]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/kmemleak.c
kmemleak: Introduce a default off mode for kmemleak
[net-next-2.6.git] / mm / kmemleak.c
CommitLineData
3c7b4e6b
CM
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
3c7b4e6b
CM
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
ae281064
JP
64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
3c7b4e6b
CM
66#include <linux/init.h>
67#include <linux/kernel.h>
68#include <linux/list.h>
69#include <linux/sched.h>
70#include <linux/jiffies.h>
71#include <linux/delay.h>
72#include <linux/module.h>
73#include <linux/kthread.h>
74#include <linux/prio_tree.h>
3c7b4e6b
CM
75#include <linux/fs.h>
76#include <linux/debugfs.h>
77#include <linux/seq_file.h>
78#include <linux/cpumask.h>
79#include <linux/spinlock.h>
80#include <linux/mutex.h>
81#include <linux/rcupdate.h>
82#include <linux/stacktrace.h>
83#include <linux/cache.h>
84#include <linux/percpu.h>
85#include <linux/hardirq.h>
86#include <linux/mmzone.h>
87#include <linux/slab.h>
88#include <linux/thread_info.h>
89#include <linux/err.h>
90#include <linux/uaccess.h>
91#include <linux/string.h>
92#include <linux/nodemask.h>
93#include <linux/mm.h>
179a8100 94#include <linux/workqueue.h>
04609ccc 95#include <linux/crc32.h>
3c7b4e6b
CM
96
97#include <asm/sections.h>
98#include <asm/processor.h>
99#include <asm/atomic.h>
100
8e019366 101#include <linux/kmemcheck.h>
3c7b4e6b
CM
102#include <linux/kmemleak.h>
103
104/*
105 * Kmemleak configuration and common defines.
106 */
107#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 108#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
109#define SECS_FIRST_SCAN 60 /* delay before the first scan */
110#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 111#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
112
113#define BYTES_PER_POINTER sizeof(void *)
114
216c04b0
CM
115/* GFP bitmask for kmemleak internal allocations */
116#define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
117
3c7b4e6b
CM
118/* scanning area inside a memory block */
119struct kmemleak_scan_area {
120 struct hlist_node node;
c017b4be
CM
121 unsigned long start;
122 size_t size;
3c7b4e6b
CM
123};
124
a1084c87
LR
125#define KMEMLEAK_GREY 0
126#define KMEMLEAK_BLACK -1
127
3c7b4e6b
CM
128/*
129 * Structure holding the metadata for each allocated memory block.
130 * Modifications to such objects should be made while holding the
131 * object->lock. Insertions or deletions from object_list, gray_list or
132 * tree_node are already protected by the corresponding locks or mutex (see
133 * the notes on locking above). These objects are reference-counted
134 * (use_count) and freed using the RCU mechanism.
135 */
136struct kmemleak_object {
137 spinlock_t lock;
138 unsigned long flags; /* object status flags */
139 struct list_head object_list;
140 struct list_head gray_list;
141 struct prio_tree_node tree_node;
142 struct rcu_head rcu; /* object_list lockless traversal */
143 /* object usage count; object freed when use_count == 0 */
144 atomic_t use_count;
145 unsigned long pointer;
146 size_t size;
147 /* minimum number of a pointers found before it is considered leak */
148 int min_count;
149 /* the total number of pointers found pointing to this object */
150 int count;
04609ccc
CM
151 /* checksum for detecting modified objects */
152 u32 checksum;
3c7b4e6b
CM
153 /* memory ranges to be scanned inside an object (empty for all) */
154 struct hlist_head area_list;
155 unsigned long trace[MAX_TRACE];
156 unsigned int trace_len;
157 unsigned long jiffies; /* creation timestamp */
158 pid_t pid; /* pid of the current task */
159 char comm[TASK_COMM_LEN]; /* executable name */
160};
161
162/* flag representing the memory block allocation status */
163#define OBJECT_ALLOCATED (1 << 0)
164/* flag set after the first reporting of an unreference object */
165#define OBJECT_REPORTED (1 << 1)
166/* flag set to not scan the object */
167#define OBJECT_NO_SCAN (1 << 2)
168
0494e082
SS
169/* number of bytes to print per line; must be 16 or 32 */
170#define HEX_ROW_SIZE 16
171/* number of bytes to print at a time (1, 2, 4, 8) */
172#define HEX_GROUP_SIZE 1
173/* include ASCII after the hex output */
174#define HEX_ASCII 1
175/* max number of lines to be printed */
176#define HEX_MAX_LINES 2
177
3c7b4e6b
CM
178/* the list of all allocated objects */
179static LIST_HEAD(object_list);
180/* the list of gray-colored objects (see color_gray comment below) */
181static LIST_HEAD(gray_list);
182/* prio search tree for object boundaries */
183static struct prio_tree_root object_tree_root;
184/* rw_lock protecting the access to object_list and prio_tree_root */
185static DEFINE_RWLOCK(kmemleak_lock);
186
187/* allocation caches for kmemleak internal data */
188static struct kmem_cache *object_cache;
189static struct kmem_cache *scan_area_cache;
190
191/* set if tracing memory operations is enabled */
192static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
193/* set in the late_initcall if there were no errors */
194static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
195/* enables or disables early logging of the memory operations */
196static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
197/* set if a fata kmemleak error has occurred */
198static atomic_t kmemleak_error = ATOMIC_INIT(0);
199
200/* minimum and maximum address that may be valid pointers */
201static unsigned long min_addr = ULONG_MAX;
202static unsigned long max_addr;
203
3c7b4e6b 204static struct task_struct *scan_thread;
acf4968e 205/* used to avoid reporting of recently allocated objects */
3c7b4e6b 206static unsigned long jiffies_min_age;
acf4968e 207static unsigned long jiffies_last_scan;
3c7b4e6b
CM
208/* delay between automatic memory scannings */
209static signed long jiffies_scan_wait;
210/* enables or disables the task stacks scanning */
e0a2a160 211static int kmemleak_stack_scan = 1;
4698c1f2 212/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 213static DEFINE_MUTEX(scan_mutex);
ab0155a2
JB
214/* setting kmemleak=on, will set this var, skipping the disable */
215static int kmemleak_skip_disable;
216
3c7b4e6b 217
3c7b4e6b 218/*
2030117d 219 * Early object allocation/freeing logging. Kmemleak is initialized after the
3c7b4e6b 220 * kernel allocator. However, both the kernel allocator and kmemleak may
2030117d 221 * allocate memory blocks which need to be tracked. Kmemleak defines an
3c7b4e6b
CM
222 * arbitrary buffer to hold the allocation/freeing information before it is
223 * fully initialized.
224 */
225
226/* kmemleak operation type for early logging */
227enum {
228 KMEMLEAK_ALLOC,
229 KMEMLEAK_FREE,
53238a60 230 KMEMLEAK_FREE_PART,
3c7b4e6b
CM
231 KMEMLEAK_NOT_LEAK,
232 KMEMLEAK_IGNORE,
233 KMEMLEAK_SCAN_AREA,
234 KMEMLEAK_NO_SCAN
235};
236
237/*
238 * Structure holding the information passed to kmemleak callbacks during the
239 * early logging.
240 */
241struct early_log {
242 int op_type; /* kmemleak operation type */
243 const void *ptr; /* allocated/freed memory block */
244 size_t size; /* memory block size */
245 int min_count; /* minimum reference count */
fd678967
CM
246 unsigned long trace[MAX_TRACE]; /* stack trace */
247 unsigned int trace_len; /* stack trace length */
3c7b4e6b
CM
248};
249
250/* early logging buffer and current position */
a6186d89
CM
251static struct early_log
252 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
253static int crt_early_log __initdata;
3c7b4e6b
CM
254
255static void kmemleak_disable(void);
256
257/*
258 * Print a warning and dump the stack trace.
259 */
260#define kmemleak_warn(x...) do { \
261 pr_warning(x); \
262 dump_stack(); \
263} while (0)
264
265/*
266 * Macro invoked when a serious kmemleak condition occured and cannot be
2030117d 267 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
268 * tracing no longer available.
269 */
000814f4 270#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
271 kmemleak_warn(x); \
272 kmemleak_disable(); \
273} while (0)
274
0494e082
SS
275/*
276 * Printing of the objects hex dump to the seq file. The number of lines to be
277 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
278 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
279 * with the object->lock held.
280 */
281static void hex_dump_object(struct seq_file *seq,
282 struct kmemleak_object *object)
283{
284 const u8 *ptr = (const u8 *)object->pointer;
285 int i, len, remaining;
286 unsigned char linebuf[HEX_ROW_SIZE * 5];
287
288 /* limit the number of lines to HEX_MAX_LINES */
289 remaining = len =
290 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
291
292 seq_printf(seq, " hex dump (first %d bytes):\n", len);
293 for (i = 0; i < len; i += HEX_ROW_SIZE) {
294 int linelen = min(remaining, HEX_ROW_SIZE);
295
296 remaining -= HEX_ROW_SIZE;
297 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
298 HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
299 HEX_ASCII);
300 seq_printf(seq, " %s\n", linebuf);
301 }
302}
303
3c7b4e6b
CM
304/*
305 * Object colors, encoded with count and min_count:
306 * - white - orphan object, not enough references to it (count < min_count)
307 * - gray - not orphan, not marked as false positive (min_count == 0) or
308 * sufficient references to it (count >= min_count)
309 * - black - ignore, it doesn't contain references (e.g. text section)
310 * (min_count == -1). No function defined for this color.
311 * Newly created objects don't have any color assigned (object->count == -1)
312 * before the next memory scan when they become white.
313 */
4a558dd6 314static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 315{
a1084c87
LR
316 return object->count != KMEMLEAK_BLACK &&
317 object->count < object->min_count;
3c7b4e6b
CM
318}
319
4a558dd6 320static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 321{
a1084c87
LR
322 return object->min_count != KMEMLEAK_BLACK &&
323 object->count >= object->min_count;
3c7b4e6b
CM
324}
325
3c7b4e6b
CM
326/*
327 * Objects are considered unreferenced only if their color is white, they have
328 * not be deleted and have a minimum age to avoid false positives caused by
329 * pointers temporarily stored in CPU registers.
330 */
4a558dd6 331static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 332{
04609ccc 333 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
334 time_before_eq(object->jiffies + jiffies_min_age,
335 jiffies_last_scan);
3c7b4e6b
CM
336}
337
338/*
bab4a34a
CM
339 * Printing of the unreferenced objects information to the seq file. The
340 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 341 */
3c7b4e6b
CM
342static void print_unreferenced(struct seq_file *seq,
343 struct kmemleak_object *object)
344{
345 int i;
fefdd336 346 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 347
bab4a34a
CM
348 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
349 object->pointer, object->size);
fefdd336
CM
350 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
351 object->comm, object->pid, object->jiffies,
352 msecs_age / 1000, msecs_age % 1000);
0494e082 353 hex_dump_object(seq, object);
bab4a34a 354 seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
355
356 for (i = 0; i < object->trace_len; i++) {
357 void *ptr = (void *)object->trace[i];
bab4a34a 358 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
359 }
360}
361
362/*
363 * Print the kmemleak_object information. This function is used mainly for
364 * debugging special cases when kmemleak operations. It must be called with
365 * the object->lock held.
366 */
367static void dump_object_info(struct kmemleak_object *object)
368{
369 struct stack_trace trace;
370
371 trace.nr_entries = object->trace_len;
372 trace.entries = object->trace;
373
ae281064 374 pr_notice("Object 0x%08lx (size %zu):\n",
3c7b4e6b
CM
375 object->tree_node.start, object->size);
376 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
377 object->comm, object->pid, object->jiffies);
378 pr_notice(" min_count = %d\n", object->min_count);
379 pr_notice(" count = %d\n", object->count);
189d84ed 380 pr_notice(" flags = 0x%lx\n", object->flags);
04609ccc 381 pr_notice(" checksum = %d\n", object->checksum);
3c7b4e6b
CM
382 pr_notice(" backtrace:\n");
383 print_stack_trace(&trace, 4);
384}
385
386/*
387 * Look-up a memory block metadata (kmemleak_object) in the priority search
388 * tree based on a pointer value. If alias is 0, only values pointing to the
389 * beginning of the memory block are allowed. The kmemleak_lock must be held
390 * when calling this function.
391 */
392static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
393{
394 struct prio_tree_node *node;
395 struct prio_tree_iter iter;
396 struct kmemleak_object *object;
397
398 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
399 node = prio_tree_next(&iter);
400 if (node) {
401 object = prio_tree_entry(node, struct kmemleak_object,
402 tree_node);
403 if (!alias && object->pointer != ptr) {
a7686a45
CM
404 pr_warning("Found object by alias at 0x%08lx\n", ptr);
405 dump_stack();
406 dump_object_info(object);
3c7b4e6b
CM
407 object = NULL;
408 }
409 } else
410 object = NULL;
411
412 return object;
413}
414
415/*
416 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
417 * that once an object's use_count reached 0, the RCU freeing was already
418 * registered and the object should no longer be used. This function must be
419 * called under the protection of rcu_read_lock().
420 */
421static int get_object(struct kmemleak_object *object)
422{
423 return atomic_inc_not_zero(&object->use_count);
424}
425
426/*
427 * RCU callback to free a kmemleak_object.
428 */
429static void free_object_rcu(struct rcu_head *rcu)
430{
431 struct hlist_node *elem, *tmp;
432 struct kmemleak_scan_area *area;
433 struct kmemleak_object *object =
434 container_of(rcu, struct kmemleak_object, rcu);
435
436 /*
437 * Once use_count is 0 (guaranteed by put_object), there is no other
438 * code accessing this object, hence no need for locking.
439 */
440 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
441 hlist_del(elem);
442 kmem_cache_free(scan_area_cache, area);
443 }
444 kmem_cache_free(object_cache, object);
445}
446
447/*
448 * Decrement the object use_count. Once the count is 0, free the object using
449 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
450 * delete_object() path, the delayed RCU freeing ensures that there is no
451 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
452 * is also possible.
453 */
454static void put_object(struct kmemleak_object *object)
455{
456 if (!atomic_dec_and_test(&object->use_count))
457 return;
458
459 /* should only get here after delete_object was called */
460 WARN_ON(object->flags & OBJECT_ALLOCATED);
461
462 call_rcu(&object->rcu, free_object_rcu);
463}
464
465/*
466 * Look up an object in the prio search tree and increase its use_count.
467 */
468static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
469{
470 unsigned long flags;
471 struct kmemleak_object *object = NULL;
472
473 rcu_read_lock();
474 read_lock_irqsave(&kmemleak_lock, flags);
475 if (ptr >= min_addr && ptr < max_addr)
476 object = lookup_object(ptr, alias);
477 read_unlock_irqrestore(&kmemleak_lock, flags);
478
479 /* check whether the object is still available */
480 if (object && !get_object(object))
481 object = NULL;
482 rcu_read_unlock();
483
484 return object;
485}
486
fd678967
CM
487/*
488 * Save stack trace to the given array of MAX_TRACE size.
489 */
490static int __save_stack_trace(unsigned long *trace)
491{
492 struct stack_trace stack_trace;
493
494 stack_trace.max_entries = MAX_TRACE;
495 stack_trace.nr_entries = 0;
496 stack_trace.entries = trace;
497 stack_trace.skip = 2;
498 save_stack_trace(&stack_trace);
499
500 return stack_trace.nr_entries;
501}
502
3c7b4e6b
CM
503/*
504 * Create the metadata (struct kmemleak_object) corresponding to an allocated
505 * memory block and add it to the object_list and object_tree_root.
506 */
fd678967
CM
507static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
508 int min_count, gfp_t gfp)
3c7b4e6b
CM
509{
510 unsigned long flags;
511 struct kmemleak_object *object;
512 struct prio_tree_node *node;
3c7b4e6b 513
216c04b0 514 object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
3c7b4e6b 515 if (!object) {
ae281064 516 kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
fd678967 517 return NULL;
3c7b4e6b
CM
518 }
519
520 INIT_LIST_HEAD(&object->object_list);
521 INIT_LIST_HEAD(&object->gray_list);
522 INIT_HLIST_HEAD(&object->area_list);
523 spin_lock_init(&object->lock);
524 atomic_set(&object->use_count, 1);
04609ccc 525 object->flags = OBJECT_ALLOCATED;
3c7b4e6b
CM
526 object->pointer = ptr;
527 object->size = size;
528 object->min_count = min_count;
04609ccc 529 object->count = 0; /* white color initially */
3c7b4e6b 530 object->jiffies = jiffies;
04609ccc 531 object->checksum = 0;
3c7b4e6b
CM
532
533 /* task information */
534 if (in_irq()) {
535 object->pid = 0;
536 strncpy(object->comm, "hardirq", sizeof(object->comm));
537 } else if (in_softirq()) {
538 object->pid = 0;
539 strncpy(object->comm, "softirq", sizeof(object->comm));
540 } else {
541 object->pid = current->pid;
542 /*
543 * There is a small chance of a race with set_task_comm(),
544 * however using get_task_comm() here may cause locking
545 * dependency issues with current->alloc_lock. In the worst
546 * case, the command line is not correct.
547 */
548 strncpy(object->comm, current->comm, sizeof(object->comm));
549 }
550
551 /* kernel backtrace */
fd678967 552 object->trace_len = __save_stack_trace(object->trace);
3c7b4e6b
CM
553
554 INIT_PRIO_TREE_NODE(&object->tree_node);
555 object->tree_node.start = ptr;
556 object->tree_node.last = ptr + size - 1;
557
558 write_lock_irqsave(&kmemleak_lock, flags);
0580a181 559
3c7b4e6b
CM
560 min_addr = min(min_addr, ptr);
561 max_addr = max(max_addr, ptr + size);
562 node = prio_tree_insert(&object_tree_root, &object->tree_node);
563 /*
564 * The code calling the kernel does not yet have the pointer to the
565 * memory block to be able to free it. However, we still hold the
566 * kmemleak_lock here in case parts of the kernel started freeing
567 * random memory blocks.
568 */
569 if (node != &object->tree_node) {
ae281064
JP
570 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
571 "(already existing)\n", ptr);
3c7b4e6b 572 object = lookup_object(ptr, 1);
0580a181 573 spin_lock(&object->lock);
3c7b4e6b 574 dump_object_info(object);
0580a181 575 spin_unlock(&object->lock);
3c7b4e6b
CM
576
577 goto out;
578 }
579 list_add_tail_rcu(&object->object_list, &object_list);
580out:
581 write_unlock_irqrestore(&kmemleak_lock, flags);
fd678967 582 return object;
3c7b4e6b
CM
583}
584
585/*
586 * Remove the metadata (struct kmemleak_object) for a memory block from the
587 * object_list and object_tree_root and decrement its use_count.
588 */
53238a60 589static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
590{
591 unsigned long flags;
3c7b4e6b
CM
592
593 write_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b
CM
594 prio_tree_remove(&object_tree_root, &object->tree_node);
595 list_del_rcu(&object->object_list);
596 write_unlock_irqrestore(&kmemleak_lock, flags);
597
598 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
53238a60 599 WARN_ON(atomic_read(&object->use_count) < 2);
3c7b4e6b
CM
600
601 /*
602 * Locking here also ensures that the corresponding memory block
603 * cannot be freed when it is being scanned.
604 */
605 spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
606 object->flags &= ~OBJECT_ALLOCATED;
607 spin_unlock_irqrestore(&object->lock, flags);
608 put_object(object);
609}
610
53238a60
CM
611/*
612 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
613 * delete it.
614 */
615static void delete_object_full(unsigned long ptr)
616{
617 struct kmemleak_object *object;
618
619 object = find_and_get_object(ptr, 0);
620 if (!object) {
621#ifdef DEBUG
622 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
623 ptr);
624#endif
625 return;
626 }
627 __delete_object(object);
628 put_object(object);
629}
630
631/*
632 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
633 * delete it. If the memory block is partially freed, the function may create
634 * additional metadata for the remaining parts of the block.
635 */
636static void delete_object_part(unsigned long ptr, size_t size)
637{
638 struct kmemleak_object *object;
639 unsigned long start, end;
640
641 object = find_and_get_object(ptr, 1);
642 if (!object) {
643#ifdef DEBUG
644 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
645 "(size %zu)\n", ptr, size);
646#endif
647 return;
648 }
649 __delete_object(object);
650
651 /*
652 * Create one or two objects that may result from the memory block
653 * split. Note that partial freeing is only done by free_bootmem() and
654 * this happens before kmemleak_init() is called. The path below is
655 * only executed during early log recording in kmemleak_init(), so
656 * GFP_KERNEL is enough.
657 */
658 start = object->pointer;
659 end = object->pointer + object->size;
660 if (ptr > start)
661 create_object(start, ptr - start, object->min_count,
662 GFP_KERNEL);
663 if (ptr + size < end)
664 create_object(ptr + size, end - ptr - size, object->min_count,
665 GFP_KERNEL);
666
667 put_object(object);
668}
a1084c87
LR
669
670static void __paint_it(struct kmemleak_object *object, int color)
671{
672 object->min_count = color;
673 if (color == KMEMLEAK_BLACK)
674 object->flags |= OBJECT_NO_SCAN;
675}
676
677static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
678{
679 unsigned long flags;
a1084c87
LR
680
681 spin_lock_irqsave(&object->lock, flags);
682 __paint_it(object, color);
683 spin_unlock_irqrestore(&object->lock, flags);
684}
685
686static void paint_ptr(unsigned long ptr, int color)
687{
3c7b4e6b
CM
688 struct kmemleak_object *object;
689
690 object = find_and_get_object(ptr, 0);
691 if (!object) {
a1084c87
LR
692 kmemleak_warn("Trying to color unknown object "
693 "at 0x%08lx as %s\n", ptr,
694 (color == KMEMLEAK_GREY) ? "Grey" :
695 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
696 return;
697 }
a1084c87 698 paint_it(object, color);
3c7b4e6b
CM
699 put_object(object);
700}
701
a1084c87
LR
702/*
703 * Make a object permanently as gray-colored so that it can no longer be
704 * reported as a leak. This is used in general to mark a false positive.
705 */
706static void make_gray_object(unsigned long ptr)
707{
708 paint_ptr(ptr, KMEMLEAK_GREY);
709}
710
3c7b4e6b
CM
711/*
712 * Mark the object as black-colored so that it is ignored from scans and
713 * reporting.
714 */
715static void make_black_object(unsigned long ptr)
716{
a1084c87 717 paint_ptr(ptr, KMEMLEAK_BLACK);
3c7b4e6b
CM
718}
719
720/*
721 * Add a scanning area to the object. If at least one such area is added,
722 * kmemleak will only scan these ranges rather than the whole memory block.
723 */
c017b4be 724static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
725{
726 unsigned long flags;
727 struct kmemleak_object *object;
728 struct kmemleak_scan_area *area;
729
c017b4be 730 object = find_and_get_object(ptr, 1);
3c7b4e6b 731 if (!object) {
ae281064
JP
732 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
733 ptr);
3c7b4e6b
CM
734 return;
735 }
736
216c04b0 737 area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
3c7b4e6b 738 if (!area) {
ae281064 739 kmemleak_warn("Cannot allocate a scan area\n");
3c7b4e6b
CM
740 goto out;
741 }
742
743 spin_lock_irqsave(&object->lock, flags);
c017b4be 744 if (ptr + size > object->pointer + object->size) {
ae281064 745 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
746 dump_object_info(object);
747 kmem_cache_free(scan_area_cache, area);
748 goto out_unlock;
749 }
750
751 INIT_HLIST_NODE(&area->node);
c017b4be
CM
752 area->start = ptr;
753 area->size = size;
3c7b4e6b
CM
754
755 hlist_add_head(&area->node, &object->area_list);
756out_unlock:
757 spin_unlock_irqrestore(&object->lock, flags);
758out:
759 put_object(object);
760}
761
762/*
763 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
764 * pointer. Such object will not be scanned by kmemleak but references to it
765 * are searched.
766 */
767static void object_no_scan(unsigned long ptr)
768{
769 unsigned long flags;
770 struct kmemleak_object *object;
771
772 object = find_and_get_object(ptr, 0);
773 if (!object) {
ae281064 774 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
775 return;
776 }
777
778 spin_lock_irqsave(&object->lock, flags);
779 object->flags |= OBJECT_NO_SCAN;
780 spin_unlock_irqrestore(&object->lock, flags);
781 put_object(object);
782}
783
784/*
785 * Log an early kmemleak_* call to the early_log buffer. These calls will be
786 * processed later once kmemleak is fully initialized.
787 */
a6186d89 788static void __init log_early(int op_type, const void *ptr, size_t size,
c017b4be 789 int min_count)
3c7b4e6b
CM
790{
791 unsigned long flags;
792 struct early_log *log;
793
794 if (crt_early_log >= ARRAY_SIZE(early_log)) {
addd72c1
CM
795 pr_warning("Early log buffer exceeded, "
796 "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n");
a9d9058a 797 kmemleak_disable();
3c7b4e6b
CM
798 return;
799 }
800
801 /*
802 * There is no need for locking since the kernel is still in UP mode
803 * at this stage. Disabling the IRQs is enough.
804 */
805 local_irq_save(flags);
806 log = &early_log[crt_early_log];
807 log->op_type = op_type;
808 log->ptr = ptr;
809 log->size = size;
810 log->min_count = min_count;
fd678967
CM
811 if (op_type == KMEMLEAK_ALLOC)
812 log->trace_len = __save_stack_trace(log->trace);
3c7b4e6b
CM
813 crt_early_log++;
814 local_irq_restore(flags);
815}
816
fd678967
CM
817/*
818 * Log an early allocated block and populate the stack trace.
819 */
820static void early_alloc(struct early_log *log)
821{
822 struct kmemleak_object *object;
823 unsigned long flags;
824 int i;
825
826 if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
827 return;
828
829 /*
830 * RCU locking needed to ensure object is not freed via put_object().
831 */
832 rcu_read_lock();
833 object = create_object((unsigned long)log->ptr, log->size,
c1bcd6b3 834 log->min_count, GFP_ATOMIC);
0d5d1aad
CM
835 if (!object)
836 goto out;
fd678967
CM
837 spin_lock_irqsave(&object->lock, flags);
838 for (i = 0; i < log->trace_len; i++)
839 object->trace[i] = log->trace[i];
840 object->trace_len = log->trace_len;
841 spin_unlock_irqrestore(&object->lock, flags);
0d5d1aad 842out:
fd678967
CM
843 rcu_read_unlock();
844}
845
3c7b4e6b
CM
846/*
847 * Memory allocation function callback. This function is called from the
848 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
849 * vmalloc etc.).
850 */
a6186d89
CM
851void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
852 gfp_t gfp)
3c7b4e6b
CM
853{
854 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
855
856 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
857 create_object((unsigned long)ptr, size, min_count, gfp);
858 else if (atomic_read(&kmemleak_early_log))
c017b4be 859 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
3c7b4e6b
CM
860}
861EXPORT_SYMBOL_GPL(kmemleak_alloc);
862
863/*
864 * Memory freeing function callback. This function is called from the kernel
865 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
866 */
a6186d89 867void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
868{
869 pr_debug("%s(0x%p)\n", __func__, ptr);
870
871 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
53238a60 872 delete_object_full((unsigned long)ptr);
3c7b4e6b 873 else if (atomic_read(&kmemleak_early_log))
c017b4be 874 log_early(KMEMLEAK_FREE, ptr, 0, 0);
3c7b4e6b
CM
875}
876EXPORT_SYMBOL_GPL(kmemleak_free);
877
53238a60
CM
878/*
879 * Partial memory freeing function callback. This function is usually called
880 * from bootmem allocator when (part of) a memory block is freed.
881 */
a6186d89 882void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
883{
884 pr_debug("%s(0x%p)\n", __func__, ptr);
885
886 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
887 delete_object_part((unsigned long)ptr, size);
888 else if (atomic_read(&kmemleak_early_log))
c017b4be 889 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
53238a60
CM
890}
891EXPORT_SYMBOL_GPL(kmemleak_free_part);
892
3c7b4e6b
CM
893/*
894 * Mark an already allocated memory block as a false positive. This will cause
895 * the block to no longer be reported as leak and always be scanned.
896 */
a6186d89 897void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
898{
899 pr_debug("%s(0x%p)\n", __func__, ptr);
900
901 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
902 make_gray_object((unsigned long)ptr);
903 else if (atomic_read(&kmemleak_early_log))
c017b4be 904 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
3c7b4e6b
CM
905}
906EXPORT_SYMBOL(kmemleak_not_leak);
907
908/*
909 * Ignore a memory block. This is usually done when it is known that the
910 * corresponding block is not a leak and does not contain any references to
911 * other allocated memory blocks.
912 */
a6186d89 913void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
914{
915 pr_debug("%s(0x%p)\n", __func__, ptr);
916
917 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
918 make_black_object((unsigned long)ptr);
919 else if (atomic_read(&kmemleak_early_log))
c017b4be 920 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
3c7b4e6b
CM
921}
922EXPORT_SYMBOL(kmemleak_ignore);
923
924/*
925 * Limit the range to be scanned in an allocated memory block.
926 */
c017b4be 927void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
928{
929 pr_debug("%s(0x%p)\n", __func__, ptr);
930
931 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
c017b4be 932 add_scan_area((unsigned long)ptr, size, gfp);
3c7b4e6b 933 else if (atomic_read(&kmemleak_early_log))
c017b4be 934 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
3c7b4e6b
CM
935}
936EXPORT_SYMBOL(kmemleak_scan_area);
937
938/*
939 * Inform kmemleak not to scan the given memory block.
940 */
a6186d89 941void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
942{
943 pr_debug("%s(0x%p)\n", __func__, ptr);
944
945 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
946 object_no_scan((unsigned long)ptr);
947 else if (atomic_read(&kmemleak_early_log))
c017b4be 948 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
3c7b4e6b
CM
949}
950EXPORT_SYMBOL(kmemleak_no_scan);
951
04609ccc
CM
952/*
953 * Update an object's checksum and return true if it was modified.
954 */
955static bool update_checksum(struct kmemleak_object *object)
956{
957 u32 old_csum = object->checksum;
958
959 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
960 return false;
961
962 object->checksum = crc32(0, (void *)object->pointer, object->size);
963 return object->checksum != old_csum;
964}
965
3c7b4e6b
CM
966/*
967 * Memory scanning is a long process and it needs to be interruptable. This
968 * function checks whether such interrupt condition occured.
969 */
970static int scan_should_stop(void)
971{
972 if (!atomic_read(&kmemleak_enabled))
973 return 1;
974
975 /*
976 * This function may be called from either process or kthread context,
977 * hence the need to check for both stop conditions.
978 */
979 if (current->mm)
980 return signal_pending(current);
981 else
982 return kthread_should_stop();
983
984 return 0;
985}
986
987/*
988 * Scan a memory block (exclusive range) for valid pointers and add those
989 * found to the gray list.
990 */
991static void scan_block(void *_start, void *_end,
4b8a9674 992 struct kmemleak_object *scanned, int allow_resched)
3c7b4e6b
CM
993{
994 unsigned long *ptr;
995 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
996 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
997
998 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 999 struct kmemleak_object *object;
8e019366
PE
1000 unsigned long flags;
1001 unsigned long pointer;
3c7b4e6b 1002
4b8a9674
CM
1003 if (allow_resched)
1004 cond_resched();
3c7b4e6b
CM
1005 if (scan_should_stop())
1006 break;
1007
8e019366
PE
1008 /* don't scan uninitialized memory */
1009 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1010 BYTES_PER_POINTER))
1011 continue;
1012
1013 pointer = *ptr;
1014
3c7b4e6b
CM
1015 object = find_and_get_object(pointer, 1);
1016 if (!object)
1017 continue;
1018 if (object == scanned) {
1019 /* self referenced, ignore */
1020 put_object(object);
1021 continue;
1022 }
1023
1024 /*
1025 * Avoid the lockdep recursive warning on object->lock being
1026 * previously acquired in scan_object(). These locks are
1027 * enclosed by scan_mutex.
1028 */
1029 spin_lock_irqsave_nested(&object->lock, flags,
1030 SINGLE_DEPTH_NESTING);
1031 if (!color_white(object)) {
1032 /* non-orphan, ignored or new */
1033 spin_unlock_irqrestore(&object->lock, flags);
1034 put_object(object);
1035 continue;
1036 }
1037
1038 /*
1039 * Increase the object's reference count (number of pointers
1040 * to the memory block). If this count reaches the required
1041 * minimum, the object's color will become gray and it will be
1042 * added to the gray_list.
1043 */
1044 object->count++;
0587da40 1045 if (color_gray(object)) {
3c7b4e6b 1046 list_add_tail(&object->gray_list, &gray_list);
0587da40
CM
1047 spin_unlock_irqrestore(&object->lock, flags);
1048 continue;
1049 }
1050
3c7b4e6b 1051 spin_unlock_irqrestore(&object->lock, flags);
0587da40 1052 put_object(object);
3c7b4e6b
CM
1053 }
1054}
1055
1056/*
1057 * Scan a memory block corresponding to a kmemleak_object. A condition is
1058 * that object->use_count >= 1.
1059 */
1060static void scan_object(struct kmemleak_object *object)
1061{
1062 struct kmemleak_scan_area *area;
1063 struct hlist_node *elem;
1064 unsigned long flags;
1065
1066 /*
21ae2956
UKK
1067 * Once the object->lock is acquired, the corresponding memory block
1068 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b
CM
1069 */
1070 spin_lock_irqsave(&object->lock, flags);
1071 if (object->flags & OBJECT_NO_SCAN)
1072 goto out;
1073 if (!(object->flags & OBJECT_ALLOCATED))
1074 /* already freed object */
1075 goto out;
af98603d
CM
1076 if (hlist_empty(&object->area_list)) {
1077 void *start = (void *)object->pointer;
1078 void *end = (void *)(object->pointer + object->size);
1079
1080 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1081 !(object->flags & OBJECT_NO_SCAN)) {
1082 scan_block(start, min(start + MAX_SCAN_SIZE, end),
1083 object, 0);
1084 start += MAX_SCAN_SIZE;
1085
1086 spin_unlock_irqrestore(&object->lock, flags);
1087 cond_resched();
1088 spin_lock_irqsave(&object->lock, flags);
1089 }
1090 } else
3c7b4e6b 1091 hlist_for_each_entry(area, elem, &object->area_list, node)
c017b4be
CM
1092 scan_block((void *)area->start,
1093 (void *)(area->start + area->size),
1094 object, 0);
3c7b4e6b
CM
1095out:
1096 spin_unlock_irqrestore(&object->lock, flags);
1097}
1098
04609ccc
CM
1099/*
1100 * Scan the objects already referenced (gray objects). More objects will be
1101 * referenced and, if there are no memory leaks, all the objects are scanned.
1102 */
1103static void scan_gray_list(void)
1104{
1105 struct kmemleak_object *object, *tmp;
1106
1107 /*
1108 * The list traversal is safe for both tail additions and removals
1109 * from inside the loop. The kmemleak objects cannot be freed from
1110 * outside the loop because their use_count was incremented.
1111 */
1112 object = list_entry(gray_list.next, typeof(*object), gray_list);
1113 while (&object->gray_list != &gray_list) {
1114 cond_resched();
1115
1116 /* may add new objects to the list */
1117 if (!scan_should_stop())
1118 scan_object(object);
1119
1120 tmp = list_entry(object->gray_list.next, typeof(*object),
1121 gray_list);
1122
1123 /* remove the object from the list and release it */
1124 list_del(&object->gray_list);
1125 put_object(object);
1126
1127 object = tmp;
1128 }
1129 WARN_ON(!list_empty(&gray_list));
1130}
1131
3c7b4e6b
CM
1132/*
1133 * Scan data sections and all the referenced memory blocks allocated via the
1134 * kernel's standard allocators. This function must be called with the
1135 * scan_mutex held.
1136 */
1137static void kmemleak_scan(void)
1138{
1139 unsigned long flags;
04609ccc 1140 struct kmemleak_object *object;
3c7b4e6b 1141 int i;
4698c1f2 1142 int new_leaks = 0;
3c7b4e6b 1143
acf4968e
CM
1144 jiffies_last_scan = jiffies;
1145
3c7b4e6b
CM
1146 /* prepare the kmemleak_object's */
1147 rcu_read_lock();
1148 list_for_each_entry_rcu(object, &object_list, object_list) {
1149 spin_lock_irqsave(&object->lock, flags);
1150#ifdef DEBUG
1151 /*
1152 * With a few exceptions there should be a maximum of
1153 * 1 reference to any object at this point.
1154 */
1155 if (atomic_read(&object->use_count) > 1) {
ae281064 1156 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1157 atomic_read(&object->use_count));
1158 dump_object_info(object);
1159 }
1160#endif
1161 /* reset the reference count (whiten the object) */
1162 object->count = 0;
1163 if (color_gray(object) && get_object(object))
1164 list_add_tail(&object->gray_list, &gray_list);
1165
1166 spin_unlock_irqrestore(&object->lock, flags);
1167 }
1168 rcu_read_unlock();
1169
1170 /* data/bss scanning */
4b8a9674
CM
1171 scan_block(_sdata, _edata, NULL, 1);
1172 scan_block(__bss_start, __bss_stop, NULL, 1);
3c7b4e6b
CM
1173
1174#ifdef CONFIG_SMP
1175 /* per-cpu sections scanning */
1176 for_each_possible_cpu(i)
1177 scan_block(__per_cpu_start + per_cpu_offset(i),
4b8a9674 1178 __per_cpu_end + per_cpu_offset(i), NULL, 1);
3c7b4e6b
CM
1179#endif
1180
1181 /*
1182 * Struct page scanning for each node. The code below is not yet safe
1183 * with MEMORY_HOTPLUG.
1184 */
1185 for_each_online_node(i) {
1186 pg_data_t *pgdat = NODE_DATA(i);
1187 unsigned long start_pfn = pgdat->node_start_pfn;
1188 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1189 unsigned long pfn;
1190
1191 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1192 struct page *page;
1193
1194 if (!pfn_valid(pfn))
1195 continue;
1196 page = pfn_to_page(pfn);
1197 /* only scan if page is in use */
1198 if (page_count(page) == 0)
1199 continue;
4b8a9674 1200 scan_block(page, page + 1, NULL, 1);
3c7b4e6b
CM
1201 }
1202 }
1203
1204 /*
43ed5d6e 1205 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1206 */
1207 if (kmemleak_stack_scan) {
43ed5d6e
CM
1208 struct task_struct *p, *g;
1209
3c7b4e6b 1210 read_lock(&tasklist_lock);
43ed5d6e
CM
1211 do_each_thread(g, p) {
1212 scan_block(task_stack_page(p), task_stack_page(p) +
1213 THREAD_SIZE, NULL, 0);
1214 } while_each_thread(g, p);
3c7b4e6b
CM
1215 read_unlock(&tasklist_lock);
1216 }
1217
1218 /*
1219 * Scan the objects already referenced from the sections scanned
04609ccc 1220 * above.
3c7b4e6b 1221 */
04609ccc 1222 scan_gray_list();
2587362e
CM
1223
1224 /*
04609ccc
CM
1225 * Check for new or unreferenced objects modified since the previous
1226 * scan and color them gray until the next scan.
2587362e
CM
1227 */
1228 rcu_read_lock();
1229 list_for_each_entry_rcu(object, &object_list, object_list) {
1230 spin_lock_irqsave(&object->lock, flags);
04609ccc
CM
1231 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1232 && update_checksum(object) && get_object(object)) {
1233 /* color it gray temporarily */
1234 object->count = object->min_count;
2587362e
CM
1235 list_add_tail(&object->gray_list, &gray_list);
1236 }
1237 spin_unlock_irqrestore(&object->lock, flags);
1238 }
1239 rcu_read_unlock();
1240
04609ccc
CM
1241 /*
1242 * Re-scan the gray list for modified unreferenced objects.
1243 */
1244 scan_gray_list();
4698c1f2 1245
17bb9e0d 1246 /*
04609ccc 1247 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1248 */
04609ccc 1249 if (scan_should_stop())
17bb9e0d
CM
1250 return;
1251
4698c1f2
CM
1252 /*
1253 * Scanning result reporting.
1254 */
1255 rcu_read_lock();
1256 list_for_each_entry_rcu(object, &object_list, object_list) {
1257 spin_lock_irqsave(&object->lock, flags);
1258 if (unreferenced_object(object) &&
1259 !(object->flags & OBJECT_REPORTED)) {
1260 object->flags |= OBJECT_REPORTED;
1261 new_leaks++;
1262 }
1263 spin_unlock_irqrestore(&object->lock, flags);
1264 }
1265 rcu_read_unlock();
1266
1267 if (new_leaks)
1268 pr_info("%d new suspected memory leaks (see "
1269 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1270
3c7b4e6b
CM
1271}
1272
1273/*
1274 * Thread function performing automatic memory scanning. Unreferenced objects
1275 * at the end of a memory scan are reported but only the first time.
1276 */
1277static int kmemleak_scan_thread(void *arg)
1278{
1279 static int first_run = 1;
1280
ae281064 1281 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1282 set_user_nice(current, 10);
3c7b4e6b
CM
1283
1284 /*
1285 * Wait before the first scan to allow the system to fully initialize.
1286 */
1287 if (first_run) {
1288 first_run = 0;
1289 ssleep(SECS_FIRST_SCAN);
1290 }
1291
1292 while (!kthread_should_stop()) {
3c7b4e6b
CM
1293 signed long timeout = jiffies_scan_wait;
1294
1295 mutex_lock(&scan_mutex);
3c7b4e6b 1296 kmemleak_scan();
3c7b4e6b 1297 mutex_unlock(&scan_mutex);
4698c1f2 1298
3c7b4e6b
CM
1299 /* wait before the next scan */
1300 while (timeout && !kthread_should_stop())
1301 timeout = schedule_timeout_interruptible(timeout);
1302 }
1303
ae281064 1304 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1305
1306 return 0;
1307}
1308
1309/*
1310 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1311 * with the scan_mutex held.
3c7b4e6b 1312 */
7eb0d5e5 1313static void start_scan_thread(void)
3c7b4e6b
CM
1314{
1315 if (scan_thread)
1316 return;
1317 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1318 if (IS_ERR(scan_thread)) {
ae281064 1319 pr_warning("Failed to create the scan thread\n");
3c7b4e6b
CM
1320 scan_thread = NULL;
1321 }
1322}
1323
1324/*
1325 * Stop the automatic memory scanning thread. This function must be called
4698c1f2 1326 * with the scan_mutex held.
3c7b4e6b 1327 */
7eb0d5e5 1328static void stop_scan_thread(void)
3c7b4e6b
CM
1329{
1330 if (scan_thread) {
1331 kthread_stop(scan_thread);
1332 scan_thread = NULL;
1333 }
1334}
1335
1336/*
1337 * Iterate over the object_list and return the first valid object at or after
1338 * the required position with its use_count incremented. The function triggers
1339 * a memory scanning when the pos argument points to the first position.
1340 */
1341static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1342{
1343 struct kmemleak_object *object;
1344 loff_t n = *pos;
b87324d0
CM
1345 int err;
1346
1347 err = mutex_lock_interruptible(&scan_mutex);
1348 if (err < 0)
1349 return ERR_PTR(err);
3c7b4e6b 1350
3c7b4e6b
CM
1351 rcu_read_lock();
1352 list_for_each_entry_rcu(object, &object_list, object_list) {
1353 if (n-- > 0)
1354 continue;
1355 if (get_object(object))
1356 goto out;
1357 }
1358 object = NULL;
1359out:
3c7b4e6b
CM
1360 return object;
1361}
1362
1363/*
1364 * Return the next object in the object_list. The function decrements the
1365 * use_count of the previous object and increases that of the next one.
1366 */
1367static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1368{
1369 struct kmemleak_object *prev_obj = v;
1370 struct kmemleak_object *next_obj = NULL;
1371 struct list_head *n = &prev_obj->object_list;
1372
1373 ++(*pos);
3c7b4e6b 1374
3c7b4e6b
CM
1375 list_for_each_continue_rcu(n, &object_list) {
1376 next_obj = list_entry(n, struct kmemleak_object, object_list);
1377 if (get_object(next_obj))
1378 break;
1379 }
288c857d 1380
3c7b4e6b
CM
1381 put_object(prev_obj);
1382 return next_obj;
1383}
1384
1385/*
1386 * Decrement the use_count of the last object required, if any.
1387 */
1388static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1389{
b87324d0
CM
1390 if (!IS_ERR(v)) {
1391 /*
1392 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1393 * waiting was interrupted, so only release it if !IS_ERR.
1394 */
f5886c7f 1395 rcu_read_unlock();
b87324d0
CM
1396 mutex_unlock(&scan_mutex);
1397 if (v)
1398 put_object(v);
1399 }
3c7b4e6b
CM
1400}
1401
1402/*
1403 * Print the information for an unreferenced object to the seq file.
1404 */
1405static int kmemleak_seq_show(struct seq_file *seq, void *v)
1406{
1407 struct kmemleak_object *object = v;
1408 unsigned long flags;
1409
1410 spin_lock_irqsave(&object->lock, flags);
288c857d 1411 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1412 print_unreferenced(seq, object);
3c7b4e6b
CM
1413 spin_unlock_irqrestore(&object->lock, flags);
1414 return 0;
1415}
1416
1417static const struct seq_operations kmemleak_seq_ops = {
1418 .start = kmemleak_seq_start,
1419 .next = kmemleak_seq_next,
1420 .stop = kmemleak_seq_stop,
1421 .show = kmemleak_seq_show,
1422};
1423
1424static int kmemleak_open(struct inode *inode, struct file *file)
1425{
3c7b4e6b
CM
1426 if (!atomic_read(&kmemleak_enabled))
1427 return -EBUSY;
1428
b87324d0 1429 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1430}
1431
1432static int kmemleak_release(struct inode *inode, struct file *file)
1433{
b87324d0 1434 return seq_release(inode, file);
3c7b4e6b
CM
1435}
1436
189d84ed
CM
1437static int dump_str_object_info(const char *str)
1438{
1439 unsigned long flags;
1440 struct kmemleak_object *object;
1441 unsigned long addr;
1442
1443 addr= simple_strtoul(str, NULL, 0);
1444 object = find_and_get_object(addr, 0);
1445 if (!object) {
1446 pr_info("Unknown object at 0x%08lx\n", addr);
1447 return -EINVAL;
1448 }
1449
1450 spin_lock_irqsave(&object->lock, flags);
1451 dump_object_info(object);
1452 spin_unlock_irqrestore(&object->lock, flags);
1453
1454 put_object(object);
1455 return 0;
1456}
1457
30b37101
LR
1458/*
1459 * We use grey instead of black to ensure we can do future scans on the same
1460 * objects. If we did not do future scans these black objects could
1461 * potentially contain references to newly allocated objects in the future and
1462 * we'd end up with false positives.
1463 */
1464static void kmemleak_clear(void)
1465{
1466 struct kmemleak_object *object;
1467 unsigned long flags;
1468
1469 rcu_read_lock();
1470 list_for_each_entry_rcu(object, &object_list, object_list) {
1471 spin_lock_irqsave(&object->lock, flags);
1472 if ((object->flags & OBJECT_REPORTED) &&
1473 unreferenced_object(object))
a1084c87 1474 __paint_it(object, KMEMLEAK_GREY);
30b37101
LR
1475 spin_unlock_irqrestore(&object->lock, flags);
1476 }
1477 rcu_read_unlock();
1478}
1479
3c7b4e6b
CM
1480/*
1481 * File write operation to configure kmemleak at run-time. The following
1482 * commands can be written to the /sys/kernel/debug/kmemleak file:
1483 * off - disable kmemleak (irreversible)
1484 * stack=on - enable the task stacks scanning
1485 * stack=off - disable the tasks stacks scanning
1486 * scan=on - start the automatic memory scanning thread
1487 * scan=off - stop the automatic memory scanning thread
1488 * scan=... - set the automatic memory scanning period in seconds (0 to
1489 * disable it)
4698c1f2 1490 * scan - trigger a memory scan
30b37101
LR
1491 * clear - mark all current reported unreferenced kmemleak objects as
1492 * grey to ignore printing them
189d84ed 1493 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1494 */
1495static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1496 size_t size, loff_t *ppos)
1497{
1498 char buf[64];
1499 int buf_size;
b87324d0 1500 int ret;
3c7b4e6b
CM
1501
1502 buf_size = min(size, (sizeof(buf) - 1));
1503 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1504 return -EFAULT;
1505 buf[buf_size] = 0;
1506
b87324d0
CM
1507 ret = mutex_lock_interruptible(&scan_mutex);
1508 if (ret < 0)
1509 return ret;
1510
3c7b4e6b
CM
1511 if (strncmp(buf, "off", 3) == 0)
1512 kmemleak_disable();
1513 else if (strncmp(buf, "stack=on", 8) == 0)
1514 kmemleak_stack_scan = 1;
1515 else if (strncmp(buf, "stack=off", 9) == 0)
1516 kmemleak_stack_scan = 0;
1517 else if (strncmp(buf, "scan=on", 7) == 0)
1518 start_scan_thread();
1519 else if (strncmp(buf, "scan=off", 8) == 0)
1520 stop_scan_thread();
1521 else if (strncmp(buf, "scan=", 5) == 0) {
1522 unsigned long secs;
3c7b4e6b 1523
b87324d0
CM
1524 ret = strict_strtoul(buf + 5, 0, &secs);
1525 if (ret < 0)
1526 goto out;
3c7b4e6b
CM
1527 stop_scan_thread();
1528 if (secs) {
1529 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1530 start_scan_thread();
1531 }
4698c1f2
CM
1532 } else if (strncmp(buf, "scan", 4) == 0)
1533 kmemleak_scan();
30b37101
LR
1534 else if (strncmp(buf, "clear", 5) == 0)
1535 kmemleak_clear();
189d84ed
CM
1536 else if (strncmp(buf, "dump=", 5) == 0)
1537 ret = dump_str_object_info(buf + 5);
4698c1f2 1538 else
b87324d0
CM
1539 ret = -EINVAL;
1540
1541out:
1542 mutex_unlock(&scan_mutex);
1543 if (ret < 0)
1544 return ret;
3c7b4e6b
CM
1545
1546 /* ignore the rest of the buffer, only one command at a time */
1547 *ppos += size;
1548 return size;
1549}
1550
1551static const struct file_operations kmemleak_fops = {
1552 .owner = THIS_MODULE,
1553 .open = kmemleak_open,
1554 .read = seq_read,
1555 .write = kmemleak_write,
1556 .llseek = seq_lseek,
1557 .release = kmemleak_release,
1558};
1559
1560/*
1561 * Perform the freeing of the kmemleak internal objects after waiting for any
1562 * current memory scan to complete.
1563 */
179a8100 1564static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b
CM
1565{
1566 struct kmemleak_object *object;
1567
4698c1f2 1568 mutex_lock(&scan_mutex);
3c7b4e6b 1569 stop_scan_thread();
3c7b4e6b 1570
3c7b4e6b
CM
1571 rcu_read_lock();
1572 list_for_each_entry_rcu(object, &object_list, object_list)
53238a60 1573 delete_object_full(object->pointer);
3c7b4e6b
CM
1574 rcu_read_unlock();
1575 mutex_unlock(&scan_mutex);
3c7b4e6b
CM
1576}
1577
179a8100 1578static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
1579
1580/*
1581 * Disable kmemleak. No memory allocation/freeing will be traced once this
1582 * function is called. Disabling kmemleak is an irreversible operation.
1583 */
1584static void kmemleak_disable(void)
1585{
1586 /* atomically check whether it was already invoked */
1587 if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1588 return;
1589
1590 /* stop any memory operation tracing */
1591 atomic_set(&kmemleak_early_log, 0);
1592 atomic_set(&kmemleak_enabled, 0);
1593
1594 /* check whether it is too early for a kernel thread */
1595 if (atomic_read(&kmemleak_initialized))
179a8100 1596 schedule_work(&cleanup_work);
3c7b4e6b
CM
1597
1598 pr_info("Kernel memory leak detector disabled\n");
1599}
1600
1601/*
1602 * Allow boot-time kmemleak disabling (enabled by default).
1603 */
1604static int kmemleak_boot_config(char *str)
1605{
1606 if (!str)
1607 return -EINVAL;
1608 if (strcmp(str, "off") == 0)
1609 kmemleak_disable();
ab0155a2
JB
1610 else if (strcmp(str, "on") == 0)
1611 kmemleak_skip_disable = 1;
1612 else
3c7b4e6b
CM
1613 return -EINVAL;
1614 return 0;
1615}
1616early_param("kmemleak", kmemleak_boot_config);
1617
1618/*
2030117d 1619 * Kmemleak initialization.
3c7b4e6b
CM
1620 */
1621void __init kmemleak_init(void)
1622{
1623 int i;
1624 unsigned long flags;
1625
ab0155a2
JB
1626#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1627 if (!kmemleak_skip_disable) {
1628 kmemleak_disable();
1629 return;
1630 }
1631#endif
1632
3c7b4e6b
CM
1633 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1634 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1635
1636 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1637 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1638 INIT_PRIO_TREE_ROOT(&object_tree_root);
1639
1640 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1641 local_irq_save(flags);
1642 if (!atomic_read(&kmemleak_error)) {
1643 atomic_set(&kmemleak_enabled, 1);
1644 atomic_set(&kmemleak_early_log, 0);
1645 }
1646 local_irq_restore(flags);
1647
1648 /*
1649 * This is the point where tracking allocations is safe. Automatic
1650 * scanning is started during the late initcall. Add the early logged
1651 * callbacks to the kmemleak infrastructure.
1652 */
1653 for (i = 0; i < crt_early_log; i++) {
1654 struct early_log *log = &early_log[i];
1655
1656 switch (log->op_type) {
1657 case KMEMLEAK_ALLOC:
fd678967 1658 early_alloc(log);
3c7b4e6b
CM
1659 break;
1660 case KMEMLEAK_FREE:
1661 kmemleak_free(log->ptr);
1662 break;
53238a60
CM
1663 case KMEMLEAK_FREE_PART:
1664 kmemleak_free_part(log->ptr, log->size);
1665 break;
3c7b4e6b
CM
1666 case KMEMLEAK_NOT_LEAK:
1667 kmemleak_not_leak(log->ptr);
1668 break;
1669 case KMEMLEAK_IGNORE:
1670 kmemleak_ignore(log->ptr);
1671 break;
1672 case KMEMLEAK_SCAN_AREA:
c017b4be 1673 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
3c7b4e6b
CM
1674 break;
1675 case KMEMLEAK_NO_SCAN:
1676 kmemleak_no_scan(log->ptr);
1677 break;
1678 default:
1679 WARN_ON(1);
1680 }
1681 }
1682}
1683
1684/*
1685 * Late initialization function.
1686 */
1687static int __init kmemleak_late_init(void)
1688{
1689 struct dentry *dentry;
1690
1691 atomic_set(&kmemleak_initialized, 1);
1692
1693 if (atomic_read(&kmemleak_error)) {
1694 /*
1695 * Some error occured and kmemleak was disabled. There is a
1696 * small chance that kmemleak_disable() was called immediately
1697 * after setting kmemleak_initialized and we may end up with
1698 * two clean-up threads but serialized by scan_mutex.
1699 */
179a8100 1700 schedule_work(&cleanup_work);
3c7b4e6b
CM
1701 return -ENOMEM;
1702 }
1703
1704 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1705 &kmemleak_fops);
1706 if (!dentry)
ae281064 1707 pr_warning("Failed to create the debugfs kmemleak file\n");
4698c1f2 1708 mutex_lock(&scan_mutex);
3c7b4e6b 1709 start_scan_thread();
4698c1f2 1710 mutex_unlock(&scan_mutex);
3c7b4e6b
CM
1711
1712 pr_info("Kernel memory leak detector initialized\n");
1713
1714 return 0;
1715}
1716late_initcall(kmemleak_late_init);