]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/rmap.c
Linux 2.6.35-rc4
[net-next-2.6.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
6a46079c
AK
39 *
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
1da177e4
LT
44 */
45
46#include <linux/mm.h>
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/swapops.h>
50#include <linux/slab.h>
51#include <linux/init.h>
5ad64688 52#include <linux/ksm.h>
1da177e4
LT
53#include <linux/rmap.h>
54#include <linux/rcupdate.h>
a48d07af 55#include <linux/module.h>
8a9f3ccd 56#include <linux/memcontrol.h>
cddb8a5c 57#include <linux/mmu_notifier.h>
64cdd548 58#include <linux/migrate.h>
1da177e4
LT
59
60#include <asm/tlbflush.h>
61
b291f000
NP
62#include "internal.h"
63
fdd2e5f8 64static struct kmem_cache *anon_vma_cachep;
5beb4930 65static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
66
67static inline struct anon_vma *anon_vma_alloc(void)
68{
69 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
70}
71
db114b83 72void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8
AB
73{
74 kmem_cache_free(anon_vma_cachep, anon_vma);
75}
1da177e4 76
5beb4930
RR
77static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
78{
79 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
80}
81
82void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
83{
84 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
85}
86
d9d332e0
LT
87/**
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
90 *
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
94 *
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
99 * allocate a new one.
100 *
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
106 *
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
110 * an anon_vma.
111 *
112 * This must be called with the mmap_sem held for reading.
113 */
1da177e4
LT
114int anon_vma_prepare(struct vm_area_struct *vma)
115{
116 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 117 struct anon_vma_chain *avc;
1da177e4
LT
118
119 might_sleep();
120 if (unlikely(!anon_vma)) {
121 struct mm_struct *mm = vma->vm_mm;
d9d332e0 122 struct anon_vma *allocated;
1da177e4 123
5beb4930
RR
124 avc = anon_vma_chain_alloc();
125 if (!avc)
126 goto out_enomem;
127
1da177e4 128 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
129 allocated = NULL;
130 if (!anon_vma) {
1da177e4
LT
131 anon_vma = anon_vma_alloc();
132 if (unlikely(!anon_vma))
5beb4930 133 goto out_enomem_free_avc;
1da177e4 134 allocated = anon_vma;
1da177e4
LT
135 }
136
31f2b0eb 137 spin_lock(&anon_vma->lock);
1da177e4
LT
138 /* page_table_lock to protect against threads */
139 spin_lock(&mm->page_table_lock);
140 if (likely(!vma->anon_vma)) {
141 vma->anon_vma = anon_vma;
5beb4930
RR
142 avc->anon_vma = anon_vma;
143 avc->vma = vma;
144 list_add(&avc->same_vma, &vma->anon_vma_chain);
145 list_add(&avc->same_anon_vma, &anon_vma->head);
1da177e4 146 allocated = NULL;
31f2b0eb 147 avc = NULL;
1da177e4
LT
148 }
149 spin_unlock(&mm->page_table_lock);
d9d332e0 150 spin_unlock(&anon_vma->lock);
31f2b0eb
ON
151
152 if (unlikely(allocated))
1da177e4 153 anon_vma_free(allocated);
31f2b0eb 154 if (unlikely(avc))
5beb4930 155 anon_vma_chain_free(avc);
1da177e4
LT
156 }
157 return 0;
5beb4930
RR
158
159 out_enomem_free_avc:
160 anon_vma_chain_free(avc);
161 out_enomem:
162 return -ENOMEM;
1da177e4
LT
163}
164
5beb4930
RR
165static void anon_vma_chain_link(struct vm_area_struct *vma,
166 struct anon_vma_chain *avc,
167 struct anon_vma *anon_vma)
1da177e4 168{
5beb4930
RR
169 avc->vma = vma;
170 avc->anon_vma = anon_vma;
171 list_add(&avc->same_vma, &vma->anon_vma_chain);
172
173 spin_lock(&anon_vma->lock);
174 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
175 spin_unlock(&anon_vma->lock);
1da177e4
LT
176}
177
5beb4930
RR
178/*
179 * Attach the anon_vmas from src to dst.
180 * Returns 0 on success, -ENOMEM on failure.
181 */
182int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 183{
5beb4930
RR
184 struct anon_vma_chain *avc, *pavc;
185
646d87b4 186 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
5beb4930
RR
187 avc = anon_vma_chain_alloc();
188 if (!avc)
189 goto enomem_failure;
190 anon_vma_chain_link(dst, avc, pavc->anon_vma);
191 }
192 return 0;
1da177e4 193
5beb4930
RR
194 enomem_failure:
195 unlink_anon_vmas(dst);
196 return -ENOMEM;
1da177e4
LT
197}
198
5beb4930
RR
199/*
200 * Attach vma to its own anon_vma, as well as to the anon_vmas that
201 * the corresponding VMA in the parent process is attached to.
202 * Returns 0 on success, non-zero on failure.
203 */
204int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 205{
5beb4930
RR
206 struct anon_vma_chain *avc;
207 struct anon_vma *anon_vma;
1da177e4 208
5beb4930
RR
209 /* Don't bother if the parent process has no anon_vma here. */
210 if (!pvma->anon_vma)
211 return 0;
212
213 /*
214 * First, attach the new VMA to the parent VMA's anon_vmas,
215 * so rmap can find non-COWed pages in child processes.
216 */
217 if (anon_vma_clone(vma, pvma))
218 return -ENOMEM;
219
220 /* Then add our own anon_vma. */
221 anon_vma = anon_vma_alloc();
222 if (!anon_vma)
223 goto out_error;
224 avc = anon_vma_chain_alloc();
225 if (!avc)
226 goto out_error_free_anon_vma;
227 anon_vma_chain_link(vma, avc, anon_vma);
228 /* Mark this anon_vma as the one where our new (COWed) pages go. */
229 vma->anon_vma = anon_vma;
230
231 return 0;
232
233 out_error_free_anon_vma:
234 anon_vma_free(anon_vma);
235 out_error:
4946d54c 236 unlink_anon_vmas(vma);
5beb4930 237 return -ENOMEM;
1da177e4
LT
238}
239
5beb4930 240static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
1da177e4 241{
5beb4930 242 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
1da177e4
LT
243 int empty;
244
5beb4930 245 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
1da177e4
LT
246 if (!anon_vma)
247 return;
248
249 spin_lock(&anon_vma->lock);
5beb4930 250 list_del(&anon_vma_chain->same_anon_vma);
1da177e4
LT
251
252 /* We must garbage collect the anon_vma if it's empty */
7f60c214 253 empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
1da177e4
LT
254 spin_unlock(&anon_vma->lock);
255
256 if (empty)
257 anon_vma_free(anon_vma);
258}
259
5beb4930
RR
260void unlink_anon_vmas(struct vm_area_struct *vma)
261{
262 struct anon_vma_chain *avc, *next;
263
264 /* Unlink each anon_vma chained to the VMA. */
265 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
266 anon_vma_unlink(avc);
267 list_del(&avc->same_vma);
268 anon_vma_chain_free(avc);
269 }
270}
271
51cc5068 272static void anon_vma_ctor(void *data)
1da177e4 273{
a35afb83 274 struct anon_vma *anon_vma = data;
1da177e4 275
a35afb83 276 spin_lock_init(&anon_vma->lock);
7f60c214 277 anonvma_external_refcount_init(anon_vma);
a35afb83 278 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
279}
280
281void __init anon_vma_init(void)
282{
283 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 284 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 285 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
286}
287
288/*
289 * Getting a lock on a stable anon_vma from a page off the LRU is
290 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
291 */
10be22df 292struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 293{
34bbd704 294 struct anon_vma *anon_vma;
1da177e4
LT
295 unsigned long anon_mapping;
296
297 rcu_read_lock();
80e14822 298 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 299 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
300 goto out;
301 if (!page_mapped(page))
302 goto out;
303
304 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
305 spin_lock(&anon_vma->lock);
34bbd704 306 return anon_vma;
1da177e4
LT
307out:
308 rcu_read_unlock();
34bbd704
ON
309 return NULL;
310}
311
10be22df 312void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704
ON
313{
314 spin_unlock(&anon_vma->lock);
315 rcu_read_unlock();
1da177e4
LT
316}
317
318/*
3ad33b24
LS
319 * At what user virtual address is page expected in @vma?
320 * Returns virtual address or -EFAULT if page's index/offset is not
321 * within the range mapped the @vma.
1da177e4
LT
322 */
323static inline unsigned long
324vma_address(struct page *page, struct vm_area_struct *vma)
325{
326 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
327 unsigned long address;
328
329 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
330 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 331 /* page should be within @vma mapping range */
1da177e4
LT
332 return -EFAULT;
333 }
334 return address;
335}
336
337/*
bf89c8c8 338 * At what user virtual address is page expected in vma?
ab941e0f 339 * Caller should check the page is actually part of the vma.
1da177e4
LT
340 */
341unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
342{
ab941e0f
NH
343 if (PageAnon(page))
344 ;
345 else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
346 if (!vma->vm_file ||
347 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
348 return -EFAULT;
349 } else
350 return -EFAULT;
351 return vma_address(page, vma);
352}
353
81b4082d
ND
354/*
355 * Check that @page is mapped at @address into @mm.
356 *
479db0bf
NP
357 * If @sync is false, page_check_address may perform a racy check to avoid
358 * the page table lock when the pte is not present (helpful when reclaiming
359 * highly shared pages).
360 *
b8072f09 361 * On success returns with pte mapped and locked.
81b4082d 362 */
ceffc078 363pte_t *page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 364 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
365{
366 pgd_t *pgd;
367 pud_t *pud;
368 pmd_t *pmd;
369 pte_t *pte;
c0718806 370 spinlock_t *ptl;
81b4082d 371
81b4082d 372 pgd = pgd_offset(mm, address);
c0718806
HD
373 if (!pgd_present(*pgd))
374 return NULL;
375
376 pud = pud_offset(pgd, address);
377 if (!pud_present(*pud))
378 return NULL;
379
380 pmd = pmd_offset(pud, address);
381 if (!pmd_present(*pmd))
382 return NULL;
383
384 pte = pte_offset_map(pmd, address);
385 /* Make a quick check before getting the lock */
479db0bf 386 if (!sync && !pte_present(*pte)) {
c0718806
HD
387 pte_unmap(pte);
388 return NULL;
389 }
390
4c21e2f2 391 ptl = pte_lockptr(mm, pmd);
c0718806
HD
392 spin_lock(ptl);
393 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
394 *ptlp = ptl;
395 return pte;
81b4082d 396 }
c0718806
HD
397 pte_unmap_unlock(pte, ptl);
398 return NULL;
81b4082d
ND
399}
400
b291f000
NP
401/**
402 * page_mapped_in_vma - check whether a page is really mapped in a VMA
403 * @page: the page to test
404 * @vma: the VMA to test
405 *
406 * Returns 1 if the page is mapped into the page tables of the VMA, 0
407 * if the page is not mapped into the page tables of this VMA. Only
408 * valid for normal file or anonymous VMAs.
409 */
6a46079c 410int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
411{
412 unsigned long address;
413 pte_t *pte;
414 spinlock_t *ptl;
415
416 address = vma_address(page, vma);
417 if (address == -EFAULT) /* out of vma range */
418 return 0;
419 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
420 if (!pte) /* the page is not in this mm */
421 return 0;
422 pte_unmap_unlock(pte, ptl);
423
424 return 1;
425}
426
1da177e4
LT
427/*
428 * Subfunctions of page_referenced: page_referenced_one called
429 * repeatedly from either page_referenced_anon or page_referenced_file.
430 */
5ad64688
HD
431int page_referenced_one(struct page *page, struct vm_area_struct *vma,
432 unsigned long address, unsigned int *mapcount,
433 unsigned long *vm_flags)
1da177e4
LT
434{
435 struct mm_struct *mm = vma->vm_mm;
1da177e4 436 pte_t *pte;
c0718806 437 spinlock_t *ptl;
1da177e4
LT
438 int referenced = 0;
439
479db0bf 440 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806
HD
441 if (!pte)
442 goto out;
1da177e4 443
b291f000
NP
444 /*
445 * Don't want to elevate referenced for mlocked page that gets this far,
446 * in order that it progresses to try_to_unmap and is moved to the
447 * unevictable list.
448 */
5a9bbdcd 449 if (vma->vm_flags & VM_LOCKED) {
5a9bbdcd 450 *mapcount = 1; /* break early from loop */
03ef83af 451 *vm_flags |= VM_LOCKED;
b291f000
NP
452 goto out_unmap;
453 }
454
4917e5d0
JW
455 if (ptep_clear_flush_young_notify(vma, address, pte)) {
456 /*
457 * Don't treat a reference through a sequentially read
458 * mapping as such. If the page has been used in
459 * another mapping, we will catch it; if this other
460 * mapping is already gone, the unmap path will have
461 * set PG_referenced or activated the page.
462 */
463 if (likely(!VM_SequentialReadHint(vma)))
464 referenced++;
465 }
1da177e4 466
c0718806
HD
467 /* Pretend the page is referenced if the task has the
468 swap token and is in the middle of a page fault. */
f7b7fd8f 469 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
470 rwsem_is_locked(&mm->mmap_sem))
471 referenced++;
472
b291f000 473out_unmap:
c0718806
HD
474 (*mapcount)--;
475 pte_unmap_unlock(pte, ptl);
273f047e 476
6fe6b7e3
WF
477 if (referenced)
478 *vm_flags |= vma->vm_flags;
273f047e 479out:
1da177e4
LT
480 return referenced;
481}
482
bed7161a 483static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
484 struct mem_cgroup *mem_cont,
485 unsigned long *vm_flags)
1da177e4
LT
486{
487 unsigned int mapcount;
488 struct anon_vma *anon_vma;
5beb4930 489 struct anon_vma_chain *avc;
1da177e4
LT
490 int referenced = 0;
491
492 anon_vma = page_lock_anon_vma(page);
493 if (!anon_vma)
494 return referenced;
495
496 mapcount = page_mapcount(page);
5beb4930
RR
497 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
498 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
499 unsigned long address = vma_address(page, vma);
500 if (address == -EFAULT)
501 continue;
bed7161a
BS
502 /*
503 * If we are reclaiming on behalf of a cgroup, skip
504 * counting on behalf of references from different
505 * cgroups
506 */
bd845e38 507 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 508 continue;
1cb1729b 509 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 510 &mapcount, vm_flags);
1da177e4
LT
511 if (!mapcount)
512 break;
513 }
34bbd704
ON
514
515 page_unlock_anon_vma(anon_vma);
1da177e4
LT
516 return referenced;
517}
518
519/**
520 * page_referenced_file - referenced check for object-based rmap
521 * @page: the page we're checking references on.
43d8eac4 522 * @mem_cont: target memory controller
6fe6b7e3 523 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
524 *
525 * For an object-based mapped page, find all the places it is mapped and
526 * check/clear the referenced flag. This is done by following the page->mapping
527 * pointer, then walking the chain of vmas it holds. It returns the number
528 * of references it found.
529 *
530 * This function is only called from page_referenced for object-based pages.
531 */
bed7161a 532static int page_referenced_file(struct page *page,
6fe6b7e3
WF
533 struct mem_cgroup *mem_cont,
534 unsigned long *vm_flags)
1da177e4
LT
535{
536 unsigned int mapcount;
537 struct address_space *mapping = page->mapping;
538 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
539 struct vm_area_struct *vma;
540 struct prio_tree_iter iter;
541 int referenced = 0;
542
543 /*
544 * The caller's checks on page->mapping and !PageAnon have made
545 * sure that this is a file page: the check for page->mapping
546 * excludes the case just before it gets set on an anon page.
547 */
548 BUG_ON(PageAnon(page));
549
550 /*
551 * The page lock not only makes sure that page->mapping cannot
552 * suddenly be NULLified by truncation, it makes sure that the
553 * structure at mapping cannot be freed and reused yet,
554 * so we can safely take mapping->i_mmap_lock.
555 */
556 BUG_ON(!PageLocked(page));
557
558 spin_lock(&mapping->i_mmap_lock);
559
560 /*
561 * i_mmap_lock does not stabilize mapcount at all, but mapcount
562 * is more likely to be accurate if we note it after spinning.
563 */
564 mapcount = page_mapcount(page);
565
566 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
567 unsigned long address = vma_address(page, vma);
568 if (address == -EFAULT)
569 continue;
bed7161a
BS
570 /*
571 * If we are reclaiming on behalf of a cgroup, skip
572 * counting on behalf of references from different
573 * cgroups
574 */
bd845e38 575 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 576 continue;
1cb1729b 577 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 578 &mapcount, vm_flags);
1da177e4
LT
579 if (!mapcount)
580 break;
581 }
582
583 spin_unlock(&mapping->i_mmap_lock);
584 return referenced;
585}
586
587/**
588 * page_referenced - test if the page was referenced
589 * @page: the page to test
590 * @is_locked: caller holds lock on the page
43d8eac4 591 * @mem_cont: target memory controller
6fe6b7e3 592 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
593 *
594 * Quick test_and_clear_referenced for all mappings to a page,
595 * returns the number of ptes which referenced the page.
596 */
6fe6b7e3
WF
597int page_referenced(struct page *page,
598 int is_locked,
599 struct mem_cgroup *mem_cont,
600 unsigned long *vm_flags)
1da177e4
LT
601{
602 int referenced = 0;
5ad64688 603 int we_locked = 0;
1da177e4 604
6fe6b7e3 605 *vm_flags = 0;
3ca7b3c5 606 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
607 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
608 we_locked = trylock_page(page);
609 if (!we_locked) {
610 referenced++;
611 goto out;
612 }
613 }
614 if (unlikely(PageKsm(page)))
615 referenced += page_referenced_ksm(page, mem_cont,
616 vm_flags);
617 else if (PageAnon(page))
6fe6b7e3
WF
618 referenced += page_referenced_anon(page, mem_cont,
619 vm_flags);
5ad64688 620 else if (page->mapping)
6fe6b7e3
WF
621 referenced += page_referenced_file(page, mem_cont,
622 vm_flags);
5ad64688 623 if (we_locked)
1da177e4 624 unlock_page(page);
1da177e4 625 }
5ad64688 626out:
5b7baf05
CB
627 if (page_test_and_clear_young(page))
628 referenced++;
629
1da177e4
LT
630 return referenced;
631}
632
1cb1729b
HD
633static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
634 unsigned long address)
d08b3851
PZ
635{
636 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 637 pte_t *pte;
d08b3851
PZ
638 spinlock_t *ptl;
639 int ret = 0;
640
479db0bf 641 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
642 if (!pte)
643 goto out;
644
c2fda5fe
PZ
645 if (pte_dirty(*pte) || pte_write(*pte)) {
646 pte_t entry;
d08b3851 647
c2fda5fe 648 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 649 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
650 entry = pte_wrprotect(entry);
651 entry = pte_mkclean(entry);
d6e88e67 652 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
653 ret = 1;
654 }
d08b3851 655
d08b3851
PZ
656 pte_unmap_unlock(pte, ptl);
657out:
658 return ret;
659}
660
661static int page_mkclean_file(struct address_space *mapping, struct page *page)
662{
663 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
664 struct vm_area_struct *vma;
665 struct prio_tree_iter iter;
666 int ret = 0;
667
668 BUG_ON(PageAnon(page));
669
670 spin_lock(&mapping->i_mmap_lock);
671 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
672 if (vma->vm_flags & VM_SHARED) {
673 unsigned long address = vma_address(page, vma);
674 if (address == -EFAULT)
675 continue;
676 ret += page_mkclean_one(page, vma, address);
677 }
d08b3851
PZ
678 }
679 spin_unlock(&mapping->i_mmap_lock);
680 return ret;
681}
682
683int page_mkclean(struct page *page)
684{
685 int ret = 0;
686
687 BUG_ON(!PageLocked(page));
688
689 if (page_mapped(page)) {
690 struct address_space *mapping = page_mapping(page);
ce7e9fae 691 if (mapping) {
d08b3851 692 ret = page_mkclean_file(mapping, page);
ce7e9fae
CB
693 if (page_test_dirty(page)) {
694 page_clear_dirty(page);
695 ret = 1;
696 }
6c210482 697 }
d08b3851
PZ
698 }
699
700 return ret;
701}
60b59bea 702EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 703
c44b6743
RR
704/**
705 * page_move_anon_rmap - move a page to our anon_vma
706 * @page: the page to move to our anon_vma
707 * @vma: the vma the page belongs to
708 * @address: the user virtual address mapped
709 *
710 * When a page belongs exclusively to one process after a COW event,
711 * that page can be moved into the anon_vma that belongs to just that
712 * process, so the rmap code will not search the parent or sibling
713 * processes.
714 */
715void page_move_anon_rmap(struct page *page,
716 struct vm_area_struct *vma, unsigned long address)
717{
718 struct anon_vma *anon_vma = vma->anon_vma;
719
720 VM_BUG_ON(!PageLocked(page));
721 VM_BUG_ON(!anon_vma);
722 VM_BUG_ON(page->index != linear_page_index(vma, address));
723
724 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
725 page->mapping = (struct address_space *) anon_vma;
726}
727
9617d95e 728/**
43d8eac4 729 * __page_set_anon_rmap - setup new anonymous rmap
9617d95e
NP
730 * @page: the page to add the mapping to
731 * @vma: the vm area in which the mapping is added
732 * @address: the user virtual address mapped
e8a03feb 733 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
734 */
735static void __page_set_anon_rmap(struct page *page,
e8a03feb 736 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 737{
e8a03feb 738 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 739
e8a03feb 740 BUG_ON(!anon_vma);
ea90002b
LT
741
742 /*
e8a03feb
RR
743 * If the page isn't exclusively mapped into this vma,
744 * we must use the _oldest_ possible anon_vma for the
745 * page mapping!
ea90002b 746 *
e8a03feb
RR
747 * So take the last AVC chain entry in the vma, which is
748 * the deepest ancestor, and use the anon_vma from that.
ea90002b 749 */
e8a03feb
RR
750 if (!exclusive) {
751 struct anon_vma_chain *avc;
752 avc = list_entry(vma->anon_vma_chain.prev, struct anon_vma_chain, same_vma);
753 anon_vma = avc->anon_vma;
754 }
9617d95e 755
9617d95e
NP
756 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
757 page->mapping = (struct address_space *) anon_vma;
9617d95e 758 page->index = linear_page_index(vma, address);
9617d95e
NP
759}
760
c97a9e10 761/**
43d8eac4 762 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
763 * @page: the page to add the mapping to
764 * @vma: the vm area in which the mapping is added
765 * @address: the user virtual address mapped
766 */
767static void __page_check_anon_rmap(struct page *page,
768 struct vm_area_struct *vma, unsigned long address)
769{
770#ifdef CONFIG_DEBUG_VM
771 /*
772 * The page's anon-rmap details (mapping and index) are guaranteed to
773 * be set up correctly at this point.
774 *
775 * We have exclusion against page_add_anon_rmap because the caller
776 * always holds the page locked, except if called from page_dup_rmap,
777 * in which case the page is already known to be setup.
778 *
779 * We have exclusion against page_add_new_anon_rmap because those pages
780 * are initially only visible via the pagetables, and the pte is locked
781 * over the call to page_add_new_anon_rmap.
782 */
c97a9e10
NP
783 BUG_ON(page->index != linear_page_index(vma, address));
784#endif
785}
786
1da177e4
LT
787/**
788 * page_add_anon_rmap - add pte mapping to an anonymous page
789 * @page: the page to add the mapping to
790 * @vma: the vm area in which the mapping is added
791 * @address: the user virtual address mapped
792 *
5ad64688 793 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
794 * the anon_vma case: to serialize mapping,index checking after setting,
795 * and to ensure that PageAnon is not being upgraded racily to PageKsm
796 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
797 */
798void page_add_anon_rmap(struct page *page,
799 struct vm_area_struct *vma, unsigned long address)
800{
5ad64688
HD
801 int first = atomic_inc_and_test(&page->_mapcount);
802 if (first)
803 __inc_zone_page_state(page, NR_ANON_PAGES);
804 if (unlikely(PageKsm(page)))
805 return;
806
c97a9e10
NP
807 VM_BUG_ON(!PageLocked(page));
808 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 809 if (first)
e8a03feb 810 __page_set_anon_rmap(page, vma, address, 0);
69029cd5 811 else
c97a9e10 812 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
813}
814
43d8eac4 815/**
9617d95e
NP
816 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
817 * @page: the page to add the mapping to
818 * @vma: the vm area in which the mapping is added
819 * @address: the user virtual address mapped
820 *
821 * Same as page_add_anon_rmap but must only be called on *new* pages.
822 * This means the inc-and-test can be bypassed.
c97a9e10 823 * Page does not have to be locked.
9617d95e
NP
824 */
825void page_add_new_anon_rmap(struct page *page,
826 struct vm_area_struct *vma, unsigned long address)
827{
b5934c53 828 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
829 SetPageSwapBacked(page);
830 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
5ad64688 831 __inc_zone_page_state(page, NR_ANON_PAGES);
e8a03feb 832 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 833 if (page_evictable(page, vma))
cbf84b7a 834 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
835 else
836 add_page_to_unevictable_list(page);
9617d95e
NP
837}
838
1da177e4
LT
839/**
840 * page_add_file_rmap - add pte mapping to a file page
841 * @page: the page to add the mapping to
842 *
b8072f09 843 * The caller needs to hold the pte lock.
1da177e4
LT
844 */
845void page_add_file_rmap(struct page *page)
846{
d69b042f 847 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 848 __inc_zone_page_state(page, NR_FILE_MAPPED);
d8046582 849 mem_cgroup_update_file_mapped(page, 1);
d69b042f 850 }
1da177e4
LT
851}
852
853/**
854 * page_remove_rmap - take down pte mapping from a page
855 * @page: page to remove mapping from
856 *
b8072f09 857 * The caller needs to hold the pte lock.
1da177e4 858 */
edc315fd 859void page_remove_rmap(struct page *page)
1da177e4 860{
b904dcfe
KM
861 /* page still mapped by someone else? */
862 if (!atomic_add_negative(-1, &page->_mapcount))
863 return;
864
865 /*
866 * Now that the last pte has gone, s390 must transfer dirty
867 * flag from storage key to struct page. We can usually skip
868 * this if the page is anon, so about to be freed; but perhaps
869 * not if it's in swapcache - there might be another pte slot
870 * containing the swap entry, but page not yet written to swap.
871 */
872 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
873 page_clear_dirty(page);
874 set_page_dirty(page);
1da177e4 875 }
b904dcfe
KM
876 if (PageAnon(page)) {
877 mem_cgroup_uncharge_page(page);
878 __dec_zone_page_state(page, NR_ANON_PAGES);
879 } else {
880 __dec_zone_page_state(page, NR_FILE_MAPPED);
d8046582 881 mem_cgroup_update_file_mapped(page, -1);
b904dcfe 882 }
b904dcfe
KM
883 /*
884 * It would be tidy to reset the PageAnon mapping here,
885 * but that might overwrite a racing page_add_anon_rmap
886 * which increments mapcount after us but sets mapping
887 * before us: so leave the reset to free_hot_cold_page,
888 * and remember that it's only reliable while mapped.
889 * Leaving it set also helps swapoff to reinstate ptes
890 * faster for those pages still in swapcache.
891 */
1da177e4
LT
892}
893
894/*
895 * Subfunctions of try_to_unmap: try_to_unmap_one called
896 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
897 */
5ad64688
HD
898int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
899 unsigned long address, enum ttu_flags flags)
1da177e4
LT
900{
901 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
902 pte_t *pte;
903 pte_t pteval;
c0718806 904 spinlock_t *ptl;
1da177e4
LT
905 int ret = SWAP_AGAIN;
906
479db0bf 907 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 908 if (!pte)
81b4082d 909 goto out;
1da177e4
LT
910
911 /*
912 * If the page is mlock()d, we cannot swap it out.
913 * If it's recently referenced (perhaps page_referenced
914 * skipped over this mm) then we should reactivate it.
915 */
14fa31b8 916 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
917 if (vma->vm_flags & VM_LOCKED)
918 goto out_mlock;
919
af8e3354 920 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 921 goto out_unmap;
14fa31b8
AK
922 }
923 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
924 if (ptep_clear_flush_young_notify(vma, address, pte)) {
925 ret = SWAP_FAIL;
926 goto out_unmap;
927 }
928 }
1da177e4 929
1da177e4
LT
930 /* Nuke the page table entry. */
931 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 932 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
933
934 /* Move the dirty bit to the physical page now the pte is gone. */
935 if (pte_dirty(pteval))
936 set_page_dirty(page);
937
365e9c87
HD
938 /* Update high watermark before we lower rss */
939 update_hiwater_rss(mm);
940
888b9f7c
AK
941 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
942 if (PageAnon(page))
d559db08 943 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 944 else
d559db08 945 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
946 set_pte_at(mm, address, pte,
947 swp_entry_to_pte(make_hwpoison_entry(page)));
948 } else if (PageAnon(page)) {
4c21e2f2 949 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
950
951 if (PageSwapCache(page)) {
952 /*
953 * Store the swap location in the pte.
954 * See handle_pte_fault() ...
955 */
570a335b
HD
956 if (swap_duplicate(entry) < 0) {
957 set_pte_at(mm, address, pte, pteval);
958 ret = SWAP_FAIL;
959 goto out_unmap;
960 }
0697212a
CL
961 if (list_empty(&mm->mmlist)) {
962 spin_lock(&mmlist_lock);
963 if (list_empty(&mm->mmlist))
964 list_add(&mm->mmlist, &init_mm.mmlist);
965 spin_unlock(&mmlist_lock);
966 }
d559db08 967 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 968 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 969 } else if (PAGE_MIGRATION) {
0697212a
CL
970 /*
971 * Store the pfn of the page in a special migration
972 * pte. do_swap_page() will wait until the migration
973 * pte is removed and then restart fault handling.
974 */
14fa31b8 975 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 976 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
977 }
978 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
979 BUG_ON(pte_file(*pte));
14fa31b8 980 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
981 /* Establish migration entry for a file page */
982 swp_entry_t entry;
983 entry = make_migration_entry(page, pte_write(pteval));
984 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
985 } else
d559db08 986 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 987
edc315fd 988 page_remove_rmap(page);
1da177e4
LT
989 page_cache_release(page);
990
991out_unmap:
c0718806 992 pte_unmap_unlock(pte, ptl);
caed0f48
KM
993out:
994 return ret;
53f79acb 995
caed0f48
KM
996out_mlock:
997 pte_unmap_unlock(pte, ptl);
998
999
1000 /*
1001 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1002 * unstable result and race. Plus, We can't wait here because
1003 * we now hold anon_vma->lock or mapping->i_mmap_lock.
1004 * if trylock failed, the page remain in evictable lru and later
1005 * vmscan could retry to move the page to unevictable lru if the
1006 * page is actually mlocked.
1007 */
1008 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1009 if (vma->vm_flags & VM_LOCKED) {
1010 mlock_vma_page(page);
1011 ret = SWAP_MLOCK;
53f79acb 1012 }
caed0f48 1013 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1014 }
1da177e4
LT
1015 return ret;
1016}
1017
1018/*
1019 * objrmap doesn't work for nonlinear VMAs because the assumption that
1020 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1021 * Consequently, given a particular page and its ->index, we cannot locate the
1022 * ptes which are mapping that page without an exhaustive linear search.
1023 *
1024 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1025 * maps the file to which the target page belongs. The ->vm_private_data field
1026 * holds the current cursor into that scan. Successive searches will circulate
1027 * around the vma's virtual address space.
1028 *
1029 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1030 * more scanning pressure is placed against them as well. Eventually pages
1031 * will become fully unmapped and are eligible for eviction.
1032 *
1033 * For very sparsely populated VMAs this is a little inefficient - chances are
1034 * there there won't be many ptes located within the scan cluster. In this case
1035 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1036 *
1037 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1038 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1039 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1040 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1041 */
1042#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1043#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1044
b291f000
NP
1045static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1046 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1047{
1048 struct mm_struct *mm = vma->vm_mm;
1049 pgd_t *pgd;
1050 pud_t *pud;
1051 pmd_t *pmd;
c0718806 1052 pte_t *pte;
1da177e4 1053 pte_t pteval;
c0718806 1054 spinlock_t *ptl;
1da177e4
LT
1055 struct page *page;
1056 unsigned long address;
1057 unsigned long end;
b291f000
NP
1058 int ret = SWAP_AGAIN;
1059 int locked_vma = 0;
1da177e4 1060
1da177e4
LT
1061 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1062 end = address + CLUSTER_SIZE;
1063 if (address < vma->vm_start)
1064 address = vma->vm_start;
1065 if (end > vma->vm_end)
1066 end = vma->vm_end;
1067
1068 pgd = pgd_offset(mm, address);
1069 if (!pgd_present(*pgd))
b291f000 1070 return ret;
1da177e4
LT
1071
1072 pud = pud_offset(pgd, address);
1073 if (!pud_present(*pud))
b291f000 1074 return ret;
1da177e4
LT
1075
1076 pmd = pmd_offset(pud, address);
1077 if (!pmd_present(*pmd))
b291f000
NP
1078 return ret;
1079
1080 /*
af8e3354 1081 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1082 * keep the sem while scanning the cluster for mlocking pages.
1083 */
af8e3354 1084 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1085 locked_vma = (vma->vm_flags & VM_LOCKED);
1086 if (!locked_vma)
1087 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1088 }
c0718806
HD
1089
1090 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1091
365e9c87
HD
1092 /* Update high watermark before we lower rss */
1093 update_hiwater_rss(mm);
1094
c0718806 1095 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1096 if (!pte_present(*pte))
1097 continue;
6aab341e
LT
1098 page = vm_normal_page(vma, address, *pte);
1099 BUG_ON(!page || PageAnon(page));
1da177e4 1100
b291f000
NP
1101 if (locked_vma) {
1102 mlock_vma_page(page); /* no-op if already mlocked */
1103 if (page == check_page)
1104 ret = SWAP_MLOCK;
1105 continue; /* don't unmap */
1106 }
1107
cddb8a5c 1108 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1109 continue;
1110
1111 /* Nuke the page table entry. */
eca35133 1112 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1113 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1114
1115 /* If nonlinear, store the file page offset in the pte. */
1116 if (page->index != linear_page_index(vma, address))
1117 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1118
1119 /* Move the dirty bit to the physical page now the pte is gone. */
1120 if (pte_dirty(pteval))
1121 set_page_dirty(page);
1122
edc315fd 1123 page_remove_rmap(page);
1da177e4 1124 page_cache_release(page);
d559db08 1125 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1126 (*mapcount)--;
1127 }
c0718806 1128 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1129 if (locked_vma)
1130 up_read(&vma->vm_mm->mmap_sem);
1131 return ret;
1da177e4
LT
1132}
1133
a8bef8ff
MG
1134static bool is_vma_temporary_stack(struct vm_area_struct *vma)
1135{
1136 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1137
1138 if (!maybe_stack)
1139 return false;
1140
1141 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1142 VM_STACK_INCOMPLETE_SETUP)
1143 return true;
1144
1145 return false;
1146}
1147
b291f000
NP
1148/**
1149 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1150 * rmap method
1151 * @page: the page to unmap/unlock
8051be5e 1152 * @flags: action and flags
b291f000
NP
1153 *
1154 * Find all the mappings of a page using the mapping pointer and the vma chains
1155 * contained in the anon_vma struct it points to.
1156 *
1157 * This function is only called from try_to_unmap/try_to_munlock for
1158 * anonymous pages.
1159 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1160 * where the page was found will be held for write. So, we won't recheck
1161 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1162 * 'LOCKED.
1163 */
14fa31b8 1164static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1165{
1166 struct anon_vma *anon_vma;
5beb4930 1167 struct anon_vma_chain *avc;
1da177e4 1168 int ret = SWAP_AGAIN;
b291f000 1169
1da177e4
LT
1170 anon_vma = page_lock_anon_vma(page);
1171 if (!anon_vma)
1172 return ret;
1173
5beb4930
RR
1174 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1175 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1176 unsigned long address;
1177
1178 /*
1179 * During exec, a temporary VMA is setup and later moved.
1180 * The VMA is moved under the anon_vma lock but not the
1181 * page tables leading to a race where migration cannot
1182 * find the migration ptes. Rather than increasing the
1183 * locking requirements of exec(), migration skips
1184 * temporary VMAs until after exec() completes.
1185 */
1186 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1187 is_vma_temporary_stack(vma))
1188 continue;
1189
1190 address = vma_address(page, vma);
1cb1729b
HD
1191 if (address == -EFAULT)
1192 continue;
1193 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1194 if (ret != SWAP_AGAIN || !page_mapped(page))
1195 break;
1da177e4 1196 }
34bbd704
ON
1197
1198 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1199 return ret;
1200}
1201
1202/**
b291f000
NP
1203 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1204 * @page: the page to unmap/unlock
14fa31b8 1205 * @flags: action and flags
1da177e4
LT
1206 *
1207 * Find all the mappings of a page using the mapping pointer and the vma chains
1208 * contained in the address_space struct it points to.
1209 *
b291f000
NP
1210 * This function is only called from try_to_unmap/try_to_munlock for
1211 * object-based pages.
1212 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1213 * where the page was found will be held for write. So, we won't recheck
1214 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1215 * 'LOCKED.
1da177e4 1216 */
14fa31b8 1217static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1218{
1219 struct address_space *mapping = page->mapping;
1220 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1221 struct vm_area_struct *vma;
1222 struct prio_tree_iter iter;
1223 int ret = SWAP_AGAIN;
1224 unsigned long cursor;
1225 unsigned long max_nl_cursor = 0;
1226 unsigned long max_nl_size = 0;
1227 unsigned int mapcount;
1228
1229 spin_lock(&mapping->i_mmap_lock);
1230 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1231 unsigned long address = vma_address(page, vma);
1232 if (address == -EFAULT)
1233 continue;
1234 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1235 if (ret != SWAP_AGAIN || !page_mapped(page))
1236 goto out;
1da177e4
LT
1237 }
1238
1239 if (list_empty(&mapping->i_mmap_nonlinear))
1240 goto out;
1241
53f79acb
HD
1242 /*
1243 * We don't bother to try to find the munlocked page in nonlinears.
1244 * It's costly. Instead, later, page reclaim logic may call
1245 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1246 */
1247 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1248 goto out;
1249
1da177e4
LT
1250 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1251 shared.vm_set.list) {
1da177e4
LT
1252 cursor = (unsigned long) vma->vm_private_data;
1253 if (cursor > max_nl_cursor)
1254 max_nl_cursor = cursor;
1255 cursor = vma->vm_end - vma->vm_start;
1256 if (cursor > max_nl_size)
1257 max_nl_size = cursor;
1258 }
1259
b291f000 1260 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1261 ret = SWAP_FAIL;
1262 goto out;
1263 }
1264
1265 /*
1266 * We don't try to search for this page in the nonlinear vmas,
1267 * and page_referenced wouldn't have found it anyway. Instead
1268 * just walk the nonlinear vmas trying to age and unmap some.
1269 * The mapcount of the page we came in with is irrelevant,
1270 * but even so use it as a guide to how hard we should try?
1271 */
1272 mapcount = page_mapcount(page);
1273 if (!mapcount)
1274 goto out;
1275 cond_resched_lock(&mapping->i_mmap_lock);
1276
1277 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1278 if (max_nl_cursor == 0)
1279 max_nl_cursor = CLUSTER_SIZE;
1280
1281 do {
1282 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1283 shared.vm_set.list) {
1da177e4 1284 cursor = (unsigned long) vma->vm_private_data;
839b9685 1285 while ( cursor < max_nl_cursor &&
1da177e4 1286 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1287 if (try_to_unmap_cluster(cursor, &mapcount,
1288 vma, page) == SWAP_MLOCK)
1289 ret = SWAP_MLOCK;
1da177e4
LT
1290 cursor += CLUSTER_SIZE;
1291 vma->vm_private_data = (void *) cursor;
1292 if ((int)mapcount <= 0)
1293 goto out;
1294 }
1295 vma->vm_private_data = (void *) max_nl_cursor;
1296 }
1297 cond_resched_lock(&mapping->i_mmap_lock);
1298 max_nl_cursor += CLUSTER_SIZE;
1299 } while (max_nl_cursor <= max_nl_size);
1300
1301 /*
1302 * Don't loop forever (perhaps all the remaining pages are
1303 * in locked vmas). Reset cursor on all unreserved nonlinear
1304 * vmas, now forgetting on which ones it had fallen behind.
1305 */
101d2be7
HD
1306 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1307 vma->vm_private_data = NULL;
1da177e4
LT
1308out:
1309 spin_unlock(&mapping->i_mmap_lock);
1310 return ret;
1311}
1312
1313/**
1314 * try_to_unmap - try to remove all page table mappings to a page
1315 * @page: the page to get unmapped
14fa31b8 1316 * @flags: action and flags
1da177e4
LT
1317 *
1318 * Tries to remove all the page table entries which are mapping this
1319 * page, used in the pageout path. Caller must hold the page lock.
1320 * Return values are:
1321 *
1322 * SWAP_SUCCESS - we succeeded in removing all mappings
1323 * SWAP_AGAIN - we missed a mapping, try again later
1324 * SWAP_FAIL - the page is unswappable
b291f000 1325 * SWAP_MLOCK - page is mlocked.
1da177e4 1326 */
14fa31b8 1327int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1328{
1329 int ret;
1330
1da177e4
LT
1331 BUG_ON(!PageLocked(page));
1332
5ad64688
HD
1333 if (unlikely(PageKsm(page)))
1334 ret = try_to_unmap_ksm(page, flags);
1335 else if (PageAnon(page))
14fa31b8 1336 ret = try_to_unmap_anon(page, flags);
1da177e4 1337 else
14fa31b8 1338 ret = try_to_unmap_file(page, flags);
b291f000 1339 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1340 ret = SWAP_SUCCESS;
1341 return ret;
1342}
81b4082d 1343
b291f000
NP
1344/**
1345 * try_to_munlock - try to munlock a page
1346 * @page: the page to be munlocked
1347 *
1348 * Called from munlock code. Checks all of the VMAs mapping the page
1349 * to make sure nobody else has this page mlocked. The page will be
1350 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1351 *
1352 * Return values are:
1353 *
53f79acb 1354 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1355 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1356 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1357 * SWAP_MLOCK - page is now mlocked.
1358 */
1359int try_to_munlock(struct page *page)
1360{
1361 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1362
5ad64688
HD
1363 if (unlikely(PageKsm(page)))
1364 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1365 else if (PageAnon(page))
14fa31b8 1366 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1367 else
14fa31b8 1368 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1369}
e9995ef9
HD
1370
1371#ifdef CONFIG_MIGRATION
1372/*
1373 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1374 * Called by migrate.c to remove migration ptes, but might be used more later.
1375 */
1376static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1377 struct vm_area_struct *, unsigned long, void *), void *arg)
1378{
1379 struct anon_vma *anon_vma;
5beb4930 1380 struct anon_vma_chain *avc;
e9995ef9
HD
1381 int ret = SWAP_AGAIN;
1382
1383 /*
1384 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1385 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1386 * are holding mmap_sem. Users without mmap_sem are required to
1387 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1388 */
1389 anon_vma = page_anon_vma(page);
1390 if (!anon_vma)
1391 return ret;
1392 spin_lock(&anon_vma->lock);
5beb4930
RR
1393 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1394 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1395 unsigned long address = vma_address(page, vma);
1396 if (address == -EFAULT)
1397 continue;
1398 ret = rmap_one(page, vma, address, arg);
1399 if (ret != SWAP_AGAIN)
1400 break;
1401 }
1402 spin_unlock(&anon_vma->lock);
1403 return ret;
1404}
1405
1406static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1407 struct vm_area_struct *, unsigned long, void *), void *arg)
1408{
1409 struct address_space *mapping = page->mapping;
1410 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1411 struct vm_area_struct *vma;
1412 struct prio_tree_iter iter;
1413 int ret = SWAP_AGAIN;
1414
1415 if (!mapping)
1416 return ret;
1417 spin_lock(&mapping->i_mmap_lock);
1418 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1419 unsigned long address = vma_address(page, vma);
1420 if (address == -EFAULT)
1421 continue;
1422 ret = rmap_one(page, vma, address, arg);
1423 if (ret != SWAP_AGAIN)
1424 break;
1425 }
1426 /*
1427 * No nonlinear handling: being always shared, nonlinear vmas
1428 * never contain migration ptes. Decide what to do about this
1429 * limitation to linear when we need rmap_walk() on nonlinear.
1430 */
1431 spin_unlock(&mapping->i_mmap_lock);
1432 return ret;
1433}
1434
1435int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1436 struct vm_area_struct *, unsigned long, void *), void *arg)
1437{
1438 VM_BUG_ON(!PageLocked(page));
1439
1440 if (unlikely(PageKsm(page)))
1441 return rmap_walk_ksm(page, rmap_one, arg);
1442 else if (PageAnon(page))
1443 return rmap_walk_anon(page, rmap_one, arg);
1444 else
1445 return rmap_walk_file(page, rmap_one, arg);
1446}
1447#endif /* CONFIG_MIGRATION */