodes from which they were allocated) and the
883 * flushing of remote pcps by calling drain_node_pages.
884 */
885static DEFINE_PER_CPU(unsigned long, reap_node);
886
887static void init_reap_node(int cpu)
888{
889 int node;
890
891 node = next_node(cpu_to_node(cpu), node_online_map);
892 if (node == MAX_NUMNODES)
442295c9 893 node = first_node(node_online_map);
8fce4d8e
CL
894
895 __get_cpu_var(reap_node) = node;
896}
897
898static void next_reap_node(void)
899{
900 int node = __get_cpu_var(reap_node);
901
902 /*
903 * Also drain per cpu pages on remote zones
904 */
905 if (node != numa_node_id())
906 drain_node_pages(node);
907
908 node = next_node(node, node_online_map);
909 if (unlikely(node >= MAX_NUMNODES))
910 node = first_node(node_online_map);
911 __get_cpu_var(reap_node) = node;
912}
913
914#else
915#define init_reap_node(cpu) do { } while (0)
916#define next_reap_node(void) do { } while (0)
917#endif
918
1da177e4
LT
919/*
920 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
921 * via the workqueue/eventd.
922 * Add the CPU number into the expiration time to minimize the possibility of
923 * the CPUs getting into lockstep and contending for the global cache chain
924 * lock.
925 */
926static void __devinit start_cpu_timer(int cpu)
927{
928 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
929
930 /*
931 * When this gets called from do_initcalls via cpucache_init(),
932 * init_workqueues() has already run, so keventd will be setup
933 * at that time.
934 */
935 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 936 init_reap_node(cpu);
1da177e4
LT
937 INIT_WORK(reap_work, cache_reap, NULL);
938 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
939 }
940}
941
e498be7d 942static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 943 int batchcount)
1da177e4 944{
b28a02de 945 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
946 struct array_cache *nc = NULL;
947
e498be7d 948 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
949 if (nc) {
950 nc->avail = 0;
951 nc->limit = entries;
952 nc->batchcount = batchcount;
953 nc->touched = 0;
e498be7d 954 spin_lock_init(&nc->lock);
1da177e4
LT
955 }
956 return nc;
957}
958
3ded175a
CL
959/*
960 * Transfer objects in one arraycache to another.
961 * Locking must be handled by the caller.
962 *
963 * Return the number of entries transferred.
964 */
965static int transfer_objects(struct array_cache *to,
966 struct array_cache *from, unsigned int max)
967{
968 /* Figure out how many entries to transfer */
969 int nr = min(min(from->avail, max), to->limit - to->avail);
970
971 if (!nr)
972 return 0;
973
974 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
975 sizeof(void *) *nr);
976
977 from->avail -= nr;
978 to->avail += nr;
979 to->touched = 1;
980 return nr;
981}
982
e498be7d 983#ifdef CONFIG_NUMA
343e0d7a 984static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 985static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 986
5295a74c 987static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
988{
989 struct array_cache **ac_ptr;
b28a02de 990 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
991 int i;
992
993 if (limit > 1)
994 limit = 12;
995 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
996 if (ac_ptr) {
997 for_each_node(i) {
998 if (i == node || !node_online(i)) {
999 ac_ptr[i] = NULL;
1000 continue;
1001 }
1002 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1003 if (!ac_ptr[i]) {
b28a02de 1004 for (i--; i <= 0; i--)
e498be7d
CL
1005 kfree(ac_ptr[i]);
1006 kfree(ac_ptr);
1007 return NULL;
1008 }
1009 }
1010 }
1011 return ac_ptr;
1012}
1013
5295a74c 1014static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1015{
1016 int i;
1017
1018 if (!ac_ptr)
1019 return;
e498be7d 1020 for_each_node(i)
b28a02de 1021 kfree(ac_ptr[i]);
e498be7d
CL
1022 kfree(ac_ptr);
1023}
1024
343e0d7a 1025static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1026 struct array_cache *ac, int node)
e498be7d
CL
1027{
1028 struct kmem_list3 *rl3 = cachep->nodelists[node];
1029
1030 if (ac->avail) {
1031 spin_lock(&rl3->list_lock);
e00946fe
CL
1032 /*
1033 * Stuff objects into the remote nodes shared array first.
1034 * That way we could avoid the overhead of putting the objects
1035 * into the free lists and getting them back later.
1036 */
693f7d36
JS
1037 if (rl3->shared)
1038 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1039
ff69416e 1040 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1041 ac->avail = 0;
1042 spin_unlock(&rl3->list_lock);
1043 }
1044}
1045
8fce4d8e
CL
1046/*
1047 * Called from cache_reap() to regularly drain alien caches round robin.
1048 */
1049static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1050{
1051 int node = __get_cpu_var(reap_node);
1052
1053 if (l3->alien) {
1054 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1055
1056 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1057 __drain_alien_cache(cachep, ac, node);
1058 spin_unlock_irq(&ac->lock);
1059 }
1060 }
1061}
1062
a737b3e2
AM
1063static void drain_alien_cache(struct kmem_cache *cachep,
1064 struct array_cache **alien)
e498be7d 1065{
b28a02de 1066 int i = 0;
e498be7d
CL
1067 struct array_cache *ac;
1068 unsigned long flags;
1069
1070 for_each_online_node(i) {
4484ebf1 1071 ac = alien[i];
e498be7d
CL
1072 if (ac) {
1073 spin_lock_irqsave(&ac->lock, flags);
1074 __drain_alien_cache(cachep, ac, i);
1075 spin_unlock_irqrestore(&ac->lock, flags);
1076 }
1077 }
1078}
729bd0b7 1079
873623df 1080static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1081{
1082 struct slab *slabp = virt_to_slab(objp);
1083 int nodeid = slabp->nodeid;
1084 struct kmem_list3 *l3;
1085 struct array_cache *alien = NULL;
1086
1087 /*
1088 * Make sure we are not freeing a object from another node to the array
1089 * cache on this cpu.
1090 */
1091 if (likely(slabp->nodeid == numa_node_id()))
1092 return 0;
1093
1094 l3 = cachep->nodelists[numa_node_id()];
1095 STATS_INC_NODEFREES(cachep);
1096 if (l3->alien && l3->alien[nodeid]) {
1097 alien = l3->alien[nodeid];
873623df 1098 spin_lock(&alien->lock);
729bd0b7
PE
1099 if (unlikely(alien->avail == alien->limit)) {
1100 STATS_INC_ACOVERFLOW(cachep);
1101 __drain_alien_cache(cachep, alien, nodeid);
1102 }
1103 alien->entry[alien->avail++] = objp;
1104 spin_unlock(&alien->lock);
1105 } else {
1106 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1107 free_block(cachep, &objp, 1, nodeid);
1108 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1109 }
1110 return 1;
1111}
1112
e498be7d 1113#else
7a21ef6f 1114
4484ebf1 1115#define drain_alien_cache(cachep, alien) do { } while (0)
8fce4d8e 1116#define reap_alien(cachep, l3) do { } while (0)
4484ebf1 1117
7a21ef6f
LT
1118static inline struct array_cache **alloc_alien_cache(int node, int limit)
1119{
056c6241 1120 return (struct array_cache **)BAD_ALIEN_MAGIC;
7a21ef6f
LT
1121}
1122
4484ebf1
RT
1123static inline void free_alien_cache(struct array_cache **ac_ptr)
1124{
1125}
7a21ef6f 1126
873623df 1127static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1128{
1129 return 0;
1130}
1131
e498be7d
CL
1132#endif
1133
8c78f307 1134static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1135 unsigned long action, void *hcpu)
1da177e4
LT
1136{
1137 long cpu = (long)hcpu;
343e0d7a 1138 struct kmem_cache *cachep;
e498be7d
CL
1139 struct kmem_list3 *l3 = NULL;
1140 int node = cpu_to_node(cpu);
1141 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1142
1143 switch (action) {
1144 case CPU_UP_PREPARE:
fc0abb14 1145 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1146 /*
1147 * We need to do this right in the beginning since
e498be7d
CL
1148 * alloc_arraycache's are going to use this list.
1149 * kmalloc_node allows us to add the slab to the right
1150 * kmem_list3 and not this cpu's kmem_list3
1151 */
1152
1da177e4 1153 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1154 /*
1155 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1156 * begin anything. Make sure some other cpu on this
1157 * node has not already allocated this
1158 */
1159 if (!cachep->nodelists[node]) {
a737b3e2
AM
1160 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1161 if (!l3)
e498be7d
CL
1162 goto bad;
1163 kmem_list3_init(l3);
1164 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1165 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1166
4484ebf1
RT
1167 /*
1168 * The l3s don't come and go as CPUs come and
1169 * go. cache_chain_mutex is sufficient
1170 * protection here.
1171 */
e498be7d
CL
1172 cachep->nodelists[node] = l3;
1173 }
1da177e4 1174
e498be7d
CL
1175 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1176 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1177 (1 + nr_cpus_node(node)) *
1178 cachep->batchcount + cachep->num;
e498be7d
CL
1179 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1180 }
1181
a737b3e2
AM
1182 /*
1183 * Now we can go ahead with allocating the shared arrays and
1184 * array caches
1185 */
e498be7d 1186 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1187 struct array_cache *nc;
4484ebf1
RT
1188 struct array_cache *shared;
1189 struct array_cache **alien;
cd105df4 1190
e498be7d 1191 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1192 cachep->batchcount);
1da177e4
LT
1193 if (!nc)
1194 goto bad;
4484ebf1
RT
1195 shared = alloc_arraycache(node,
1196 cachep->shared * cachep->batchcount,
1197 0xbaadf00d);
1198 if (!shared)
1199 goto bad;
7a21ef6f 1200
4484ebf1
RT
1201 alien = alloc_alien_cache(node, cachep->limit);
1202 if (!alien)
1203 goto bad;
1da177e4 1204 cachep->array[cpu] = nc;
e498be7d
CL
1205 l3 = cachep->nodelists[node];
1206 BUG_ON(!l3);
e498be7d 1207
4484ebf1
RT
1208 spin_lock_irq(&l3->list_lock);
1209 if (!l3->shared) {
1210 /*
1211 * We are serialised from CPU_DEAD or
1212 * CPU_UP_CANCELLED by the cpucontrol lock
1213 */
1214 l3->shared = shared;
1215 shared = NULL;
e498be7d 1216 }
4484ebf1
RT
1217#ifdef CONFIG_NUMA
1218 if (!l3->alien) {
1219 l3->alien = alien;
1220 alien = NULL;
1221 }
1222#endif
1223 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1224 kfree(shared);
1225 free_alien_cache(alien);
1da177e4 1226 }
fc0abb14 1227 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1228 break;
1229 case CPU_ONLINE:
1230 start_cpu_timer(cpu);
1231 break;
1232#ifdef CONFIG_HOTPLUG_CPU
1233 case CPU_DEAD:
4484ebf1
RT
1234 /*
1235 * Even if all the cpus of a node are down, we don't free the
1236 * kmem_list3 of any cache. This to avoid a race between
1237 * cpu_down, and a kmalloc allocation from another cpu for
1238 * memory from the node of the cpu going down. The list3
1239 * structure is usually allocated from kmem_cache_create() and
1240 * gets destroyed at kmem_cache_destroy().
1241 */
1da177e4
LT
1242 /* fall thru */
1243 case CPU_UP_CANCELED:
fc0abb14 1244 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1245 list_for_each_entry(cachep, &cache_chain, next) {
1246 struct array_cache *nc;
4484ebf1
RT
1247 struct array_cache *shared;
1248 struct array_cache **alien;
e498be7d 1249 cpumask_t mask;
1da177e4 1250
e498be7d 1251 mask = node_to_cpumask(node);
1da177e4
LT
1252 /* cpu is dead; no one can alloc from it. */
1253 nc = cachep->array[cpu];
1254 cachep->array[cpu] = NULL;
e498be7d
CL
1255 l3 = cachep->nodelists[node];
1256
1257 if (!l3)
4484ebf1 1258 goto free_array_cache;
e498be7d 1259
ca3b9b91 1260 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1261
1262 /* Free limit for this kmem_list3 */
1263 l3->free_limit -= cachep->batchcount;
1264 if (nc)
ff69416e 1265 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1266
1267 if (!cpus_empty(mask)) {
ca3b9b91 1268 spin_unlock_irq(&l3->list_lock);
4484ebf1 1269 goto free_array_cache;
b28a02de 1270 }
e498be7d 1271
4484ebf1
RT
1272 shared = l3->shared;
1273 if (shared) {
e498be7d 1274 free_block(cachep, l3->shared->entry,
b28a02de 1275 l3->shared->avail, node);
e498be7d
CL
1276 l3->shared = NULL;
1277 }
e498be7d 1278
4484ebf1
RT
1279 alien = l3->alien;
1280 l3->alien = NULL;
1281
1282 spin_unlock_irq(&l3->list_lock);
1283
1284 kfree(shared);
1285 if (alien) {
1286 drain_alien_cache(cachep, alien);
1287 free_alien_cache(alien);
e498be7d 1288 }
4484ebf1 1289free_array_cache:
1da177e4
LT
1290 kfree(nc);
1291 }
4484ebf1
RT
1292 /*
1293 * In the previous loop, all the objects were freed to
1294 * the respective cache's slabs, now we can go ahead and
1295 * shrink each nodelist to its limit.
1296 */
1297 list_for_each_entry(cachep, &cache_chain, next) {
1298 l3 = cachep->nodelists[node];
1299 if (!l3)
1300 continue;
ed11d9eb 1301 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1302 }
fc0abb14 1303 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1304 break;
1305#endif
1306 }
1307 return NOTIFY_OK;
a737b3e2 1308bad:
fc0abb14 1309 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1310 return NOTIFY_BAD;
1311}
1312
74b85f37
CS
1313static struct notifier_block __cpuinitdata cpucache_notifier = {
1314 &cpuup_callback, NULL, 0
1315};
1da177e4 1316
e498be7d
CL
1317/*
1318 * swap the static kmem_list3 with kmalloced memory
1319 */
a737b3e2
AM
1320static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1321 int nodeid)
e498be7d
CL
1322{
1323 struct kmem_list3 *ptr;
1324
1325 BUG_ON(cachep->nodelists[nodeid] != list);
1326 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1327 BUG_ON(!ptr);
1328
1329 local_irq_disable();
1330 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1331 /*
1332 * Do not assume that spinlocks can be initialized via memcpy:
1333 */
1334 spin_lock_init(&ptr->list_lock);
1335
e498be7d
CL
1336 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1337 cachep->nodelists[nodeid] = ptr;
1338 local_irq_enable();
1339}
1340
a737b3e2
AM
1341/*
1342 * Initialisation. Called after the page allocator have been initialised and
1343 * before smp_init().
1da177e4
LT
1344 */
1345void __init kmem_cache_init(void)
1346{
1347 size_t left_over;
1348 struct cache_sizes *sizes;
1349 struct cache_names *names;
e498be7d 1350 int i;
07ed76b2 1351 int order;
e498be7d
CL
1352
1353 for (i = 0; i < NUM_INIT_LISTS; i++) {
1354 kmem_list3_init(&initkmem_list3[i]);
1355 if (i < MAX_NUMNODES)
1356 cache_cache.nodelists[i] = NULL;
1357 }
1da177e4
LT
1358
1359 /*
1360 * Fragmentation resistance on low memory - only use bigger
1361 * page orders on machines with more than 32MB of memory.
1362 */
1363 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1364 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1365
1da177e4
LT
1366 /* Bootstrap is tricky, because several objects are allocated
1367 * from caches that do not exist yet:
a737b3e2
AM
1368 * 1) initialize the cache_cache cache: it contains the struct
1369 * kmem_cache structures of all caches, except cache_cache itself:
1370 * cache_cache is statically allocated.
e498be7d
CL
1371 * Initially an __init data area is used for the head array and the
1372 * kmem_list3 structures, it's replaced with a kmalloc allocated
1373 * array at the end of the bootstrap.
1da177e4 1374 * 2) Create the first kmalloc cache.
343e0d7a 1375 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1376 * An __init data area is used for the head array.
1377 * 3) Create the remaining kmalloc caches, with minimally sized
1378 * head arrays.
1da177e4
LT
1379 * 4) Replace the __init data head arrays for cache_cache and the first
1380 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1381 * 5) Replace the __init data for kmem_list3 for cache_cache and
1382 * the other cache's with kmalloc allocated memory.
1383 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1384 */
1385
1386 /* 1) create the cache_cache */
1da177e4
LT
1387 INIT_LIST_HEAD(&cache_chain);
1388 list_add(&cache_cache.next, &cache_chain);
1389 cache_cache.colour_off = cache_line_size();
1390 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1391 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1392
a737b3e2
AM
1393 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1394 cache_line_size());
1da177e4 1395
07ed76b2
JS
1396 for (order = 0; order < MAX_ORDER; order++) {
1397 cache_estimate(order, cache_cache.buffer_size,
1398 cache_line_size(), 0, &left_over, &cache_cache.num);
1399 if (cache_cache.num)
1400 break;
1401 }
40094fa6 1402 BUG_ON(!cache_cache.num);
07ed76b2 1403 cache_cache.gfporder = order;
b28a02de 1404 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1405 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1406 sizeof(struct slab), cache_line_size());
1da177e4
LT
1407
1408 /* 2+3) create the kmalloc caches */
1409 sizes = malloc_sizes;
1410 names = cache_names;
1411
a737b3e2
AM
1412 /*
1413 * Initialize the caches that provide memory for the array cache and the
1414 * kmem_list3 structures first. Without this, further allocations will
1415 * bug.
e498be7d
CL
1416 */
1417
1418 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1419 sizes[INDEX_AC].cs_size,
1420 ARCH_KMALLOC_MINALIGN,
1421 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1422 NULL, NULL);
e498be7d 1423
a737b3e2 1424 if (INDEX_AC != INDEX_L3) {
e498be7d 1425 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1426 kmem_cache_create(names[INDEX_L3].name,
1427 sizes[INDEX_L3].cs_size,
1428 ARCH_KMALLOC_MINALIGN,
1429 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1430 NULL, NULL);
1431 }
e498be7d 1432
e0a42726
IM
1433 slab_early_init = 0;
1434
1da177e4 1435 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1436 /*
1437 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1438 * This should be particularly beneficial on SMP boxes, as it
1439 * eliminates "false sharing".
1440 * Note for systems short on memory removing the alignment will
e498be7d
CL
1441 * allow tighter packing of the smaller caches.
1442 */
a737b3e2 1443 if (!sizes->cs_cachep) {
e498be7d 1444 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1445 sizes->cs_size,
1446 ARCH_KMALLOC_MINALIGN,
1447 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1448 NULL, NULL);
1449 }
1da177e4 1450
1da177e4 1451 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1452 sizes->cs_size,
1453 ARCH_KMALLOC_MINALIGN,
1454 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1455 SLAB_PANIC,
1456 NULL, NULL);
1da177e4
LT
1457 sizes++;
1458 names++;
1459 }
1460 /* 4) Replace the bootstrap head arrays */
1461 {
2b2d5493 1462 struct array_cache *ptr;
e498be7d 1463
1da177e4 1464 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1465
1da177e4 1466 local_irq_disable();
9a2dba4b
PE
1467 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1468 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1469 sizeof(struct arraycache_init));
2b2d5493
IM
1470 /*
1471 * Do not assume that spinlocks can be initialized via memcpy:
1472 */
1473 spin_lock_init(&ptr->lock);
1474
1da177e4
LT
1475 cache_cache.array[smp_processor_id()] = ptr;
1476 local_irq_enable();
e498be7d 1477
1da177e4 1478 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1479
1da177e4 1480 local_irq_disable();
9a2dba4b 1481 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1482 != &initarray_generic.cache);
9a2dba4b 1483 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1484 sizeof(struct arraycache_init));
2b2d5493
IM
1485 /*
1486 * Do not assume that spinlocks can be initialized via memcpy:
1487 */
1488 spin_lock_init(&ptr->lock);
1489
e498be7d 1490 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1491 ptr;
1da177e4
LT
1492 local_irq_enable();
1493 }
e498be7d
CL
1494 /* 5) Replace the bootstrap kmem_list3's */
1495 {
1496 int node;
1497 /* Replace the static kmem_list3 structures for the boot cpu */
1498 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1499 numa_node_id());
e498be7d
CL
1500
1501 for_each_online_node(node) {
1502 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1503 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1504
1505 if (INDEX_AC != INDEX_L3) {
1506 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1507 &initkmem_list3[SIZE_L3 + node],
1508 node);
e498be7d
CL
1509 }
1510 }
1511 }
1da177e4 1512
e498be7d 1513 /* 6) resize the head arrays to their final sizes */
1da177e4 1514 {
343e0d7a 1515 struct kmem_cache *cachep;
fc0abb14 1516 mutex_lock(&cache_chain_mutex);
1da177e4 1517 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1518 if (enable_cpucache(cachep))
1519 BUG();
fc0abb14 1520 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1521 }
1522
056c6241
RT
1523 /* Annotate slab for lockdep -- annotate the malloc caches */
1524 init_lock_keys();
1525
1526
1da177e4
LT
1527 /* Done! */
1528 g_cpucache_up = FULL;
1529
a737b3e2
AM
1530 /*
1531 * Register a cpu startup notifier callback that initializes
1532 * cpu_cache_get for all new cpus
1da177e4
LT
1533 */
1534 register_cpu_notifier(&cpucache_notifier);
1da177e4 1535
a737b3e2
AM
1536 /*
1537 * The reap timers are started later, with a module init call: That part
1538 * of the kernel is not yet operational.
1da177e4
LT
1539 */
1540}
1541
1542static int __init cpucache_init(void)
1543{
1544 int cpu;
1545
a737b3e2
AM
1546 /*
1547 * Register the timers that return unneeded pages to the page allocator
1da177e4 1548 */
e498be7d 1549 for_each_online_cpu(cpu)
a737b3e2 1550 start_cpu_timer(cpu);
1da177e4
LT
1551 return 0;
1552}
1da177e4
LT
1553__initcall(cpucache_init);
1554
1555/*
1556 * Interface to system's page allocator. No need to hold the cache-lock.
1557 *
1558 * If we requested dmaable memory, we will get it. Even if we
1559 * did not request dmaable memory, we might get it, but that
1560 * would be relatively rare and ignorable.
1561 */
343e0d7a 1562static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1563{
1564 struct page *page;
e1b6aa6f 1565 int nr_pages;
1da177e4
LT
1566 int i;
1567
d6fef9da 1568#ifndef CONFIG_MMU
e1b6aa6f
CH
1569 /*
1570 * Nommu uses slab's for process anonymous memory allocations, and thus
1571 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1572 */
e1b6aa6f 1573 flags |= __GFP_COMP;
d6fef9da 1574#endif
e1b6aa6f
CH
1575 flags |= cachep->gfpflags;
1576
1577 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1578 if (!page)
1579 return NULL;
1da177e4 1580
e1b6aa6f 1581 nr_pages = (1 << cachep->gfporder);
1da177e4 1582 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
e1b6aa6f 1583 atomic_add(nr_pages, &slab_reclaim_pages);
9a865ffa 1584 add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
e1b6aa6f
CH
1585 for (i = 0; i < nr_pages; i++)
1586 __SetPageSlab(page + i);
1587 return page_address(page);
1da177e4
LT
1588}
1589
1590/*
1591 * Interface to system's page release.
1592 */
343e0d7a 1593static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1594{
b28a02de 1595 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1596 struct page *page = virt_to_page(addr);
1597 const unsigned long nr_freed = i;
1598
9a865ffa 1599 sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
1da177e4 1600 while (i--) {
f205b2fe
NP
1601 BUG_ON(!PageSlab(page));
1602 __ClearPageSlab(page);
1da177e4
LT
1603 page++;
1604 }
1da177e4
LT
1605 if (current->reclaim_state)
1606 current->reclaim_state->reclaimed_slab += nr_freed;
1607 free_pages((unsigned long)addr, cachep->gfporder);
b28a02de
PE
1608 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1609 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1da177e4
LT
1610}
1611
1612static void kmem_rcu_free(struct rcu_head *head)
1613{
b28a02de 1614 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1615 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1616
1617 kmem_freepages(cachep, slab_rcu->addr);
1618 if (OFF_SLAB(cachep))
1619 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1620}
1621
1622#if DEBUG
1623
1624#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1625static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1626 unsigned long caller)
1da177e4 1627{
3dafccf2 1628 int size = obj_size(cachep);
1da177e4 1629
3dafccf2 1630 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1631
b28a02de 1632 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1633 return;
1634
b28a02de
PE
1635 *addr++ = 0x12345678;
1636 *addr++ = caller;
1637 *addr++ = smp_processor_id();
1638 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1639 {
1640 unsigned long *sptr = &caller;
1641 unsigned long svalue;
1642
1643 while (!kstack_end(sptr)) {
1644 svalue = *sptr++;
1645 if (kernel_text_address(svalue)) {
b28a02de 1646 *addr++ = svalue;
1da177e4
LT
1647 size -= sizeof(unsigned long);
1648 if (size <= sizeof(unsigned long))
1649 break;
1650 }
1651 }
1652
1653 }
b28a02de 1654 *addr++ = 0x87654321;
1da177e4
LT
1655}
1656#endif
1657
343e0d7a 1658static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1659{
3dafccf2
MS
1660 int size = obj_size(cachep);
1661 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1662
1663 memset(addr, val, size);
b28a02de 1664 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1665}
1666
1667static void dump_line(char *data, int offset, int limit)
1668{
1669 int i;
1670 printk(KERN_ERR "%03x:", offset);
a737b3e2 1671 for (i = 0; i < limit; i++)
b28a02de 1672 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1673 printk("\n");
1674}
1675#endif
1676
1677#if DEBUG
1678
343e0d7a 1679static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1680{
1681 int i, size;
1682 char *realobj;
1683
1684 if (cachep->flags & SLAB_RED_ZONE) {
1685 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1686 *dbg_redzone1(cachep, objp),
1687 *dbg_redzone2(cachep, objp));
1da177e4
LT
1688 }
1689
1690 if (cachep->flags & SLAB_STORE_USER) {
1691 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1692 *dbg_userword(cachep, objp));
1da177e4 1693 print_symbol("(%s)",
a737b3e2 1694 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1695 printk("\n");
1696 }
3dafccf2
MS
1697 realobj = (char *)objp + obj_offset(cachep);
1698 size = obj_size(cachep);
b28a02de 1699 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1700 int limit;
1701 limit = 16;
b28a02de
PE
1702 if (i + limit > size)
1703 limit = size - i;
1da177e4
LT
1704 dump_line(realobj, i, limit);
1705 }
1706}
1707
343e0d7a 1708static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1709{
1710 char *realobj;
1711 int size, i;
1712 int lines = 0;
1713
3dafccf2
MS
1714 realobj = (char *)objp + obj_offset(cachep);
1715 size = obj_size(cachep);
1da177e4 1716
b28a02de 1717 for (i = 0; i < size; i++) {
1da177e4 1718 char exp = POISON_FREE;
b28a02de 1719 if (i == size - 1)
1da177e4
LT
1720 exp = POISON_END;
1721 if (realobj[i] != exp) {
1722 int limit;
1723 /* Mismatch ! */
1724 /* Print header */
1725 if (lines == 0) {
b28a02de 1726 printk(KERN_ERR
a737b3e2
AM
1727 "Slab corruption: start=%p, len=%d\n",
1728 realobj, size);
1da177e4
LT
1729 print_objinfo(cachep, objp, 0);
1730 }
1731 /* Hexdump the affected line */
b28a02de 1732 i = (i / 16) * 16;
1da177e4 1733 limit = 16;
b28a02de
PE
1734 if (i + limit > size)
1735 limit = size - i;
1da177e4
LT
1736 dump_line(realobj, i, limit);
1737 i += 16;
1738 lines++;
1739 /* Limit to 5 lines */
1740 if (lines > 5)
1741 break;
1742 }
1743 }
1744 if (lines != 0) {
1745 /* Print some data about the neighboring objects, if they
1746 * exist:
1747 */
6ed5eb22 1748 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1749 unsigned int objnr;
1da177e4 1750
8fea4e96 1751 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1752 if (objnr) {
8fea4e96 1753 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1754 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1755 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1756 realobj, size);
1da177e4
LT
1757 print_objinfo(cachep, objp, 2);
1758 }
b28a02de 1759 if (objnr + 1 < cachep->num) {
8fea4e96 1760 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1761 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1762 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1763 realobj, size);
1da177e4
LT
1764 print_objinfo(cachep, objp, 2);
1765 }
1766 }
1767}
1768#endif
1769
12dd36fa
MD
1770#if DEBUG
1771/**
911851e6
RD
1772 * slab_destroy_objs - destroy a slab and its objects
1773 * @cachep: cache pointer being destroyed
1774 * @slabp: slab pointer being destroyed
1775 *
1776 * Call the registered destructor for each object in a slab that is being
1777 * destroyed.
1da177e4 1778 */
343e0d7a 1779static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1780{
1da177e4
LT
1781 int i;
1782 for (i = 0; i < cachep->num; i++) {
8fea4e96 1783 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1784
1785 if (cachep->flags & SLAB_POISON) {
1786#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1787 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1788 OFF_SLAB(cachep))
b28a02de 1789 kernel_map_pages(virt_to_page(objp),
a737b3e2 1790 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1791 else
1792 check_poison_obj(cachep, objp);
1793#else
1794 check_poison_obj(cachep, objp);
1795#endif
1796 }
1797 if (cachep->flags & SLAB_RED_ZONE) {
1798 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1799 slab_error(cachep, "start of a freed object "
b28a02de 1800 "was overwritten");
1da177e4
LT
1801 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1802 slab_error(cachep, "end of a freed object "
b28a02de 1803 "was overwritten");
1da177e4
LT
1804 }
1805 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1806 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1807 }
12dd36fa 1808}
1da177e4 1809#else
343e0d7a 1810static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1811{
1da177e4
LT
1812 if (cachep->dtor) {
1813 int i;
1814 for (i = 0; i < cachep->num; i++) {
8fea4e96 1815 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1816 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1817 }
1818 }
12dd36fa 1819}
1da177e4
LT
1820#endif
1821
911851e6
RD
1822/**
1823 * slab_destroy - destroy and release all objects in a slab
1824 * @cachep: cache pointer being destroyed
1825 * @slabp: slab pointer being destroyed
1826 *
12dd36fa 1827 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1828 * Before calling the slab must have been unlinked from the cache. The
1829 * cache-lock is not held/needed.
12dd36fa 1830 */
343e0d7a 1831static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1832{
1833 void *addr = slabp->s_mem - slabp->colouroff;
1834
1835 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1836 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1837 struct slab_rcu *slab_rcu;
1838
b28a02de 1839 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1840 slab_rcu->cachep = cachep;
1841 slab_rcu->addr = addr;
1842 call_rcu(&slab_rcu->head, kmem_rcu_free);
1843 } else {
1844 kmem_freepages(cachep, addr);
873623df
IM
1845 if (OFF_SLAB(cachep))
1846 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1847 }
1848}
1849
a737b3e2
AM
1850/*
1851 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1852 * size of kmem_list3.
1853 */
343e0d7a 1854static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1855{
1856 int node;
1857
1858 for_each_online_node(node) {
b28a02de 1859 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1860 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1861 REAPTIMEOUT_LIST3 +
1862 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1863 }
1864}
1865
117f6eb1
CL
1866static void __kmem_cache_destroy(struct kmem_cache *cachep)
1867{
1868 int i;
1869 struct kmem_list3 *l3;
1870
1871 for_each_online_cpu(i)
1872 kfree(cachep->array[i]);
1873
1874 /* NUMA: free the list3 structures */
1875 for_each_online_node(i) {
1876 l3 = cachep->nodelists[i];
1877 if (l3) {
1878 kfree(l3->shared);
1879 free_alien_cache(l3->alien);
1880 kfree(l3);
1881 }
1882 }
1883 kmem_cache_free(&cache_cache, cachep);
1884}
1885
1886
4d268eba 1887/**
a70773dd
RD
1888 * calculate_slab_order - calculate size (page order) of slabs
1889 * @cachep: pointer to the cache that is being created
1890 * @size: size of objects to be created in this cache.
1891 * @align: required alignment for the objects.
1892 * @flags: slab allocation flags
1893 *
1894 * Also calculates the number of objects per slab.
4d268eba
PE
1895 *
1896 * This could be made much more intelligent. For now, try to avoid using
1897 * high order pages for slabs. When the gfp() functions are more friendly
1898 * towards high-order requests, this should be changed.
1899 */
a737b3e2 1900static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1901 size_t size, size_t align, unsigned long flags)
4d268eba 1902{
b1ab41c4 1903 unsigned long offslab_limit;
4d268eba 1904 size_t left_over = 0;
9888e6fa 1905 int gfporder;
4d268eba 1906
a737b3e2 1907 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1908 unsigned int num;
1909 size_t remainder;
1910
9888e6fa 1911 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1912 if (!num)
1913 continue;
9888e6fa 1914
b1ab41c4
IM
1915 if (flags & CFLGS_OFF_SLAB) {
1916 /*
1917 * Max number of objs-per-slab for caches which
1918 * use off-slab slabs. Needed to avoid a possible
1919 * looping condition in cache_grow().
1920 */
1921 offslab_limit = size - sizeof(struct slab);
1922 offslab_limit /= sizeof(kmem_bufctl_t);
1923
1924 if (num > offslab_limit)
1925 break;
1926 }
4d268eba 1927
9888e6fa 1928 /* Found something acceptable - save it away */
4d268eba 1929 cachep->num = num;
9888e6fa 1930 cachep->gfporder = gfporder;
4d268eba
PE
1931 left_over = remainder;
1932
f78bb8ad
LT
1933 /*
1934 * A VFS-reclaimable slab tends to have most allocations
1935 * as GFP_NOFS and we really don't want to have to be allocating
1936 * higher-order pages when we are unable to shrink dcache.
1937 */
1938 if (flags & SLAB_RECLAIM_ACCOUNT)
1939 break;
1940
4d268eba
PE
1941 /*
1942 * Large number of objects is good, but very large slabs are
1943 * currently bad for the gfp()s.
1944 */
9888e6fa 1945 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1946 break;
1947
9888e6fa
LT
1948 /*
1949 * Acceptable internal fragmentation?
1950 */
a737b3e2 1951 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1952 break;
1953 }
1954 return left_over;
1955}
1956
2ed3a4ef 1957static int setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 1958{
2ed3a4ef
CL
1959 if (g_cpucache_up == FULL)
1960 return enable_cpucache(cachep);
1961
f30cf7d1
PE
1962 if (g_cpucache_up == NONE) {
1963 /*
1964 * Note: the first kmem_cache_create must create the cache
1965 * that's used by kmalloc(24), otherwise the creation of
1966 * further caches will BUG().
1967 */
1968 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1969
1970 /*
1971 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1972 * the first cache, then we need to set up all its list3s,
1973 * otherwise the creation of further caches will BUG().
1974 */
1975 set_up_list3s(cachep, SIZE_AC);
1976 if (INDEX_AC == INDEX_L3)
1977 g_cpucache_up = PARTIAL_L3;
1978 else
1979 g_cpucache_up = PARTIAL_AC;
1980 } else {
1981 cachep->array[smp_processor_id()] =
1982 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1983
1984 if (g_cpucache_up == PARTIAL_AC) {
1985 set_up_list3s(cachep, SIZE_L3);
1986 g_cpucache_up = PARTIAL_L3;
1987 } else {
1988 int node;
1989 for_each_online_node(node) {
1990 cachep->nodelists[node] =
1991 kmalloc_node(sizeof(struct kmem_list3),
1992 GFP_KERNEL, node);
1993 BUG_ON(!cachep->nodelists[node]);
1994 kmem_list3_init(cachep->nodelists[node]);
1995 }
1996 }
1997 }
1998 cachep->nodelists[numa_node_id()]->next_reap =
1999 jiffies + REAPTIMEOUT_LIST3 +
2000 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2001
2002 cpu_cache_get(cachep)->avail = 0;
2003 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2004 cpu_cache_get(cachep)->batchcount = 1;
2005 cpu_cache_get(cachep)->touched = 0;
2006 cachep->batchcount = 1;
2007 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2008 return 0;
f30cf7d1
PE
2009}
2010
1da177e4
LT
2011/**
2012 * kmem_cache_create - Create a cache.
2013 * @name: A string which is used in /proc/slabinfo to identify this cache.
2014 * @size: The size of objects to be created in this cache.
2015 * @align: The required alignment for the objects.
2016 * @flags: SLAB flags
2017 * @ctor: A constructor for the objects.
2018 * @dtor: A destructor for the objects.
2019 *
2020 * Returns a ptr to the cache on success, NULL on failure.
2021 * Cannot be called within a int, but can be interrupted.
2022 * The @ctor is run when new pages are allocated by the cache
2023 * and the @dtor is run before the pages are handed back.
2024 *
2025 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2026 * the module calling this has to destroy the cache before getting unloaded.
2027 *
1da177e4
LT
2028 * The flags are
2029 *
2030 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2031 * to catch references to uninitialised memory.
2032 *
2033 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2034 * for buffer overruns.
2035 *
1da177e4
LT
2036 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2037 * cacheline. This can be beneficial if you're counting cycles as closely
2038 * as davem.
2039 */
343e0d7a 2040struct kmem_cache *
1da177e4 2041kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2042 unsigned long flags,
2043 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2044 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2045{
2046 size_t left_over, slab_size, ralign;
7a7c381d 2047 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2048
2049 /*
2050 * Sanity checks... these are all serious usage bugs.
2051 */
a737b3e2 2052 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 2053 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
2054 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2055 name);
b28a02de
PE
2056 BUG();
2057 }
1da177e4 2058
f0188f47
RT
2059 /*
2060 * Prevent CPUs from coming and going.
2061 * lock_cpu_hotplug() nests outside cache_chain_mutex
2062 */
2063 lock_cpu_hotplug();
2064
fc0abb14 2065 mutex_lock(&cache_chain_mutex);
4f12bb4f 2066
7a7c381d 2067 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2068 mm_segment_t old_fs = get_fs();
2069 char tmp;
2070 int res;
2071
2072 /*
2073 * This happens when the module gets unloaded and doesn't
2074 * destroy its slab cache and no-one else reuses the vmalloc
2075 * area of the module. Print a warning.
2076 */
2077 set_fs(KERNEL_DS);
2078 res = __get_user(tmp, pc->name);
2079 set_fs(old_fs);
2080 if (res) {
2081 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 2082 pc->buffer_size);
4f12bb4f
AM
2083 continue;
2084 }
2085
b28a02de 2086 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
2087 printk("kmem_cache_create: duplicate cache %s\n", name);
2088 dump_stack();
2089 goto oops;
2090 }
2091 }
2092
1da177e4
LT
2093#if DEBUG
2094 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2095 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2096 /* No constructor, but inital state check requested */
2097 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 2098 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
2099 flags &= ~SLAB_DEBUG_INITIAL;
2100 }
1da177e4
LT
2101#if FORCED_DEBUG
2102 /*
2103 * Enable redzoning and last user accounting, except for caches with
2104 * large objects, if the increased size would increase the object size
2105 * above the next power of two: caches with object sizes just above a
2106 * power of two have a significant amount of internal fragmentation.
2107 */
a737b3e2 2108 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2109 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2110 if (!(flags & SLAB_DESTROY_BY_RCU))
2111 flags |= SLAB_POISON;
2112#endif
2113 if (flags & SLAB_DESTROY_BY_RCU)
2114 BUG_ON(flags & SLAB_POISON);
2115#endif
2116 if (flags & SLAB_DESTROY_BY_RCU)
2117 BUG_ON(dtor);
2118
2119 /*
a737b3e2
AM
2120 * Always checks flags, a caller might be expecting debug support which
2121 * isn't available.
1da177e4 2122 */
40094fa6 2123 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2124
a737b3e2
AM
2125 /*
2126 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2127 * unaligned accesses for some archs when redzoning is used, and makes
2128 * sure any on-slab bufctl's are also correctly aligned.
2129 */
b28a02de
PE
2130 if (size & (BYTES_PER_WORD - 1)) {
2131 size += (BYTES_PER_WORD - 1);
2132 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2133 }
2134
a737b3e2
AM
2135 /* calculate the final buffer alignment: */
2136
1da177e4
LT
2137 /* 1) arch recommendation: can be overridden for debug */
2138 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2139 /*
2140 * Default alignment: as specified by the arch code. Except if
2141 * an object is really small, then squeeze multiple objects into
2142 * one cacheline.
1da177e4
LT
2143 */
2144 ralign = cache_line_size();
b28a02de 2145 while (size <= ralign / 2)
1da177e4
LT
2146 ralign /= 2;
2147 } else {
2148 ralign = BYTES_PER_WORD;
2149 }
ca5f9703
PE
2150
2151 /*
2152 * Redzoning and user store require word alignment. Note this will be
2153 * overridden by architecture or caller mandated alignment if either
2154 * is greater than BYTES_PER_WORD.
2155 */
2156 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2157 ralign = BYTES_PER_WORD;
2158
1da177e4
LT
2159 /* 2) arch mandated alignment: disables debug if necessary */
2160 if (ralign < ARCH_SLAB_MINALIGN) {
2161 ralign = ARCH_SLAB_MINALIGN;
2162 if (ralign > BYTES_PER_WORD)
b28a02de 2163 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
2164 }
2165 /* 3) caller mandated alignment: disables debug if necessary */
2166 if (ralign < align) {
2167 ralign = align;
2168 if (ralign > BYTES_PER_WORD)
b28a02de 2169 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 2170 }
a737b3e2 2171 /*
ca5f9703 2172 * 4) Store it.
1da177e4
LT
2173 */
2174 align = ralign;
2175
2176 /* Get cache's description obj. */
c5e3b83e 2177 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1da177e4 2178 if (!cachep)
4f12bb4f 2179 goto oops;
1da177e4
LT
2180
2181#if DEBUG
3dafccf2 2182 cachep->obj_size = size;
1da177e4 2183
ca5f9703
PE
2184 /*
2185 * Both debugging options require word-alignment which is calculated
2186 * into align above.
2187 */
1da177e4 2188 if (flags & SLAB_RED_ZONE) {
1da177e4 2189 /* add space for red zone words */
3dafccf2 2190 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2191 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2192 }
2193 if (flags & SLAB_STORE_USER) {
ca5f9703
PE
2194 /* user store requires one word storage behind the end of
2195 * the real object.
1da177e4 2196 */
1da177e4
LT
2197 size += BYTES_PER_WORD;
2198 }
2199#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2200 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2201 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2202 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2203 size = PAGE_SIZE;
2204 }
2205#endif
2206#endif
2207
e0a42726
IM
2208 /*
2209 * Determine if the slab management is 'on' or 'off' slab.
2210 * (bootstrapping cannot cope with offslab caches so don't do
2211 * it too early on.)
2212 */
2213 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2214 /*
2215 * Size is large, assume best to place the slab management obj
2216 * off-slab (should allow better packing of objs).
2217 */
2218 flags |= CFLGS_OFF_SLAB;
2219
2220 size = ALIGN(size, align);
2221
f78bb8ad 2222 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2223
2224 if (!cachep->num) {
2225 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2226 kmem_cache_free(&cache_cache, cachep);
2227 cachep = NULL;
4f12bb4f 2228 goto oops;
1da177e4 2229 }
b28a02de
PE
2230 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2231 + sizeof(struct slab), align);
1da177e4
LT
2232
2233 /*
2234 * If the slab has been placed off-slab, and we have enough space then
2235 * move it on-slab. This is at the expense of any extra colouring.
2236 */
2237 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2238 flags &= ~CFLGS_OFF_SLAB;
2239 left_over -= slab_size;
2240 }
2241
2242 if (flags & CFLGS_OFF_SLAB) {
2243 /* really off slab. No need for manual alignment */
b28a02de
PE
2244 slab_size =
2245 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2246 }
2247
2248 cachep->colour_off = cache_line_size();
2249 /* Offset must be a multiple of the alignment. */
2250 if (cachep->colour_off < align)
2251 cachep->colour_off = align;
b28a02de 2252 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2253 cachep->slab_size = slab_size;
2254 cachep->flags = flags;
2255 cachep->gfpflags = 0;
2256 if (flags & SLAB_CACHE_DMA)
2257 cachep->gfpflags |= GFP_DMA;
3dafccf2 2258 cachep->buffer_size = size;
1da177e4 2259
e5ac9c5a 2260 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2261 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2262 /*
2263 * This is a possibility for one of the malloc_sizes caches.
2264 * But since we go off slab only for object size greater than
2265 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2266 * this should not happen at all.
2267 * But leave a BUG_ON for some lucky dude.
2268 */
2269 BUG_ON(!cachep->slabp_cache);
2270 }
1da177e4
LT
2271 cachep->ctor = ctor;
2272 cachep->dtor = dtor;
2273 cachep->name = name;
2274
2ed3a4ef
CL
2275 if (setup_cpu_cache(cachep)) {
2276 __kmem_cache_destroy(cachep);
2277 cachep = NULL;
2278 goto oops;
2279 }
1da177e4 2280
1da177e4
LT
2281 /* cache setup completed, link it into the list */
2282 list_add(&cachep->next, &cache_chain);
a737b3e2 2283oops:
1da177e4
LT
2284 if (!cachep && (flags & SLAB_PANIC))
2285 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2286 name);
fc0abb14 2287 mutex_unlock(&cache_chain_mutex);
f0188f47 2288 unlock_cpu_hotplug();
1da177e4
LT
2289 return cachep;
2290}
2291EXPORT_SYMBOL(kmem_cache_create);
2292
2293#if DEBUG
2294static void check_irq_off(void)
2295{
2296 BUG_ON(!irqs_disabled());
2297}
2298
2299static void check_irq_on(void)
2300{
2301 BUG_ON(irqs_disabled());
2302}
2303
343e0d7a 2304static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2305{
2306#ifdef CONFIG_SMP
2307 check_irq_off();
e498be7d 2308 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2309#endif
2310}
e498be7d 2311
343e0d7a 2312static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2313{
2314#ifdef CONFIG_SMP
2315 check_irq_off();
2316 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2317#endif
2318}
2319
1da177e4
LT
2320#else
2321#define check_irq_off() do { } while(0)
2322#define check_irq_on() do { } while(0)
2323#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2324#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2325#endif
2326
aab2207c
CL
2327static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2328 struct array_cache *ac,
2329 int force, int node);
2330
1da177e4
LT
2331static void do_drain(void *arg)
2332{
a737b3e2 2333 struct kmem_cache *cachep = arg;
1da177e4 2334 struct array_cache *ac;
ff69416e 2335 int node = numa_node_id();
1da177e4
LT
2336
2337 check_irq_off();
9a2dba4b 2338 ac = cpu_cache_get(cachep);
ff69416e
CL
2339 spin_lock(&cachep->nodelists[node]->list_lock);
2340 free_block(cachep, ac->entry, ac->avail, node);
2341 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2342 ac->avail = 0;
2343}
2344
343e0d7a 2345static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2346{
e498be7d
CL
2347 struct kmem_list3 *l3;
2348 int node;
2349
a07fa394 2350 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2351 check_irq_on();
b28a02de 2352 for_each_online_node(node) {
e498be7d 2353 l3 = cachep->nodelists[node];
a4523a8b
RD
2354 if (l3 && l3->alien)
2355 drain_alien_cache(cachep, l3->alien);
2356 }
2357
2358 for_each_online_node(node) {
2359 l3 = cachep->nodelists[node];
2360 if (l3)
aab2207c 2361 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2362 }
1da177e4
LT
2363}
2364
ed11d9eb
CL
2365/*
2366 * Remove slabs from the list of free slabs.
2367 * Specify the number of slabs to drain in tofree.
2368 *
2369 * Returns the actual number of slabs released.
2370 */
2371static int drain_freelist(struct kmem_cache *cache,
2372 struct kmem_list3 *l3, int tofree)
1da177e4 2373{
ed11d9eb
CL
2374 struct list_head *p;
2375 int nr_freed;
1da177e4 2376 struct slab *slabp;
1da177e4 2377
ed11d9eb
CL
2378 nr_freed = 0;
2379 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2380
ed11d9eb 2381 spin_lock_irq(&l3->list_lock);
e498be7d 2382 p = l3->slabs_free.prev;
ed11d9eb
CL
2383 if (p == &l3->slabs_free) {
2384 spin_unlock_irq(&l3->list_lock);
2385 goto out;
2386 }
1da177e4 2387
ed11d9eb 2388 slabp = list_entry(p, struct slab, list);
1da177e4 2389#if DEBUG
40094fa6 2390 BUG_ON(slabp->inuse);
1da177e4
LT
2391#endif
2392 list_del(&slabp->list);
ed11d9eb
CL
2393 /*
2394 * Safe to drop the lock. The slab is no longer linked
2395 * to the cache.
2396 */
2397 l3->free_objects -= cache->num;
e498be7d 2398 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2399 slab_destroy(cache, slabp);
2400 nr_freed++;
1da177e4 2401 }
ed11d9eb
CL
2402out:
2403 return nr_freed;
1da177e4
LT
2404}
2405
343e0d7a 2406static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2407{
2408 int ret = 0, i = 0;
2409 struct kmem_list3 *l3;
2410
2411 drain_cpu_caches(cachep);
2412
2413 check_irq_on();
2414 for_each_online_node(i) {
2415 l3 = cachep->nodelists[i];
ed11d9eb
CL
2416 if (!l3)
2417 continue;
2418
2419 drain_freelist(cachep, l3, l3->free_objects);
2420
2421 ret += !list_empty(&l3->slabs_full) ||
2422 !list_empty(&l3->slabs_partial);
e498be7d
CL
2423 }
2424 return (ret ? 1 : 0);
2425}
2426
1da177e4
LT
2427/**
2428 * kmem_cache_shrink - Shrink a cache.
2429 * @cachep: The cache to shrink.
2430 *
2431 * Releases as many slabs as possible for a cache.
2432 * To help debugging, a zero exit status indicates all slabs were released.
2433 */
343e0d7a 2434int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2435{
40094fa6 2436 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2437
2438 return __cache_shrink(cachep);
2439}
2440EXPORT_SYMBOL(kmem_cache_shrink);
2441
2442/**
2443 * kmem_cache_destroy - delete a cache
2444 * @cachep: the cache to destroy
2445 *
343e0d7a 2446 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2447 * Returns 0 on success.
2448 *
2449 * It is expected this function will be called by a module when it is
2450 * unloaded. This will remove the cache completely, and avoid a duplicate
2451 * cache being allocated each time a module is loaded and unloaded, if the
2452 * module doesn't have persistent in-kernel storage across loads and unloads.
2453 *
2454 * The cache must be empty before calling this function.
2455 *
2456 * The caller must guarantee that noone will allocate memory from the cache
2457 * during the kmem_cache_destroy().
2458 */
343e0d7a 2459int kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2460{
40094fa6 2461 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2462
2463 /* Don't let CPUs to come and go */
2464 lock_cpu_hotplug();
2465
2466 /* Find the cache in the chain of caches. */
fc0abb14 2467 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2468 /*
2469 * the chain is never empty, cache_cache is never destroyed
2470 */
2471 list_del(&cachep->next);
fc0abb14 2472 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2473
2474 if (__cache_shrink(cachep)) {
2475 slab_error(cachep, "Can't free all objects");
fc0abb14 2476 mutex_lock(&cache_chain_mutex);
b28a02de 2477 list_add(&cachep->next, &cache_chain);
fc0abb14 2478 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2479 unlock_cpu_hotplug();
2480 return 1;
2481 }
2482
2483 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2484 synchronize_rcu();
1da177e4 2485
117f6eb1 2486 __kmem_cache_destroy(cachep);
1da177e4 2487 unlock_cpu_hotplug();
1da177e4
LT
2488 return 0;
2489}
2490EXPORT_SYMBOL(kmem_cache_destroy);
2491
e5ac9c5a
RT
2492/*
2493 * Get the memory for a slab management obj.
2494 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2495 * always come from malloc_sizes caches. The slab descriptor cannot
2496 * come from the same cache which is getting created because,
2497 * when we are searching for an appropriate cache for these
2498 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2499 * If we are creating a malloc_sizes cache here it would not be visible to
2500 * kmem_find_general_cachep till the initialization is complete.
2501 * Hence we cannot have slabp_cache same as the original cache.
2502 */
343e0d7a 2503static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2504 int colour_off, gfp_t local_flags,
2505 int nodeid)
1da177e4
LT
2506{
2507 struct slab *slabp;
b28a02de 2508
1da177e4
LT
2509 if (OFF_SLAB(cachep)) {
2510 /* Slab management obj is off-slab. */
5b74ada7
RT
2511 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2512 local_flags, nodeid);
1da177e4
LT
2513 if (!slabp)
2514 return NULL;
2515 } else {
b28a02de 2516 slabp = objp + colour_off;
1da177e4
LT
2517 colour_off += cachep->slab_size;
2518 }
2519 slabp->inuse = 0;
2520 slabp->colouroff = colour_off;
b28a02de 2521 slabp->s_mem = objp + colour_off;
5b74ada7 2522 slabp->nodeid = nodeid;
1da177e4
LT
2523 return slabp;
2524}
2525
2526static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2527{
b28a02de 2528 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2529}
2530
343e0d7a 2531static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2532 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2533{
2534 int i;
2535
2536 for (i = 0; i < cachep->num; i++) {
8fea4e96 2537 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2538#if DEBUG
2539 /* need to poison the objs? */
2540 if (cachep->flags & SLAB_POISON)
2541 poison_obj(cachep, objp, POISON_FREE);
2542 if (cachep->flags & SLAB_STORE_USER)
2543 *dbg_userword(cachep, objp) = NULL;
2544
2545 if (cachep->flags & SLAB_RED_ZONE) {
2546 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2547 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2548 }
2549 /*
a737b3e2
AM
2550 * Constructors are not allowed to allocate memory from the same
2551 * cache which they are a constructor for. Otherwise, deadlock.
2552 * They must also be threaded.
1da177e4
LT
2553 */
2554 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2555 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2556 ctor_flags);
1da177e4
LT
2557
2558 if (cachep->flags & SLAB_RED_ZONE) {
2559 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2560 slab_error(cachep, "constructor overwrote the"
b28a02de 2561 " end of an object");
1da177e4
LT
2562 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2563 slab_error(cachep, "constructor overwrote the"
b28a02de 2564 " start of an object");
1da177e4 2565 }
a737b3e2
AM
2566 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2567 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2568 kernel_map_pages(virt_to_page(objp),
3dafccf2 2569 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2570#else
2571 if (cachep->ctor)
2572 cachep->ctor(objp, cachep, ctor_flags);
2573#endif
b28a02de 2574 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2575 }
b28a02de 2576 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2577 slabp->free = 0;
2578}
2579
343e0d7a 2580static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2581{
a737b3e2
AM
2582 if (flags & SLAB_DMA)
2583 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2584 else
2585 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2586}
2587
a737b3e2
AM
2588static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2589 int nodeid)
78d382d7 2590{
8fea4e96 2591 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2592 kmem_bufctl_t next;
2593
2594 slabp->inuse++;
2595 next = slab_bufctl(slabp)[slabp->free];
2596#if DEBUG
2597 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2598 WARN_ON(slabp->nodeid != nodeid);
2599#endif
2600 slabp->free = next;
2601
2602 return objp;
2603}
2604
a737b3e2
AM
2605static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2606 void *objp, int nodeid)
78d382d7 2607{
8fea4e96 2608 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2609
2610#if DEBUG
2611 /* Verify that the slab belongs to the intended node */
2612 WARN_ON(slabp->nodeid != nodeid);
2613
871751e2 2614 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2615 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2616 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2617 BUG();
2618 }
2619#endif
2620 slab_bufctl(slabp)[objnr] = slabp->free;
2621 slabp->free = objnr;
2622 slabp->inuse--;
2623}
2624
4776874f
PE
2625/*
2626 * Map pages beginning at addr to the given cache and slab. This is required
2627 * for the slab allocator to be able to lookup the cache and slab of a
2628 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2629 */
2630static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2631 void *addr)
1da177e4 2632{
4776874f 2633 int nr_pages;
1da177e4
LT
2634 struct page *page;
2635
4776874f 2636 page = virt_to_page(addr);
84097518 2637
4776874f 2638 nr_pages = 1;
84097518 2639 if (likely(!PageCompound(page)))
4776874f
PE
2640 nr_pages <<= cache->gfporder;
2641
1da177e4 2642 do {
4776874f
PE
2643 page_set_cache(page, cache);
2644 page_set_slab(page, slab);
1da177e4 2645 page++;
4776874f 2646 } while (--nr_pages);
1da177e4
LT
2647}
2648
2649/*
2650 * Grow (by 1) the number of slabs within a cache. This is called by
2651 * kmem_cache_alloc() when there are no active objs left in a cache.
2652 */
343e0d7a 2653static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2654{
b28a02de
PE
2655 struct slab *slabp;
2656 void *objp;
2657 size_t offset;
2658 gfp_t local_flags;
2659 unsigned long ctor_flags;
e498be7d 2660 struct kmem_list3 *l3;
1da177e4 2661
a737b3e2
AM
2662 /*
2663 * Be lazy and only check for valid flags here, keeping it out of the
2664 * critical path in kmem_cache_alloc().
1da177e4 2665 */
40094fa6 2666 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
1da177e4
LT
2667 if (flags & SLAB_NO_GROW)
2668 return 0;
2669
2670 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2671 local_flags = (flags & SLAB_LEVEL_MASK);
2672 if (!(local_flags & __GFP_WAIT))
2673 /*
2674 * Not allowed to sleep. Need to tell a constructor about
2675 * this - it might need to know...
2676 */
2677 ctor_flags |= SLAB_CTOR_ATOMIC;
2678
2e1217cf 2679 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2680 check_irq_off();
2e1217cf
RT
2681 l3 = cachep->nodelists[nodeid];
2682 spin_lock(&l3->list_lock);
1da177e4
LT
2683
2684 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2685 offset = l3->colour_next;
2686 l3->colour_next++;
2687 if (l3->colour_next >= cachep->colour)
2688 l3->colour_next = 0;
2689 spin_unlock(&l3->list_lock);
1da177e4 2690
2e1217cf 2691 offset *= cachep->colour_off;
1da177e4
LT
2692
2693 if (local_flags & __GFP_WAIT)
2694 local_irq_enable();
2695
2696 /*
2697 * The test for missing atomic flag is performed here, rather than
2698 * the more obvious place, simply to reduce the critical path length
2699 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2700 * will eventually be caught here (where it matters).
2701 */
2702 kmem_flagcheck(cachep, flags);
2703
a737b3e2
AM
2704 /*
2705 * Get mem for the objs. Attempt to allocate a physical page from
2706 * 'nodeid'.
e498be7d 2707 */
a737b3e2
AM
2708 objp = kmem_getpages(cachep, flags, nodeid);
2709 if (!objp)
1da177e4
LT
2710 goto failed;
2711
2712 /* Get slab management. */
5b74ada7 2713 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
a737b3e2 2714 if (!slabp)
1da177e4
LT
2715 goto opps1;
2716
e498be7d 2717 slabp->nodeid = nodeid;
4776874f 2718 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2719
2720 cache_init_objs(cachep, slabp, ctor_flags);
2721
2722 if (local_flags & __GFP_WAIT)
2723 local_irq_disable();
2724 check_irq_off();
e498be7d 2725 spin_lock(&l3->list_lock);
1da177e4
LT
2726
2727 /* Make slab active. */
e498be7d 2728 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2729 STATS_INC_GROWN(cachep);
e498be7d
CL
2730 l3->free_objects += cachep->num;
2731 spin_unlock(&l3->list_lock);
1da177e4 2732 return 1;
a737b3e2 2733opps1:
1da177e4 2734 kmem_freepages(cachep, objp);
a737b3e2 2735failed:
1da177e4
LT
2736 if (local_flags & __GFP_WAIT)
2737 local_irq_disable();
2738 return 0;
2739}
2740
2741#if DEBUG
2742
2743/*
2744 * Perform extra freeing checks:
2745 * - detect bad pointers.
2746 * - POISON/RED_ZONE checking
2747 * - destructor calls, for caches with POISON+dtor
2748 */
2749static void kfree_debugcheck(const void *objp)
2750{
2751 struct page *page;
2752
2753 if (!virt_addr_valid(objp)) {
2754 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2755 (unsigned long)objp);
2756 BUG();
1da177e4
LT
2757 }
2758 page = virt_to_page(objp);
2759 if (!PageSlab(page)) {
b28a02de
PE
2760 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2761 (unsigned long)objp);
1da177e4
LT
2762 BUG();
2763 }
2764}
2765
58ce1fd5
PE
2766static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2767{
2768 unsigned long redzone1, redzone2;
2769
2770 redzone1 = *dbg_redzone1(cache, obj);
2771 redzone2 = *dbg_redzone2(cache, obj);
2772
2773 /*
2774 * Redzone is ok.
2775 */
2776 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2777 return;
2778
2779 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2780 slab_error(cache, "double free detected");
2781 else
2782 slab_error(cache, "memory outside object was overwritten");
2783
2784 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2785 obj, redzone1, redzone2);
2786}
2787
343e0d7a 2788static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2789 void *caller)
1da177e4
LT
2790{
2791 struct page *page;
2792 unsigned int objnr;
2793 struct slab *slabp;
2794
3dafccf2 2795 objp -= obj_offset(cachep);
1da177e4
LT
2796 kfree_debugcheck(objp);
2797 page = virt_to_page(objp);
2798
065d41cb 2799 slabp = page_get_slab(page);
1da177e4
LT
2800
2801 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2802 verify_redzone_free(cachep, objp);
1da177e4
LT
2803 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2804 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2805 }
2806 if (cachep->flags & SLAB_STORE_USER)
2807 *dbg_userword(cachep, objp) = caller;
2808
8fea4e96 2809 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2810
2811 BUG_ON(objnr >= cachep->num);
8fea4e96 2812 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2813
2814 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2815 /*
2816 * Need to call the slab's constructor so the caller can
2817 * perform a verify of its state (debugging). Called without
2818 * the cache-lock held.
1da177e4 2819 */
3dafccf2 2820 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2821 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2822 }
2823 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2824 /* we want to cache poison the object,
2825 * call the destruction callback
2826 */
3dafccf2 2827 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2828 }
871751e2
AV
2829#ifdef CONFIG_DEBUG_SLAB_LEAK
2830 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2831#endif
1da177e4
LT
2832 if (cachep->flags & SLAB_POISON) {
2833#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2834 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2835 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2836 kernel_map_pages(virt_to_page(objp),
3dafccf2 2837 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2838 } else {
2839 poison_obj(cachep, objp, POISON_FREE);
2840 }
2841#else
2842 poison_obj(cachep, objp, POISON_FREE);
2843#endif
2844 }
2845 return objp;
2846}
2847
343e0d7a 2848static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2849{
2850 kmem_bufctl_t i;
2851 int entries = 0;
b28a02de 2852
1da177e4
LT
2853 /* Check slab's freelist to see if this obj is there. */
2854 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2855 entries++;
2856 if (entries > cachep->num || i >= cachep->num)
2857 goto bad;
2858 }
2859 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2860bad:
2861 printk(KERN_ERR "slab: Internal list corruption detected in "
2862 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2863 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2864 for (i = 0;
264132bc 2865 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2866 i++) {
a737b3e2 2867 if (i % 16 == 0)
1da177e4 2868 printk("\n%03x:", i);
b28a02de 2869 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2870 }
2871 printk("\n");
2872 BUG();
2873 }
2874}
2875#else
2876#define kfree_debugcheck(x) do { } while(0)
2877#define cache_free_debugcheck(x,objp,z) (objp)
2878#define check_slabp(x,y) do { } while(0)
2879#endif
2880
343e0d7a 2881static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2882{
2883 int batchcount;
2884 struct kmem_list3 *l3;
2885 struct array_cache *ac;
2886
2887 check_irq_off();
9a2dba4b 2888 ac = cpu_cache_get(cachep);
a737b3e2 2889retry:
1da177e4
LT
2890 batchcount = ac->batchcount;
2891 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2892 /*
2893 * If there was little recent activity on this cache, then
2894 * perform only a partial refill. Otherwise we could generate
2895 * refill bouncing.
1da177e4
LT
2896 */
2897 batchcount = BATCHREFILL_LIMIT;
2898 }
e498be7d
CL
2899 l3 = cachep->nodelists[numa_node_id()];
2900
2901 BUG_ON(ac->avail > 0 || !l3);
2902 spin_lock(&l3->list_lock);
1da177e4 2903
3ded175a
CL
2904 /* See if we can refill from the shared array */
2905 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2906 goto alloc_done;
2907
1da177e4
LT
2908 while (batchcount > 0) {
2909 struct list_head *entry;
2910 struct slab *slabp;
2911 /* Get slab alloc is to come from. */
2912 entry = l3->slabs_partial.next;
2913 if (entry == &l3->slabs_partial) {
2914 l3->free_touched = 1;
2915 entry = l3->slabs_free.next;
2916 if (entry == &l3->slabs_free)
2917 goto must_grow;
2918 }
2919
2920 slabp = list_entry(entry, struct slab, list);
2921 check_slabp(cachep, slabp);
2922 check_spinlock_acquired(cachep);
2923 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2924 STATS_INC_ALLOCED(cachep);
2925 STATS_INC_ACTIVE(cachep);
2926 STATS_SET_HIGH(cachep);
2927
78d382d7
MD
2928 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2929 numa_node_id());
1da177e4
LT
2930 }
2931 check_slabp(cachep, slabp);
2932
2933 /* move slabp to correct slabp list: */
2934 list_del(&slabp->list);
2935 if (slabp->free == BUFCTL_END)
2936 list_add(&slabp->list, &l3->slabs_full);
2937 else
2938 list_add(&slabp->list, &l3->slabs_partial);
2939 }
2940
a737b3e2 2941must_grow:
1da177e4 2942 l3->free_objects -= ac->avail;
a737b3e2 2943alloc_done:
e498be7d 2944 spin_unlock(&l3->list_lock);
1da177e4
LT
2945
2946 if (unlikely(!ac->avail)) {
2947 int x;
e498be7d
CL
2948 x = cache_grow(cachep, flags, numa_node_id());
2949
a737b3e2 2950 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2951 ac = cpu_cache_get(cachep);
a737b3e2 2952 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2953 return NULL;
2954
a737b3e2 2955 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2956 goto retry;
2957 }
2958 ac->touched = 1;
e498be7d 2959 return ac->entry[--ac->avail];
1da177e4
LT
2960}
2961
a737b3e2
AM
2962static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2963 gfp_t flags)
1da177e4
LT
2964{
2965 might_sleep_if(flags & __GFP_WAIT);
2966#if DEBUG
2967 kmem_flagcheck(cachep, flags);
2968#endif
2969}
2970
2971#if DEBUG
a737b3e2
AM
2972static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2973 gfp_t flags, void *objp, void *caller)
1da177e4 2974{
b28a02de 2975 if (!objp)
1da177e4 2976 return objp;
b28a02de 2977 if (cachep->flags & SLAB_POISON) {
1da177e4 2978#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2979 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2980 kernel_map_pages(virt_to_page(objp),
3dafccf2 2981 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2982 else
2983 check_poison_obj(cachep, objp);
2984#else
2985 check_poison_obj(cachep, objp);
2986#endif
2987 poison_obj(cachep, objp, POISON_INUSE);
2988 }
2989 if (cachep->flags & SLAB_STORE_USER)
2990 *dbg_userword(cachep, objp) = caller;
2991
2992 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2993 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2994 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2995 slab_error(cachep, "double free, or memory outside"
2996 " object was overwritten");
b28a02de 2997 printk(KERN_ERR
a737b3e2
AM
2998 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2999 objp, *dbg_redzone1(cachep, objp),
3000 *dbg_redzone2(cachep, objp));
1da177e4
LT
3001 }
3002 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3003 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3004 }
871751e2
AV
3005#ifdef CONFIG_DEBUG_SLAB_LEAK
3006 {
3007 struct slab *slabp;
3008 unsigned objnr;
3009
3010 slabp = page_get_slab(virt_to_page(objp));
3011 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3012 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3013 }
3014#endif
3dafccf2 3015 objp += obj_offset(cachep);
1da177e4 3016 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 3017 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
3018
3019 if (!(flags & __GFP_WAIT))
3020 ctor_flags |= SLAB_CTOR_ATOMIC;
3021
3022 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 3023 }
1da177e4
LT
3024 return objp;
3025}
3026#else
3027#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3028#endif
3029
343e0d7a 3030static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3031{
b28a02de 3032 void *objp;
1da177e4
LT
3033 struct array_cache *ac;
3034
dc85da15 3035#ifdef CONFIG_NUMA
b2455396 3036 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
c61afb18
PJ
3037 objp = alternate_node_alloc(cachep, flags);
3038 if (objp != NULL)
3039 return objp;
dc85da15
CL
3040 }
3041#endif
3042
5c382300 3043 check_irq_off();
9a2dba4b 3044 ac = cpu_cache_get(cachep);
1da177e4
LT
3045 if (likely(ac->avail)) {
3046 STATS_INC_ALLOCHIT(cachep);
3047 ac->touched = 1;
e498be7d 3048 objp = ac->entry[--ac->avail];
1da177e4
LT
3049 } else {
3050 STATS_INC_ALLOCMISS(cachep);
3051 objp = cache_alloc_refill(cachep, flags);
3052 }
5c382300
AK
3053 return objp;
3054}
3055
a737b3e2
AM
3056static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3057 gfp_t flags, void *caller)
5c382300
AK
3058{
3059 unsigned long save_flags;
b28a02de 3060 void *objp;
5c382300
AK
3061
3062 cache_alloc_debugcheck_before(cachep, flags);
3063
3064 local_irq_save(save_flags);
3065 objp = ____cache_alloc(cachep, flags);
1da177e4 3066 local_irq_restore(save_flags);
34342e86 3067 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 3068 caller);
34342e86 3069 prefetchw(objp);
1da177e4
LT
3070 return objp;
3071}
3072
e498be7d 3073#ifdef CONFIG_NUMA
c61afb18 3074/*
b2455396 3075 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3076 *
3077 * If we are in_interrupt, then process context, including cpusets and
3078 * mempolicy, may not apply and should not be used for allocation policy.
3079 */
3080static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3081{
3082 int nid_alloc, nid_here;
3083
3084 if (in_interrupt())
3085 return NULL;
3086 nid_alloc = nid_here = numa_node_id();
3087 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3088 nid_alloc = cpuset_mem_spread_node();
3089 else if (current->mempolicy)
3090 nid_alloc = slab_node(current->mempolicy);
3091 if (nid_alloc != nid_here)
3092 return __cache_alloc_node(cachep, flags, nid_alloc);
3093 return NULL;
3094}
3095
e498be7d
CL
3096/*
3097 * A interface to enable slab creation on nodeid
1da177e4 3098 */
a737b3e2
AM
3099static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3100 int nodeid)
e498be7d
CL
3101{
3102 struct list_head *entry;
b28a02de
PE
3103 struct slab *slabp;
3104 struct kmem_list3 *l3;
3105 void *obj;
b28a02de
PE
3106 int x;
3107
3108 l3 = cachep->nodelists[nodeid];
3109 BUG_ON(!l3);
3110
a737b3e2 3111retry:
ca3b9b91 3112 check_irq_off();
b28a02de
PE
3113 spin_lock(&l3->list_lock);
3114 entry = l3->slabs_partial.next;
3115 if (entry == &l3->slabs_partial) {
3116 l3->free_touched = 1;
3117 entry = l3->slabs_free.next;
3118 if (entry == &l3->slabs_free)
3119 goto must_grow;
3120 }
3121
3122 slabp = list_entry(entry, struct slab, list);
3123 check_spinlock_acquired_node(cachep, nodeid);
3124 check_slabp(cachep, slabp);
3125
3126 STATS_INC_NODEALLOCS(cachep);
3127 STATS_INC_ACTIVE(cachep);
3128 STATS_SET_HIGH(cachep);
3129
3130 BUG_ON(slabp->inuse == cachep->num);
3131
78d382d7 3132 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3133 check_slabp(cachep, slabp);
3134 l3->free_objects--;
3135 /* move slabp to correct slabp list: */
3136 list_del(&slabp->list);
3137
a737b3e2 3138 if (slabp->free == BUFCTL_END)
b28a02de 3139 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3140 else
b28a02de 3141 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3142
b28a02de
PE
3143 spin_unlock(&l3->list_lock);
3144 goto done;
e498be7d 3145
a737b3e2 3146must_grow:
b28a02de
PE
3147 spin_unlock(&l3->list_lock);
3148 x = cache_grow(cachep, flags, nodeid);
1da177e4 3149
b28a02de
PE
3150 if (!x)
3151 return NULL;
e498be7d 3152
b28a02de 3153 goto retry;
a737b3e2 3154done:
b28a02de 3155 return obj;
e498be7d
CL
3156}
3157#endif
3158
3159/*
3160 * Caller needs to acquire correct kmem_list's list_lock
3161 */
343e0d7a 3162static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3163 int node)
1da177e4
LT
3164{
3165 int i;
e498be7d 3166 struct kmem_list3 *l3;
1da177e4
LT
3167
3168 for (i = 0; i < nr_objects; i++) {
3169 void *objp = objpp[i];
3170 struct slab *slabp;
1da177e4 3171
6ed5eb22 3172 slabp = virt_to_slab(objp);
ff69416e 3173 l3 = cachep->nodelists[node];
1da177e4 3174 list_del(&slabp->list);
ff69416e 3175 check_spinlock_acquired_node(cachep, node);
1da177e4 3176 check_slabp(cachep, slabp);
78d382d7 3177 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3178 STATS_DEC_ACTIVE(cachep);
e498be7d 3179 l3->free_objects++;
1da177e4
LT
3180 check_slabp(cachep, slabp);
3181
3182 /* fixup slab chains */
3183 if (slabp->inuse == 0) {
e498be7d
CL
3184 if (l3->free_objects > l3->free_limit) {
3185 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3186 /* No need to drop any previously held
3187 * lock here, even if we have a off-slab slab
3188 * descriptor it is guaranteed to come from
3189 * a different cache, refer to comments before
3190 * alloc_slabmgmt.
3191 */
1da177e4
LT
3192 slab_destroy(cachep, slabp);
3193 } else {
e498be7d 3194 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3195 }
3196 } else {
3197 /* Unconditionally move a slab to the end of the
3198 * partial list on free - maximum time for the
3199 * other objects to be freed, too.
3200 */
e498be7d 3201 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3202 }
3203 }
3204}
3205
343e0d7a 3206static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3207{
3208 int batchcount;
e498be7d 3209 struct kmem_list3 *l3;
ff69416e 3210 int node = numa_node_id();
1da177e4
LT
3211
3212 batchcount = ac->batchcount;
3213#if DEBUG
3214 BUG_ON(!batchcount || batchcount > ac->avail);
3215#endif
3216 check_irq_off();
ff69416e 3217 l3 = cachep->nodelists[node];
873623df 3218 spin_lock(&l3->list_lock);
e498be7d
CL
3219 if (l3->shared) {
3220 struct array_cache *shared_array = l3->shared;
b28a02de 3221 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3222 if (max) {
3223 if (batchcount > max)
3224 batchcount = max;
e498be7d 3225 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3226 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3227 shared_array->avail += batchcount;
3228 goto free_done;
3229 }
3230 }
3231
ff69416e 3232 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3233free_done:
1da177e4
LT
3234#if STATS
3235 {
3236 int i = 0;
3237 struct list_head *p;
3238
e498be7d
CL
3239 p = l3->slabs_free.next;
3240 while (p != &(l3->slabs_free)) {
1da177e4
LT
3241 struct slab *slabp;
3242
3243 slabp = list_entry(p, struct slab, list);
3244 BUG_ON(slabp->inuse);
3245
3246 i++;
3247 p = p->next;
3248 }
3249 STATS_SET_FREEABLE(cachep, i);
3250 }
3251#endif
e498be7d 3252 spin_unlock(&l3->list_lock);
1da177e4 3253 ac->avail -= batchcount;
a737b3e2 3254 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3255}
3256
3257/*
a737b3e2
AM
3258 * Release an obj back to its cache. If the obj has a constructed state, it must
3259 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3260 */
873623df 3261static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3262{
9a2dba4b 3263 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3264
3265 check_irq_off();
3266 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3267
873623df 3268 if (cache_free_alien(cachep, objp))
729bd0b7
PE
3269 return;
3270
1da177e4
LT
3271 if (likely(ac->avail < ac->limit)) {
3272 STATS_INC_FREEHIT(cachep);
e498be7d 3273 ac->entry[ac->avail++] = objp;
1da177e4
LT
3274 return;
3275 } else {
3276 STATS_INC_FREEMISS(cachep);
3277 cache_flusharray(cachep, ac);
e498be7d 3278 ac->entry[ac->avail++] = objp;
1da177e4
LT
3279 }
3280}
3281
3282/**
3283 * kmem_cache_alloc - Allocate an object
3284 * @cachep: The cache to allocate from.
3285 * @flags: See kmalloc().
3286 *
3287 * Allocate an object from this cache. The flags are only relevant
3288 * if the cache has no available objects.
3289 */
343e0d7a 3290void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3291{
7fd6b141 3292 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3293}
3294EXPORT_SYMBOL(kmem_cache_alloc);
3295
a8c0f9a4 3296/**
b8008b2b 3297 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3298 * @cache: The cache to allocate from.
3299 * @flags: See kmalloc().
3300 *
3301 * Allocate an object from this cache and set the allocated memory to zero.
3302 * The flags are only relevant if the cache has no available objects.
3303 */
3304void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3305{
3306 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3307 if (ret)
3308 memset(ret, 0, obj_size(cache));
3309 return ret;
3310}
3311EXPORT_SYMBOL(kmem_cache_zalloc);
3312
1da177e4
LT
3313/**
3314 * kmem_ptr_validate - check if an untrusted pointer might
3315 * be a slab entry.
3316 * @cachep: the cache we're checking against
3317 * @ptr: pointer to validate
3318 *
3319 * This verifies that the untrusted pointer looks sane:
3320 * it is _not_ a guarantee that the pointer is actually
3321 * part of the slab cache in question, but it at least
3322 * validates that the pointer can be dereferenced and
3323 * looks half-way sane.
3324 *
3325 * Currently only used for dentry validation.
3326 */
343e0d7a 3327int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3328{
b28a02de 3329 unsigned long addr = (unsigned long)ptr;
1da177e4 3330 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3331 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3332 unsigned long size = cachep->buffer_size;
1da177e4
LT
3333 struct page *page;
3334
3335 if (unlikely(addr < min_addr))
3336 goto out;
3337 if (unlikely(addr > (unsigned long)high_memory - size))
3338 goto out;
3339 if (unlikely(addr & align_mask))
3340 goto out;
3341 if (unlikely(!kern_addr_valid(addr)))
3342 goto out;
3343 if (unlikely(!kern_addr_valid(addr + size - 1)))
3344 goto out;
3345 page = virt_to_page(ptr);
3346 if (unlikely(!PageSlab(page)))
3347 goto out;
065d41cb 3348 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3349 goto out;
3350 return 1;
a737b3e2 3351out:
1da177e4
LT
3352 return 0;
3353}
3354
3355#ifdef CONFIG_NUMA
3356/**
3357 * kmem_cache_alloc_node - Allocate an object on the specified node
3358 * @cachep: The cache to allocate from.
3359 * @flags: See kmalloc().
3360 * @nodeid: node number of the target node.
3361 *
3362 * Identical to kmem_cache_alloc, except that this function is slow
3363 * and can sleep. And it will allocate memory on the given node, which
3364 * can improve the performance for cpu bound structures.
e498be7d
CL
3365 * New and improved: it will now make sure that the object gets
3366 * put on the correct node list so that there is no false sharing.
1da177e4 3367 */
343e0d7a 3368void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3369{
e498be7d
CL
3370 unsigned long save_flags;
3371 void *ptr;
1da177e4 3372
e498be7d
CL
3373 cache_alloc_debugcheck_before(cachep, flags);
3374 local_irq_save(save_flags);
18f820f6
CL
3375
3376 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3377 !cachep->nodelists[nodeid])
5c382300
AK
3378 ptr = ____cache_alloc(cachep, flags);
3379 else
3380 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3381 local_irq_restore(save_flags);
18f820f6
CL
3382
3383 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3384 __builtin_return_address(0));
1da177e4 3385
e498be7d 3386 return ptr;
1da177e4
LT
3387}
3388EXPORT_SYMBOL(kmem_cache_alloc_node);
3389
dbe5e69d 3390void *__kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3391{
343e0d7a 3392 struct kmem_cache *cachep;
97e2bde4
MS
3393
3394 cachep = kmem_find_general_cachep(size, flags);
3395 if (unlikely(cachep == NULL))
3396 return NULL;
3397 return kmem_cache_alloc_node(cachep, flags, node);
3398}
dbe5e69d 3399EXPORT_SYMBOL(__kmalloc_node);
1da177e4
LT
3400#endif
3401
3402/**
800590f5 3403 * __do_kmalloc - allocate memory
1da177e4 3404 * @size: how many bytes of memory are required.
800590f5 3405 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3406 * @caller: function caller for debug tracking of the caller
1da177e4 3407 */
7fd6b141
PE
3408static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3409 void *caller)
1da177e4 3410{
343e0d7a 3411 struct kmem_cache *cachep;
1da177e4 3412
97e2bde4
MS
3413 /* If you want to save a few bytes .text space: replace
3414 * __ with kmem_.
3415 * Then kmalloc uses the uninlined functions instead of the inline
3416 * functions.
3417 */
3418 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3419 if (unlikely(cachep == NULL))
3420 return NULL;
7fd6b141
PE
3421 return __cache_alloc(cachep, flags, caller);
3422}
3423
7fd6b141
PE
3424
3425void *__kmalloc(size_t size, gfp_t flags)
3426{
871751e2 3427#ifndef CONFIG_DEBUG_SLAB
7fd6b141 3428 return __do_kmalloc(size, flags, NULL);
871751e2
AV
3429#else
3430 return __do_kmalloc(size, flags, __builtin_return_address(0));
3431#endif
1da177e4
LT
3432}
3433EXPORT_SYMBOL(__kmalloc);
3434
871751e2 3435#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3436void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3437{
3438 return __do_kmalloc(size, flags, caller);
3439}
3440EXPORT_SYMBOL(__kmalloc_track_caller);
7fd6b141
PE
3441#endif
3442
1da177e4
LT
3443/**
3444 * kmem_cache_free - Deallocate an object
3445 * @cachep: The cache the allocation was from.
3446 * @objp: The previously allocated object.
3447 *
3448 * Free an object which was previously allocated from this
3449 * cache.
3450 */
343e0d7a 3451void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3452{
3453 unsigned long flags;
3454
ddc2e812
PE
3455 BUG_ON(virt_to_cache(objp) != cachep);
3456
1da177e4 3457 local_irq_save(flags);
873623df 3458 __cache_free(cachep, objp);
1da177e4
LT
3459 local_irq_restore(flags);
3460}
3461EXPORT_SYMBOL(kmem_cache_free);
3462
1da177e4
LT
3463/**
3464 * kfree - free previously allocated memory
3465 * @objp: pointer returned by kmalloc.
3466 *
80e93eff
PE
3467 * If @objp is NULL, no operation is performed.
3468 *
1da177e4
LT
3469 * Don't free memory not originally allocated by kmalloc()
3470 * or you will run into trouble.
3471 */
3472void kfree(const void *objp)
3473{
343e0d7a 3474 struct kmem_cache *c;
1da177e4
LT
3475 unsigned long flags;
3476
3477 if (unlikely(!objp))
3478 return;
3479 local_irq_save(flags);
3480 kfree_debugcheck(objp);
6ed5eb22 3481 c = virt_to_cache(objp);
f9b8404c 3482 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3483 __cache_free(c, (void *)objp);
1da177e4
LT
3484 local_irq_restore(flags);
3485}
3486EXPORT_SYMBOL(kfree);
3487
343e0d7a 3488unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3489{
3dafccf2 3490 return obj_size(cachep);
1da177e4
LT
3491}
3492EXPORT_SYMBOL(kmem_cache_size);
3493
343e0d7a 3494const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3495{
3496 return cachep->name;
3497}
3498EXPORT_SYMBOL_GPL(kmem_cache_name);
3499
e498be7d 3500/*
0718dc2a 3501 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3502 */
343e0d7a 3503static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3504{
3505 int node;
3506 struct kmem_list3 *l3;
cafeb02e
CL
3507 struct array_cache *new_shared;
3508 struct array_cache **new_alien;
e498be7d
CL
3509
3510 for_each_online_node(node) {
cafeb02e 3511
a737b3e2
AM
3512 new_alien = alloc_alien_cache(node, cachep->limit);
3513 if (!new_alien)
e498be7d 3514 goto fail;
cafeb02e 3515
0718dc2a
CL
3516 new_shared = alloc_arraycache(node,
3517 cachep->shared*cachep->batchcount,
a737b3e2 3518 0xbaadf00d);
0718dc2a
CL
3519 if (!new_shared) {
3520 free_alien_cache(new_alien);
e498be7d 3521 goto fail;
0718dc2a 3522 }
cafeb02e 3523
a737b3e2
AM
3524 l3 = cachep->nodelists[node];
3525 if (l3) {
cafeb02e
CL
3526 struct array_cache *shared = l3->shared;
3527
e498be7d
CL
3528 spin_lock_irq(&l3->list_lock);
3529
cafeb02e 3530 if (shared)
0718dc2a
CL
3531 free_block(cachep, shared->entry,
3532 shared->avail, node);
e498be7d 3533
cafeb02e
CL
3534 l3->shared = new_shared;
3535 if (!l3->alien) {
e498be7d
CL
3536 l3->alien = new_alien;
3537 new_alien = NULL;
3538 }
b28a02de 3539 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3540 cachep->batchcount + cachep->num;
e498be7d 3541 spin_unlock_irq(&l3->list_lock);
cafeb02e 3542 kfree(shared);
e498be7d
CL
3543 free_alien_cache(new_alien);
3544 continue;
3545 }
a737b3e2 3546 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3547 if (!l3) {
3548 free_alien_cache(new_alien);
3549 kfree(new_shared);
e498be7d 3550 goto fail;
0718dc2a 3551 }
e498be7d
CL
3552
3553 kmem_list3_init(l3);
3554 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3555 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3556 l3->shared = new_shared;
e498be7d 3557 l3->alien = new_alien;
b28a02de 3558 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3559 cachep->batchcount + cachep->num;
e498be7d
CL
3560 cachep->nodelists[node] = l3;
3561 }
cafeb02e 3562 return 0;
0718dc2a 3563
a737b3e2 3564fail:
0718dc2a
CL
3565 if (!cachep->next.next) {
3566 /* Cache is not active yet. Roll back what we did */
3567 node--;
3568 while (node >= 0) {
3569 if (cachep->nodelists[node]) {
3570 l3 = cachep->nodelists[node];
3571
3572 kfree(l3->shared);
3573 free_alien_cache(l3->alien);
3574 kfree(l3);
3575 cachep->nodelists[node] = NULL;
3576 }
3577 node--;
3578 }
3579 }
cafeb02e 3580 return -ENOMEM;
e498be7d
CL
3581}
3582
1da177e4 3583struct ccupdate_struct {
343e0d7a 3584 struct kmem_cache *cachep;
1da177e4
LT
3585 struct array_cache *new[NR_CPUS];
3586};
3587
3588static void do_ccupdate_local(void *info)
3589{
a737b3e2 3590 struct ccupdate_struct *new = info;
1da177e4
LT
3591 struct array_cache *old;
3592
3593 check_irq_off();
9a2dba4b 3594 old = cpu_cache_get(new->cachep);
e498be7d 3595
1da177e4
LT
3596 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3597 new->new[smp_processor_id()] = old;
3598}
3599
b5d8ca7c 3600/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3601static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3602 int batchcount, int shared)
1da177e4 3603{
d2e7b7d0 3604 struct ccupdate_struct *new;
2ed3a4ef 3605 int i;
1da177e4 3606
d2e7b7d0
SS
3607 new = kzalloc(sizeof(*new), GFP_KERNEL);
3608 if (!new)
3609 return -ENOMEM;
3610
e498be7d 3611 for_each_online_cpu(i) {
d2e7b7d0 3612 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3613 batchcount);
d2e7b7d0 3614 if (!new->new[i]) {
b28a02de 3615 for (i--; i >= 0; i--)
d2e7b7d0
SS
3616 kfree(new->new[i]);
3617 kfree(new);
e498be7d 3618 return -ENOMEM;
1da177e4
LT
3619 }
3620 }
d2e7b7d0 3621 new->cachep = cachep;
1da177e4 3622
d2e7b7d0 3623 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3624
1da177e4 3625 check_irq_on();
1da177e4
LT
3626 cachep->batchcount = batchcount;
3627 cachep->limit = limit;
e498be7d 3628 cachep->shared = shared;
1da177e4 3629
e498be7d 3630 for_each_online_cpu(i) {
d2e7b7d0 3631 struct array_cache *ccold = new->new[i];
1da177e4
LT
3632 if (!ccold)
3633 continue;
e498be7d 3634 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3635 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3636 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3637 kfree(ccold);
3638 }
d2e7b7d0 3639 kfree(new);
2ed3a4ef 3640 return alloc_kmemlist(cachep);
1da177e4
LT
3641}
3642
b5d8ca7c 3643/* Called with cache_chain_mutex held always */
2ed3a4ef 3644static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3645{
3646 int err;
3647 int limit, shared;
3648
a737b3e2
AM
3649 /*
3650 * The head array serves three purposes:
1da177e4
LT
3651 * - create a LIFO ordering, i.e. return objects that are cache-warm
3652 * - reduce the number of spinlock operations.
a737b3e2 3653 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3654 * bufctl chains: array operations are cheaper.
3655 * The numbers are guessed, we should auto-tune as described by
3656 * Bonwick.
3657 */
3dafccf2 3658 if (cachep->buffer_size > 131072)
1da177e4 3659 limit = 1;
3dafccf2 3660 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3661 limit = 8;
3dafccf2 3662 else if (cachep->buffer_size > 1024)
1da177e4 3663 limit = 24;
3dafccf2 3664 else if (cachep->buffer_size > 256)
1da177e4
LT
3665 limit = 54;
3666 else
3667 limit = 120;
3668
a737b3e2
AM
3669 /*
3670 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3671 * allocation behaviour: Most allocs on one cpu, most free operations
3672 * on another cpu. For these cases, an efficient object passing between
3673 * cpus is necessary. This is provided by a shared array. The array
3674 * replaces Bonwick's magazine layer.
3675 * On uniprocessor, it's functionally equivalent (but less efficient)
3676 * to a larger limit. Thus disabled by default.
3677 */
3678 shared = 0;
3679#ifdef CONFIG_SMP
3dafccf2 3680 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3681 shared = 8;
3682#endif
3683
3684#if DEBUG
a737b3e2
AM
3685 /*
3686 * With debugging enabled, large batchcount lead to excessively long
3687 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3688 */
3689 if (limit > 32)
3690 limit = 32;
3691#endif
b28a02de 3692 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3693 if (err)
3694 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3695 cachep->name, -err);
2ed3a4ef 3696 return err;
1da177e4
LT
3697}
3698
1b55253a
CL
3699/*
3700 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3701 * necessary. Note that the l3 listlock also protects the array_cache
3702 * if drain_array() is used on the shared array.
1b55253a
CL
3703 */
3704void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3705 struct array_cache *ac, int force, int node)
1da177e4
LT
3706{
3707 int tofree;
3708
1b55253a
CL
3709 if (!ac || !ac->avail)
3710 return;
1da177e4
LT
3711 if (ac->touched && !force) {
3712 ac->touched = 0;
b18e7e65 3713 } else {
1b55253a 3714 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3715 if (ac->avail) {
3716 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3717 if (tofree > ac->avail)
3718 tofree = (ac->avail + 1) / 2;
3719 free_block(cachep, ac->entry, tofree, node);
3720 ac->avail -= tofree;
3721 memmove(ac->entry, &(ac->entry[tofree]),
3722 sizeof(void *) * ac->avail);
3723 }
1b55253a 3724 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3725 }
3726}
3727
3728/**
3729 * cache_reap - Reclaim memory from caches.
1e5d5331 3730 * @unused: unused parameter
1da177e4
LT
3731 *
3732 * Called from workqueue/eventd every few seconds.
3733 * Purpose:
3734 * - clear the per-cpu caches for this CPU.
3735 * - return freeable pages to the main free memory pool.
3736 *
a737b3e2
AM
3737 * If we cannot acquire the cache chain mutex then just give up - we'll try
3738 * again on the next iteration.
1da177e4
LT
3739 */
3740static void cache_reap(void *unused)
3741{
7a7c381d 3742 struct kmem_cache *searchp;
e498be7d 3743 struct kmem_list3 *l3;
aab2207c 3744 int node = numa_node_id();
1da177e4 3745
fc0abb14 3746 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3747 /* Give up. Setup the next iteration. */
b28a02de
PE
3748 schedule_delayed_work(&__get_cpu_var(reap_work),
3749 REAPTIMEOUT_CPUC);
1da177e4
LT
3750 return;
3751 }
3752
7a7c381d 3753 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
3754 check_irq_on();
3755
35386e3b
CL
3756 /*
3757 * We only take the l3 lock if absolutely necessary and we
3758 * have established with reasonable certainty that
3759 * we can do some work if the lock was obtained.
3760 */
aab2207c 3761 l3 = searchp->nodelists[node];
35386e3b 3762
8fce4d8e 3763 reap_alien(searchp, l3);
1da177e4 3764
aab2207c 3765 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3766
35386e3b
CL
3767 /*
3768 * These are racy checks but it does not matter
3769 * if we skip one check or scan twice.
3770 */
e498be7d 3771 if (time_after(l3->next_reap, jiffies))
35386e3b 3772 goto next;
1da177e4 3773
e498be7d 3774 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3775
aab2207c 3776 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3777
ed11d9eb 3778 if (l3->free_touched)
e498be7d 3779 l3->free_touched = 0;
ed11d9eb
CL
3780 else {
3781 int freed;
1da177e4 3782
ed11d9eb
CL
3783 freed = drain_freelist(searchp, l3, (l3->free_limit +
3784 5 * searchp->num - 1) / (5 * searchp->num));
3785 STATS_ADD_REAPED(searchp, freed);
3786 }
35386e3b 3787next:
1da177e4
LT
3788 cond_resched();
3789 }
3790 check_irq_on();
fc0abb14 3791 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3792 next_reap_node();
2244b95a 3793 refresh_cpu_vm_stats(smp_processor_id());
a737b3e2 3794 /* Set up the next iteration */
cd61ef62 3795 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3796}
3797
3798#ifdef CONFIG_PROC_FS
3799
85289f98 3800static void print_slabinfo_header(struct seq_file *m)
1da177e4 3801{
85289f98
PE
3802 /*
3803 * Output format version, so at least we can change it
3804 * without _too_ many complaints.
3805 */
1da177e4 3806#if STATS
85289f98 3807 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3808#else
85289f98 3809 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3810#endif
85289f98
PE
3811 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3812 "<objperslab> <pagesperslab>");
3813 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3814 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3815#if STATS
85289f98 3816 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 3817 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 3818 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3819#endif
85289f98
PE
3820 seq_putc(m, '\n');
3821}
3822
3823static void *s_start(struct seq_file *m, loff_t *pos)
3824{
3825 loff_t n = *pos;
3826 struct list_head *p;
3827
fc0abb14 3828 mutex_lock(&cache_chain_mutex);
85289f98
PE
3829 if (!n)
3830 print_slabinfo_header(m);
1da177e4
LT
3831 p = cache_chain.next;
3832 while (n--) {
3833 p = p->next;
3834 if (p == &cache_chain)
3835 return NULL;
3836 }
343e0d7a 3837 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3838}
3839
3840static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3841{
343e0d7a 3842 struct kmem_cache *cachep = p;
1da177e4 3843 ++*pos;
a737b3e2
AM
3844 return cachep->next.next == &cache_chain ?
3845 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3846}
3847
3848static void s_stop(struct seq_file *m, void *p)
3849{
fc0abb14 3850 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3851}
3852
3853static int s_show(struct seq_file *m, void *p)
3854{
343e0d7a 3855 struct kmem_cache *cachep = p;
b28a02de
PE
3856 struct slab *slabp;
3857 unsigned long active_objs;
3858 unsigned long num_objs;
3859 unsigned long active_slabs = 0;
3860 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3861 const char *name;
1da177e4 3862 char *error = NULL;
e498be7d
CL
3863 int node;
3864 struct kmem_list3 *l3;
1da177e4 3865
1da177e4
LT
3866 active_objs = 0;
3867 num_slabs = 0;
e498be7d
CL
3868 for_each_online_node(node) {
3869 l3 = cachep->nodelists[node];
3870 if (!l3)
3871 continue;
3872
ca3b9b91
RT
3873 check_irq_on();
3874 spin_lock_irq(&l3->list_lock);
e498be7d 3875
7a7c381d 3876 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
3877 if (slabp->inuse != cachep->num && !error)
3878 error = "slabs_full accounting error";
3879 active_objs += cachep->num;
3880 active_slabs++;
3881 }
7a7c381d 3882 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
3883 if (slabp->inuse == cachep->num && !error)
3884 error = "slabs_partial inuse accounting error";
3885 if (!slabp->inuse && !error)
3886 error = "slabs_partial/inuse accounting error";
3887 active_objs += slabp->inuse;
3888 active_slabs++;
3889 }
7a7c381d 3890 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
3891 if (slabp->inuse && !error)
3892 error = "slabs_free/inuse accounting error";
3893 num_slabs++;
3894 }
3895 free_objects += l3->free_objects;
4484ebf1
RT
3896 if (l3->shared)
3897 shared_avail += l3->shared->avail;
e498be7d 3898
ca3b9b91 3899 spin_unlock_irq(&l3->list_lock);
1da177e4 3900 }
b28a02de
PE
3901 num_slabs += active_slabs;
3902 num_objs = num_slabs * cachep->num;
e498be7d 3903 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3904 error = "free_objects accounting error";
3905
b28a02de 3906 name = cachep->name;
1da177e4
LT
3907 if (error)
3908 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3909
3910 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3911 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3912 cachep->num, (1 << cachep->gfporder));
1da177e4 3913 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3914 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3915 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3916 active_slabs, num_slabs, shared_avail);
1da177e4 3917#if STATS
b28a02de 3918 { /* list3 stats */
1da177e4
LT
3919 unsigned long high = cachep->high_mark;
3920 unsigned long allocs = cachep->num_allocations;
3921 unsigned long grown = cachep->grown;
3922 unsigned long reaped = cachep->reaped;
3923 unsigned long errors = cachep->errors;
3924 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3925 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3926 unsigned long node_frees = cachep->node_frees;
fb7faf33 3927 unsigned long overflows = cachep->node_overflow;
1da177e4 3928
e498be7d 3929 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 3930 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 3931 reaped, errors, max_freeable, node_allocs,
fb7faf33 3932 node_frees, overflows);
1da177e4
LT
3933 }
3934 /* cpu stats */
3935 {
3936 unsigned long allochit = atomic_read(&cachep->allochit);
3937 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3938 unsigned long freehit = atomic_read(&cachep->freehit);
3939 unsigned long freemiss = atomic_read(&cachep->freemiss);
3940
3941 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3942 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3943 }
3944#endif
3945 seq_putc(m, '\n');
1da177e4
LT
3946 return 0;
3947}
3948
3949/*
3950 * slabinfo_op - iterator that generates /proc/slabinfo
3951 *
3952 * Output layout:
3953 * cache-name
3954 * num-active-objs
3955 * total-objs
3956 * object size
3957 * num-active-slabs
3958 * total-slabs
3959 * num-pages-per-slab
3960 * + further values on SMP and with statistics enabled
3961 */
3962
3963struct seq_operations slabinfo_op = {
b28a02de
PE
3964 .start = s_start,
3965 .next = s_next,
3966 .stop = s_stop,
3967 .show = s_show,
1da177e4
LT
3968};
3969
3970#define MAX_SLABINFO_WRITE 128
3971/**
3972 * slabinfo_write - Tuning for the slab allocator
3973 * @file: unused
3974 * @buffer: user buffer
3975 * @count: data length
3976 * @ppos: unused
3977 */
b28a02de
PE
3978ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3979 size_t count, loff_t *ppos)
1da177e4 3980{
b28a02de 3981 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 3982 int limit, batchcount, shared, res;
7a7c381d 3983 struct kmem_cache *cachep;
b28a02de 3984
1da177e4
LT
3985 if (count > MAX_SLABINFO_WRITE)
3986 return -EINVAL;
3987 if (copy_from_user(&kbuf, buffer, count))
3988 return -EFAULT;
b28a02de 3989 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3990
3991 tmp = strchr(kbuf, ' ');
3992 if (!tmp)
3993 return -EINVAL;
3994 *tmp = '\0';
3995 tmp++;
3996 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3997 return -EINVAL;
3998
3999 /* Find the cache in the chain of caches. */
fc0abb14 4000 mutex_lock(&cache_chain_mutex);
1da177e4 4001 res = -EINVAL;
7a7c381d 4002 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4003 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4004 if (limit < 1 || batchcount < 1 ||
4005 batchcount > limit || shared < 0) {
e498be7d 4006 res = 0;
1da177e4 4007 } else {
e498be7d 4008 res = do_tune_cpucache(cachep, limit,
b28a02de 4009 batchcount, shared);
1da177e4
LT
4010 }
4011 break;
4012 }
4013 }
fc0abb14 4014 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4015 if (res >= 0)
4016 res = count;
4017 return res;
4018}
871751e2
AV
4019
4020#ifdef CONFIG_DEBUG_SLAB_LEAK
4021
4022static void *leaks_start(struct seq_file *m, loff_t *pos)
4023{
4024 loff_t n = *pos;
4025 struct list_head *p;
4026
4027 mutex_lock(&cache_chain_mutex);
4028 p = cache_chain.next;
4029 while (n--) {
4030 p = p->next;
4031 if (p == &cache_chain)
4032 return NULL;
4033 }
4034 return list_entry(p, struct kmem_cache, next);
4035}
4036
4037static inline int add_caller(unsigned long *n, unsigned long v)
4038{
4039 unsigned long *p;
4040 int l;
4041 if (!v)
4042 return 1;
4043 l = n[1];
4044 p = n + 2;
4045 while (l) {
4046 int i = l/2;
4047 unsigned long *q = p + 2 * i;
4048 if (*q == v) {
4049 q[1]++;
4050 return 1;
4051 }
4052 if (*q > v) {
4053 l = i;
4054 } else {
4055 p = q + 2;
4056 l -= i + 1;
4057 }
4058 }
4059 if (++n[1] == n[0])
4060 return 0;
4061 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4062 p[0] = v;
4063 p[1] = 1;
4064 return 1;
4065}
4066
4067static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4068{
4069 void *p;
4070 int i;
4071 if (n[0] == n[1])
4072 return;
4073 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4074 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4075 continue;
4076 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4077 return;
4078 }
4079}
4080
4081static void show_symbol(struct seq_file *m, unsigned long address)
4082{
4083#ifdef CONFIG_KALLSYMS
4084 char *modname;
4085 const char *name;
4086 unsigned long offset, size;
4087 char namebuf[KSYM_NAME_LEN+1];
4088
4089 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4090
4091 if (name) {
4092 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4093 if (modname)
4094 seq_printf(m, " [%s]", modname);
4095 return;
4096 }
4097#endif
4098 seq_printf(m, "%p", (void *)address);
4099}
4100
4101static int leaks_show(struct seq_file *m, void *p)
4102{
4103 struct kmem_cache *cachep = p;
871751e2
AV
4104 struct slab *slabp;
4105 struct kmem_list3 *l3;
4106 const char *name;
4107 unsigned long *n = m->private;
4108 int node;
4109 int i;
4110
4111 if (!(cachep->flags & SLAB_STORE_USER))
4112 return 0;
4113 if (!(cachep->flags & SLAB_RED_ZONE))
4114 return 0;
4115
4116 /* OK, we can do it */
4117
4118 n[1] = 0;
4119
4120 for_each_online_node(node) {
4121 l3 = cachep->nodelists[node];
4122 if (!l3)
4123 continue;
4124
4125 check_irq_on();
4126 spin_lock_irq(&l3->list_lock);
4127
7a7c381d 4128 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4129 handle_slab(n, cachep, slabp);
7a7c381d 4130 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4131 handle_slab(n, cachep, slabp);
871751e2
AV
4132 spin_unlock_irq(&l3->list_lock);
4133 }
4134 name = cachep->name;
4135 if (n[0] == n[1]) {
4136 /* Increase the buffer size */
4137 mutex_unlock(&cache_chain_mutex);
4138 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4139 if (!m->private) {
4140 /* Too bad, we are really out */
4141 m->private = n;
4142 mutex_lock(&cache_chain_mutex);
4143 return -ENOMEM;
4144 }
4145 *(unsigned long *)m->private = n[0] * 2;
4146 kfree(n);
4147 mutex_lock(&cache_chain_mutex);
4148 /* Now make sure this entry will be retried */
4149 m->count = m->size;
4150 return 0;
4151 }
4152 for (i = 0; i < n[1]; i++) {
4153 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4154 show_symbol(m, n[2*i+2]);
4155 seq_putc(m, '\n');
4156 }
d2e7b7d0 4157
871751e2
AV
4158 return 0;
4159}
4160
4161struct seq_operations slabstats_op = {
4162 .start = leaks_start,
4163 .next = s_next,
4164 .stop = s_stop,
4165 .show = leaks_show,
4166};
4167#endif
1da177e4
LT
4168#endif
4169
00e145b6
MS
4170/**
4171 * ksize - get the actual amount of memory allocated for a given object
4172 * @objp: Pointer to the object
4173 *
4174 * kmalloc may internally round up allocations and return more memory
4175 * than requested. ksize() can be used to determine the actual amount of
4176 * memory allocated. The caller may use this additional memory, even though
4177 * a smaller amount of memory was initially specified with the kmalloc call.
4178 * The caller must guarantee that objp points to a valid object previously
4179 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4180 * must not be freed during the duration of the call.
4181 */
1da177e4
LT
4182unsigned int ksize(const void *objp)
4183{
00e145b6
MS
4184 if (unlikely(objp == NULL))
4185 return 0;
1da177e4 4186
6ed5eb22 4187 return obj_size(virt_to_cache(objp));
1da177e4 4188}