]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/rmap.c
mm: cleanup: remove #ifdef CONFIG_MIGRATION
[net-next-2.6.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
1da177e4
LT
39 */
40
41#include <linux/mm.h>
42#include <linux/pagemap.h>
43#include <linux/swap.h>
44#include <linux/swapops.h>
45#include <linux/slab.h>
46#include <linux/init.h>
47#include <linux/rmap.h>
48#include <linux/rcupdate.h>
a48d07af 49#include <linux/module.h>
7de6b805 50#include <linux/kallsyms.h>
8a9f3ccd 51#include <linux/memcontrol.h>
cddb8a5c 52#include <linux/mmu_notifier.h>
64cdd548 53#include <linux/migrate.h>
1da177e4
LT
54
55#include <asm/tlbflush.h>
56
b291f000
NP
57#include "internal.h"
58
fdd2e5f8
AB
59static struct kmem_cache *anon_vma_cachep;
60
61static inline struct anon_vma *anon_vma_alloc(void)
62{
63 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
64}
65
66static inline void anon_vma_free(struct anon_vma *anon_vma)
67{
68 kmem_cache_free(anon_vma_cachep, anon_vma);
69}
1da177e4 70
d9d332e0
LT
71/**
72 * anon_vma_prepare - attach an anon_vma to a memory region
73 * @vma: the memory region in question
74 *
75 * This makes sure the memory mapping described by 'vma' has
76 * an 'anon_vma' attached to it, so that we can associate the
77 * anonymous pages mapped into it with that anon_vma.
78 *
79 * The common case will be that we already have one, but if
80 * if not we either need to find an adjacent mapping that we
81 * can re-use the anon_vma from (very common when the only
82 * reason for splitting a vma has been mprotect()), or we
83 * allocate a new one.
84 *
85 * Anon-vma allocations are very subtle, because we may have
86 * optimistically looked up an anon_vma in page_lock_anon_vma()
87 * and that may actually touch the spinlock even in the newly
88 * allocated vma (it depends on RCU to make sure that the
89 * anon_vma isn't actually destroyed).
90 *
91 * As a result, we need to do proper anon_vma locking even
92 * for the new allocation. At the same time, we do not want
93 * to do any locking for the common case of already having
94 * an anon_vma.
95 *
96 * This must be called with the mmap_sem held for reading.
97 */
1da177e4
LT
98int anon_vma_prepare(struct vm_area_struct *vma)
99{
100 struct anon_vma *anon_vma = vma->anon_vma;
101
102 might_sleep();
103 if (unlikely(!anon_vma)) {
104 struct mm_struct *mm = vma->vm_mm;
d9d332e0 105 struct anon_vma *allocated;
1da177e4
LT
106
107 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
108 allocated = NULL;
109 if (!anon_vma) {
1da177e4
LT
110 anon_vma = anon_vma_alloc();
111 if (unlikely(!anon_vma))
112 return -ENOMEM;
113 allocated = anon_vma;
1da177e4 114 }
d9d332e0 115 spin_lock(&anon_vma->lock);
1da177e4
LT
116
117 /* page_table_lock to protect against threads */
118 spin_lock(&mm->page_table_lock);
119 if (likely(!vma->anon_vma)) {
120 vma->anon_vma = anon_vma;
0697212a 121 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
122 allocated = NULL;
123 }
124 spin_unlock(&mm->page_table_lock);
125
d9d332e0 126 spin_unlock(&anon_vma->lock);
1da177e4
LT
127 if (unlikely(allocated))
128 anon_vma_free(allocated);
129 }
130 return 0;
131}
132
133void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
134{
135 BUG_ON(vma->anon_vma != next->anon_vma);
136 list_del(&next->anon_vma_node);
137}
138
139void __anon_vma_link(struct vm_area_struct *vma)
140{
141 struct anon_vma *anon_vma = vma->anon_vma;
142
30acbaba 143 if (anon_vma)
0697212a 144 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
145}
146
147void anon_vma_link(struct vm_area_struct *vma)
148{
149 struct anon_vma *anon_vma = vma->anon_vma;
150
151 if (anon_vma) {
152 spin_lock(&anon_vma->lock);
0697212a 153 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
154 spin_unlock(&anon_vma->lock);
155 }
156}
157
158void anon_vma_unlink(struct vm_area_struct *vma)
159{
160 struct anon_vma *anon_vma = vma->anon_vma;
161 int empty;
162
163 if (!anon_vma)
164 return;
165
166 spin_lock(&anon_vma->lock);
1da177e4
LT
167 list_del(&vma->anon_vma_node);
168
169 /* We must garbage collect the anon_vma if it's empty */
170 empty = list_empty(&anon_vma->head);
171 spin_unlock(&anon_vma->lock);
172
173 if (empty)
174 anon_vma_free(anon_vma);
175}
176
51cc5068 177static void anon_vma_ctor(void *data)
1da177e4 178{
a35afb83 179 struct anon_vma *anon_vma = data;
1da177e4 180
a35afb83
CL
181 spin_lock_init(&anon_vma->lock);
182 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
183}
184
185void __init anon_vma_init(void)
186{
187 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 188 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
1da177e4
LT
189}
190
191/*
192 * Getting a lock on a stable anon_vma from a page off the LRU is
193 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
194 */
af936a16 195struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 196{
34bbd704 197 struct anon_vma *anon_vma;
1da177e4
LT
198 unsigned long anon_mapping;
199
200 rcu_read_lock();
201 anon_mapping = (unsigned long) page->mapping;
202 if (!(anon_mapping & PAGE_MAPPING_ANON))
203 goto out;
204 if (!page_mapped(page))
205 goto out;
206
207 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
208 spin_lock(&anon_vma->lock);
34bbd704 209 return anon_vma;
1da177e4
LT
210out:
211 rcu_read_unlock();
34bbd704
ON
212 return NULL;
213}
214
af936a16 215void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704
ON
216{
217 spin_unlock(&anon_vma->lock);
218 rcu_read_unlock();
1da177e4
LT
219}
220
221/*
3ad33b24
LS
222 * At what user virtual address is page expected in @vma?
223 * Returns virtual address or -EFAULT if page's index/offset is not
224 * within the range mapped the @vma.
1da177e4
LT
225 */
226static inline unsigned long
227vma_address(struct page *page, struct vm_area_struct *vma)
228{
229 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
230 unsigned long address;
231
232 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
233 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 234 /* page should be within @vma mapping range */
1da177e4
LT
235 return -EFAULT;
236 }
237 return address;
238}
239
240/*
241 * At what user virtual address is page expected in vma? checking that the
ee498ed7 242 * page matches the vma: currently only used on anon pages, by unuse_vma;
1da177e4
LT
243 */
244unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
245{
246 if (PageAnon(page)) {
247 if ((void *)vma->anon_vma !=
248 (void *)page->mapping - PAGE_MAPPING_ANON)
249 return -EFAULT;
250 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
251 if (!vma->vm_file ||
252 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
253 return -EFAULT;
254 } else
255 return -EFAULT;
256 return vma_address(page, vma);
257}
258
81b4082d
ND
259/*
260 * Check that @page is mapped at @address into @mm.
261 *
479db0bf
NP
262 * If @sync is false, page_check_address may perform a racy check to avoid
263 * the page table lock when the pte is not present (helpful when reclaiming
264 * highly shared pages).
265 *
b8072f09 266 * On success returns with pte mapped and locked.
81b4082d 267 */
ceffc078 268pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 269 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
270{
271 pgd_t *pgd;
272 pud_t *pud;
273 pmd_t *pmd;
274 pte_t *pte;
c0718806 275 spinlock_t *ptl;
81b4082d 276
81b4082d 277 pgd = pgd_offset(mm, address);
c0718806
HD
278 if (!pgd_present(*pgd))
279 return NULL;
280
281 pud = pud_offset(pgd, address);
282 if (!pud_present(*pud))
283 return NULL;
284
285 pmd = pmd_offset(pud, address);
286 if (!pmd_present(*pmd))
287 return NULL;
288
289 pte = pte_offset_map(pmd, address);
290 /* Make a quick check before getting the lock */
479db0bf 291 if (!sync && !pte_present(*pte)) {
c0718806
HD
292 pte_unmap(pte);
293 return NULL;
294 }
295
4c21e2f2 296 ptl = pte_lockptr(mm, pmd);
c0718806
HD
297 spin_lock(ptl);
298 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
299 *ptlp = ptl;
300 return pte;
81b4082d 301 }
c0718806
HD
302 pte_unmap_unlock(pte, ptl);
303 return NULL;
81b4082d
ND
304}
305
b291f000
NP
306/**
307 * page_mapped_in_vma - check whether a page is really mapped in a VMA
308 * @page: the page to test
309 * @vma: the VMA to test
310 *
311 * Returns 1 if the page is mapped into the page tables of the VMA, 0
312 * if the page is not mapped into the page tables of this VMA. Only
313 * valid for normal file or anonymous VMAs.
314 */
315static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
316{
317 unsigned long address;
318 pte_t *pte;
319 spinlock_t *ptl;
320
321 address = vma_address(page, vma);
322 if (address == -EFAULT) /* out of vma range */
323 return 0;
324 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
325 if (!pte) /* the page is not in this mm */
326 return 0;
327 pte_unmap_unlock(pte, ptl);
328
329 return 1;
330}
331
1da177e4
LT
332/*
333 * Subfunctions of page_referenced: page_referenced_one called
334 * repeatedly from either page_referenced_anon or page_referenced_file.
335 */
336static int page_referenced_one(struct page *page,
f7b7fd8f 337 struct vm_area_struct *vma, unsigned int *mapcount)
1da177e4
LT
338{
339 struct mm_struct *mm = vma->vm_mm;
340 unsigned long address;
1da177e4 341 pte_t *pte;
c0718806 342 spinlock_t *ptl;
1da177e4
LT
343 int referenced = 0;
344
1da177e4
LT
345 address = vma_address(page, vma);
346 if (address == -EFAULT)
347 goto out;
348
479db0bf 349 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
350 if (!pte)
351 goto out;
1da177e4 352
b291f000
NP
353 /*
354 * Don't want to elevate referenced for mlocked page that gets this far,
355 * in order that it progresses to try_to_unmap and is moved to the
356 * unevictable list.
357 */
5a9bbdcd 358 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 359 *mapcount = 1; /* break early from loop */
b291f000
NP
360 goto out_unmap;
361 }
362
363 if (ptep_clear_flush_young_notify(vma, address, pte))
c0718806 364 referenced++;
1da177e4 365
c0718806
HD
366 /* Pretend the page is referenced if the task has the
367 swap token and is in the middle of a page fault. */
f7b7fd8f 368 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
369 rwsem_is_locked(&mm->mmap_sem))
370 referenced++;
371
b291f000 372out_unmap:
c0718806
HD
373 (*mapcount)--;
374 pte_unmap_unlock(pte, ptl);
1da177e4
LT
375out:
376 return referenced;
377}
378
bed7161a
BS
379static int page_referenced_anon(struct page *page,
380 struct mem_cgroup *mem_cont)
1da177e4
LT
381{
382 unsigned int mapcount;
383 struct anon_vma *anon_vma;
384 struct vm_area_struct *vma;
385 int referenced = 0;
386
387 anon_vma = page_lock_anon_vma(page);
388 if (!anon_vma)
389 return referenced;
390
391 mapcount = page_mapcount(page);
392 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
bed7161a
BS
393 /*
394 * If we are reclaiming on behalf of a cgroup, skip
395 * counting on behalf of references from different
396 * cgroups
397 */
bd845e38 398 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 399 continue;
f7b7fd8f 400 referenced += page_referenced_one(page, vma, &mapcount);
1da177e4
LT
401 if (!mapcount)
402 break;
403 }
34bbd704
ON
404
405 page_unlock_anon_vma(anon_vma);
1da177e4
LT
406 return referenced;
407}
408
409/**
410 * page_referenced_file - referenced check for object-based rmap
411 * @page: the page we're checking references on.
43d8eac4 412 * @mem_cont: target memory controller
1da177e4
LT
413 *
414 * For an object-based mapped page, find all the places it is mapped and
415 * check/clear the referenced flag. This is done by following the page->mapping
416 * pointer, then walking the chain of vmas it holds. It returns the number
417 * of references it found.
418 *
419 * This function is only called from page_referenced for object-based pages.
420 */
bed7161a
BS
421static int page_referenced_file(struct page *page,
422 struct mem_cgroup *mem_cont)
1da177e4
LT
423{
424 unsigned int mapcount;
425 struct address_space *mapping = page->mapping;
426 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
427 struct vm_area_struct *vma;
428 struct prio_tree_iter iter;
429 int referenced = 0;
430
431 /*
432 * The caller's checks on page->mapping and !PageAnon have made
433 * sure that this is a file page: the check for page->mapping
434 * excludes the case just before it gets set on an anon page.
435 */
436 BUG_ON(PageAnon(page));
437
438 /*
439 * The page lock not only makes sure that page->mapping cannot
440 * suddenly be NULLified by truncation, it makes sure that the
441 * structure at mapping cannot be freed and reused yet,
442 * so we can safely take mapping->i_mmap_lock.
443 */
444 BUG_ON(!PageLocked(page));
445
446 spin_lock(&mapping->i_mmap_lock);
447
448 /*
449 * i_mmap_lock does not stabilize mapcount at all, but mapcount
450 * is more likely to be accurate if we note it after spinning.
451 */
452 mapcount = page_mapcount(page);
453
454 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
bed7161a
BS
455 /*
456 * If we are reclaiming on behalf of a cgroup, skip
457 * counting on behalf of references from different
458 * cgroups
459 */
bd845e38 460 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 461 continue;
f7b7fd8f 462 referenced += page_referenced_one(page, vma, &mapcount);
1da177e4
LT
463 if (!mapcount)
464 break;
465 }
466
467 spin_unlock(&mapping->i_mmap_lock);
468 return referenced;
469}
470
471/**
472 * page_referenced - test if the page was referenced
473 * @page: the page to test
474 * @is_locked: caller holds lock on the page
43d8eac4 475 * @mem_cont: target memory controller
1da177e4
LT
476 *
477 * Quick test_and_clear_referenced for all mappings to a page,
478 * returns the number of ptes which referenced the page.
479 */
bed7161a
BS
480int page_referenced(struct page *page, int is_locked,
481 struct mem_cgroup *mem_cont)
1da177e4
LT
482{
483 int referenced = 0;
484
1da177e4
LT
485 if (TestClearPageReferenced(page))
486 referenced++;
487
488 if (page_mapped(page) && page->mapping) {
489 if (PageAnon(page))
bed7161a 490 referenced += page_referenced_anon(page, mem_cont);
1da177e4 491 else if (is_locked)
bed7161a 492 referenced += page_referenced_file(page, mem_cont);
529ae9aa 493 else if (!trylock_page(page))
1da177e4
LT
494 referenced++;
495 else {
496 if (page->mapping)
bed7161a
BS
497 referenced +=
498 page_referenced_file(page, mem_cont);
1da177e4
LT
499 unlock_page(page);
500 }
501 }
5b7baf05
CB
502
503 if (page_test_and_clear_young(page))
504 referenced++;
505
1da177e4
LT
506 return referenced;
507}
508
d08b3851
PZ
509static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
510{
511 struct mm_struct *mm = vma->vm_mm;
512 unsigned long address;
c2fda5fe 513 pte_t *pte;
d08b3851
PZ
514 spinlock_t *ptl;
515 int ret = 0;
516
517 address = vma_address(page, vma);
518 if (address == -EFAULT)
519 goto out;
520
479db0bf 521 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
522 if (!pte)
523 goto out;
524
c2fda5fe
PZ
525 if (pte_dirty(*pte) || pte_write(*pte)) {
526 pte_t entry;
d08b3851 527
c2fda5fe 528 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 529 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
530 entry = pte_wrprotect(entry);
531 entry = pte_mkclean(entry);
d6e88e67 532 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
533 ret = 1;
534 }
d08b3851 535
d08b3851
PZ
536 pte_unmap_unlock(pte, ptl);
537out:
538 return ret;
539}
540
541static int page_mkclean_file(struct address_space *mapping, struct page *page)
542{
543 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
544 struct vm_area_struct *vma;
545 struct prio_tree_iter iter;
546 int ret = 0;
547
548 BUG_ON(PageAnon(page));
549
550 spin_lock(&mapping->i_mmap_lock);
551 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
552 if (vma->vm_flags & VM_SHARED)
553 ret += page_mkclean_one(page, vma);
554 }
555 spin_unlock(&mapping->i_mmap_lock);
556 return ret;
557}
558
559int page_mkclean(struct page *page)
560{
561 int ret = 0;
562
563 BUG_ON(!PageLocked(page));
564
565 if (page_mapped(page)) {
566 struct address_space *mapping = page_mapping(page);
ce7e9fae 567 if (mapping) {
d08b3851 568 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
569 if (page_test_dirty(page)) {
570 page_clear_dirty(page);
571 ret = 1;
572 }
6c210482 573 }
d08b3851
PZ
574 }
575
576 return ret;
577}
60b59bea 578EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 579
9617d95e 580/**
43d8eac4 581 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
582 * @page: the page to add the mapping to
583 * @vma: the vm area in which the mapping is added
584 * @address: the user virtual address mapped
585 */
586static void __page_set_anon_rmap(struct page *page,
587 struct vm_area_struct *vma, unsigned long address)
588{
589 struct anon_vma *anon_vma = vma->anon_vma;
590
591 BUG_ON(!anon_vma);
592 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
593 page->mapping = (struct address_space *) anon_vma;
594
595 page->index = linear_page_index(vma, address);
596
a74609fa
NP
597 /*
598 * nr_mapped state can be updated without turning off
599 * interrupts because it is not modified via interrupt.
600 */
f3dbd344 601 __inc_zone_page_state(page, NR_ANON_PAGES);
9617d95e
NP
602}
603
c97a9e10 604/**
43d8eac4 605 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
606 * @page: the page to add the mapping to
607 * @vma: the vm area in which the mapping is added
608 * @address: the user virtual address mapped
609 */
610static void __page_check_anon_rmap(struct page *page,
611 struct vm_area_struct *vma, unsigned long address)
612{
613#ifdef CONFIG_DEBUG_VM
614 /*
615 * The page's anon-rmap details (mapping and index) are guaranteed to
616 * be set up correctly at this point.
617 *
618 * We have exclusion against page_add_anon_rmap because the caller
619 * always holds the page locked, except if called from page_dup_rmap,
620 * in which case the page is already known to be setup.
621 *
622 * We have exclusion against page_add_new_anon_rmap because those pages
623 * are initially only visible via the pagetables, and the pte is locked
624 * over the call to page_add_new_anon_rmap.
625 */
626 struct anon_vma *anon_vma = vma->anon_vma;
627 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
628 BUG_ON(page->mapping != (struct address_space *)anon_vma);
629 BUG_ON(page->index != linear_page_index(vma, address));
630#endif
631}
632
1da177e4
LT
633/**
634 * page_add_anon_rmap - add pte mapping to an anonymous page
635 * @page: the page to add the mapping to
636 * @vma: the vm area in which the mapping is added
637 * @address: the user virtual address mapped
638 *
c97a9e10 639 * The caller needs to hold the pte lock and the page must be locked.
1da177e4
LT
640 */
641void page_add_anon_rmap(struct page *page,
642 struct vm_area_struct *vma, unsigned long address)
643{
c97a9e10
NP
644 VM_BUG_ON(!PageLocked(page));
645 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
9617d95e
NP
646 if (atomic_inc_and_test(&page->_mapcount))
647 __page_set_anon_rmap(page, vma, address);
69029cd5 648 else
c97a9e10 649 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
650}
651
43d8eac4 652/**
9617d95e
NP
653 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
654 * @page: the page to add the mapping to
655 * @vma: the vm area in which the mapping is added
656 * @address: the user virtual address mapped
657 *
658 * Same as page_add_anon_rmap but must only be called on *new* pages.
659 * This means the inc-and-test can be bypassed.
c97a9e10 660 * Page does not have to be locked.
9617d95e
NP
661 */
662void page_add_new_anon_rmap(struct page *page,
663 struct vm_area_struct *vma, unsigned long address)
664{
c97a9e10 665 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
9617d95e
NP
666 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
667 __page_set_anon_rmap(page, vma, address);
668}
669
1da177e4
LT
670/**
671 * page_add_file_rmap - add pte mapping to a file page
672 * @page: the page to add the mapping to
673 *
b8072f09 674 * The caller needs to hold the pte lock.
1da177e4
LT
675 */
676void page_add_file_rmap(struct page *page)
677{
1da177e4 678 if (atomic_inc_and_test(&page->_mapcount))
65ba55f5 679 __inc_zone_page_state(page, NR_FILE_MAPPED);
1da177e4
LT
680}
681
c97a9e10
NP
682#ifdef CONFIG_DEBUG_VM
683/**
684 * page_dup_rmap - duplicate pte mapping to a page
685 * @page: the page to add the mapping to
43d8eac4
RD
686 * @vma: the vm area being duplicated
687 * @address: the user virtual address mapped
c97a9e10
NP
688 *
689 * For copy_page_range only: minimal extract from page_add_file_rmap /
690 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
691 * quicker.
692 *
693 * The caller needs to hold the pte lock.
694 */
695void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
696{
697 BUG_ON(page_mapcount(page) == 0);
698 if (PageAnon(page))
699 __page_check_anon_rmap(page, vma, address);
700 atomic_inc(&page->_mapcount);
701}
702#endif
703
1da177e4
LT
704/**
705 * page_remove_rmap - take down pte mapping from a page
706 * @page: page to remove mapping from
43d8eac4 707 * @vma: the vm area in which the mapping is removed
1da177e4 708 *
b8072f09 709 * The caller needs to hold the pte lock.
1da177e4 710 */
7de6b805 711void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
1da177e4 712{
1da177e4 713 if (atomic_add_negative(-1, &page->_mapcount)) {
b7ab795b 714 if (unlikely(page_mapcount(page) < 0)) {
ef2bf0dc 715 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
7de6b805 716 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
ef2bf0dc
DJ
717 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
718 printk (KERN_EMERG " page->count = %x\n", page_count(page));
719 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
7de6b805 720 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
54cb8821 721 if (vma->vm_ops) {
54cb8821
NP
722 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
723 }
7de6b805
NP
724 if (vma->vm_file && vma->vm_file->f_op)
725 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
b16bc64d 726 BUG();
ef2bf0dc 727 }
b16bc64d 728
1da177e4 729 /*
16f8c5b2
HD
730 * Now that the last pte has gone, s390 must transfer dirty
731 * flag from storage key to struct page. We can usually skip
732 * this if the page is anon, so about to be freed; but perhaps
733 * not if it's in swapcache - there might be another pte slot
734 * containing the swap entry, but page not yet written to swap.
1da177e4 735 */
a4b526b3
MS
736 if ((!PageAnon(page) || PageSwapCache(page)) &&
737 page_test_dirty(page)) {
6c210482 738 page_clear_dirty(page);
1da177e4 739 set_page_dirty(page);
6c210482 740 }
5b4e655e
KH
741 if (PageAnon(page))
742 mem_cgroup_uncharge_page(page);
f3dbd344 743 __dec_zone_page_state(page,
16f8c5b2
HD
744 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
745 /*
746 * It would be tidy to reset the PageAnon mapping here,
747 * but that might overwrite a racing page_add_anon_rmap
748 * which increments mapcount after us but sets mapping
749 * before us: so leave the reset to free_hot_cold_page,
750 * and remember that it's only reliable while mapped.
751 * Leaving it set also helps swapoff to reinstate ptes
752 * faster for those pages still in swapcache.
753 */
1da177e4
LT
754 }
755}
756
757/*
758 * Subfunctions of try_to_unmap: try_to_unmap_one called
759 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
760 */
a48d07af 761static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
7352349a 762 int migration)
1da177e4
LT
763{
764 struct mm_struct *mm = vma->vm_mm;
765 unsigned long address;
1da177e4
LT
766 pte_t *pte;
767 pte_t pteval;
c0718806 768 spinlock_t *ptl;
1da177e4
LT
769 int ret = SWAP_AGAIN;
770
1da177e4
LT
771 address = vma_address(page, vma);
772 if (address == -EFAULT)
773 goto out;
774
479db0bf 775 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 776 if (!pte)
81b4082d 777 goto out;
1da177e4
LT
778
779 /*
780 * If the page is mlock()d, we cannot swap it out.
781 * If it's recently referenced (perhaps page_referenced
782 * skipped over this mm) then we should reactivate it.
783 */
b291f000
NP
784 if (!migration) {
785 if (vma->vm_flags & VM_LOCKED) {
786 ret = SWAP_MLOCK;
787 goto out_unmap;
788 }
789 if (ptep_clear_flush_young_notify(vma, address, pte)) {
790 ret = SWAP_FAIL;
791 goto out_unmap;
792 }
793 }
1da177e4 794
1da177e4
LT
795 /* Nuke the page table entry. */
796 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 797 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
798
799 /* Move the dirty bit to the physical page now the pte is gone. */
800 if (pte_dirty(pteval))
801 set_page_dirty(page);
802
365e9c87
HD
803 /* Update high watermark before we lower rss */
804 update_hiwater_rss(mm);
805
1da177e4 806 if (PageAnon(page)) {
4c21e2f2 807 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
808
809 if (PageSwapCache(page)) {
810 /*
811 * Store the swap location in the pte.
812 * See handle_pte_fault() ...
813 */
814 swap_duplicate(entry);
815 if (list_empty(&mm->mmlist)) {
816 spin_lock(&mmlist_lock);
817 if (list_empty(&mm->mmlist))
818 list_add(&mm->mmlist, &init_mm.mmlist);
819 spin_unlock(&mmlist_lock);
820 }
442c9137 821 dec_mm_counter(mm, anon_rss);
64cdd548 822 } else if (PAGE_MIGRATION) {
0697212a
CL
823 /*
824 * Store the pfn of the page in a special migration
825 * pte. do_swap_page() will wait until the migration
826 * pte is removed and then restart fault handling.
827 */
828 BUG_ON(!migration);
829 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
830 }
831 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
832 BUG_ON(pte_file(*pte));
64cdd548 833 } else if (PAGE_MIGRATION && migration) {
04e62a29
CL
834 /* Establish migration entry for a file page */
835 swp_entry_t entry;
836 entry = make_migration_entry(page, pte_write(pteval));
837 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
838 } else
4294621f 839 dec_mm_counter(mm, file_rss);
1da177e4 840
04e62a29 841
7de6b805 842 page_remove_rmap(page, vma);
1da177e4
LT
843 page_cache_release(page);
844
845out_unmap:
c0718806 846 pte_unmap_unlock(pte, ptl);
1da177e4
LT
847out:
848 return ret;
849}
850
851/*
852 * objrmap doesn't work for nonlinear VMAs because the assumption that
853 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
854 * Consequently, given a particular page and its ->index, we cannot locate the
855 * ptes which are mapping that page without an exhaustive linear search.
856 *
857 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
858 * maps the file to which the target page belongs. The ->vm_private_data field
859 * holds the current cursor into that scan. Successive searches will circulate
860 * around the vma's virtual address space.
861 *
862 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
863 * more scanning pressure is placed against them as well. Eventually pages
864 * will become fully unmapped and are eligible for eviction.
865 *
866 * For very sparsely populated VMAs this is a little inefficient - chances are
867 * there there won't be many ptes located within the scan cluster. In this case
868 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
869 *
870 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
871 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
872 * rather than unmapping them. If we encounter the "check_page" that vmscan is
873 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
874 */
875#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
876#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
877
b291f000
NP
878static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
879 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
880{
881 struct mm_struct *mm = vma->vm_mm;
882 pgd_t *pgd;
883 pud_t *pud;
884 pmd_t *pmd;
c0718806 885 pte_t *pte;
1da177e4 886 pte_t pteval;
c0718806 887 spinlock_t *ptl;
1da177e4
LT
888 struct page *page;
889 unsigned long address;
890 unsigned long end;
b291f000
NP
891 int ret = SWAP_AGAIN;
892 int locked_vma = 0;
1da177e4 893
1da177e4
LT
894 address = (vma->vm_start + cursor) & CLUSTER_MASK;
895 end = address + CLUSTER_SIZE;
896 if (address < vma->vm_start)
897 address = vma->vm_start;
898 if (end > vma->vm_end)
899 end = vma->vm_end;
900
901 pgd = pgd_offset(mm, address);
902 if (!pgd_present(*pgd))
b291f000 903 return ret;
1da177e4
LT
904
905 pud = pud_offset(pgd, address);
906 if (!pud_present(*pud))
b291f000 907 return ret;
1da177e4
LT
908
909 pmd = pmd_offset(pud, address);
910 if (!pmd_present(*pmd))
b291f000
NP
911 return ret;
912
913 /*
914 * MLOCK_PAGES => feature is configured.
915 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
916 * keep the sem while scanning the cluster for mlocking pages.
917 */
918 if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
919 locked_vma = (vma->vm_flags & VM_LOCKED);
920 if (!locked_vma)
921 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
922 }
c0718806
HD
923
924 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 925
365e9c87
HD
926 /* Update high watermark before we lower rss */
927 update_hiwater_rss(mm);
928
c0718806 929 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
930 if (!pte_present(*pte))
931 continue;
6aab341e
LT
932 page = vm_normal_page(vma, address, *pte);
933 BUG_ON(!page || PageAnon(page));
1da177e4 934
b291f000
NP
935 if (locked_vma) {
936 mlock_vma_page(page); /* no-op if already mlocked */
937 if (page == check_page)
938 ret = SWAP_MLOCK;
939 continue; /* don't unmap */
940 }
941
cddb8a5c 942 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
943 continue;
944
945 /* Nuke the page table entry. */
eca35133 946 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 947 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
948
949 /* If nonlinear, store the file page offset in the pte. */
950 if (page->index != linear_page_index(vma, address))
951 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
952
953 /* Move the dirty bit to the physical page now the pte is gone. */
954 if (pte_dirty(pteval))
955 set_page_dirty(page);
956
7de6b805 957 page_remove_rmap(page, vma);
1da177e4 958 page_cache_release(page);
4294621f 959 dec_mm_counter(mm, file_rss);
1da177e4
LT
960 (*mapcount)--;
961 }
c0718806 962 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
963 if (locked_vma)
964 up_read(&vma->vm_mm->mmap_sem);
965 return ret;
1da177e4
LT
966}
967
b291f000
NP
968/*
969 * common handling for pages mapped in VM_LOCKED vmas
970 */
971static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
972{
973 int mlocked = 0;
974
975 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
976 if (vma->vm_flags & VM_LOCKED) {
977 mlock_vma_page(page);
978 mlocked++; /* really mlocked the page */
979 }
980 up_read(&vma->vm_mm->mmap_sem);
981 }
982 return mlocked;
983}
984
985/**
986 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
987 * rmap method
988 * @page: the page to unmap/unlock
989 * @unlock: request for unlock rather than unmap [unlikely]
990 * @migration: unmapping for migration - ignored if @unlock
991 *
992 * Find all the mappings of a page using the mapping pointer and the vma chains
993 * contained in the anon_vma struct it points to.
994 *
995 * This function is only called from try_to_unmap/try_to_munlock for
996 * anonymous pages.
997 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
998 * where the page was found will be held for write. So, we won't recheck
999 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1000 * 'LOCKED.
1001 */
1002static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1da177e4
LT
1003{
1004 struct anon_vma *anon_vma;
1005 struct vm_area_struct *vma;
b291f000 1006 unsigned int mlocked = 0;
1da177e4
LT
1007 int ret = SWAP_AGAIN;
1008
b291f000
NP
1009 if (MLOCK_PAGES && unlikely(unlock))
1010 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1011
1da177e4
LT
1012 anon_vma = page_lock_anon_vma(page);
1013 if (!anon_vma)
1014 return ret;
1015
1016 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
b291f000
NP
1017 if (MLOCK_PAGES && unlikely(unlock)) {
1018 if (!((vma->vm_flags & VM_LOCKED) &&
1019 page_mapped_in_vma(page, vma)))
1020 continue; /* must visit all unlocked vmas */
1021 ret = SWAP_MLOCK; /* saw at least one mlocked vma */
1022 } else {
1023 ret = try_to_unmap_one(page, vma, migration);
1024 if (ret == SWAP_FAIL || !page_mapped(page))
1025 break;
1026 }
1027 if (ret == SWAP_MLOCK) {
1028 mlocked = try_to_mlock_page(page, vma);
1029 if (mlocked)
1030 break; /* stop if actually mlocked page */
1031 }
1da177e4 1032 }
34bbd704
ON
1033
1034 page_unlock_anon_vma(anon_vma);
b291f000
NP
1035
1036 if (mlocked)
1037 ret = SWAP_MLOCK; /* actually mlocked the page */
1038 else if (ret == SWAP_MLOCK)
1039 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1040
1da177e4
LT
1041 return ret;
1042}
1043
1044/**
b291f000
NP
1045 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1046 * @page: the page to unmap/unlock
1047 * @unlock: request for unlock rather than unmap [unlikely]
1048 * @migration: unmapping for migration - ignored if @unlock
1da177e4
LT
1049 *
1050 * Find all the mappings of a page using the mapping pointer and the vma chains
1051 * contained in the address_space struct it points to.
1052 *
b291f000
NP
1053 * This function is only called from try_to_unmap/try_to_munlock for
1054 * object-based pages.
1055 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1056 * where the page was found will be held for write. So, we won't recheck
1057 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1058 * 'LOCKED.
1da177e4 1059 */
b291f000 1060static int try_to_unmap_file(struct page *page, int unlock, int migration)
1da177e4
LT
1061{
1062 struct address_space *mapping = page->mapping;
1063 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1064 struct vm_area_struct *vma;
1065 struct prio_tree_iter iter;
1066 int ret = SWAP_AGAIN;
1067 unsigned long cursor;
1068 unsigned long max_nl_cursor = 0;
1069 unsigned long max_nl_size = 0;
1070 unsigned int mapcount;
b291f000
NP
1071 unsigned int mlocked = 0;
1072
1073 if (MLOCK_PAGES && unlikely(unlock))
1074 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1da177e4
LT
1075
1076 spin_lock(&mapping->i_mmap_lock);
1077 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
b291f000
NP
1078 if (MLOCK_PAGES && unlikely(unlock)) {
1079 if (!(vma->vm_flags & VM_LOCKED))
1080 continue; /* must visit all vmas */
1081 ret = SWAP_MLOCK;
1082 } else {
1083 ret = try_to_unmap_one(page, vma, migration);
1084 if (ret == SWAP_FAIL || !page_mapped(page))
1085 goto out;
1086 }
1087 if (ret == SWAP_MLOCK) {
1088 mlocked = try_to_mlock_page(page, vma);
1089 if (mlocked)
1090 break; /* stop if actually mlocked page */
1091 }
1da177e4
LT
1092 }
1093
b291f000
NP
1094 if (mlocked)
1095 goto out;
1096
1da177e4
LT
1097 if (list_empty(&mapping->i_mmap_nonlinear))
1098 goto out;
1099
1100 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1101 shared.vm_set.list) {
b291f000
NP
1102 if (MLOCK_PAGES && unlikely(unlock)) {
1103 if (!(vma->vm_flags & VM_LOCKED))
1104 continue; /* must visit all vmas */
1105 ret = SWAP_MLOCK; /* leave mlocked == 0 */
1106 goto out; /* no need to look further */
1107 }
1108 if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
1da177e4
LT
1109 continue;
1110 cursor = (unsigned long) vma->vm_private_data;
1111 if (cursor > max_nl_cursor)
1112 max_nl_cursor = cursor;
1113 cursor = vma->vm_end - vma->vm_start;
1114 if (cursor > max_nl_size)
1115 max_nl_size = cursor;
1116 }
1117
b291f000 1118 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1119 ret = SWAP_FAIL;
1120 goto out;
1121 }
1122
1123 /*
1124 * We don't try to search for this page in the nonlinear vmas,
1125 * and page_referenced wouldn't have found it anyway. Instead
1126 * just walk the nonlinear vmas trying to age and unmap some.
1127 * The mapcount of the page we came in with is irrelevant,
1128 * but even so use it as a guide to how hard we should try?
1129 */
1130 mapcount = page_mapcount(page);
1131 if (!mapcount)
1132 goto out;
1133 cond_resched_lock(&mapping->i_mmap_lock);
1134
1135 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1136 if (max_nl_cursor == 0)
1137 max_nl_cursor = CLUSTER_SIZE;
1138
1139 do {
1140 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1141 shared.vm_set.list) {
b291f000
NP
1142 if (!MLOCK_PAGES && !migration &&
1143 (vma->vm_flags & VM_LOCKED))
1da177e4
LT
1144 continue;
1145 cursor = (unsigned long) vma->vm_private_data;
839b9685 1146 while ( cursor < max_nl_cursor &&
1da177e4 1147 cursor < vma->vm_end - vma->vm_start) {
b291f000
NP
1148 ret = try_to_unmap_cluster(cursor, &mapcount,
1149 vma, page);
1150 if (ret == SWAP_MLOCK)
1151 mlocked = 2; /* to return below */
1da177e4
LT
1152 cursor += CLUSTER_SIZE;
1153 vma->vm_private_data = (void *) cursor;
1154 if ((int)mapcount <= 0)
1155 goto out;
1156 }
1157 vma->vm_private_data = (void *) max_nl_cursor;
1158 }
1159 cond_resched_lock(&mapping->i_mmap_lock);
1160 max_nl_cursor += CLUSTER_SIZE;
1161 } while (max_nl_cursor <= max_nl_size);
1162
1163 /*
1164 * Don't loop forever (perhaps all the remaining pages are
1165 * in locked vmas). Reset cursor on all unreserved nonlinear
1166 * vmas, now forgetting on which ones it had fallen behind.
1167 */
101d2be7
HD
1168 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1169 vma->vm_private_data = NULL;
1da177e4
LT
1170out:
1171 spin_unlock(&mapping->i_mmap_lock);
b291f000
NP
1172 if (mlocked)
1173 ret = SWAP_MLOCK; /* actually mlocked the page */
1174 else if (ret == SWAP_MLOCK)
1175 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1da177e4
LT
1176 return ret;
1177}
1178
1179/**
1180 * try_to_unmap - try to remove all page table mappings to a page
1181 * @page: the page to get unmapped
43d8eac4 1182 * @migration: migration flag
1da177e4
LT
1183 *
1184 * Tries to remove all the page table entries which are mapping this
1185 * page, used in the pageout path. Caller must hold the page lock.
1186 * Return values are:
1187 *
1188 * SWAP_SUCCESS - we succeeded in removing all mappings
1189 * SWAP_AGAIN - we missed a mapping, try again later
1190 * SWAP_FAIL - the page is unswappable
b291f000 1191 * SWAP_MLOCK - page is mlocked.
1da177e4 1192 */
7352349a 1193int try_to_unmap(struct page *page, int migration)
1da177e4
LT
1194{
1195 int ret;
1196
1da177e4
LT
1197 BUG_ON(!PageLocked(page));
1198
1199 if (PageAnon(page))
b291f000 1200 ret = try_to_unmap_anon(page, 0, migration);
1da177e4 1201 else
b291f000
NP
1202 ret = try_to_unmap_file(page, 0, migration);
1203 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1204 ret = SWAP_SUCCESS;
1205 return ret;
1206}
81b4082d 1207
b291f000
NP
1208#ifdef CONFIG_UNEVICTABLE_LRU
1209/**
1210 * try_to_munlock - try to munlock a page
1211 * @page: the page to be munlocked
1212 *
1213 * Called from munlock code. Checks all of the VMAs mapping the page
1214 * to make sure nobody else has this page mlocked. The page will be
1215 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1216 *
1217 * Return values are:
1218 *
1219 * SWAP_SUCCESS - no vma's holding page mlocked.
1220 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1221 * SWAP_MLOCK - page is now mlocked.
1222 */
1223int try_to_munlock(struct page *page)
1224{
1225 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1226
1227 if (PageAnon(page))
1228 return try_to_unmap_anon(page, 1, 0);
1229 else
1230 return try_to_unmap_file(page, 1, 0);
1231}
1232#endif