]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/rmap.c
hugetlb: restore interleaving of bootmem huge pages
[net-next-2.6.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
1da177e4
LT
39 */
40
41#include <linux/mm.h>
42#include <linux/pagemap.h>
43#include <linux/swap.h>
44#include <linux/swapops.h>
45#include <linux/slab.h>
46#include <linux/init.h>
47#include <linux/rmap.h>
48#include <linux/rcupdate.h>
a48d07af 49#include <linux/module.h>
8a9f3ccd 50#include <linux/memcontrol.h>
cddb8a5c 51#include <linux/mmu_notifier.h>
64cdd548 52#include <linux/migrate.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
55
b291f000
NP
56#include "internal.h"
57
fdd2e5f8
AB
58static struct kmem_cache *anon_vma_cachep;
59
60static inline struct anon_vma *anon_vma_alloc(void)
61{
62 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
63}
64
65static inline void anon_vma_free(struct anon_vma *anon_vma)
66{
67 kmem_cache_free(anon_vma_cachep, anon_vma);
68}
1da177e4 69
d9d332e0
LT
70/**
71 * anon_vma_prepare - attach an anon_vma to a memory region
72 * @vma: the memory region in question
73 *
74 * This makes sure the memory mapping described by 'vma' has
75 * an 'anon_vma' attached to it, so that we can associate the
76 * anonymous pages mapped into it with that anon_vma.
77 *
78 * The common case will be that we already have one, but if
79 * if not we either need to find an adjacent mapping that we
80 * can re-use the anon_vma from (very common when the only
81 * reason for splitting a vma has been mprotect()), or we
82 * allocate a new one.
83 *
84 * Anon-vma allocations are very subtle, because we may have
85 * optimistically looked up an anon_vma in page_lock_anon_vma()
86 * and that may actually touch the spinlock even in the newly
87 * allocated vma (it depends on RCU to make sure that the
88 * anon_vma isn't actually destroyed).
89 *
90 * As a result, we need to do proper anon_vma locking even
91 * for the new allocation. At the same time, we do not want
92 * to do any locking for the common case of already having
93 * an anon_vma.
94 *
95 * This must be called with the mmap_sem held for reading.
96 */
1da177e4
LT
97int anon_vma_prepare(struct vm_area_struct *vma)
98{
99 struct anon_vma *anon_vma = vma->anon_vma;
100
101 might_sleep();
102 if (unlikely(!anon_vma)) {
103 struct mm_struct *mm = vma->vm_mm;
d9d332e0 104 struct anon_vma *allocated;
1da177e4
LT
105
106 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
107 allocated = NULL;
108 if (!anon_vma) {
1da177e4
LT
109 anon_vma = anon_vma_alloc();
110 if (unlikely(!anon_vma))
111 return -ENOMEM;
112 allocated = anon_vma;
1da177e4 113 }
d9d332e0 114 spin_lock(&anon_vma->lock);
1da177e4
LT
115
116 /* page_table_lock to protect against threads */
117 spin_lock(&mm->page_table_lock);
118 if (likely(!vma->anon_vma)) {
119 vma->anon_vma = anon_vma;
0697212a 120 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
121 allocated = NULL;
122 }
123 spin_unlock(&mm->page_table_lock);
124
d9d332e0 125 spin_unlock(&anon_vma->lock);
1da177e4
LT
126 if (unlikely(allocated))
127 anon_vma_free(allocated);
128 }
129 return 0;
130}
131
132void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
133{
134 BUG_ON(vma->anon_vma != next->anon_vma);
135 list_del(&next->anon_vma_node);
136}
137
138void __anon_vma_link(struct vm_area_struct *vma)
139{
140 struct anon_vma *anon_vma = vma->anon_vma;
141
30acbaba 142 if (anon_vma)
0697212a 143 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
144}
145
146void anon_vma_link(struct vm_area_struct *vma)
147{
148 struct anon_vma *anon_vma = vma->anon_vma;
149
150 if (anon_vma) {
151 spin_lock(&anon_vma->lock);
0697212a 152 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
153 spin_unlock(&anon_vma->lock);
154 }
155}
156
157void anon_vma_unlink(struct vm_area_struct *vma)
158{
159 struct anon_vma *anon_vma = vma->anon_vma;
160 int empty;
161
162 if (!anon_vma)
163 return;
164
165 spin_lock(&anon_vma->lock);
1da177e4
LT
166 list_del(&vma->anon_vma_node);
167
168 /* We must garbage collect the anon_vma if it's empty */
169 empty = list_empty(&anon_vma->head);
170 spin_unlock(&anon_vma->lock);
171
172 if (empty)
173 anon_vma_free(anon_vma);
174}
175
51cc5068 176static void anon_vma_ctor(void *data)
1da177e4 177{
a35afb83 178 struct anon_vma *anon_vma = data;
1da177e4 179
a35afb83
CL
180 spin_lock_init(&anon_vma->lock);
181 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
182}
183
184void __init anon_vma_init(void)
185{
186 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 187 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
1da177e4
LT
188}
189
190/*
191 * Getting a lock on a stable anon_vma from a page off the LRU is
192 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
193 */
2afd1c92 194static struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 195{
34bbd704 196 struct anon_vma *anon_vma;
1da177e4
LT
197 unsigned long anon_mapping;
198
199 rcu_read_lock();
200 anon_mapping = (unsigned long) page->mapping;
201 if (!(anon_mapping & PAGE_MAPPING_ANON))
202 goto out;
203 if (!page_mapped(page))
204 goto out;
205
206 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
207 spin_lock(&anon_vma->lock);
34bbd704 208 return anon_vma;
1da177e4
LT
209out:
210 rcu_read_unlock();
34bbd704
ON
211 return NULL;
212}
213
2afd1c92 214static void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704
ON
215{
216 spin_unlock(&anon_vma->lock);
217 rcu_read_unlock();
1da177e4
LT
218}
219
220/*
3ad33b24
LS
221 * At what user virtual address is page expected in @vma?
222 * Returns virtual address or -EFAULT if page's index/offset is not
223 * within the range mapped the @vma.
1da177e4
LT
224 */
225static inline unsigned long
226vma_address(struct page *page, struct vm_area_struct *vma)
227{
228 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
229 unsigned long address;
230
231 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
232 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 233 /* page should be within @vma mapping range */
1da177e4
LT
234 return -EFAULT;
235 }
236 return address;
237}
238
239/*
240 * At what user virtual address is page expected in vma? checking that the
ee498ed7 241 * page matches the vma: currently only used on anon pages, by unuse_vma;
1da177e4
LT
242 */
243unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
244{
245 if (PageAnon(page)) {
246 if ((void *)vma->anon_vma !=
247 (void *)page->mapping - PAGE_MAPPING_ANON)
248 return -EFAULT;
249 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
250 if (!vma->vm_file ||
251 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
252 return -EFAULT;
253 } else
254 return -EFAULT;
255 return vma_address(page, vma);
256}
257
81b4082d
ND
258/*
259 * Check that @page is mapped at @address into @mm.
260 *
479db0bf
NP
261 * If @sync is false, page_check_address may perform a racy check to avoid
262 * the page table lock when the pte is not present (helpful when reclaiming
263 * highly shared pages).
264 *
b8072f09 265 * On success returns with pte mapped and locked.
81b4082d 266 */
ceffc078 267pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 268 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
269{
270 pgd_t *pgd;
271 pud_t *pud;
272 pmd_t *pmd;
273 pte_t *pte;
c0718806 274 spinlock_t *ptl;
81b4082d 275
81b4082d 276 pgd = pgd_offset(mm, address);
c0718806
HD
277 if (!pgd_present(*pgd))
278 return NULL;
279
280 pud = pud_offset(pgd, address);
281 if (!pud_present(*pud))
282 return NULL;
283
284 pmd = pmd_offset(pud, address);
285 if (!pmd_present(*pmd))
286 return NULL;
287
288 pte = pte_offset_map(pmd, address);
289 /* Make a quick check before getting the lock */
479db0bf 290 if (!sync && !pte_present(*pte)) {
c0718806
HD
291 pte_unmap(pte);
292 return NULL;
293 }
294
4c21e2f2 295 ptl = pte_lockptr(mm, pmd);
c0718806
HD
296 spin_lock(ptl);
297 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
298 *ptlp = ptl;
299 return pte;
81b4082d 300 }
c0718806
HD
301 pte_unmap_unlock(pte, ptl);
302 return NULL;
81b4082d
ND
303}
304
b291f000
NP
305/**
306 * page_mapped_in_vma - check whether a page is really mapped in a VMA
307 * @page: the page to test
308 * @vma: the VMA to test
309 *
310 * Returns 1 if the page is mapped into the page tables of the VMA, 0
311 * if the page is not mapped into the page tables of this VMA. Only
312 * valid for normal file or anonymous VMAs.
313 */
314static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
315{
316 unsigned long address;
317 pte_t *pte;
318 spinlock_t *ptl;
319
320 address = vma_address(page, vma);
321 if (address == -EFAULT) /* out of vma range */
322 return 0;
323 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
324 if (!pte) /* the page is not in this mm */
325 return 0;
326 pte_unmap_unlock(pte, ptl);
327
328 return 1;
329}
330
1da177e4
LT
331/*
332 * Subfunctions of page_referenced: page_referenced_one called
333 * repeatedly from either page_referenced_anon or page_referenced_file.
334 */
335static int page_referenced_one(struct page *page,
6fe6b7e3
WF
336 struct vm_area_struct *vma,
337 unsigned int *mapcount,
338 unsigned long *vm_flags)
1da177e4
LT
339{
340 struct mm_struct *mm = vma->vm_mm;
341 unsigned long address;
1da177e4 342 pte_t *pte;
c0718806 343 spinlock_t *ptl;
1da177e4
LT
344 int referenced = 0;
345
1da177e4
LT
346 address = vma_address(page, vma);
347 if (address == -EFAULT)
348 goto out;
349
479db0bf 350 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
351 if (!pte)
352 goto out;
1da177e4 353
b291f000
NP
354 /*
355 * Don't want to elevate referenced for mlocked page that gets this far,
356 * in order that it progresses to try_to_unmap and is moved to the
357 * unevictable list.
358 */
5a9bbdcd 359 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 360 *mapcount = 1; /* break early from loop */
03ef83af 361 *vm_flags |= VM_LOCKED;
b291f000
NP
362 goto out_unmap;
363 }
364
4917e5d0
JW
365 if (ptep_clear_flush_young_notify(vma, address, pte)) {
366 /*
367 * Don't treat a reference through a sequentially read
368 * mapping as such. If the page has been used in
369 * another mapping, we will catch it; if this other
370 * mapping is already gone, the unmap path will have
371 * set PG_referenced or activated the page.
372 */
373 if (likely(!VM_SequentialReadHint(vma)))
374 referenced++;
375 }
1da177e4 376
c0718806
HD
377 /* Pretend the page is referenced if the task has the
378 swap token and is in the middle of a page fault. */
f7b7fd8f 379 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
380 rwsem_is_locked(&mm->mmap_sem))
381 referenced++;
382
b291f000 383out_unmap:
c0718806
HD
384 (*mapcount)--;
385 pte_unmap_unlock(pte, ptl);
1da177e4 386out:
6fe6b7e3
WF
387 if (referenced)
388 *vm_flags |= vma->vm_flags;
1da177e4
LT
389 return referenced;
390}
391
bed7161a 392static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
393 struct mem_cgroup *mem_cont,
394 unsigned long *vm_flags)
1da177e4
LT
395{
396 unsigned int mapcount;
397 struct anon_vma *anon_vma;
398 struct vm_area_struct *vma;
399 int referenced = 0;
400
401 anon_vma = page_lock_anon_vma(page);
402 if (!anon_vma)
403 return referenced;
404
405 mapcount = page_mapcount(page);
406 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
bed7161a
BS
407 /*
408 * If we are reclaiming on behalf of a cgroup, skip
409 * counting on behalf of references from different
410 * cgroups
411 */
bd845e38 412 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 413 continue;
6fe6b7e3
WF
414 referenced += page_referenced_one(page, vma,
415 &mapcount, vm_flags);
1da177e4
LT
416 if (!mapcount)
417 break;
418 }
34bbd704
ON
419
420 page_unlock_anon_vma(anon_vma);
1da177e4
LT
421 return referenced;
422}
423
424/**
425 * page_referenced_file - referenced check for object-based rmap
426 * @page: the page we're checking references on.
43d8eac4 427 * @mem_cont: target memory controller
6fe6b7e3 428 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
429 *
430 * For an object-based mapped page, find all the places it is mapped and
431 * check/clear the referenced flag. This is done by following the page->mapping
432 * pointer, then walking the chain of vmas it holds. It returns the number
433 * of references it found.
434 *
435 * This function is only called from page_referenced for object-based pages.
436 */
bed7161a 437static int page_referenced_file(struct page *page,
6fe6b7e3
WF
438 struct mem_cgroup *mem_cont,
439 unsigned long *vm_flags)
1da177e4
LT
440{
441 unsigned int mapcount;
442 struct address_space *mapping = page->mapping;
443 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
444 struct vm_area_struct *vma;
445 struct prio_tree_iter iter;
446 int referenced = 0;
447
448 /*
449 * The caller's checks on page->mapping and !PageAnon have made
450 * sure that this is a file page: the check for page->mapping
451 * excludes the case just before it gets set on an anon page.
452 */
453 BUG_ON(PageAnon(page));
454
455 /*
456 * The page lock not only makes sure that page->mapping cannot
457 * suddenly be NULLified by truncation, it makes sure that the
458 * structure at mapping cannot be freed and reused yet,
459 * so we can safely take mapping->i_mmap_lock.
460 */
461 BUG_ON(!PageLocked(page));
462
463 spin_lock(&mapping->i_mmap_lock);
464
465 /*
466 * i_mmap_lock does not stabilize mapcount at all, but mapcount
467 * is more likely to be accurate if we note it after spinning.
468 */
469 mapcount = page_mapcount(page);
470
471 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
bed7161a
BS
472 /*
473 * If we are reclaiming on behalf of a cgroup, skip
474 * counting on behalf of references from different
475 * cgroups
476 */
bd845e38 477 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 478 continue;
6fe6b7e3
WF
479 referenced += page_referenced_one(page, vma,
480 &mapcount, vm_flags);
1da177e4
LT
481 if (!mapcount)
482 break;
483 }
484
485 spin_unlock(&mapping->i_mmap_lock);
486 return referenced;
487}
488
489/**
490 * page_referenced - test if the page was referenced
491 * @page: the page to test
492 * @is_locked: caller holds lock on the page
43d8eac4 493 * @mem_cont: target memory controller
6fe6b7e3 494 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
495 *
496 * Quick test_and_clear_referenced for all mappings to a page,
497 * returns the number of ptes which referenced the page.
498 */
6fe6b7e3
WF
499int page_referenced(struct page *page,
500 int is_locked,
501 struct mem_cgroup *mem_cont,
502 unsigned long *vm_flags)
1da177e4
LT
503{
504 int referenced = 0;
505
1da177e4
LT
506 if (TestClearPageReferenced(page))
507 referenced++;
508
6fe6b7e3 509 *vm_flags = 0;
1da177e4
LT
510 if (page_mapped(page) && page->mapping) {
511 if (PageAnon(page))
6fe6b7e3
WF
512 referenced += page_referenced_anon(page, mem_cont,
513 vm_flags);
1da177e4 514 else if (is_locked)
6fe6b7e3
WF
515 referenced += page_referenced_file(page, mem_cont,
516 vm_flags);
529ae9aa 517 else if (!trylock_page(page))
1da177e4
LT
518 referenced++;
519 else {
520 if (page->mapping)
6fe6b7e3
WF
521 referenced += page_referenced_file(page,
522 mem_cont, vm_flags);
1da177e4
LT
523 unlock_page(page);
524 }
525 }
5b7baf05
CB
526
527 if (page_test_and_clear_young(page))
528 referenced++;
529
1da177e4
LT
530 return referenced;
531}
532
d08b3851
PZ
533static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
534{
535 struct mm_struct *mm = vma->vm_mm;
536 unsigned long address;
c2fda5fe 537 pte_t *pte;
d08b3851
PZ
538 spinlock_t *ptl;
539 int ret = 0;
540
541 address = vma_address(page, vma);
542 if (address == -EFAULT)
543 goto out;
544
479db0bf 545 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
546 if (!pte)
547 goto out;
548
c2fda5fe
PZ
549 if (pte_dirty(*pte) || pte_write(*pte)) {
550 pte_t entry;
d08b3851 551
c2fda5fe 552 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 553 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
554 entry = pte_wrprotect(entry);
555 entry = pte_mkclean(entry);
d6e88e67 556 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
557 ret = 1;
558 }
d08b3851 559
d08b3851
PZ
560 pte_unmap_unlock(pte, ptl);
561out:
562 return ret;
563}
564
565static int page_mkclean_file(struct address_space *mapping, struct page *page)
566{
567 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
568 struct vm_area_struct *vma;
569 struct prio_tree_iter iter;
570 int ret = 0;
571
572 BUG_ON(PageAnon(page));
573
574 spin_lock(&mapping->i_mmap_lock);
575 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
576 if (vma->vm_flags & VM_SHARED)
577 ret += page_mkclean_one(page, vma);
578 }
579 spin_unlock(&mapping->i_mmap_lock);
580 return ret;
581}
582
583int page_mkclean(struct page *page)
584{
585 int ret = 0;
586
587 BUG_ON(!PageLocked(page));
588
589 if (page_mapped(page)) {
590 struct address_space *mapping = page_mapping(page);
ce7e9fae 591 if (mapping) {
d08b3851 592 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
593 if (page_test_dirty(page)) {
594 page_clear_dirty(page);
595 ret = 1;
596 }
6c210482 597 }
d08b3851
PZ
598 }
599
600 return ret;
601}
60b59bea 602EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 603
9617d95e 604/**
43d8eac4 605 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
606 * @page: the page to add the mapping to
607 * @vma: the vm area in which the mapping is added
608 * @address: the user virtual address mapped
609 */
610static void __page_set_anon_rmap(struct page *page,
611 struct vm_area_struct *vma, unsigned long address)
612{
613 struct anon_vma *anon_vma = vma->anon_vma;
614
615 BUG_ON(!anon_vma);
616 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
617 page->mapping = (struct address_space *) anon_vma;
618
619 page->index = linear_page_index(vma, address);
620
a74609fa
NP
621 /*
622 * nr_mapped state can be updated without turning off
623 * interrupts because it is not modified via interrupt.
624 */
f3dbd344 625 __inc_zone_page_state(page, NR_ANON_PAGES);
9617d95e
NP
626}
627
c97a9e10 628/**
43d8eac4 629 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
630 * @page: the page to add the mapping to
631 * @vma: the vm area in which the mapping is added
632 * @address: the user virtual address mapped
633 */
634static void __page_check_anon_rmap(struct page *page,
635 struct vm_area_struct *vma, unsigned long address)
636{
637#ifdef CONFIG_DEBUG_VM
638 /*
639 * The page's anon-rmap details (mapping and index) are guaranteed to
640 * be set up correctly at this point.
641 *
642 * We have exclusion against page_add_anon_rmap because the caller
643 * always holds the page locked, except if called from page_dup_rmap,
644 * in which case the page is already known to be setup.
645 *
646 * We have exclusion against page_add_new_anon_rmap because those pages
647 * are initially only visible via the pagetables, and the pte is locked
648 * over the call to page_add_new_anon_rmap.
649 */
650 struct anon_vma *anon_vma = vma->anon_vma;
651 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
652 BUG_ON(page->mapping != (struct address_space *)anon_vma);
653 BUG_ON(page->index != linear_page_index(vma, address));
654#endif
655}
656
1da177e4
LT
657/**
658 * page_add_anon_rmap - add pte mapping to an anonymous page
659 * @page: the page to add the mapping to
660 * @vma: the vm area in which the mapping is added
661 * @address: the user virtual address mapped
662 *
c97a9e10 663 * The caller needs to hold the pte lock and the page must be locked.
1da177e4
LT
664 */
665void page_add_anon_rmap(struct page *page,
666 struct vm_area_struct *vma, unsigned long address)
667{
c97a9e10
NP
668 VM_BUG_ON(!PageLocked(page));
669 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
9617d95e
NP
670 if (atomic_inc_and_test(&page->_mapcount))
671 __page_set_anon_rmap(page, vma, address);
69029cd5 672 else
c97a9e10 673 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
674}
675
43d8eac4 676/**
9617d95e
NP
677 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
678 * @page: the page to add the mapping to
679 * @vma: the vm area in which the mapping is added
680 * @address: the user virtual address mapped
681 *
682 * Same as page_add_anon_rmap but must only be called on *new* pages.
683 * This means the inc-and-test can be bypassed.
c97a9e10 684 * Page does not have to be locked.
9617d95e
NP
685 */
686void page_add_new_anon_rmap(struct page *page,
687 struct vm_area_struct *vma, unsigned long address)
688{
b5934c53 689 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
690 SetPageSwapBacked(page);
691 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
9617d95e 692 __page_set_anon_rmap(page, vma, address);
b5934c53 693 if (page_evictable(page, vma))
cbf84b7a 694 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
695 else
696 add_page_to_unevictable_list(page);
9617d95e
NP
697}
698
1da177e4
LT
699/**
700 * page_add_file_rmap - add pte mapping to a file page
701 * @page: the page to add the mapping to
702 *
b8072f09 703 * The caller needs to hold the pte lock.
1da177e4
LT
704 */
705void page_add_file_rmap(struct page *page)
706{
d69b042f 707 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 708 __inc_zone_page_state(page, NR_FILE_MAPPED);
d69b042f
BS
709 mem_cgroup_update_mapped_file_stat(page, 1);
710 }
1da177e4
LT
711}
712
c97a9e10
NP
713#ifdef CONFIG_DEBUG_VM
714/**
715 * page_dup_rmap - duplicate pte mapping to a page
716 * @page: the page to add the mapping to
43d8eac4
RD
717 * @vma: the vm area being duplicated
718 * @address: the user virtual address mapped
c97a9e10
NP
719 *
720 * For copy_page_range only: minimal extract from page_add_file_rmap /
721 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
722 * quicker.
723 *
724 * The caller needs to hold the pte lock.
725 */
726void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
727{
c97a9e10
NP
728 if (PageAnon(page))
729 __page_check_anon_rmap(page, vma, address);
730 atomic_inc(&page->_mapcount);
731}
732#endif
733
1da177e4
LT
734/**
735 * page_remove_rmap - take down pte mapping from a page
736 * @page: page to remove mapping from
737 *
b8072f09 738 * The caller needs to hold the pte lock.
1da177e4 739 */
edc315fd 740void page_remove_rmap(struct page *page)
1da177e4 741{
1da177e4 742 if (atomic_add_negative(-1, &page->_mapcount)) {
1da177e4 743 /*
16f8c5b2
HD
744 * Now that the last pte has gone, s390 must transfer dirty
745 * flag from storage key to struct page. We can usually skip
746 * this if the page is anon, so about to be freed; but perhaps
747 * not if it's in swapcache - there might be another pte slot
748 * containing the swap entry, but page not yet written to swap.
1da177e4 749 */
a4b526b3
MS
750 if ((!PageAnon(page) || PageSwapCache(page)) &&
751 page_test_dirty(page)) {
6c210482 752 page_clear_dirty(page);
1da177e4 753 set_page_dirty(page);
6c210482 754 }
5b4e655e
KH
755 if (PageAnon(page))
756 mem_cgroup_uncharge_page(page);
f3dbd344 757 __dec_zone_page_state(page,
16f8c5b2 758 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
d69b042f 759 mem_cgroup_update_mapped_file_stat(page, -1);
16f8c5b2
HD
760 /*
761 * It would be tidy to reset the PageAnon mapping here,
762 * but that might overwrite a racing page_add_anon_rmap
763 * which increments mapcount after us but sets mapping
764 * before us: so leave the reset to free_hot_cold_page,
765 * and remember that it's only reliable while mapped.
766 * Leaving it set also helps swapoff to reinstate ptes
767 * faster for those pages still in swapcache.
768 */
1da177e4
LT
769 }
770}
771
772/*
773 * Subfunctions of try_to_unmap: try_to_unmap_one called
774 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
775 */
a48d07af 776static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
7352349a 777 int migration)
1da177e4
LT
778{
779 struct mm_struct *mm = vma->vm_mm;
780 unsigned long address;
1da177e4
LT
781 pte_t *pte;
782 pte_t pteval;
c0718806 783 spinlock_t *ptl;
1da177e4
LT
784 int ret = SWAP_AGAIN;
785
1da177e4
LT
786 address = vma_address(page, vma);
787 if (address == -EFAULT)
788 goto out;
789
479db0bf 790 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 791 if (!pte)
81b4082d 792 goto out;
1da177e4
LT
793
794 /*
795 * If the page is mlock()d, we cannot swap it out.
796 * If it's recently referenced (perhaps page_referenced
797 * skipped over this mm) then we should reactivate it.
798 */
b291f000
NP
799 if (!migration) {
800 if (vma->vm_flags & VM_LOCKED) {
801 ret = SWAP_MLOCK;
802 goto out_unmap;
803 }
804 if (ptep_clear_flush_young_notify(vma, address, pte)) {
805 ret = SWAP_FAIL;
806 goto out_unmap;
807 }
808 }
1da177e4 809
1da177e4
LT
810 /* Nuke the page table entry. */
811 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 812 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
813
814 /* Move the dirty bit to the physical page now the pte is gone. */
815 if (pte_dirty(pteval))
816 set_page_dirty(page);
817
365e9c87
HD
818 /* Update high watermark before we lower rss */
819 update_hiwater_rss(mm);
820
1da177e4 821 if (PageAnon(page)) {
4c21e2f2 822 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
823
824 if (PageSwapCache(page)) {
825 /*
826 * Store the swap location in the pte.
827 * See handle_pte_fault() ...
828 */
829 swap_duplicate(entry);
830 if (list_empty(&mm->mmlist)) {
831 spin_lock(&mmlist_lock);
832 if (list_empty(&mm->mmlist))
833 list_add(&mm->mmlist, &init_mm.mmlist);
834 spin_unlock(&mmlist_lock);
835 }
442c9137 836 dec_mm_counter(mm, anon_rss);
64cdd548 837 } else if (PAGE_MIGRATION) {
0697212a
CL
838 /*
839 * Store the pfn of the page in a special migration
840 * pte. do_swap_page() will wait until the migration
841 * pte is removed and then restart fault handling.
842 */
843 BUG_ON(!migration);
844 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
845 }
846 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
847 BUG_ON(pte_file(*pte));
64cdd548 848 } else if (PAGE_MIGRATION && migration) {
04e62a29
CL
849 /* Establish migration entry for a file page */
850 swp_entry_t entry;
851 entry = make_migration_entry(page, pte_write(pteval));
852 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
853 } else
4294621f 854 dec_mm_counter(mm, file_rss);
1da177e4 855
04e62a29 856
edc315fd 857 page_remove_rmap(page);
1da177e4
LT
858 page_cache_release(page);
859
860out_unmap:
c0718806 861 pte_unmap_unlock(pte, ptl);
1da177e4
LT
862out:
863 return ret;
864}
865
866/*
867 * objrmap doesn't work for nonlinear VMAs because the assumption that
868 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
869 * Consequently, given a particular page and its ->index, we cannot locate the
870 * ptes which are mapping that page without an exhaustive linear search.
871 *
872 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
873 * maps the file to which the target page belongs. The ->vm_private_data field
874 * holds the current cursor into that scan. Successive searches will circulate
875 * around the vma's virtual address space.
876 *
877 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
878 * more scanning pressure is placed against them as well. Eventually pages
879 * will become fully unmapped and are eligible for eviction.
880 *
881 * For very sparsely populated VMAs this is a little inefficient - chances are
882 * there there won't be many ptes located within the scan cluster. In this case
883 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
884 *
885 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
886 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
887 * rather than unmapping them. If we encounter the "check_page" that vmscan is
888 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
889 */
890#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
891#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
892
b291f000
NP
893static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
894 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
895{
896 struct mm_struct *mm = vma->vm_mm;
897 pgd_t *pgd;
898 pud_t *pud;
899 pmd_t *pmd;
c0718806 900 pte_t *pte;
1da177e4 901 pte_t pteval;
c0718806 902 spinlock_t *ptl;
1da177e4
LT
903 struct page *page;
904 unsigned long address;
905 unsigned long end;
b291f000
NP
906 int ret = SWAP_AGAIN;
907 int locked_vma = 0;
1da177e4 908
1da177e4
LT
909 address = (vma->vm_start + cursor) & CLUSTER_MASK;
910 end = address + CLUSTER_SIZE;
911 if (address < vma->vm_start)
912 address = vma->vm_start;
913 if (end > vma->vm_end)
914 end = vma->vm_end;
915
916 pgd = pgd_offset(mm, address);
917 if (!pgd_present(*pgd))
b291f000 918 return ret;
1da177e4
LT
919
920 pud = pud_offset(pgd, address);
921 if (!pud_present(*pud))
b291f000 922 return ret;
1da177e4
LT
923
924 pmd = pmd_offset(pud, address);
925 if (!pmd_present(*pmd))
b291f000
NP
926 return ret;
927
928 /*
929 * MLOCK_PAGES => feature is configured.
930 * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
931 * keep the sem while scanning the cluster for mlocking pages.
932 */
933 if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
934 locked_vma = (vma->vm_flags & VM_LOCKED);
935 if (!locked_vma)
936 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
937 }
c0718806
HD
938
939 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 940
365e9c87
HD
941 /* Update high watermark before we lower rss */
942 update_hiwater_rss(mm);
943
c0718806 944 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
945 if (!pte_present(*pte))
946 continue;
6aab341e
LT
947 page = vm_normal_page(vma, address, *pte);
948 BUG_ON(!page || PageAnon(page));
1da177e4 949
b291f000
NP
950 if (locked_vma) {
951 mlock_vma_page(page); /* no-op if already mlocked */
952 if (page == check_page)
953 ret = SWAP_MLOCK;
954 continue; /* don't unmap */
955 }
956
cddb8a5c 957 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
958 continue;
959
960 /* Nuke the page table entry. */
eca35133 961 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 962 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
963
964 /* If nonlinear, store the file page offset in the pte. */
965 if (page->index != linear_page_index(vma, address))
966 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
967
968 /* Move the dirty bit to the physical page now the pte is gone. */
969 if (pte_dirty(pteval))
970 set_page_dirty(page);
971
edc315fd 972 page_remove_rmap(page);
1da177e4 973 page_cache_release(page);
4294621f 974 dec_mm_counter(mm, file_rss);
1da177e4
LT
975 (*mapcount)--;
976 }
c0718806 977 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
978 if (locked_vma)
979 up_read(&vma->vm_mm->mmap_sem);
980 return ret;
1da177e4
LT
981}
982
b291f000
NP
983/*
984 * common handling for pages mapped in VM_LOCKED vmas
985 */
986static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
987{
988 int mlocked = 0;
989
990 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
991 if (vma->vm_flags & VM_LOCKED) {
992 mlock_vma_page(page);
993 mlocked++; /* really mlocked the page */
994 }
995 up_read(&vma->vm_mm->mmap_sem);
996 }
997 return mlocked;
998}
999
1000/**
1001 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1002 * rmap method
1003 * @page: the page to unmap/unlock
1004 * @unlock: request for unlock rather than unmap [unlikely]
1005 * @migration: unmapping for migration - ignored if @unlock
1006 *
1007 * Find all the mappings of a page using the mapping pointer and the vma chains
1008 * contained in the anon_vma struct it points to.
1009 *
1010 * This function is only called from try_to_unmap/try_to_munlock for
1011 * anonymous pages.
1012 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1013 * where the page was found will be held for write. So, we won't recheck
1014 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1015 * 'LOCKED.
1016 */
1017static int try_to_unmap_anon(struct page *page, int unlock, int migration)
1da177e4
LT
1018{
1019 struct anon_vma *anon_vma;
1020 struct vm_area_struct *vma;
b291f000 1021 unsigned int mlocked = 0;
1da177e4
LT
1022 int ret = SWAP_AGAIN;
1023
b291f000
NP
1024 if (MLOCK_PAGES && unlikely(unlock))
1025 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1026
1da177e4
LT
1027 anon_vma = page_lock_anon_vma(page);
1028 if (!anon_vma)
1029 return ret;
1030
1031 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
b291f000
NP
1032 if (MLOCK_PAGES && unlikely(unlock)) {
1033 if (!((vma->vm_flags & VM_LOCKED) &&
1034 page_mapped_in_vma(page, vma)))
1035 continue; /* must visit all unlocked vmas */
1036 ret = SWAP_MLOCK; /* saw at least one mlocked vma */
1037 } else {
1038 ret = try_to_unmap_one(page, vma, migration);
1039 if (ret == SWAP_FAIL || !page_mapped(page))
1040 break;
1041 }
1042 if (ret == SWAP_MLOCK) {
1043 mlocked = try_to_mlock_page(page, vma);
1044 if (mlocked)
1045 break; /* stop if actually mlocked page */
1046 }
1da177e4 1047 }
34bbd704
ON
1048
1049 page_unlock_anon_vma(anon_vma);
b291f000
NP
1050
1051 if (mlocked)
1052 ret = SWAP_MLOCK; /* actually mlocked the page */
1053 else if (ret == SWAP_MLOCK)
1054 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1055
1da177e4
LT
1056 return ret;
1057}
1058
1059/**
b291f000
NP
1060 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1061 * @page: the page to unmap/unlock
1062 * @unlock: request for unlock rather than unmap [unlikely]
1063 * @migration: unmapping for migration - ignored if @unlock
1da177e4
LT
1064 *
1065 * Find all the mappings of a page using the mapping pointer and the vma chains
1066 * contained in the address_space struct it points to.
1067 *
b291f000
NP
1068 * This function is only called from try_to_unmap/try_to_munlock for
1069 * object-based pages.
1070 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1071 * where the page was found will be held for write. So, we won't recheck
1072 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1073 * 'LOCKED.
1da177e4 1074 */
b291f000 1075static int try_to_unmap_file(struct page *page, int unlock, int migration)
1da177e4
LT
1076{
1077 struct address_space *mapping = page->mapping;
1078 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1079 struct vm_area_struct *vma;
1080 struct prio_tree_iter iter;
1081 int ret = SWAP_AGAIN;
1082 unsigned long cursor;
1083 unsigned long max_nl_cursor = 0;
1084 unsigned long max_nl_size = 0;
1085 unsigned int mapcount;
b291f000
NP
1086 unsigned int mlocked = 0;
1087
1088 if (MLOCK_PAGES && unlikely(unlock))
1089 ret = SWAP_SUCCESS; /* default for try_to_munlock() */
1da177e4
LT
1090
1091 spin_lock(&mapping->i_mmap_lock);
1092 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
b291f000 1093 if (MLOCK_PAGES && unlikely(unlock)) {
508b9f8e
MK
1094 if (!((vma->vm_flags & VM_LOCKED) &&
1095 page_mapped_in_vma(page, vma)))
b291f000
NP
1096 continue; /* must visit all vmas */
1097 ret = SWAP_MLOCK;
1098 } else {
1099 ret = try_to_unmap_one(page, vma, migration);
1100 if (ret == SWAP_FAIL || !page_mapped(page))
1101 goto out;
1102 }
1103 if (ret == SWAP_MLOCK) {
1104 mlocked = try_to_mlock_page(page, vma);
1105 if (mlocked)
1106 break; /* stop if actually mlocked page */
1107 }
1da177e4
LT
1108 }
1109
b291f000
NP
1110 if (mlocked)
1111 goto out;
1112
1da177e4
LT
1113 if (list_empty(&mapping->i_mmap_nonlinear))
1114 goto out;
1115
1116 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1117 shared.vm_set.list) {
b291f000
NP
1118 if (MLOCK_PAGES && unlikely(unlock)) {
1119 if (!(vma->vm_flags & VM_LOCKED))
1120 continue; /* must visit all vmas */
1121 ret = SWAP_MLOCK; /* leave mlocked == 0 */
1122 goto out; /* no need to look further */
1123 }
1124 if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
1da177e4
LT
1125 continue;
1126 cursor = (unsigned long) vma->vm_private_data;
1127 if (cursor > max_nl_cursor)
1128 max_nl_cursor = cursor;
1129 cursor = vma->vm_end - vma->vm_start;
1130 if (cursor > max_nl_size)
1131 max_nl_size = cursor;
1132 }
1133
b291f000 1134 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1135 ret = SWAP_FAIL;
1136 goto out;
1137 }
1138
1139 /*
1140 * We don't try to search for this page in the nonlinear vmas,
1141 * and page_referenced wouldn't have found it anyway. Instead
1142 * just walk the nonlinear vmas trying to age and unmap some.
1143 * The mapcount of the page we came in with is irrelevant,
1144 * but even so use it as a guide to how hard we should try?
1145 */
1146 mapcount = page_mapcount(page);
1147 if (!mapcount)
1148 goto out;
1149 cond_resched_lock(&mapping->i_mmap_lock);
1150
1151 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1152 if (max_nl_cursor == 0)
1153 max_nl_cursor = CLUSTER_SIZE;
1154
1155 do {
1156 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1157 shared.vm_set.list) {
b291f000
NP
1158 if (!MLOCK_PAGES && !migration &&
1159 (vma->vm_flags & VM_LOCKED))
1da177e4
LT
1160 continue;
1161 cursor = (unsigned long) vma->vm_private_data;
839b9685 1162 while ( cursor < max_nl_cursor &&
1da177e4 1163 cursor < vma->vm_end - vma->vm_start) {
b291f000
NP
1164 ret = try_to_unmap_cluster(cursor, &mapcount,
1165 vma, page);
1166 if (ret == SWAP_MLOCK)
1167 mlocked = 2; /* to return below */
1da177e4
LT
1168 cursor += CLUSTER_SIZE;
1169 vma->vm_private_data = (void *) cursor;
1170 if ((int)mapcount <= 0)
1171 goto out;
1172 }
1173 vma->vm_private_data = (void *) max_nl_cursor;
1174 }
1175 cond_resched_lock(&mapping->i_mmap_lock);
1176 max_nl_cursor += CLUSTER_SIZE;
1177 } while (max_nl_cursor <= max_nl_size);
1178
1179 /*
1180 * Don't loop forever (perhaps all the remaining pages are
1181 * in locked vmas). Reset cursor on all unreserved nonlinear
1182 * vmas, now forgetting on which ones it had fallen behind.
1183 */
101d2be7
HD
1184 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1185 vma->vm_private_data = NULL;
1da177e4
LT
1186out:
1187 spin_unlock(&mapping->i_mmap_lock);
b291f000
NP
1188 if (mlocked)
1189 ret = SWAP_MLOCK; /* actually mlocked the page */
1190 else if (ret == SWAP_MLOCK)
1191 ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
1da177e4
LT
1192 return ret;
1193}
1194
1195/**
1196 * try_to_unmap - try to remove all page table mappings to a page
1197 * @page: the page to get unmapped
43d8eac4 1198 * @migration: migration flag
1da177e4
LT
1199 *
1200 * Tries to remove all the page table entries which are mapping this
1201 * page, used in the pageout path. Caller must hold the page lock.
1202 * Return values are:
1203 *
1204 * SWAP_SUCCESS - we succeeded in removing all mappings
1205 * SWAP_AGAIN - we missed a mapping, try again later
1206 * SWAP_FAIL - the page is unswappable
b291f000 1207 * SWAP_MLOCK - page is mlocked.
1da177e4 1208 */
7352349a 1209int try_to_unmap(struct page *page, int migration)
1da177e4
LT
1210{
1211 int ret;
1212
1da177e4
LT
1213 BUG_ON(!PageLocked(page));
1214
1215 if (PageAnon(page))
b291f000 1216 ret = try_to_unmap_anon(page, 0, migration);
1da177e4 1217 else
b291f000
NP
1218 ret = try_to_unmap_file(page, 0, migration);
1219 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1220 ret = SWAP_SUCCESS;
1221 return ret;
1222}
81b4082d 1223
b291f000
NP
1224/**
1225 * try_to_munlock - try to munlock a page
1226 * @page: the page to be munlocked
1227 *
1228 * Called from munlock code. Checks all of the VMAs mapping the page
1229 * to make sure nobody else has this page mlocked. The page will be
1230 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1231 *
1232 * Return values are:
1233 *
1234 * SWAP_SUCCESS - no vma's holding page mlocked.
1235 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1236 * SWAP_MLOCK - page is now mlocked.
1237 */
1238int try_to_munlock(struct page *page)
1239{
1240 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1241
1242 if (PageAnon(page))
1243 return try_to_unmap_anon(page, 1, 0);
1244 else
1245 return try_to_unmap_file(page, 1, 0);
1246}
68377659 1247