]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/rmap.c
mm: migration: take a reference to the anon_vma before migrating
[net-next-2.6.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
6a46079c
AK
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
1da177e4
LT
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
5ad64688 52#include <linux/ksm.h>
1da177e4
LT
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
a48d07af 55#include <linux/module.h>
8a9f3ccd 56#include <linux/memcontrol.h>
cddb8a5c 57#include <linux/mmu_notifier.h>
64cdd548 58#include <linux/migrate.h>
1da177e4
LT
59
60#include <asm/tlbflush.h>
61
b291f000
NP
62#include "internal.h"
63
fdd2e5f8 64static struct kmem_cache *anon_vma_cachep;
5beb4930 65static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
69 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
70}
71
db114b83 72void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8
AB
73{
74 kmem_cache_free(anon_vma_cachep, anon_vma);
75}
1da177e4 76
5beb4930
RR
77static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
78{
79 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
80}
81
82void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
83{
84 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
85}
86
d9d332e0
LT
87/**
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
90 *
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
94 *
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
99 * allocate a new one.
100 *
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
106 *
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
110 * an anon_vma.
111 *
112 * This must be called with the mmap_sem held for reading.
113 */
1da177e4
LT
114int anon_vma_prepare(struct vm_area_struct *vma)
115{
116 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 117 struct anon_vma_chain *avc;
1da177e4
LT
118
119 might_sleep();
120 if (unlikely(!anon_vma)) {
121 struct mm_struct *mm = vma->vm_mm;
d9d332e0 122 struct anon_vma *allocated;
1da177e4 123
5beb4930
RR
124 avc = anon_vma_chain_alloc();
125 if (!avc)
126 goto out_enomem;
127
1da177e4 128 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
129 allocated = NULL;
130 if (!anon_vma) {
1da177e4
LT
131 anon_vma = anon_vma_alloc();
132 if (unlikely(!anon_vma))
5beb4930 133 goto out_enomem_free_avc;
1da177e4 134 allocated = anon_vma;
1da177e4
LT
135 }
136
31f2b0eb 137 spin_lock(&anon_vma->lock);
1da177e4
LT
138 /* page_table_lock to protect against threads */
139 spin_lock(&mm->page_table_lock);
140 if (likely(!vma->anon_vma)) {
141 vma->anon_vma = anon_vma;
5beb4930
RR
142 avc->anon_vma = anon_vma;
143 avc->vma = vma;
144 list_add(&avc->same_vma, &vma->anon_vma_chain);
145 list_add(&avc->same_anon_vma, &anon_vma->head);
1da177e4 146 allocated = NULL;
31f2b0eb 147 avc = NULL;
1da177e4
LT
148 }
149 spin_unlock(&mm->page_table_lock);
d9d332e0 150 spin_unlock(&anon_vma->lock);
31f2b0eb
ON
151
152 if (unlikely(allocated))
1da177e4 153 anon_vma_free(allocated);
31f2b0eb 154 if (unlikely(avc))
5beb4930 155 anon_vma_chain_free(avc);
1da177e4
LT
156 }
157 return 0;
5beb4930
RR
158
159 out_enomem_free_avc:
160 anon_vma_chain_free(avc);
161 out_enomem:
162 return -ENOMEM;
1da177e4
LT
163}
164
5beb4930
RR
165static void anon_vma_chain_link(struct vm_area_struct *vma,
166 struct anon_vma_chain *avc,
167 struct anon_vma *anon_vma)
1da177e4 168{
5beb4930
RR
169 avc->vma = vma;
170 avc->anon_vma = anon_vma;
171 list_add(&avc->same_vma, &vma->anon_vma_chain);
172
173 spin_lock(&anon_vma->lock);
174 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
175 spin_unlock(&anon_vma->lock);
1da177e4
LT
176}
177
5beb4930
RR
178/*
179 * Attach the anon_vmas from src to dst.
180 * Returns 0 on success, -ENOMEM on failure.
181 */
182int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 183{
5beb4930
RR
184 struct anon_vma_chain *avc, *pavc;
185
646d87b4 186 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
5beb4930
RR
187 avc = anon_vma_chain_alloc();
188 if (!avc)
189 goto enomem_failure;
190 anon_vma_chain_link(dst, avc, pavc->anon_vma);
191 }
192 return 0;
1da177e4 193
5beb4930
RR
194 enomem_failure:
195 unlink_anon_vmas(dst);
196 return -ENOMEM;
1da177e4
LT
197}
198
5beb4930
RR
199/*
200 * Attach vma to its own anon_vma, as well as to the anon_vmas that
201 * the corresponding VMA in the parent process is attached to.
202 * Returns 0 on success, non-zero on failure.
203 */
204int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 205{
5beb4930
RR
206 struct anon_vma_chain *avc;
207 struct anon_vma *anon_vma;
1da177e4 208
5beb4930
RR
209 /* Don't bother if the parent process has no anon_vma here. */
210 if (!pvma->anon_vma)
211 return 0;
212
213 /*
214 * First, attach the new VMA to the parent VMA's anon_vmas,
215 * so rmap can find non-COWed pages in child processes.
216 */
217 if (anon_vma_clone(vma, pvma))
218 return -ENOMEM;
219
220 /* Then add our own anon_vma. */
221 anon_vma = anon_vma_alloc();
222 if (!anon_vma)
223 goto out_error;
224 avc = anon_vma_chain_alloc();
225 if (!avc)
226 goto out_error_free_anon_vma;
227 anon_vma_chain_link(vma, avc, anon_vma);
228 /* Mark this anon_vma as the one where our new (COWed) pages go. */
229 vma->anon_vma = anon_vma;
230
231 return 0;
232
233 out_error_free_anon_vma:
234 anon_vma_free(anon_vma);
235 out_error:
4946d54c 236 unlink_anon_vmas(vma);
5beb4930 237 return -ENOMEM;
1da177e4
LT
238}
239
5beb4930 240static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
1da177e4 241{
5beb4930 242 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
1da177e4
LT
243 int empty;
244
5beb4930 245 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
1da177e4
LT
246 if (!anon_vma)
247 return;
248
249 spin_lock(&anon_vma->lock);
5beb4930 250 list_del(&anon_vma_chain->same_anon_vma);
1da177e4
LT
251
252 /* We must garbage collect the anon_vma if it's empty */
3f6c8272
MG
253 empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma) &&
254 !migrate_refcount(anon_vma);
1da177e4
LT
255 spin_unlock(&anon_vma->lock);
256
257 if (empty)
258 anon_vma_free(anon_vma);
259}
260
5beb4930
RR
261void unlink_anon_vmas(struct vm_area_struct *vma)
262{
263 struct anon_vma_chain *avc, *next;
264
265 /* Unlink each anon_vma chained to the VMA. */
266 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
267 anon_vma_unlink(avc);
268 list_del(&avc->same_vma);
269 anon_vma_chain_free(avc);
270 }
271}
272
51cc5068 273static void anon_vma_ctor(void *data)
1da177e4 274{
a35afb83 275 struct anon_vma *anon_vma = data;
1da177e4 276
a35afb83 277 spin_lock_init(&anon_vma->lock);
db114b83 278 ksm_refcount_init(anon_vma);
3f6c8272 279 migrate_refcount_init(anon_vma);
a35afb83 280 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
281}
282
283void __init anon_vma_init(void)
284{
285 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 286 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 287 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
288}
289
290/*
291 * Getting a lock on a stable anon_vma from a page off the LRU is
292 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
293 */
10be22df 294struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 295{
34bbd704 296 struct anon_vma *anon_vma;
1da177e4
LT
297 unsigned long anon_mapping;
298
299 rcu_read_lock();
80e14822 300 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 301 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
302 goto out;
303 if (!page_mapped(page))
304 goto out;
305
306 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
307 spin_lock(&anon_vma->lock);
34bbd704 308 return anon_vma;
1da177e4
LT
309out:
310 rcu_read_unlock();
34bbd704
ON
311 return NULL;
312}
313
10be22df 314void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704
ON
315{
316 spin_unlock(&anon_vma->lock);
317 rcu_read_unlock();
1da177e4
LT
318}
319
320/*
3ad33b24
LS
321 * At what user virtual address is page expected in @vma?
322 * Returns virtual address or -EFAULT if page's index/offset is not
323 * within the range mapped the @vma.
1da177e4
LT
324 */
325static inline unsigned long
326vma_address(struct page *page, struct vm_area_struct *vma)
327{
328 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
329 unsigned long address;
330
331 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
332 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 333 /* page should be within @vma mapping range */
1da177e4
LT
334 return -EFAULT;
335 }
336 return address;
337}
338
339/*
bf89c8c8 340 * At what user virtual address is page expected in vma?
ab941e0f 341 * Caller should check the page is actually part of the vma.
1da177e4
LT
342 */
343unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
344{
ab941e0f
NH
345 if (PageAnon(page))
346 ;
347 else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
348 if (!vma->vm_file ||
349 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
350 return -EFAULT;
351 } else
352 return -EFAULT;
353 return vma_address(page, vma);
354}
355
81b4082d
ND
356/*
357 * Check that @page is mapped at @address into @mm.
358 *
479db0bf
NP
359 * If @sync is false, page_check_address may perform a racy check to avoid
360 * the page table lock when the pte is not present (helpful when reclaiming
361 * highly shared pages).
362 *
b8072f09 363 * On success returns with pte mapped and locked.
81b4082d 364 */
ceffc078 365pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 366 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
367{
368 pgd_t *pgd;
369 pud_t *pud;
370 pmd_t *pmd;
371 pte_t *pte;
c0718806 372 spinlock_t *ptl;
81b4082d 373
81b4082d 374 pgd = pgd_offset(mm, address);
c0718806
HD
375 if (!pgd_present(*pgd))
376 return NULL;
377
378 pud = pud_offset(pgd, address);
379 if (!pud_present(*pud))
380 return NULL;
381
382 pmd = pmd_offset(pud, address);
383 if (!pmd_present(*pmd))
384 return NULL;
385
386 pte = pte_offset_map(pmd, address);
387 /* Make a quick check before getting the lock */
479db0bf 388 if (!sync && !pte_present(*pte)) {
c0718806
HD
389 pte_unmap(pte);
390 return NULL;
391 }
392
4c21e2f2 393 ptl = pte_lockptr(mm, pmd);
c0718806
HD
394 spin_lock(ptl);
395 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
396 *ptlp = ptl;
397 return pte;
81b4082d 398 }
c0718806
HD
399 pte_unmap_unlock(pte, ptl);
400 return NULL;
81b4082d
ND
401}
402
b291f000
NP
403/**
404 * page_mapped_in_vma - check whether a page is really mapped in a VMA
405 * @page: the page to test
406 * @vma: the VMA to test
407 *
408 * Returns 1 if the page is mapped into the page tables of the VMA, 0
409 * if the page is not mapped into the page tables of this VMA. Only
410 * valid for normal file or anonymous VMAs.
411 */
6a46079c 412int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
413{
414 unsigned long address;
415 pte_t *pte;
416 spinlock_t *ptl;
417
418 address = vma_address(page, vma);
419 if (address == -EFAULT) /* out of vma range */
420 return 0;
421 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
422 if (!pte) /* the page is not in this mm */
423 return 0;
424 pte_unmap_unlock(pte, ptl);
425
426 return 1;
427}
428
1da177e4
LT
429/*
430 * Subfunctions of page_referenced: page_referenced_one called
431 * repeatedly from either page_referenced_anon or page_referenced_file.
432 */
5ad64688
HD
433int page_referenced_one(struct page *page, struct vm_area_struct *vma,
434 unsigned long address, unsigned int *mapcount,
435 unsigned long *vm_flags)
1da177e4
LT
436{
437 struct mm_struct *mm = vma->vm_mm;
1da177e4 438 pte_t *pte;
c0718806 439 spinlock_t *ptl;
1da177e4
LT
440 int referenced = 0;
441
479db0bf 442 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
443 if (!pte)
444 goto out;
1da177e4 445
b291f000
NP
446 /*
447 * Don't want to elevate referenced for mlocked page that gets this far,
448 * in order that it progresses to try_to_unmap and is moved to the
449 * unevictable list.
450 */
5a9bbdcd 451 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 452 *mapcount = 1; /* break early from loop */
03ef83af 453 *vm_flags |= VM_LOCKED;
b291f000
NP
454 goto out_unmap;
455 }
456
4917e5d0
JW
457 if (ptep_clear_flush_young_notify(vma, address, pte)) {
458 /*
459 * Don't treat a reference through a sequentially read
460 * mapping as such. If the page has been used in
461 * another mapping, we will catch it; if this other
462 * mapping is already gone, the unmap path will have
463 * set PG_referenced or activated the page.
464 */
465 if (likely(!VM_SequentialReadHint(vma)))
466 referenced++;
467 }
1da177e4 468
c0718806
HD
469 /* Pretend the page is referenced if the task has the
470 swap token and is in the middle of a page fault. */
f7b7fd8f 471 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
472 rwsem_is_locked(&mm->mmap_sem))
473 referenced++;
474
b291f000 475out_unmap:
c0718806
HD
476 (*mapcount)--;
477 pte_unmap_unlock(pte, ptl);
273f047e 478
6fe6b7e3
WF
479 if (referenced)
480 *vm_flags |= vma->vm_flags;
273f047e 481out:
1da177e4
LT
482 return referenced;
483}
484
bed7161a 485static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
486 struct mem_cgroup *mem_cont,
487 unsigned long *vm_flags)
1da177e4
LT
488{
489 unsigned int mapcount;
490 struct anon_vma *anon_vma;
5beb4930 491 struct anon_vma_chain *avc;
1da177e4
LT
492 int referenced = 0;
493
494 anon_vma = page_lock_anon_vma(page);
495 if (!anon_vma)
496 return referenced;
497
498 mapcount = page_mapcount(page);
5beb4930
RR
499 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
500 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
501 unsigned long address = vma_address(page, vma);
502 if (address == -EFAULT)
503 continue;
bed7161a
BS
504 /*
505 * If we are reclaiming on behalf of a cgroup, skip
506 * counting on behalf of references from different
507 * cgroups
508 */
bd845e38 509 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 510 continue;
1cb1729b 511 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 512 &mapcount, vm_flags);
1da177e4
LT
513 if (!mapcount)
514 break;
515 }
34bbd704
ON
516
517 page_unlock_anon_vma(anon_vma);
1da177e4
LT
518 return referenced;
519}
520
521/**
522 * page_referenced_file - referenced check for object-based rmap
523 * @page: the page we're checking references on.
43d8eac4 524 * @mem_cont: target memory controller
6fe6b7e3 525 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
526 *
527 * For an object-based mapped page, find all the places it is mapped and
528 * check/clear the referenced flag. This is done by following the page->mapping
529 * pointer, then walking the chain of vmas it holds. It returns the number
530 * of references it found.
531 *
532 * This function is only called from page_referenced for object-based pages.
533 */
bed7161a 534static int page_referenced_file(struct page *page,
6fe6b7e3
WF
535 struct mem_cgroup *mem_cont,
536 unsigned long *vm_flags)
1da177e4
LT
537{
538 unsigned int mapcount;
539 struct address_space *mapping = page->mapping;
540 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
541 struct vm_area_struct *vma;
542 struct prio_tree_iter iter;
543 int referenced = 0;
544
545 /*
546 * The caller's checks on page->mapping and !PageAnon have made
547 * sure that this is a file page: the check for page->mapping
548 * excludes the case just before it gets set on an anon page.
549 */
550 BUG_ON(PageAnon(page));
551
552 /*
553 * The page lock not only makes sure that page->mapping cannot
554 * suddenly be NULLified by truncation, it makes sure that the
555 * structure at mapping cannot be freed and reused yet,
556 * so we can safely take mapping->i_mmap_lock.
557 */
558 BUG_ON(!PageLocked(page));
559
560 spin_lock(&mapping->i_mmap_lock);
561
562 /*
563 * i_mmap_lock does not stabilize mapcount at all, but mapcount
564 * is more likely to be accurate if we note it after spinning.
565 */
566 mapcount = page_mapcount(page);
567
568 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
569 unsigned long address = vma_address(page, vma);
570 if (address == -EFAULT)
571 continue;
bed7161a
BS
572 /*
573 * If we are reclaiming on behalf of a cgroup, skip
574 * counting on behalf of references from different
575 * cgroups
576 */
bd845e38 577 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 578 continue;
1cb1729b 579 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 580 &mapcount, vm_flags);
1da177e4
LT
581 if (!mapcount)
582 break;
583 }
584
585 spin_unlock(&mapping->i_mmap_lock);
586 return referenced;
587}
588
589/**
590 * page_referenced - test if the page was referenced
591 * @page: the page to test
592 * @is_locked: caller holds lock on the page
43d8eac4 593 * @mem_cont: target memory controller
6fe6b7e3 594 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
595 *
596 * Quick test_and_clear_referenced for all mappings to a page,
597 * returns the number of ptes which referenced the page.
598 */
6fe6b7e3
WF
599int page_referenced(struct page *page,
600 int is_locked,
601 struct mem_cgroup *mem_cont,
602 unsigned long *vm_flags)
1da177e4
LT
603{
604 int referenced = 0;
5ad64688 605 int we_locked = 0;
1da177e4 606
6fe6b7e3 607 *vm_flags = 0;
3ca7b3c5 608 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
609 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
610 we_locked = trylock_page(page);
611 if (!we_locked) {
612 referenced++;
613 goto out;
614 }
615 }
616 if (unlikely(PageKsm(page)))
617 referenced += page_referenced_ksm(page, mem_cont,
618 vm_flags);
619 else if (PageAnon(page))
6fe6b7e3
WF
620 referenced += page_referenced_anon(page, mem_cont,
621 vm_flags);
5ad64688 622 else if (page->mapping)
6fe6b7e3
WF
623 referenced += page_referenced_file(page, mem_cont,
624 vm_flags);
5ad64688 625 if (we_locked)
1da177e4 626 unlock_page(page);
1da177e4 627 }
5ad64688 628out:
5b7baf05
CB
629 if (page_test_and_clear_young(page))
630 referenced++;
631
1da177e4
LT
632 return referenced;
633}
634
1cb1729b
HD
635static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
636 unsigned long address)
d08b3851
PZ
637{
638 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 639 pte_t *pte;
d08b3851
PZ
640 spinlock_t *ptl;
641 int ret = 0;
642
479db0bf 643 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
644 if (!pte)
645 goto out;
646
c2fda5fe
PZ
647 if (pte_dirty(*pte) || pte_write(*pte)) {
648 pte_t entry;
d08b3851 649
c2fda5fe 650 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 651 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
652 entry = pte_wrprotect(entry);
653 entry = pte_mkclean(entry);
d6e88e67 654 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
655 ret = 1;
656 }
d08b3851 657
d08b3851
PZ
658 pte_unmap_unlock(pte, ptl);
659out:
660 return ret;
661}
662
663static int page_mkclean_file(struct address_space *mapping, struct page *page)
664{
665 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
666 struct vm_area_struct *vma;
667 struct prio_tree_iter iter;
668 int ret = 0;
669
670 BUG_ON(PageAnon(page));
671
672 spin_lock(&mapping->i_mmap_lock);
673 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
674 if (vma->vm_flags & VM_SHARED) {
675 unsigned long address = vma_address(page, vma);
676 if (address == -EFAULT)
677 continue;
678 ret += page_mkclean_one(page, vma, address);
679 }
d08b3851
PZ
680 }
681 spin_unlock(&mapping->i_mmap_lock);
682 return ret;
683}
684
685int page_mkclean(struct page *page)
686{
687 int ret = 0;
688
689 BUG_ON(!PageLocked(page));
690
691 if (page_mapped(page)) {
692 struct address_space *mapping = page_mapping(page);
ce7e9fae 693 if (mapping) {
d08b3851 694 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
695 if (page_test_dirty(page)) {
696 page_clear_dirty(page);
697 ret = 1;
698 }
6c210482 699 }
d08b3851
PZ
700 }
701
702 return ret;
703}
60b59bea 704EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 705
c44b6743
RR
706/**
707 * page_move_anon_rmap - move a page to our anon_vma
708 * @page: the page to move to our anon_vma
709 * @vma: the vma the page belongs to
710 * @address: the user virtual address mapped
711 *
712 * When a page belongs exclusively to one process after a COW event,
713 * that page can be moved into the anon_vma that belongs to just that
714 * process, so the rmap code will not search the parent or sibling
715 * processes.
716 */
717void page_move_anon_rmap(struct page *page,
718 struct vm_area_struct *vma, unsigned long address)
719{
720 struct anon_vma *anon_vma = vma->anon_vma;
721
722 VM_BUG_ON(!PageLocked(page));
723 VM_BUG_ON(!anon_vma);
724 VM_BUG_ON(page->index != linear_page_index(vma, address));
725
726 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
727 page->mapping = (struct address_space *) anon_vma;
728}
729
9617d95e 730/**
43d8eac4 731 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
732 * @page: the page to add the mapping to
733 * @vma: the vm area in which the mapping is added
734 * @address: the user virtual address mapped
e8a03feb 735 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
736 */
737static void __page_set_anon_rmap(struct page *page,
e8a03feb 738 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 739{
e8a03feb 740 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 741
e8a03feb 742 BUG_ON(!anon_vma);
ea90002b
LT
743
744 /*
e8a03feb
RR
745 * If the page isn't exclusively mapped into this vma,
746 * we must use the _oldest_ possible anon_vma for the
747 * page mapping!
ea90002b 748 *
e8a03feb
RR
749 * So take the last AVC chain entry in the vma, which is
750 * the deepest ancestor, and use the anon_vma from that.
ea90002b 751 */
e8a03feb
RR
752 if (!exclusive) {
753 struct anon_vma_chain *avc;
754 avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
755 anon_vma = avc->anon_vma;
756 }
9617d95e 757
9617d95e
NP
758 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
759 page->mapping = (struct address_space *) anon_vma;
9617d95e 760 page->index = linear_page_index(vma, address);
9617d95e
NP
761}
762
c97a9e10 763/**
43d8eac4 764 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
765 * @page: the page to add the mapping to
766 * @vma: the vm area in which the mapping is added
767 * @address: the user virtual address mapped
768 */
769static void __page_check_anon_rmap(struct page *page,
770 struct vm_area_struct *vma, unsigned long address)
771{
772#ifdef CONFIG_DEBUG_VM
773 /*
774 * The page's anon-rmap details (mapping and index) are guaranteed to
775 * be set up correctly at this point.
776 *
777 * We have exclusion against page_add_anon_rmap because the caller
778 * always holds the page locked, except if called from page_dup_rmap,
779 * in which case the page is already known to be setup.
780 *
781 * We have exclusion against page_add_new_anon_rmap because those pages
782 * are initially only visible via the pagetables, and the pte is locked
783 * over the call to page_add_new_anon_rmap.
784 */
c97a9e10
NP
785 BUG_ON(page->index != linear_page_index(vma, address));
786#endif
787}
788
1da177e4
LT
789/**
790 * page_add_anon_rmap - add pte mapping to an anonymous page
791 * @page: the page to add the mapping to
792 * @vma: the vm area in which the mapping is added
793 * @address: the user virtual address mapped
794 *
5ad64688 795 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
796 * the anon_vma case: to serialize mapping,index checking after setting,
797 * and to ensure that PageAnon is not being upgraded racily to PageKsm
798 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
799 */
800void page_add_anon_rmap(struct page *page,
801 struct vm_area_struct *vma, unsigned long address)
802{
5ad64688
HD
803 int first = atomic_inc_and_test(&page->_mapcount);
804 if (first)
805 __inc_zone_page_state(page, NR_ANON_PAGES);
806 if (unlikely(PageKsm(page)))
807 return;
808
c97a9e10
NP
809 VM_BUG_ON(!PageLocked(page));
810 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 811 if (first)
e8a03feb 812 __page_set_anon_rmap(page, vma, address, 0);
69029cd5 813 else
c97a9e10 814 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
815}
816
43d8eac4 817/**
9617d95e
NP
818 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
819 * @page: the page to add the mapping to
820 * @vma: the vm area in which the mapping is added
821 * @address: the user virtual address mapped
822 *
823 * Same as page_add_anon_rmap but must only be called on *new* pages.
824 * This means the inc-and-test can be bypassed.
c97a9e10 825 * Page does not have to be locked.
9617d95e
NP
826 */
827void page_add_new_anon_rmap(struct page *page,
828 struct vm_area_struct *vma, unsigned long address)
829{
b5934c53 830 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
831 SetPageSwapBacked(page);
832 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
5ad64688 833 __inc_zone_page_state(page, NR_ANON_PAGES);
e8a03feb 834 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 835 if (page_evictable(page, vma))
cbf84b7a 836 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
837 else
838 add_page_to_unevictable_list(page);
9617d95e
NP
839}
840
1da177e4
LT
841/**
842 * page_add_file_rmap - add pte mapping to a file page
843 * @page: the page to add the mapping to
844 *
b8072f09 845 * The caller needs to hold the pte lock.
1da177e4
LT
846 */
847void page_add_file_rmap(struct page *page)
848{
d69b042f 849 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 850 __inc_zone_page_state(page, NR_FILE_MAPPED);
d8046582 851 mem_cgroup_update_file_mapped(page, 1);
d69b042f 852 }
1da177e4
LT
853}
854
855/**
856 * page_remove_rmap - take down pte mapping from a page
857 * @page: page to remove mapping from
858 *
b8072f09 859 * The caller needs to hold the pte lock.
1da177e4 860 */
edc315fd 861void page_remove_rmap(struct page *page)
1da177e4 862{
b904dcfe
KM
863 /* page still mapped by someone else? */
864 if (!atomic_add_negative(-1, &page->_mapcount))
865 return;
866
867 /*
868 * Now that the last pte has gone, s390 must transfer dirty
869 * flag from storage key to struct page. We can usually skip
870 * this if the page is anon, so about to be freed; but perhaps
871 * not if it's in swapcache - there might be another pte slot
872 * containing the swap entry, but page not yet written to swap.
873 */
874 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
875 page_clear_dirty(page);
876 set_page_dirty(page);
1da177e4 877 }
b904dcfe
KM
878 if (PageAnon(page)) {
879 mem_cgroup_uncharge_page(page);
880 __dec_zone_page_state(page, NR_ANON_PAGES);
881 } else {
882 __dec_zone_page_state(page, NR_FILE_MAPPED);
d8046582 883 mem_cgroup_update_file_mapped(page, -1);
b904dcfe 884 }
b904dcfe
KM
885 /*
886 * It would be tidy to reset the PageAnon mapping here,
887 * but that might overwrite a racing page_add_anon_rmap
888 * which increments mapcount after us but sets mapping
889 * before us: so leave the reset to free_hot_cold_page,
890 * and remember that it's only reliable while mapped.
891 * Leaving it set also helps swapoff to reinstate ptes
892 * faster for those pages still in swapcache.
893 */
1da177e4
LT
894}
895
896/*
897 * Subfunctions of try_to_unmap: try_to_unmap_one called
898 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
899 */
5ad64688
HD
900int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
901 unsigned long address, enum ttu_flags flags)
1da177e4
LT
902{
903 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
904 pte_t *pte;
905 pte_t pteval;
c0718806 906 spinlock_t *ptl;
1da177e4
LT
907 int ret = SWAP_AGAIN;
908
479db0bf 909 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 910 if (!pte)
81b4082d 911 goto out;
1da177e4
LT
912
913 /*
914 * If the page is mlock()d, we cannot swap it out.
915 * If it's recently referenced (perhaps page_referenced
916 * skipped over this mm) then we should reactivate it.
917 */
14fa31b8 918 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
919 if (vma->vm_flags & VM_LOCKED)
920 goto out_mlock;
921
af8e3354 922 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 923 goto out_unmap;
14fa31b8
AK
924 }
925 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
926 if (ptep_clear_flush_young_notify(vma, address, pte)) {
927 ret = SWAP_FAIL;
928 goto out_unmap;
929 }
930 }
1da177e4 931
1da177e4
LT
932 /* Nuke the page table entry. */
933 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 934 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
935
936 /* Move the dirty bit to the physical page now the pte is gone. */
937 if (pte_dirty(pteval))
938 set_page_dirty(page);
939
365e9c87
HD
940 /* Update high watermark before we lower rss */
941 update_hiwater_rss(mm);
942
888b9f7c
AK
943 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
944 if (PageAnon(page))
d559db08 945 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 946 else
d559db08 947 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
948 set_pte_at(mm, address, pte,
949 swp_entry_to_pte(make_hwpoison_entry(page)));
950 } else if (PageAnon(page)) {
4c21e2f2 951 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
952
953 if (PageSwapCache(page)) {
954 /*
955 * Store the swap location in the pte.
956 * See handle_pte_fault() ...
957 */
570a335b
HD
958 if (swap_duplicate(entry) < 0) {
959 set_pte_at(mm, address, pte, pteval);
960 ret = SWAP_FAIL;
961 goto out_unmap;
962 }
0697212a
CL
963 if (list_empty(&mm->mmlist)) {
964 spin_lock(&mmlist_lock);
965 if (list_empty(&mm->mmlist))
966 list_add(&mm->mmlist, &init_mm.mmlist);
967 spin_unlock(&mmlist_lock);
968 }
d559db08 969 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 970 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 971 } else if (PAGE_MIGRATION) {
0697212a
CL
972 /*
973 * Store the pfn of the page in a special migration
974 * pte. do_swap_page() will wait until the migration
975 * pte is removed and then restart fault handling.
976 */
14fa31b8 977 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 978 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
979 }
980 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
981 BUG_ON(pte_file(*pte));
14fa31b8 982 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
983 /* Establish migration entry for a file page */
984 swp_entry_t entry;
985 entry = make_migration_entry(page, pte_write(pteval));
986 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
987 } else
d559db08 988 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 989
edc315fd 990 page_remove_rmap(page);
1da177e4
LT
991 page_cache_release(page);
992
993out_unmap:
c0718806 994 pte_unmap_unlock(pte, ptl);
caed0f48
KM
995out:
996 return ret;
53f79acb 997
caed0f48
KM
998out_mlock:
999 pte_unmap_unlock(pte, ptl);
1000
1001
1002 /*
1003 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1004 * unstable result and race. Plus, We can't wait here because
1005 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1006 * if trylock failed, the page remain in evictable lru and later
1007 * vmscan could retry to move the page to unevictable lru if the
1008 * page is actually mlocked.
1009 */
1010 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1011 if (vma->vm_flags & VM_LOCKED) {
1012 mlock_vma_page(page);
1013 ret = SWAP_MLOCK;
53f79acb 1014 }
caed0f48 1015 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1016 }
1da177e4
LT
1017 return ret;
1018}
1019
1020/*
1021 * objrmap doesn't work for nonlinear VMAs because the assumption that
1022 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1023 * Consequently, given a particular page and its ->index, we cannot locate the
1024 * ptes which are mapping that page without an exhaustive linear search.
1025 *
1026 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1027 * maps the file to which the target page belongs. The ->vm_private_data field
1028 * holds the current cursor into that scan. Successive searches will circulate
1029 * around the vma's virtual address space.
1030 *
1031 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1032 * more scanning pressure is placed against them as well. Eventually pages
1033 * will become fully unmapped and are eligible for eviction.
1034 *
1035 * For very sparsely populated VMAs this is a little inefficient - chances are
1036 * there there won't be many ptes located within the scan cluster. In this case
1037 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1038 *
1039 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1040 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1041 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1042 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1043 */
1044#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1045#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1046
b291f000
NP
1047static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1048 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1049{
1050 struct mm_struct *mm = vma->vm_mm;
1051 pgd_t *pgd;
1052 pud_t *pud;
1053 pmd_t *pmd;
c0718806 1054 pte_t *pte;
1da177e4 1055 pte_t pteval;
c0718806 1056 spinlock_t *ptl;
1da177e4
LT
1057 struct page *page;
1058 unsigned long address;
1059 unsigned long end;
b291f000
NP
1060 int ret = SWAP_AGAIN;
1061 int locked_vma = 0;
1da177e4 1062
1da177e4
LT
1063 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1064 end = address + CLUSTER_SIZE;
1065 if (address < vma->vm_start)
1066 address = vma->vm_start;
1067 if (end > vma->vm_end)
1068 end = vma->vm_end;
1069
1070 pgd = pgd_offset(mm, address);
1071 if (!pgd_present(*pgd))
b291f000 1072 return ret;
1da177e4
LT
1073
1074 pud = pud_offset(pgd, address);
1075 if (!pud_present(*pud))
b291f000 1076 return ret;
1da177e4
LT
1077
1078 pmd = pmd_offset(pud, address);
1079 if (!pmd_present(*pmd))
b291f000
NP
1080 return ret;
1081
1082 /*
af8e3354 1083 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1084 * keep the sem while scanning the cluster for mlocking pages.
1085 */
af8e3354 1086 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1087 locked_vma = (vma->vm_flags & VM_LOCKED);
1088 if (!locked_vma)
1089 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1090 }
c0718806
HD
1091
1092 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1093
365e9c87
HD
1094 /* Update high watermark before we lower rss */
1095 update_hiwater_rss(mm);
1096
c0718806 1097 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1098 if (!pte_present(*pte))
1099 continue;
6aab341e
LT
1100 page = vm_normal_page(vma, address, *pte);
1101 BUG_ON(!page || PageAnon(page));
1da177e4 1102
b291f000
NP
1103 if (locked_vma) {
1104 mlock_vma_page(page); /* no-op if already mlocked */
1105 if (page == check_page)
1106 ret = SWAP_MLOCK;
1107 continue; /* don't unmap */
1108 }
1109
cddb8a5c 1110 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1111 continue;
1112
1113 /* Nuke the page table entry. */
eca35133 1114 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1115 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1116
1117 /* If nonlinear, store the file page offset in the pte. */
1118 if (page->index != linear_page_index(vma, address))
1119 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1120
1121 /* Move the dirty bit to the physical page now the pte is gone. */
1122 if (pte_dirty(pteval))
1123 set_page_dirty(page);
1124
edc315fd 1125 page_remove_rmap(page);
1da177e4 1126 page_cache_release(page);
d559db08 1127 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1128 (*mapcount)--;
1129 }
c0718806 1130 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1131 if (locked_vma)
1132 up_read(&vma->vm_mm->mmap_sem);
1133 return ret;
1da177e4
LT
1134}
1135
b291f000
NP
1136/**
1137 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1138 * rmap method
1139 * @page: the page to unmap/unlock
8051be5e 1140 * @flags: action and flags
b291f000
NP
1141 *
1142 * Find all the mappings of a page using the mapping pointer and the vma chains
1143 * contained in the anon_vma struct it points to.
1144 *
1145 * This function is only called from try_to_unmap/try_to_munlock for
1146 * anonymous pages.
1147 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1148 * where the page was found will be held for write. So, we won't recheck
1149 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1150 * 'LOCKED.
1151 */
14fa31b8 1152static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1153{
1154 struct anon_vma *anon_vma;
5beb4930 1155 struct anon_vma_chain *avc;
1da177e4 1156 int ret = SWAP_AGAIN;
b291f000 1157
1da177e4
LT
1158 anon_vma = page_lock_anon_vma(page);
1159 if (!anon_vma)
1160 return ret;
1161
5beb4930
RR
1162 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1163 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
1164 unsigned long address = vma_address(page, vma);
1165 if (address == -EFAULT)
1166 continue;
1167 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1168 if (ret != SWAP_AGAIN || !page_mapped(page))
1169 break;
1da177e4 1170 }
34bbd704
ON
1171
1172 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1173 return ret;
1174}
1175
1176/**
b291f000
NP
1177 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1178 * @page: the page to unmap/unlock
14fa31b8 1179 * @flags: action and flags
1da177e4
LT
1180 *
1181 * Find all the mappings of a page using the mapping pointer and the vma chains
1182 * contained in the address_space struct it points to.
1183 *
b291f000
NP
1184 * This function is only called from try_to_unmap/try_to_munlock for
1185 * object-based pages.
1186 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1187 * where the page was found will be held for write. So, we won't recheck
1188 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1189 * 'LOCKED.
1da177e4 1190 */
14fa31b8 1191static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1192{
1193 struct address_space *mapping = page->mapping;
1194 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1195 struct vm_area_struct *vma;
1196 struct prio_tree_iter iter;
1197 int ret = SWAP_AGAIN;
1198 unsigned long cursor;
1199 unsigned long max_nl_cursor = 0;
1200 unsigned long max_nl_size = 0;
1201 unsigned int mapcount;
1202
1203 spin_lock(&mapping->i_mmap_lock);
1204 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1205 unsigned long address = vma_address(page, vma);
1206 if (address == -EFAULT)
1207 continue;
1208 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1209 if (ret != SWAP_AGAIN || !page_mapped(page))
1210 goto out;
1da177e4
LT
1211 }
1212
1213 if (list_empty(&mapping->i_mmap_nonlinear))
1214 goto out;
1215
53f79acb
HD
1216 /*
1217 * We don't bother to try to find the munlocked page in nonlinears.
1218 * It's costly. Instead, later, page reclaim logic may call
1219 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1220 */
1221 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1222 goto out;
1223
1da177e4
LT
1224 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1225 shared.vm_set.list) {
1da177e4
LT
1226 cursor = (unsigned long) vma->vm_private_data;
1227 if (cursor > max_nl_cursor)
1228 max_nl_cursor = cursor;
1229 cursor = vma->vm_end - vma->vm_start;
1230 if (cursor > max_nl_size)
1231 max_nl_size = cursor;
1232 }
1233
b291f000 1234 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1235 ret = SWAP_FAIL;
1236 goto out;
1237 }
1238
1239 /*
1240 * We don't try to search for this page in the nonlinear vmas,
1241 * and page_referenced wouldn't have found it anyway. Instead
1242 * just walk the nonlinear vmas trying to age and unmap some.
1243 * The mapcount of the page we came in with is irrelevant,
1244 * but even so use it as a guide to how hard we should try?
1245 */
1246 mapcount = page_mapcount(page);
1247 if (!mapcount)
1248 goto out;
1249 cond_resched_lock(&mapping->i_mmap_lock);
1250
1251 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1252 if (max_nl_cursor == 0)
1253 max_nl_cursor = CLUSTER_SIZE;
1254
1255 do {
1256 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1257 shared.vm_set.list) {
1da177e4 1258 cursor = (unsigned long) vma->vm_private_data;
839b9685 1259 while ( cursor < max_nl_cursor &&
1da177e4 1260 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1261 if (try_to_unmap_cluster(cursor, &mapcount,
1262 vma, page) == SWAP_MLOCK)
1263 ret = SWAP_MLOCK;
1da177e4
LT
1264 cursor += CLUSTER_SIZE;
1265 vma->vm_private_data = (void *) cursor;
1266 if ((int)mapcount <= 0)
1267 goto out;
1268 }
1269 vma->vm_private_data = (void *) max_nl_cursor;
1270 }
1271 cond_resched_lock(&mapping->i_mmap_lock);
1272 max_nl_cursor += CLUSTER_SIZE;
1273 } while (max_nl_cursor <= max_nl_size);
1274
1275 /*
1276 * Don't loop forever (perhaps all the remaining pages are
1277 * in locked vmas). Reset cursor on all unreserved nonlinear
1278 * vmas, now forgetting on which ones it had fallen behind.
1279 */
101d2be7
HD
1280 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1281 vma->vm_private_data = NULL;
1da177e4
LT
1282out:
1283 spin_unlock(&mapping->i_mmap_lock);
1284 return ret;
1285}
1286
1287/**
1288 * try_to_unmap - try to remove all page table mappings to a page
1289 * @page: the page to get unmapped
14fa31b8 1290 * @flags: action and flags
1da177e4
LT
1291 *
1292 * Tries to remove all the page table entries which are mapping this
1293 * page, used in the pageout path. Caller must hold the page lock.
1294 * Return values are:
1295 *
1296 * SWAP_SUCCESS - we succeeded in removing all mappings
1297 * SWAP_AGAIN - we missed a mapping, try again later
1298 * SWAP_FAIL - the page is unswappable
b291f000 1299 * SWAP_MLOCK - page is mlocked.
1da177e4 1300 */
14fa31b8 1301int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1302{
1303 int ret;
1304
1da177e4
LT
1305 BUG_ON(!PageLocked(page));
1306
5ad64688
HD
1307 if (unlikely(PageKsm(page)))
1308 ret = try_to_unmap_ksm(page, flags);
1309 else if (PageAnon(page))
14fa31b8 1310 ret = try_to_unmap_anon(page, flags);
1da177e4 1311 else
14fa31b8 1312 ret = try_to_unmap_file(page, flags);
b291f000 1313 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1314 ret = SWAP_SUCCESS;
1315 return ret;
1316}
81b4082d 1317
b291f000
NP
1318/**
1319 * try_to_munlock - try to munlock a page
1320 * @page: the page to be munlocked
1321 *
1322 * Called from munlock code. Checks all of the VMAs mapping the page
1323 * to make sure nobody else has this page mlocked. The page will be
1324 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1325 *
1326 * Return values are:
1327 *
53f79acb 1328 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1329 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1330 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1331 * SWAP_MLOCK - page is now mlocked.
1332 */
1333int try_to_munlock(struct page *page)
1334{
1335 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1336
5ad64688
HD
1337 if (unlikely(PageKsm(page)))
1338 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1339 else if (PageAnon(page))
14fa31b8 1340 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1341 else
14fa31b8 1342 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1343}
e9995ef9
HD
1344
1345#ifdef CONFIG_MIGRATION
1346/*
1347 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1348 * Called by migrate.c to remove migration ptes, but might be used more later.
1349 */
1350static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1351 struct vm_area_struct *, unsigned long, void *), void *arg)
1352{
1353 struct anon_vma *anon_vma;
5beb4930 1354 struct anon_vma_chain *avc;
e9995ef9
HD
1355 int ret = SWAP_AGAIN;
1356
1357 /*
1358 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1359 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1360 * are holding mmap_sem. Users without mmap_sem are required to
1361 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1362 */
1363 anon_vma = page_anon_vma(page);
1364 if (!anon_vma)
1365 return ret;
1366 spin_lock(&anon_vma->lock);
5beb4930
RR
1367 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1368 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1369 unsigned long address = vma_address(page, vma);
1370 if (address == -EFAULT)
1371 continue;
1372 ret = rmap_one(page, vma, address, arg);
1373 if (ret != SWAP_AGAIN)
1374 break;
1375 }
1376 spin_unlock(&anon_vma->lock);
1377 return ret;
1378}
1379
1380static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1381 struct vm_area_struct *, unsigned long, void *), void *arg)
1382{
1383 struct address_space *mapping = page->mapping;
1384 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1385 struct vm_area_struct *vma;
1386 struct prio_tree_iter iter;
1387 int ret = SWAP_AGAIN;
1388
1389 if (!mapping)
1390 return ret;
1391 spin_lock(&mapping->i_mmap_lock);
1392 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1393 unsigned long address = vma_address(page, vma);
1394 if (address == -EFAULT)
1395 continue;
1396 ret = rmap_one(page, vma, address, arg);
1397 if (ret != SWAP_AGAIN)
1398 break;
1399 }
1400 /*
1401 * No nonlinear handling: being always shared, nonlinear vmas
1402 * never contain migration ptes. Decide what to do about this
1403 * limitation to linear when we need rmap_walk() on nonlinear.
1404 */
1405 spin_unlock(&mapping->i_mmap_lock);
1406 return ret;
1407}
1408
1409int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1410 struct vm_area_struct *, unsigned long, void *), void *arg)
1411{
1412 VM_BUG_ON(!PageLocked(page));
1413
1414 if (unlikely(PageKsm(page)))
1415 return rmap_walk_ksm(page, rmap_one, arg);
1416 else if (PageAnon(page))
1417 return rmap_walk_anon(page, rmap_one, arg);
1418 else
1419 return rmap_walk_file(page, rmap_one, arg);
1420}
1421#endif /* CONFIG_MIGRATION */