]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/rmap.c
[PATCH] mm: zap_pte out of line
[net-next-2.6.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
23 * inode->i_sem (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem
25 *
26 * When a page fault occurs in writing from user to file, down_read
27 * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within
28 * down_read of mmap_sem; i_sem and down_write of mmap_sem are never
29 * taken together; in truncation, i_sem is taken outermost.
30 *
31 * mm->mmap_sem
32 * page->flags PG_locked (lock_page)
33 * mapping->i_mmap_lock
34 * anon_vma->lock
35 * mm->page_table_lock
36 * zone->lru_lock (in mark_page_accessed)
5d337b91 37 * swap_lock (in swap_duplicate, swap_info_get)
1da177e4 38 * mmlist_lock (in mmput, drain_mmlist and others)
1da177e4
LT
39 * mapping->private_lock (in __set_page_dirty_buffers)
40 * inode_lock (in set_page_dirty's __mark_inode_dirty)
41 * sb_lock (within inode_lock in fs/fs-writeback.c)
42 * mapping->tree_lock (widely used, in set_page_dirty,
43 * in arch-dependent flush_dcache_mmap_lock,
44 * within inode_lock in __sync_single_inode)
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
55
56#include <asm/tlbflush.h>
57
58//#define RMAP_DEBUG /* can be enabled only for debugging */
59
60kmem_cache_t *anon_vma_cachep;
61
62static inline void validate_anon_vma(struct vm_area_struct *find_vma)
63{
64#ifdef RMAP_DEBUG
65 struct anon_vma *anon_vma = find_vma->anon_vma;
66 struct vm_area_struct *vma;
67 unsigned int mapcount = 0;
68 int found = 0;
69
70 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
71 mapcount++;
72 BUG_ON(mapcount > 100000);
73 if (vma == find_vma)
74 found = 1;
75 }
76 BUG_ON(!found);
77#endif
78}
79
80/* This must be called under the mmap_sem. */
81int anon_vma_prepare(struct vm_area_struct *vma)
82{
83 struct anon_vma *anon_vma = vma->anon_vma;
84
85 might_sleep();
86 if (unlikely(!anon_vma)) {
87 struct mm_struct *mm = vma->vm_mm;
88 struct anon_vma *allocated, *locked;
89
90 anon_vma = find_mergeable_anon_vma(vma);
91 if (anon_vma) {
92 allocated = NULL;
93 locked = anon_vma;
94 spin_lock(&locked->lock);
95 } else {
96 anon_vma = anon_vma_alloc();
97 if (unlikely(!anon_vma))
98 return -ENOMEM;
99 allocated = anon_vma;
100 locked = NULL;
101 }
102
103 /* page_table_lock to protect against threads */
104 spin_lock(&mm->page_table_lock);
105 if (likely(!vma->anon_vma)) {
106 vma->anon_vma = anon_vma;
107 list_add(&vma->anon_vma_node, &anon_vma->head);
108 allocated = NULL;
109 }
110 spin_unlock(&mm->page_table_lock);
111
112 if (locked)
113 spin_unlock(&locked->lock);
114 if (unlikely(allocated))
115 anon_vma_free(allocated);
116 }
117 return 0;
118}
119
120void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
121{
122 BUG_ON(vma->anon_vma != next->anon_vma);
123 list_del(&next->anon_vma_node);
124}
125
126void __anon_vma_link(struct vm_area_struct *vma)
127{
128 struct anon_vma *anon_vma = vma->anon_vma;
129
130 if (anon_vma) {
131 list_add(&vma->anon_vma_node, &anon_vma->head);
132 validate_anon_vma(vma);
133 }
134}
135
136void anon_vma_link(struct vm_area_struct *vma)
137{
138 struct anon_vma *anon_vma = vma->anon_vma;
139
140 if (anon_vma) {
141 spin_lock(&anon_vma->lock);
142 list_add(&vma->anon_vma_node, &anon_vma->head);
143 validate_anon_vma(vma);
144 spin_unlock(&anon_vma->lock);
145 }
146}
147
148void anon_vma_unlink(struct vm_area_struct *vma)
149{
150 struct anon_vma *anon_vma = vma->anon_vma;
151 int empty;
152
153 if (!anon_vma)
154 return;
155
156 spin_lock(&anon_vma->lock);
157 validate_anon_vma(vma);
158 list_del(&vma->anon_vma_node);
159
160 /* We must garbage collect the anon_vma if it's empty */
161 empty = list_empty(&anon_vma->head);
162 spin_unlock(&anon_vma->lock);
163
164 if (empty)
165 anon_vma_free(anon_vma);
166}
167
168static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
169{
170 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
171 SLAB_CTOR_CONSTRUCTOR) {
172 struct anon_vma *anon_vma = data;
173
174 spin_lock_init(&anon_vma->lock);
175 INIT_LIST_HEAD(&anon_vma->head);
176 }
177}
178
179void __init anon_vma_init(void)
180{
181 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
182 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
183}
184
185/*
186 * Getting a lock on a stable anon_vma from a page off the LRU is
187 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
188 */
189static struct anon_vma *page_lock_anon_vma(struct page *page)
190{
191 struct anon_vma *anon_vma = NULL;
192 unsigned long anon_mapping;
193
194 rcu_read_lock();
195 anon_mapping = (unsigned long) page->mapping;
196 if (!(anon_mapping & PAGE_MAPPING_ANON))
197 goto out;
198 if (!page_mapped(page))
199 goto out;
200
201 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
202 spin_lock(&anon_vma->lock);
203out:
204 rcu_read_unlock();
205 return anon_vma;
206}
207
208/*
209 * At what user virtual address is page expected in vma?
210 */
211static inline unsigned long
212vma_address(struct page *page, struct vm_area_struct *vma)
213{
214 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
215 unsigned long address;
216
217 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
218 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
219 /* page should be within any vma from prio_tree_next */
220 BUG_ON(!PageAnon(page));
221 return -EFAULT;
222 }
223 return address;
224}
225
226/*
227 * At what user virtual address is page expected in vma? checking that the
228 * page matches the vma: currently only used by unuse_process, on anon pages.
229 */
230unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
231{
232 if (PageAnon(page)) {
233 if ((void *)vma->anon_vma !=
234 (void *)page->mapping - PAGE_MAPPING_ANON)
235 return -EFAULT;
236 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
237 if (vma->vm_file->f_mapping != page->mapping)
238 return -EFAULT;
239 } else
240 return -EFAULT;
241 return vma_address(page, vma);
242}
243
81b4082d
ND
244/*
245 * Check that @page is mapped at @address into @mm.
246 *
247 * On success returns with mapped pte and locked mm->page_table_lock.
248 */
ceffc078
CO
249pte_t *page_check_address(struct page *page, struct mm_struct *mm,
250 unsigned long address)
81b4082d
ND
251{
252 pgd_t *pgd;
253 pud_t *pud;
254 pmd_t *pmd;
255 pte_t *pte;
256
257 /*
258 * We need the page_table_lock to protect us from page faults,
259 * munmap, fork, etc...
260 */
261 spin_lock(&mm->page_table_lock);
262 pgd = pgd_offset(mm, address);
263 if (likely(pgd_present(*pgd))) {
264 pud = pud_offset(pgd, address);
265 if (likely(pud_present(*pud))) {
266 pmd = pmd_offset(pud, address);
267 if (likely(pmd_present(*pmd))) {
268 pte = pte_offset_map(pmd, address);
269 if (likely(pte_present(*pte) &&
270 page_to_pfn(page) == pte_pfn(*pte)))
271 return pte;
272 pte_unmap(pte);
273 }
274 }
275 }
276 spin_unlock(&mm->page_table_lock);
277 return ERR_PTR(-ENOENT);
278}
279
1da177e4
LT
280/*
281 * Subfunctions of page_referenced: page_referenced_one called
282 * repeatedly from either page_referenced_anon or page_referenced_file.
283 */
284static int page_referenced_one(struct page *page,
285 struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token)
286{
287 struct mm_struct *mm = vma->vm_mm;
288 unsigned long address;
1da177e4
LT
289 pte_t *pte;
290 int referenced = 0;
291
1da177e4
LT
292 address = vma_address(page, vma);
293 if (address == -EFAULT)
294 goto out;
295
81b4082d
ND
296 pte = page_check_address(page, mm, address);
297 if (!IS_ERR(pte)) {
298 if (ptep_clear_flush_young(vma, address, pte))
299 referenced++;
1da177e4 300
fcdae29a
RVR
301 /* Pretend the page is referenced if the task has the
302 swap token and is in the middle of a page fault. */
303 if (mm != current->mm && !ignore_token &&
304 has_swap_token(mm) &&
305 rwsem_is_locked(&mm->mmap_sem))
81b4082d 306 referenced++;
1da177e4 307
81b4082d
ND
308 (*mapcount)--;
309 pte_unmap(pte);
310 spin_unlock(&mm->page_table_lock);
311 }
1da177e4
LT
312out:
313 return referenced;
314}
315
316static int page_referenced_anon(struct page *page, int ignore_token)
317{
318 unsigned int mapcount;
319 struct anon_vma *anon_vma;
320 struct vm_area_struct *vma;
321 int referenced = 0;
322
323 anon_vma = page_lock_anon_vma(page);
324 if (!anon_vma)
325 return referenced;
326
327 mapcount = page_mapcount(page);
328 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
329 referenced += page_referenced_one(page, vma, &mapcount,
330 ignore_token);
331 if (!mapcount)
332 break;
333 }
334 spin_unlock(&anon_vma->lock);
335 return referenced;
336}
337
338/**
339 * page_referenced_file - referenced check for object-based rmap
340 * @page: the page we're checking references on.
341 *
342 * For an object-based mapped page, find all the places it is mapped and
343 * check/clear the referenced flag. This is done by following the page->mapping
344 * pointer, then walking the chain of vmas it holds. It returns the number
345 * of references it found.
346 *
347 * This function is only called from page_referenced for object-based pages.
348 */
349static int page_referenced_file(struct page *page, int ignore_token)
350{
351 unsigned int mapcount;
352 struct address_space *mapping = page->mapping;
353 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
354 struct vm_area_struct *vma;
355 struct prio_tree_iter iter;
356 int referenced = 0;
357
358 /*
359 * The caller's checks on page->mapping and !PageAnon have made
360 * sure that this is a file page: the check for page->mapping
361 * excludes the case just before it gets set on an anon page.
362 */
363 BUG_ON(PageAnon(page));
364
365 /*
366 * The page lock not only makes sure that page->mapping cannot
367 * suddenly be NULLified by truncation, it makes sure that the
368 * structure at mapping cannot be freed and reused yet,
369 * so we can safely take mapping->i_mmap_lock.
370 */
371 BUG_ON(!PageLocked(page));
372
373 spin_lock(&mapping->i_mmap_lock);
374
375 /*
376 * i_mmap_lock does not stabilize mapcount at all, but mapcount
377 * is more likely to be accurate if we note it after spinning.
378 */
379 mapcount = page_mapcount(page);
380
381 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
382 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
383 == (VM_LOCKED|VM_MAYSHARE)) {
384 referenced++;
385 break;
386 }
387 referenced += page_referenced_one(page, vma, &mapcount,
388 ignore_token);
389 if (!mapcount)
390 break;
391 }
392
393 spin_unlock(&mapping->i_mmap_lock);
394 return referenced;
395}
396
397/**
398 * page_referenced - test if the page was referenced
399 * @page: the page to test
400 * @is_locked: caller holds lock on the page
401 *
402 * Quick test_and_clear_referenced for all mappings to a page,
403 * returns the number of ptes which referenced the page.
404 */
405int page_referenced(struct page *page, int is_locked, int ignore_token)
406{
407 int referenced = 0;
408
409 if (!swap_token_default_timeout)
410 ignore_token = 1;
411
412 if (page_test_and_clear_young(page))
413 referenced++;
414
415 if (TestClearPageReferenced(page))
416 referenced++;
417
418 if (page_mapped(page) && page->mapping) {
419 if (PageAnon(page))
420 referenced += page_referenced_anon(page, ignore_token);
421 else if (is_locked)
422 referenced += page_referenced_file(page, ignore_token);
423 else if (TestSetPageLocked(page))
424 referenced++;
425 else {
426 if (page->mapping)
427 referenced += page_referenced_file(page,
428 ignore_token);
429 unlock_page(page);
430 }
431 }
432 return referenced;
433}
434
435/**
436 * page_add_anon_rmap - add pte mapping to an anonymous page
437 * @page: the page to add the mapping to
438 * @vma: the vm area in which the mapping is added
439 * @address: the user virtual address mapped
440 *
441 * The caller needs to hold the mm->page_table_lock.
442 */
443void page_add_anon_rmap(struct page *page,
444 struct vm_area_struct *vma, unsigned long address)
445{
1da177e4 446 if (atomic_inc_and_test(&page->_mapcount)) {
2822c1aa 447 struct anon_vma *anon_vma = vma->anon_vma;
2822c1aa
NP
448
449 BUG_ON(!anon_vma);
450 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1da177e4 451 page->mapping = (struct address_space *) anon_vma;
2822c1aa 452
4d7670e0 453 page->index = linear_page_index(vma, address);
2822c1aa 454
1da177e4
LT
455 inc_page_state(nr_mapped);
456 }
457 /* else checking page index and mapping is racy */
458}
459
460/**
461 * page_add_file_rmap - add pte mapping to a file page
462 * @page: the page to add the mapping to
463 *
464 * The caller needs to hold the mm->page_table_lock.
465 */
466void page_add_file_rmap(struct page *page)
467{
468 BUG_ON(PageAnon(page));
b5810039 469 BUG_ON(!pfn_valid(page_to_pfn(page)));
1da177e4
LT
470
471 if (atomic_inc_and_test(&page->_mapcount))
472 inc_page_state(nr_mapped);
473}
474
475/**
476 * page_remove_rmap - take down pte mapping from a page
477 * @page: page to remove mapping from
478 *
479 * Caller needs to hold the mm->page_table_lock.
480 */
481void page_remove_rmap(struct page *page)
482{
1da177e4
LT
483 if (atomic_add_negative(-1, &page->_mapcount)) {
484 BUG_ON(page_mapcount(page) < 0);
485 /*
486 * It would be tidy to reset the PageAnon mapping here,
487 * but that might overwrite a racing page_add_anon_rmap
488 * which increments mapcount after us but sets mapping
489 * before us: so leave the reset to free_hot_cold_page,
490 * and remember that it's only reliable while mapped.
491 * Leaving it set also helps swapoff to reinstate ptes
492 * faster for those pages still in swapcache.
493 */
494 if (page_test_and_clear_dirty(page))
495 set_page_dirty(page);
496 dec_page_state(nr_mapped);
497 }
498}
499
500/*
501 * Subfunctions of try_to_unmap: try_to_unmap_one called
502 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
503 */
504static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma)
505{
506 struct mm_struct *mm = vma->vm_mm;
507 unsigned long address;
1da177e4
LT
508 pte_t *pte;
509 pte_t pteval;
510 int ret = SWAP_AGAIN;
511
1da177e4
LT
512 address = vma_address(page, vma);
513 if (address == -EFAULT)
514 goto out;
515
81b4082d
ND
516 pte = page_check_address(page, mm, address);
517 if (IS_ERR(pte))
518 goto out;
1da177e4
LT
519
520 /*
521 * If the page is mlock()d, we cannot swap it out.
522 * If it's recently referenced (perhaps page_referenced
523 * skipped over this mm) then we should reactivate it.
c3dce2d8
NP
524 *
525 * Pages belonging to VM_RESERVED regions should not happen here.
1da177e4
LT
526 */
527 if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) ||
528 ptep_clear_flush_young(vma, address, pte)) {
529 ret = SWAP_FAIL;
530 goto out_unmap;
531 }
532
1da177e4
LT
533 /* Nuke the page table entry. */
534 flush_cache_page(vma, address, page_to_pfn(page));
535 pteval = ptep_clear_flush(vma, address, pte);
536
537 /* Move the dirty bit to the physical page now the pte is gone. */
538 if (pte_dirty(pteval))
539 set_page_dirty(page);
540
541 if (PageAnon(page)) {
542 swp_entry_t entry = { .val = page->private };
543 /*
544 * Store the swap location in the pte.
545 * See handle_pte_fault() ...
546 */
547 BUG_ON(!PageSwapCache(page));
548 swap_duplicate(entry);
549 if (list_empty(&mm->mmlist)) {
550 spin_lock(&mmlist_lock);
551 list_add(&mm->mmlist, &init_mm.mmlist);
552 spin_unlock(&mmlist_lock);
553 }
554 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
555 BUG_ON(pte_file(*pte));
556 dec_mm_counter(mm, anon_rss);
4294621f
HD
557 } else
558 dec_mm_counter(mm, file_rss);
1da177e4 559
1da177e4
LT
560 page_remove_rmap(page);
561 page_cache_release(page);
562
563out_unmap:
564 pte_unmap(pte);
1da177e4
LT
565 spin_unlock(&mm->page_table_lock);
566out:
567 return ret;
568}
569
570/*
571 * objrmap doesn't work for nonlinear VMAs because the assumption that
572 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
573 * Consequently, given a particular page and its ->index, we cannot locate the
574 * ptes which are mapping that page without an exhaustive linear search.
575 *
576 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
577 * maps the file to which the target page belongs. The ->vm_private_data field
578 * holds the current cursor into that scan. Successive searches will circulate
579 * around the vma's virtual address space.
580 *
581 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
582 * more scanning pressure is placed against them as well. Eventually pages
583 * will become fully unmapped and are eligible for eviction.
584 *
585 * For very sparsely populated VMAs this is a little inefficient - chances are
586 * there there won't be many ptes located within the scan cluster. In this case
587 * maybe we could scan further - to the end of the pte page, perhaps.
588 */
589#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
590#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
591
592static void try_to_unmap_cluster(unsigned long cursor,
593 unsigned int *mapcount, struct vm_area_struct *vma)
594{
595 struct mm_struct *mm = vma->vm_mm;
596 pgd_t *pgd;
597 pud_t *pud;
598 pmd_t *pmd;
cafdd8ba 599 pte_t *pte, *original_pte;
1da177e4
LT
600 pte_t pteval;
601 struct page *page;
602 unsigned long address;
603 unsigned long end;
604 unsigned long pfn;
605
606 /*
607 * We need the page_table_lock to protect us from page faults,
608 * munmap, fork, etc...
609 */
610 spin_lock(&mm->page_table_lock);
611
612 address = (vma->vm_start + cursor) & CLUSTER_MASK;
613 end = address + CLUSTER_SIZE;
614 if (address < vma->vm_start)
615 address = vma->vm_start;
616 if (end > vma->vm_end)
617 end = vma->vm_end;
618
619 pgd = pgd_offset(mm, address);
620 if (!pgd_present(*pgd))
621 goto out_unlock;
622
623 pud = pud_offset(pgd, address);
624 if (!pud_present(*pud))
625 goto out_unlock;
626
627 pmd = pmd_offset(pud, address);
628 if (!pmd_present(*pmd))
629 goto out_unlock;
630
cafdd8ba 631 for (original_pte = pte = pte_offset_map(pmd, address);
1da177e4
LT
632 address < end; pte++, address += PAGE_SIZE) {
633
634 if (!pte_present(*pte))
635 continue;
636
637 pfn = pte_pfn(*pte);
b5810039
NP
638 if (unlikely(!pfn_valid(pfn))) {
639 print_bad_pte(vma, *pte, address);
1da177e4 640 continue;
b5810039 641 }
1da177e4
LT
642
643 page = pfn_to_page(pfn);
644 BUG_ON(PageAnon(page));
1da177e4
LT
645
646 if (ptep_clear_flush_young(vma, address, pte))
647 continue;
648
649 /* Nuke the page table entry. */
650 flush_cache_page(vma, address, pfn);
651 pteval = ptep_clear_flush(vma, address, pte);
652
653 /* If nonlinear, store the file page offset in the pte. */
654 if (page->index != linear_page_index(vma, address))
655 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
656
657 /* Move the dirty bit to the physical page now the pte is gone. */
658 if (pte_dirty(pteval))
659 set_page_dirty(page);
660
661 page_remove_rmap(page);
662 page_cache_release(page);
4294621f 663 dec_mm_counter(mm, file_rss);
1da177e4
LT
664 (*mapcount)--;
665 }
666
cafdd8ba 667 pte_unmap(original_pte);
1da177e4
LT
668out_unlock:
669 spin_unlock(&mm->page_table_lock);
670}
671
672static int try_to_unmap_anon(struct page *page)
673{
674 struct anon_vma *anon_vma;
675 struct vm_area_struct *vma;
676 int ret = SWAP_AGAIN;
677
678 anon_vma = page_lock_anon_vma(page);
679 if (!anon_vma)
680 return ret;
681
682 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
683 ret = try_to_unmap_one(page, vma);
684 if (ret == SWAP_FAIL || !page_mapped(page))
685 break;
686 }
687 spin_unlock(&anon_vma->lock);
688 return ret;
689}
690
691/**
692 * try_to_unmap_file - unmap file page using the object-based rmap method
693 * @page: the page to unmap
694 *
695 * Find all the mappings of a page using the mapping pointer and the vma chains
696 * contained in the address_space struct it points to.
697 *
698 * This function is only called from try_to_unmap for object-based pages.
699 */
700static int try_to_unmap_file(struct page *page)
701{
702 struct address_space *mapping = page->mapping;
703 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
704 struct vm_area_struct *vma;
705 struct prio_tree_iter iter;
706 int ret = SWAP_AGAIN;
707 unsigned long cursor;
708 unsigned long max_nl_cursor = 0;
709 unsigned long max_nl_size = 0;
710 unsigned int mapcount;
711
712 spin_lock(&mapping->i_mmap_lock);
713 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
714 ret = try_to_unmap_one(page, vma);
715 if (ret == SWAP_FAIL || !page_mapped(page))
716 goto out;
717 }
718
719 if (list_empty(&mapping->i_mmap_nonlinear))
720 goto out;
721
722 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
723 shared.vm_set.list) {
724 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
725 continue;
726 cursor = (unsigned long) vma->vm_private_data;
727 if (cursor > max_nl_cursor)
728 max_nl_cursor = cursor;
729 cursor = vma->vm_end - vma->vm_start;
730 if (cursor > max_nl_size)
731 max_nl_size = cursor;
732 }
733
734 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
735 ret = SWAP_FAIL;
736 goto out;
737 }
738
739 /*
740 * We don't try to search for this page in the nonlinear vmas,
741 * and page_referenced wouldn't have found it anyway. Instead
742 * just walk the nonlinear vmas trying to age and unmap some.
743 * The mapcount of the page we came in with is irrelevant,
744 * but even so use it as a guide to how hard we should try?
745 */
746 mapcount = page_mapcount(page);
747 if (!mapcount)
748 goto out;
749 cond_resched_lock(&mapping->i_mmap_lock);
750
751 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
752 if (max_nl_cursor == 0)
753 max_nl_cursor = CLUSTER_SIZE;
754
755 do {
756 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
757 shared.vm_set.list) {
758 if (vma->vm_flags & (VM_LOCKED|VM_RESERVED))
759 continue;
760 cursor = (unsigned long) vma->vm_private_data;
839b9685 761 while ( cursor < max_nl_cursor &&
1da177e4
LT
762 cursor < vma->vm_end - vma->vm_start) {
763 try_to_unmap_cluster(cursor, &mapcount, vma);
764 cursor += CLUSTER_SIZE;
765 vma->vm_private_data = (void *) cursor;
766 if ((int)mapcount <= 0)
767 goto out;
768 }
769 vma->vm_private_data = (void *) max_nl_cursor;
770 }
771 cond_resched_lock(&mapping->i_mmap_lock);
772 max_nl_cursor += CLUSTER_SIZE;
773 } while (max_nl_cursor <= max_nl_size);
774
775 /*
776 * Don't loop forever (perhaps all the remaining pages are
777 * in locked vmas). Reset cursor on all unreserved nonlinear
778 * vmas, now forgetting on which ones it had fallen behind.
779 */
780 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
781 shared.vm_set.list) {
782 if (!(vma->vm_flags & VM_RESERVED))
783 vma->vm_private_data = NULL;
784 }
785out:
786 spin_unlock(&mapping->i_mmap_lock);
787 return ret;
788}
789
790/**
791 * try_to_unmap - try to remove all page table mappings to a page
792 * @page: the page to get unmapped
793 *
794 * Tries to remove all the page table entries which are mapping this
795 * page, used in the pageout path. Caller must hold the page lock.
796 * Return values are:
797 *
798 * SWAP_SUCCESS - we succeeded in removing all mappings
799 * SWAP_AGAIN - we missed a mapping, try again later
800 * SWAP_FAIL - the page is unswappable
801 */
802int try_to_unmap(struct page *page)
803{
804 int ret;
805
1da177e4
LT
806 BUG_ON(!PageLocked(page));
807
808 if (PageAnon(page))
809 ret = try_to_unmap_anon(page);
810 else
811 ret = try_to_unmap_file(page);
812
813 if (!page_mapped(page))
814 ret = SWAP_SUCCESS;
815 return ret;
816}
81b4082d 817