]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/rmap.c
mm: remove temporary variable on generic_file_direct_write()
[net-next-2.6.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
6a46079c
AK
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
1da177e4
LT
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
5ad64688 52#include <linux/ksm.h>
1da177e4
LT
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
a48d07af 55#include <linux/module.h>
8a9f3ccd 56#include <linux/memcontrol.h>
cddb8a5c 57#include <linux/mmu_notifier.h>
64cdd548 58#include <linux/migrate.h>
0fe6e20b 59#include <linux/hugetlb.h>
1da177e4
LT
60
61#include <asm/tlbflush.h>
62
b291f000
NP
63#include "internal.h"
64
fdd2e5f8 65static struct kmem_cache *anon_vma_cachep;
5beb4930 66static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
67
68static inline struct anon_vma *anon_vma_alloc(void)
69{
70 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
71}
72
db114b83 73void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8
AB
74{
75 kmem_cache_free(anon_vma_cachep, anon_vma);
76}
1da177e4 77
5beb4930
RR
78static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79{
80 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
81}
82
83void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84{
85 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
86}
87
d9d332e0
LT
88/**
89 * anon_vma_prepare - attach an anon_vma to a memory region
90 * @vma: the memory region in question
91 *
92 * This makes sure the memory mapping described by 'vma' has
93 * an 'anon_vma' attached to it, so that we can associate the
94 * anonymous pages mapped into it with that anon_vma.
95 *
96 * The common case will be that we already have one, but if
97 * if not we either need to find an adjacent mapping that we
98 * can re-use the anon_vma from (very common when the only
99 * reason for splitting a vma has been mprotect()), or we
100 * allocate a new one.
101 *
102 * Anon-vma allocations are very subtle, because we may have
103 * optimistically looked up an anon_vma in page_lock_anon_vma()
104 * and that may actually touch the spinlock even in the newly
105 * allocated vma (it depends on RCU to make sure that the
106 * anon_vma isn't actually destroyed).
107 *
108 * As a result, we need to do proper anon_vma locking even
109 * for the new allocation. At the same time, we do not want
110 * to do any locking for the common case of already having
111 * an anon_vma.
112 *
113 * This must be called with the mmap_sem held for reading.
114 */
1da177e4
LT
115int anon_vma_prepare(struct vm_area_struct *vma)
116{
117 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 118 struct anon_vma_chain *avc;
1da177e4
LT
119
120 might_sleep();
121 if (unlikely(!anon_vma)) {
122 struct mm_struct *mm = vma->vm_mm;
d9d332e0 123 struct anon_vma *allocated;
1da177e4 124
5beb4930
RR
125 avc = anon_vma_chain_alloc();
126 if (!avc)
127 goto out_enomem;
128
1da177e4 129 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
130 allocated = NULL;
131 if (!anon_vma) {
1da177e4
LT
132 anon_vma = anon_vma_alloc();
133 if (unlikely(!anon_vma))
5beb4930 134 goto out_enomem_free_avc;
1da177e4 135 allocated = anon_vma;
5c341ee1
RR
136 /*
137 * This VMA had no anon_vma yet. This anon_vma is
138 * the root of any anon_vma tree that might form.
139 */
140 anon_vma->root = anon_vma;
1da177e4
LT
141 }
142
cba48b98 143 anon_vma_lock(anon_vma);
1da177e4
LT
144 /* page_table_lock to protect against threads */
145 spin_lock(&mm->page_table_lock);
146 if (likely(!vma->anon_vma)) {
147 vma->anon_vma = anon_vma;
5beb4930
RR
148 avc->anon_vma = anon_vma;
149 avc->vma = vma;
150 list_add(&avc->same_vma, &vma->anon_vma_chain);
26ba0cb6 151 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
1da177e4 152 allocated = NULL;
31f2b0eb 153 avc = NULL;
1da177e4
LT
154 }
155 spin_unlock(&mm->page_table_lock);
cba48b98 156 anon_vma_unlock(anon_vma);
31f2b0eb
ON
157
158 if (unlikely(allocated))
1da177e4 159 anon_vma_free(allocated);
31f2b0eb 160 if (unlikely(avc))
5beb4930 161 anon_vma_chain_free(avc);
1da177e4
LT
162 }
163 return 0;
5beb4930
RR
164
165 out_enomem_free_avc:
166 anon_vma_chain_free(avc);
167 out_enomem:
168 return -ENOMEM;
1da177e4
LT
169}
170
5beb4930
RR
171static void anon_vma_chain_link(struct vm_area_struct *vma,
172 struct anon_vma_chain *avc,
173 struct anon_vma *anon_vma)
1da177e4 174{
5beb4930
RR
175 avc->vma = vma;
176 avc->anon_vma = anon_vma;
177 list_add(&avc->same_vma, &vma->anon_vma_chain);
178
cba48b98 179 anon_vma_lock(anon_vma);
5beb4930 180 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
cba48b98 181 anon_vma_unlock(anon_vma);
1da177e4
LT
182}
183
5beb4930
RR
184/*
185 * Attach the anon_vmas from src to dst.
186 * Returns 0 on success, -ENOMEM on failure.
187 */
188int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 189{
5beb4930
RR
190 struct anon_vma_chain *avc, *pavc;
191
646d87b4 192 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
5beb4930
RR
193 avc = anon_vma_chain_alloc();
194 if (!avc)
195 goto enomem_failure;
196 anon_vma_chain_link(dst, avc, pavc->anon_vma);
197 }
198 return 0;
1da177e4 199
5beb4930
RR
200 enomem_failure:
201 unlink_anon_vmas(dst);
202 return -ENOMEM;
1da177e4
LT
203}
204
5beb4930
RR
205/*
206 * Attach vma to its own anon_vma, as well as to the anon_vmas that
207 * the corresponding VMA in the parent process is attached to.
208 * Returns 0 on success, non-zero on failure.
209 */
210int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 211{
5beb4930
RR
212 struct anon_vma_chain *avc;
213 struct anon_vma *anon_vma;
1da177e4 214
5beb4930
RR
215 /* Don't bother if the parent process has no anon_vma here. */
216 if (!pvma->anon_vma)
217 return 0;
218
219 /*
220 * First, attach the new VMA to the parent VMA's anon_vmas,
221 * so rmap can find non-COWed pages in child processes.
222 */
223 if (anon_vma_clone(vma, pvma))
224 return -ENOMEM;
225
226 /* Then add our own anon_vma. */
227 anon_vma = anon_vma_alloc();
228 if (!anon_vma)
229 goto out_error;
230 avc = anon_vma_chain_alloc();
231 if (!avc)
232 goto out_error_free_anon_vma;
5c341ee1
RR
233
234 /*
235 * The root anon_vma's spinlock is the lock actually used when we
236 * lock any of the anon_vmas in this anon_vma tree.
237 */
238 anon_vma->root = pvma->anon_vma->root;
76545066
RR
239 /*
240 * With KSM refcounts, an anon_vma can stay around longer than the
241 * process it belongs to. The root anon_vma needs to be pinned
242 * until this anon_vma is freed, because the lock lives in the root.
243 */
244 get_anon_vma(anon_vma->root);
5beb4930
RR
245 /* Mark this anon_vma as the one where our new (COWed) pages go. */
246 vma->anon_vma = anon_vma;
5c341ee1 247 anon_vma_chain_link(vma, avc, anon_vma);
5beb4930
RR
248
249 return 0;
250
251 out_error_free_anon_vma:
252 anon_vma_free(anon_vma);
253 out_error:
4946d54c 254 unlink_anon_vmas(vma);
5beb4930 255 return -ENOMEM;
1da177e4
LT
256}
257
5beb4930 258static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
1da177e4 259{
5beb4930 260 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
1da177e4
LT
261 int empty;
262
5beb4930 263 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
1da177e4
LT
264 if (!anon_vma)
265 return;
266
cba48b98 267 anon_vma_lock(anon_vma);
5beb4930 268 list_del(&anon_vma_chain->same_anon_vma);
1da177e4
LT
269
270 /* We must garbage collect the anon_vma if it's empty */
7f60c214 271 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
cba48b98 272 anon_vma_unlock(anon_vma);
1da177e4 273
76545066
RR
274 if (empty) {
275 /* We no longer need the root anon_vma */
276 if (anon_vma->root != anon_vma)
277 drop_anon_vma(anon_vma->root);
1da177e4 278 anon_vma_free(anon_vma);
76545066 279 }
1da177e4
LT
280}
281
5beb4930
RR
282void unlink_anon_vmas(struct vm_area_struct *vma)
283{
284 struct anon_vma_chain *avc, *next;
285
5c341ee1
RR
286 /*
287 * Unlink each anon_vma chained to the VMA. This list is ordered
288 * from newest to oldest, ensuring the root anon_vma gets freed last.
289 */
5beb4930
RR
290 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
291 anon_vma_unlink(avc);
292 list_del(&avc->same_vma);
293 anon_vma_chain_free(avc);
294 }
295}
296
51cc5068 297static void anon_vma_ctor(void *data)
1da177e4 298{
a35afb83 299 struct anon_vma *anon_vma = data;
1da177e4 300
a35afb83 301 spin_lock_init(&anon_vma->lock);
7f60c214 302 anonvma_external_refcount_init(anon_vma);
a35afb83 303 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
304}
305
306void __init anon_vma_init(void)
307{
308 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 309 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 310 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
311}
312
313/*
314 * Getting a lock on a stable anon_vma from a page off the LRU is
315 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
316 */
10be22df 317struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 318{
f1819427 319 struct anon_vma *anon_vma, *root_anon_vma;
1da177e4
LT
320 unsigned long anon_mapping;
321
322 rcu_read_lock();
80e14822 323 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 324 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
325 goto out;
326 if (!page_mapped(page))
327 goto out;
328
329 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
f1819427
HD
330 root_anon_vma = ACCESS_ONCE(anon_vma->root);
331 spin_lock(&root_anon_vma->lock);
332
333 /*
334 * If this page is still mapped, then its anon_vma cannot have been
335 * freed. But if it has been unmapped, we have no security against
336 * the anon_vma structure being freed and reused (for another anon_vma:
337 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
338 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
339 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
340 */
341 if (page_mapped(page))
342 return anon_vma;
343
344 spin_unlock(&root_anon_vma->lock);
1da177e4
LT
345out:
346 rcu_read_unlock();
34bbd704
ON
347 return NULL;
348}
349
10be22df 350void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704 351{
cba48b98 352 anon_vma_unlock(anon_vma);
34bbd704 353 rcu_read_unlock();
1da177e4
LT
354}
355
356/*
3ad33b24
LS
357 * At what user virtual address is page expected in @vma?
358 * Returns virtual address or -EFAULT if page's index/offset is not
359 * within the range mapped the @vma.
1da177e4
LT
360 */
361static inline unsigned long
362vma_address(struct page *page, struct vm_area_struct *vma)
363{
364 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
365 unsigned long address;
366
0fe6e20b
NH
367 if (unlikely(is_vm_hugetlb_page(vma)))
368 pgoff = page->index << huge_page_order(page_hstate(page));
1da177e4
LT
369 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
370 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 371 /* page should be within @vma mapping range */
1da177e4
LT
372 return -EFAULT;
373 }
374 return address;
375}
376
377/*
bf89c8c8 378 * At what user virtual address is page expected in vma?
ab941e0f 379 * Caller should check the page is actually part of the vma.
1da177e4
LT
380 */
381unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
382{
21d0d443 383 if (PageAnon(page)) {
4829b906
HD
384 struct anon_vma *page__anon_vma = page_anon_vma(page);
385 /*
386 * Note: swapoff's unuse_vma() is more efficient with this
387 * check, and needs it to match anon_vma when KSM is active.
388 */
389 if (!vma->anon_vma || !page__anon_vma ||
390 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
391 return -EFAULT;
392 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
393 if (!vma->vm_file ||
394 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
395 return -EFAULT;
396 } else
397 return -EFAULT;
398 return vma_address(page, vma);
399}
400
81b4082d
ND
401/*
402 * Check that @page is mapped at @address into @mm.
403 *
479db0bf
NP
404 * If @sync is false, page_check_address may perform a racy check to avoid
405 * the page table lock when the pte is not present (helpful when reclaiming
406 * highly shared pages).
407 *
b8072f09 408 * On success returns with pte mapped and locked.
81b4082d 409 */
ceffc078 410pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 411 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
412{
413 pgd_t *pgd;
414 pud_t *pud;
415 pmd_t *pmd;
416 pte_t *pte;
c0718806 417 spinlock_t *ptl;
81b4082d 418
0fe6e20b
NH
419 if (unlikely(PageHuge(page))) {
420 pte = huge_pte_offset(mm, address);
421 ptl = &mm->page_table_lock;
422 goto check;
423 }
424
81b4082d 425 pgd = pgd_offset(mm, address);
c0718806
HD
426 if (!pgd_present(*pgd))
427 return NULL;
428
429 pud = pud_offset(pgd, address);
430 if (!pud_present(*pud))
431 return NULL;
432
433 pmd = pmd_offset(pud, address);
434 if (!pmd_present(*pmd))
435 return NULL;
436
437 pte = pte_offset_map(pmd, address);
438 /* Make a quick check before getting the lock */
479db0bf 439 if (!sync && !pte_present(*pte)) {
c0718806
HD
440 pte_unmap(pte);
441 return NULL;
442 }
443
4c21e2f2 444 ptl = pte_lockptr(mm, pmd);
0fe6e20b 445check:
c0718806
HD
446 spin_lock(ptl);
447 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
448 *ptlp = ptl;
449 return pte;
81b4082d 450 }
c0718806
HD
451 pte_unmap_unlock(pte, ptl);
452 return NULL;
81b4082d
ND
453}
454
b291f000
NP
455/**
456 * page_mapped_in_vma - check whether a page is really mapped in a VMA
457 * @page: the page to test
458 * @vma: the VMA to test
459 *
460 * Returns 1 if the page is mapped into the page tables of the VMA, 0
461 * if the page is not mapped into the page tables of this VMA. Only
462 * valid for normal file or anonymous VMAs.
463 */
6a46079c 464int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
465{
466 unsigned long address;
467 pte_t *pte;
468 spinlock_t *ptl;
469
470 address = vma_address(page, vma);
471 if (address == -EFAULT) /* out of vma range */
472 return 0;
473 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
474 if (!pte) /* the page is not in this mm */
475 return 0;
476 pte_unmap_unlock(pte, ptl);
477
478 return 1;
479}
480
1da177e4
LT
481/*
482 * Subfunctions of page_referenced: page_referenced_one called
483 * repeatedly from either page_referenced_anon or page_referenced_file.
484 */
5ad64688
HD
485int page_referenced_one(struct page *page, struct vm_area_struct *vma,
486 unsigned long address, unsigned int *mapcount,
487 unsigned long *vm_flags)
1da177e4
LT
488{
489 struct mm_struct *mm = vma->vm_mm;
1da177e4 490 pte_t *pte;
c0718806 491 spinlock_t *ptl;
1da177e4
LT
492 int referenced = 0;
493
479db0bf 494 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
495 if (!pte)
496 goto out;
1da177e4 497
b291f000
NP
498 /*
499 * Don't want to elevate referenced for mlocked page that gets this far,
500 * in order that it progresses to try_to_unmap and is moved to the
501 * unevictable list.
502 */
5a9bbdcd 503 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 504 *mapcount = 1; /* break early from loop */
03ef83af 505 *vm_flags |= VM_LOCKED;
b291f000
NP
506 goto out_unmap;
507 }
508
4917e5d0
JW
509 if (ptep_clear_flush_young_notify(vma, address, pte)) {
510 /*
511 * Don't treat a reference through a sequentially read
512 * mapping as such. If the page has been used in
513 * another mapping, we will catch it; if this other
514 * mapping is already gone, the unmap path will have
515 * set PG_referenced or activated the page.
516 */
517 if (likely(!VM_SequentialReadHint(vma)))
518 referenced++;
519 }
1da177e4 520
c0718806
HD
521 /* Pretend the page is referenced if the task has the
522 swap token and is in the middle of a page fault. */
f7b7fd8f 523 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
524 rwsem_is_locked(&mm->mmap_sem))
525 referenced++;
526
b291f000 527out_unmap:
c0718806
HD
528 (*mapcount)--;
529 pte_unmap_unlock(pte, ptl);
273f047e 530
6fe6b7e3
WF
531 if (referenced)
532 *vm_flags |= vma->vm_flags;
273f047e 533out:
1da177e4
LT
534 return referenced;
535}
536
bed7161a 537static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
538 struct mem_cgroup *mem_cont,
539 unsigned long *vm_flags)
1da177e4
LT
540{
541 unsigned int mapcount;
542 struct anon_vma *anon_vma;
5beb4930 543 struct anon_vma_chain *avc;
1da177e4
LT
544 int referenced = 0;
545
546 anon_vma = page_lock_anon_vma(page);
547 if (!anon_vma)
548 return referenced;
549
550 mapcount = page_mapcount(page);
5beb4930
RR
551 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
552 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
553 unsigned long address = vma_address(page, vma);
554 if (address == -EFAULT)
555 continue;
bed7161a
BS
556 /*
557 * If we are reclaiming on behalf of a cgroup, skip
558 * counting on behalf of references from different
559 * cgroups
560 */
bd845e38 561 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 562 continue;
1cb1729b 563 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 564 &mapcount, vm_flags);
1da177e4
LT
565 if (!mapcount)
566 break;
567 }
34bbd704
ON
568
569 page_unlock_anon_vma(anon_vma);
1da177e4
LT
570 return referenced;
571}
572
573/**
574 * page_referenced_file - referenced check for object-based rmap
575 * @page: the page we're checking references on.
43d8eac4 576 * @mem_cont: target memory controller
6fe6b7e3 577 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
578 *
579 * For an object-based mapped page, find all the places it is mapped and
580 * check/clear the referenced flag. This is done by following the page->mapping
581 * pointer, then walking the chain of vmas it holds. It returns the number
582 * of references it found.
583 *
584 * This function is only called from page_referenced for object-based pages.
585 */
bed7161a 586static int page_referenced_file(struct page *page,
6fe6b7e3
WF
587 struct mem_cgroup *mem_cont,
588 unsigned long *vm_flags)
1da177e4
LT
589{
590 unsigned int mapcount;
591 struct address_space *mapping = page->mapping;
592 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
593 struct vm_area_struct *vma;
594 struct prio_tree_iter iter;
595 int referenced = 0;
596
597 /*
598 * The caller's checks on page->mapping and !PageAnon have made
599 * sure that this is a file page: the check for page->mapping
600 * excludes the case just before it gets set on an anon page.
601 */
602 BUG_ON(PageAnon(page));
603
604 /*
605 * The page lock not only makes sure that page->mapping cannot
606 * suddenly be NULLified by truncation, it makes sure that the
607 * structure at mapping cannot be freed and reused yet,
608 * so we can safely take mapping->i_mmap_lock.
609 */
610 BUG_ON(!PageLocked(page));
611
612 spin_lock(&mapping->i_mmap_lock);
613
614 /*
615 * i_mmap_lock does not stabilize mapcount at all, but mapcount
616 * is more likely to be accurate if we note it after spinning.
617 */
618 mapcount = page_mapcount(page);
619
620 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
621 unsigned long address = vma_address(page, vma);
622 if (address == -EFAULT)
623 continue;
bed7161a
BS
624 /*
625 * If we are reclaiming on behalf of a cgroup, skip
626 * counting on behalf of references from different
627 * cgroups
628 */
bd845e38 629 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 630 continue;
1cb1729b 631 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 632 &mapcount, vm_flags);
1da177e4
LT
633 if (!mapcount)
634 break;
635 }
636
637 spin_unlock(&mapping->i_mmap_lock);
638 return referenced;
639}
640
641/**
642 * page_referenced - test if the page was referenced
643 * @page: the page to test
644 * @is_locked: caller holds lock on the page
43d8eac4 645 * @mem_cont: target memory controller
6fe6b7e3 646 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
647 *
648 * Quick test_and_clear_referenced for all mappings to a page,
649 * returns the number of ptes which referenced the page.
650 */
6fe6b7e3
WF
651int page_referenced(struct page *page,
652 int is_locked,
653 struct mem_cgroup *mem_cont,
654 unsigned long *vm_flags)
1da177e4
LT
655{
656 int referenced = 0;
5ad64688 657 int we_locked = 0;
1da177e4 658
6fe6b7e3 659 *vm_flags = 0;
3ca7b3c5 660 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
661 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
662 we_locked = trylock_page(page);
663 if (!we_locked) {
664 referenced++;
665 goto out;
666 }
667 }
668 if (unlikely(PageKsm(page)))
669 referenced += page_referenced_ksm(page, mem_cont,
670 vm_flags);
671 else if (PageAnon(page))
6fe6b7e3
WF
672 referenced += page_referenced_anon(page, mem_cont,
673 vm_flags);
5ad64688 674 else if (page->mapping)
6fe6b7e3
WF
675 referenced += page_referenced_file(page, mem_cont,
676 vm_flags);
5ad64688 677 if (we_locked)
1da177e4 678 unlock_page(page);
1da177e4 679 }
5ad64688 680out:
5b7baf05
CB
681 if (page_test_and_clear_young(page))
682 referenced++;
683
1da177e4
LT
684 return referenced;
685}
686
1cb1729b
HD
687static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
688 unsigned long address)
d08b3851
PZ
689{
690 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 691 pte_t *pte;
d08b3851
PZ
692 spinlock_t *ptl;
693 int ret = 0;
694
479db0bf 695 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
696 if (!pte)
697 goto out;
698
c2fda5fe
PZ
699 if (pte_dirty(*pte) || pte_write(*pte)) {
700 pte_t entry;
d08b3851 701
c2fda5fe 702 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 703 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
704 entry = pte_wrprotect(entry);
705 entry = pte_mkclean(entry);
d6e88e67 706 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
707 ret = 1;
708 }
d08b3851 709
d08b3851
PZ
710 pte_unmap_unlock(pte, ptl);
711out:
712 return ret;
713}
714
715static int page_mkclean_file(struct address_space *mapping, struct page *page)
716{
717 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
718 struct vm_area_struct *vma;
719 struct prio_tree_iter iter;
720 int ret = 0;
721
722 BUG_ON(PageAnon(page));
723
724 spin_lock(&mapping->i_mmap_lock);
725 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
726 if (vma->vm_flags & VM_SHARED) {
727 unsigned long address = vma_address(page, vma);
728 if (address == -EFAULT)
729 continue;
730 ret += page_mkclean_one(page, vma, address);
731 }
d08b3851
PZ
732 }
733 spin_unlock(&mapping->i_mmap_lock);
734 return ret;
735}
736
737int page_mkclean(struct page *page)
738{
739 int ret = 0;
740
741 BUG_ON(!PageLocked(page));
742
743 if (page_mapped(page)) {
744 struct address_space *mapping = page_mapping(page);
ce7e9fae 745 if (mapping) {
d08b3851 746 ret = page_mkclean_file(mapping, page);
ce7e9fae 747 if (page_test_dirty(page)) {
e2b8d7af 748 page_clear_dirty(page, 1);
ce7e9fae
CB
749 ret = 1;
750 }
6c210482 751 }
d08b3851
PZ
752 }
753
754 return ret;
755}
60b59bea 756EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 757
c44b6743
RR
758/**
759 * page_move_anon_rmap - move a page to our anon_vma
760 * @page: the page to move to our anon_vma
761 * @vma: the vma the page belongs to
762 * @address: the user virtual address mapped
763 *
764 * When a page belongs exclusively to one process after a COW event,
765 * that page can be moved into the anon_vma that belongs to just that
766 * process, so the rmap code will not search the parent or sibling
767 * processes.
768 */
769void page_move_anon_rmap(struct page *page,
770 struct vm_area_struct *vma, unsigned long address)
771{
772 struct anon_vma *anon_vma = vma->anon_vma;
773
774 VM_BUG_ON(!PageLocked(page));
775 VM_BUG_ON(!anon_vma);
776 VM_BUG_ON(page->index != linear_page_index(vma, address));
777
778 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
779 page->mapping = (struct address_space *) anon_vma;
780}
781
9617d95e 782/**
4e1c1975
AK
783 * __page_set_anon_rmap - set up new anonymous rmap
784 * @page: Page to add to rmap
785 * @vma: VM area to add page to.
786 * @address: User virtual address of the mapping
e8a03feb 787 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
788 */
789static void __page_set_anon_rmap(struct page *page,
e8a03feb 790 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 791{
e8a03feb 792 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 793
e8a03feb 794 BUG_ON(!anon_vma);
ea90002b 795
4e1c1975
AK
796 if (PageAnon(page))
797 return;
798
ea90002b 799 /*
e8a03feb
RR
800 * If the page isn't exclusively mapped into this vma,
801 * we must use the _oldest_ possible anon_vma for the
802 * page mapping!
ea90002b 803 */
4e1c1975 804 if (!exclusive)
288468c3 805 anon_vma = anon_vma->root;
9617d95e 806
9617d95e
NP
807 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
808 page->mapping = (struct address_space *) anon_vma;
9617d95e 809 page->index = linear_page_index(vma, address);
9617d95e
NP
810}
811
c97a9e10 812/**
43d8eac4 813 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
814 * @page: the page to add the mapping to
815 * @vma: the vm area in which the mapping is added
816 * @address: the user virtual address mapped
817 */
818static void __page_check_anon_rmap(struct page *page,
819 struct vm_area_struct *vma, unsigned long address)
820{
821#ifdef CONFIG_DEBUG_VM
822 /*
823 * The page's anon-rmap details (mapping and index) are guaranteed to
824 * be set up correctly at this point.
825 *
826 * We have exclusion against page_add_anon_rmap because the caller
827 * always holds the page locked, except if called from page_dup_rmap,
828 * in which case the page is already known to be setup.
829 *
830 * We have exclusion against page_add_new_anon_rmap because those pages
831 * are initially only visible via the pagetables, and the pte is locked
832 * over the call to page_add_new_anon_rmap.
833 */
44ab57a0 834 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
835 BUG_ON(page->index != linear_page_index(vma, address));
836#endif
837}
838
1da177e4
LT
839/**
840 * page_add_anon_rmap - add pte mapping to an anonymous page
841 * @page: the page to add the mapping to
842 * @vma: the vm area in which the mapping is added
843 * @address: the user virtual address mapped
844 *
5ad64688 845 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
846 * the anon_vma case: to serialize mapping,index checking after setting,
847 * and to ensure that PageAnon is not being upgraded racily to PageKsm
848 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
849 */
850void page_add_anon_rmap(struct page *page,
851 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
852{
853 do_page_add_anon_rmap(page, vma, address, 0);
854}
855
856/*
857 * Special version of the above for do_swap_page, which often runs
858 * into pages that are exclusively owned by the current process.
859 * Everybody else should continue to use page_add_anon_rmap above.
860 */
861void do_page_add_anon_rmap(struct page *page,
862 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 863{
5ad64688
HD
864 int first = atomic_inc_and_test(&page->_mapcount);
865 if (first)
866 __inc_zone_page_state(page, NR_ANON_PAGES);
867 if (unlikely(PageKsm(page)))
868 return;
869
c97a9e10
NP
870 VM_BUG_ON(!PageLocked(page));
871 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 872 if (first)
ad8c2ee8 873 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 874 else
c97a9e10 875 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
876}
877
43d8eac4 878/**
9617d95e
NP
879 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
880 * @page: the page to add the mapping to
881 * @vma: the vm area in which the mapping is added
882 * @address: the user virtual address mapped
883 *
884 * Same as page_add_anon_rmap but must only be called on *new* pages.
885 * This means the inc-and-test can be bypassed.
c97a9e10 886 * Page does not have to be locked.
9617d95e
NP
887 */
888void page_add_new_anon_rmap(struct page *page,
889 struct vm_area_struct *vma, unsigned long address)
890{
b5934c53 891 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
892 SetPageSwapBacked(page);
893 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
5ad64688 894 __inc_zone_page_state(page, NR_ANON_PAGES);
e8a03feb 895 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 896 if (page_evictable(page, vma))
cbf84b7a 897 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
898 else
899 add_page_to_unevictable_list(page);
9617d95e
NP
900}
901
1da177e4
LT
902/**
903 * page_add_file_rmap - add pte mapping to a file page
904 * @page: the page to add the mapping to
905 *
b8072f09 906 * The caller needs to hold the pte lock.
1da177e4
LT
907 */
908void page_add_file_rmap(struct page *page)
909{
d69b042f 910 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 911 __inc_zone_page_state(page, NR_FILE_MAPPED);
d8046582 912 mem_cgroup_update_file_mapped(page, 1);
d69b042f 913 }
1da177e4
LT
914}
915
916/**
917 * page_remove_rmap - take down pte mapping from a page
918 * @page: page to remove mapping from
919 *
b8072f09 920 * The caller needs to hold the pte lock.
1da177e4 921 */
edc315fd 922void page_remove_rmap(struct page *page)
1da177e4 923{
b904dcfe
KM
924 /* page still mapped by someone else? */
925 if (!atomic_add_negative(-1, &page->_mapcount))
926 return;
927
928 /*
929 * Now that the last pte has gone, s390 must transfer dirty
930 * flag from storage key to struct page. We can usually skip
931 * this if the page is anon, so about to be freed; but perhaps
932 * not if it's in swapcache - there might be another pte slot
933 * containing the swap entry, but page not yet written to swap.
934 */
935 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
e2b8d7af 936 page_clear_dirty(page, 1);
b904dcfe 937 set_page_dirty(page);
1da177e4 938 }
0fe6e20b
NH
939 /*
940 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
941 * and not charged by memcg for now.
942 */
943 if (unlikely(PageHuge(page)))
944 return;
b904dcfe
KM
945 if (PageAnon(page)) {
946 mem_cgroup_uncharge_page(page);
947 __dec_zone_page_state(page, NR_ANON_PAGES);
948 } else {
949 __dec_zone_page_state(page, NR_FILE_MAPPED);
d8046582 950 mem_cgroup_update_file_mapped(page, -1);
b904dcfe 951 }
b904dcfe
KM
952 /*
953 * It would be tidy to reset the PageAnon mapping here,
954 * but that might overwrite a racing page_add_anon_rmap
955 * which increments mapcount after us but sets mapping
956 * before us: so leave the reset to free_hot_cold_page,
957 * and remember that it's only reliable while mapped.
958 * Leaving it set also helps swapoff to reinstate ptes
959 * faster for those pages still in swapcache.
960 */
1da177e4
LT
961}
962
963/*
964 * Subfunctions of try_to_unmap: try_to_unmap_one called
965 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
966 */
5ad64688
HD
967int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
968 unsigned long address, enum ttu_flags flags)
1da177e4
LT
969{
970 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
971 pte_t *pte;
972 pte_t pteval;
c0718806 973 spinlock_t *ptl;
1da177e4
LT
974 int ret = SWAP_AGAIN;
975
479db0bf 976 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 977 if (!pte)
81b4082d 978 goto out;
1da177e4
LT
979
980 /*
981 * If the page is mlock()d, we cannot swap it out.
982 * If it's recently referenced (perhaps page_referenced
983 * skipped over this mm) then we should reactivate it.
984 */
14fa31b8 985 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
986 if (vma->vm_flags & VM_LOCKED)
987 goto out_mlock;
988
af8e3354 989 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 990 goto out_unmap;
14fa31b8
AK
991 }
992 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
993 if (ptep_clear_flush_young_notify(vma, address, pte)) {
994 ret = SWAP_FAIL;
995 goto out_unmap;
996 }
997 }
1da177e4 998
1da177e4
LT
999 /* Nuke the page table entry. */
1000 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 1001 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1002
1003 /* Move the dirty bit to the physical page now the pte is gone. */
1004 if (pte_dirty(pteval))
1005 set_page_dirty(page);
1006
365e9c87
HD
1007 /* Update high watermark before we lower rss */
1008 update_hiwater_rss(mm);
1009
888b9f7c
AK
1010 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1011 if (PageAnon(page))
d559db08 1012 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 1013 else
d559db08 1014 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
1015 set_pte_at(mm, address, pte,
1016 swp_entry_to_pte(make_hwpoison_entry(page)));
1017 } else if (PageAnon(page)) {
4c21e2f2 1018 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1019
1020 if (PageSwapCache(page)) {
1021 /*
1022 * Store the swap location in the pte.
1023 * See handle_pte_fault() ...
1024 */
570a335b
HD
1025 if (swap_duplicate(entry) < 0) {
1026 set_pte_at(mm, address, pte, pteval);
1027 ret = SWAP_FAIL;
1028 goto out_unmap;
1029 }
0697212a
CL
1030 if (list_empty(&mm->mmlist)) {
1031 spin_lock(&mmlist_lock);
1032 if (list_empty(&mm->mmlist))
1033 list_add(&mm->mmlist, &init_mm.mmlist);
1034 spin_unlock(&mmlist_lock);
1035 }
d559db08 1036 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1037 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 1038 } else if (PAGE_MIGRATION) {
0697212a
CL
1039 /*
1040 * Store the pfn of the page in a special migration
1041 * pte. do_swap_page() will wait until the migration
1042 * pte is removed and then restart fault handling.
1043 */
14fa31b8 1044 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1045 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1046 }
1047 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1048 BUG_ON(pte_file(*pte));
14fa31b8 1049 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1050 /* Establish migration entry for a file page */
1051 swp_entry_t entry;
1052 entry = make_migration_entry(page, pte_write(pteval));
1053 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1054 } else
d559db08 1055 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1056
edc315fd 1057 page_remove_rmap(page);
1da177e4
LT
1058 page_cache_release(page);
1059
1060out_unmap:
c0718806 1061 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1062out:
1063 return ret;
53f79acb 1064
caed0f48
KM
1065out_mlock:
1066 pte_unmap_unlock(pte, ptl);
1067
1068
1069 /*
1070 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1071 * unstable result and race. Plus, We can't wait here because
1072 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1073 * if trylock failed, the page remain in evictable lru and later
1074 * vmscan could retry to move the page to unevictable lru if the
1075 * page is actually mlocked.
1076 */
1077 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1078 if (vma->vm_flags & VM_LOCKED) {
1079 mlock_vma_page(page);
1080 ret = SWAP_MLOCK;
53f79acb 1081 }
caed0f48 1082 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1083 }
1da177e4
LT
1084 return ret;
1085}
1086
1087/*
1088 * objrmap doesn't work for nonlinear VMAs because the assumption that
1089 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1090 * Consequently, given a particular page and its ->index, we cannot locate the
1091 * ptes which are mapping that page without an exhaustive linear search.
1092 *
1093 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1094 * maps the file to which the target page belongs. The ->vm_private_data field
1095 * holds the current cursor into that scan. Successive searches will circulate
1096 * around the vma's virtual address space.
1097 *
1098 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1099 * more scanning pressure is placed against them as well. Eventually pages
1100 * will become fully unmapped and are eligible for eviction.
1101 *
1102 * For very sparsely populated VMAs this is a little inefficient - chances are
1103 * there there won't be many ptes located within the scan cluster. In this case
1104 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1105 *
1106 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1107 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1108 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1109 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1110 */
1111#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1112#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1113
b291f000
NP
1114static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1115 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1116{
1117 struct mm_struct *mm = vma->vm_mm;
1118 pgd_t *pgd;
1119 pud_t *pud;
1120 pmd_t *pmd;
c0718806 1121 pte_t *pte;
1da177e4 1122 pte_t pteval;
c0718806 1123 spinlock_t *ptl;
1da177e4
LT
1124 struct page *page;
1125 unsigned long address;
1126 unsigned long end;
b291f000
NP
1127 int ret = SWAP_AGAIN;
1128 int locked_vma = 0;
1da177e4 1129
1da177e4
LT
1130 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1131 end = address + CLUSTER_SIZE;
1132 if (address < vma->vm_start)
1133 address = vma->vm_start;
1134 if (end > vma->vm_end)
1135 end = vma->vm_end;
1136
1137 pgd = pgd_offset(mm, address);
1138 if (!pgd_present(*pgd))
b291f000 1139 return ret;
1da177e4
LT
1140
1141 pud = pud_offset(pgd, address);
1142 if (!pud_present(*pud))
b291f000 1143 return ret;
1da177e4
LT
1144
1145 pmd = pmd_offset(pud, address);
1146 if (!pmd_present(*pmd))
b291f000
NP
1147 return ret;
1148
1149 /*
af8e3354 1150 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1151 * keep the sem while scanning the cluster for mlocking pages.
1152 */
af8e3354 1153 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1154 locked_vma = (vma->vm_flags & VM_LOCKED);
1155 if (!locked_vma)
1156 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1157 }
c0718806
HD
1158
1159 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1160
365e9c87
HD
1161 /* Update high watermark before we lower rss */
1162 update_hiwater_rss(mm);
1163
c0718806 1164 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1165 if (!pte_present(*pte))
1166 continue;
6aab341e
LT
1167 page = vm_normal_page(vma, address, *pte);
1168 BUG_ON(!page || PageAnon(page));
1da177e4 1169
b291f000
NP
1170 if (locked_vma) {
1171 mlock_vma_page(page); /* no-op if already mlocked */
1172 if (page == check_page)
1173 ret = SWAP_MLOCK;
1174 continue; /* don't unmap */
1175 }
1176
cddb8a5c 1177 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1178 continue;
1179
1180 /* Nuke the page table entry. */
eca35133 1181 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1182 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1183
1184 /* If nonlinear, store the file page offset in the pte. */
1185 if (page->index != linear_page_index(vma, address))
1186 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1187
1188 /* Move the dirty bit to the physical page now the pte is gone. */
1189 if (pte_dirty(pteval))
1190 set_page_dirty(page);
1191
edc315fd 1192 page_remove_rmap(page);
1da177e4 1193 page_cache_release(page);
d559db08 1194 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1195 (*mapcount)--;
1196 }
c0718806 1197 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1198 if (locked_vma)
1199 up_read(&vma->vm_mm->mmap_sem);
1200 return ret;
1da177e4
LT
1201}
1202
a8bef8ff
MG
1203static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1204{
1205 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1206
1207 if (!maybe_stack)
1208 return false;
1209
1210 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1211 VM_STACK_INCOMPLETE_SETUP)
1212 return true;
1213
1214 return false;
1215}
1216
b291f000
NP
1217/**
1218 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1219 * rmap method
1220 * @page: the page to unmap/unlock
8051be5e 1221 * @flags: action and flags
b291f000
NP
1222 *
1223 * Find all the mappings of a page using the mapping pointer and the vma chains
1224 * contained in the anon_vma struct it points to.
1225 *
1226 * This function is only called from try_to_unmap/try_to_munlock for
1227 * anonymous pages.
1228 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1229 * where the page was found will be held for write. So, we won't recheck
1230 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1231 * 'LOCKED.
1232 */
14fa31b8 1233static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1234{
1235 struct anon_vma *anon_vma;
5beb4930 1236 struct anon_vma_chain *avc;
1da177e4 1237 int ret = SWAP_AGAIN;
b291f000 1238
1da177e4
LT
1239 anon_vma = page_lock_anon_vma(page);
1240 if (!anon_vma)
1241 return ret;
1242
5beb4930
RR
1243 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1244 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1245 unsigned long address;
1246
1247 /*
1248 * During exec, a temporary VMA is setup and later moved.
1249 * The VMA is moved under the anon_vma lock but not the
1250 * page tables leading to a race where migration cannot
1251 * find the migration ptes. Rather than increasing the
1252 * locking requirements of exec(), migration skips
1253 * temporary VMAs until after exec() completes.
1254 */
1255 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1256 is_vma_temporary_stack(vma))
1257 continue;
1258
1259 address = vma_address(page, vma);
1cb1729b
HD
1260 if (address == -EFAULT)
1261 continue;
1262 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1263 if (ret != SWAP_AGAIN || !page_mapped(page))
1264 break;
1da177e4 1265 }
34bbd704
ON
1266
1267 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1268 return ret;
1269}
1270
1271/**
b291f000
NP
1272 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1273 * @page: the page to unmap/unlock
14fa31b8 1274 * @flags: action and flags
1da177e4
LT
1275 *
1276 * Find all the mappings of a page using the mapping pointer and the vma chains
1277 * contained in the address_space struct it points to.
1278 *
b291f000
NP
1279 * This function is only called from try_to_unmap/try_to_munlock for
1280 * object-based pages.
1281 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1282 * where the page was found will be held for write. So, we won't recheck
1283 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1284 * 'LOCKED.
1da177e4 1285 */
14fa31b8 1286static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1287{
1288 struct address_space *mapping = page->mapping;
1289 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1290 struct vm_area_struct *vma;
1291 struct prio_tree_iter iter;
1292 int ret = SWAP_AGAIN;
1293 unsigned long cursor;
1294 unsigned long max_nl_cursor = 0;
1295 unsigned long max_nl_size = 0;
1296 unsigned int mapcount;
1297
1298 spin_lock(&mapping->i_mmap_lock);
1299 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1300 unsigned long address = vma_address(page, vma);
1301 if (address == -EFAULT)
1302 continue;
1303 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1304 if (ret != SWAP_AGAIN || !page_mapped(page))
1305 goto out;
1da177e4
LT
1306 }
1307
1308 if (list_empty(&mapping->i_mmap_nonlinear))
1309 goto out;
1310
53f79acb
HD
1311 /*
1312 * We don't bother to try to find the munlocked page in nonlinears.
1313 * It's costly. Instead, later, page reclaim logic may call
1314 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1315 */
1316 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1317 goto out;
1318
1da177e4
LT
1319 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1320 shared.vm_set.list) {
1da177e4
LT
1321 cursor = (unsigned long) vma->vm_private_data;
1322 if (cursor > max_nl_cursor)
1323 max_nl_cursor = cursor;
1324 cursor = vma->vm_end - vma->vm_start;
1325 if (cursor > max_nl_size)
1326 max_nl_size = cursor;
1327 }
1328
b291f000 1329 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1330 ret = SWAP_FAIL;
1331 goto out;
1332 }
1333
1334 /*
1335 * We don't try to search for this page in the nonlinear vmas,
1336 * and page_referenced wouldn't have found it anyway. Instead
1337 * just walk the nonlinear vmas trying to age and unmap some.
1338 * The mapcount of the page we came in with is irrelevant,
1339 * but even so use it as a guide to how hard we should try?
1340 */
1341 mapcount = page_mapcount(page);
1342 if (!mapcount)
1343 goto out;
1344 cond_resched_lock(&mapping->i_mmap_lock);
1345
1346 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1347 if (max_nl_cursor == 0)
1348 max_nl_cursor = CLUSTER_SIZE;
1349
1350 do {
1351 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1352 shared.vm_set.list) {
1da177e4 1353 cursor = (unsigned long) vma->vm_private_data;
839b9685 1354 while ( cursor < max_nl_cursor &&
1da177e4 1355 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1356 if (try_to_unmap_cluster(cursor, &mapcount,
1357 vma, page) == SWAP_MLOCK)
1358 ret = SWAP_MLOCK;
1da177e4
LT
1359 cursor += CLUSTER_SIZE;
1360 vma->vm_private_data = (void *) cursor;
1361 if ((int)mapcount <= 0)
1362 goto out;
1363 }
1364 vma->vm_private_data = (void *) max_nl_cursor;
1365 }
1366 cond_resched_lock(&mapping->i_mmap_lock);
1367 max_nl_cursor += CLUSTER_SIZE;
1368 } while (max_nl_cursor <= max_nl_size);
1369
1370 /*
1371 * Don't loop forever (perhaps all the remaining pages are
1372 * in locked vmas). Reset cursor on all unreserved nonlinear
1373 * vmas, now forgetting on which ones it had fallen behind.
1374 */
101d2be7
HD
1375 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1376 vma->vm_private_data = NULL;
1da177e4
LT
1377out:
1378 spin_unlock(&mapping->i_mmap_lock);
1379 return ret;
1380}
1381
1382/**
1383 * try_to_unmap - try to remove all page table mappings to a page
1384 * @page: the page to get unmapped
14fa31b8 1385 * @flags: action and flags
1da177e4
LT
1386 *
1387 * Tries to remove all the page table entries which are mapping this
1388 * page, used in the pageout path. Caller must hold the page lock.
1389 * Return values are:
1390 *
1391 * SWAP_SUCCESS - we succeeded in removing all mappings
1392 * SWAP_AGAIN - we missed a mapping, try again later
1393 * SWAP_FAIL - the page is unswappable
b291f000 1394 * SWAP_MLOCK - page is mlocked.
1da177e4 1395 */
14fa31b8 1396int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1397{
1398 int ret;
1399
1da177e4
LT
1400 BUG_ON(!PageLocked(page));
1401
5ad64688
HD
1402 if (unlikely(PageKsm(page)))
1403 ret = try_to_unmap_ksm(page, flags);
1404 else if (PageAnon(page))
14fa31b8 1405 ret = try_to_unmap_anon(page, flags);
1da177e4 1406 else
14fa31b8 1407 ret = try_to_unmap_file(page, flags);
b291f000 1408 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1409 ret = SWAP_SUCCESS;
1410 return ret;
1411}
81b4082d 1412
b291f000
NP
1413/**
1414 * try_to_munlock - try to munlock a page
1415 * @page: the page to be munlocked
1416 *
1417 * Called from munlock code. Checks all of the VMAs mapping the page
1418 * to make sure nobody else has this page mlocked. The page will be
1419 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1420 *
1421 * Return values are:
1422 *
53f79acb 1423 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1424 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1425 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1426 * SWAP_MLOCK - page is now mlocked.
1427 */
1428int try_to_munlock(struct page *page)
1429{
1430 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1431
5ad64688
HD
1432 if (unlikely(PageKsm(page)))
1433 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1434 else if (PageAnon(page))
14fa31b8 1435 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1436 else
14fa31b8 1437 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1438}
e9995ef9 1439
76545066
RR
1440#if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
1441/*
1442 * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
1443 * if necessary. Be careful to do all the tests under the lock. Once
1444 * we know we are the last user, nobody else can get a reference and we
1445 * can do the freeing without the lock.
1446 */
1447void drop_anon_vma(struct anon_vma *anon_vma)
1448{
44ab57a0 1449 BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
76545066
RR
1450 if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
1451 struct anon_vma *root = anon_vma->root;
1452 int empty = list_empty(&anon_vma->head);
1453 int last_root_user = 0;
1454 int root_empty = 0;
1455
1456 /*
1457 * The refcount on a non-root anon_vma got dropped. Drop
1458 * the refcount on the root and check if we need to free it.
1459 */
1460 if (empty && anon_vma != root) {
44ab57a0 1461 BUG_ON(atomic_read(&root->external_refcount) <= 0);
76545066
RR
1462 last_root_user = atomic_dec_and_test(&root->external_refcount);
1463 root_empty = list_empty(&root->head);
1464 }
1465 anon_vma_unlock(anon_vma);
1466
1467 if (empty) {
1468 anon_vma_free(anon_vma);
1469 if (root_empty && last_root_user)
1470 anon_vma_free(root);
1471 }
1472 }
1473}
1474#endif
1475
e9995ef9
HD
1476#ifdef CONFIG_MIGRATION
1477/*
1478 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1479 * Called by migrate.c to remove migration ptes, but might be used more later.
1480 */
1481static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1482 struct vm_area_struct *, unsigned long, void *), void *arg)
1483{
1484 struct anon_vma *anon_vma;
5beb4930 1485 struct anon_vma_chain *avc;
e9995ef9
HD
1486 int ret = SWAP_AGAIN;
1487
1488 /*
1489 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1490 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1491 * are holding mmap_sem. Users without mmap_sem are required to
1492 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1493 */
1494 anon_vma = page_anon_vma(page);
1495 if (!anon_vma)
1496 return ret;
cba48b98 1497 anon_vma_lock(anon_vma);
5beb4930
RR
1498 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1499 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1500 unsigned long address = vma_address(page, vma);
1501 if (address == -EFAULT)
1502 continue;
1503 ret = rmap_one(page, vma, address, arg);
1504 if (ret != SWAP_AGAIN)
1505 break;
1506 }
cba48b98 1507 anon_vma_unlock(anon_vma);
e9995ef9
HD
1508 return ret;
1509}
1510
1511static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1512 struct vm_area_struct *, unsigned long, void *), void *arg)
1513{
1514 struct address_space *mapping = page->mapping;
1515 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1516 struct vm_area_struct *vma;
1517 struct prio_tree_iter iter;
1518 int ret = SWAP_AGAIN;
1519
1520 if (!mapping)
1521 return ret;
1522 spin_lock(&mapping->i_mmap_lock);
1523 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1524 unsigned long address = vma_address(page, vma);
1525 if (address == -EFAULT)
1526 continue;
1527 ret = rmap_one(page, vma, address, arg);
1528 if (ret != SWAP_AGAIN)
1529 break;
1530 }
1531 /*
1532 * No nonlinear handling: being always shared, nonlinear vmas
1533 * never contain migration ptes. Decide what to do about this
1534 * limitation to linear when we need rmap_walk() on nonlinear.
1535 */
1536 spin_unlock(&mapping->i_mmap_lock);
1537 return ret;
1538}
1539
1540int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1541 struct vm_area_struct *, unsigned long, void *), void *arg)
1542{
1543 VM_BUG_ON(!PageLocked(page));
1544
1545 if (unlikely(PageKsm(page)))
1546 return rmap_walk_ksm(page, rmap_one, arg);
1547 else if (PageAnon(page))
1548 return rmap_walk_anon(page, rmap_one, arg);
1549 else
1550 return rmap_walk_file(page, rmap_one, arg);
1551}
1552#endif /* CONFIG_MIGRATION */
0fe6e20b 1553
e3390f67 1554#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1555/*
1556 * The following three functions are for anonymous (private mapped) hugepages.
1557 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1558 * and no lru code, because we handle hugepages differently from common pages.
1559 */
1560static void __hugepage_set_anon_rmap(struct page *page,
1561 struct vm_area_struct *vma, unsigned long address, int exclusive)
1562{
1563 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1564
0fe6e20b 1565 BUG_ON(!anon_vma);
433abed6
NH
1566
1567 if (PageAnon(page))
1568 return;
1569 if (!exclusive)
1570 anon_vma = anon_vma->root;
1571
0fe6e20b
NH
1572 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1573 page->mapping = (struct address_space *) anon_vma;
1574 page->index = linear_page_index(vma, address);
1575}
1576
1577void hugepage_add_anon_rmap(struct page *page,
1578 struct vm_area_struct *vma, unsigned long address)
1579{
1580 struct anon_vma *anon_vma = vma->anon_vma;
1581 int first;
a850ea30
NH
1582
1583 BUG_ON(!PageLocked(page));
0fe6e20b
NH
1584 BUG_ON(!anon_vma);
1585 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1586 first = atomic_inc_and_test(&page->_mapcount);
1587 if (first)
1588 __hugepage_set_anon_rmap(page, vma, address, 0);
1589}
1590
1591void hugepage_add_new_anon_rmap(struct page *page,
1592 struct vm_area_struct *vma, unsigned long address)
1593{
1594 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1595 atomic_set(&page->_mapcount, 0);
1596 __hugepage_set_anon_rmap(page, vma, address, 1);
1597}
e3390f67 1598#endif /* CONFIG_HUGETLB_PAGE */