]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/rmap.c
mm: change anon_vma linking to fix multi-process server scalability issue
[net-next-2.6.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
6a46079c
AK
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
1da177e4
LT
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
5ad64688 52#include <linux/ksm.h>
1da177e4
LT
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
a48d07af 55#include <linux/module.h>
8a9f3ccd 56#include <linux/memcontrol.h>
cddb8a5c 57#include <linux/mmu_notifier.h>
64cdd548 58#include <linux/migrate.h>
1da177e4
LT
59
60#include <asm/tlbflush.h>
61
b291f000
NP
62#include "internal.h"
63
fdd2e5f8 64static struct kmem_cache *anon_vma_cachep;
5beb4930 65static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
69 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
70}
71
db114b83 72void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8
AB
73{
74 kmem_cache_free(anon_vma_cachep, anon_vma);
75}
1da177e4 76
5beb4930
RR
77static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
78{
79 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
80}
81
82void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
83{
84 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
85}
86
d9d332e0
LT
87/**
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
90 *
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
94 *
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
99 * allocate a new one.
100 *
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
106 *
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
110 * an anon_vma.
111 *
112 * This must be called with the mmap_sem held for reading.
113 */
1da177e4
LT
114int anon_vma_prepare(struct vm_area_struct *vma)
115{
116 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 117 struct anon_vma_chain *avc;
1da177e4
LT
118
119 might_sleep();
120 if (unlikely(!anon_vma)) {
121 struct mm_struct *mm = vma->vm_mm;
d9d332e0 122 struct anon_vma *allocated;
1da177e4 123
5beb4930
RR
124 avc = anon_vma_chain_alloc();
125 if (!avc)
126 goto out_enomem;
127
1da177e4 128 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
129 allocated = NULL;
130 if (!anon_vma) {
1da177e4
LT
131 anon_vma = anon_vma_alloc();
132 if (unlikely(!anon_vma))
5beb4930 133 goto out_enomem_free_avc;
1da177e4 134 allocated = anon_vma;
1da177e4 135 }
d9d332e0 136 spin_lock(&anon_vma->lock);
1da177e4
LT
137
138 /* page_table_lock to protect against threads */
139 spin_lock(&mm->page_table_lock);
140 if (likely(!vma->anon_vma)) {
141 vma->anon_vma = anon_vma;
5beb4930
RR
142 avc->anon_vma = anon_vma;
143 avc->vma = vma;
144 list_add(&avc->same_vma, &vma->anon_vma_chain);
145 list_add(&avc->same_anon_vma, &anon_vma->head);
1da177e4
LT
146 allocated = NULL;
147 }
148 spin_unlock(&mm->page_table_lock);
149
d9d332e0 150 spin_unlock(&anon_vma->lock);
5beb4930 151 if (unlikely(allocated)) {
1da177e4 152 anon_vma_free(allocated);
5beb4930
RR
153 anon_vma_chain_free(avc);
154 }
1da177e4
LT
155 }
156 return 0;
5beb4930
RR
157
158 out_enomem_free_avc:
159 anon_vma_chain_free(avc);
160 out_enomem:
161 return -ENOMEM;
1da177e4
LT
162}
163
5beb4930
RR
164static void anon_vma_chain_link(struct vm_area_struct *vma,
165 struct anon_vma_chain *avc,
166 struct anon_vma *anon_vma)
1da177e4 167{
5beb4930
RR
168 avc->vma = vma;
169 avc->anon_vma = anon_vma;
170 list_add(&avc->same_vma, &vma->anon_vma_chain);
171
172 spin_lock(&anon_vma->lock);
173 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
174 spin_unlock(&anon_vma->lock);
1da177e4
LT
175}
176
5beb4930
RR
177/*
178 * Attach the anon_vmas from src to dst.
179 * Returns 0 on success, -ENOMEM on failure.
180 */
181int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 182{
5beb4930
RR
183 struct anon_vma_chain *avc, *pavc;
184
185 list_for_each_entry(pavc, &src->anon_vma_chain, same_vma) {
186 avc = anon_vma_chain_alloc();
187 if (!avc)
188 goto enomem_failure;
189 anon_vma_chain_link(dst, avc, pavc->anon_vma);
190 }
191 return 0;
1da177e4 192
5beb4930
RR
193 enomem_failure:
194 unlink_anon_vmas(dst);
195 return -ENOMEM;
1da177e4
LT
196}
197
5beb4930
RR
198/*
199 * Attach vma to its own anon_vma, as well as to the anon_vmas that
200 * the corresponding VMA in the parent process is attached to.
201 * Returns 0 on success, non-zero on failure.
202 */
203int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 204{
5beb4930
RR
205 struct anon_vma_chain *avc;
206 struct anon_vma *anon_vma;
1da177e4 207
5beb4930
RR
208 /* Don't bother if the parent process has no anon_vma here. */
209 if (!pvma->anon_vma)
210 return 0;
211
212 /*
213 * First, attach the new VMA to the parent VMA's anon_vmas,
214 * so rmap can find non-COWed pages in child processes.
215 */
216 if (anon_vma_clone(vma, pvma))
217 return -ENOMEM;
218
219 /* Then add our own anon_vma. */
220 anon_vma = anon_vma_alloc();
221 if (!anon_vma)
222 goto out_error;
223 avc = anon_vma_chain_alloc();
224 if (!avc)
225 goto out_error_free_anon_vma;
226 anon_vma_chain_link(vma, avc, anon_vma);
227 /* Mark this anon_vma as the one where our new (COWed) pages go. */
228 vma->anon_vma = anon_vma;
229
230 return 0;
231
232 out_error_free_anon_vma:
233 anon_vma_free(anon_vma);
234 out_error:
235 return -ENOMEM;
1da177e4
LT
236}
237
5beb4930 238static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
1da177e4 239{
5beb4930 240 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
1da177e4
LT
241 int empty;
242
5beb4930 243 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
1da177e4
LT
244 if (!anon_vma)
245 return;
246
247 spin_lock(&anon_vma->lock);
5beb4930 248 list_del(&anon_vma_chain->same_anon_vma);
1da177e4
LT
249
250 /* We must garbage collect the anon_vma if it's empty */
db114b83 251 empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
1da177e4
LT
252 spin_unlock(&anon_vma->lock);
253
254 if (empty)
255 anon_vma_free(anon_vma);
256}
257
5beb4930
RR
258void unlink_anon_vmas(struct vm_area_struct *vma)
259{
260 struct anon_vma_chain *avc, *next;
261
262 /* Unlink each anon_vma chained to the VMA. */
263 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
264 anon_vma_unlink(avc);
265 list_del(&avc->same_vma);
266 anon_vma_chain_free(avc);
267 }
268}
269
51cc5068 270static void anon_vma_ctor(void *data)
1da177e4 271{
a35afb83 272 struct anon_vma *anon_vma = data;
1da177e4 273
a35afb83 274 spin_lock_init(&anon_vma->lock);
db114b83 275 ksm_refcount_init(anon_vma);
a35afb83 276 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
277}
278
279void __init anon_vma_init(void)
280{
281 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 282 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 283 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
284}
285
286/*
287 * Getting a lock on a stable anon_vma from a page off the LRU is
288 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
289 */
10be22df 290struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 291{
34bbd704 292 struct anon_vma *anon_vma;
1da177e4
LT
293 unsigned long anon_mapping;
294
295 rcu_read_lock();
80e14822 296 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 297 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
298 goto out;
299 if (!page_mapped(page))
300 goto out;
301
302 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
303 spin_lock(&anon_vma->lock);
34bbd704 304 return anon_vma;
1da177e4
LT
305out:
306 rcu_read_unlock();
34bbd704
ON
307 return NULL;
308}
309
10be22df 310void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704
ON
311{
312 spin_unlock(&anon_vma->lock);
313 rcu_read_unlock();
1da177e4
LT
314}
315
316/*
3ad33b24
LS
317 * At what user virtual address is page expected in @vma?
318 * Returns virtual address or -EFAULT if page's index/offset is not
319 * within the range mapped the @vma.
1da177e4
LT
320 */
321static inline unsigned long
322vma_address(struct page *page, struct vm_area_struct *vma)
323{
324 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
325 unsigned long address;
326
327 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
328 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 329 /* page should be within @vma mapping range */
1da177e4
LT
330 return -EFAULT;
331 }
5beb4930
RR
332 if (unlikely(vma->vm_flags & VM_LOCK_RMAP)) {
333 /*
334 * This VMA is being unlinked or is not yet linked into the
335 * VMA tree. Do not try to follow this rmap. This race
336 * condition can result in page_referenced() ignoring a
337 * reference or in try_to_unmap() failing to unmap a page.
338 * The VMA cannot be freed under us because we hold the
339 * anon_vma->lock, which the munmap code takes while
340 * unlinking the anon_vmas from the VMA.
341 */
342 return -EFAULT;
343 }
1da177e4
LT
344 return address;
345}
346
347/*
bf89c8c8
HS
348 * At what user virtual address is page expected in vma?
349 * checking that the page matches the vma.
1da177e4
LT
350 */
351unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
352{
353 if (PageAnon(page)) {
3ca7b3c5 354 if (vma->anon_vma != page_anon_vma(page))
1da177e4
LT
355 return -EFAULT;
356 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
357 if (!vma->vm_file ||
358 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
359 return -EFAULT;
360 } else
361 return -EFAULT;
362 return vma_address(page, vma);
363}
364
81b4082d
ND
365/*
366 * Check that @page is mapped at @address into @mm.
367 *
479db0bf
NP
368 * If @sync is false, page_check_address may perform a racy check to avoid
369 * the page table lock when the pte is not present (helpful when reclaiming
370 * highly shared pages).
371 *
b8072f09 372 * On success returns with pte mapped and locked.
81b4082d 373 */
ceffc078 374pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 375 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
376{
377 pgd_t *pgd;
378 pud_t *pud;
379 pmd_t *pmd;
380 pte_t *pte;
c0718806 381 spinlock_t *ptl;
81b4082d 382
81b4082d 383 pgd = pgd_offset(mm, address);
c0718806
HD
384 if (!pgd_present(*pgd))
385 return NULL;
386
387 pud = pud_offset(pgd, address);
388 if (!pud_present(*pud))
389 return NULL;
390
391 pmd = pmd_offset(pud, address);
392 if (!pmd_present(*pmd))
393 return NULL;
394
395 pte = pte_offset_map(pmd, address);
396 /* Make a quick check before getting the lock */
479db0bf 397 if (!sync && !pte_present(*pte)) {
c0718806
HD
398 pte_unmap(pte);
399 return NULL;
400 }
401
4c21e2f2 402 ptl = pte_lockptr(mm, pmd);
c0718806
HD
403 spin_lock(ptl);
404 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
405 *ptlp = ptl;
406 return pte;
81b4082d 407 }
c0718806
HD
408 pte_unmap_unlock(pte, ptl);
409 return NULL;
81b4082d
ND
410}
411
b291f000
NP
412/**
413 * page_mapped_in_vma - check whether a page is really mapped in a VMA
414 * @page: the page to test
415 * @vma: the VMA to test
416 *
417 * Returns 1 if the page is mapped into the page tables of the VMA, 0
418 * if the page is not mapped into the page tables of this VMA. Only
419 * valid for normal file or anonymous VMAs.
420 */
6a46079c 421int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
422{
423 unsigned long address;
424 pte_t *pte;
425 spinlock_t *ptl;
426
427 address = vma_address(page, vma);
428 if (address == -EFAULT) /* out of vma range */
429 return 0;
430 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
431 if (!pte) /* the page is not in this mm */
432 return 0;
433 pte_unmap_unlock(pte, ptl);
434
435 return 1;
436}
437
1da177e4
LT
438/*
439 * Subfunctions of page_referenced: page_referenced_one called
440 * repeatedly from either page_referenced_anon or page_referenced_file.
441 */
5ad64688
HD
442int page_referenced_one(struct page *page, struct vm_area_struct *vma,
443 unsigned long address, unsigned int *mapcount,
444 unsigned long *vm_flags)
1da177e4
LT
445{
446 struct mm_struct *mm = vma->vm_mm;
1da177e4 447 pte_t *pte;
c0718806 448 spinlock_t *ptl;
1da177e4
LT
449 int referenced = 0;
450
479db0bf 451 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
452 if (!pte)
453 goto out;
1da177e4 454
b291f000
NP
455 /*
456 * Don't want to elevate referenced for mlocked page that gets this far,
457 * in order that it progresses to try_to_unmap and is moved to the
458 * unevictable list.
459 */
5a9bbdcd 460 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 461 *mapcount = 1; /* break early from loop */
03ef83af 462 *vm_flags |= VM_LOCKED;
b291f000
NP
463 goto out_unmap;
464 }
465
4917e5d0
JW
466 if (ptep_clear_flush_young_notify(vma, address, pte)) {
467 /*
468 * Don't treat a reference through a sequentially read
469 * mapping as such. If the page has been used in
470 * another mapping, we will catch it; if this other
471 * mapping is already gone, the unmap path will have
472 * set PG_referenced or activated the page.
473 */
474 if (likely(!VM_SequentialReadHint(vma)))
475 referenced++;
476 }
1da177e4 477
c0718806
HD
478 /* Pretend the page is referenced if the task has the
479 swap token and is in the middle of a page fault. */
f7b7fd8f 480 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
481 rwsem_is_locked(&mm->mmap_sem))
482 referenced++;
483
b291f000 484out_unmap:
c0718806
HD
485 (*mapcount)--;
486 pte_unmap_unlock(pte, ptl);
273f047e 487
6fe6b7e3
WF
488 if (referenced)
489 *vm_flags |= vma->vm_flags;
273f047e 490out:
1da177e4
LT
491 return referenced;
492}
493
bed7161a 494static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
495 struct mem_cgroup *mem_cont,
496 unsigned long *vm_flags)
1da177e4
LT
497{
498 unsigned int mapcount;
499 struct anon_vma *anon_vma;
5beb4930 500 struct anon_vma_chain *avc;
1da177e4
LT
501 int referenced = 0;
502
503 anon_vma = page_lock_anon_vma(page);
504 if (!anon_vma)
505 return referenced;
506
507 mapcount = page_mapcount(page);
5beb4930
RR
508 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
509 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
510 unsigned long address = vma_address(page, vma);
511 if (address == -EFAULT)
512 continue;
bed7161a
BS
513 /*
514 * If we are reclaiming on behalf of a cgroup, skip
515 * counting on behalf of references from different
516 * cgroups
517 */
bd845e38 518 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 519 continue;
1cb1729b 520 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 521 &mapcount, vm_flags);
1da177e4
LT
522 if (!mapcount)
523 break;
524 }
34bbd704
ON
525
526 page_unlock_anon_vma(anon_vma);
1da177e4
LT
527 return referenced;
528}
529
530/**
531 * page_referenced_file - referenced check for object-based rmap
532 * @page: the page we're checking references on.
43d8eac4 533 * @mem_cont: target memory controller
6fe6b7e3 534 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
535 *
536 * For an object-based mapped page, find all the places it is mapped and
537 * check/clear the referenced flag. This is done by following the page->mapping
538 * pointer, then walking the chain of vmas it holds. It returns the number
539 * of references it found.
540 *
541 * This function is only called from page_referenced for object-based pages.
542 */
bed7161a 543static int page_referenced_file(struct page *page,
6fe6b7e3
WF
544 struct mem_cgroup *mem_cont,
545 unsigned long *vm_flags)
1da177e4
LT
546{
547 unsigned int mapcount;
548 struct address_space *mapping = page->mapping;
549 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
550 struct vm_area_struct *vma;
551 struct prio_tree_iter iter;
552 int referenced = 0;
553
554 /*
555 * The caller's checks on page->mapping and !PageAnon have made
556 * sure that this is a file page: the check for page->mapping
557 * excludes the case just before it gets set on an anon page.
558 */
559 BUG_ON(PageAnon(page));
560
561 /*
562 * The page lock not only makes sure that page->mapping cannot
563 * suddenly be NULLified by truncation, it makes sure that the
564 * structure at mapping cannot be freed and reused yet,
565 * so we can safely take mapping->i_mmap_lock.
566 */
567 BUG_ON(!PageLocked(page));
568
569 spin_lock(&mapping->i_mmap_lock);
570
571 /*
572 * i_mmap_lock does not stabilize mapcount at all, but mapcount
573 * is more likely to be accurate if we note it after spinning.
574 */
575 mapcount = page_mapcount(page);
576
577 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
578 unsigned long address = vma_address(page, vma);
579 if (address == -EFAULT)
580 continue;
bed7161a
BS
581 /*
582 * If we are reclaiming on behalf of a cgroup, skip
583 * counting on behalf of references from different
584 * cgroups
585 */
bd845e38 586 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 587 continue;
1cb1729b 588 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 589 &mapcount, vm_flags);
1da177e4
LT
590 if (!mapcount)
591 break;
592 }
593
594 spin_unlock(&mapping->i_mmap_lock);
595 return referenced;
596}
597
598/**
599 * page_referenced - test if the page was referenced
600 * @page: the page to test
601 * @is_locked: caller holds lock on the page
43d8eac4 602 * @mem_cont: target memory controller
6fe6b7e3 603 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
604 *
605 * Quick test_and_clear_referenced for all mappings to a page,
606 * returns the number of ptes which referenced the page.
607 */
6fe6b7e3
WF
608int page_referenced(struct page *page,
609 int is_locked,
610 struct mem_cgroup *mem_cont,
611 unsigned long *vm_flags)
1da177e4
LT
612{
613 int referenced = 0;
5ad64688 614 int we_locked = 0;
1da177e4 615
1da177e4
LT
616 if (TestClearPageReferenced(page))
617 referenced++;
618
6fe6b7e3 619 *vm_flags = 0;
3ca7b3c5 620 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
621 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
622 we_locked = trylock_page(page);
623 if (!we_locked) {
624 referenced++;
625 goto out;
626 }
627 }
628 if (unlikely(PageKsm(page)))
629 referenced += page_referenced_ksm(page, mem_cont,
630 vm_flags);
631 else if (PageAnon(page))
6fe6b7e3
WF
632 referenced += page_referenced_anon(page, mem_cont,
633 vm_flags);
5ad64688 634 else if (page->mapping)
6fe6b7e3
WF
635 referenced += page_referenced_file(page, mem_cont,
636 vm_flags);
5ad64688 637 if (we_locked)
1da177e4 638 unlock_page(page);
1da177e4 639 }
5ad64688 640out:
5b7baf05
CB
641 if (page_test_and_clear_young(page))
642 referenced++;
643
1da177e4
LT
644 return referenced;
645}
646
1cb1729b
HD
647static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
648 unsigned long address)
d08b3851
PZ
649{
650 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 651 pte_t *pte;
d08b3851
PZ
652 spinlock_t *ptl;
653 int ret = 0;
654
479db0bf 655 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
656 if (!pte)
657 goto out;
658
c2fda5fe
PZ
659 if (pte_dirty(*pte) || pte_write(*pte)) {
660 pte_t entry;
d08b3851 661
c2fda5fe 662 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 663 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
664 entry = pte_wrprotect(entry);
665 entry = pte_mkclean(entry);
d6e88e67 666 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
667 ret = 1;
668 }
d08b3851 669
d08b3851
PZ
670 pte_unmap_unlock(pte, ptl);
671out:
672 return ret;
673}
674
675static int page_mkclean_file(struct address_space *mapping, struct page *page)
676{
677 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
678 struct vm_area_struct *vma;
679 struct prio_tree_iter iter;
680 int ret = 0;
681
682 BUG_ON(PageAnon(page));
683
684 spin_lock(&mapping->i_mmap_lock);
685 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
686 if (vma->vm_flags & VM_SHARED) {
687 unsigned long address = vma_address(page, vma);
688 if (address == -EFAULT)
689 continue;
690 ret += page_mkclean_one(page, vma, address);
691 }
d08b3851
PZ
692 }
693 spin_unlock(&mapping->i_mmap_lock);
694 return ret;
695}
696
697int page_mkclean(struct page *page)
698{
699 int ret = 0;
700
701 BUG_ON(!PageLocked(page));
702
703 if (page_mapped(page)) {
704 struct address_space *mapping = page_mapping(page);
ce7e9fae 705 if (mapping) {
d08b3851 706 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
707 if (page_test_dirty(page)) {
708 page_clear_dirty(page);
709 ret = 1;
710 }
6c210482 711 }
d08b3851
PZ
712 }
713
714 return ret;
715}
60b59bea 716EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 717
9617d95e 718/**
43d8eac4 719 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
720 * @page: the page to add the mapping to
721 * @vma: the vm area in which the mapping is added
722 * @address: the user virtual address mapped
723 */
724static void __page_set_anon_rmap(struct page *page,
725 struct vm_area_struct *vma, unsigned long address)
726{
727 struct anon_vma *anon_vma = vma->anon_vma;
728
729 BUG_ON(!anon_vma);
730 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
731 page->mapping = (struct address_space *) anon_vma;
9617d95e 732 page->index = linear_page_index(vma, address);
9617d95e
NP
733}
734
c97a9e10 735/**
43d8eac4 736 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
737 * @page: the page to add the mapping to
738 * @vma: the vm area in which the mapping is added
739 * @address: the user virtual address mapped
740 */
741static void __page_check_anon_rmap(struct page *page,
742 struct vm_area_struct *vma, unsigned long address)
743{
744#ifdef CONFIG_DEBUG_VM
745 /*
746 * The page's anon-rmap details (mapping and index) are guaranteed to
747 * be set up correctly at this point.
748 *
749 * We have exclusion against page_add_anon_rmap because the caller
750 * always holds the page locked, except if called from page_dup_rmap,
751 * in which case the page is already known to be setup.
752 *
753 * We have exclusion against page_add_new_anon_rmap because those pages
754 * are initially only visible via the pagetables, and the pte is locked
755 * over the call to page_add_new_anon_rmap.
756 */
757 struct anon_vma *anon_vma = vma->anon_vma;
758 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
759 BUG_ON(page->mapping != (struct address_space *)anon_vma);
760 BUG_ON(page->index != linear_page_index(vma, address));
761#endif
762}
763
1da177e4
LT
764/**
765 * page_add_anon_rmap - add pte mapping to an anonymous page
766 * @page: the page to add the mapping to
767 * @vma: the vm area in which the mapping is added
768 * @address: the user virtual address mapped
769 *
5ad64688 770 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
771 * the anon_vma case: to serialize mapping,index checking after setting,
772 * and to ensure that PageAnon is not being upgraded racily to PageKsm
773 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
774 */
775void page_add_anon_rmap(struct page *page,
776 struct vm_area_struct *vma, unsigned long address)
777{
5ad64688
HD
778 int first = atomic_inc_and_test(&page->_mapcount);
779 if (first)
780 __inc_zone_page_state(page, NR_ANON_PAGES);
781 if (unlikely(PageKsm(page)))
782 return;
783
c97a9e10
NP
784 VM_BUG_ON(!PageLocked(page));
785 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 786 if (first)
9617d95e 787 __page_set_anon_rmap(page, vma, address);
69029cd5 788 else
c97a9e10 789 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
790}
791
43d8eac4 792/**
9617d95e
NP
793 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
794 * @page: the page to add the mapping to
795 * @vma: the vm area in which the mapping is added
796 * @address: the user virtual address mapped
797 *
798 * Same as page_add_anon_rmap but must only be called on *new* pages.
799 * This means the inc-and-test can be bypassed.
c97a9e10 800 * Page does not have to be locked.
9617d95e
NP
801 */
802void page_add_new_anon_rmap(struct page *page,
803 struct vm_area_struct *vma, unsigned long address)
804{
b5934c53 805 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
806 SetPageSwapBacked(page);
807 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
5ad64688 808 __inc_zone_page_state(page, NR_ANON_PAGES);
9617d95e 809 __page_set_anon_rmap(page, vma, address);
b5934c53 810 if (page_evictable(page, vma))
cbf84b7a 811 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
812 else
813 add_page_to_unevictable_list(page);
9617d95e
NP
814}
815
1da177e4
LT
816/**
817 * page_add_file_rmap - add pte mapping to a file page
818 * @page: the page to add the mapping to
819 *
b8072f09 820 * The caller needs to hold the pte lock.
1da177e4
LT
821 */
822void page_add_file_rmap(struct page *page)
823{
d69b042f 824 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 825 __inc_zone_page_state(page, NR_FILE_MAPPED);
d8046582 826 mem_cgroup_update_file_mapped(page, 1);
d69b042f 827 }
1da177e4
LT
828}
829
830/**
831 * page_remove_rmap - take down pte mapping from a page
832 * @page: page to remove mapping from
833 *
b8072f09 834 * The caller needs to hold the pte lock.
1da177e4 835 */
edc315fd 836void page_remove_rmap(struct page *page)
1da177e4 837{
b904dcfe
KM
838 /* page still mapped by someone else? */
839 if (!atomic_add_negative(-1, &page->_mapcount))
840 return;
841
842 /*
843 * Now that the last pte has gone, s390 must transfer dirty
844 * flag from storage key to struct page. We can usually skip
845 * this if the page is anon, so about to be freed; but perhaps
846 * not if it's in swapcache - there might be another pte slot
847 * containing the swap entry, but page not yet written to swap.
848 */
849 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
850 page_clear_dirty(page);
851 set_page_dirty(page);
1da177e4 852 }
b904dcfe
KM
853 if (PageAnon(page)) {
854 mem_cgroup_uncharge_page(page);
855 __dec_zone_page_state(page, NR_ANON_PAGES);
856 } else {
857 __dec_zone_page_state(page, NR_FILE_MAPPED);
d8046582 858 mem_cgroup_update_file_mapped(page, -1);
b904dcfe 859 }
b904dcfe
KM
860 /*
861 * It would be tidy to reset the PageAnon mapping here,
862 * but that might overwrite a racing page_add_anon_rmap
863 * which increments mapcount after us but sets mapping
864 * before us: so leave the reset to free_hot_cold_page,
865 * and remember that it's only reliable while mapped.
866 * Leaving it set also helps swapoff to reinstate ptes
867 * faster for those pages still in swapcache.
868 */
1da177e4
LT
869}
870
871/*
872 * Subfunctions of try_to_unmap: try_to_unmap_one called
873 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
874 */
5ad64688
HD
875int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
876 unsigned long address, enum ttu_flags flags)
1da177e4
LT
877{
878 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
879 pte_t *pte;
880 pte_t pteval;
c0718806 881 spinlock_t *ptl;
1da177e4
LT
882 int ret = SWAP_AGAIN;
883
479db0bf 884 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 885 if (!pte)
81b4082d 886 goto out;
1da177e4
LT
887
888 /*
889 * If the page is mlock()d, we cannot swap it out.
890 * If it's recently referenced (perhaps page_referenced
891 * skipped over this mm) then we should reactivate it.
892 */
14fa31b8 893 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
894 if (vma->vm_flags & VM_LOCKED)
895 goto out_mlock;
896
af8e3354 897 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 898 goto out_unmap;
14fa31b8
AK
899 }
900 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
901 if (ptep_clear_flush_young_notify(vma, address, pte)) {
902 ret = SWAP_FAIL;
903 goto out_unmap;
904 }
905 }
1da177e4 906
1da177e4
LT
907 /* Nuke the page table entry. */
908 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 909 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
910
911 /* Move the dirty bit to the physical page now the pte is gone. */
912 if (pte_dirty(pteval))
913 set_page_dirty(page);
914
365e9c87
HD
915 /* Update high watermark before we lower rss */
916 update_hiwater_rss(mm);
917
888b9f7c
AK
918 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
919 if (PageAnon(page))
d559db08 920 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 921 else
d559db08 922 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
923 set_pte_at(mm, address, pte,
924 swp_entry_to_pte(make_hwpoison_entry(page)));
925 } else if (PageAnon(page)) {
4c21e2f2 926 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
927
928 if (PageSwapCache(page)) {
929 /*
930 * Store the swap location in the pte.
931 * See handle_pte_fault() ...
932 */
570a335b
HD
933 if (swap_duplicate(entry) < 0) {
934 set_pte_at(mm, address, pte, pteval);
935 ret = SWAP_FAIL;
936 goto out_unmap;
937 }
0697212a
CL
938 if (list_empty(&mm->mmlist)) {
939 spin_lock(&mmlist_lock);
940 if (list_empty(&mm->mmlist))
941 list_add(&mm->mmlist, &init_mm.mmlist);
942 spin_unlock(&mmlist_lock);
943 }
d559db08 944 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 945 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 946 } else if (PAGE_MIGRATION) {
0697212a
CL
947 /*
948 * Store the pfn of the page in a special migration
949 * pte. do_swap_page() will wait until the migration
950 * pte is removed and then restart fault handling.
951 */
14fa31b8 952 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 953 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
954 }
955 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
956 BUG_ON(pte_file(*pte));
14fa31b8 957 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
958 /* Establish migration entry for a file page */
959 swp_entry_t entry;
960 entry = make_migration_entry(page, pte_write(pteval));
961 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
962 } else
d559db08 963 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 964
edc315fd 965 page_remove_rmap(page);
1da177e4
LT
966 page_cache_release(page);
967
968out_unmap:
c0718806 969 pte_unmap_unlock(pte, ptl);
caed0f48
KM
970out:
971 return ret;
53f79acb 972
caed0f48
KM
973out_mlock:
974 pte_unmap_unlock(pte, ptl);
975
976
977 /*
978 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
979 * unstable result and race. Plus, We can't wait here because
980 * we now hold anon_vma->lock or mapping->i_mmap_lock.
981 * if trylock failed, the page remain in evictable lru and later
982 * vmscan could retry to move the page to unevictable lru if the
983 * page is actually mlocked.
984 */
985 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
986 if (vma->vm_flags & VM_LOCKED) {
987 mlock_vma_page(page);
988 ret = SWAP_MLOCK;
53f79acb 989 }
caed0f48 990 up_read(&vma->vm_mm->mmap_sem);
53f79acb 991 }
1da177e4
LT
992 return ret;
993}
994
995/*
996 * objrmap doesn't work for nonlinear VMAs because the assumption that
997 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
998 * Consequently, given a particular page and its ->index, we cannot locate the
999 * ptes which are mapping that page without an exhaustive linear search.
1000 *
1001 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1002 * maps the file to which the target page belongs. The ->vm_private_data field
1003 * holds the current cursor into that scan. Successive searches will circulate
1004 * around the vma's virtual address space.
1005 *
1006 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1007 * more scanning pressure is placed against them as well. Eventually pages
1008 * will become fully unmapped and are eligible for eviction.
1009 *
1010 * For very sparsely populated VMAs this is a little inefficient - chances are
1011 * there there won't be many ptes located within the scan cluster. In this case
1012 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1013 *
1014 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1015 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1016 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1017 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1018 */
1019#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1020#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1021
b291f000
NP
1022static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1023 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1024{
1025 struct mm_struct *mm = vma->vm_mm;
1026 pgd_t *pgd;
1027 pud_t *pud;
1028 pmd_t *pmd;
c0718806 1029 pte_t *pte;
1da177e4 1030 pte_t pteval;
c0718806 1031 spinlock_t *ptl;
1da177e4
LT
1032 struct page *page;
1033 unsigned long address;
1034 unsigned long end;
b291f000
NP
1035 int ret = SWAP_AGAIN;
1036 int locked_vma = 0;
1da177e4 1037
1da177e4
LT
1038 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1039 end = address + CLUSTER_SIZE;
1040 if (address < vma->vm_start)
1041 address = vma->vm_start;
1042 if (end > vma->vm_end)
1043 end = vma->vm_end;
1044
1045 pgd = pgd_offset(mm, address);
1046 if (!pgd_present(*pgd))
b291f000 1047 return ret;
1da177e4
LT
1048
1049 pud = pud_offset(pgd, address);
1050 if (!pud_present(*pud))
b291f000 1051 return ret;
1da177e4
LT
1052
1053 pmd = pmd_offset(pud, address);
1054 if (!pmd_present(*pmd))
b291f000
NP
1055 return ret;
1056
1057 /*
af8e3354 1058 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1059 * keep the sem while scanning the cluster for mlocking pages.
1060 */
af8e3354 1061 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1062 locked_vma = (vma->vm_flags & VM_LOCKED);
1063 if (!locked_vma)
1064 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1065 }
c0718806
HD
1066
1067 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1068
365e9c87
HD
1069 /* Update high watermark before we lower rss */
1070 update_hiwater_rss(mm);
1071
c0718806 1072 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1073 if (!pte_present(*pte))
1074 continue;
6aab341e
LT
1075 page = vm_normal_page(vma, address, *pte);
1076 BUG_ON(!page || PageAnon(page));
1da177e4 1077
b291f000
NP
1078 if (locked_vma) {
1079 mlock_vma_page(page); /* no-op if already mlocked */
1080 if (page == check_page)
1081 ret = SWAP_MLOCK;
1082 continue; /* don't unmap */
1083 }
1084
cddb8a5c 1085 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1086 continue;
1087
1088 /* Nuke the page table entry. */
eca35133 1089 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1090 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1091
1092 /* If nonlinear, store the file page offset in the pte. */
1093 if (page->index != linear_page_index(vma, address))
1094 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1095
1096 /* Move the dirty bit to the physical page now the pte is gone. */
1097 if (pte_dirty(pteval))
1098 set_page_dirty(page);
1099
edc315fd 1100 page_remove_rmap(page);
1da177e4 1101 page_cache_release(page);
d559db08 1102 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1103 (*mapcount)--;
1104 }
c0718806 1105 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1106 if (locked_vma)
1107 up_read(&vma->vm_mm->mmap_sem);
1108 return ret;
1da177e4
LT
1109}
1110
b291f000
NP
1111/**
1112 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1113 * rmap method
1114 * @page: the page to unmap/unlock
8051be5e 1115 * @flags: action and flags
b291f000
NP
1116 *
1117 * Find all the mappings of a page using the mapping pointer and the vma chains
1118 * contained in the anon_vma struct it points to.
1119 *
1120 * This function is only called from try_to_unmap/try_to_munlock for
1121 * anonymous pages.
1122 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1123 * where the page was found will be held for write. So, we won't recheck
1124 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1125 * 'LOCKED.
1126 */
14fa31b8 1127static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1128{
1129 struct anon_vma *anon_vma;
5beb4930 1130 struct anon_vma_chain *avc;
1da177e4 1131 int ret = SWAP_AGAIN;
b291f000 1132
1da177e4
LT
1133 anon_vma = page_lock_anon_vma(page);
1134 if (!anon_vma)
1135 return ret;
1136
5beb4930
RR
1137 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1138 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
1139 unsigned long address = vma_address(page, vma);
1140 if (address == -EFAULT)
1141 continue;
1142 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1143 if (ret != SWAP_AGAIN || !page_mapped(page))
1144 break;
1da177e4 1145 }
34bbd704
ON
1146
1147 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1148 return ret;
1149}
1150
1151/**
b291f000
NP
1152 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1153 * @page: the page to unmap/unlock
14fa31b8 1154 * @flags: action and flags
1da177e4
LT
1155 *
1156 * Find all the mappings of a page using the mapping pointer and the vma chains
1157 * contained in the address_space struct it points to.
1158 *
b291f000
NP
1159 * This function is only called from try_to_unmap/try_to_munlock for
1160 * object-based pages.
1161 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1162 * where the page was found will be held for write. So, we won't recheck
1163 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1164 * 'LOCKED.
1da177e4 1165 */
14fa31b8 1166static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1167{
1168 struct address_space *mapping = page->mapping;
1169 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1170 struct vm_area_struct *vma;
1171 struct prio_tree_iter iter;
1172 int ret = SWAP_AGAIN;
1173 unsigned long cursor;
1174 unsigned long max_nl_cursor = 0;
1175 unsigned long max_nl_size = 0;
1176 unsigned int mapcount;
1177
1178 spin_lock(&mapping->i_mmap_lock);
1179 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1180 unsigned long address = vma_address(page, vma);
1181 if (address == -EFAULT)
1182 continue;
1183 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1184 if (ret != SWAP_AGAIN || !page_mapped(page))
1185 goto out;
1da177e4
LT
1186 }
1187
1188 if (list_empty(&mapping->i_mmap_nonlinear))
1189 goto out;
1190
53f79acb
HD
1191 /*
1192 * We don't bother to try to find the munlocked page in nonlinears.
1193 * It's costly. Instead, later, page reclaim logic may call
1194 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1195 */
1196 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1197 goto out;
1198
1da177e4
LT
1199 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1200 shared.vm_set.list) {
1da177e4
LT
1201 cursor = (unsigned long) vma->vm_private_data;
1202 if (cursor > max_nl_cursor)
1203 max_nl_cursor = cursor;
1204 cursor = vma->vm_end - vma->vm_start;
1205 if (cursor > max_nl_size)
1206 max_nl_size = cursor;
1207 }
1208
b291f000 1209 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1210 ret = SWAP_FAIL;
1211 goto out;
1212 }
1213
1214 /*
1215 * We don't try to search for this page in the nonlinear vmas,
1216 * and page_referenced wouldn't have found it anyway. Instead
1217 * just walk the nonlinear vmas trying to age and unmap some.
1218 * The mapcount of the page we came in with is irrelevant,
1219 * but even so use it as a guide to how hard we should try?
1220 */
1221 mapcount = page_mapcount(page);
1222 if (!mapcount)
1223 goto out;
1224 cond_resched_lock(&mapping->i_mmap_lock);
1225
1226 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1227 if (max_nl_cursor == 0)
1228 max_nl_cursor = CLUSTER_SIZE;
1229
1230 do {
1231 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1232 shared.vm_set.list) {
1da177e4 1233 cursor = (unsigned long) vma->vm_private_data;
839b9685 1234 while ( cursor < max_nl_cursor &&
1da177e4 1235 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1236 if (try_to_unmap_cluster(cursor, &mapcount,
1237 vma, page) == SWAP_MLOCK)
1238 ret = SWAP_MLOCK;
1da177e4
LT
1239 cursor += CLUSTER_SIZE;
1240 vma->vm_private_data = (void *) cursor;
1241 if ((int)mapcount <= 0)
1242 goto out;
1243 }
1244 vma->vm_private_data = (void *) max_nl_cursor;
1245 }
1246 cond_resched_lock(&mapping->i_mmap_lock);
1247 max_nl_cursor += CLUSTER_SIZE;
1248 } while (max_nl_cursor <= max_nl_size);
1249
1250 /*
1251 * Don't loop forever (perhaps all the remaining pages are
1252 * in locked vmas). Reset cursor on all unreserved nonlinear
1253 * vmas, now forgetting on which ones it had fallen behind.
1254 */
101d2be7
HD
1255 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1256 vma->vm_private_data = NULL;
1da177e4
LT
1257out:
1258 spin_unlock(&mapping->i_mmap_lock);
1259 return ret;
1260}
1261
1262/**
1263 * try_to_unmap - try to remove all page table mappings to a page
1264 * @page: the page to get unmapped
14fa31b8 1265 * @flags: action and flags
1da177e4
LT
1266 *
1267 * Tries to remove all the page table entries which are mapping this
1268 * page, used in the pageout path. Caller must hold the page lock.
1269 * Return values are:
1270 *
1271 * SWAP_SUCCESS - we succeeded in removing all mappings
1272 * SWAP_AGAIN - we missed a mapping, try again later
1273 * SWAP_FAIL - the page is unswappable
b291f000 1274 * SWAP_MLOCK - page is mlocked.
1da177e4 1275 */
14fa31b8 1276int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1277{
1278 int ret;
1279
1da177e4
LT
1280 BUG_ON(!PageLocked(page));
1281
5ad64688
HD
1282 if (unlikely(PageKsm(page)))
1283 ret = try_to_unmap_ksm(page, flags);
1284 else if (PageAnon(page))
14fa31b8 1285 ret = try_to_unmap_anon(page, flags);
1da177e4 1286 else
14fa31b8 1287 ret = try_to_unmap_file(page, flags);
b291f000 1288 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1289 ret = SWAP_SUCCESS;
1290 return ret;
1291}
81b4082d 1292
b291f000
NP
1293/**
1294 * try_to_munlock - try to munlock a page
1295 * @page: the page to be munlocked
1296 *
1297 * Called from munlock code. Checks all of the VMAs mapping the page
1298 * to make sure nobody else has this page mlocked. The page will be
1299 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1300 *
1301 * Return values are:
1302 *
53f79acb 1303 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1304 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1305 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1306 * SWAP_MLOCK - page is now mlocked.
1307 */
1308int try_to_munlock(struct page *page)
1309{
1310 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1311
5ad64688
HD
1312 if (unlikely(PageKsm(page)))
1313 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1314 else if (PageAnon(page))
14fa31b8 1315 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1316 else
14fa31b8 1317 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1318}
e9995ef9
HD
1319
1320#ifdef CONFIG_MIGRATION
1321/*
1322 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1323 * Called by migrate.c to remove migration ptes, but might be used more later.
1324 */
1325static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1326 struct vm_area_struct *, unsigned long, void *), void *arg)
1327{
1328 struct anon_vma *anon_vma;
5beb4930 1329 struct anon_vma_chain *avc;
e9995ef9
HD
1330 int ret = SWAP_AGAIN;
1331
1332 /*
1333 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1334 * because that depends on page_mapped(); but not all its usages
1335 * are holding mmap_sem, which also gave the necessary guarantee
1336 * (that this anon_vma's slab has not already been destroyed).
1337 * This needs to be reviewed later: avoiding page_lock_anon_vma()
1338 * is risky, and currently limits the usefulness of rmap_walk().
1339 */
1340 anon_vma = page_anon_vma(page);
1341 if (!anon_vma)
1342 return ret;
1343 spin_lock(&anon_vma->lock);
5beb4930
RR
1344 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1345 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1346 unsigned long address = vma_address(page, vma);
1347 if (address == -EFAULT)
1348 continue;
1349 ret = rmap_one(page, vma, address, arg);
1350 if (ret != SWAP_AGAIN)
1351 break;
1352 }
1353 spin_unlock(&anon_vma->lock);
1354 return ret;
1355}
1356
1357static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1358 struct vm_area_struct *, unsigned long, void *), void *arg)
1359{
1360 struct address_space *mapping = page->mapping;
1361 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1362 struct vm_area_struct *vma;
1363 struct prio_tree_iter iter;
1364 int ret = SWAP_AGAIN;
1365
1366 if (!mapping)
1367 return ret;
1368 spin_lock(&mapping->i_mmap_lock);
1369 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1370 unsigned long address = vma_address(page, vma);
1371 if (address == -EFAULT)
1372 continue;
1373 ret = rmap_one(page, vma, address, arg);
1374 if (ret != SWAP_AGAIN)
1375 break;
1376 }
1377 /*
1378 * No nonlinear handling: being always shared, nonlinear vmas
1379 * never contain migration ptes. Decide what to do about this
1380 * limitation to linear when we need rmap_walk() on nonlinear.
1381 */
1382 spin_unlock(&mapping->i_mmap_lock);
1383 return ret;
1384}
1385
1386int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1387 struct vm_area_struct *, unsigned long, void *), void *arg)
1388{
1389 VM_BUG_ON(!PageLocked(page));
1390
1391 if (unlikely(PageKsm(page)))
1392 return rmap_walk_ksm(page, rmap_one, arg);
1393 else if (PageAnon(page))
1394 return rmap_walk_anon(page, rmap_one, arg);
1395 else
1396 return rmap_walk_file(page, rmap_one, arg);
1397}
1398#endif /* CONFIG_MIGRATION */