]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
[PATCH] page invalidation cleanup
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
89#include <linux/config.h>
90#include <linux/slab.h>
91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
e7eebaf6 110#include <linux/rtmutex.h>
1da177e4
LT
111
112#include <asm/uaccess.h>
113#include <asm/cacheflush.h>
114#include <asm/tlbflush.h>
115#include <asm/page.h>
116
117/*
118 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
119 * SLAB_RED_ZONE & SLAB_POISON.
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
152 * Note that this flag disables some debug features.
153 */
154#define ARCH_KMALLOC_MINALIGN 0
155#endif
156
157#ifndef ARCH_SLAB_MINALIGN
158/*
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
164 */
165#define ARCH_SLAB_MINALIGN 0
166#endif
167
168#ifndef ARCH_KMALLOC_FLAGS
169#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
170#endif
171
172/* Legal flag mask for kmem_cache_create(). */
173#if DEBUG
174# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 176 SLAB_CACHE_DMA | \
1da177e4
LT
177 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 180#else
ac2b898c 181# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
182 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
185#endif
186
187/*
188 * kmem_bufctl_t:
189 *
190 * Bufctl's are used for linking objs within a slab
191 * linked offsets.
192 *
193 * This implementation relies on "struct page" for locating the cache &
194 * slab an object belongs to.
195 * This allows the bufctl structure to be small (one int), but limits
196 * the number of objects a slab (not a cache) can contain when off-slab
197 * bufctls are used. The limit is the size of the largest general cache
198 * that does not use off-slab slabs.
199 * For 32bit archs with 4 kB pages, is this 56.
200 * This is not serious, as it is only for large objects, when it is unwise
201 * to have too many per slab.
202 * Note: This limit can be raised by introducing a general cache whose size
203 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
204 */
205
fa5b08d5 206typedef unsigned int kmem_bufctl_t;
1da177e4
LT
207#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
208#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
209#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
210#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 211
1da177e4
LT
212/*
213 * struct slab
214 *
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
218 */
219struct slab {
b28a02de
PE
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
224 kmem_bufctl_t free;
225 unsigned short nodeid;
1da177e4
LT
226};
227
228/*
229 * struct slab_rcu
230 *
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
238 *
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
241 *
242 * We assume struct slab_rcu can overlay struct slab when destroying.
243 */
244struct slab_rcu {
b28a02de 245 struct rcu_head head;
343e0d7a 246 struct kmem_cache *cachep;
b28a02de 247 void *addr;
1da177e4
LT
248};
249
250/*
251 * struct array_cache
252 *
1da177e4
LT
253 * Purpose:
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
257 *
258 * The limit is stored in the per-cpu structure to reduce the data cache
259 * footprint.
260 *
261 */
262struct array_cache {
263 unsigned int avail;
264 unsigned int limit;
265 unsigned int batchcount;
266 unsigned int touched;
e498be7d 267 spinlock_t lock;
a737b3e2
AM
268 void *entry[0]; /*
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
271 * the entries.
272 * [0] is for gcc 2.95. It should really be [].
273 */
1da177e4
LT
274};
275
a737b3e2
AM
276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
1da177e4
LT
279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
b28a02de 283 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
284};
285
286/*
e498be7d 287 * The slab lists for all objects.
1da177e4
LT
288 */
289struct kmem_list3 {
b28a02de
PE
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
b28a02de 294 unsigned int free_limit;
2e1217cf 295 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
35386e3b
CL
299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
1da177e4
LT
301};
302
e498be7d
CL
303/*
304 * Need this for bootstrapping a per node allocator.
305 */
306#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define CACHE_CACHE 0
309#define SIZE_AC 1
310#define SIZE_L3 (1 + MAX_NUMNODES)
311
ed11d9eb
CL
312static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
2ed3a4ef 316static int enable_cpucache(struct kmem_cache *cachep);
ed11d9eb
CL
317static void cache_reap(void *unused);
318
e498be7d 319/*
a737b3e2
AM
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 322 */
7243cc05 323static __always_inline int index_of(const size_t size)
e498be7d 324{
5ec8a847
SR
325 extern void __bad_size(void);
326
e498be7d
CL
327 if (__builtin_constant_p(size)) {
328 int i = 0;
329
330#define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
335#include "linux/kmalloc_sizes.h"
336#undef CACHE
5ec8a847 337 __bad_size();
7243cc05 338 } else
5ec8a847 339 __bad_size();
e498be7d
CL
340 return 0;
341}
342
e0a42726
IM
343static int slab_early_init = 1;
344
e498be7d
CL
345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 347
5295a74c 348static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
349{
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
2e1217cf 355 parent->colour_next = 0;
e498be7d
CL
356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
359}
360
a737b3e2
AM
361#define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
365 } while (0)
366
a737b3e2
AM
367#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
e498be7d
CL
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
1da177e4
LT
373
374/*
343e0d7a 375 * struct kmem_cache
1da177e4
LT
376 *
377 * manages a cache.
378 */
b28a02de 379
2109a2d1 380struct kmem_cache {
1da177e4 381/* 1) per-cpu data, touched during every alloc/free */
b28a02de 382 struct array_cache *array[NR_CPUS];
b5d8ca7c 383/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
b5d8ca7c 387
3dafccf2 388 unsigned int buffer_size;
b5d8ca7c 389/* 3) touched by every alloc & free from the backend */
b28a02de 390 struct kmem_list3 *nodelists[MAX_NUMNODES];
b5d8ca7c 391
a737b3e2
AM
392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
1da177e4 394
b5d8ca7c 395/* 4) cache_grow/shrink */
1da177e4 396 /* order of pgs per slab (2^n) */
b28a02de 397 unsigned int gfporder;
1da177e4
LT
398
399 /* force GFP flags, e.g. GFP_DMA */
b28a02de 400 gfp_t gfpflags;
1da177e4 401
a737b3e2 402 size_t colour; /* cache colouring range */
b28a02de 403 unsigned int colour_off; /* colour offset */
343e0d7a 404 struct kmem_cache *slabp_cache;
b28a02de 405 unsigned int slab_size;
a737b3e2 406 unsigned int dflags; /* dynamic flags */
1da177e4
LT
407
408 /* constructor func */
343e0d7a 409 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
410
411 /* de-constructor func */
343e0d7a 412 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 413
b5d8ca7c 414/* 5) cache creation/removal */
b28a02de
PE
415 const char *name;
416 struct list_head next;
1da177e4 417
b5d8ca7c 418/* 6) statistics */
1da177e4 419#if STATS
b28a02de
PE
420 unsigned long num_active;
421 unsigned long num_allocations;
422 unsigned long high_mark;
423 unsigned long grown;
424 unsigned long reaped;
425 unsigned long errors;
426 unsigned long max_freeable;
427 unsigned long node_allocs;
428 unsigned long node_frees;
fb7faf33 429 unsigned long node_overflow;
b28a02de
PE
430 atomic_t allochit;
431 atomic_t allocmiss;
432 atomic_t freehit;
433 atomic_t freemiss;
1da177e4
LT
434#endif
435#if DEBUG
3dafccf2
MS
436 /*
437 * If debugging is enabled, then the allocator can add additional
438 * fields and/or padding to every object. buffer_size contains the total
439 * object size including these internal fields, the following two
440 * variables contain the offset to the user object and its size.
441 */
442 int obj_offset;
443 int obj_size;
1da177e4
LT
444#endif
445};
446
447#define CFLGS_OFF_SLAB (0x80000000UL)
448#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
449
450#define BATCHREFILL_LIMIT 16
a737b3e2
AM
451/*
452 * Optimization question: fewer reaps means less probability for unnessary
453 * cpucache drain/refill cycles.
1da177e4 454 *
dc6f3f27 455 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
456 * which could lock up otherwise freeable slabs.
457 */
458#define REAPTIMEOUT_CPUC (2*HZ)
459#define REAPTIMEOUT_LIST3 (4*HZ)
460
461#if STATS
462#define STATS_INC_ACTIVE(x) ((x)->num_active++)
463#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
464#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
465#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 466#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
467#define STATS_SET_HIGH(x) \
468 do { \
469 if ((x)->num_active > (x)->high_mark) \
470 (x)->high_mark = (x)->num_active; \
471 } while (0)
1da177e4
LT
472#define STATS_INC_ERR(x) ((x)->errors++)
473#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 474#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 475#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
476#define STATS_SET_FREEABLE(x, i) \
477 do { \
478 if ((x)->max_freeable < i) \
479 (x)->max_freeable = i; \
480 } while (0)
1da177e4
LT
481#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
482#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
483#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
484#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
485#else
486#define STATS_INC_ACTIVE(x) do { } while (0)
487#define STATS_DEC_ACTIVE(x) do { } while (0)
488#define STATS_INC_ALLOCED(x) do { } while (0)
489#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 490#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
491#define STATS_SET_HIGH(x) do { } while (0)
492#define STATS_INC_ERR(x) do { } while (0)
493#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 494#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 495#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 496#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
497#define STATS_INC_ALLOCHIT(x) do { } while (0)
498#define STATS_INC_ALLOCMISS(x) do { } while (0)
499#define STATS_INC_FREEHIT(x) do { } while (0)
500#define STATS_INC_FREEMISS(x) do { } while (0)
501#endif
502
503#if DEBUG
1da177e4 504
a737b3e2
AM
505/*
506 * memory layout of objects:
1da177e4 507 * 0 : objp
3dafccf2 508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
3dafccf2 511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 512 * redzone word.
3dafccf2
MS
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
1da177e4 517 */
343e0d7a 518static int obj_offset(struct kmem_cache *cachep)
1da177e4 519{
3dafccf2 520 return cachep->obj_offset;
1da177e4
LT
521}
522
343e0d7a 523static int obj_size(struct kmem_cache *cachep)
1da177e4 524{
3dafccf2 525 return cachep->obj_size;
1da177e4
LT
526}
527
343e0d7a 528static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
529{
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
532}
533
343e0d7a 534static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
535{
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 538 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 539 2 * BYTES_PER_WORD);
3dafccf2 540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
541}
542
343e0d7a 543static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
544{
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
547}
548
549#else
550
3dafccf2
MS
551#define obj_offset(x) 0
552#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
553#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
556
557#endif
558
559/*
a737b3e2
AM
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
1da177e4
LT
562 */
563#if defined(CONFIG_LARGE_ALLOCS)
564#define MAX_OBJ_ORDER 13 /* up to 32Mb */
565#define MAX_GFP_ORDER 13 /* up to 32Mb */
566#elif defined(CONFIG_MMU)
567#define MAX_OBJ_ORDER 5 /* 32 pages */
568#define MAX_GFP_ORDER 5 /* 32 pages */
569#else
570#define MAX_OBJ_ORDER 8 /* up to 1Mb */
571#define MAX_GFP_ORDER 8 /* up to 1Mb */
572#endif
573
574/*
575 * Do not go above this order unless 0 objects fit into the slab.
576 */
577#define BREAK_GFP_ORDER_HI 1
578#define BREAK_GFP_ORDER_LO 0
579static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
580
a737b3e2
AM
581/*
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
1da177e4 585 */
065d41cb
PE
586static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
587{
588 page->lru.next = (struct list_head *)cache;
589}
590
591static inline struct kmem_cache *page_get_cache(struct page *page)
592{
84097518
NP
593 if (unlikely(PageCompound(page)))
594 page = (struct page *)page_private(page);
ddc2e812 595 BUG_ON(!PageSlab(page));
065d41cb
PE
596 return (struct kmem_cache *)page->lru.next;
597}
598
599static inline void page_set_slab(struct page *page, struct slab *slab)
600{
601 page->lru.prev = (struct list_head *)slab;
602}
603
604static inline struct slab *page_get_slab(struct page *page)
605{
84097518
NP
606 if (unlikely(PageCompound(page)))
607 page = (struct page *)page_private(page);
ddc2e812 608 BUG_ON(!PageSlab(page));
065d41cb
PE
609 return (struct slab *)page->lru.prev;
610}
1da177e4 611
6ed5eb22
PE
612static inline struct kmem_cache *virt_to_cache(const void *obj)
613{
614 struct page *page = virt_to_page(obj);
615 return page_get_cache(page);
616}
617
618static inline struct slab *virt_to_slab(const void *obj)
619{
620 struct page *page = virt_to_page(obj);
621 return page_get_slab(page);
622}
623
8fea4e96
PE
624static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
625 unsigned int idx)
626{
627 return slab->s_mem + cache->buffer_size * idx;
628}
629
630static inline unsigned int obj_to_index(struct kmem_cache *cache,
631 struct slab *slab, void *obj)
632{
633 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
634}
635
a737b3e2
AM
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
1da177e4
LT
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
b28a02de 656 {NULL,}
1da177e4
LT
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
b28a02de 661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 662static struct arraycache_init initarray_generic =
b28a02de 663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
664
665/* internal cache of cache description objs */
343e0d7a 666static struct kmem_cache cache_cache = {
b28a02de
PE
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
343e0d7a 670 .buffer_size = sizeof(struct kmem_cache),
b28a02de 671 .name = "kmem_cache",
1da177e4 672#if DEBUG
343e0d7a 673 .obj_size = sizeof(struct kmem_cache),
1da177e4
LT
674#endif
675};
676
056c6241
RT
677#define BAD_ALIEN_MAGIC 0x01020304ul
678
f1aaee53
AV
679#ifdef CONFIG_LOCKDEP
680
681/*
682 * Slab sometimes uses the kmalloc slabs to store the slab headers
683 * for other slabs "off slab".
684 * The locking for this is tricky in that it nests within the locks
685 * of all other slabs in a few places; to deal with this special
686 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
687 *
688 * We set lock class for alien array caches which are up during init.
689 * The lock annotation will be lost if all cpus of a node goes down and
690 * then comes back up during hotplug
f1aaee53 691 */
056c6241
RT
692static struct lock_class_key on_slab_l3_key;
693static struct lock_class_key on_slab_alc_key;
694
695static inline void init_lock_keys(void)
f1aaee53 696
f1aaee53
AV
697{
698 int q;
056c6241
RT
699 struct cache_sizes *s = malloc_sizes;
700
701 while (s->cs_size != ULONG_MAX) {
702 for_each_node(q) {
703 struct array_cache **alc;
704 int r;
705 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
706 if (!l3 || OFF_SLAB(s->cs_cachep))
707 continue;
708 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
709 alc = l3->alien;
710 /*
711 * FIXME: This check for BAD_ALIEN_MAGIC
712 * should go away when common slab code is taught to
713 * work even without alien caches.
714 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
715 * for alloc_alien_cache,
716 */
717 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
718 continue;
719 for_each_node(r) {
720 if (alc[r])
721 lockdep_set_class(&alc[r]->lock,
722 &on_slab_alc_key);
723 }
724 }
725 s++;
f1aaee53
AV
726 }
727}
f1aaee53 728#else
056c6241 729static inline void init_lock_keys(void)
f1aaee53
AV
730{
731}
732#endif
733
1da177e4 734/* Guard access to the cache-chain. */
fc0abb14 735static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
736static struct list_head cache_chain;
737
1da177e4
LT
738/*
739 * chicken and egg problem: delay the per-cpu array allocation
740 * until the general caches are up.
741 */
742static enum {
743 NONE,
e498be7d
CL
744 PARTIAL_AC,
745 PARTIAL_L3,
1da177e4
LT
746 FULL
747} g_cpucache_up;
748
39d24e64
MK
749/*
750 * used by boot code to determine if it can use slab based allocator
751 */
752int slab_is_available(void)
753{
754 return g_cpucache_up == FULL;
755}
756
1da177e4
LT
757static DEFINE_PER_CPU(struct work_struct, reap_work);
758
343e0d7a 759static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
760{
761 return cachep->array[smp_processor_id()];
762}
763
a737b3e2
AM
764static inline struct kmem_cache *__find_general_cachep(size_t size,
765 gfp_t gfpflags)
1da177e4
LT
766{
767 struct cache_sizes *csizep = malloc_sizes;
768
769#if DEBUG
770 /* This happens if someone tries to call
b28a02de
PE
771 * kmem_cache_create(), or __kmalloc(), before
772 * the generic caches are initialized.
773 */
c7e43c78 774 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
775#endif
776 while (size > csizep->cs_size)
777 csizep++;
778
779 /*
0abf40c1 780 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
781 * has cs_{dma,}cachep==NULL. Thus no special case
782 * for large kmalloc calls required.
783 */
784 if (unlikely(gfpflags & GFP_DMA))
785 return csizep->cs_dmacachep;
786 return csizep->cs_cachep;
787}
788
b221385b 789static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
790{
791 return __find_general_cachep(size, gfpflags);
792}
97e2bde4 793
fbaccacf 794static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 795{
fbaccacf
SR
796 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
797}
1da177e4 798
a737b3e2
AM
799/*
800 * Calculate the number of objects and left-over bytes for a given buffer size.
801 */
fbaccacf
SR
802static void cache_estimate(unsigned long gfporder, size_t buffer_size,
803 size_t align, int flags, size_t *left_over,
804 unsigned int *num)
805{
806 int nr_objs;
807 size_t mgmt_size;
808 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 809
fbaccacf
SR
810 /*
811 * The slab management structure can be either off the slab or
812 * on it. For the latter case, the memory allocated for a
813 * slab is used for:
814 *
815 * - The struct slab
816 * - One kmem_bufctl_t for each object
817 * - Padding to respect alignment of @align
818 * - @buffer_size bytes for each object
819 *
820 * If the slab management structure is off the slab, then the
821 * alignment will already be calculated into the size. Because
822 * the slabs are all pages aligned, the objects will be at the
823 * correct alignment when allocated.
824 */
825 if (flags & CFLGS_OFF_SLAB) {
826 mgmt_size = 0;
827 nr_objs = slab_size / buffer_size;
828
829 if (nr_objs > SLAB_LIMIT)
830 nr_objs = SLAB_LIMIT;
831 } else {
832 /*
833 * Ignore padding for the initial guess. The padding
834 * is at most @align-1 bytes, and @buffer_size is at
835 * least @align. In the worst case, this result will
836 * be one greater than the number of objects that fit
837 * into the memory allocation when taking the padding
838 * into account.
839 */
840 nr_objs = (slab_size - sizeof(struct slab)) /
841 (buffer_size + sizeof(kmem_bufctl_t));
842
843 /*
844 * This calculated number will be either the right
845 * amount, or one greater than what we want.
846 */
847 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
848 > slab_size)
849 nr_objs--;
850
851 if (nr_objs > SLAB_LIMIT)
852 nr_objs = SLAB_LIMIT;
853
854 mgmt_size = slab_mgmt_size(nr_objs, align);
855 }
856 *num = nr_objs;
857 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
858}
859
860#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
861
a737b3e2
AM
862static void __slab_error(const char *function, struct kmem_cache *cachep,
863 char *msg)
1da177e4
LT
864{
865 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 866 function, cachep->name, msg);
1da177e4
LT
867 dump_stack();
868}
869
8fce4d8e
CL
870#ifdef CONFIG_NUMA
871/*
872 * Special reaping functions for NUMA systems called from cache_reap().
873 * These take care of doing round robin flushing of alien caches (containing
874 * objects freed on different nodes from which they were allocated) and the
875 * flushing of remote pcps by calling drain_node_pages.
876 */
877static DEFINE_PER_CPU(unsigned long, reap_node);
878
879static void init_reap_node(int cpu)
880{
881 int node;
882
883 node = next_node(cpu_to_node(cpu), node_online_map);
884 if (node == MAX_NUMNODES)
442295c9 885 node = first_node(node_online_map);
8fce4d8e
CL
886
887 __get_cpu_var(reap_node) = node;
888}
889
890static void next_reap_node(void)
891{
892 int node = __get_cpu_var(reap_node);
893
894 /*
895 * Also drain per cpu pages on remote zones
896 */
897 if (node != numa_node_id())
898 drain_node_pages(node);
899
900 node = next_node(node, node_online_map);
901 if (unlikely(node >= MAX_NUMNODES))
902 node = first_node(node_online_map);
903 __get_cpu_var(reap_node) = node;
904}
905
906#else
907#define init_reap_node(cpu) do { } while (0)
908#define next_reap_node(void) do { } while (0)
909#endif
910
1da177e4
LT
911/*
912 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
913 * via the workqueue/eventd.
914 * Add the CPU number into the expiration time to minimize the possibility of
915 * the CPUs getting into lockstep and contending for the global cache chain
916 * lock.
917 */
918static void __devinit start_cpu_timer(int cpu)
919{
920 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
921
922 /*
923 * When this gets called from do_initcalls via cpucache_init(),
924 * init_workqueues() has already run, so keventd will be setup
925 * at that time.
926 */
927 if (keventd_up() && reap_work->func == NULL) {
8fce4d8e 928 init_reap_node(cpu);
1da177e4
LT
929 INIT_WORK(reap_work, cache_reap, NULL);
930 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
931 }
932}
933
e498be7d 934static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 935 int batchcount)
1da177e4 936{
b28a02de 937 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
938 struct array_cache *nc = NULL;
939
e498be7d 940 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
941 if (nc) {
942 nc->avail = 0;
943 nc->limit = entries;
944 nc->batchcount = batchcount;
945 nc->touched = 0;
e498be7d 946 spin_lock_init(&nc->lock);
1da177e4
LT
947 }
948 return nc;
949}
950
3ded175a
CL
951/*
952 * Transfer objects in one arraycache to another.
953 * Locking must be handled by the caller.
954 *
955 * Return the number of entries transferred.
956 */
957static int transfer_objects(struct array_cache *to,
958 struct array_cache *from, unsigned int max)
959{
960 /* Figure out how many entries to transfer */
961 int nr = min(min(from->avail, max), to->limit - to->avail);
962
963 if (!nr)
964 return 0;
965
966 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
967 sizeof(void *) *nr);
968
969 from->avail -= nr;
970 to->avail += nr;
971 to->touched = 1;
972 return nr;
973}
974
e498be7d 975#ifdef CONFIG_NUMA
343e0d7a 976static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 977static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 978
5295a74c 979static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
980{
981 struct array_cache **ac_ptr;
b28a02de 982 int memsize = sizeof(void *) * MAX_NUMNODES;
e498be7d
CL
983 int i;
984
985 if (limit > 1)
986 limit = 12;
987 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
988 if (ac_ptr) {
989 for_each_node(i) {
990 if (i == node || !node_online(i)) {
991 ac_ptr[i] = NULL;
992 continue;
993 }
994 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
995 if (!ac_ptr[i]) {
b28a02de 996 for (i--; i <= 0; i--)
e498be7d
CL
997 kfree(ac_ptr[i]);
998 kfree(ac_ptr);
999 return NULL;
1000 }
1001 }
1002 }
1003 return ac_ptr;
1004}
1005
5295a74c 1006static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1007{
1008 int i;
1009
1010 if (!ac_ptr)
1011 return;
e498be7d 1012 for_each_node(i)
b28a02de 1013 kfree(ac_ptr[i]);
e498be7d
CL
1014 kfree(ac_ptr);
1015}
1016
343e0d7a 1017static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1018 struct array_cache *ac, int node)
e498be7d
CL
1019{
1020 struct kmem_list3 *rl3 = cachep->nodelists[node];
1021
1022 if (ac->avail) {
1023 spin_lock(&rl3->list_lock);
e00946fe
CL
1024 /*
1025 * Stuff objects into the remote nodes shared array first.
1026 * That way we could avoid the overhead of putting the objects
1027 * into the free lists and getting them back later.
1028 */
693f7d36
JS
1029 if (rl3->shared)
1030 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1031
ff69416e 1032 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1033 ac->avail = 0;
1034 spin_unlock(&rl3->list_lock);
1035 }
1036}
1037
8fce4d8e
CL
1038/*
1039 * Called from cache_reap() to regularly drain alien caches round robin.
1040 */
1041static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1042{
1043 int node = __get_cpu_var(reap_node);
1044
1045 if (l3->alien) {
1046 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1047
1048 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1049 __drain_alien_cache(cachep, ac, node);
1050 spin_unlock_irq(&ac->lock);
1051 }
1052 }
1053}
1054
a737b3e2
AM
1055static void drain_alien_cache(struct kmem_cache *cachep,
1056 struct array_cache **alien)
e498be7d 1057{
b28a02de 1058 int i = 0;
e498be7d
CL
1059 struct array_cache *ac;
1060 unsigned long flags;
1061
1062 for_each_online_node(i) {
4484ebf1 1063 ac = alien[i];
e498be7d
CL
1064 if (ac) {
1065 spin_lock_irqsave(&ac->lock, flags);
1066 __drain_alien_cache(cachep, ac, i);
1067 spin_unlock_irqrestore(&ac->lock, flags);
1068 }
1069 }
1070}
729bd0b7 1071
873623df 1072static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1073{
1074 struct slab *slabp = virt_to_slab(objp);
1075 int nodeid = slabp->nodeid;
1076 struct kmem_list3 *l3;
1077 struct array_cache *alien = NULL;
1078
1079 /*
1080 * Make sure we are not freeing a object from another node to the array
1081 * cache on this cpu.
1082 */
1083 if (likely(slabp->nodeid == numa_node_id()))
1084 return 0;
1085
1086 l3 = cachep->nodelists[numa_node_id()];
1087 STATS_INC_NODEFREES(cachep);
1088 if (l3->alien && l3->alien[nodeid]) {
1089 alien = l3->alien[nodeid];
873623df 1090 spin_lock(&alien->lock);
729bd0b7
PE
1091 if (unlikely(alien->avail == alien->limit)) {
1092 STATS_INC_ACOVERFLOW(cachep);
1093 __drain_alien_cache(cachep, alien, nodeid);
1094 }
1095 alien->entry[alien->avail++] = objp;
1096 spin_unlock(&alien->lock);
1097 } else {
1098 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1099 free_block(cachep, &objp, 1, nodeid);
1100 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1101 }
1102 return 1;
1103}
1104
e498be7d 1105#else
7a21ef6f 1106
4484ebf1 1107#define drain_alien_cache(cachep, alien) do { } while (0)
8fce4d8e 1108#define reap_alien(cachep, l3) do { } while (0)
4484ebf1 1109
7a21ef6f
LT
1110static inline struct array_cache **alloc_alien_cache(int node, int limit)
1111{
056c6241 1112 return (struct array_cache **)BAD_ALIEN_MAGIC;
7a21ef6f
LT
1113}
1114
4484ebf1
RT
1115static inline void free_alien_cache(struct array_cache **ac_ptr)
1116{
1117}
7a21ef6f 1118
873623df 1119static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1120{
1121 return 0;
1122}
1123
e498be7d
CL
1124#endif
1125
8c78f307 1126static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1127 unsigned long action, void *hcpu)
1da177e4
LT
1128{
1129 long cpu = (long)hcpu;
343e0d7a 1130 struct kmem_cache *cachep;
e498be7d
CL
1131 struct kmem_list3 *l3 = NULL;
1132 int node = cpu_to_node(cpu);
1133 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1134
1135 switch (action) {
1136 case CPU_UP_PREPARE:
fc0abb14 1137 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1138 /*
1139 * We need to do this right in the beginning since
e498be7d
CL
1140 * alloc_arraycache's are going to use this list.
1141 * kmalloc_node allows us to add the slab to the right
1142 * kmem_list3 and not this cpu's kmem_list3
1143 */
1144
1da177e4 1145 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1146 /*
1147 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1148 * begin anything. Make sure some other cpu on this
1149 * node has not already allocated this
1150 */
1151 if (!cachep->nodelists[node]) {
a737b3e2
AM
1152 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1153 if (!l3)
e498be7d
CL
1154 goto bad;
1155 kmem_list3_init(l3);
1156 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1157 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1158
4484ebf1
RT
1159 /*
1160 * The l3s don't come and go as CPUs come and
1161 * go. cache_chain_mutex is sufficient
1162 * protection here.
1163 */
e498be7d
CL
1164 cachep->nodelists[node] = l3;
1165 }
1da177e4 1166
e498be7d
CL
1167 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1168 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1169 (1 + nr_cpus_node(node)) *
1170 cachep->batchcount + cachep->num;
e498be7d
CL
1171 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1172 }
1173
a737b3e2
AM
1174 /*
1175 * Now we can go ahead with allocating the shared arrays and
1176 * array caches
1177 */
e498be7d 1178 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1179 struct array_cache *nc;
4484ebf1
RT
1180 struct array_cache *shared;
1181 struct array_cache **alien;
cd105df4 1182
e498be7d 1183 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1184 cachep->batchcount);
1da177e4
LT
1185 if (!nc)
1186 goto bad;
4484ebf1
RT
1187 shared = alloc_arraycache(node,
1188 cachep->shared * cachep->batchcount,
1189 0xbaadf00d);
1190 if (!shared)
1191 goto bad;
7a21ef6f 1192
4484ebf1
RT
1193 alien = alloc_alien_cache(node, cachep->limit);
1194 if (!alien)
1195 goto bad;
1da177e4 1196 cachep->array[cpu] = nc;
e498be7d
CL
1197 l3 = cachep->nodelists[node];
1198 BUG_ON(!l3);
e498be7d 1199
4484ebf1
RT
1200 spin_lock_irq(&l3->list_lock);
1201 if (!l3->shared) {
1202 /*
1203 * We are serialised from CPU_DEAD or
1204 * CPU_UP_CANCELLED by the cpucontrol lock
1205 */
1206 l3->shared = shared;
1207 shared = NULL;
e498be7d 1208 }
4484ebf1
RT
1209#ifdef CONFIG_NUMA
1210 if (!l3->alien) {
1211 l3->alien = alien;
1212 alien = NULL;
1213 }
1214#endif
1215 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1216 kfree(shared);
1217 free_alien_cache(alien);
1da177e4 1218 }
fc0abb14 1219 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1220 break;
1221 case CPU_ONLINE:
1222 start_cpu_timer(cpu);
1223 break;
1224#ifdef CONFIG_HOTPLUG_CPU
1225 case CPU_DEAD:
4484ebf1
RT
1226 /*
1227 * Even if all the cpus of a node are down, we don't free the
1228 * kmem_list3 of any cache. This to avoid a race between
1229 * cpu_down, and a kmalloc allocation from another cpu for
1230 * memory from the node of the cpu going down. The list3
1231 * structure is usually allocated from kmem_cache_create() and
1232 * gets destroyed at kmem_cache_destroy().
1233 */
1da177e4
LT
1234 /* fall thru */
1235 case CPU_UP_CANCELED:
fc0abb14 1236 mutex_lock(&cache_chain_mutex);
1da177e4
LT
1237 list_for_each_entry(cachep, &cache_chain, next) {
1238 struct array_cache *nc;
4484ebf1
RT
1239 struct array_cache *shared;
1240 struct array_cache **alien;
e498be7d 1241 cpumask_t mask;
1da177e4 1242
e498be7d 1243 mask = node_to_cpumask(node);
1da177e4
LT
1244 /* cpu is dead; no one can alloc from it. */
1245 nc = cachep->array[cpu];
1246 cachep->array[cpu] = NULL;
e498be7d
CL
1247 l3 = cachep->nodelists[node];
1248
1249 if (!l3)
4484ebf1 1250 goto free_array_cache;
e498be7d 1251
ca3b9b91 1252 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1253
1254 /* Free limit for this kmem_list3 */
1255 l3->free_limit -= cachep->batchcount;
1256 if (nc)
ff69416e 1257 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1258
1259 if (!cpus_empty(mask)) {
ca3b9b91 1260 spin_unlock_irq(&l3->list_lock);
4484ebf1 1261 goto free_array_cache;
b28a02de 1262 }
e498be7d 1263
4484ebf1
RT
1264 shared = l3->shared;
1265 if (shared) {
e498be7d 1266 free_block(cachep, l3->shared->entry,
b28a02de 1267 l3->shared->avail, node);
e498be7d
CL
1268 l3->shared = NULL;
1269 }
e498be7d 1270
4484ebf1
RT
1271 alien = l3->alien;
1272 l3->alien = NULL;
1273
1274 spin_unlock_irq(&l3->list_lock);
1275
1276 kfree(shared);
1277 if (alien) {
1278 drain_alien_cache(cachep, alien);
1279 free_alien_cache(alien);
e498be7d 1280 }
4484ebf1 1281free_array_cache:
1da177e4
LT
1282 kfree(nc);
1283 }
4484ebf1
RT
1284 /*
1285 * In the previous loop, all the objects were freed to
1286 * the respective cache's slabs, now we can go ahead and
1287 * shrink each nodelist to its limit.
1288 */
1289 list_for_each_entry(cachep, &cache_chain, next) {
1290 l3 = cachep->nodelists[node];
1291 if (!l3)
1292 continue;
ed11d9eb 1293 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1294 }
fc0abb14 1295 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1296 break;
1297#endif
1298 }
1299 return NOTIFY_OK;
a737b3e2 1300bad:
fc0abb14 1301 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1302 return NOTIFY_BAD;
1303}
1304
74b85f37
CS
1305static struct notifier_block __cpuinitdata cpucache_notifier = {
1306 &cpuup_callback, NULL, 0
1307};
1da177e4 1308
e498be7d
CL
1309/*
1310 * swap the static kmem_list3 with kmalloced memory
1311 */
a737b3e2
AM
1312static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1313 int nodeid)
e498be7d
CL
1314{
1315 struct kmem_list3 *ptr;
1316
1317 BUG_ON(cachep->nodelists[nodeid] != list);
1318 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1319 BUG_ON(!ptr);
1320
1321 local_irq_disable();
1322 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1323 /*
1324 * Do not assume that spinlocks can be initialized via memcpy:
1325 */
1326 spin_lock_init(&ptr->list_lock);
1327
e498be7d
CL
1328 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1329 cachep->nodelists[nodeid] = ptr;
1330 local_irq_enable();
1331}
1332
a737b3e2
AM
1333/*
1334 * Initialisation. Called after the page allocator have been initialised and
1335 * before smp_init().
1da177e4
LT
1336 */
1337void __init kmem_cache_init(void)
1338{
1339 size_t left_over;
1340 struct cache_sizes *sizes;
1341 struct cache_names *names;
e498be7d 1342 int i;
07ed76b2 1343 int order;
e498be7d
CL
1344
1345 for (i = 0; i < NUM_INIT_LISTS; i++) {
1346 kmem_list3_init(&initkmem_list3[i]);
1347 if (i < MAX_NUMNODES)
1348 cache_cache.nodelists[i] = NULL;
1349 }
1da177e4
LT
1350
1351 /*
1352 * Fragmentation resistance on low memory - only use bigger
1353 * page orders on machines with more than 32MB of memory.
1354 */
1355 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1356 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1357
1da177e4
LT
1358 /* Bootstrap is tricky, because several objects are allocated
1359 * from caches that do not exist yet:
a737b3e2
AM
1360 * 1) initialize the cache_cache cache: it contains the struct
1361 * kmem_cache structures of all caches, except cache_cache itself:
1362 * cache_cache is statically allocated.
e498be7d
CL
1363 * Initially an __init data area is used for the head array and the
1364 * kmem_list3 structures, it's replaced with a kmalloc allocated
1365 * array at the end of the bootstrap.
1da177e4 1366 * 2) Create the first kmalloc cache.
343e0d7a 1367 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1368 * An __init data area is used for the head array.
1369 * 3) Create the remaining kmalloc caches, with minimally sized
1370 * head arrays.
1da177e4
LT
1371 * 4) Replace the __init data head arrays for cache_cache and the first
1372 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1373 * 5) Replace the __init data for kmem_list3 for cache_cache and
1374 * the other cache's with kmalloc allocated memory.
1375 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1376 */
1377
1378 /* 1) create the cache_cache */
1da177e4
LT
1379 INIT_LIST_HEAD(&cache_chain);
1380 list_add(&cache_cache.next, &cache_chain);
1381 cache_cache.colour_off = cache_line_size();
1382 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
e498be7d 1383 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1da177e4 1384
a737b3e2
AM
1385 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1386 cache_line_size());
1da177e4 1387
07ed76b2
JS
1388 for (order = 0; order < MAX_ORDER; order++) {
1389 cache_estimate(order, cache_cache.buffer_size,
1390 cache_line_size(), 0, &left_over, &cache_cache.num);
1391 if (cache_cache.num)
1392 break;
1393 }
40094fa6 1394 BUG_ON(!cache_cache.num);
07ed76b2 1395 cache_cache.gfporder = order;
b28a02de 1396 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1397 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1398 sizeof(struct slab), cache_line_size());
1da177e4
LT
1399
1400 /* 2+3) create the kmalloc caches */
1401 sizes = malloc_sizes;
1402 names = cache_names;
1403
a737b3e2
AM
1404 /*
1405 * Initialize the caches that provide memory for the array cache and the
1406 * kmem_list3 structures first. Without this, further allocations will
1407 * bug.
e498be7d
CL
1408 */
1409
1410 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1411 sizes[INDEX_AC].cs_size,
1412 ARCH_KMALLOC_MINALIGN,
1413 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1414 NULL, NULL);
e498be7d 1415
a737b3e2 1416 if (INDEX_AC != INDEX_L3) {
e498be7d 1417 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1418 kmem_cache_create(names[INDEX_L3].name,
1419 sizes[INDEX_L3].cs_size,
1420 ARCH_KMALLOC_MINALIGN,
1421 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1422 NULL, NULL);
1423 }
e498be7d 1424
e0a42726
IM
1425 slab_early_init = 0;
1426
1da177e4 1427 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1428 /*
1429 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1430 * This should be particularly beneficial on SMP boxes, as it
1431 * eliminates "false sharing".
1432 * Note for systems short on memory removing the alignment will
e498be7d
CL
1433 * allow tighter packing of the smaller caches.
1434 */
a737b3e2 1435 if (!sizes->cs_cachep) {
e498be7d 1436 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1437 sizes->cs_size,
1438 ARCH_KMALLOC_MINALIGN,
1439 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1440 NULL, NULL);
1441 }
1da177e4 1442
1da177e4 1443 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
a737b3e2
AM
1444 sizes->cs_size,
1445 ARCH_KMALLOC_MINALIGN,
1446 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1447 SLAB_PANIC,
1448 NULL, NULL);
1da177e4
LT
1449 sizes++;
1450 names++;
1451 }
1452 /* 4) Replace the bootstrap head arrays */
1453 {
2b2d5493 1454 struct array_cache *ptr;
e498be7d 1455
1da177e4 1456 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1457
1da177e4 1458 local_irq_disable();
9a2dba4b
PE
1459 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1460 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1461 sizeof(struct arraycache_init));
2b2d5493
IM
1462 /*
1463 * Do not assume that spinlocks can be initialized via memcpy:
1464 */
1465 spin_lock_init(&ptr->lock);
1466
1da177e4
LT
1467 cache_cache.array[smp_processor_id()] = ptr;
1468 local_irq_enable();
e498be7d 1469
1da177e4 1470 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1471
1da177e4 1472 local_irq_disable();
9a2dba4b 1473 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1474 != &initarray_generic.cache);
9a2dba4b 1475 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1476 sizeof(struct arraycache_init));
2b2d5493
IM
1477 /*
1478 * Do not assume that spinlocks can be initialized via memcpy:
1479 */
1480 spin_lock_init(&ptr->lock);
1481
e498be7d 1482 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1483 ptr;
1da177e4
LT
1484 local_irq_enable();
1485 }
e498be7d
CL
1486 /* 5) Replace the bootstrap kmem_list3's */
1487 {
1488 int node;
1489 /* Replace the static kmem_list3 structures for the boot cpu */
1490 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
b28a02de 1491 numa_node_id());
e498be7d
CL
1492
1493 for_each_online_node(node) {
1494 init_list(malloc_sizes[INDEX_AC].cs_cachep,
b28a02de 1495 &initkmem_list3[SIZE_AC + node], node);
e498be7d
CL
1496
1497 if (INDEX_AC != INDEX_L3) {
1498 init_list(malloc_sizes[INDEX_L3].cs_cachep,
b28a02de
PE
1499 &initkmem_list3[SIZE_L3 + node],
1500 node);
e498be7d
CL
1501 }
1502 }
1503 }
1da177e4 1504
e498be7d 1505 /* 6) resize the head arrays to their final sizes */
1da177e4 1506 {
343e0d7a 1507 struct kmem_cache *cachep;
fc0abb14 1508 mutex_lock(&cache_chain_mutex);
1da177e4 1509 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1510 if (enable_cpucache(cachep))
1511 BUG();
fc0abb14 1512 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1513 }
1514
056c6241
RT
1515 /* Annotate slab for lockdep -- annotate the malloc caches */
1516 init_lock_keys();
1517
1518
1da177e4
LT
1519 /* Done! */
1520 g_cpucache_up = FULL;
1521
a737b3e2
AM
1522 /*
1523 * Register a cpu startup notifier callback that initializes
1524 * cpu_cache_get for all new cpus
1da177e4
LT
1525 */
1526 register_cpu_notifier(&cpucache_notifier);
1da177e4 1527
a737b3e2
AM
1528 /*
1529 * The reap timers are started later, with a module init call: That part
1530 * of the kernel is not yet operational.
1da177e4
LT
1531 */
1532}
1533
1534static int __init cpucache_init(void)
1535{
1536 int cpu;
1537
a737b3e2
AM
1538 /*
1539 * Register the timers that return unneeded pages to the page allocator
1da177e4 1540 */
e498be7d 1541 for_each_online_cpu(cpu)
a737b3e2 1542 start_cpu_timer(cpu);
1da177e4
LT
1543 return 0;
1544}
1da177e4
LT
1545__initcall(cpucache_init);
1546
1547/*
1548 * Interface to system's page allocator. No need to hold the cache-lock.
1549 *
1550 * If we requested dmaable memory, we will get it. Even if we
1551 * did not request dmaable memory, we might get it, but that
1552 * would be relatively rare and ignorable.
1553 */
343e0d7a 1554static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1555{
1556 struct page *page;
e1b6aa6f 1557 int nr_pages;
1da177e4
LT
1558 int i;
1559
d6fef9da 1560#ifndef CONFIG_MMU
e1b6aa6f
CH
1561 /*
1562 * Nommu uses slab's for process anonymous memory allocations, and thus
1563 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1564 */
e1b6aa6f 1565 flags |= __GFP_COMP;
d6fef9da 1566#endif
e1b6aa6f
CH
1567 flags |= cachep->gfpflags;
1568
1569 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1570 if (!page)
1571 return NULL;
1da177e4 1572
e1b6aa6f 1573 nr_pages = (1 << cachep->gfporder);
1da177e4 1574 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1575 add_zone_page_state(page_zone(page),
1576 NR_SLAB_RECLAIMABLE, nr_pages);
1577 else
1578 add_zone_page_state(page_zone(page),
1579 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1580 for (i = 0; i < nr_pages; i++)
1581 __SetPageSlab(page + i);
1582 return page_address(page);
1da177e4
LT
1583}
1584
1585/*
1586 * Interface to system's page release.
1587 */
343e0d7a 1588static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1589{
b28a02de 1590 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1591 struct page *page = virt_to_page(addr);
1592 const unsigned long nr_freed = i;
1593
972d1a7b
CL
1594 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1595 sub_zone_page_state(page_zone(page),
1596 NR_SLAB_RECLAIMABLE, nr_freed);
1597 else
1598 sub_zone_page_state(page_zone(page),
1599 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1600 while (i--) {
f205b2fe
NP
1601 BUG_ON(!PageSlab(page));
1602 __ClearPageSlab(page);
1da177e4
LT
1603 page++;
1604 }
1da177e4
LT
1605 if (current->reclaim_state)
1606 current->reclaim_state->reclaimed_slab += nr_freed;
1607 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1608}
1609
1610static void kmem_rcu_free(struct rcu_head *head)
1611{
b28a02de 1612 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1613 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1614
1615 kmem_freepages(cachep, slab_rcu->addr);
1616 if (OFF_SLAB(cachep))
1617 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1618}
1619
1620#if DEBUG
1621
1622#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1623static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1624 unsigned long caller)
1da177e4 1625{
3dafccf2 1626 int size = obj_size(cachep);
1da177e4 1627
3dafccf2 1628 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1629
b28a02de 1630 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1631 return;
1632
b28a02de
PE
1633 *addr++ = 0x12345678;
1634 *addr++ = caller;
1635 *addr++ = smp_processor_id();
1636 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1637 {
1638 unsigned long *sptr = &caller;
1639 unsigned long svalue;
1640
1641 while (!kstack_end(sptr)) {
1642 svalue = *sptr++;
1643 if (kernel_text_address(svalue)) {
b28a02de 1644 *addr++ = svalue;
1da177e4
LT
1645 size -= sizeof(unsigned long);
1646 if (size <= sizeof(unsigned long))
1647 break;
1648 }
1649 }
1650
1651 }
b28a02de 1652 *addr++ = 0x87654321;
1da177e4
LT
1653}
1654#endif
1655
343e0d7a 1656static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1657{
3dafccf2
MS
1658 int size = obj_size(cachep);
1659 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1660
1661 memset(addr, val, size);
b28a02de 1662 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1663}
1664
1665static void dump_line(char *data, int offset, int limit)
1666{
1667 int i;
1668 printk(KERN_ERR "%03x:", offset);
a737b3e2 1669 for (i = 0; i < limit; i++)
b28a02de 1670 printk(" %02x", (unsigned char)data[offset + i]);
1da177e4
LT
1671 printk("\n");
1672}
1673#endif
1674
1675#if DEBUG
1676
343e0d7a 1677static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1678{
1679 int i, size;
1680 char *realobj;
1681
1682 if (cachep->flags & SLAB_RED_ZONE) {
1683 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1684 *dbg_redzone1(cachep, objp),
1685 *dbg_redzone2(cachep, objp));
1da177e4
LT
1686 }
1687
1688 if (cachep->flags & SLAB_STORE_USER) {
1689 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1690 *dbg_userword(cachep, objp));
1da177e4 1691 print_symbol("(%s)",
a737b3e2 1692 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1693 printk("\n");
1694 }
3dafccf2
MS
1695 realobj = (char *)objp + obj_offset(cachep);
1696 size = obj_size(cachep);
b28a02de 1697 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1698 int limit;
1699 limit = 16;
b28a02de
PE
1700 if (i + limit > size)
1701 limit = size - i;
1da177e4
LT
1702 dump_line(realobj, i, limit);
1703 }
1704}
1705
343e0d7a 1706static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1707{
1708 char *realobj;
1709 int size, i;
1710 int lines = 0;
1711
3dafccf2
MS
1712 realobj = (char *)objp + obj_offset(cachep);
1713 size = obj_size(cachep);
1da177e4 1714
b28a02de 1715 for (i = 0; i < size; i++) {
1da177e4 1716 char exp = POISON_FREE;
b28a02de 1717 if (i == size - 1)
1da177e4
LT
1718 exp = POISON_END;
1719 if (realobj[i] != exp) {
1720 int limit;
1721 /* Mismatch ! */
1722 /* Print header */
1723 if (lines == 0) {
b28a02de 1724 printk(KERN_ERR
a737b3e2
AM
1725 "Slab corruption: start=%p, len=%d\n",
1726 realobj, size);
1da177e4
LT
1727 print_objinfo(cachep, objp, 0);
1728 }
1729 /* Hexdump the affected line */
b28a02de 1730 i = (i / 16) * 16;
1da177e4 1731 limit = 16;
b28a02de
PE
1732 if (i + limit > size)
1733 limit = size - i;
1da177e4
LT
1734 dump_line(realobj, i, limit);
1735 i += 16;
1736 lines++;
1737 /* Limit to 5 lines */
1738 if (lines > 5)
1739 break;
1740 }
1741 }
1742 if (lines != 0) {
1743 /* Print some data about the neighboring objects, if they
1744 * exist:
1745 */
6ed5eb22 1746 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1747 unsigned int objnr;
1da177e4 1748
8fea4e96 1749 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1750 if (objnr) {
8fea4e96 1751 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1752 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1753 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1754 realobj, size);
1da177e4
LT
1755 print_objinfo(cachep, objp, 2);
1756 }
b28a02de 1757 if (objnr + 1 < cachep->num) {
8fea4e96 1758 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1759 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1760 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1761 realobj, size);
1da177e4
LT
1762 print_objinfo(cachep, objp, 2);
1763 }
1764 }
1765}
1766#endif
1767
12dd36fa
MD
1768#if DEBUG
1769/**
911851e6
RD
1770 * slab_destroy_objs - destroy a slab and its objects
1771 * @cachep: cache pointer being destroyed
1772 * @slabp: slab pointer being destroyed
1773 *
1774 * Call the registered destructor for each object in a slab that is being
1775 * destroyed.
1da177e4 1776 */
343e0d7a 1777static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1778{
1da177e4
LT
1779 int i;
1780 for (i = 0; i < cachep->num; i++) {
8fea4e96 1781 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1782
1783 if (cachep->flags & SLAB_POISON) {
1784#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1785 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1786 OFF_SLAB(cachep))
b28a02de 1787 kernel_map_pages(virt_to_page(objp),
a737b3e2 1788 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1789 else
1790 check_poison_obj(cachep, objp);
1791#else
1792 check_poison_obj(cachep, objp);
1793#endif
1794 }
1795 if (cachep->flags & SLAB_RED_ZONE) {
1796 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1797 slab_error(cachep, "start of a freed object "
b28a02de 1798 "was overwritten");
1da177e4
LT
1799 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1800 slab_error(cachep, "end of a freed object "
b28a02de 1801 "was overwritten");
1da177e4
LT
1802 }
1803 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1804 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1805 }
12dd36fa 1806}
1da177e4 1807#else
343e0d7a 1808static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1809{
1da177e4
LT
1810 if (cachep->dtor) {
1811 int i;
1812 for (i = 0; i < cachep->num; i++) {
8fea4e96 1813 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1814 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1815 }
1816 }
12dd36fa 1817}
1da177e4
LT
1818#endif
1819
911851e6
RD
1820/**
1821 * slab_destroy - destroy and release all objects in a slab
1822 * @cachep: cache pointer being destroyed
1823 * @slabp: slab pointer being destroyed
1824 *
12dd36fa 1825 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1826 * Before calling the slab must have been unlinked from the cache. The
1827 * cache-lock is not held/needed.
12dd36fa 1828 */
343e0d7a 1829static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1830{
1831 void *addr = slabp->s_mem - slabp->colouroff;
1832
1833 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1834 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1835 struct slab_rcu *slab_rcu;
1836
b28a02de 1837 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1838 slab_rcu->cachep = cachep;
1839 slab_rcu->addr = addr;
1840 call_rcu(&slab_rcu->head, kmem_rcu_free);
1841 } else {
1842 kmem_freepages(cachep, addr);
873623df
IM
1843 if (OFF_SLAB(cachep))
1844 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1845 }
1846}
1847
a737b3e2
AM
1848/*
1849 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1850 * size of kmem_list3.
1851 */
343e0d7a 1852static void set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1853{
1854 int node;
1855
1856 for_each_online_node(node) {
b28a02de 1857 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1858 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1859 REAPTIMEOUT_LIST3 +
1860 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1861 }
1862}
1863
117f6eb1
CL
1864static void __kmem_cache_destroy(struct kmem_cache *cachep)
1865{
1866 int i;
1867 struct kmem_list3 *l3;
1868
1869 for_each_online_cpu(i)
1870 kfree(cachep->array[i]);
1871
1872 /* NUMA: free the list3 structures */
1873 for_each_online_node(i) {
1874 l3 = cachep->nodelists[i];
1875 if (l3) {
1876 kfree(l3->shared);
1877 free_alien_cache(l3->alien);
1878 kfree(l3);
1879 }
1880 }
1881 kmem_cache_free(&cache_cache, cachep);
1882}
1883
1884
4d268eba 1885/**
a70773dd
RD
1886 * calculate_slab_order - calculate size (page order) of slabs
1887 * @cachep: pointer to the cache that is being created
1888 * @size: size of objects to be created in this cache.
1889 * @align: required alignment for the objects.
1890 * @flags: slab allocation flags
1891 *
1892 * Also calculates the number of objects per slab.
4d268eba
PE
1893 *
1894 * This could be made much more intelligent. For now, try to avoid using
1895 * high order pages for slabs. When the gfp() functions are more friendly
1896 * towards high-order requests, this should be changed.
1897 */
a737b3e2 1898static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1899 size_t size, size_t align, unsigned long flags)
4d268eba 1900{
b1ab41c4 1901 unsigned long offslab_limit;
4d268eba 1902 size_t left_over = 0;
9888e6fa 1903 int gfporder;
4d268eba 1904
a737b3e2 1905 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
1906 unsigned int num;
1907 size_t remainder;
1908
9888e6fa 1909 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1910 if (!num)
1911 continue;
9888e6fa 1912
b1ab41c4
IM
1913 if (flags & CFLGS_OFF_SLAB) {
1914 /*
1915 * Max number of objs-per-slab for caches which
1916 * use off-slab slabs. Needed to avoid a possible
1917 * looping condition in cache_grow().
1918 */
1919 offslab_limit = size - sizeof(struct slab);
1920 offslab_limit /= sizeof(kmem_bufctl_t);
1921
1922 if (num > offslab_limit)
1923 break;
1924 }
4d268eba 1925
9888e6fa 1926 /* Found something acceptable - save it away */
4d268eba 1927 cachep->num = num;
9888e6fa 1928 cachep->gfporder = gfporder;
4d268eba
PE
1929 left_over = remainder;
1930
f78bb8ad
LT
1931 /*
1932 * A VFS-reclaimable slab tends to have most allocations
1933 * as GFP_NOFS and we really don't want to have to be allocating
1934 * higher-order pages when we are unable to shrink dcache.
1935 */
1936 if (flags & SLAB_RECLAIM_ACCOUNT)
1937 break;
1938
4d268eba
PE
1939 /*
1940 * Large number of objects is good, but very large slabs are
1941 * currently bad for the gfp()s.
1942 */
9888e6fa 1943 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1944 break;
1945
9888e6fa
LT
1946 /*
1947 * Acceptable internal fragmentation?
1948 */
a737b3e2 1949 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1950 break;
1951 }
1952 return left_over;
1953}
1954
2ed3a4ef 1955static int setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 1956{
2ed3a4ef
CL
1957 if (g_cpucache_up == FULL)
1958 return enable_cpucache(cachep);
1959
f30cf7d1
PE
1960 if (g_cpucache_up == NONE) {
1961 /*
1962 * Note: the first kmem_cache_create must create the cache
1963 * that's used by kmalloc(24), otherwise the creation of
1964 * further caches will BUG().
1965 */
1966 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1967
1968 /*
1969 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1970 * the first cache, then we need to set up all its list3s,
1971 * otherwise the creation of further caches will BUG().
1972 */
1973 set_up_list3s(cachep, SIZE_AC);
1974 if (INDEX_AC == INDEX_L3)
1975 g_cpucache_up = PARTIAL_L3;
1976 else
1977 g_cpucache_up = PARTIAL_AC;
1978 } else {
1979 cachep->array[smp_processor_id()] =
1980 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1981
1982 if (g_cpucache_up == PARTIAL_AC) {
1983 set_up_list3s(cachep, SIZE_L3);
1984 g_cpucache_up = PARTIAL_L3;
1985 } else {
1986 int node;
1987 for_each_online_node(node) {
1988 cachep->nodelists[node] =
1989 kmalloc_node(sizeof(struct kmem_list3),
1990 GFP_KERNEL, node);
1991 BUG_ON(!cachep->nodelists[node]);
1992 kmem_list3_init(cachep->nodelists[node]);
1993 }
1994 }
1995 }
1996 cachep->nodelists[numa_node_id()]->next_reap =
1997 jiffies + REAPTIMEOUT_LIST3 +
1998 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1999
2000 cpu_cache_get(cachep)->avail = 0;
2001 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2002 cpu_cache_get(cachep)->batchcount = 1;
2003 cpu_cache_get(cachep)->touched = 0;
2004 cachep->batchcount = 1;
2005 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2006 return 0;
f30cf7d1
PE
2007}
2008
1da177e4
LT
2009/**
2010 * kmem_cache_create - Create a cache.
2011 * @name: A string which is used in /proc/slabinfo to identify this cache.
2012 * @size: The size of objects to be created in this cache.
2013 * @align: The required alignment for the objects.
2014 * @flags: SLAB flags
2015 * @ctor: A constructor for the objects.
2016 * @dtor: A destructor for the objects.
2017 *
2018 * Returns a ptr to the cache on success, NULL on failure.
2019 * Cannot be called within a int, but can be interrupted.
2020 * The @ctor is run when new pages are allocated by the cache
2021 * and the @dtor is run before the pages are handed back.
2022 *
2023 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2024 * the module calling this has to destroy the cache before getting unloaded.
2025 *
1da177e4
LT
2026 * The flags are
2027 *
2028 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2029 * to catch references to uninitialised memory.
2030 *
2031 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2032 * for buffer overruns.
2033 *
1da177e4
LT
2034 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2035 * cacheline. This can be beneficial if you're counting cycles as closely
2036 * as davem.
2037 */
343e0d7a 2038struct kmem_cache *
1da177e4 2039kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2040 unsigned long flags,
2041 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2042 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2043{
2044 size_t left_over, slab_size, ralign;
7a7c381d 2045 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2046
2047 /*
2048 * Sanity checks... these are all serious usage bugs.
2049 */
a737b3e2 2050 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 2051 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
2052 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2053 name);
b28a02de
PE
2054 BUG();
2055 }
1da177e4 2056
f0188f47
RT
2057 /*
2058 * Prevent CPUs from coming and going.
2059 * lock_cpu_hotplug() nests outside cache_chain_mutex
2060 */
2061 lock_cpu_hotplug();
2062
fc0abb14 2063 mutex_lock(&cache_chain_mutex);
4f12bb4f 2064
7a7c381d 2065 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2066 mm_segment_t old_fs = get_fs();
2067 char tmp;
2068 int res;
2069
2070 /*
2071 * This happens when the module gets unloaded and doesn't
2072 * destroy its slab cache and no-one else reuses the vmalloc
2073 * area of the module. Print a warning.
2074 */
2075 set_fs(KERNEL_DS);
2076 res = __get_user(tmp, pc->name);
2077 set_fs(old_fs);
2078 if (res) {
2079 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 2080 pc->buffer_size);
4f12bb4f
AM
2081 continue;
2082 }
2083
b28a02de 2084 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
2085 printk("kmem_cache_create: duplicate cache %s\n", name);
2086 dump_stack();
2087 goto oops;
2088 }
2089 }
2090
1da177e4
LT
2091#if DEBUG
2092 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2093 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2094 /* No constructor, but inital state check requested */
2095 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 2096 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
2097 flags &= ~SLAB_DEBUG_INITIAL;
2098 }
1da177e4
LT
2099#if FORCED_DEBUG
2100 /*
2101 * Enable redzoning and last user accounting, except for caches with
2102 * large objects, if the increased size would increase the object size
2103 * above the next power of two: caches with object sizes just above a
2104 * power of two have a significant amount of internal fragmentation.
2105 */
a737b3e2 2106 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2107 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2108 if (!(flags & SLAB_DESTROY_BY_RCU))
2109 flags |= SLAB_POISON;
2110#endif
2111 if (flags & SLAB_DESTROY_BY_RCU)
2112 BUG_ON(flags & SLAB_POISON);
2113#endif
2114 if (flags & SLAB_DESTROY_BY_RCU)
2115 BUG_ON(dtor);
2116
2117 /*
a737b3e2
AM
2118 * Always checks flags, a caller might be expecting debug support which
2119 * isn't available.
1da177e4 2120 */
40094fa6 2121 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2122
a737b3e2
AM
2123 /*
2124 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2125 * unaligned accesses for some archs when redzoning is used, and makes
2126 * sure any on-slab bufctl's are also correctly aligned.
2127 */
b28a02de
PE
2128 if (size & (BYTES_PER_WORD - 1)) {
2129 size += (BYTES_PER_WORD - 1);
2130 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2131 }
2132
a737b3e2
AM
2133 /* calculate the final buffer alignment: */
2134
1da177e4
LT
2135 /* 1) arch recommendation: can be overridden for debug */
2136 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2137 /*
2138 * Default alignment: as specified by the arch code. Except if
2139 * an object is really small, then squeeze multiple objects into
2140 * one cacheline.
1da177e4
LT
2141 */
2142 ralign = cache_line_size();
b28a02de 2143 while (size <= ralign / 2)
1da177e4
LT
2144 ralign /= 2;
2145 } else {
2146 ralign = BYTES_PER_WORD;
2147 }
ca5f9703
PE
2148
2149 /*
2150 * Redzoning and user store require word alignment. Note this will be
2151 * overridden by architecture or caller mandated alignment if either
2152 * is greater than BYTES_PER_WORD.
2153 */
2154 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2155 ralign = BYTES_PER_WORD;
2156
1da177e4
LT
2157 /* 2) arch mandated alignment: disables debug if necessary */
2158 if (ralign < ARCH_SLAB_MINALIGN) {
2159 ralign = ARCH_SLAB_MINALIGN;
2160 if (ralign > BYTES_PER_WORD)
b28a02de 2161 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4
LT
2162 }
2163 /* 3) caller mandated alignment: disables debug if necessary */
2164 if (ralign < align) {
2165 ralign = align;
2166 if (ralign > BYTES_PER_WORD)
b28a02de 2167 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1da177e4 2168 }
a737b3e2 2169 /*
ca5f9703 2170 * 4) Store it.
1da177e4
LT
2171 */
2172 align = ralign;
2173
2174 /* Get cache's description obj. */
c5e3b83e 2175 cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
1da177e4 2176 if (!cachep)
4f12bb4f 2177 goto oops;
1da177e4
LT
2178
2179#if DEBUG
3dafccf2 2180 cachep->obj_size = size;
1da177e4 2181
ca5f9703
PE
2182 /*
2183 * Both debugging options require word-alignment which is calculated
2184 * into align above.
2185 */
1da177e4 2186 if (flags & SLAB_RED_ZONE) {
1da177e4 2187 /* add space for red zone words */
3dafccf2 2188 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2189 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2190 }
2191 if (flags & SLAB_STORE_USER) {
ca5f9703
PE
2192 /* user store requires one word storage behind the end of
2193 * the real object.
1da177e4 2194 */
1da177e4
LT
2195 size += BYTES_PER_WORD;
2196 }
2197#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2198 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2199 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2200 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2201 size = PAGE_SIZE;
2202 }
2203#endif
2204#endif
2205
e0a42726
IM
2206 /*
2207 * Determine if the slab management is 'on' or 'off' slab.
2208 * (bootstrapping cannot cope with offslab caches so don't do
2209 * it too early on.)
2210 */
2211 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2212 /*
2213 * Size is large, assume best to place the slab management obj
2214 * off-slab (should allow better packing of objs).
2215 */
2216 flags |= CFLGS_OFF_SLAB;
2217
2218 size = ALIGN(size, align);
2219
f78bb8ad 2220 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2221
2222 if (!cachep->num) {
2223 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2224 kmem_cache_free(&cache_cache, cachep);
2225 cachep = NULL;
4f12bb4f 2226 goto oops;
1da177e4 2227 }
b28a02de
PE
2228 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2229 + sizeof(struct slab), align);
1da177e4
LT
2230
2231 /*
2232 * If the slab has been placed off-slab, and we have enough space then
2233 * move it on-slab. This is at the expense of any extra colouring.
2234 */
2235 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2236 flags &= ~CFLGS_OFF_SLAB;
2237 left_over -= slab_size;
2238 }
2239
2240 if (flags & CFLGS_OFF_SLAB) {
2241 /* really off slab. No need for manual alignment */
b28a02de
PE
2242 slab_size =
2243 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2244 }
2245
2246 cachep->colour_off = cache_line_size();
2247 /* Offset must be a multiple of the alignment. */
2248 if (cachep->colour_off < align)
2249 cachep->colour_off = align;
b28a02de 2250 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2251 cachep->slab_size = slab_size;
2252 cachep->flags = flags;
2253 cachep->gfpflags = 0;
2254 if (flags & SLAB_CACHE_DMA)
2255 cachep->gfpflags |= GFP_DMA;
3dafccf2 2256 cachep->buffer_size = size;
1da177e4 2257
e5ac9c5a 2258 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2259 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2260 /*
2261 * This is a possibility for one of the malloc_sizes caches.
2262 * But since we go off slab only for object size greater than
2263 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2264 * this should not happen at all.
2265 * But leave a BUG_ON for some lucky dude.
2266 */
2267 BUG_ON(!cachep->slabp_cache);
2268 }
1da177e4
LT
2269 cachep->ctor = ctor;
2270 cachep->dtor = dtor;
2271 cachep->name = name;
2272
2ed3a4ef
CL
2273 if (setup_cpu_cache(cachep)) {
2274 __kmem_cache_destroy(cachep);
2275 cachep = NULL;
2276 goto oops;
2277 }
1da177e4 2278
1da177e4
LT
2279 /* cache setup completed, link it into the list */
2280 list_add(&cachep->next, &cache_chain);
a737b3e2 2281oops:
1da177e4
LT
2282 if (!cachep && (flags & SLAB_PANIC))
2283 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2284 name);
fc0abb14 2285 mutex_unlock(&cache_chain_mutex);
f0188f47 2286 unlock_cpu_hotplug();
1da177e4
LT
2287 return cachep;
2288}
2289EXPORT_SYMBOL(kmem_cache_create);
2290
2291#if DEBUG
2292static void check_irq_off(void)
2293{
2294 BUG_ON(!irqs_disabled());
2295}
2296
2297static void check_irq_on(void)
2298{
2299 BUG_ON(irqs_disabled());
2300}
2301
343e0d7a 2302static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2303{
2304#ifdef CONFIG_SMP
2305 check_irq_off();
e498be7d 2306 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2307#endif
2308}
e498be7d 2309
343e0d7a 2310static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2311{
2312#ifdef CONFIG_SMP
2313 check_irq_off();
2314 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2315#endif
2316}
2317
1da177e4
LT
2318#else
2319#define check_irq_off() do { } while(0)
2320#define check_irq_on() do { } while(0)
2321#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2322#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2323#endif
2324
aab2207c
CL
2325static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2326 struct array_cache *ac,
2327 int force, int node);
2328
1da177e4
LT
2329static void do_drain(void *arg)
2330{
a737b3e2 2331 struct kmem_cache *cachep = arg;
1da177e4 2332 struct array_cache *ac;
ff69416e 2333 int node = numa_node_id();
1da177e4
LT
2334
2335 check_irq_off();
9a2dba4b 2336 ac = cpu_cache_get(cachep);
ff69416e
CL
2337 spin_lock(&cachep->nodelists[node]->list_lock);
2338 free_block(cachep, ac->entry, ac->avail, node);
2339 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2340 ac->avail = 0;
2341}
2342
343e0d7a 2343static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2344{
e498be7d
CL
2345 struct kmem_list3 *l3;
2346 int node;
2347
a07fa394 2348 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2349 check_irq_on();
b28a02de 2350 for_each_online_node(node) {
e498be7d 2351 l3 = cachep->nodelists[node];
a4523a8b
RD
2352 if (l3 && l3->alien)
2353 drain_alien_cache(cachep, l3->alien);
2354 }
2355
2356 for_each_online_node(node) {
2357 l3 = cachep->nodelists[node];
2358 if (l3)
aab2207c 2359 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2360 }
1da177e4
LT
2361}
2362
ed11d9eb
CL
2363/*
2364 * Remove slabs from the list of free slabs.
2365 * Specify the number of slabs to drain in tofree.
2366 *
2367 * Returns the actual number of slabs released.
2368 */
2369static int drain_freelist(struct kmem_cache *cache,
2370 struct kmem_list3 *l3, int tofree)
1da177e4 2371{
ed11d9eb
CL
2372 struct list_head *p;
2373 int nr_freed;
1da177e4 2374 struct slab *slabp;
1da177e4 2375
ed11d9eb
CL
2376 nr_freed = 0;
2377 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2378
ed11d9eb 2379 spin_lock_irq(&l3->list_lock);
e498be7d 2380 p = l3->slabs_free.prev;
ed11d9eb
CL
2381 if (p == &l3->slabs_free) {
2382 spin_unlock_irq(&l3->list_lock);
2383 goto out;
2384 }
1da177e4 2385
ed11d9eb 2386 slabp = list_entry(p, struct slab, list);
1da177e4 2387#if DEBUG
40094fa6 2388 BUG_ON(slabp->inuse);
1da177e4
LT
2389#endif
2390 list_del(&slabp->list);
ed11d9eb
CL
2391 /*
2392 * Safe to drop the lock. The slab is no longer linked
2393 * to the cache.
2394 */
2395 l3->free_objects -= cache->num;
e498be7d 2396 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2397 slab_destroy(cache, slabp);
2398 nr_freed++;
1da177e4 2399 }
ed11d9eb
CL
2400out:
2401 return nr_freed;
1da177e4
LT
2402}
2403
343e0d7a 2404static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2405{
2406 int ret = 0, i = 0;
2407 struct kmem_list3 *l3;
2408
2409 drain_cpu_caches(cachep);
2410
2411 check_irq_on();
2412 for_each_online_node(i) {
2413 l3 = cachep->nodelists[i];
ed11d9eb
CL
2414 if (!l3)
2415 continue;
2416
2417 drain_freelist(cachep, l3, l3->free_objects);
2418
2419 ret += !list_empty(&l3->slabs_full) ||
2420 !list_empty(&l3->slabs_partial);
e498be7d
CL
2421 }
2422 return (ret ? 1 : 0);
2423}
2424
1da177e4
LT
2425/**
2426 * kmem_cache_shrink - Shrink a cache.
2427 * @cachep: The cache to shrink.
2428 *
2429 * Releases as many slabs as possible for a cache.
2430 * To help debugging, a zero exit status indicates all slabs were released.
2431 */
343e0d7a 2432int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2433{
40094fa6 2434 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2435
2436 return __cache_shrink(cachep);
2437}
2438EXPORT_SYMBOL(kmem_cache_shrink);
2439
2440/**
2441 * kmem_cache_destroy - delete a cache
2442 * @cachep: the cache to destroy
2443 *
343e0d7a 2444 * Remove a struct kmem_cache object from the slab cache.
1da177e4
LT
2445 *
2446 * It is expected this function will be called by a module when it is
2447 * unloaded. This will remove the cache completely, and avoid a duplicate
2448 * cache being allocated each time a module is loaded and unloaded, if the
2449 * module doesn't have persistent in-kernel storage across loads and unloads.
2450 *
2451 * The cache must be empty before calling this function.
2452 *
2453 * The caller must guarantee that noone will allocate memory from the cache
2454 * during the kmem_cache_destroy().
2455 */
133d205a 2456void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2457{
40094fa6 2458 BUG_ON(!cachep || in_interrupt());
1da177e4
LT
2459
2460 /* Don't let CPUs to come and go */
2461 lock_cpu_hotplug();
2462
2463 /* Find the cache in the chain of caches. */
fc0abb14 2464 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2465 /*
2466 * the chain is never empty, cache_cache is never destroyed
2467 */
2468 list_del(&cachep->next);
fc0abb14 2469 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2470
2471 if (__cache_shrink(cachep)) {
2472 slab_error(cachep, "Can't free all objects");
fc0abb14 2473 mutex_lock(&cache_chain_mutex);
b28a02de 2474 list_add(&cachep->next, &cache_chain);
fc0abb14 2475 mutex_unlock(&cache_chain_mutex);
1da177e4 2476 unlock_cpu_hotplug();
133d205a 2477 return;
1da177e4
LT
2478 }
2479
2480 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2481 synchronize_rcu();
1da177e4 2482
117f6eb1 2483 __kmem_cache_destroy(cachep);
1da177e4 2484 unlock_cpu_hotplug();
1da177e4
LT
2485}
2486EXPORT_SYMBOL(kmem_cache_destroy);
2487
e5ac9c5a
RT
2488/*
2489 * Get the memory for a slab management obj.
2490 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2491 * always come from malloc_sizes caches. The slab descriptor cannot
2492 * come from the same cache which is getting created because,
2493 * when we are searching for an appropriate cache for these
2494 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2495 * If we are creating a malloc_sizes cache here it would not be visible to
2496 * kmem_find_general_cachep till the initialization is complete.
2497 * Hence we cannot have slabp_cache same as the original cache.
2498 */
343e0d7a 2499static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2500 int colour_off, gfp_t local_flags,
2501 int nodeid)
1da177e4
LT
2502{
2503 struct slab *slabp;
b28a02de 2504
1da177e4
LT
2505 if (OFF_SLAB(cachep)) {
2506 /* Slab management obj is off-slab. */
5b74ada7
RT
2507 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2508 local_flags, nodeid);
1da177e4
LT
2509 if (!slabp)
2510 return NULL;
2511 } else {
b28a02de 2512 slabp = objp + colour_off;
1da177e4
LT
2513 colour_off += cachep->slab_size;
2514 }
2515 slabp->inuse = 0;
2516 slabp->colouroff = colour_off;
b28a02de 2517 slabp->s_mem = objp + colour_off;
5b74ada7 2518 slabp->nodeid = nodeid;
1da177e4
LT
2519 return slabp;
2520}
2521
2522static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2523{
b28a02de 2524 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2525}
2526
343e0d7a 2527static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2528 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2529{
2530 int i;
2531
2532 for (i = 0; i < cachep->num; i++) {
8fea4e96 2533 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2534#if DEBUG
2535 /* need to poison the objs? */
2536 if (cachep->flags & SLAB_POISON)
2537 poison_obj(cachep, objp, POISON_FREE);
2538 if (cachep->flags & SLAB_STORE_USER)
2539 *dbg_userword(cachep, objp) = NULL;
2540
2541 if (cachep->flags & SLAB_RED_ZONE) {
2542 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2543 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2544 }
2545 /*
a737b3e2
AM
2546 * Constructors are not allowed to allocate memory from the same
2547 * cache which they are a constructor for. Otherwise, deadlock.
2548 * They must also be threaded.
1da177e4
LT
2549 */
2550 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2551 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2552 ctor_flags);
1da177e4
LT
2553
2554 if (cachep->flags & SLAB_RED_ZONE) {
2555 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2556 slab_error(cachep, "constructor overwrote the"
b28a02de 2557 " end of an object");
1da177e4
LT
2558 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2559 slab_error(cachep, "constructor overwrote the"
b28a02de 2560 " start of an object");
1da177e4 2561 }
a737b3e2
AM
2562 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2563 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2564 kernel_map_pages(virt_to_page(objp),
3dafccf2 2565 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2566#else
2567 if (cachep->ctor)
2568 cachep->ctor(objp, cachep, ctor_flags);
2569#endif
b28a02de 2570 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2571 }
b28a02de 2572 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2573 slabp->free = 0;
2574}
2575
343e0d7a 2576static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2577{
a737b3e2
AM
2578 if (flags & SLAB_DMA)
2579 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2580 else
2581 BUG_ON(cachep->gfpflags & GFP_DMA);
1da177e4
LT
2582}
2583
a737b3e2
AM
2584static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2585 int nodeid)
78d382d7 2586{
8fea4e96 2587 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2588 kmem_bufctl_t next;
2589
2590 slabp->inuse++;
2591 next = slab_bufctl(slabp)[slabp->free];
2592#if DEBUG
2593 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2594 WARN_ON(slabp->nodeid != nodeid);
2595#endif
2596 slabp->free = next;
2597
2598 return objp;
2599}
2600
a737b3e2
AM
2601static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2602 void *objp, int nodeid)
78d382d7 2603{
8fea4e96 2604 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2605
2606#if DEBUG
2607 /* Verify that the slab belongs to the intended node */
2608 WARN_ON(slabp->nodeid != nodeid);
2609
871751e2 2610 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2611 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2612 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2613 BUG();
2614 }
2615#endif
2616 slab_bufctl(slabp)[objnr] = slabp->free;
2617 slabp->free = objnr;
2618 slabp->inuse--;
2619}
2620
4776874f
PE
2621/*
2622 * Map pages beginning at addr to the given cache and slab. This is required
2623 * for the slab allocator to be able to lookup the cache and slab of a
2624 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2625 */
2626static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2627 void *addr)
1da177e4 2628{
4776874f 2629 int nr_pages;
1da177e4
LT
2630 struct page *page;
2631
4776874f 2632 page = virt_to_page(addr);
84097518 2633
4776874f 2634 nr_pages = 1;
84097518 2635 if (likely(!PageCompound(page)))
4776874f
PE
2636 nr_pages <<= cache->gfporder;
2637
1da177e4 2638 do {
4776874f
PE
2639 page_set_cache(page, cache);
2640 page_set_slab(page, slab);
1da177e4 2641 page++;
4776874f 2642 } while (--nr_pages);
1da177e4
LT
2643}
2644
2645/*
2646 * Grow (by 1) the number of slabs within a cache. This is called by
2647 * kmem_cache_alloc() when there are no active objs left in a cache.
2648 */
343e0d7a 2649static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 2650{
b28a02de
PE
2651 struct slab *slabp;
2652 void *objp;
2653 size_t offset;
2654 gfp_t local_flags;
2655 unsigned long ctor_flags;
e498be7d 2656 struct kmem_list3 *l3;
1da177e4 2657
a737b3e2
AM
2658 /*
2659 * Be lazy and only check for valid flags here, keeping it out of the
2660 * critical path in kmem_cache_alloc().
1da177e4 2661 */
40094fa6 2662 BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
1da177e4
LT
2663 if (flags & SLAB_NO_GROW)
2664 return 0;
2665
2666 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2667 local_flags = (flags & SLAB_LEVEL_MASK);
2668 if (!(local_flags & __GFP_WAIT))
2669 /*
2670 * Not allowed to sleep. Need to tell a constructor about
2671 * this - it might need to know...
2672 */
2673 ctor_flags |= SLAB_CTOR_ATOMIC;
2674
2e1217cf 2675 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2676 check_irq_off();
2e1217cf
RT
2677 l3 = cachep->nodelists[nodeid];
2678 spin_lock(&l3->list_lock);
1da177e4
LT
2679
2680 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2681 offset = l3->colour_next;
2682 l3->colour_next++;
2683 if (l3->colour_next >= cachep->colour)
2684 l3->colour_next = 0;
2685 spin_unlock(&l3->list_lock);
1da177e4 2686
2e1217cf 2687 offset *= cachep->colour_off;
1da177e4
LT
2688
2689 if (local_flags & __GFP_WAIT)
2690 local_irq_enable();
2691
2692 /*
2693 * The test for missing atomic flag is performed here, rather than
2694 * the more obvious place, simply to reduce the critical path length
2695 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2696 * will eventually be caught here (where it matters).
2697 */
2698 kmem_flagcheck(cachep, flags);
2699
a737b3e2
AM
2700 /*
2701 * Get mem for the objs. Attempt to allocate a physical page from
2702 * 'nodeid'.
e498be7d 2703 */
a737b3e2
AM
2704 objp = kmem_getpages(cachep, flags, nodeid);
2705 if (!objp)
1da177e4
LT
2706 goto failed;
2707
2708 /* Get slab management. */
5b74ada7 2709 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
a737b3e2 2710 if (!slabp)
1da177e4
LT
2711 goto opps1;
2712
e498be7d 2713 slabp->nodeid = nodeid;
4776874f 2714 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2715
2716 cache_init_objs(cachep, slabp, ctor_flags);
2717
2718 if (local_flags & __GFP_WAIT)
2719 local_irq_disable();
2720 check_irq_off();
e498be7d 2721 spin_lock(&l3->list_lock);
1da177e4
LT
2722
2723 /* Make slab active. */
e498be7d 2724 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2725 STATS_INC_GROWN(cachep);
e498be7d
CL
2726 l3->free_objects += cachep->num;
2727 spin_unlock(&l3->list_lock);
1da177e4 2728 return 1;
a737b3e2 2729opps1:
1da177e4 2730 kmem_freepages(cachep, objp);
a737b3e2 2731failed:
1da177e4
LT
2732 if (local_flags & __GFP_WAIT)
2733 local_irq_disable();
2734 return 0;
2735}
2736
2737#if DEBUG
2738
2739/*
2740 * Perform extra freeing checks:
2741 * - detect bad pointers.
2742 * - POISON/RED_ZONE checking
2743 * - destructor calls, for caches with POISON+dtor
2744 */
2745static void kfree_debugcheck(const void *objp)
2746{
2747 struct page *page;
2748
2749 if (!virt_addr_valid(objp)) {
2750 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2751 (unsigned long)objp);
2752 BUG();
1da177e4
LT
2753 }
2754 page = virt_to_page(objp);
2755 if (!PageSlab(page)) {
b28a02de
PE
2756 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2757 (unsigned long)objp);
1da177e4
LT
2758 BUG();
2759 }
2760}
2761
58ce1fd5
PE
2762static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2763{
2764 unsigned long redzone1, redzone2;
2765
2766 redzone1 = *dbg_redzone1(cache, obj);
2767 redzone2 = *dbg_redzone2(cache, obj);
2768
2769 /*
2770 * Redzone is ok.
2771 */
2772 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2773 return;
2774
2775 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2776 slab_error(cache, "double free detected");
2777 else
2778 slab_error(cache, "memory outside object was overwritten");
2779
2780 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2781 obj, redzone1, redzone2);
2782}
2783
343e0d7a 2784static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2785 void *caller)
1da177e4
LT
2786{
2787 struct page *page;
2788 unsigned int objnr;
2789 struct slab *slabp;
2790
3dafccf2 2791 objp -= obj_offset(cachep);
1da177e4
LT
2792 kfree_debugcheck(objp);
2793 page = virt_to_page(objp);
2794
065d41cb 2795 slabp = page_get_slab(page);
1da177e4
LT
2796
2797 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2798 verify_redzone_free(cachep, objp);
1da177e4
LT
2799 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2800 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2801 }
2802 if (cachep->flags & SLAB_STORE_USER)
2803 *dbg_userword(cachep, objp) = caller;
2804
8fea4e96 2805 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2806
2807 BUG_ON(objnr >= cachep->num);
8fea4e96 2808 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2809
2810 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2811 /*
2812 * Need to call the slab's constructor so the caller can
2813 * perform a verify of its state (debugging). Called without
2814 * the cache-lock held.
1da177e4 2815 */
3dafccf2 2816 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2817 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2818 }
2819 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2820 /* we want to cache poison the object,
2821 * call the destruction callback
2822 */
3dafccf2 2823 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2824 }
871751e2
AV
2825#ifdef CONFIG_DEBUG_SLAB_LEAK
2826 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2827#endif
1da177e4
LT
2828 if (cachep->flags & SLAB_POISON) {
2829#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2830 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2831 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2832 kernel_map_pages(virt_to_page(objp),
3dafccf2 2833 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2834 } else {
2835 poison_obj(cachep, objp, POISON_FREE);
2836 }
2837#else
2838 poison_obj(cachep, objp, POISON_FREE);
2839#endif
2840 }
2841 return objp;
2842}
2843
343e0d7a 2844static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2845{
2846 kmem_bufctl_t i;
2847 int entries = 0;
b28a02de 2848
1da177e4
LT
2849 /* Check slab's freelist to see if this obj is there. */
2850 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2851 entries++;
2852 if (entries > cachep->num || i >= cachep->num)
2853 goto bad;
2854 }
2855 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2856bad:
2857 printk(KERN_ERR "slab: Internal list corruption detected in "
2858 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2859 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2860 for (i = 0;
264132bc 2861 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2862 i++) {
a737b3e2 2863 if (i % 16 == 0)
1da177e4 2864 printk("\n%03x:", i);
b28a02de 2865 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2866 }
2867 printk("\n");
2868 BUG();
2869 }
2870}
2871#else
2872#define kfree_debugcheck(x) do { } while(0)
2873#define cache_free_debugcheck(x,objp,z) (objp)
2874#define check_slabp(x,y) do { } while(0)
2875#endif
2876
343e0d7a 2877static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2878{
2879 int batchcount;
2880 struct kmem_list3 *l3;
2881 struct array_cache *ac;
2882
2883 check_irq_off();
9a2dba4b 2884 ac = cpu_cache_get(cachep);
a737b3e2 2885retry:
1da177e4
LT
2886 batchcount = ac->batchcount;
2887 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2888 /*
2889 * If there was little recent activity on this cache, then
2890 * perform only a partial refill. Otherwise we could generate
2891 * refill bouncing.
1da177e4
LT
2892 */
2893 batchcount = BATCHREFILL_LIMIT;
2894 }
e498be7d
CL
2895 l3 = cachep->nodelists[numa_node_id()];
2896
2897 BUG_ON(ac->avail > 0 || !l3);
2898 spin_lock(&l3->list_lock);
1da177e4 2899
3ded175a
CL
2900 /* See if we can refill from the shared array */
2901 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2902 goto alloc_done;
2903
1da177e4
LT
2904 while (batchcount > 0) {
2905 struct list_head *entry;
2906 struct slab *slabp;
2907 /* Get slab alloc is to come from. */
2908 entry = l3->slabs_partial.next;
2909 if (entry == &l3->slabs_partial) {
2910 l3->free_touched = 1;
2911 entry = l3->slabs_free.next;
2912 if (entry == &l3->slabs_free)
2913 goto must_grow;
2914 }
2915
2916 slabp = list_entry(entry, struct slab, list);
2917 check_slabp(cachep, slabp);
2918 check_spinlock_acquired(cachep);
2919 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2920 STATS_INC_ALLOCED(cachep);
2921 STATS_INC_ACTIVE(cachep);
2922 STATS_SET_HIGH(cachep);
2923
78d382d7
MD
2924 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2925 numa_node_id());
1da177e4
LT
2926 }
2927 check_slabp(cachep, slabp);
2928
2929 /* move slabp to correct slabp list: */
2930 list_del(&slabp->list);
2931 if (slabp->free == BUFCTL_END)
2932 list_add(&slabp->list, &l3->slabs_full);
2933 else
2934 list_add(&slabp->list, &l3->slabs_partial);
2935 }
2936
a737b3e2 2937must_grow:
1da177e4 2938 l3->free_objects -= ac->avail;
a737b3e2 2939alloc_done:
e498be7d 2940 spin_unlock(&l3->list_lock);
1da177e4
LT
2941
2942 if (unlikely(!ac->avail)) {
2943 int x;
e498be7d
CL
2944 x = cache_grow(cachep, flags, numa_node_id());
2945
a737b3e2 2946 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2947 ac = cpu_cache_get(cachep);
a737b3e2 2948 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2949 return NULL;
2950
a737b3e2 2951 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2952 goto retry;
2953 }
2954 ac->touched = 1;
e498be7d 2955 return ac->entry[--ac->avail];
1da177e4
LT
2956}
2957
a737b3e2
AM
2958static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2959 gfp_t flags)
1da177e4
LT
2960{
2961 might_sleep_if(flags & __GFP_WAIT);
2962#if DEBUG
2963 kmem_flagcheck(cachep, flags);
2964#endif
2965}
2966
2967#if DEBUG
a737b3e2
AM
2968static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2969 gfp_t flags, void *objp, void *caller)
1da177e4 2970{
b28a02de 2971 if (!objp)
1da177e4 2972 return objp;
b28a02de 2973 if (cachep->flags & SLAB_POISON) {
1da177e4 2974#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 2975 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 2976 kernel_map_pages(virt_to_page(objp),
3dafccf2 2977 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
2978 else
2979 check_poison_obj(cachep, objp);
2980#else
2981 check_poison_obj(cachep, objp);
2982#endif
2983 poison_obj(cachep, objp, POISON_INUSE);
2984 }
2985 if (cachep->flags & SLAB_STORE_USER)
2986 *dbg_userword(cachep, objp) = caller;
2987
2988 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
2989 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2990 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2991 slab_error(cachep, "double free, or memory outside"
2992 " object was overwritten");
b28a02de 2993 printk(KERN_ERR
a737b3e2
AM
2994 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2995 objp, *dbg_redzone1(cachep, objp),
2996 *dbg_redzone2(cachep, objp));
1da177e4
LT
2997 }
2998 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2999 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3000 }
871751e2
AV
3001#ifdef CONFIG_DEBUG_SLAB_LEAK
3002 {
3003 struct slab *slabp;
3004 unsigned objnr;
3005
3006 slabp = page_get_slab(virt_to_page(objp));
3007 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3008 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3009 }
3010#endif
3dafccf2 3011 objp += obj_offset(cachep);
1da177e4 3012 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 3013 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
3014
3015 if (!(flags & __GFP_WAIT))
3016 ctor_flags |= SLAB_CTOR_ATOMIC;
3017
3018 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 3019 }
1da177e4
LT
3020 return objp;
3021}
3022#else
3023#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3024#endif
3025
343e0d7a 3026static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3027{
b28a02de 3028 void *objp;
1da177e4
LT
3029 struct array_cache *ac;
3030
dc85da15 3031#ifdef CONFIG_NUMA
b2455396 3032 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
c61afb18
PJ
3033 objp = alternate_node_alloc(cachep, flags);
3034 if (objp != NULL)
3035 return objp;
dc85da15
CL
3036 }
3037#endif
3038
5c382300 3039 check_irq_off();
9a2dba4b 3040 ac = cpu_cache_get(cachep);
1da177e4
LT
3041 if (likely(ac->avail)) {
3042 STATS_INC_ALLOCHIT(cachep);
3043 ac->touched = 1;
e498be7d 3044 objp = ac->entry[--ac->avail];
1da177e4
LT
3045 } else {
3046 STATS_INC_ALLOCMISS(cachep);
3047 objp = cache_alloc_refill(cachep, flags);
3048 }
5c382300
AK
3049 return objp;
3050}
3051
a737b3e2
AM
3052static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
3053 gfp_t flags, void *caller)
5c382300
AK
3054{
3055 unsigned long save_flags;
b28a02de 3056 void *objp;
5c382300
AK
3057
3058 cache_alloc_debugcheck_before(cachep, flags);
3059
3060 local_irq_save(save_flags);
3061 objp = ____cache_alloc(cachep, flags);
1da177e4 3062 local_irq_restore(save_flags);
34342e86 3063 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
7fd6b141 3064 caller);
34342e86 3065 prefetchw(objp);
1da177e4
LT
3066 return objp;
3067}
3068
e498be7d 3069#ifdef CONFIG_NUMA
c61afb18 3070/*
b2455396 3071 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3072 *
3073 * If we are in_interrupt, then process context, including cpusets and
3074 * mempolicy, may not apply and should not be used for allocation policy.
3075 */
3076static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3077{
3078 int nid_alloc, nid_here;
3079
3080 if (in_interrupt())
3081 return NULL;
3082 nid_alloc = nid_here = numa_node_id();
3083 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3084 nid_alloc = cpuset_mem_spread_node();
3085 else if (current->mempolicy)
3086 nid_alloc = slab_node(current->mempolicy);
3087 if (nid_alloc != nid_here)
3088 return __cache_alloc_node(cachep, flags, nid_alloc);
3089 return NULL;
3090}
3091
e498be7d
CL
3092/*
3093 * A interface to enable slab creation on nodeid
1da177e4 3094 */
a737b3e2
AM
3095static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3096 int nodeid)
e498be7d
CL
3097{
3098 struct list_head *entry;
b28a02de
PE
3099 struct slab *slabp;
3100 struct kmem_list3 *l3;
3101 void *obj;
b28a02de
PE
3102 int x;
3103
3104 l3 = cachep->nodelists[nodeid];
3105 BUG_ON(!l3);
3106
a737b3e2 3107retry:
ca3b9b91 3108 check_irq_off();
b28a02de
PE
3109 spin_lock(&l3->list_lock);
3110 entry = l3->slabs_partial.next;
3111 if (entry == &l3->slabs_partial) {
3112 l3->free_touched = 1;
3113 entry = l3->slabs_free.next;
3114 if (entry == &l3->slabs_free)
3115 goto must_grow;
3116 }
3117
3118 slabp = list_entry(entry, struct slab, list);
3119 check_spinlock_acquired_node(cachep, nodeid);
3120 check_slabp(cachep, slabp);
3121
3122 STATS_INC_NODEALLOCS(cachep);
3123 STATS_INC_ACTIVE(cachep);
3124 STATS_SET_HIGH(cachep);
3125
3126 BUG_ON(slabp->inuse == cachep->num);
3127
78d382d7 3128 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3129 check_slabp(cachep, slabp);
3130 l3->free_objects--;
3131 /* move slabp to correct slabp list: */
3132 list_del(&slabp->list);
3133
a737b3e2 3134 if (slabp->free == BUFCTL_END)
b28a02de 3135 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3136 else
b28a02de 3137 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3138
b28a02de
PE
3139 spin_unlock(&l3->list_lock);
3140 goto done;
e498be7d 3141
a737b3e2 3142must_grow:
b28a02de
PE
3143 spin_unlock(&l3->list_lock);
3144 x = cache_grow(cachep, flags, nodeid);
1da177e4 3145
b28a02de
PE
3146 if (!x)
3147 return NULL;
e498be7d 3148
b28a02de 3149 goto retry;
a737b3e2 3150done:
b28a02de 3151 return obj;
e498be7d
CL
3152}
3153#endif
3154
3155/*
3156 * Caller needs to acquire correct kmem_list's list_lock
3157 */
343e0d7a 3158static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3159 int node)
1da177e4
LT
3160{
3161 int i;
e498be7d 3162 struct kmem_list3 *l3;
1da177e4
LT
3163
3164 for (i = 0; i < nr_objects; i++) {
3165 void *objp = objpp[i];
3166 struct slab *slabp;
1da177e4 3167
6ed5eb22 3168 slabp = virt_to_slab(objp);
ff69416e 3169 l3 = cachep->nodelists[node];
1da177e4 3170 list_del(&slabp->list);
ff69416e 3171 check_spinlock_acquired_node(cachep, node);
1da177e4 3172 check_slabp(cachep, slabp);
78d382d7 3173 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3174 STATS_DEC_ACTIVE(cachep);
e498be7d 3175 l3->free_objects++;
1da177e4
LT
3176 check_slabp(cachep, slabp);
3177
3178 /* fixup slab chains */
3179 if (slabp->inuse == 0) {
e498be7d
CL
3180 if (l3->free_objects > l3->free_limit) {
3181 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3182 /* No need to drop any previously held
3183 * lock here, even if we have a off-slab slab
3184 * descriptor it is guaranteed to come from
3185 * a different cache, refer to comments before
3186 * alloc_slabmgmt.
3187 */
1da177e4
LT
3188 slab_destroy(cachep, slabp);
3189 } else {
e498be7d 3190 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3191 }
3192 } else {
3193 /* Unconditionally move a slab to the end of the
3194 * partial list on free - maximum time for the
3195 * other objects to be freed, too.
3196 */
e498be7d 3197 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3198 }
3199 }
3200}
3201
343e0d7a 3202static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3203{
3204 int batchcount;
e498be7d 3205 struct kmem_list3 *l3;
ff69416e 3206 int node = numa_node_id();
1da177e4
LT
3207
3208 batchcount = ac->batchcount;
3209#if DEBUG
3210 BUG_ON(!batchcount || batchcount > ac->avail);
3211#endif
3212 check_irq_off();
ff69416e 3213 l3 = cachep->nodelists[node];
873623df 3214 spin_lock(&l3->list_lock);
e498be7d
CL
3215 if (l3->shared) {
3216 struct array_cache *shared_array = l3->shared;
b28a02de 3217 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3218 if (max) {
3219 if (batchcount > max)
3220 batchcount = max;
e498be7d 3221 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3222 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3223 shared_array->avail += batchcount;
3224 goto free_done;
3225 }
3226 }
3227
ff69416e 3228 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3229free_done:
1da177e4
LT
3230#if STATS
3231 {
3232 int i = 0;
3233 struct list_head *p;
3234
e498be7d
CL
3235 p = l3->slabs_free.next;
3236 while (p != &(l3->slabs_free)) {
1da177e4
LT
3237 struct slab *slabp;
3238
3239 slabp = list_entry(p, struct slab, list);
3240 BUG_ON(slabp->inuse);
3241
3242 i++;
3243 p = p->next;
3244 }
3245 STATS_SET_FREEABLE(cachep, i);
3246 }
3247#endif
e498be7d 3248 spin_unlock(&l3->list_lock);
1da177e4 3249 ac->avail -= batchcount;
a737b3e2 3250 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3251}
3252
3253/*
a737b3e2
AM
3254 * Release an obj back to its cache. If the obj has a constructed state, it must
3255 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3256 */
873623df 3257static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3258{
9a2dba4b 3259 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3260
3261 check_irq_off();
3262 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3263
873623df 3264 if (cache_free_alien(cachep, objp))
729bd0b7
PE
3265 return;
3266
1da177e4
LT
3267 if (likely(ac->avail < ac->limit)) {
3268 STATS_INC_FREEHIT(cachep);
e498be7d 3269 ac->entry[ac->avail++] = objp;
1da177e4
LT
3270 return;
3271 } else {
3272 STATS_INC_FREEMISS(cachep);
3273 cache_flusharray(cachep, ac);
e498be7d 3274 ac->entry[ac->avail++] = objp;
1da177e4
LT
3275 }
3276}
3277
3278/**
3279 * kmem_cache_alloc - Allocate an object
3280 * @cachep: The cache to allocate from.
3281 * @flags: See kmalloc().
3282 *
3283 * Allocate an object from this cache. The flags are only relevant
3284 * if the cache has no available objects.
3285 */
343e0d7a 3286void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3287{
7fd6b141 3288 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3289}
3290EXPORT_SYMBOL(kmem_cache_alloc);
3291
a8c0f9a4 3292/**
b8008b2b 3293 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3294 * @cache: The cache to allocate from.
3295 * @flags: See kmalloc().
3296 *
3297 * Allocate an object from this cache and set the allocated memory to zero.
3298 * The flags are only relevant if the cache has no available objects.
3299 */
3300void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3301{
3302 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3303 if (ret)
3304 memset(ret, 0, obj_size(cache));
3305 return ret;
3306}
3307EXPORT_SYMBOL(kmem_cache_zalloc);
3308
1da177e4
LT
3309/**
3310 * kmem_ptr_validate - check if an untrusted pointer might
3311 * be a slab entry.
3312 * @cachep: the cache we're checking against
3313 * @ptr: pointer to validate
3314 *
3315 * This verifies that the untrusted pointer looks sane:
3316 * it is _not_ a guarantee that the pointer is actually
3317 * part of the slab cache in question, but it at least
3318 * validates that the pointer can be dereferenced and
3319 * looks half-way sane.
3320 *
3321 * Currently only used for dentry validation.
3322 */
343e0d7a 3323int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
1da177e4 3324{
b28a02de 3325 unsigned long addr = (unsigned long)ptr;
1da177e4 3326 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3327 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3328 unsigned long size = cachep->buffer_size;
1da177e4
LT
3329 struct page *page;
3330
3331 if (unlikely(addr < min_addr))
3332 goto out;
3333 if (unlikely(addr > (unsigned long)high_memory - size))
3334 goto out;
3335 if (unlikely(addr & align_mask))
3336 goto out;
3337 if (unlikely(!kern_addr_valid(addr)))
3338 goto out;
3339 if (unlikely(!kern_addr_valid(addr + size - 1)))
3340 goto out;
3341 page = virt_to_page(ptr);
3342 if (unlikely(!PageSlab(page)))
3343 goto out;
065d41cb 3344 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3345 goto out;
3346 return 1;
a737b3e2 3347out:
1da177e4
LT
3348 return 0;
3349}
3350
3351#ifdef CONFIG_NUMA
3352/**
3353 * kmem_cache_alloc_node - Allocate an object on the specified node
3354 * @cachep: The cache to allocate from.
3355 * @flags: See kmalloc().
3356 * @nodeid: node number of the target node.
3357 *
3358 * Identical to kmem_cache_alloc, except that this function is slow
3359 * and can sleep. And it will allocate memory on the given node, which
3360 * can improve the performance for cpu bound structures.
e498be7d
CL
3361 * New and improved: it will now make sure that the object gets
3362 * put on the correct node list so that there is no false sharing.
1da177e4 3363 */
343e0d7a 3364void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4 3365{
e498be7d
CL
3366 unsigned long save_flags;
3367 void *ptr;
1da177e4 3368
e498be7d
CL
3369 cache_alloc_debugcheck_before(cachep, flags);
3370 local_irq_save(save_flags);
18f820f6
CL
3371
3372 if (nodeid == -1 || nodeid == numa_node_id() ||
a737b3e2 3373 !cachep->nodelists[nodeid])
5c382300
AK
3374 ptr = ____cache_alloc(cachep, flags);
3375 else
3376 ptr = __cache_alloc_node(cachep, flags, nodeid);
e498be7d 3377 local_irq_restore(save_flags);
18f820f6
CL
3378
3379 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3380 __builtin_return_address(0));
1da177e4 3381
e498be7d 3382 return ptr;
1da177e4
LT
3383}
3384EXPORT_SYMBOL(kmem_cache_alloc_node);
3385
dbe5e69d 3386void *__kmalloc_node(size_t size, gfp_t flags, int node)
97e2bde4 3387{
343e0d7a 3388 struct kmem_cache *cachep;
97e2bde4
MS
3389
3390 cachep = kmem_find_general_cachep(size, flags);
3391 if (unlikely(cachep == NULL))
3392 return NULL;
3393 return kmem_cache_alloc_node(cachep, flags, node);
3394}
dbe5e69d 3395EXPORT_SYMBOL(__kmalloc_node);
1da177e4
LT
3396#endif
3397
3398/**
800590f5 3399 * __do_kmalloc - allocate memory
1da177e4 3400 * @size: how many bytes of memory are required.
800590f5 3401 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3402 * @caller: function caller for debug tracking of the caller
1da177e4 3403 */
7fd6b141
PE
3404static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3405 void *caller)
1da177e4 3406{
343e0d7a 3407 struct kmem_cache *cachep;
1da177e4 3408
97e2bde4
MS
3409 /* If you want to save a few bytes .text space: replace
3410 * __ with kmem_.
3411 * Then kmalloc uses the uninlined functions instead of the inline
3412 * functions.
3413 */
3414 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3415 if (unlikely(cachep == NULL))
3416 return NULL;
7fd6b141
PE
3417 return __cache_alloc(cachep, flags, caller);
3418}
3419
7fd6b141
PE
3420
3421void *__kmalloc(size_t size, gfp_t flags)
3422{
871751e2 3423#ifndef CONFIG_DEBUG_SLAB
7fd6b141 3424 return __do_kmalloc(size, flags, NULL);
871751e2
AV
3425#else
3426 return __do_kmalloc(size, flags, __builtin_return_address(0));
3427#endif
1da177e4
LT
3428}
3429EXPORT_SYMBOL(__kmalloc);
3430
871751e2 3431#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3432void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3433{
3434 return __do_kmalloc(size, flags, caller);
3435}
3436EXPORT_SYMBOL(__kmalloc_track_caller);
7fd6b141
PE
3437#endif
3438
1da177e4
LT
3439/**
3440 * kmem_cache_free - Deallocate an object
3441 * @cachep: The cache the allocation was from.
3442 * @objp: The previously allocated object.
3443 *
3444 * Free an object which was previously allocated from this
3445 * cache.
3446 */
343e0d7a 3447void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3448{
3449 unsigned long flags;
3450
ddc2e812
PE
3451 BUG_ON(virt_to_cache(objp) != cachep);
3452
1da177e4 3453 local_irq_save(flags);
873623df 3454 __cache_free(cachep, objp);
1da177e4
LT
3455 local_irq_restore(flags);
3456}
3457EXPORT_SYMBOL(kmem_cache_free);
3458
1da177e4
LT
3459/**
3460 * kfree - free previously allocated memory
3461 * @objp: pointer returned by kmalloc.
3462 *
80e93eff
PE
3463 * If @objp is NULL, no operation is performed.
3464 *
1da177e4
LT
3465 * Don't free memory not originally allocated by kmalloc()
3466 * or you will run into trouble.
3467 */
3468void kfree(const void *objp)
3469{
343e0d7a 3470 struct kmem_cache *c;
1da177e4
LT
3471 unsigned long flags;
3472
3473 if (unlikely(!objp))
3474 return;
3475 local_irq_save(flags);
3476 kfree_debugcheck(objp);
6ed5eb22 3477 c = virt_to_cache(objp);
f9b8404c 3478 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3479 __cache_free(c, (void *)objp);
1da177e4
LT
3480 local_irq_restore(flags);
3481}
3482EXPORT_SYMBOL(kfree);
3483
343e0d7a 3484unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3485{
3dafccf2 3486 return obj_size(cachep);
1da177e4
LT
3487}
3488EXPORT_SYMBOL(kmem_cache_size);
3489
343e0d7a 3490const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3491{
3492 return cachep->name;
3493}
3494EXPORT_SYMBOL_GPL(kmem_cache_name);
3495
e498be7d 3496/*
0718dc2a 3497 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3498 */
343e0d7a 3499static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3500{
3501 int node;
3502 struct kmem_list3 *l3;
cafeb02e
CL
3503 struct array_cache *new_shared;
3504 struct array_cache **new_alien;
e498be7d
CL
3505
3506 for_each_online_node(node) {
cafeb02e 3507
a737b3e2
AM
3508 new_alien = alloc_alien_cache(node, cachep->limit);
3509 if (!new_alien)
e498be7d 3510 goto fail;
cafeb02e 3511
0718dc2a
CL
3512 new_shared = alloc_arraycache(node,
3513 cachep->shared*cachep->batchcount,
a737b3e2 3514 0xbaadf00d);
0718dc2a
CL
3515 if (!new_shared) {
3516 free_alien_cache(new_alien);
e498be7d 3517 goto fail;
0718dc2a 3518 }
cafeb02e 3519
a737b3e2
AM
3520 l3 = cachep->nodelists[node];
3521 if (l3) {
cafeb02e
CL
3522 struct array_cache *shared = l3->shared;
3523
e498be7d
CL
3524 spin_lock_irq(&l3->list_lock);
3525
cafeb02e 3526 if (shared)
0718dc2a
CL
3527 free_block(cachep, shared->entry,
3528 shared->avail, node);
e498be7d 3529
cafeb02e
CL
3530 l3->shared = new_shared;
3531 if (!l3->alien) {
e498be7d
CL
3532 l3->alien = new_alien;
3533 new_alien = NULL;
3534 }
b28a02de 3535 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3536 cachep->batchcount + cachep->num;
e498be7d 3537 spin_unlock_irq(&l3->list_lock);
cafeb02e 3538 kfree(shared);
e498be7d
CL
3539 free_alien_cache(new_alien);
3540 continue;
3541 }
a737b3e2 3542 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3543 if (!l3) {
3544 free_alien_cache(new_alien);
3545 kfree(new_shared);
e498be7d 3546 goto fail;
0718dc2a 3547 }
e498be7d
CL
3548
3549 kmem_list3_init(l3);
3550 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3551 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3552 l3->shared = new_shared;
e498be7d 3553 l3->alien = new_alien;
b28a02de 3554 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3555 cachep->batchcount + cachep->num;
e498be7d
CL
3556 cachep->nodelists[node] = l3;
3557 }
cafeb02e 3558 return 0;
0718dc2a 3559
a737b3e2 3560fail:
0718dc2a
CL
3561 if (!cachep->next.next) {
3562 /* Cache is not active yet. Roll back what we did */
3563 node--;
3564 while (node >= 0) {
3565 if (cachep->nodelists[node]) {
3566 l3 = cachep->nodelists[node];
3567
3568 kfree(l3->shared);
3569 free_alien_cache(l3->alien);
3570 kfree(l3);
3571 cachep->nodelists[node] = NULL;
3572 }
3573 node--;
3574 }
3575 }
cafeb02e 3576 return -ENOMEM;
e498be7d
CL
3577}
3578
1da177e4 3579struct ccupdate_struct {
343e0d7a 3580 struct kmem_cache *cachep;
1da177e4
LT
3581 struct array_cache *new[NR_CPUS];
3582};
3583
3584static void do_ccupdate_local(void *info)
3585{
a737b3e2 3586 struct ccupdate_struct *new = info;
1da177e4
LT
3587 struct array_cache *old;
3588
3589 check_irq_off();
9a2dba4b 3590 old = cpu_cache_get(new->cachep);
e498be7d 3591
1da177e4
LT
3592 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3593 new->new[smp_processor_id()] = old;
3594}
3595
b5d8ca7c 3596/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3597static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3598 int batchcount, int shared)
1da177e4 3599{
d2e7b7d0 3600 struct ccupdate_struct *new;
2ed3a4ef 3601 int i;
1da177e4 3602
d2e7b7d0
SS
3603 new = kzalloc(sizeof(*new), GFP_KERNEL);
3604 if (!new)
3605 return -ENOMEM;
3606
e498be7d 3607 for_each_online_cpu(i) {
d2e7b7d0 3608 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3609 batchcount);
d2e7b7d0 3610 if (!new->new[i]) {
b28a02de 3611 for (i--; i >= 0; i--)
d2e7b7d0
SS
3612 kfree(new->new[i]);
3613 kfree(new);
e498be7d 3614 return -ENOMEM;
1da177e4
LT
3615 }
3616 }
d2e7b7d0 3617 new->cachep = cachep;
1da177e4 3618
d2e7b7d0 3619 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3620
1da177e4 3621 check_irq_on();
1da177e4
LT
3622 cachep->batchcount = batchcount;
3623 cachep->limit = limit;
e498be7d 3624 cachep->shared = shared;
1da177e4 3625
e498be7d 3626 for_each_online_cpu(i) {
d2e7b7d0 3627 struct array_cache *ccold = new->new[i];
1da177e4
LT
3628 if (!ccold)
3629 continue;
e498be7d 3630 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3631 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3632 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3633 kfree(ccold);
3634 }
d2e7b7d0 3635 kfree(new);
2ed3a4ef 3636 return alloc_kmemlist(cachep);
1da177e4
LT
3637}
3638
b5d8ca7c 3639/* Called with cache_chain_mutex held always */
2ed3a4ef 3640static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3641{
3642 int err;
3643 int limit, shared;
3644
a737b3e2
AM
3645 /*
3646 * The head array serves three purposes:
1da177e4
LT
3647 * - create a LIFO ordering, i.e. return objects that are cache-warm
3648 * - reduce the number of spinlock operations.
a737b3e2 3649 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3650 * bufctl chains: array operations are cheaper.
3651 * The numbers are guessed, we should auto-tune as described by
3652 * Bonwick.
3653 */
3dafccf2 3654 if (cachep->buffer_size > 131072)
1da177e4 3655 limit = 1;
3dafccf2 3656 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3657 limit = 8;
3dafccf2 3658 else if (cachep->buffer_size > 1024)
1da177e4 3659 limit = 24;
3dafccf2 3660 else if (cachep->buffer_size > 256)
1da177e4
LT
3661 limit = 54;
3662 else
3663 limit = 120;
3664
a737b3e2
AM
3665 /*
3666 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3667 * allocation behaviour: Most allocs on one cpu, most free operations
3668 * on another cpu. For these cases, an efficient object passing between
3669 * cpus is necessary. This is provided by a shared array. The array
3670 * replaces Bonwick's magazine layer.
3671 * On uniprocessor, it's functionally equivalent (but less efficient)
3672 * to a larger limit. Thus disabled by default.
3673 */
3674 shared = 0;
3675#ifdef CONFIG_SMP
3dafccf2 3676 if (cachep->buffer_size <= PAGE_SIZE)
1da177e4
LT
3677 shared = 8;
3678#endif
3679
3680#if DEBUG
a737b3e2
AM
3681 /*
3682 * With debugging enabled, large batchcount lead to excessively long
3683 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3684 */
3685 if (limit > 32)
3686 limit = 32;
3687#endif
b28a02de 3688 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3689 if (err)
3690 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3691 cachep->name, -err);
2ed3a4ef 3692 return err;
1da177e4
LT
3693}
3694
1b55253a
CL
3695/*
3696 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3697 * necessary. Note that the l3 listlock also protects the array_cache
3698 * if drain_array() is used on the shared array.
1b55253a
CL
3699 */
3700void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3701 struct array_cache *ac, int force, int node)
1da177e4
LT
3702{
3703 int tofree;
3704
1b55253a
CL
3705 if (!ac || !ac->avail)
3706 return;
1da177e4
LT
3707 if (ac->touched && !force) {
3708 ac->touched = 0;
b18e7e65 3709 } else {
1b55253a 3710 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3711 if (ac->avail) {
3712 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3713 if (tofree > ac->avail)
3714 tofree = (ac->avail + 1) / 2;
3715 free_block(cachep, ac->entry, tofree, node);
3716 ac->avail -= tofree;
3717 memmove(ac->entry, &(ac->entry[tofree]),
3718 sizeof(void *) * ac->avail);
3719 }
1b55253a 3720 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3721 }
3722}
3723
3724/**
3725 * cache_reap - Reclaim memory from caches.
1e5d5331 3726 * @unused: unused parameter
1da177e4
LT
3727 *
3728 * Called from workqueue/eventd every few seconds.
3729 * Purpose:
3730 * - clear the per-cpu caches for this CPU.
3731 * - return freeable pages to the main free memory pool.
3732 *
a737b3e2
AM
3733 * If we cannot acquire the cache chain mutex then just give up - we'll try
3734 * again on the next iteration.
1da177e4
LT
3735 */
3736static void cache_reap(void *unused)
3737{
7a7c381d 3738 struct kmem_cache *searchp;
e498be7d 3739 struct kmem_list3 *l3;
aab2207c 3740 int node = numa_node_id();
1da177e4 3741
fc0abb14 3742 if (!mutex_trylock(&cache_chain_mutex)) {
1da177e4 3743 /* Give up. Setup the next iteration. */
b28a02de
PE
3744 schedule_delayed_work(&__get_cpu_var(reap_work),
3745 REAPTIMEOUT_CPUC);
1da177e4
LT
3746 return;
3747 }
3748
7a7c381d 3749 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
3750 check_irq_on();
3751
35386e3b
CL
3752 /*
3753 * We only take the l3 lock if absolutely necessary and we
3754 * have established with reasonable certainty that
3755 * we can do some work if the lock was obtained.
3756 */
aab2207c 3757 l3 = searchp->nodelists[node];
35386e3b 3758
8fce4d8e 3759 reap_alien(searchp, l3);
1da177e4 3760
aab2207c 3761 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 3762
35386e3b
CL
3763 /*
3764 * These are racy checks but it does not matter
3765 * if we skip one check or scan twice.
3766 */
e498be7d 3767 if (time_after(l3->next_reap, jiffies))
35386e3b 3768 goto next;
1da177e4 3769
e498be7d 3770 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 3771
aab2207c 3772 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 3773
ed11d9eb 3774 if (l3->free_touched)
e498be7d 3775 l3->free_touched = 0;
ed11d9eb
CL
3776 else {
3777 int freed;
1da177e4 3778
ed11d9eb
CL
3779 freed = drain_freelist(searchp, l3, (l3->free_limit +
3780 5 * searchp->num - 1) / (5 * searchp->num));
3781 STATS_ADD_REAPED(searchp, freed);
3782 }
35386e3b 3783next:
1da177e4
LT
3784 cond_resched();
3785 }
3786 check_irq_on();
fc0abb14 3787 mutex_unlock(&cache_chain_mutex);
8fce4d8e 3788 next_reap_node();
2244b95a 3789 refresh_cpu_vm_stats(smp_processor_id());
a737b3e2 3790 /* Set up the next iteration */
cd61ef62 3791 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
1da177e4
LT
3792}
3793
3794#ifdef CONFIG_PROC_FS
3795
85289f98 3796static void print_slabinfo_header(struct seq_file *m)
1da177e4 3797{
85289f98
PE
3798 /*
3799 * Output format version, so at least we can change it
3800 * without _too_ many complaints.
3801 */
1da177e4 3802#if STATS
85289f98 3803 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 3804#else
85289f98 3805 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 3806#endif
85289f98
PE
3807 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3808 "<objperslab> <pagesperslab>");
3809 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3810 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 3811#if STATS
85289f98 3812 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 3813 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 3814 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 3815#endif
85289f98
PE
3816 seq_putc(m, '\n');
3817}
3818
3819static void *s_start(struct seq_file *m, loff_t *pos)
3820{
3821 loff_t n = *pos;
3822 struct list_head *p;
3823
fc0abb14 3824 mutex_lock(&cache_chain_mutex);
85289f98
PE
3825 if (!n)
3826 print_slabinfo_header(m);
1da177e4
LT
3827 p = cache_chain.next;
3828 while (n--) {
3829 p = p->next;
3830 if (p == &cache_chain)
3831 return NULL;
3832 }
343e0d7a 3833 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
3834}
3835
3836static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3837{
343e0d7a 3838 struct kmem_cache *cachep = p;
1da177e4 3839 ++*pos;
a737b3e2
AM
3840 return cachep->next.next == &cache_chain ?
3841 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
3842}
3843
3844static void s_stop(struct seq_file *m, void *p)
3845{
fc0abb14 3846 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
3847}
3848
3849static int s_show(struct seq_file *m, void *p)
3850{
343e0d7a 3851 struct kmem_cache *cachep = p;
b28a02de
PE
3852 struct slab *slabp;
3853 unsigned long active_objs;
3854 unsigned long num_objs;
3855 unsigned long active_slabs = 0;
3856 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 3857 const char *name;
1da177e4 3858 char *error = NULL;
e498be7d
CL
3859 int node;
3860 struct kmem_list3 *l3;
1da177e4 3861
1da177e4
LT
3862 active_objs = 0;
3863 num_slabs = 0;
e498be7d
CL
3864 for_each_online_node(node) {
3865 l3 = cachep->nodelists[node];
3866 if (!l3)
3867 continue;
3868
ca3b9b91
RT
3869 check_irq_on();
3870 spin_lock_irq(&l3->list_lock);
e498be7d 3871
7a7c381d 3872 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
3873 if (slabp->inuse != cachep->num && !error)
3874 error = "slabs_full accounting error";
3875 active_objs += cachep->num;
3876 active_slabs++;
3877 }
7a7c381d 3878 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
3879 if (slabp->inuse == cachep->num && !error)
3880 error = "slabs_partial inuse accounting error";
3881 if (!slabp->inuse && !error)
3882 error = "slabs_partial/inuse accounting error";
3883 active_objs += slabp->inuse;
3884 active_slabs++;
3885 }
7a7c381d 3886 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
3887 if (slabp->inuse && !error)
3888 error = "slabs_free/inuse accounting error";
3889 num_slabs++;
3890 }
3891 free_objects += l3->free_objects;
4484ebf1
RT
3892 if (l3->shared)
3893 shared_avail += l3->shared->avail;
e498be7d 3894
ca3b9b91 3895 spin_unlock_irq(&l3->list_lock);
1da177e4 3896 }
b28a02de
PE
3897 num_slabs += active_slabs;
3898 num_objs = num_slabs * cachep->num;
e498be7d 3899 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
3900 error = "free_objects accounting error";
3901
b28a02de 3902 name = cachep->name;
1da177e4
LT
3903 if (error)
3904 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3905
3906 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 3907 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 3908 cachep->num, (1 << cachep->gfporder));
1da177e4 3909 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 3910 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 3911 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 3912 active_slabs, num_slabs, shared_avail);
1da177e4 3913#if STATS
b28a02de 3914 { /* list3 stats */
1da177e4
LT
3915 unsigned long high = cachep->high_mark;
3916 unsigned long allocs = cachep->num_allocations;
3917 unsigned long grown = cachep->grown;
3918 unsigned long reaped = cachep->reaped;
3919 unsigned long errors = cachep->errors;
3920 unsigned long max_freeable = cachep->max_freeable;
1da177e4 3921 unsigned long node_allocs = cachep->node_allocs;
e498be7d 3922 unsigned long node_frees = cachep->node_frees;
fb7faf33 3923 unsigned long overflows = cachep->node_overflow;
1da177e4 3924
e498be7d 3925 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 3926 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 3927 reaped, errors, max_freeable, node_allocs,
fb7faf33 3928 node_frees, overflows);
1da177e4
LT
3929 }
3930 /* cpu stats */
3931 {
3932 unsigned long allochit = atomic_read(&cachep->allochit);
3933 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3934 unsigned long freehit = atomic_read(&cachep->freehit);
3935 unsigned long freemiss = atomic_read(&cachep->freemiss);
3936
3937 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 3938 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
3939 }
3940#endif
3941 seq_putc(m, '\n');
1da177e4
LT
3942 return 0;
3943}
3944
3945/*
3946 * slabinfo_op - iterator that generates /proc/slabinfo
3947 *
3948 * Output layout:
3949 * cache-name
3950 * num-active-objs
3951 * total-objs
3952 * object size
3953 * num-active-slabs
3954 * total-slabs
3955 * num-pages-per-slab
3956 * + further values on SMP and with statistics enabled
3957 */
3958
3959struct seq_operations slabinfo_op = {
b28a02de
PE
3960 .start = s_start,
3961 .next = s_next,
3962 .stop = s_stop,
3963 .show = s_show,
1da177e4
LT
3964};
3965
3966#define MAX_SLABINFO_WRITE 128
3967/**
3968 * slabinfo_write - Tuning for the slab allocator
3969 * @file: unused
3970 * @buffer: user buffer
3971 * @count: data length
3972 * @ppos: unused
3973 */
b28a02de
PE
3974ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3975 size_t count, loff_t *ppos)
1da177e4 3976{
b28a02de 3977 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 3978 int limit, batchcount, shared, res;
7a7c381d 3979 struct kmem_cache *cachep;
b28a02de 3980
1da177e4
LT
3981 if (count > MAX_SLABINFO_WRITE)
3982 return -EINVAL;
3983 if (copy_from_user(&kbuf, buffer, count))
3984 return -EFAULT;
b28a02de 3985 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
3986
3987 tmp = strchr(kbuf, ' ');
3988 if (!tmp)
3989 return -EINVAL;
3990 *tmp = '\0';
3991 tmp++;
3992 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3993 return -EINVAL;
3994
3995 /* Find the cache in the chain of caches. */
fc0abb14 3996 mutex_lock(&cache_chain_mutex);
1da177e4 3997 res = -EINVAL;
7a7c381d 3998 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 3999 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4000 if (limit < 1 || batchcount < 1 ||
4001 batchcount > limit || shared < 0) {
e498be7d 4002 res = 0;
1da177e4 4003 } else {
e498be7d 4004 res = do_tune_cpucache(cachep, limit,
b28a02de 4005 batchcount, shared);
1da177e4
LT
4006 }
4007 break;
4008 }
4009 }
fc0abb14 4010 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4011 if (res >= 0)
4012 res = count;
4013 return res;
4014}
871751e2
AV
4015
4016#ifdef CONFIG_DEBUG_SLAB_LEAK
4017
4018static void *leaks_start(struct seq_file *m, loff_t *pos)
4019{
4020 loff_t n = *pos;
4021 struct list_head *p;
4022
4023 mutex_lock(&cache_chain_mutex);
4024 p = cache_chain.next;
4025 while (n--) {
4026 p = p->next;
4027 if (p == &cache_chain)
4028 return NULL;
4029 }
4030 return list_entry(p, struct kmem_cache, next);
4031}
4032
4033static inline int add_caller(unsigned long *n, unsigned long v)
4034{
4035 unsigned long *p;
4036 int l;
4037 if (!v)
4038 return 1;
4039 l = n[1];
4040 p = n + 2;
4041 while (l) {
4042 int i = l/2;
4043 unsigned long *q = p + 2 * i;
4044 if (*q == v) {
4045 q[1]++;
4046 return 1;
4047 }
4048 if (*q > v) {
4049 l = i;
4050 } else {
4051 p = q + 2;
4052 l -= i + 1;
4053 }
4054 }
4055 if (++n[1] == n[0])
4056 return 0;
4057 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4058 p[0] = v;
4059 p[1] = 1;
4060 return 1;
4061}
4062
4063static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4064{
4065 void *p;
4066 int i;
4067 if (n[0] == n[1])
4068 return;
4069 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4070 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4071 continue;
4072 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4073 return;
4074 }
4075}
4076
4077static void show_symbol(struct seq_file *m, unsigned long address)
4078{
4079#ifdef CONFIG_KALLSYMS
4080 char *modname;
4081 const char *name;
4082 unsigned long offset, size;
4083 char namebuf[KSYM_NAME_LEN+1];
4084
4085 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4086
4087 if (name) {
4088 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4089 if (modname)
4090 seq_printf(m, " [%s]", modname);
4091 return;
4092 }
4093#endif
4094 seq_printf(m, "%p", (void *)address);
4095}
4096
4097static int leaks_show(struct seq_file *m, void *p)
4098{
4099 struct kmem_cache *cachep = p;
871751e2
AV
4100 struct slab *slabp;
4101 struct kmem_list3 *l3;
4102 const char *name;
4103 unsigned long *n = m->private;
4104 int node;
4105 int i;
4106
4107 if (!(cachep->flags & SLAB_STORE_USER))
4108 return 0;
4109 if (!(cachep->flags & SLAB_RED_ZONE))
4110 return 0;
4111
4112 /* OK, we can do it */
4113
4114 n[1] = 0;
4115
4116 for_each_online_node(node) {
4117 l3 = cachep->nodelists[node];
4118 if (!l3)
4119 continue;
4120
4121 check_irq_on();
4122 spin_lock_irq(&l3->list_lock);
4123
7a7c381d 4124 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4125 handle_slab(n, cachep, slabp);
7a7c381d 4126 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4127 handle_slab(n, cachep, slabp);
871751e2
AV
4128 spin_unlock_irq(&l3->list_lock);
4129 }
4130 name = cachep->name;
4131 if (n[0] == n[1]) {
4132 /* Increase the buffer size */
4133 mutex_unlock(&cache_chain_mutex);
4134 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4135 if (!m->private) {
4136 /* Too bad, we are really out */
4137 m->private = n;
4138 mutex_lock(&cache_chain_mutex);
4139 return -ENOMEM;
4140 }
4141 *(unsigned long *)m->private = n[0] * 2;
4142 kfree(n);
4143 mutex_lock(&cache_chain_mutex);
4144 /* Now make sure this entry will be retried */
4145 m->count = m->size;
4146 return 0;
4147 }
4148 for (i = 0; i < n[1]; i++) {
4149 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4150 show_symbol(m, n[2*i+2]);
4151 seq_putc(m, '\n');
4152 }
d2e7b7d0 4153
871751e2
AV
4154 return 0;
4155}
4156
4157struct seq_operations slabstats_op = {
4158 .start = leaks_start,
4159 .next = s_next,
4160 .stop = s_stop,
4161 .show = leaks_show,
4162};
4163#endif
1da177e4
LT
4164#endif
4165
00e145b6
MS
4166/**
4167 * ksize - get the actual amount of memory allocated for a given object
4168 * @objp: Pointer to the object
4169 *
4170 * kmalloc may internally round up allocations and return more memory
4171 * than requested. ksize() can be used to determine the actual amount of
4172 * memory allocated. The caller may use this additional memory, even though
4173 * a smaller amount of memory was initially specified with the kmalloc call.
4174 * The caller must guarantee that objp points to a valid object previously
4175 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4176 * must not be freed during the duration of the call.
4177 */
1da177e4
LT
4178unsigned int ksize(const void *objp)
4179{
00e145b6
MS
4180 if (unlikely(objp == NULL))
4181 return 0;
1da177e4 4182
6ed5eb22 4183 return obj_size(virt_to_cache(objp));
1da177e4 4184}